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RÉSUMÉ

Le système de différenciation entre le « soi » et le « non-soi » des vertébrés 

permet la détection et le rejet de pathogènes et de cellules allogéniques. Il 

requiert la surveillance de petits peptides présentés à la surface cellulaire par 

les molécules du complexe majeur d’histocompatibilité de classe I (CMH I). Les 

molécules du CMH I sont des hétérodimères composés par une chaîne lourde 

encodée par des gènes du CMH et une chaîne légère encodée par le gène β
2
-

microglobuline. L’ensemble des peptides est appelé l’immunopeptidome du 

CMH I. Nous avons utilisé des approches en biologie de systèmes pour définir 

la composition et l’origine cellulaire de l’immunopeptidome du CMH I pré-

senté par des cellules B lymphoblastoïdes dérivés de deux pairs de fratries 

avec un CMH I identique. Nous avons découvert que l’immunopeptidome du 

CMH I est spécifique à l’individu et au type cellulaire, qu’il dérive préférentiel-

lement de transcrits abondants, est enrichi en transcrits possédant d’éléments 

de reconnaissance par les petits ARNs, mais qu’il ne montre aucun biais ni vers 

les régions génétiques invariables ni vers les régions polymorphiques. Nous 

avons également développé une nouvelle méthode qui combine la spectromé-

trie de masse, le séquençage de nouvelle génération et la bioinformatique pour 

l’identification à grand échelle de peptides du CMH I, dont ceux résultants 

de polymorphismes nucléotidiques simples non-synonymes (PNS-ns), appelés 

antigènes mineurs d’histocompatibilité (AMHs), qui sont les cibles de réponses 

allo-immunitaires. La comparaison de l’origine génomique de l’immunopepti-

dome de sœurs avec un CMH I identique a révélé que 0,5% des PNS-ns étaient 

représentés dans l’immunopeptidome et que 0,3% des peptides du CMH I se-

raient immunogéniques envers une des deux sœurs. En résumé, nous avons 

découvert des nouveaux facteurs qui modèlent l’immunopeptidome du CMH 

I et nous présentons une nouvelle stratégie pour l’indentification de ces pep-

tides, laquelle pourrait accélérer énormément le développement d’immuno-

thérapies ciblant les AMHs.

MOTS CLÉS : complexe majeur d’histocompatibilité, antigène de leucocytes 

humains, immunopeptidome, antigène mineur d’histocompatibilité, spectro-

métrie de masse, lignées de cellules B lymphoblastoïdes, séquençage de nou-

velle génération 
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ABSTRACT

The self/nonself discrimination system of vertebrates allows detection and 

rejection of pathogens and allogeneic cells. It requires the surveillance of short 

peptides presented by major histocompatibility class I (MHC I) molecules on 

the cell surface. MHC I molecules are heterodimers that consist of a heavy chain 

produced by MHC genes and a light chain encoded by the β
2
-microglobulin  

gene. The peptides presented by MHC I molecules are collectively referred to 

as the MHC I immunopeptidome. We employed systems biology approaches 

to define the composition and cellular origin of the self MHC I immunopep-

tidome presented by B lymphoblastoid cells derived from two pairs of MHC-

identical siblings. We found that the MHC I immunopeptidome is subject- and 

cell-specific, derives preferentially from abundant transcripts, is enriched in 

transcripts bearing microRNA response elements and shows no bias toward 

invariant vs. polymorphic genomic sequences. We also developed a novel per-

sonalized approach combining mass-spectrometry, next-generation sequenc-

ing and bioinformatics for high-throughput identification of MHC I peptides 

including those caused by nonsynonymous single nucleotide polymorphisms 

(ns-SNPs), termed minor histocompatibility antigens (MiHAs), which are the 

targets of allo-immune responses. Comparison of the genomic landscape of 

the immunopeptidome of MHC-identical siblings revealed that 0.5% of ns-SNPs 

were represented in the immunopeptidome and that 0.3% of the MHC I-pep-

tide repertoire would be immunogenic for one of the siblings. We discovered 

new factors that shape the self MHC I immunopeptidome and present a novel 

strategy for the identification of MHC I-associated peptides that could greatly 

accelerate the development of MiHA-targeted immunotherapy.

KEYWORDS : major histocompatibility complex, human leukocyte antigen, 

immunopeptidome, minor histocompatibility antigens, mass-spectrometry, B 

lymphoblastoid cell lines, next-generation sequencing 
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OVERVIEW

The ability to discriminate between self and non-self is a fundamental re-

quirement for life. Multicellular organisms use self/non-self discrimination 

primarily in immune defense. The adaptive immune system of jawed verte-

brates has taken advantage of the protein fragments (peptides) generated by 

the ubiquitin-proteasome degradation machinery to use them as flags in self/

non-self discrimination. These protein fragments, collectively known as the 

MHC I immunopeptidome, need to be processed and presented on MHC class 

I molecules on the surface of the cell. Under steady state conditions, the MHC 

I immunopeptidome is composed solely of self peptides. The immune sys-

tem keeps track of intracellular protein content by sampling the universe of 

self peptides produced in search of: i) altered (transformed) peptides or neo-

self peptides that may reveal dysfunction (e.g. cancer, stress, inflammation) or 

ii) non-self peptides resulting from alteration of steady state conditions (e.g. 

infection, pregnancy, transplantation). While the adaptive immune system is 

vital for combating pathogens and neoplastic transformation, it represents a 

significant barrier for foreign (allogeneic) transplantation in a clinical context. 

Moreover, alteration of the self/nonself discrimination system may lead to 

autoimmune diseases.

The MHC I immunopeptidome is the end result of the antigen processing and 

presentation pathway, which behaves as a complex system involving input, 

processing and output of data. Complex systems can be studied from a ho-

listic perspective. Systems biology is an inter-disciplinary field that combines 

high-content multiplexed measurements with computational methods to bet-

ter understand and model biological function at various scales. Accordingly, 

recent large-scale (-omic) studies have yielded unprecedented insights into the 

genesis, molecular composition and plasticity of the MHC I immunopeptidome. 

The aim of the present multidisciplinary work was to unravel the biogenesis 

and composition of the MHC I immunopeptidome of human B lymphoblastoid 

cell lines by applying data-driven systems biology approaches.

The results from this work will be presented in six chapters and two appen-

dixes. The first chapter includes the general introduction and objectives. The 
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second chapter corresponds to a published review article about the origin and 

plasticity of MHC-I associated self peptides. The third chapter includes a pub-

lished article in which we report the relationship between the MHC I immuno-

peptidome, the transcriptome and the microRNAome. The forth chapter cor-

responds to a review article to be submitted about identification methods and 

molecular mechanisms responsible for the generation of MHC I peptides that 

cause immune reactions in allogeneic transplantation (i.e. minor histocompat-

ibility antigens). The fifth chapter includes a submitted manuscript showing 

the impact of single nucleotide polymorphisms on the MHC I immunopepti-

dome. The results from this work are collectively discussed in the sixth chap-

ter. The first appendix is a published work that I started during my Masters 

studies and completed during my Ph.D. studies. It shows the effect of ER stress 

on the processing of MHC class I-associated peptides. The second appendix is 

the summary of my contribution to a published article showing the impact of 

immunproteasome deletion on the repertoire of MHC I-associated peptides.

Our studies reveal how various factors in different functional genomic levels 

such as genomic polymorphisms, transcript abundance and the presence of 

microRNA response elements, influence the human self MHC I immunopepti-

dome. Moreover, this work significantly expand the number of sequenced and 

characterized human MHC I peptides and constitute a precious resource of 

exome, transcriptome and miRNAome sequencing and analyses of human B 

lymphoblasts. Lastly, we provide a novel approach relying on next-generation 

sequencing, bioinformatics and mass spectrometry for high-throughput dis-

covery of minor histocompatibility antigens. Therefore, our work provides ma-

jor insights on the biogenesis of the MHC I immunopeptidome and contributes 

to the advancement of cancer immunotherapy.     
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1. Introduction

1.1 The innate and adaptive immune system

In vertebrates, the effective recognition and elimination or containment of in-

fectious microorganisms is achieved by the synergic and complementary ac-

tion of the innate and adaptive immune systems [1]. The immune system is 

not only equipped with potent effector mechanisms to clear pathogen, toxins 

and allergens, but it also has the ability to distinguish self from non-self and 

avoid damaging self-tissues that can lead to auto-immune diseases [2]. This 

immunosurveillance mechanism is known as self tolerance and it is mani-

fested both in the innate and the adaptive immune responses [2]. 

The innate immune (or non-specific) system allows initial host defense against 

microbial pathogens and comprises innate mechanisms that are encoded in 

their mature functional forms by germline genes [2]. It includes i) physical bar-

riers such as respiratory, gastrointestinal and genitourinary epithelia, ii) small 

molecules including complement proteins and defensins that are constitutive-

ly present in fluids or are released from activated cells, iii) soluble proteins 

such as cytokines, chemokines and enzymes, and iv) membrane-bound recep-

tors and cytoplasmic proteins of phagocytic immune cells that bind molecular 

patterns of microbial origin [3]. The innate immune system is non-specific as 

the distinction of microbial pathogens from host cells is made through recog-

nition of conserved molecules shared by many microbes [2]. These molecules 

are recognized by a limited repertoire of receptors, such as the Toll family, 

expressed on phagocytic immune cells [4]. Because the recognition molecules 

are expressed broadly on a large number of cells, the cells are rapidly activated 

(within hours of contact) and this constitutes the initial host response [2]. Of 

note, the efficacy of the innate response is not increased by previous exposure 

to the same pathogen [3]. 

By contrast, the adaptive (or specific) immune system is composed of small 

numbers of cells with specificity for any individual pathogen. These special-

ized cells are T and B lymphocytes that express antigen-specific receptors on 

their cell surface [2]. The T cell receptors (TCR) and the B-cell receptors (BCR) 
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are acquired during the lifetime of the organism as a result of somatic rear-

rangement of gene segments and allow the formation of millions of different 

antigen receptors, each with a unique specificity for a different antigen [2]. In 

this way, the adaptive immune system provides flexibility to respond to nu-

merous and highly variable targets. This response is less rapid (within days of 

contact) than the innate response since the responding cells must proliferate 

after encountering the antigen to attain sufficient numbers to mount an effec-

tive response [2,3]. Hence, the adaptive response generally arrives temporarily 

after the innate response in host defense [2]. Following recognition of specific 

antigens of a given microorganism, the lymphocytes and the antibodies they 

produce persist as immunological memory and are rapidly protective on re-

exposure to the same pathogen, albeit in an antigen-dependent manner [1]. 

The phenomenon of immunological memory is exploited in vaccination, in 

which antigens are inoculated to stimulate an individual’s adaptive immunity 

to a pathogen [1]. 

Both B and T lymphocytes provide defense against extracellular pathogens via 

recognition of antigens, although by different mechanisms. B lymphocytes (or 

B cells) mature in the bone marrow and trigger what is typically known as the 

humoral immune response (or antibody-mediated system). This response 

is characterized by recognition of intact antigens in the extracellular milieu 

through secreted immunoglobulins (antibodies) produced by B cells and sur-

face immunoglobulins that compose the BCRs on the surface of B cells [3]. By 

contrast, T lymphocytes (or T cells) develop in the thymus from common 

lymphoid progenitors and trigger the cellular immune response (or cell-me-

diated system). In this response T cells are activated by antigen-presenting 

cells (APCs) (e.g. dendritic cells (DCs), macrophages, B cells) and consequently 

eliminate infected cells and activate other cells of the immune system [3,5]. 

Activation of T lymphocytes is initiated upon recognition of peptide fragments 

of antigen (i.e. epitopes) presented by MHC molecules encoded by the major 

histocompatibility complex (MHC) on the surface of APCs [3]. Hence, T cells 

recognize a molecular complex composed of a self-component (the MHC) and 

a non-self structure (the epitope) [2].
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1.2 T lymphocytes

T lymphocytes are classified into several T cell subsets that are distinguished 

based on the composition of their TCR (αβ or γδ), their antigenic specificity 

(determined by expression of the CD4+ or CD8+ coreceptor molecules) and 

their state (e.g. naive, effector, regulatory) [6]. The composition of the TCR de-

termines its specificity for a given target [7]. While T cells that express the αβ 
TCR react to peptides presented by MHC molecules, those that express the γδ 

TCR are not MHC-restricted and play a role in the surveillance of tissue stress 

[6]. αβ T cells (referred as T cells hereinafter) constitute the majority of the T 

cell population in lymphoid organs [5]. The αβ TCR is an heterodimer made 

from two separate chains that arise from somatic gene rearrangement of vari-

able (V), diversity (D), joining (J) and constant (C) gene fragments during T cell 

development [7]. In this process, nucleotides are inserted and deleted at V(D)

J junctions in each chain, resulting in an extensive repertoire of TCRs, whose 

reactivity against self MHC-peptide complexes is screened thereafter during 

thymic selection [7].

In the thymus, thymic selection of T cells is achieved through positive and 

negative selection. During positive selection, immature double-positive 

(CD4+CD8+) thymocytes that are capable of forming a minimal interaction 

between the αβ TCR and self MHC-peptide complexes on cortical thymic epi-

thelial cells, are rescued [8,9]. Positive selection is assumed to enrich the rep-

ertoire of self-MHC-restricted T cells capable of react against potential for-

eign antigens [10]. Hence, double-positive T cells bearing a TCR that do not 

bind MHC-self-peptide complexes die by neglect. During negative selection 

(or clonal deletion), thymocytes are exposed to a variety of tissue-specific 

peptides ectopically expressed and presented by medullary epithelial cells and 

medullary APCs [6,8]. In this process, T thymocytes that bind with high avid-

ity to self MHC-peptide complexes are eliminated [8]. The removal of these 

self-reactive T cells is essential for preventing autoimmunity and illustrates 

one mechanism of central tolerance [6]. Double-positive thymocytes passing 

both positive and negative selection develop into mature CD4+ or CD8+ T cells 

expressing large amounts of TCRs [5]. This pre-immune repertoire of naive 

T lymphocytes potentially reactive to foreign but not self antigens, exit the 
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thymus and migrate to secondary lymphoid organs, where they can encounter 

non-self peptides presented by MHC molecules on APCs and thereafter prolif-

erate and differentiate into effector T lymphocytes [11]. Activation of CD8+ 

(or cytotoxic) T cells (CTLs) and CD4+ (or helper) T cells is triggered by rec-

ognition of peptides bound on MHC class I and class II molecules, respectively, 

encoded by the major histocompatibility complex (MHC) genes (see next sec-

tion). Upon activation, CD4+ T cells produce cytokines that activate other cells 

including macrophages and B cells and thereby regulate cellular and humoral 

immune responses, while CD8+ T cells differentiate into effector T cells that 

directly contact infected or transformed cells and destroy them via release of 

perforin and granzymes [5]. 

1.3 The human major histocompatibility complex (MHC)

The major histocompatibility complex (MHC) is a large multigenic region 

found in most vertebrates containing at least 128 genes in humans, of which 

more than 20% encode proteins of the immune system [4,12]. The human MHC 

is the most gene-dense and polymorphic region and is part of the so-called 

extended MHC region, covering 7.6 Mb of the short arm of the chromosome 6 

[4]. The MHC region contains, among others, highly polymorphic genes encod-

ing the aforementioned MHC molecules that present protein-derived peptides 

(antigens) to T cells [1]. These type of antigen-presenting molecules are known 

as classical MHC molecules [3]. There are also structurally related molecules 

that are monomorphic or oligomorphic, known as non-classical MHC mol-

ecules [3,13]. Non-classical MHC molecules are involved in immune and non-

immune processes and some can function in the presentation of peptide anti-

gens [13]. Besides, the MHC region contains genes involved in the processing 

of antigens [4]. 

For historical reasons, the human MHC is also referred to as the human leuko-

cyte antigen (HLA) complex, since the first MHC gene products were discov-

ered on the surface of leukocytes [4]. Three distinct regions have been identi-

fied within the human MHC: the MHC class I (MHC I), MHC class II (MHC II) 

and MHC class III (MHC III) (Figure 1). The MHC I and II regions encode both 

classical MHC and non-classical MHC molecules. The MHC I region contains 
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among other genes, the classical MHC I genes (also known as MHC Ia genes) 

HLA-A, HLA-B and HLA-C and the more ancient non-classical MHC I genes 

(also known as MHC Ib genes) HLA-E, HLA-F and HLA-G [4,13]. The MHC II re-

gion covers the classical MHC II genes HLA-DP, HLA-DQ and HLA-DR, as well 

as non-classical MHC II genes HLA-DM and HLA-DO [4]. Some non-classical 

MHC I molecules play a role in activating specialized classes of T cells, whereas 

non-classical MHC II molecules regulate peptide loading into classical MHC 

class II molecules. The MHC III region is located between the class I and class 

II regions and encloses miscellaneous non-HLA genes (e.g. MICA, MICB) encod-

ing proteins with or without immune function [12]. 

1.4 The classical MHC class I and II molecules 

MHC I and MHC II molecules are cell-surface glycoproteins with a similar three-

dimensional structure and similar function in presenting peptide fragments 

or antigens to the immune system [15].  Nevertheless, these molecules differ 

in their tissue distribution and in the type of antigenic peptides they display 

that reflects different antigen processing pathways [16]. The 3 classical human 

MHC I genes (HLA-A, HLA-B and HLA-C) are co-dominantly expressed on the 

cell surface of all nucleated cells and play a major role in adaptive immunity. 

Figure 1. Location and organization of the human MHC 

complex on chromosome 6. Adapted with permission 

from [14]. Copyright Massachusetts Medical Society
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On the contrary, surface expression of MHC II molecules is restricted mainly 

to APCs such as macrophages, B cells and DCs, although it can be induced by 

interferon-γ (IFN-γ) and other stimuli in non-APCs like mesenchymal stromal 

cells, fibroblasts, endothelial cells and activated human T cells [5,16]. 

1.4.1 The MHC II molecules and associated peptides

MHC II molecules are transmembrane glycoproteins with short cytoplasmic 

domains, composed of one α and one β chain. The membrane-proximal re-

gion consists of one conserved domain that is part of the α subunit and an-

other conserved domain of the β subunit (Figure 2c). MHC II molecules exhibit 

enormous amino acid sequence variation in the region that interacts with the 

peptide named the peptide-binding groove [17] (Figure 2d). Consequently, dif-

ferent alleles bind different sets of peptides. The groove is formed by the jux-

taposition of the N-terminal regions of the α and β chains. The peptide-binding 

groove is open at both ends and hence, long peptides, generally between 15 

and 24 amino acids long, can bind and overhang the binding groove resulting 

in more or less restrictive binding motifs [17] (Figure 2d). 

1.4.2 The MHC I molecules and associated peptides

The molecular target of the TCR of CD8+ T cells is the complex formed by the 

MHC I and the associated peptide [2]. MHC I molecules are cell-surface het-

erodimers composed of a polymorphic transmembrane 44-kd heavy (α) chain 

and a 12-kd invariant light chain, known as β2-microglobulin (β2m) [2,14,16] 

(Figure 2a). The heavy chain consists of 3 extracellular domains (α1, α2 and 
α3), a transmembrane domain and a short intracellular domain that anchors 

the protein in the cell membrane [18]. The α1 and α2 domains form a platform 

with a groove, in which antigenic peptides can bind noncovalently through the 

N and C termini [17] (Figure 2a). The main anchor residues of the peptide to 

the peptide-binding groove are frequently the second and the last C-terminal 

residue [15] (Figure 3b). In some exceptional cases, the main anchors are lo-

cated in positions P3 (as in HLA-A1-associated peptides) and P5 (as in HLA-B8-

associated peptides). The peptide-binding groove is blocked at both ends by 

bulky aromatic amino acids that typically limit the length of the bound peptide 
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to 8-10 residues [15] (Figure 2b). Less frequently, MHC I molecules can bind 

longer peptides [19-21], in which case the central part of the peptide protrudes 

and the binding is presumably less stable [15,22]. 

A prominent characteristic of the human MHC I molecules is their high degree 

of polymorphism [1,23]. The IMGT/HLA database of the international ImMuno-

GeneTics project (http://www.ebi.ac.uk/ipd/imgt/hla) registers thousands of 

MHC I alleles in their last release (2013-07-25): 2,365 HLA-A, 3,005 HLA-B and 

1,848 HLA-C alleles. Besides, HLA-B is the most polymorphic gene in the hu-

man genome [24]. Most polymorphisms in exons 2 and 3 of the HLA-A, HLA-B 

and HLA-C genes lead to amino acid substitutions in the floor and sides of the 

peptide-binding groove of the corresponding MHC I protein [17,25]. Thereby, 

different MHC I allelic products display distinct amino acid preferences at key 

 c a

 d b

 IICHM ICHM

α2 α1

α3 

β2m 

α1 

α2 
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β1 
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α2 
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β2 

Figure 2. Three-dimensional structures of peptide-bound 

MHC I and MHC II molecules

(a) and (b) HLA-A2 molecule complexed with influenza derived 

peptide. (c) and (d) HLA-DR1 molecule complexed with influ-

enza derived peptide. Highly polymorphic residues proximal 

to the peptide-binding groove are highlighted in yellow; the 

peptide is shown in red. Adapted with permission from [17].
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positions in the peptide sequence. These MHC-specific amino acid patterns are 

known as peptide-binding motifs (or binding specificities) [26] (Figure 3a). 

Consequently, different MHC I allelic products bind different sets of peptides 

[27]. Moreover, MHC I molecules are promiscuous since each type of MHC I al-

lelic product can bind a diversity of peptides that differ in their sequences but 

share 2-3 anchoring amino acid residues (i.e. the same binding motif) [14,28]. 

At the individual scale, this variability means that each subject who is hetero-

zygous at the 3 HLA loci will have 6 distinct peptide-binding grooves. Con-

sequently, on a population level, the diversity of peptide-binding motifs is 

colossal. This characteristic supports a hypothesis whereby variations in the 

MHC I binding groove allow the various MHC I molecules in the population 

to bind and present different portions of viral or intracellular pathogens for 

immune recognition [29]. Hence, this huge diversity protects the population 

against microbes that evade recognition through mutations in antigens that 
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E V A P P E Y H R
A V A A V A A R R
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I P Q C R L T P L
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G R I D K P I L K
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Figure 3. Examples of peptide-binding motifs of some HLA molecules

(a) Peptide-binding motifs. Anchor residues are highlighted in yellow. (b) Lon-

gitudinal section through the peptide-binding groove of an MHC I molecule. 

P1-P9 indicates amino acid positions. Adapted with permission from [14]. 

Copyright Massachusetts Medical Society
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impair MHC I binding [2,30]. It is believed that this overwhelming variability 

of antigenic structures and the ability of pathogens to mutate and avoid host 

detection have driven the evolution of the adaptive immune system [31]. The 

enormous degree of MHC polymorphism, although highly desirable in healthy 

individuals for dealing with infections, poses great problems in a transplant 

setting, as the search for a suitable bone marrow or organ donor may be ex-

tremely difficult.

1.5 Antigen processing and presentation

Typically, MHC I molecules bind peptides that derive from proteins translated 

within the cell (endogenous antigens), and present them to CD8+ T cells. By 

contrast, MHC II molecules sample the extracellular milieu through binding of 

peptides derived from exogenous proteins that have been ingested by APCs 

and degraded in the endocytic pathway, and expose them to CD4+ T cells 

[2,16]. In the next sections, the MHC II antigen processing pathway will be 

briefly described followed by a detailed review of the MHC I pathway. 

1.5.1 MHC II antigen processing and presentation

The transmembrane α and β chains of MHC II are assembled in the endoplas-

mic reticulum (ER), where they associate with the invariant chain (Ii) and form 

the Ii-MHC II complex (Figure 4). The complex is transported to endosomal 

compartments through the recognition of sorting motifs in the cytoplasmic 

tail of Ii [16]. Once the complexes reach late endosomal compartment named 

MHC class II compartment (MIIC), Ii is digested leaving a residual Ii peptide 

named class II-associated Ii peptide (CLIP). CLIP lies in the peptide-binding 

groove where it is exchanged for a specific peptide through the action of HLA-

DM. In B cells, HLA-DO associates with HLA-DM and restricts HLA-DM activity 

to more acidic compartments [32]. MHC II-peptide complexes are exported 

from the MIIC via the trans-Golgi network to the plasma membrane. 

MHC II-associated peptides arise from the degradation of exogenous proteins 

in the endosomal pathway (Figure 2b). Antigens are internalized through en-

docytosis and targeted into lysosomes for processing by lysosomal proteases 
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and loading on MHC II molecules [16]. Cytosolic (endogenous) proteins de-

graded through autophagy, as well as membrane proteins degraded in the 

lysosome, can be presented by MHC II molecules [33-36]. Information about 

the MHC II-peptide repertoire can be found in the section “The MHC class II 

immunopeptidome” of the review article included in chapter 2. 

Figure 4. Simplified overview of the MHC II antigen processing and 

presentation pathway

(a) MHC II-Ii assembly. (b) Internalization of antigens. (c) Ii digestion and 

peptide binding in the MIIC (MHC class II compartment). (d) Export of 

MHC II-peptide complexes. Adapted with permission from [17].

α β

a

b
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1.5.2 MHC I antigen processing and presentation

Peptide-bound MHC I molecules are the end product of the MHC I-antigen pro-

cessing and presentation pathway. This pathway begins with the degradation 

of proteins source of peptides inside the cell. In a stepwise manner, proteolytic 

intermediate fragments are generated and protected until they yield the final 

peptides that can fit MHC I molecules in the ER and be exported as MHC I-pep-

tide complexes to the cell surface [37]. Accordingly, the antigen presentation 

pathway is composed of two merging cellular processes (Figure 5). In the first 

one, peptides suitable for loading the MHC I molecules are generated, whereas 

in the second pathway, peptide-receptive MHC I molecules are assembled [38]. 

This highly specialized system, operating with essentially conserved compo-

nents, is nonetheless capable of generating highly diverse sets of peptides that 

satisfy a large number of different MHC I molecules

BiP

MHC I
heavy chain

TAP1

Proteasome and
proteases 

Cellular proteome
Cytosol

Plasma membrane

CD8
T cell receptor

Cytotoxic T cell

Golgi

Ribosome

Translocon TAP2

ERAAP

PLC

ER

β2m

a

b

c

d

Tapasin

Figure 5. General overview of the MHC I antigen processing and presenta-

tion pathway.

(a) Production of peptides. (b) Assembly of MHC I heterodimers (c) Loading 

of MHC I molecules with peptide. (d) Export of MHC I-peptide complexes. 

PLC: peptide-loading complex. Adapted with permission from [39].
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1.5.2.1 Peptide processing in the cytoplasm

Generation of peptides suitable for loading MHC I molecules starts in the cyto-

plasm. This is the major site of protein turnover, because even ER proteins are 

retrieved into the cytosol for degradation [37]. In the cytoplasm, peptide pre-

cursors of variable lengths (2-25 amino acids) are generated from degradation 

of endogenous proteins through the action of the proteasome and other prote-

ases [22,40,41] (Figure 6). Cytosolic proteins first associate with the chaperone 

Hsp90α, are then ubiquitinated by the ubiquitin ligase CHIP and consequent-

ly degraded by the multicatalytic proteasome [17,42,43]. Of note, different 

proteasome variants such as the immunoproteasome (induced by IFN-γ and 

IFN-α) [44], mixed proteasomes [45] and the thymoproteasome (restricted to 

cortical thymic epithelial cells) [46] are suppliers of peptide precursors (3-22 

residues in length) [22,47,48]. Treatment of cells with proteasome inhibitors 

has revealed that most but not all MHC I peptides require the proteasome for 

their generation [49,50], suggesting the contribution of other proteases to the 

peptide pool [22]. Additionally, proteasomes are thought to generate the final 

C-terminal residues of MHC I-binding peptides [43,51], although this notion 

have been questioned by recent studies [52-57]. 

Proteasomal degradation yield truncated protein fragments that can associate 

with the chaperone protein TRiC [58,59]. In this way, protein fragments are 

protected from cleavage by cytosolic amino- and endopeptidases that recycle 

amino acids and prevent their accumulation [60]. Before transport into the 

ER, most peptide epitopes require additional trimming at the amino terminus 

[61]. Various cytosolic aminopeptidases, such as leucine aminopeptidases, pu-

romycin-sensitive aminopeptidase and bleomycin hydrolase have been shown 

to cleave the amino terminus [22,39,50,62] (Figure 6). Of particular interest 

is the cytoplasmic tripeptidyl peptidase II (TPPII), involved in trimming of 

proteasomal products over 15 amino acids in length, in contrast to most other 

aminopeptidases that only cleave peptides smaller than 14 residues [22,63]. 

Studies using TPPII inhibitors have shown that TPPII plays a role in the presen-

tation of selected peptides [22,53]. TPPII has also been shown to participate 

in proteasome-independent pathway for epitope generation [53]. Recently, the 

cytosolic peptidases insulin-degrading enzyme (IDE), thimet oligopeptidase 



14

(TOP), nardilysin and DPP9 have been implicated in the generation of some 

epitopes in a proteasome-dependent or independent manner [54,55,64]. Nev-

ertheless, mice deficient for different cytosolic peptidases have shown that de-

spite being essential for the generation of particular MHC I peptides, they are 

not required for production of the bulk peptide pool [22,50,65-67]. Further-

more, a caspase-mediated epitope production has been discovered in apop-

totic cells upon infection with vaccinia virus, and this mechanism has been 

proposed to explain the increased immunogenicity of apoptotic cells [68].

PLC

Figure 6. The MHC I antigen processing and presentation pathway

PLC: peptide-loading complex. Adapted with permission from [16].
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Paradoxically, the cytoplasm constitutes not only the place where antigenic 

peptides are born, but also the site where most peptides are rapidly destroyed 

owed to excess trimming by cytosolic peptidases [60]. Indeed, peptides have 

a half-life of 6-10 seconds in the cytosol [60] and more than 99% of peptides 

are degraded by cytosolic peptidases before they reach the ER [69]. Cytosolic 

chaperones, such as Hsp70 and Hsp90, are thought to protect peptides from 

exhaustive degradation [42,58,70] This rapid degradation by the proteasome 

and cytoplasmic enzymes limits the availability of peptides and accounts for 

the inefficiency of the peptide presentation pathway [37,71]. For instance, cy-

tosolic efficiency has been measured to produce one MHC I-peptide complex 

for each 500-5,000 viral translation products degraded [72].

At this point, the resulting protein fragments constitute precursors of the MHC 

I-peptide repertoire and are ready to be translocated into the ER. Nonetheless, 

these precursors need further trimming in the ER in order to be suitable for 

loading receptive and correctly assembled MHC I molecules [73].

1.5.2.2 Generation of peptide-receptive MHC I molecules

Production of MHC I peptides requires a concomitant pathway that generates 

peptide-receptive MHC I molecules in the ER. Similar to what occurs with the 

peptide precursors, both the MHC I heavy chain (α chain) and the β2m polypep-

tides are cotranslationally translocated into the ER [74]. During translocation, 

the nascent MHC I heavy chains are bound by the chaperone binding immuno-

globulin protein (BiP) and modified into a monoglucosylated form by glucosi-

dases I and II [75] (Figure 5). Subsequently, early folding and oxidation of MHC 

I heavy chain is mediated by the chaperone calnexin [39,76]. These events are 

followed by 2m association and replacement of calnexin by another lectin-like 

chaperone, calreticulin, which is part of the peptide-loading complex (PLC) 

[39] (Figures 5 and 6). The multisubunit PLC includes the MHC I heavy chain, 

2m, carltericulin, the transmembrane protein tapasin, the oxidoreductase 

ERp57 and the transporter associated with antigen processing (TAP) [39]. 

The luminal domain of TAP acts as a binding platform for calreticulin and 

ERp57, which provide quality control and mediate the formation of disulphide 

bonds, supporting the correct folding of MHC I in the PLC [76-78]. In this way, 
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this multisubunit structure keeps the MHC I molecules in a peptide-receptive 

state [39]. Binding to a high-affinity peptide is needed for the stabilization of 

MHC I heterodimers, which otherwise are destroyed by the ERAD system [76]. 

1.5.2.3 Peptide processing in the ER

	

Besides retaining empty MHC I molecules, TAP is responsible for the active 

transport of peptide precursors (8-16 amino acids length) from the cytosol 

into the lumen of the ER [79], where they can access empty MHC I heterodi-

mers [78]. The TAP complex is a heterodimer composed of the TAP1 and TAP2 

molecules and shows substrate specificity when selecting peptides for trans-

location [80,81] (Figure 5). Most MHC I peptides are TAP-dependent, as evi-

denced by impaired surface expression of MHC I-peptide complexes in cells 

lacking TAP1 or TAP2 [81]. 

Peptide precursors are translocated into the ER where they can follow one 

or more different fates. They can bind MHC I molecules, be protected by ER 

chaperones, be trimmed by ER aminopeptidases, be degraded or be retrotrans-

located back into the cytosol [82]. Together, these processes keep a low con-

centration of peptides in the ER such that only the most recent peptides are 

available for MHC I binding and do not have to compete with those that arrived 

earlier [69]. 

Peptides entering the ER via TAP bind to newly synthesized MHC I molecules 

immediately, as long as the appropriate motif is present [62]. At this point, 

the length is not yet crucial [62]. This initial peptide binding is followed by 

peptide exchange and editing in the ER [83]. Generation of correct MHC I pep-

tides sometimes requires trimming by ER aminopeptidases. The key enzyme 

responsible for generation of quality peptides and final N-terminal trimming 

are the ubiquitously expressed ER amino peptidases associated with antigen 

processing, ERAP1 and ERAP2 in humans (ERAAP in mice) [84] (Figure 6). 

ERAP1 recognizes the peptide carboxyl terminus and trims the amino terminus 

to generate peptides 8-10 residues in length [85]. Of note, ERAP1 is induced by 

IFN-γ [84,86] and it serves a unique function in modifying the quantity and the 

quality of the MHC I-peptide repertoire and influencing CD8+ T cell responses 
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[87,88]. ERAP1 deficiency (through small interfering RNA or in ERAAP knock-

out mice) leaves some peptides unaffected, whereas others are either absent 

or dramatically upregulated [22,65,85]. Consistent with these findings, mass 

spectrometry analysis revealed a drastic increase in MCH I peptide length in 

mice lacking ERAAP [52,89]. ERAP2 also trims residues from the N terminus 

of the peptide, but in contrast to ERAP1, the former is more active in cleav-

ing N-terminal basic residues, does not stop trimming peptides smaller than 

8-9 residues in length and its silencing only reduced overall MHC I expression 

by ~10% [56,65]. Additionally, the C-terminal editing of proteasome-produced 

peptide precursors can be performed by the carboxypeptidase angiotensin-

converting enzyme (ACE) in the ER [57].

Peptide precursors can also bind ER chaperones that protect them from degra-

dation [82,90]. The protein disulfide isomerase (PDI) appears to be the most 

efficient peptide-binding ER chaperone, as it binds to peptides of different 

length and sequence [91]. Peptides not bound either to ER chaperons nor to 

MHC I molecules, can be trimmed and destroyed by ERAP1/ERAP2 [92], or 

retrotranslocated back into the cytosol for ER-associated degradation (ERAD) 

[82]. In this way, they no longer compete for space in the local compartment. 

1.5.2.4 Peptide loading and presentation

The PLC orchestrates the final assembly of MHC I molecules with peptides 

(now 8-11 amino acids), delivered into the ER by TAP, for generation of stable 

MHC class I-peptide complexes [61]. The transfer of translocated peptides to 

peptide-receptive MHC I molecules is facilitated by 2 tapasin molecules that 

act as bridge. Tapasin interacts not only with TAP and ERp57, but also re-

cruits MHC I-β2m heterodimers and calreticulin to the PLC [17,93] (Figure 5). 

Moreover, tapasin plays a peptide-editing role, mediating the binding of high-

affinity peptides at the expense of low-affinity peptides, as shown in tapasin-

negative cells in which MHC I surface complexes are less stable [94]. A recent 

study using  -deficient mice has revealed that this enzyme plays a role in de-

fining the C-terminus of MHC I peptides [52], a function previously attributed 

to the proteasome [43]. Tapasin function is well complemented with that of 

the UDP-glucose-glycoprotein glucosyltransferase 1 (UGT1) enzyme, which 
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reglucosylates the heavy chain of MHC I molecules with suboptimal peptides, 

allowing reentry of the MHC I into the PLC and exchange for high affinity 

peptides [17,75,95]. Thus, the chief function of the PLC is to provide ‘quality 

control’ by selectively retaining MHC I molecules loaded with suboptimal pep-

tides for replacement by higher affinity peptides [74]. High-quality peptides 

that confer stability to the MHC I molecules share two important properties: 

the precise length and amino acid sequence required for a given MHC class I-

binding motif [74]. When any of the PLC constituents are missing or inhibited 

by viruses, intracellular MHC I molecules can suffer unfolding, degradation 

and indiscriminate peptide loading, all of which can compromise the stability, 

expression and function of MHC I-peptide complexes at the surface (see some 

exceptions in the next section) [74,88]. 

Successful peptide loading induces dissociation of the MHC I molecule from 

tapasin, removal of the glucose residue by glucosidase II and export of the 

MHC I-peptide complexes escorted by the tapasin-related protein (TAPBPR) 

[96] through the Golgi cisternae [61],. In the Golgi, suboptimally loaded MHC 

I molecules can be retrieved to the ER or be directed through the constitutive 

secretory pathway to the cell surface [39]. MHC I-peptide complexes segregate 

into peptide-specific clusters that have been associated with increased T cell 

sensitivity [97].

1.5.2.5 The end of MHC I life

Surface MHC I-peptide trimolecular complexes can be released through meta-

loprotease cleavage [98],  or be recycled via the endocytic pathway [16] (Figure 

6). A fraction of endocytosed MHC I molecules can be recycled after peptide 

exchange with high affinity endosomal peptides [16,99] (see next section). The 

proteins MARCH4 and MARCH9 have been shown to control the half-life of 

MHC I molecules through ubiquitination that promotes MHC I internalization 

and lysosomal degradation [100]. 

Peptide-free MHC I dimers are also recycled via the endocytic pathway [99]. 

Peptide-free MHC I heavy chains without or with very weakly bound β2m are 

known as open MHC I conformers and can result from dissociation of the 
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heterodimer caused by low-affinity peptides or acidic pH [99,101]. Empty MHC 

I heavy chains have a shorter half-life on the cell surface than trimeric MHC 

I-peptide complexes [99]. Empty MHC I heavy chains have been shown to inter-

act in cis and trans with various receptor molecules including those for insulin, 

interleukin 2 and growth factors [102]. 

1.5.3 Alternative MHC I antigen presentation pathways

The proteasome-TAP pathway is considered as the conventional processing 

route. However, MHC I peptide presentation can take place (albeit frequently 

modified) in the absence of one or more molecules of the pathway [103-105]. 

Viral evasion strategies targeting different stages of the antigen processing 

pathway have been very useful not only to understand the classical pathway, 

but also to elucidate non-traditional alternative pathways [106-108]. Moreover, 

polymorphisms in MHC I molecules not only result in different peptide-bind-

ing grooves, but can also affect aspects of the antigen processing such as MHC 

I assembly and the rate of transport to the cell surface [16,30,109,110]. Ac-

cordingly, studies using proteasome inhibitors have shown a variable effect 

on MHC surface expression depending on the HLA class I allomorph, suggest-

ing the existence proteasome-independent mechanisms for the generation of 

peptides that bind specific HLA I variants such as HLA-B27 [111,112]. Interest-

ingly, characterization of proteasome-independent ligands associated to HLA-

B27 has revealed that these peptides originate mostly from small and basic 

proteins and suggest the contribution of additional proteases [113]. 

Allelic variation in MHC I molecules also influences their dependence on tapa-

sin for peptide loading [103] and their association with TAP, calreticulin and 

the PLC [30,103,109,114-119]. Neisig and coworkers have tested the in vitro 

association of HLA-A, -B and –C heavy chains with TAP and demonstrated that 

most HLA-A and HLA-C alleles efficiently interacted with TAP, whereas the ma-

jority of HLA-B alleles showed inefficient association [114]. Additionally, HLA-

C molecules are more selective in their peptide binding than HLA-A and HLA-B, 

resulting in prolonged association with TAP [120]. This prolonged association 

has been proposed to explain the lower surface levels of HLA-C molecules in 

comparison to HLA-A and HLA-B molecules [120,121].
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The import of some peptides appears to be TAP-independent [122]. TAP-inde-

pendent peptides include peptides derived from signal sequences (or leader 

sequences) of certain ER-targeted proteins that are cleaved by signal peptide 

peptidases, can be further processed in the ER and bind particularly HLA-A2 

and HLA-B51 molecules [123-125]. However, it is unclear how the loading of 

these peptides occurs [105]. Interestingly, mutations in the TAP gene are re-

sponsible for HLA I deficiency in human subjects who manifest a reduced 

functional CD8+ population but nevertheless may appear asymptomatic for 

long periods of their lives [126,127]. Also, it has been demonstrated that the 

proteases furin and PC7, located in the trans-Golgi and/or endocytic vesicles 

network, can process some peptide epitopes from secretory proteins [127-

130]. 

There is a growing amount of evidence suggesting that there is a variety of 

alternative pathways for generation of MHC I peptides (Figure 7). For instance, 

autophagy, which is responsible for clearance of old or damaged cellular com-
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ponents, might contribute to the peptide repertoire [17,34,35]. During autoph-

agy, acidic double-membrane vacuoles (autophagosomes) target ubiquitylated 

cytoplasmic protein aggregates for degradation through fusion to lysosomes 

without involving the endocytic or vacuolar protein sorting pathways [35]. 

Autophagy has been shown to contribute to MHC I presentation of endog-

enous viral peptides in macrophages infected with Herpes simplex virus (HSV) 

[131,132].

1.5.3.1 Cross-presentation 

One of the most remarkable alternative MHC I presentation routes is the cross-

presentation (or cross-priming) pathway. Cross-presentation occurs routinely 

in APCs such as macrophages and DCs, in which exogenous proteins are inter-

nalized to generate antigens that are presented by MHC I molecules [35,133]. 

The display of exogenous peptides on MHC I molecules links the MHC I and 

II processing pathways and is important for effective immune responses to 

tumors and viral infections [134]. The molecular mechanisms of cross-pre-

sentation are not completely understood yet and many pathways have been 

described, including TAP-dependent and TAP-independent mechanisms, even 

though the former seem to dominate [17,35]. APCs can internalize antigens 

by endocytosis, phagocytosis, receptor-mediated endocytosis, pinocytosis and 

even gap-junctions [50]. Moreover, different intracellular compartments have 

been proposed for the loading of cross-presented peptides with MHC I mol-

ecules such as endosomes or phagosomes, the ER and lysosomes/vacuoles 

[135]. In either case, peptides in the phagosome destined to cross-presentation 

have to enter MHC I presentation before lysosomal degradation and before 

loading onto MHC II molecules [134]. Besides, cross-presentation routes seem 

to vary according to the maturation state and subset of APCs [136]. 

The two studied popular cross-presentation pathways are the phagosome-

to-cytosol pathway and the vacuolar pathway. In the phagosome-to-cytosol 

pathway, antigens need to be exported from the endosome or phagosome to 

the cytosol for proteasomal degradation and further processing via the ER 

and the classical pathway in a TAP-dependent manner [137,138]. It remains 

unclear yet how does the transport from the endocytic pathway to the cytosol 
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occur. Proposed mechanisms involve transient physical rupture or leaking of 

the endosomal membrane and the action of a specific channel or translocator, 

such as SEC61 or the ER translocon of the ERAD machinery resulting from ER-

phagosome fusion [35,129,139,140]. Alternatively, antigens might make use of 

an established retrograde pathway leading from endosomes to the ER via the 

Golgi. Form the ER, they may reach the cytosol using the translocation chan-

nel involved in retrotranslocation during protein degradation [140]. It has also 

been suggested that an alternative transport pathway (such as lipid droplets) 

could connect the phagosome and the ER without any direct ER-phagosome 

fusion [35].

In the vacuolar pathway, antigens are bound onto MHC I molecules within 

phagosomal compartments and thus outside of the ER. Indeed, internalized 

surface MHC I molecules can be present in phagolysosomal compartments 

[34,35,99]. The peptides are either processed in the cytosol (phagosome to cy-

tosol to phagosome model) or in the phagosome itself [34,50]. In either case, 

the phagosome needs to be equipped with molecules necessary for peptide 

loading onto MHC I molecules.

Internalized antigens can take many different forms, ranging from cell debris 

from apoptotic or necrotic cells to proteins or chaperone-associated peptides 

[140]. For instance, DCs can ingest infected non-immune cells, cancer cells or 

cell-derived fragments and generate antigens from these sources [141]. Also, 

exogenous proteins introduced directly into the cytosol of a cell are recog-

nized by CD8+ T cells [142]. This is the case of listeriolysin, a protein secreted 

by the intracellular pathogen Listeria monocytogenes after its internalization 

by macrophages [143]. The mannose receptor has been implicated in the inter-

nalization and routing of some antigens into a distinct endosome subpopula-

tion where they are protected from lysosomal degradation and can be further 

processed for cross-presentation [144]. This early endosome subpopulation 

do not mature to late endosomes, in which peptides are loaded into MHC II 

molecules. Besides, it has been shown that MHC I-peptides can be transferred 

from an infected cells to APCs through gap-junctions [145]. 

Internalized antigens can be processed (or destructed) by endosomal and ly-
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sosomal proteases. Mechanisms that reduce the activity of endosomal hydro-

lases in DCs have been shown to enhance the efficiency of cross-presentation 

[61]. Cathepsins have been involved in the generation of MHC I peptides in 

endolysosomal compartments in a proteasome- and TAP-independent manner 

[146]. Additionally, the insulin-regulated aminopeptidase (IRAP) exclusively 

trims peptides in endosomes for cross-presentation [56,135]. Proteases acting 

in the endogenous pathway are presumably also involved in the processing of 

ligands for cross-presentation [50]. 

Despite being less common, cross-presentation is essential to trigger immune 

responses to viruses that do not infect APCs such as Epstein-Barr virus (EBV) 

and hepatitis B virus [147]. Also, tumor antigens released from tumors can 

be cross-presented in draining lymph nodes and this property is boosted by 

chemotherapy and can lead to stimulation of antitumor immunity [134]. More-

over, cross-presentation allows CD8+ T cell recognition of antigens coming 

from tissues that do not express MHC I molecules, such as placental tropho-

blasts [148]. In this way, antigens of fetal origin can be presented by maternal 

APCs thus eliciting a maternal immune response to the fetus [148].  

1.6 The origin of MHC I-associated peptides

Peptides displayed by MHC I molecules derive from degradation of proteins 

acquired from an exogenous source (cross-presentation) or from proteins en-

dogenously synthesized (direct presentation) [37] (Figure 8). The complexity of 

the MHC I-immunopeptidome reflects the equally complex milieu of intracel-

lular proteins [37]. When and how intracellular proteins are chosen for entry 

into the antigen processing pathway? This is an interesting yet not completely 

solved question. What is now clear based on various studies including ours, 

however, is that the MHC I-peptide repertoire is not a random sample of the 

proteome. More details about this bias can be found in the section “The SMII 

is complex and is not a representative excerpt from the proteome” of our pub-

lished review article included in chapter 2 and in our published article “MHC 

I-associated peptides preferentially derive from transcripts bearing microRNA 

response elements“ included in chapter 3. In the following section, the mecha-

nisms by which endogenous proteins can give rise to peptides are described.
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1.6.1 Endogenous proteins as source of peptides

  

Most of the peptides destined for presentation on MHC I molecules are generat-

ed by proteasome-mediated cleavage of endogenous polypeptides [149]. How-

ever, the source of proteasomal substrate is quite varied. Peptide ligands for 

MHC I molecules can derive from the degradation of correctly folded “stable” 

proteins, defective ribosomal products (DRiPs), non-classical transcription or 

translation products or from proteins destined to the secretory pathway that 

are retrotranslocated from the ER to the cytosol (Figure 8). Identification of the 

primary source of MHC I-associated peptides has remained a very controver-

sial topic for years. The DRiPs hypothesis [150], which points rapidly degraded 

and defective proteins as the main source of MHC I-associated peptides, is cur-

rently the most popular yet controversial hypothesis. 

1.6.1.1 Rapidly versus slowly degraded polypeptides 

Proteins exhibit a wide range of degradation rates: from minutes to weeks, 

with an overall half-life of 1-2 days [151]. Polypeptides have been segregated 

Figure 8. Endogenous and exogenous sources of MHC I-associated peptides

Sources include (i) cytosolic proteins, (2) alternative translation products and 

DRiPs, (3) proteins retrotranslocated from the ER to the cytosol, (4) and (5) 

endocytosed proteins. Adapted with permission from [140].

DRiPs
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into two general pools: (i) those degraded with an average half-life of ~30 min-

utes, named rapidly degraded polypeptides (RDPs), and (ii) those degraded 

with an average half-life from hours to weeks (in average ~2000 minutes), 

referred to as slowly degraded polypeptides (SDPs) [151]. In mammalian cells, 

approximately 30% of total proteins correspond to RDPs [149].

1.6.1.2 The DRiPs hypothesis

If MHC I peptides derive exclusively from the degradation of proteins that are 

at the end of their functional lives, it would be expected that the time between 

the synthesis of a protein and the presentation of its peptides should reflect 

the half-life of the protein. Yewdell and coworkers pointed out that this rate 

is inconsistent with in vitro assays showing that cells become recognizable by 

CD8+ T cells soon after they are infected and thereby that peptide production 

must begin very shortly after protein synthesis [150]. In fact, one remarkable 

aspect of the antigen presentation pathway is the speed with which peptides 

can be generated following infection. 

Early experiments showed that expression in cells of unstable truncated pro-

teins generated MHC I-peptide complexes as effectively as full-length pro-

teins [17,152]. Consequently, Yewdell et al. proposed that immediate peptide 

supply is driven not by degradation of mature proteins but by newly synthe-

sized proteins that are defective, termed DRiPs [150] (Figure 9). DRiPs include 

polypeptides that fail to achieve its native structure, owing to imperfections 

in transcription, splicing, translation, alternative reading frame usage, post-

translational modifications or protein folding, and are flagged by the quality-

control machinery and rapidly degraded [72,150,153-156]. Accordingly, ~30% 

of all proteins made are immediately degraded after synthesis before forming 

functional proteins [149,157].

A significant proportion of peptides appear to result from the degradation of 

newly synthesized, but rapidly degraded polypeptides as opposed to slowly 

degraded polypeptides [149,157,159]. This is consistent with MS-based stud-

ies reveling the absence of correlation between the proteome and the MHC 

I-peptide repertoire of the same cell [160]. Accordingly, some MHC I peptides 
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derive from proteins that are undetectable in the cell [161,162]. It is still not 

clear what proportion of RDPs represents truly short-lived proteins and how 

much represents DRiPs. Strong evidence has been published supporting the 

idea that translation and protein folding must be error prone [61] and that 

newly generated polypeptides, including DRiPs, represent the main source of 

antigens entering the MHC I processing pathway [151,163]. Thus, it has been 

suggested that MHC I molecules preferentially sample what is being translated 

as opposed to what has been translated [157,161,164]. Therefore, the concen-

tration of peptides, which is related to the rate of protein synthesis, is the rate-

limiting step for MHC I-peptide presentation [16]. 

Some indirect evidence initially supported the DRiPs hypothesis. First, ear-

ly studies showed that mutant and misfolded proteins induced in the pres-

ence of certain compounds are immediately degraded after their synthesis 

[158,165,166]. Second, a considerable fraction of newly synthesized proteins 

is rapidly turned over. This fraction has been estimated to correspond to 30-

40% per hour [149]. Third, increasing the degradation rate of an antigen con-

siderably augments peptide production [167]. The DRiPs hypothesis was sub-
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Accumulated errors can lead to defective proteins that are target-

ed for rapid degradation with some products ultimately becoming 

MHC I-associated peptides. Adapted with permision from [158].
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sequently supported by studies showing that peptide production ceased 30 

minutes after inhibition of protein synthesis, suggesting that mature protein 

turnover is too slow to contribute significantly to the peptide pool [157,163]. 

It is not entirely clear what exact mechanisms drive DRiPs formation. Recent 

work from Fahraeus and coworkers points toward normal translational pro-

cesses such as the nonsense-mediated decay [168]. They demonstrated that 

an mRNA with a premature stop codon and degraded after a single round of 

translation, can generate an epitope efficiently recognized by T cells [168]. No-

tably, this process is distinct from typical translation as it is eIF4G-dependent 

and eIF4E-independent. Also, a recent study points toward hydrophobicity as 

a key signal for immediate degradation and consequently peptide presenta-

tion [169]. Presence of longer hydrophobic sequences such as transmembrane 

domains enhanced generation of MHC I-peptide complexes [169].  It has also 

been proposed that DRiPs are produced predominantly by ribosomes lacking 

associated chaperones that directly transfer DRiPs for proteasomal degrada-

tion [156]. This model extends the concept of the ‘‘immunoribosome’’, a ri-

bosome subset that exclusively and efficiently generates proteins targeted to 

antigen processing and that is distinct from ribosomes responsible for con-

ventional translation [151]. Accordingly, Apcher and coworkers demonstrated 

that the production of antigenic peptides and full length proteins do not occur 

at the same time and suggested that they could be produced by alternative 

ribosomal complexes [168]. In line with this, Eisenlohr and coworkers have 

suggested that most nascent polypeptides are not inherently defective as the 

linear sequence is correct, and that defectiveness might be considered to lie 

more with the ribosome and its associated chaperones [169]. 

Some aspects of the DRiPs hypothesis have been questioned [158]. First, a 

DRiP has not yet been conclusively identified nor produced [163,170]. Second, 

a window of 30 minutes for peptide production implies a very short half-life 

(15 minutes or less) for the substrates from which the peptides are derived 

and a fast disposal of defective proteins [72]. This seems not to be in line with 

current concepts of protein production and quality control arguing against 

the DRiPs model [158]. There is an ever growing list of ‘natively’ or ‘intrinsi-

cally’ unfolded proteins that bypass the quality control machinery and are not 
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degraded [158,171]. Additionally, many misfolded proteins can be rescued by 

prolonged interaction with heat shock proteins [172]. Accordingly, increased 

degradation is not always the fate of misfolded proteins as they can enter ag-

gregates that resolve very slowly or become candidates for ubiquitin-mediated 

autophagy and not proteasomal degradation [173]. The DRiPs model has also 

been called into question by evidence showing that newly synthesized poly-

peptides are mostly protected from proteasomal degradation during and im-

mediately after translation and that preexisting proteins represent the main 

proteasome substrates [159].

An alternative model not excluding the DRiPs hypothesis, proposes that a sub-

set of nascent polypeptides is neglected by the folding machinery and stochas-

tically delivered to the 20S proteasome independent of quality control deci-

sions [158]. For a given antigen, the basal level of peptide presentation from 

immediately degraded substrate by the 20S proteasome will be complemented 

by the subset of newly synthesized proteins that is successfully captured by 

the folding machinery [158]. According to this hypothesis, the more defective 

the protein is, the sooner and greater the presentation of the peptide will be, 

which is due to more rapid rejection by the quality control machinery [158]. 

1.6.1.3 Stable proteins as source of peptides

Long-lived intact proteins can also contribute to the peptide pool although pos-

sibly in a lesser extent [151]. MHC I-peptide ligands can be obtained from fold-

ed and functional proteins that have passed the quality control, as evidenced 

by presentation of several species of posttranslationally modified peptides 

[174]. Post-translational modifications evidenced in MHC I peptides include N-

glycosylation [175,176], cytosolic O-GlcNAc glycosylation [177], deamidation 

[175,178-181], methylation [182], acetylation [183], phosphorylation on serine 

and threonine residues [184-186] and cysteinylation [187,188].

1.6.1.4 Cryptic translation as a source of naturally processed peptides

In addition to conventional translation products, cells can also generate peptide 

ligands for MHC I molecules from cryptic translation products. Cryptic trans-
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lation refers to polypeptides that are synthesized by unconventional trans-

lational mechanisms [189]. These include peptides encoded by open reading 

frames (ORF) contained within 5’ and 3’ “untranslated” regions (UTR), alterna-

tive open-reading frames (ARF), introns, intron-exon junctions or from non-

AUG start codon initiation on both endogenous and viral mRNAs [189-191]. 

The list of MHC I-peptides derived from cryptic translation has been steadily 

growing and many examples of peptides of viral origin or in tumor cells have 

been described [189,192-194]. Some nonclassical peptides were found to arise 

from aberrant transcription of intronic sequences [195-197] or reverse strand 

sequences [198]. Others resulted from translation of UTRs [199] or of alterna-

tive open reading frames [20,200,201], even involving leucine-tRNA-mediated 

initiation of translation at a CUG codon, instead of classical AUG codon [202-

204]. Cryptic peptide also result from translational errors including ribosomal 

frameshifting whereby ribosomes may initiate at the primary ORF start co-

don but slip either forward or backwards and continue translation in an ARF 

[189,205]. Importantly, cryptic peptides can induce tolerance in transgenic 

mice that generate cryptic peptides, and elicit CD8+ T-cell responses in normal 

mice [206]. Overall, studies on cryptic peptides have shown that they are im-

munologically significant and can provide a protective role in viral infections 

[189]. 	

1.6.1.5 Peptides derived from peptide splicing

It has been reported that MHC I ligands can contain sequences not encoded in 

the genome. Reported examples include peptides derived from non-contigu-

ous sequences in the original protein and resulting from the splicing of neigh-

boring or non-contiguous peptides by the proteasome either in the initial or 

reverse order [179,207-211]. For instance, Vigneron and coworkers described 

an HLA-A32-associated nonamer that was derived from a 13 amino acid pre-

cursor by excision of 4 internal residues followed by splicing by the protea-

some [208]. Another example includes one peptide resulting from the splicing 

of two non-contiguous peptides from the same protein in the reverse order by 

the proteasome [210]. 
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1.6.1.6 Peptides derived from proteins destined to the secretory pathway

Secretory and membrane proteins are a known source of MHC I-peptides. Many 

peptides derived from transmembrane or secretory proteins correspond to se-

quences in the transmembrane regions or signal sequences [37]. In order to be 

degraded, these proteins have to exit the ER because there are no proteasomes 

present in the ER lumen [212]. Proteins destined to the secretory pathway can 

gain access to the cytosol after being retrotranslocated from the ER, in a pro-

cess that typically results in ubiquitination and proteasomal degradation via 

the ERAD pathway [176]. Generation of peptides via ERAD of glycoproteins 

was evidenced by the discovery of epitopes in which the asparagine residue 

(normally present in the source glycoprotein) was replaced by an aspartic acid 

residue. This deamidation of asparagine residues reflected the conventional 

deglycosylation step of glycoproteins in the cytosol that follow the ERAD path-

way [178,179]. 

1.7 The MHC I immunopeptidome: exposing the inside of the cell to the 

immune system

The repertoire of peptides presented by MHC I molecules, is collectively re-

ferred to as the MHC I immunopeptidome (for the sake of simplicity hereaf-

ter referred to as immunopeptidome) [213,214]. Different estimations have 

been made regarding the number of surface MHC I molecules per cell: 50,000-

100,000 [215], 30,000-120,000 [216], 10,000-500,000 [217] or at least 50,000 

[218], although these numbers may vary depending on the cell type and cell 

condition [219]. The immunopeptidome is estimated to be composed of more 

than 10,000 different complexes reflecting its high complexity [219]. Many 

peptides are present at one or less copies per cell [220,221] and most peptides 

are represented at 10-400 copies per cell [216]. Notably, a single viral peptide 

can be presented at 100,000 copies per cell [222]. Recent semi-quantitative 

MS-based studies have estimated that the number of peptide copies associated 

to intracellular HLA molecules varies from 1 to 16,500 copies per cell [218]. 

Notably, even a single MHC I-peptide complex may be sufficient to trigger a T 

cell [223,224].



31

Here, a brief introduction of the immunopeptidome is presented and more de-

tails can be found in the published review article “Origin and plasticity of MHC 

I-associated self peptides” included in chapter 2.

1.7.1 Biological roles of the MHC I immunopeptidome

The primary function of the immunopeptidome is to present antigens to T-cell 

receptors and thus to provide protection against pathogens and neoplastic 

transformation [4]. In the absence of infection, cell surface MHC I molecules 

are associated solely with self-peptides that play vital and diverse roles [213]. 

The immunopeptidome shape the repertoire of developing thymocytes through 

regulation of positive and negative selection [225-227]. In addition, self MHC 

I-peptide complexes transmit survival signals to mature CD8+ T cells [228]. 

The immunopeptidome also allows immunosurveillance of neoplastic cells 

[229,230]. It reflects the state of the cell as mutations, or genes overexpressed 

in tumors modify and shape the self immunopeptidome [153,231,232]. 

Self MHC I-peptide complexes can also contribute to the recognition of nonself 

MHC I-peptide complexes by the TCR and in this way amplify T cell responses 

against intracellular pathogens [233]. Upon infection, the MHC I-peptide reper-

toire reflects not only the intracellular protein milieu but also additional pro-

teins such as those derived from intracellular pathogens [153,232,234,235]. 

Notably, viral infection can not only generate viral antigens, but it can modify 

the presentation of self MHC I-peptides and/or lead to the presentation of 

neo-self MHC I peptides [236,237], reflecting metabolic changes in the cell 

[238]. Altogether, these modifications render the otherwise invisible internal 

proteome available for surveillance by cytotoxic CD8+ T cells, which have the 

ability to detect and eliminate cells expressing viral proteins or tumor antigens 

[191].

MHC molecules also provide a link between the innate and the adaptive im-

mune systems. Changes in MHC I surface expression can be a sign of infection, 

cancer or invading cells from another person (e.g. pregnancy) [239]. Natural 
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killer (NK) cells monitor other cells for the quality and quantity of their MHC I 

expression through killer cell immunoglobulin-like receptors (KIRs) on their 

cell surface [239]. Interaction of KIRS with MHC I molecules at a site distant 

to the peptide binding groove provides positive or negative signals to NK cells 

through immunoreceptor tyrosine-based activating motifs (ITAM) or immu-

noreceptor tyrosine-based inhibitory motifs (ITIM) localized within KIR mol-

ecules [1,240,241]. In this way, immune evasion of a pathogen or a tumor cell 

that has downregulated MHC I antigen presentation, can be avoided [4,240]. 

Interestingly, inhibition of NK cells resulting from KIR recognition of MHC I 

molecules can be impaired by certain incompatible amino acids at positions P7 

and P8 of nonamer peptides bound to the MHC I, leading to NK cell activation 

[241].

The MHC I immunopeptidome is also involved in immunopathology.  It can 

be targeted by autoreactive T cells that initiate autoimmune diseases such as 

diabetes [242-245]. In addition, tumor-associated antigens can elicit paraneo-

plastic autoimmune disorders [246]. Moreover, MHC I-peptide complexes can 

be targeted by alloreactive T cells that cause graft rejection and graft-versus-

host disease following transplantation [247] (more details are given in chap-

ters 4 and 5). It has been recently shown that the drug abacavir used for the 

treatment of HIV, can affect the MHC I peptide repertoire through binding to 

one of the HLA-B*5701 pockets [248]. Also, inhibitors of the carboxipeptidase 

ACE are used to treat patients with hypertension and congestive heart failure 

and this enzyme has been shown to increase, decrease or have not effect on 

the surface expression of individual epitopes [57]. Thus, ACE inhibitors pre-

sumably change the peptide repertoire with potential consequences difficult 

to predict with our current knowledge.

The aforementioned roles of the immunopeptidome highlight its immuno-

therapeutic potential. In line with this, peptides overexpressed and/or spe-

cific to neoplastic cells can be used as targets in cancer immunotherapy 

[153,232,234,249,250], whereas viral antigens could be used in vaccination 

strategies against infections [251,252]. On the other hand, knowledge about 

the origin of viral or tumor-associated antigens could be exploited to induce 

immunity [253].
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Apart from its role in immune function, the MHC I-peptide repertoire has been 

shown to influence mating preferences and other behaviors in mice [254] and 

humans [255]. According to these studies males and females favor mates ex-

pressing dissimilar MHC molecules and females prefer males exhibiting MHC 

heterozygosity [255-257]. These observations could be related with a seminal 

work demonstrating that dissociated MHC I peptides (and not MHC I-peptide 

complexes) can activate sensory neurons in the vomeronasal organ, which is 

specialized in initiation of behavioral or endocrine responses in mice [254,258]. 

These studies have revealed that MHC genes play an essential role in determin-

ing individual differences and preferences in body smell [256]. Furthermore, 

MHC I molecules have been shown to participate in neuronal development and 

function and regulate synaptic plasticity in the hippocampus through recogni-

tion by non-TCR receptors [259]. 

All these examples illustrate the global role of the MHC I immunopeptidome 

in communicating the intracellular milieu to the surrounding environment 

[191,260].

1.7.2 Characterization of the immunopeptidome by mass spectrometry

The first attempts to characterize MHC I peptides were done by the group 

of Rammensee in 1990, who purified MHC I molecules from whole cells, ex-

tracted the bound antigens and fractionated them by high-performance liquid 

chromatography (HPLC). After analyzing the peptide mixture by Edman deg-

radation they discovered the presence of dominant amino acids that were de-

pendent on the MHC I molecule from which the peptides were isolated, i.e. the 

anchor residues of peptide-binding motifs [26,261,262]. These seminal studies 

were followed by the first characterization of MHC I peptides by HPLC and 

tandem mass spectrometry (MS) in 1992 performed by the groups of D. Hunt 

and V. Engelhard, who identified endogenous peptides bound to HLA-A*0201 

[220]. These studies significantly contributed to the understanding of the fac-

tors that control the binding of peptides to MHC I molecules and in conjunc-

tion with increasingly sensitivity of mass spectrometers, have prompted the 

large-scale identification of MHC I-peptides [16]. 
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MS has also enable to estimate the representation of individual peptides and 

the global complexity of the immunopeptidome [216]. Besides, MS-based stud-

ies have allow the identification of different types of peptides: tumor-asso-

ciated antigens [178,216,263], transplantation antigens (see chapters 4 and 

5), antigens derived from intracellular bacteria [264], antigens with posttrans-

lational modifications [174] and antigens associated to autoimmune disease 

[265]. In addition, studies of the immunopeptidome by MS under particular 

conditions such as absence of tapasin or TAP or variations of the proteasome, 

have contributed to the understanding of the antigen presentation pathway 

[19,48,108,123-125,216]. A review of large-scale studies aiming to characterize 

the immunopeptidome in different human and mouse cell types or tissues is 

shown in tables 1 and 2 of the published review article “Origin and plasticity 

of MHC I-associated self peptides” included in chapter 2.

  

Numerous strategies for qualitative and quantitative analysis of the immuno-

peptidome have been developed. These strategies require first the isolation of 

MHC I peptides, followed by their identification and their quantification [219] 

(Figure 10). 

Isolation of MHC I peptides can be performed by mild acid elution, immuno-

affinity purification or by using soluble MHC I molecules. Mild acid elution 

induces the dissociation of β2m, denaturation of the MHC and peptide disso-

ciation [101]. Mild acid elution of peptides from viable cells has the advantage 
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purification

Mild acid 
elution

Soluble MHC I
molecules

MHC I-associated 
peptides

Quantitative
analysis

Qualitative
analysis

Relative
Absolute

LC-MS/MS sequencing

Figure 10. Simplified flowchart of analysis of MHC 

I-associated peptides by MS
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of capturing peptides that are indeed exposed on the cell surface and that 

bind to all MHC I molecules with all ranges of affinities, but its main caveat is 

the elution of non-MHC contaminant peptides [101,219,266]. Immunoaffinity 

purification is a more targeted method in which the MHC I is immunoprecipi-

tated by affinity column from cell lysates and peptides are eluted with strong 

acid [267]. This is currently the most used method and although the isolated 

peptides are MHC-specific, the lysis detergent constitutes another source of 

contamination [219]. Moreover, the immunopurified peptides correspond to 

intracellular peptides and the isolated repertoire is influenced by the anti-

body’s affinity and availability for any given MHC allotype [219]. Consequent-

ly, peptides with strong binding affinity are favored [266]. The third isolation 

method is based on the transfection of cells with MHC molecules lacking the 

transmembrane domain [268-270]. These molecules are secreted and further 

purified by immunoprecipitation. This technique has the advantage of provid-

ing high amounts of peptides but its main disadvantage is the induction of 

non-physiological conditions since MHC overexpression could affect the qual-

ity and quantify of presented peptides [219]. Furthermore, it is only applicable 

to “transfectable” cell lines impeding its use in primary tissues [219]. A very 

recent approach by Admon and coworkers has combined immunoprecipita-

tion technique to analyze soluble MHCs. They have found that large amounts 

of soluble peptide-bound HLA molecules are present in the plasma of cancer 

patients and thus they have isolated the immunopeptidome from soluble plas-

ma MHC I molecules [271]. Notably, the peptide repertoire of soluble HLA was 

similar to that of membranal HLA, highlighting the potential of this approach 

in a clinical context [272]. 

Following peptide isolation, the peptide mixture is fractionated and peptides 

in each fraction are separated, ionized and analyzed by MS [273].

MS is a way to accurately measure the weight of a molecule, or more precisely 

its mass-to-charge ratio (m/z), using electromagnetic fields in a vacuum [273]. 

To do so, molecules must first be electrically charged and transferred into the 

gas phase by electrospray ionization, where the m/z ratio of molecules can 

be determined with different types of instruments (e.g. TOF, Orbitrap, etc). In 

addition to the exact mass of a peptide, the peptide sequence is determined 

by fragmentation of each peptide by collision with an inert gas (CID, collision 
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induced dissociation or HCD, high collision dissociation) [273]. This results in 

a list of m/z ratios for different fragments of each peptide, called an MS/MS 

(or tandem MS) spectrum. Peptides are very difficult to detect in very complex 

mixtures such as mixtures of MHC I-peptides and hence, peptides are sepa-

rated and ionized by HPLC coupled directly via electrospray to the mass spec-

trometer (LC-MS/MS) [214]. Because of the complexity of the eluted peptide 

sample mixture, an additional separation step such as strong cation exchange 

(SCX) is performed before the analysis to enrich a specific peptide population 

[273,274]. The measured fragment spectra and peptide masses are matched 

against protein databases using search engines (e.g. SEQUEST, MASCOT, etc.) 

[219].

Several MS techniques can be used to do an absolute or relative quantification 

of MHC I peptides [216]. For instance, a relative quantification can be made by 

measuring the intensity of detection of a given peptide, which is an estimate 

of its abundance. Peptide intensities can be compared for each peptide in two 

different samples analyzed in the same run and in this way detect changes in 

peptide abundance [48,232,260]. Absolute quantitation (i.e. number of pep-

tide copies per cell) is made by comparing the abundance of isolated peptides 

to known amounts of their corresponding isotopically-labelled versions. More 

details on MS-based approaches to quantify and analyze MHC I peptides can 

be found in [274].

1.7.3 Immunoinformatics and prediction of the immunopeptidome

Advances in mass spectrometry have allowed the identification of increasingly 

number of peptides and hence a better characterization of peptide-binding 

motifs specific for most common HLA molecules [219,220,275,276]. Informa-

tion on peptide-binding motifs as well as the precise amino acid sequence for 

MHC I-peptides characterized so far, is readily available in public databases 

such as the immune epitope database (IEDB) [277] and the SYFPEITHI database 

[28]. The progress in MHC I peptide discovery and in unraveling peptide pro-

cessing has prompted the development of prediction algorithms for antigen 

processing [278-280], peptide binding to MHC molecules [281-285] and inter-

action between MHC I-peptide complexes and the TCR [286,287]. In particular, 
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MHC I binding prediction algorithms have been shown to be very accurate and 

have facilitated the characterization of the immunopeptidome [276,283,288].

 

1.8 Objectives

The ensemble of MHC I peptides or MHC I immunopeptidome presented on 

the surface of a cell establishes its immunologic identity (chapter 2). The self 

MHC I immunopeptidome regulates all key events during the lifetime of classic 

adaptive CD8 T cells: positive and negative selection in the thymus and sur-

vival in the periphery. Eventually, CD8T cells detect and/or react to changes 

in the self immunopeptidome and to non-self or transformed self MHC I pep-

tides (chapter 2). Moreover, MHC I peptides are the targets of several immune 

reactions including autoimmunity, graft rejection, graft-vs-host disease and 

antitumor activity (chapter 4). Despite the important role of the MHC I immu-

nopeptidome in defining the self-nonself boundary in health and disease, we 

know little about its biogenesis. 

Recent progress in high-throughput mass spectrometry analyses of the immu-

nopeptidome has remarkably contributed to defining the molecular definition 

of self for CD8 T cells (chapter 2). Nevertheless, current MS approaches are 

still blind to MHC I peptides resulting from non-synonymous genomic poly-

morphisms, known as MiHAs. MiHAs are the targets of nonself-driven immune 

reactions of great importance in clinical transplantation. The identification of 

MiHAs is technically challenging and no more than 30 MiHAs were known at 

the beginning of this work despite the vast number of genetic polymorphisms 

present in the human population. Therefore, we were particularly interested 

in implementing high-throughput mass spectrometry combined with other 

“omic” approaches to study the biogenesis and composition of the human 

MHC I immunopeptidome and to discover MiHAs.

1.8.1 Research questions and hypothesis

A variety of molecular players and numerous steps at all functional genomic 

levels (e.g. genome, transcriptome, proteome, degradome) underlie the gen-

eration of MHC I peptides and thus have the potential to shape the MHC I im-
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munopeptidome. Moreover, a major proportion of MHC I-peptides is believed 

to derive from the rapid degradation of defective ribosomal products (DRiPs), 

whose physical nature remains unclear. This complexity and recent studies 

showing a minimal correlation between the proteome and the immunopep-

tidome of the same cell, support the hypothesis that the MHC I immunopep-

tidome is not a stochastic representation of the cellular proteome and that 

some intrinsic factors may favor the presentation of some self peptides with a 

particular origin over others.

Of note, we performed data-driven (as opposed to purely hypothesis-driven) 

studies to address two main questions:

•	 Which cell intrinsic factors play a role in defining the MHC I immu-

nopeptidome?

•	 What is the impact of genomic polymorphisms on the human MHC I 

immunopeptidome?

1.8.2 General objective

The main goal of this work was to unravel the biogenesis and composition of 

the MHC I immunopeptidome of human B lymphoblastoid cell lines by means 

of systems biology approaches.

1.8.3 Specific objectives

Aim 1 : To characterize the global landscape of the MHC I-peptide repertoire 

of two pairs of MHC-identical siblings and to gain insights into the MHC I im-

munopeptidome biogenesis (chapter 3).

Aim 2 : To discover the impact of non-MHC polymorphisms on the immuno-

peptidome of two MHC-identical siblings. In other words, we wished to eluci-

date the relation between the genomic self and the immune self (chapter 5). 
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1.9 Cellular model

We studied the MHC I immunopeptidome presented by human EBV-infected 

B lymphocytes (B-LCLs). B-LCLs were derived from peripheral blood mono-

nuclear cells (PBMCs) purified from the blood of four subjects. EBV infec-

tion of normal human B cells generally results in the establishment of au-

tonomously proliferating lymphoblastoid cell lines. We used B-LCLs because 

they can be obtained from practically any subject, they proliferate exten-

sively in vitro, express high levels of MHC I molecules at the surface and 

have been shown to be a reliable tool for high-throughput genomic studies.  
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2.1 Abstract

Endogenous peptides presented by MHC I molecules represent the essence 

of self for CD8 T lymphocytes. These MHC I peptides (MIPs) regulate all key 

events that occur during the lifetime of CD8 T cells. CD8 T cells are selected 

on self-MIPs, sustained by self-MIPs, and activated in the presence of self-MIPs. 

Recently, large-scale mass spectrometry studies have revealed that the self-

MIP repertoire is more complex and plastic than previously anticipated. The 

composition of the self-MIP repertoire varies from one cell type to another and 

can be perturbed by cell–intrinsic and –extrinsic factors including dysregula-

tion of cellular metabolism and infection. The complexity and plasticity of the 

self-MIP repertoire represent a major challenge for the maintenance of self 

tolerance and can have pervasive effects on the global functioning of the im-

mune system.



62

2.2 Authors’ contributions

DPG*: Review of large-scale studies reporting identification of MHC I-associat-

ed peptides in human and mice (tables 1 and 2), review of some examples of 

MHC II-associated autoantibodies implicated in autoimmune diseases (table 3), 

writing of some sections, general discussion and revision 

  

DDV*: Summary figure (figure 1), writing of some sections, general discussion 

and revision

CP: Writing of first draft of the manuscript, general discussion and revision 

PT: Writing of sections related to mass spectrometry, general discussion and 

revision 

*Co-first authors



63

2.3 Background

Self/non-self discrimination is a fundamental requirement of life. All organ-

isms rely on their capacity of self/nonself discrimination to detect and reject 

allogeneic cells and microbes. While unicellular eukaryotes primarily employ 

self/nonself discrimination to avoid self-mating and germline parasitism, mul-

ticellular organisms use self/nonself discrimination primarily in immune de-

fense [1, 2]. In a remarkable example of convergent evolution, agnathans and 

jawed vertebrates have evolved adaptive immune systems based on somati-

cally diversified and clonally expressed Ag receptors [3, 4]. By allowing genera-

tion of exceedingly diversified repertoires of Ag receptors, somatic diversifica-

tion conveys a decisive advantage in recognition of nonself. However somatic 

diversification comes at a price: some Ag receptors on adaptive lymphocytes 

happen to be self-reactive [4]. Therefore, while failure to respond to nonself 

can lead to death from infection, untoward adaptive immune response to self 

paves the way to autoimmunity. Furthermore, recognition of self has a perva-

sive influence on the development and function of the immune system because 

the adaptive lymphocytes of jawed vertebrates are eminently self-referential: 

they are selected on self-molecules, sustained by self-molecules, and activated 

in the presence of self-molecules [5, 6]. This raises the fundamental question: 

what is the molecular definition of self for the adaptive immune system? We 

will focus herein on the self recognized by CD8 T cells because recent large-

scale (-omic) studies have yielded unprecedented insights into its genesis, mo-

lecular composition and plasticity [7-30] (Tables 1 and 2). 
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Table 1. MS-based studies of human MIPs

Cell line/ Tissue Origin MHC molecules Reference

Panc-1 Pancreas HLA-A02/11, B38/38, 
Cw12/12

[19]

MCF-7 Breast cancer HLA-A02/02, B18/44, 
Cw05/05

[19]

PC3 Prostate cancer HLA-A2, B7 [7]

UCI-107, UCI-101 Ovarian cancer HLA-A2, B7 [7]

MDA-231, MCF-7 Breast cancer HLA-A2, B7 [7]

C1R B cell leukemia HLA-A2, B7 [7]

Fresh plasma Healthy donors 
and MM, AML and 
ALL patients

Many [23]

HeLa Cervical cancer HLA-B27 [24]

SW-1353, 
C-20/A4 

Chondro- sarcoma 
and immortalized 
chondrocytes)

HLA-B27 [24]

UCI-107 Ovarian cancer HLA-Cw4 [24]

MDA-231 Breast cancer HLA-Cw4 [9]

K562 Myelogenous leu-
kemia

HLA-B*3501, 3502, 3503, 
3504, 3506, 3508

[16]

Central nervous 
system  

Brain autopsy 
samples of pa-
tients with mul-
tiple sclerosis

HLA-A01/02/03/11/25/30/68, 
B07/08/14/15/18/35/44/51, 
Cw-03/04/05/07/08

[22]

MCF-7, MDA-
MB-231, and 
BT-20

Breast cancer HLA-A*0201 [17]

MCF10A Breast mammary 
gland

HLA-A*0201 [17]

HIV-infected and 
uninfected Sup-
T1 cells

Lymphoma, T cell HLA-B*0702 [8]

721.221 EBV-transformed 
B lymphoblasts

HLA-B*1801 [10]

Colon carcinoma Colon carcinoma HLA-A01/68, B08/44 [11]

Colon tissue Normal colon HLA-A01/68, B08/44 [11]

Awellis EBV-transformed 
B lymphoblasts

HLA-A*0201/0201, HLA-
B*4402/4402

[11]

UCI-107 Ovarian cancer HLA-A02 [12]
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SKOV3-A2,  OV-
CAR3

Ovarian cancer HLA-A2/3/29/68, 
B7/18/35/58

[15]

CRL-5865 Human lung ad-
enocarcinoma

HLA-A02, B35/50 [26]

CRL-5944 Human lung ad-
enocarcinoma

HLA-A2/32, B14/51 [26]

Normal and 
neoplastic renal 
tissue

Surgical biopsies HLA-A01/02/03, B07/08/50, 
Cw06/07

[21]

Influenza A vi-
rus- infected and 
uninfected HeLa 
cells

Cervical cancer HLA-A*0201 [25]

Normal and 
neoplastic renal 
tissue

Surgical biopsies HLA-A02/03/68, B07/18/27/
B57

[14]

TAP1/2–deficient 
and –sufficient 
cell lines 

EBV-transformed 
B lymphoblasts

HLA-A02 [18]

DM331 and SLM2 Melanoma HLA-A*0201 [13]

COV413 Ovarian carci-
noma

HLA-A*0201 [13]

B lymphoblasts EBV-transformed 
B lymphoblasts

HLA-A*0201 [13]

MM: multiple myeloma; AML: acute myeloid leukemia; ALL: acute lymphoblastic leu-

kemia; EBV: Epstein-Barr virus

Table 2. MS-based studies of mouse MIPs

Cell line/ Tissue Origin MHC molecules Reference

Bone-marrow-de-
rived dendritic cells

C57BL/6 mice, Lmp7-/-

Mecl1-/- mice
H2Kb, H2Db, Qa1, Qa2 [29]

Fresh splenocytes C57BL/6 mice H2Kb, H2Db [20]

Fresh thymocytes C57BL/6 mice H2Kb, H2Db, Qa1, Qa2 [28]

EL4 Thymoma cell line H2Kb, H2Db, Qa1, Qa2 [28, 30]



66

2.4 The nature and role of the immune self recognized by CD8 T cells

The TCR of classic adaptive CD8 T cells recognizes MHC I-associated pep-

tides (MIPs). MHC I genes are polygenic, extremely polymorphic and represent 

the most conserved MHC genes [31]. In most modern human populations, the 

majority of MHC I alleles have been acquired by introgression from archaic 

humans (Neanderthals and Denisovans) [32]. Under steady state conditions (in 

the absence of infection), all MIPs derive from endogenous self proteins: these 

MIPs are referred to as self MIPs or the self MHC I immunopeptidome (SMII) 

[33, 34]. Upon infection, pathogen derived nonself MIPs become the proverbial 

needle in the haystack (of self MIPs) against which the immune system must 

quickly respond. Self MIPs constitute the essence of self for classical adaptive 

CD8 T cells. The SMII regulates all key events that occur during the lifetime of 

CD8 T cells: positive and negative selection in the thymus and survival in the 

periphery [35-37]. The role of the SMII is not limited to orchestration of CD8 

T-cell development and homeostasis. Constitutive expression of self MIPs al-

lows CD8 T cells to monitor expression of neo-self MIPs on neoplastic cells and 

to behave as an extrinsic tumor suppressor system [38, 39]. Furthermore, evi-

dence suggests that self MIPs excreted in body fluids act as chemosensory sig-

nals for neurons in the vomeronasal organs and may thereby influence mate 

selection and social behaviours in several vertebrates [40-42]. 

The MHC complex contains multiple MHC I loci that belong to two major class-

es: modern classical MHC Ia genes (e.g., HLA-A,-B,-C in humans) and more an-

cient MHC Ib genes (e.g., HLA-E and -G) [43]. MHC Ib are oligomorphic, some 

but not all present MIPs, they are involved in several immune and non-immune 

processes but are less important in adaptive immunity than MHC Ia genes [43]. 

In the present review, we will focus on MHC Ia genes which play a dominant 

role in adaptive immunity [44]. All MHC Ia allelic products bind MIPs and MHC 

Ia genes are the most polymorphic genes known [45]. In humans, HLA-B, with 

its 1,605 alleles, is the most polymorphic gene of the entire genome (http://

www.ebi.ac.uk/imgt/hla/stats.html). MHC Ia molecules have a peptide binding 

groove containing in general 6 pockets; the size, shape and electrochemical 

properties of these pockets determine the peptide-binding motif of each MHC 

I allelic product [46]. The combination of polygenicity and polymorphism has 
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two important consequences: it ensures that each individual will be able to 

present a broad range of MIPs and that populations will consist of individuals 

presenting different MIP repertoires [27]. Hence, in outbred animals, individu-

als present different SMII and consequently different T-cell repertoires. As a 

corollary, susceptibility to a variety of infectious and autoimmune diseases is 

dictated by the MHC I genotype because it regulates the ability to present and 

respond to various self and nonself MIPs [47-52].

2.5. A synopsis of MHC I processing – making the most out of misbe-

gotten polypeptides

The general mechanisms of MIP genesis and presentation have been elucidated 

by extensive studies on microbial Ags and model Ags such as ovalbumin [53-

56]. The molecular composition of the SMII is intertwined with protein me-

tabolism and is ultimately shaped by two processes: protein translation and 

degradation [54, 57]. Hence, generation of MHC I-associated peptides ceases 

abruptly in the presence of molecules that inhibit protein synthesis or protea-

some function [58-61]. In brief, MIP genesis begins with polypeptide degrada-

tion by the proteasome in the cytosol and nucleus [53]. Peptides generated by 

proteasomal digestion are then exposed to several peptidases [62, 63]. These 

peptides have only a few seconds to bind to the transporter for antigen pro-

cessing (TAP; an heterodimeric peptide transporter located in the endoplasmic 

reticulum and Golgi), and thereby escape total digestion [54]. TAP-bound pep-

tides are translocated into the endoplasmic reticulum or the Golgi where they 

can be further trimmed by aminopeptidases [55, 64]. Peptides of appropriate 

length (8-11 mers) which are able to bind MHC I allelic products expressed by 

the cell can then be inserted into MHC I proteins by the MHC I loading complex 

and exported at the cell surface [65]. Large-scale MS studies have established 

the major impact of several components of the MHC I processing pathway on 

the MIP repertoire [18, 66].

Only a small proportion of peptides derived from proteasomal digestion be-

come MIPs: a cell generates approximately 2 million peptides per second, but 

only 150 are presented by MHC I molecules at the cell surface [54]. Perhaps the 

most salient feature of MIPs is that they derive mainly from defective ribosom-
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al products (DRiPs), that is, polypeptides that fail to achieve native structure 

owing to imperfections in transcription, translation, post-translational modi-

fications or protein folding [54, 67-70]. Several MIPs have been shown to origi-

nate from mRNAs that do not yield native full-length proteins [71, 72]. While 

the mean half-life of native (well structured and folded) proteins is about 24 

h, that of DRiPs is about 10 min. Using DRiPs as a source of MIPs provides a 

mechanism for monitoring the expression of  25% of cellular proteins that 

are targeted to the secretory pathway: cell surface or secreted proteins are 

degraded by extracellular proteases but their DRiPs are degraded by the pro-

teasome and can therefore be inserted in the SMII. While compelling evidence 

suggests that DRiPs are the main source of MIPs, two basic questions have yet 

to be elucidated. First, why are DRiPs more successful than other polypep-

tides in generating MIPs? Perhaps because MIPs originate preferentially from a 

subset of ribosomes (immunoribosomes) that would possess specific features 

such as a high DRiP rate, lack of chaperones or tethering to TAP (which would 

couple translation to entry in the MHC I processing pathway) [73-75]. Second, 

what is the physical nature of DRiPs? In theory, DRiPs may include miscoded 

or misfolded proteins, premature translation-termination products, polypep-

tides produced by non-conventional translation mechanisms or intrinsically 

disordered proteins [74]. Studies on cells transfected with shRNA or mRNAs 

carrying premature stop codons have revealed that the nonsense-mediated 

decay pathway is a source of both DRiPs and MIPs [72, 76]. However, in the 

absence of large-scale study of “natural” MIPs, the physical nature of self MIPs 

remains elusive.

2.6 Different types of proteasomes generate different MIP repertoires

All eukaryotes possess constitutive proteasomes (CPs) whose 20S proteolytic 

core is hollow and provides an enclosed cavity open at both ends in which pro-

teins are degraded [77]. The 20S particle is composed of 14 different subunits 

organized in a barrel-shaped complex with the stoichiometry α7β7β7α7. Three 

subunits of the two inner β-rings (β1, β2, and β5) participate directly in pep-

tide bond cleavage. Jawed vertebrates also express immunoproteasomes (IPs). 

In IPs, the three catalytic β-subunits expressed in CPs are replaced by three 

IFN-γ–inducible homologues (immunosubunits): low molecular weight protein 
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(LMP)-2 (or β1i) for β1, multicatalytic endopeptidase complex–like (MECL)-1 (or 

β2i) for β2, and LMP7 (or β5i) for β5 [78]. Under steady-state conditions, IPs are 

expressed at high levels in some cell types (e.g., thymocytes and DCs) but in 

low amounts in other cell types [79]. IFN-γ secretion enhances IP biogenesis 

in all cell types [80]. The overall impact of IPs on the SMII was assessed by 

comparing MIPs present on primary DCs obtained from either wild type (WT) 

or Mecl1-/-Lmp7-/- (dKO) mice [29]. Out of 417 MIPs eluted from WT DCs, 212 

were expressed at similar levels on dKO DCs. However, 199 peptides were 

overexpressed in WT relative to dKO DCs. Among those 199 peptides, 60 were 

detected exclusively in WT DCs. Only 6 peptides were slightly overexpressed 

(3 to 5-fold) in dKO relative to WT DCs and none were unique to dKO DCs. 

Consistent with these findings, expression of cell surface H2Db and H2Kb was 

decreased by 2-fold on dKO relative to WT DCs [29, 81]. Furthermore, follow-

ing immunization with WT DCs, both dKO and Lmp7-/- mice generated WT-

specific cytotoxic T cells whereas WT mice did not generate cytotoxic effectors 

against Lmp7-/- or dKO cells [29, 82] Therefore the presence of IPs has a major 

impact on the SMII, by increasing both the abundance and the diversity of 

MIPs. There are however rare exceptions to this rule since IPs have been shown 

to destruct several tumor-associated Ags that can be produced by CPs [83]. In 

particular, CPs are more effective than IPs for generation of spliced MIPs [84, 

85]. It should be noted that generation of MIPs is not the sole function of IPs. 

Indeed, IPs have non-redundant effects on gene expression and protein ho-

meostasis that are probably of considerable biological relevance [29, 86, 87].

The most recently discovered proteasome subunit is being at the origin of a 

fascinating story. Murata and colleagues found that cortical thymic epithelial 

cells (TECs) express a unique variety of proteasome, called the thymoprotea-

some (TP) [88]. The catalytic subunits of TPs are β1i, β2i and β5t. β5t (encoded 

by the Psmb11 gene) is found exclusively in cortical TECs [88]. Cortical TECs 

from Psmb11−/− express normal amounts of MHC I at the cell surface and 

contain IPs rather than TPs. However, Psmb11−/− mice are unable to support 

positive selection of most polyclonal and TCR-transgenic CD8 T cells [89]. 

Furthermore, Psmb11−/− CD8 T cells are defective in mounting immune re-

sponses to allogeneic and viral antigens [89]. Together, these studies provide 

compelling, though indirect, evidence that cortical TECs express a unique set 
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of MIPs that are essential for positive selection of classic TCRαβ CD8 T cells. 

The global impact of TPs on the MIP repertoire of cortical TECs has yet to be 

evaluated. Nonetheless, in vitro activity-based profiling studies suggest that 

β5t has a substrate preference distinct from β5 and β5i [90]. 

2.7 The SMII is complex and is not a representative excerpt from the 

proteome

A typical cell expresses about 105 MHC I molecules. What is the breadth and 

nature of their peptide repertoire? Currently, this question can be answered 

only by mass spectrometry (MS) analyses of MIPs. Progress in this field has 

been heralded by the development of MS instruments whose sensitivity, dy-

namic range and mass accuracy are orders of magnitude superior to those 

of analyzers available a decade ago [91-93]. State-of-the-art MS instruments 

can sequence low femtomole amounts of peptides and have greatly facilitated 

high-throughput analyses of MIPs. MS can provide absolute peptide quanti-

tation (i.e., number of peptide copies per cell) by comparing the abundance 

of endogenous MIPs to known amounts of their corresponding isotopically-

labeled counterparts. However, given the considerable complexity of the SMII, 

this effort has been largely undermined by the sizable peptide synthesis chal-

lenges needed for absolute quantitation of SMII components. Most quantita-

tive proteomics analyses have therefore focused on the relative quantification 

of MIPs in different samples [27]. 

Theoretical estimates suggest that the SMII accommodates only a small por-

tion of the proteome. Thus, a typical cell (human leukocytes for instance) ex-

presses about 18,000 different proteins [94] with a mean length of 466 amino 

acids [95] (containing 458 potential nonamers) and would therefore contain 

over 8 x 106 distinct nonamers (the mean length of MIPs). Furthermore, by 

adding peptides generated by translation of alternate reading frames or post-

translational modifications [71, 96-103], the total number of nonamers is 

probably greater than 107. On the other hand, MS analyses suggest that the 

number of distinct MIPs present at the cell surface is about 104 [27, 104]. This 

would mean that the SMII comprises about 0.1% (104/107) of the polypeptide 

sequences found in the proteome. Does the SMII derive essentially from highly 
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abundant proteins? Milner et al. performed MS analyses of MIPs eluted from a 

tumor cell line transfected with an expression vector coding soluble secreted 

HLA-A2.1 (lacking a functional transmembrane domain) to evaluate the rela-

tionship between protein abundance and the SMII [12]. Remarkably, they only 

found a minimal correlation (about 6%) between the amounts of MIPs and the 

relative abundance of their source protein: a large proportion of MIPs derived 

from low abundance proteins, and many highly abundant proteins did not 

generate MIPs in detectable amounts [12]. In order to evaluate the identity 

and properties of proteins that generate MIPs, Hickman et al. sequenced by 

MS over 200 MIPs derived from a B cell line engineered to secrete soluble 

HLA-B*1801 This seminal study showed that MIPs derive from a wide variety 

of proteins coded by genes located on all chromosomes [10]. Consistent with 

subsequent reports, MIP source proteins were distributed in all cell compart-

ments but showed a significant enrichment in intracellular relative to extracel-

lular proteins [10, 28, 105]. These and other high-throughput studies provided 

direct evidence that the SMII is complex [10, 12, 14, 28-30]. The poor correla-

tion between the proteome and the SMII can be rationalized by the DRiP model 

[12]. Almost all protein species have two half-lives: a longer one for the well-

conformed native protein and a short one for DRiPs. While the proteome es-

sentially contains native proteins, MIPs originate mostly from DRiPs [54, 67]. It 

is therefore assumed that proteins have different DRiP rates and that self MIPs 

originate mostly from proteins with high DRiP rates [106, 107]. 

2.8 The SMII conceals a tissue-specific signature

High-throughput MS-based analyses of self MIPs eluted from primary mouse 

thymocytes revealed that the SMII is molded by the transcriptome. In thy-

mocytes, the percentages of transcripts expressed at high/intermediate/low 

levels were 9/29/62 for total mRNAs and 42/38/20 for those coding for MIPs 

[28]. Hence, even though some low abundance transcripts can generates MIPs, 

the SMII is biased toward MIPs translated from highly abundant mRNAs. This 

concept was confirmed in a bioinformatic study of the expression profile of 

transcripts coding for MIPs listed in the SYFPEITHI database [108]: out of the 

2.5% most abundant mRNAs expressed in a pool of hematopoietic tissues, 41% 

encoded MIPs [105]. The correlation between mRNA abundance and MIP abun-
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dance is consistent with evidence that the rate of translation initiation directly 

correlates with MIP presentation [58, 61]. As a corollary, since abundance of 

discrete mRNAs varies among different cell types, different tissues should 

display different SMIIs. This assertion was evaluated by comparing the SMII 

of primary thymocytes and myeloid dendritic cells (DCs) from C57BL/6 mice. 

Since MHC I molecules are more abundant on DCs than on thymocytes, more 

MIPs were eluted from DCs than from thymocytes. Nonetheless, the key find-

ing was that over 40% of MIPs were cell type specific [29]. The MIP repertoire 

of myeloid DCs was enriched in peptides encoded by genes regulating protea-

some function, myeloid differentiation and TLR signaling. In thymocytes, MIP 

source genes were biased toward cell cycle regulation, purine metabolism and 

tight junction formation. The fact that a substantial proportion of self MIPs 

are cell type-specific increases the complexity of the immune self at the organ-

ismal level. 

2.9. Neoplastic transformation has a broad impact on the SMII 

Neoplastic transformation perturbs the two key processes that mould the SMII: 

protein translation and proteasomal degradation [109, 110]. With hindsight, 

MIPs expressed exclusively or at increased levels on tumor cells (tumor-asso-

ciated MIPs) were therefore bound to exist. Over the last two decades, numer-

ous tumor-associated MIPs have been molecularly defined and many of them 

were shown to be immunogenic for CD8 T cells [111, 112]. Tumor-associated 

MIPs are encoded by a variety of mutated and non mutated genes. A well cu-

rated and up-to-date database on human tumor-associated MIPs can be found 

at http://www.cancerimmunity.org/peptidedatabase/Tcellepitopes.htm. The 

majority of tumor-associated MIPs were discovered using biased approaches 

targeting principally oncogenes and other genes overexpressed in cancer cells. 

Recently, two studies have used unbiased large-scale MS-based strategies to 

evaluate more globally how neoplastic transformation impinges on the SMII 

[14, 28]. Though the experimental design of these studies was different, they 

yielded strikingly concordant results. Weinzierl et al. evaluated the relative 

abundance of MIPs isolated from three human renal cell carcinomas and au-

tologous normal kidney tissue. They sequenced a total of 273 MIPs, of which 

45 (16%) were differentially expressed on neoplastic relative to normal kidney 
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tissue: 30 MIPs were more abundant on tumor tissue (including 10 MIPs found 

only in carcinoma cells) and 15 MIPs were more abundant on normal tissue 

[14]. Fortier et al. compared the SMII of normal vs. neoplastic C57BL/6 mouse 

thymocytes. Out of 196 MIPs, 43 (22%) were differentially expressed: 21 MIPs 

were more abundant on tumor cells (including 9 tumor-specific MIPs) while 22 

were more abundant on normal thymocytes [28]. Tumor-associated MIPs are 

of prime interest, mainly for two reasons: they represent potential targets in 

cancer immunotherapy and they can elicit paraneoplastic autoimmunity [113, 

114]. Notably, in both renal carcinoma and thymoma cells, changes in the SMII 

induced by neoplastic transformation did not correlate closely with changes 

in the transcriptome [14, 28]. Thus, for 74% of thymoma-associated MIPs, in-

creased peptide abundance did not correlate with increased mRNA levels [28]. 

Two conclusions can be drawn from these two studies. First, neoplastic trans-

formation has a broad impact on the SMII as it led to differential expression of 

about 20% of self MIPs. The breadth of this impact is commensurate with the 

profound perturbations in protein metabolism that characterize cancer cells 

[38]. Second, global changes in the SMII can be detected only by MS-based ex-

pression profiling approaches and cannot be inferred from mRNA expression 

levels. As a corollary, we infer that genesis of tumor-associated MIPs involves 

mainly posttranscriptional mechanisms that have yet to be characterized. 

Cells release low amounts of soluble HLA molecules into the blood. Remark-

ably, Admon’s team recently demonstrated that MS analyses of the SMII bound 

to plasma soluble HLA molecules allowed identification of tumor-associated 

MIPs in subjects with leukemia or multiple myeloma [23]. MS analyses of the 

plasmatic SMII may hold considerable potential for diagnosis and monitoring 

of various illnesses.

2.10 Viral infection causes presentation of cryptic self MIPs

Alike neoplastic transformation, intracellular pathogens drastically impinge 

on the synthesis and degradation of host cell proteins [115, 116]. This led Hil-

debrand’s group to test whether viral infection might lead to presentation of 

neo-self MIPs. To this end, they analyzed HLA-B*0702-bound peptides extract-

ed from a cell line infected or not with HIV-1 [8]. MS analyses led to the iden-
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tification of 15 MIPs unique to or upregulated on HIV-1 infected cells. These 

MIPs derived from a variety of proteins: chaperones, proteins involved in RNA 

transcription or translation, and components of the ubiquitin-proteasome sys-

tem. The abundance of transcripts coding for MIPs unique to or upregulated 

on infected cells was not significantly increased. Thus, differential MIP presen-

tation was likely due to posttranscriptional mechanisms [8]. More recently, MS-

based comparison of HLA-A*0201-transfected HeLa cells infected or not with 

influenza A virus identified 20 MIPs unique to infected cells [25]. One salient 

implication emerges from these studies: infected cells present two classes of 

neo-MIPs to the immune system, some derive from the pathogen others from 

the host. The appearance of neo-self MIPs on infected cells raises the possibil-

ity that the SMII might conceal a molecular signature of host proteins hijacked 

by the virus.

2.11 The SMII conveys to the cell surface an integrative view of cellular 

regulation

While neoplastic transformation and infection are relatively rare events, cells 

are constantly subjected to variations in nutrients and growth factors concen-

trations. Is the molecular composition of the SMII affected by cellular meta-

bolic activity? To investigate this issue, our group used a quantitative high-

throughput MS-based approach to study the MIP repertoire of EL4 mouse cells 

treated or not with the mTOR inhibitor rapamycin. mTOR integrates environ-

mental cues (nutrients and growth factors), and mTOR signaling is regulated 

in numerous physiological and pathological conditions in all types of cells 

[117-119]. Treatment with rapamycin for up to 48h led to a progressive in-

crease (≥ 2.5-fold) in the abundance of 98 MIPs, 6 of which were present only 

on treated cells [30]. Analyses of transcripts levels, translational activity (poly-

somal loading), protein abundance and stability revealed that variations in MIP 

abundance were regulated at multiple levels inside the cell. Upregulation of 

MIPs could be ascribed to enhanced transcriptional activity in some cases (≤ 

36%) and to co- or post-translational events in most cases (≥ 64%). Important-

ly, analyses with the STITCH and STRING interaction databases showed that 

genes coding for differentially expressed MIPs segregated in 7 main functional 

modules and were tightly connected to the mTOR interactome. These data 
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show that the SMII is extremely plastic and that it projects at the cell surface 

a representation of biochemical networks and metabolic events regulated at 

multiple levels inside the cell. Since perturbation of a single signaling pathway 

can lead to significant changes in the composition of the SMII, cells can com-

municate their metabolic status to the adaptive immune system.

2.12 The immunogenicity of neo-MIPs

It is now clear that several MIPs that are absent on resting healthy cells are 

present at the surface of transformed, infected or metabolically perturbed 

cells. But are these neo-MIPs recognized by CD8 T cells? For neo-MIPs that ap-

pear on cancer cells, the answer is clearly yes: CD8 T cells specific for tumor-

associated neo-MIPs spontaneously expand in tumor-bearing hosts and can 

expand further following immunization [112, 120, 121]. In a few cases, infec-

tions have been found to induce autoimmune CD8 T cell responses against 

self MIPs. Specific examples include autoreactivity to MIPs derived from vin-

culin in HIV-infected subjects and from HSP90 and IFI-6-16 following measles 

(rubeola) [122, 123]. Finally, when coated on dendritic cells, MIPs upregulated 

on rapamycin-treated cells were found to elicit CD8 T cell responses in mice, 

suggesting that metabolic perturbations lead to expression of immunogenic 

neo-MIPs [30]. 

The biologic relevance of neo-MIPs expressed on tumor cells is compelling. 

Though contradictory views exist [124], the dominant paradigm holds that rec-

ognition of tumor-associated MIPs by CD8 T cells prevents the occurrence or 

progression of a substantial proportion of cancers [38, 39, 125]. Furthermore, 

adoptive immunotherapy targeted to tumor-associated MIPs can mediate dura-

ble complete responses in patients with metastatic melanoma and represents 

a promising treatment for other types of cancer [114, 126]. However, we ignore 

whether self MIPs presented on infected or metabolically stressed cells can 

elicit meaningful immune responses. It has been speculated that CD8 T-cell re-

sponses against stress-induced self MIPs could be of considerable importance 

because under real life conditions, the cells that CD8 T lymphocytes must deal 

with (infected and transformed cells) are stressed [127, 128]. Indeed, infection 

and transformation increase protein synthesis and thereby cause endoplasmic 
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reticulum stress [129, 130]. This is particularly true for cells submitted to hy-

poxia, nutrient deprivation or low pH in poorly vascularized tumors and sites 

of inflammation [131, 132]. A correlation between infection and anti-tumor im-

munity is supported by epidemiologic evidence that childhood infections (e.g., 

mumps and measles) lower the risk for certain adult cancers including ovar-

ian cancer and non-Hodgkin’s lymphoma [133]. Also, in patients with acute 

myeloid leukemia undergoing allogeneic hematopoietic cell transplantation, 

cytomegalovirus infection reduces the leukemic relapse risk [134]. However, 

the potential protective value of immune response against neo-MIPs expressed 

on non-neoplastic stressed cells has yet to be addressed experimentally. 

2.13 The complexity and plasticity of the SMII – A challenge for self 

tolerance

A key finding emerging from large-scale peptidomic studies is that the SMII 

is more complex and plastic than previously anticipated (Fig. 1). At the or-

ganismal level, the composition of SMII varies from one cell type to another. 

Furthermore, the SMII of a cell can be perturbed by dysregulation of cellular 

metabolism and infection, hence by both cell–intrinsic and –extrinsic factors. 

Therefore, events that occur frequently under real life conditions lead to pre-

sentation of neo-self MIPs to the immune system [30]. The complexity and 

plasticity of the SMII most likely represent a major challenge for the main-

tenance of self tolerance. They may justify the need for self tolerance to be 

maintained by multiple dominant and recessive mechanisms involving diverse 

hematopoietic and non-hematopoietic stromal cells in the thymus and second-

ary lymphoid organs [35, 135-137]. Despite these sophisticated mechanisms of 

tolerance, autoimmune diseases represent a major medical burden [52, 138]. 

2.13.1 Neo-self MIPs induced by infection

Environmental factors play a major role in the occurrence of autoimmune 

disease. In particular, a variety of microbial infections are associated with 

autoimmune diseases such as type 1 diabetes, multiple sclerosis, rheumatic 

fever, systemic sclerosis and spondyloarthritis [52, 139, 140]. Arguably the 

most popular hypothesis to explain the association between infection and au-
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toimmunity is molecular mimicry between microbial peptides and self MIPs. 

Though evidence for a role of molecular mimicry has been gathered for se-

lected cases [141], its overall importance in autoimmunity remains difficult to 

assess. Demonstration that infection leads to presentation of neo-self MIPs [8, 

25] raises an alternative explanation: autoreactive T cells could be specific neo-

self MIPs presented on infected cells. The latter hypothesis does not require 

any crossreactivity between microbial peptides and self MIPs. That neo-self 

MIPs elicit biologically relevant responses would be consistent with the fact 

that our immune system is not tolerant to all peptides that can be encoded by 

the genome, but only to self MIPs presented at physiological levels [142]. This 

principle was recently reiterated following the immune rejection of autologous 

induced pluripotent stem cells [143]. These cells had a perfectly normal ge-

nome but were recognized as non-self by autologous CD8 T cells that reacted 

to undefined neo-self MIPs. 

Figure 1. Plasticity of the SMII

The SMII is shaped by both intrinsic and extrinsic fac-

tors that affect the abundance and the diversity of MIPs.
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2.13.2 Neo-self MIPs induced by metabolic disturbances

Growing interest in the field of immunometabolism is being fuelled by the 

recognition that obesity-induced inflammation promotes a variety of chronic 

conditions including atherosclerosis [144]. Evidence suggests that obesity-in-

duced inflammation is initiated by CD8 T cells: the adipose tissue attracts and 

activates CD8 T cells that in turn initiate and maintain adipose tissue inflam-

mation and systemic insulin resistance [145]. Excessive amounts of nutrients 

induce endoplasmic reticulum stress in adipocytes [146]. Given that metaboli-

cally stressed cells express neo-self MIPs [30], it would be interesting to evalu-

ate whether neo-self MIPs on overloaded adipocytes might be specifically rec-

ognized by CD8 T cells that initiate obesity-induced inflammation. 

2.14 The MHC class II immunopeptidome

For most autoimmune disorders, MHC genes have by far the strongest single 

genetic effect. Autoimmunity is frequently linked primarily to MHC II alleles 

that are strongly associated with the presence of specific circulating autoanti-

bodies [147]. Table 3 shows some representative examples of autoantibodies 

associated with specific HLA-DR and HLA-DQ alleles. These autoantibodies can 

be both pathognomonic and pathogenic [148, 149]. Disease-associated MHC II 

alleles presumably present self peptides to CD4 T cells that “help” autoreactive 

B cells. HLA-DR and HLA-DQ alleles can also be associated with autoimmune 

disorders where no antibody marker has been identified [150]. These data beg 

the question: what is the nature of self MHC II-associated peptides recognized 

by autoreactive CD4 T cells. In comparison to the SMII, characterization of 

the self MHC II-immunopeptidome represents a greater challenge due to the 

less-restrictive binding motifs of MHC II alleles and the scarcity of peptide 

sequencing data [151]. High-throughput analysis of MHC II-associated pep-

tides are absolutely required to help improve current prediction algorithms 

and understand the structure of the MHC II-restricted self [152]. Systems level 

analyses of the self MHC II immunopeptidome should also pave the way to a 

molecular definition of pathogenic MHC II-associated self peptides. 
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Table 3. Representative examples of autoantibodies associated with specific 

MHC II alleles
MHC II allele Autoantibody Disease Reference

HLA-DRB1*13 F-actin Autoimmune hepatitis 
1, 2

[147]

HLA-DRB1*03 Antinuclear antibodies 
(ANA)

Autoimmune hepatitis 
1, 2

[147]

HLA-DRB1*03 Liver cytosol type 1 (LC1) Autoimmune hepatitis 2 [162]

HLA-DRB1*07 Liver kidney microsomes 
type 1 (LKM-1)

Autoimmune hepatitis 2 [147, 162]

HLA-
DQβ1*0301

Anti-basement membrane 
zone (anti-BMZ)

Pemphigoid [163]

HLA-DRB1*11-
DQB1*0301

Anti-topoisomerase I 
(Topo)

Systemic sclerosis [164]

HLA-DRB1*01-
DQB1*0501

Anti-centromere (ACA) Systemic sclerosis [164]

HLA-
DRB1*0404-
DQ8, DR3-DQ2

Anti-21-hydroxylase (21-
OH)

Type 1 diabetes [165, 166]

HLA-DR4, HLA-
DQ8

Anti-insulin (IAA) Type 1 diabetes [165, 167]

HLA-DRB1 SE a,  
HLA-DRB1*04

Anti-citrullinated 
α-enolase peptide 1 (CEP-
1)

Rheumatoid arthritis [168] [169]

aHLA-DRB1 SE: HLA-DRB1 shared epitope

2.13 Perspective –toward a more comprehensive definition of the im-

mune self

It is noteworthy that the complexity of the SMII is also spelled in words that 

go beyond a simple germline-encoded 20-amino acids alphabet. The complex-

ity of the SMII is enhanced by three processes: non-conventional translation 

mechanisms, post-translational modifications and genetic polymorphisms. 

Thus, cryptic MIPs include peptides that arise from untranslated regions of the 

mRNA as well as peptides encoded in alternate translational reading frames 

and from non-AUG start codon initiation on mRNAs [71, 96-98]. Furthermore, 

peptides can undergo several post-translational modifications such deamida-

tion, phosphorylation, transpeptidation and proteasomal splicing [13, 99-103]. 
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Peptide splicing leads to the production of MIPs made of two noncontiguous 

fragments of a protein that are linked together after the excision of the in-

tervening segment [85, 153]. Finally, genetic polymorphisms that hinder MIP 

generation (e.g., gene deletion) or the structure of a MIP (e.g., single nucleotide 

polymorphisms) can impinge on the SMII [154-156]. Accordingly, some MIPs are 

present in some individuals but absent in other MHC-matched subjects [156, 

157]. These polymorphic MIPs are traditionally referred to as minor histocom-

patibility antigens (MiHAs). While MiHAs are of great biological relevance [114, 

158], the global impact of genomic polymorphisms on the SMII (i.e. the num-

ber of MiHA differences between MHC-identical subjects) is totally unknown, 

with theoretical estimates ranging from ≈15 to thousands [154, 155, 159]. Im-

portantly, peptide identification by tandem MS is generally based on search 

algorithms that evaluate matches between observed peptide fragments and a 

reference proteome. It follows that peptides with post-translational modifica-

tions and peptides generated by alternative reading frames, protein splicing or 

genomic variations are largely missed by current database search algorithms. 

Furthermore, current binding motif prediction algorithms rely on known pep-

tide sequences, limiting our knowledge of peptides associated to rare alleles 

and to MHC class II molecules. Thus, unmined MS datasets harbor a whole 

immunopeptidome universe that awaits to be uncovered by novel analytical 

approaches including de novo MS/MS peptide sequencing and enrichment of 

peptide bearing discrete post-translational modifications [160, 161]. 

2.15 Take-home messages

•	 The self-MIP repertoire is complex and is not a representative excerpt 

from the proteome.

•	 Different types of proteasomes generate different MIP repertoires. 

•	 The self-MIP repertoire conceals a tissue-specific signature. 

•	 Neoplastic transformation, viral infection and metabolic changes have a 

broad impact on the MIP repertoire and lead to presentation of cryptic 

self-MIPs. 

•	 The self-MIP repertoire conveys to the cell surface an integrative view of 

cellular regulation. 

•	 The complexity and plasticity of the MHC I-restricted self represent a ma-
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jor challenge for the maintenance of self tolerance.
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3.2 Abstract

MHC I-peptides (MIPs) play an essential role in normal homeostasis and diverse 

pathological conditions. MIPs derive mainly from defective ribosomal products 

(DRiPs), a subset of nascent proteins that fail to achieve a proper conforma-

tion and whose physical nature remains elusive. We used high-throughput pro-

teomic and transcriptomic methods to unravel the structure and biogenesis of 

MIPs presented by HLA-A and -B molecules on human EBV-infected B lympho-

cytes from four subjects. We found that although HLA-different subjects pres-

ent distinctive MIPs derived from different proteins, these MIPs originate from 

proteins that are functionally interconnected and implicated in similar biologi-

cal pathways. Secondly, the MIP repertoire of human B cells showed no bias 

toward conserved vs. polymorphic genomic sequences, derived preferentially 

from abundant transcripts, and conveyed to the cell surface a cell type-specif-

ic signature. Finally, we discovered that MIPs derive preferentially from tran-

scripts bearing miRNA response elements. Furthermore, while MIPs of HLA-

disparate subjects are coded by different sets of transcripts, these transcripts 

are regulated by mostly similar miRNAs. Our data support an emerging model 

in which i) the generation of MIPs by a transcript depends on its abundance 

and DRiP rate, and ii) the DRiP rate is regulated to a large extent by miRNAs. 
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3.3 Introduction

All nucleated cell types constitutively express MHC class I molecules that pres-

ent self peptides to CD8 T cells. MHC I-associated peptides (MIPs) play crucial 

roles in many processes including development and homeostasis of CD8 T 

cells, self/non-self discrimination, tumor immunosurveillance, tissue rejec-

tion, graft-vs.-host disease and odorant-based mate selection.1-6 Classical MHC 

I molecules are encoded by three genes in humans, HLA-A, -B, and –C, which 

have an astounding allelic diversity.7 Genetic polymorphisms that distinguish 

HLA allomorphs affect mainly their peptide-binding groove. Accordingly, stud-

ies on presentation of various peptides suggest that a minority of peptides 

may bind to several MHC I molecules but that different HLA allomorphs pres-

ent largely non-overlapping sets of peptides.8, 9 Generation of MIPs is tightly 

linked to protein economy because it depends on protein synthesis and deg-

radation.10, 11 Nevertheless, the most striking (and intriguing) feature of MIPs is 

that they derive mainly from defective ribosomal products (DRiPs).12, 13 DRiPs 

are a subset of nascent proteins that fail to achieve a proper conformation, 

and are therefore rapidly degraded by proteasomes. A key unresolved issue is 

the physical nature of DRiPs. In theory, DRiPs could originate from a variety of 

processes that impinge on transcription, translation, post-translational modi-

fications and protein folding.12, 13 

No algorithm can predict the amount of DRiPs produced by a gene.14 Further-

more, the composition of the self MIP repertoire (or immunopeptidome) does 

not correlate with the abundance of MIP source proteins.15 Finally, studies on 

the relation between the transcriptome and the immunopeptidome have yield-

ed seemingly conflicting results.9, 16 Therefore, large-scale mass spectrometry 

(MS) studies represent the sole approach that can yield a global appraisal of 

the MIP landscape. MS studies have highlighted the complexity of the MIP rep-

ertoire and shown that MIPs derive from all cell compartments.5, 16-19 They also 

revealed that the immunopeptidome is plastic, conveys to the cell surface an 

integrative view of cellular regulation, and that it can be affected by cell-intrin-

sic and –extrinsic factors.17, 18 

Given the quintessential importance of self MIPs, it is imperative to develop 
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and exploit systems-level quantitative methods that will yield insights into 

MIP biogenesis and enable modeling of the immunopeptidome. Here, we used 

high-throughput proteomic and transcriptomic methods to unravel the struc-

ture and biogenesis of MIPs presented by HLA-A and -B molecules on human 

EBV-infected B lymphocytes. Our results show that different HLA allomorphs 

present MIPs derived from distinct but functionally related source proteins. 

We further demonstrate that two features determine whether a transcript will 

generate MIPs: the transcript abundance and whether it contains microRNA 

(miRNA) response elements (MREs). 

 

3.4 Material and Methods

3.4.1 Cell culture and HLA typing

This study was approved by the Comité Éthique Recherche de l’Hôpital Maison-

neuve-Rosemont and all subjects provided written informed consent. Peripher-

al blood mononuclear cells (PBMCs) were isolated from blood samples of 4 sub-

jects (2 pairs of HLA-identical siblings). Epstein-Barr virus (EBV)-transformed B 

lymphoblastoid cell lines (B-LCLs) were derived from PBMCs with Ficoll-Paque 

Plus (Amersham) as described.20 Established B-LCLs were maintained in RPMI 

1640 medium supplemented with 10% fetal bovine serum, 25 mM of HEPES, 

2mM L-glutamine and penicillin-streptomycin (all from Invitrogen). HLA ge-

notyping was performed at the Maisonneuve-Rosemont Hospital. Siblings of 

sibship 1 are HLA-A*0101/*0205, HLA-B*1501/*5001, HLA-C*0602/*0701 

and DRB1*0101/*1104. Siblings of sibship 2 are: HLA-A*0301/2902, HLA-

B*0801/*4403, HLA-C*0701/*1601 and DRB1*0301/*0701. HeLa and HEK293 

cell lines were maintained in DMEM medium supplemented with 10% fetal bo-

vine serum, 2mM L-glutamine and penicillin-streptomycin (all from Invitrogen).

3.4.2 Mass spectrometry and peptide sequencing 

Three to four biological replicates of 4x108 exponentially growing B-LCLs were 

prepared from each subject. MIPs were released by mild acid treatment and 

separated by strong cation exchange chromatography (SCX) using an off-line 

1100 series binary LC system (Agilent Technologies) as previously described.16 
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MIP fractions were analyzed by LC-MS/MS using an Eksigent LC system cou-

pled to a LTQ-Orbitrap mass spectrometer (Thermo Electron).16-18 Additional 

details are provided as supplemental methods. MS/MS of all peptide identifi-

cations are available through ProteoConnections24 at http://www.thibault.iric.

ca/proteoconnections. 

3.4.3 MIPs selection, predicted binding affinity and identification of MIP 

source proteins

We filtered peptides by their length and kept those peptides with the canoni-

cal MIP length (8-11mers) and predicted binding affinity (IC50)<500 nM. Also, 

only MIPs detected in at least 3 replicates of both siblings per sibship (i.e. MIPs 

detected in 6-8 samples derived from 2 different HLA-identical siblings) were 

considered for further analyses. The predicted binding affinity of peptides to 

the allelic products was obtained using NetMHC version 3.2 (http://www.cbs.

dtu.dk/services/NetMHC/)21 for the frequent alleles HLA-A*0101/*0301/*2902 

and HLA-B*0801/*1501/*4403) or NetMHCpan version 2.2 (http://www.cbs.

dtu.dk/services/NetMHCpan-2.2/)22 for the rare alleles HLA-A*0205 and HLA-

B*5001. MIPs were further inspected for mass accuracy and MS/MS spectra 

were validated manually. The list of MIPs reported in the present work has 

been provided to The Immune Epitope Database and Analysis Resource (IEDB) 

(http://www.immuneepitope.org/)23 under the reference ID 1022782. MIP 

source proteins were identified using the Sidekick resource (http://www.bio-

info.iric.ca/sidekick/) and only MIPs unambiguously assigned to one source 

gene were further analyzed.

3.4.4 Analysis of enriched pathways and functional categories

The Ingenuity Pathway Analysis software (Ingenuity Systems, http://www.in-

genuity.com/) was used to identify overrepresented canonical pathways and 

functional categories for MIP source proteins. The right-tailed Fisher’s exact 

test was used to calculate a p-value determining the probability that each over-

represented pathway or biological function was due to chance alone.

3.4.5 Functional connectivity score
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An in-house developed all-pairs-shortest-path matrix18 was used to calculate 

the functional association between two lists of nodes (transcripts or proteins), 

in this case: i) MIP source proteins of sibship 1 and MIPs source proteins of 

sibship 2 and ii) all MIP source proteins and all protein-coding transcripts ex-

pressed in B-LCLs. The functional association corresponds to a connectivity 

score. Details on the calculation of the score are provided as supplemental 

methods. A bootstrapping procedure was used as a statistical sampling meth-

od to calculate control connectivity scores from 105 sets of randomly selected 

human protein coding transcripts (1,165 transcripts in Figure 2C and 12,384 

in Figure 4B). The P value corresponds to the number of times that the score 

of the bootstrap is smaller than the score of the sample/number of bootstrap 

iterations (105).

3.4.6 Analysis of transcripts containing miRNA-binding sites 

Transcripts containing MREs were obtained from 2 sources: i) TargetScan v5.1 

(http://www.targetscan.org/)27, which includes both validated and predicted 

miRNA targets and ii) the Molecular Signature Database v3.0 (MSigDB) (http://

www.broadinstitute.org/gsea/msigdb/index.jsp)28, which includes gene sets 

with a known 3’-UTR miRNA binding motif. The MIP datasets used in the anal-

yses were obtained from MS-based studies by our group16, 17, by others19, 29 

or were available at IEDB (http://www.immuneepitope.org/, accessed on May 

2011)23. The human and mouse proteome were downloaded from NCBI by ex-

cluding entries with a gene type for non-coding RNA, ‘transposon’ or ‘pseudo-

gene’. The proportion of transcripts containing MREs in the different datasets 

was compared with the two-tailed Fisher’s exact test.

3.4.7 miRNA enrichment analysis

The miRNA target analysis module of the Web-based Gene Set Analysis Toolkit 

(WebGestalt) (http://bioinfo.vanderbilt.edu/webgestalt/)30 was used to iden-

tify transcripts containing MREs that are overrepresented among MIP source 

transcripts in B-LCLs. This tool also allowed us to predict miRNAs recognizing 

MREs found in enriched MIP source transcripts. A hypergeometric test and a 
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Benjamini and Hochberg correction were used to identify enriched miRNAs 

and target transcripts. 

3.4.8 RNA extraction and cell sorting

5 x 106 PBMCs were labeled with FITC-conjugated anti CD19 (clone HIB19), 

APC-conjugated anti CD20 (clone 2H7) and propidium iodide to exclude cells 

in later apoptotic stages (all from BD Biosciences). CD19+CD20+ B cells were 

sorted on a FACSAria cell sorter (BD Biosciences) before RNA extraction. 0.5-

1.0 x 106 cells were lysed in Qiazol (Qiagen) and total RNA was isolated of with 

the miRNeasy mini kit including DNase I treatment (Qiagen) according to the 

manufacturer’s instructions. Total RNA was quantified using the NanoDrop 

2000 (Thermo Scientific) and RNA quality was assessed with the 2100 Bioana-

lyzer (Agilent Technologies). 

3.4.9 miRNA profiling

miRNA labeling, hybridization and washing steps were carried out with the 

miRNA complete labeling and hybridization kit (Agilent Technologies) accord-

ing to the manufacturer’s instructions. 100 ng of each RNA sample were hy-

bridized to Agilent Human miRNA Microarray Release 16.0 (G4872A-031181 

Agilent Technologies) containing 60K probes for 1,205 human and 144 human 

viral miRNAs (including 25 specific for EBV). Images were acquired with a Ge-

nePix 4000B scanner (Molecular Devices) at a 5 uM/pixel resolution and fea-

tures were extracted with the GenePix 6.1 software. Analyses were performed 

using BRB-ArrayTools Version 4.2.0 Stable Release developed by Dr. Richard 

Simon and BRB-ArrayTools Development Team (http://en.bio-soft.net/chip/

BRBArrayTools.html). The data were background-subtracted and quantile nor-

malized. To estimate a single intensity measure for each miRNA we calcu-

lated the mean of its different probes. We applied the Self-Organizing Maps 

(SOM) method followed by hierarchical clustering analysis using the average 

linkage method and uncentered correlation as similarity metric. Clustering 

analyses were carried out with the Cluster v3.0 program (http://bonsai.hgc.

jp/~mdehoon/software/cluster/)31 and visualized with Java TreeView (http://

jtreeview.sourceforge.net/).32 The miRNA array data have been deposited into 
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the GEO database under accession number GSE35319. 

 

3.5 Results

3.5.1 High-throughput MS-based identification of the MIP repertoire of B-

LCLs

To characterize the MIP repertoire of B-LCLs, we performed mild acid elution 

of peptides from 4 B-LCLs derived from PBMCs of 4 different subjects. The 

4 subjects belonged to 2 HLA-disparate sibships, each composed of one pair 

of HLA-identical siblings. Eluted peptides were fractionated by ion exchange 

chromatography and analyzed by nanoLC-MS/MS.16-18 To identify MIPs con-

sistently expressed by B-LCLs we selected those MIPs detected in at least 3 

replicates of both siblings in each sibship (i.e. MIPs constantly detected in 6-8 

samples derived from 2 different HLA-identical siblings). We further filtered 

peptides according to the canonical MIP length (8-11mers) and kept only those 

that were predicted to bind to their corresponding HLA-A and B allelic prod-

ucts for further analysis. In order to evaluate the HLA binding affinity of our 

peptides, we used NetMHC and NetMHCpan,21, 22 which are the best-performing 

MHC-binding predictors.33, 34 HLA-C-associated peptides were not included in 

this study because predictors for HLA-C allomorphs are not fully developed. 

We identified a total of 2375 unique 8-11mers associated to 8 HLA-

A and B allelic products: HLA-A*0101/*0205/*0301/*2902 and HLA-

B*0801/*1501/*4403/*5001 (Table S1). Of the identified MIPs, 29 are listed 

in the IEDB and have been previously identified by various techniques includ-

ing MHC ligand elution, MHC binding and T-cell response assays. Most of the 

peptides identified here are therefore novel and significantly enlarge the list 

of MIPs associated to MHC allomorphs, especially those for which less than 10 

human peptides are currently known (HLA-A*0205 and HLA-B*0801/*5001). 

We found that a large proportion of MIPs were specific to one HLA (Figure 1A). 

Less than 10% of MIPs were predicted to bind to more than one HLA (Figure 

1A), though a stronger binding preference was found for a single HLA allelic 

product (Table S1). Accordingly, the overlap between MIPs from HLA-disparate 

subjects was minimal (0.4%) (Figure 1C). Of note, we observed locus-dependent 
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differences in the predicted binding affinity of our MIPs. On average, HLA-A-

associated peptides had a significantly stronger binding affinity than HLA-

B-associated peptides (Figure 1B and Figure S1). We conclude that HLA allo-

morphs present essentially distinct MIP repertoires and that at the organismal 

level, the HLA genotype ultimately defines the MIP repertoire of an individual. 

Figure 1. General features of MIPs eluted from B-LCLs from 2 HLA-dispa-

rate sibships

There were 2 HLA-identical siblings per sibship and each MIP included in the 

analysis was found in both siblings. A) Proportion of MIPs associated to 1, 2 

or more different HLA allelic products, based on bioinformatic predictions 

with NetMHC/NetMHCpan. Most MIPs are associated to a single allelic prod-

uct (HLA type). B) Predicted MHC I binding affinity (IC50) of eluted peptides 

shows that HLA-B-associated peptides are weaker binders than HLA-A-as-

sociated peptides (*P < 0.0001; 2-tailed Mann Whitney test). Each dot repre-

sents a peptide and the red line corresponds to the mean binding affinity. C) 

Venn diagram showing minimal overlap between MIPs from HLA-disparate 

sibships. Peptide numbers and percentages are depicted for each category. 

Total number of MIPs for each sibship are shown in colors.
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3.5.2 MIPs of HLA-disparate individuals derive from different sets of source 

proteins that are functionally interconnected and implicated in similar bi-

ological pathways

We unambiguously identified 1,750 proteins source of 2,290 peptides (Table 

S1), indicating that most MIP source proteins are represented by a single MIP. 

We asked whether distinct sets of MIPs associated to non-overlapping sets of 

HLA molecules originated from the same or from different sets of proteins. 

We found that the overlap between MIP source proteins of sibships 1 and 2 

was minimal (7.5%) (Figure 2A). We then performed an enrichment analysis 

to identify pathways overrepresented in the proteins source of MIPs in each 

sibship. This analysis revealed that most of the overrepresented pathways 

were common to both sibships (Fisher’s exact test, P < 0.05) (Figure 2B). Thus, 

despite the fact that MIPs of HLA-disparate subjects originated mostly from 

different proteins, a significant number of those proteins are implicated in 

the same biological pathways. We further confirmed this result by analyzing 

the functional connectivity between the sets of proteins giving rise to MIPs in 

sibships 1 and 2 using an in-house developed all-pairs-shortest-path matrix 

(Figure 2C). This analysis is based on the fact that proteins acting in the same 

biological pathway are closer in an interaction network, i.e. more function-

ally connected. Functional association was measured as a connectivity score, 

which corresponds to the mean of the shortest path distance between every 

pair of proteins (one protein from each sibship) in an interaction network. We 

found that the set of MIP source proteins of sibship 1 is highly connected to 

the set of proteins of sibship 2. A bootstrap procedure (100,000 iterations) 

failed to reveal a single randomly selected set of proteins in the human pro-

teome that was so tightly connected to the MIP source proteins of our subjects 

(P < 0.0001). Collectively, these results show that B-LCLs from subjects with no 

shared HLA alleles present different immunopeptidomes that originate from 

different sets of proteins that are nevertheless functionally interconnected 

and implicated in the same biological pathways. 
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Figure 2. MIP source proteins are very different in the two sibships, but are impli-

cated in similar biological pathways and are functionally interconnected

A) Venn diagram showing the minimal overlap between MIP source proteins from sib-

ships 1 vs. 2. Protein numbers and percentages are depicted for each category. Total 

number of MIP source proteins for each sibship are shown in colors. B) The Ingenuity 

Pathway Analysis resource was used to identify overrepresented biological pathways 

for MIPs source proteins in sibships 1 and 2. Pathways are sorted by their statistical 

significance [-log(p value, calculated with the right-tailed Fisher’s exact test)]. Higher 

scores indicate increased association between the MIP source proteins and a given 

pathway. The dotted line represents the threshold for statistical significance (P < 

0.05). Immune-associated pathways are highlighted in red. C) MIP source proteins 

from HLA-disparate sibships are functionally interconnected. An all-pairs-shortest-

path matrix was used to calculate the functional association between MIP source pro-

teins of sibship 1 and MIPs source proteins of sibship 2 (see material and methods 

for details). The functional association was measured as a connectivity score, which 
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corresponds to the mean of the shortest path distance between every pair of proteins 

(one protein from each sibship) in an interaction network. Lower scores indicate in-

creased connectivity. The red line represents the connectivity score between the MIP 

source proteins of sibship 1 and the MIP source proteins of sibship 2. A bootstrap 

procedure, represented by the Gaussian distribution, was used to calculate control 

connectivity scores between MIPs source proteins (of sibships 1 or 2) and random 

sets of proteins from the human proteome (*P < 0.0001, calculated as the number of 

times that the score of the bootstrap is smaller than the score of the sample/ number 

of bootstraps). 

3.5.3 MIPs encoded by conserved and polymorphic genomic sequences

One interesting, yet unexplored question is whether MIPs preferentially de-

rive from conserved vs. polymorphic genomic regions. Polymorphic MIPs, 

commonly referred to as minor histocompatibility antigens, are important in 

hematology because they elicit graft-vs.-host disease and graft-vs.-leukemia 

effect following allogeneic hematopoietic cell transplantation.35-38 The most 

common form of polymorphism is single nucleotide polymorphism (SNP). We 

used an in-house developed software (pyGeno) to estimate the frequency of 

SNPs (SNPs/base pairs) in the MIP coding DNA sequences and compared it to 

the SNP frequency in the human exome (Table 1). Our analysis took into ac-

count all validated synonymous and non-synonymous SNPs reported in dbSNP. 

We found no significant differences between the frequency of synonymous or 

non-synonymous SNPs within MIP-coding sequences vs. the rest of the human 

exome. This result suggests that the MIP repertoire shows no bias toward poly-

morphic or invariant genomic sequences. 

Table 1. SNP frequency (SNPs/bp) in MIPs and in the human exome

MIPs correspond to 2,282 unique peptides eluted from B-LCLs. The human exome 

corresponds to 26,4401 CDS extracted from Ensembl (GRCh37.65). dbSNP (Build 135) 

was used to calculate SNP frequency (SNPs/bp). SNP: single-nucleotide polymorphism, 

bp: base pair.

Dataset Length 
(bp)

Non-synonymous 
SNPs

Synonymous 
SNPs

Total
SNPs

Number SNPs/
bpa

Number SNPs/
bpb

Number SNPs/bpc

MIPs 59994 230 0.0038 216 0.0036 446 0.0074
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Exome 35201356 150158 0.0043 115376 0.0033 265534 0.0075
aP = 0.12, bP =0.16 , cP =0.50 , two-tailed Fisher’s exact test when comparing MIP coding se-
quences to the exome not encoding MIPs.

3.5.4 MIPs derive preferentially from abundant transcripts

We previously reported that in primary mouse thymocytes, MIPs derived pref-

erentially from highly abundant mRNAs.16 However, studies on human cells 

have casted some doubts on the correlation between the immunopeptidome 

and the transcriptome.9 To directly evaluate this relationship, we compared the 

expression level of 15,737 protein-coding transcripts expressed by B-LCLs26 

with the expression level of 1,707 MIP coding transcripts (Figure 3A-B). We set 

4 expression categories based on Toung et al.26: very low, low, medium and 

high, and compared the proportion of transcripts belonging to each category 

in the 2 sets of transcripts. We found that MIP coding transcripts were skewed 

toward higher expression categories (Figure 3B). While 54% of all transcripts 

were expressed at a medium to high levels, 87% of those coding for MIPs did 

so. Furthermore, the proportion of highly abundant transcripts was enriched 

by 3.5 times in MIP-coding transcripts relative to the whole protein coding 

transcriptome. Consistent with this, while 46% of transcripts are expressed at 

low or very low levels, only 13% of MIP coding transcripts fell into these cate-

gories (Figure 3B). We further demonstrated that changing the thresholds that 

defined the various categories did not affect the differential expression of MIP 

coding transcripts relative to all transcripts expressed in B-LCLs (Figure S2). 

Since MIPs preferentially derived from abundant transcripts, we next asked 

whether the proportion of MIP-coding transcripts was increased in a region 

with high transcriptional activity. The 6p21 chromosomal region contain-

ing the extended human MHC is recognized as a canonical transcriptional 

hotspot.7 We first confirmed that this region generates increased proportion 

of highly abundant transcripts and further calculated the average expression 

of transcripts derived from 6p21 vs. the whole transcriptome of B-LCLs (Figure 

3C). We found that the average gene expression level measured in FPKM (frag-

ments per kilobase of exon per million fragments mapped) was 2 times greater 

for 6p21 than for all expressed protein-coding transcripts. We then compared 

the proportion of MIP-coding transcripts located in 6p21 vs. in the rest of the 
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genome (Figure 3D). We found that the proportion of MIP-coding transcripts 

was significantly higher for transcripts located in 6p21 than elsewhere in the 

Figure 3. MIPs derive preferentially from abundant transcripts
A) MIP source transcripts are expressed at a wide range of levels. Expression levels were ob-

tained from Toung et al.26 and measured in FPKM by RNA-sequencing. Frequency distribution 

of expression levels of 15,737 protein-coding transcripts expressed by B-LCLs (black bars) and 

1,707 (out of 1,750) transcripts source of MIPs (red line) for which an entry was found in the 

RNA-seq data. The frequencies of mRNAs and of MIPs source mRNAs are displayed on the left 

and right y-axis, respectively. Frequencies were calculated for 0.2 FPKM-bin increments. Ex-

pression categories (very low, low, medium and high) were set based on Toung et al.26 and con-

firmed to be unbiased (Figure S2). B) Proportion of transcripts belonging to the expression cat-

egories shown in A among the two sets of transcripts indicate that MIPS derive preferentially 

from transcripts expressed at moderate to high levels as opposed to transcripts expressed at 

very low to low levels (*P < 2.2 x 10-6, Fisher’s exact test). C) The 6p21 chromosomal region is a 

transcriptional hotspot in B-LCLs. Graph shows the proportion of transcripts belonging to the 

expression categories shown in A among 316 protein-coding transcripts located in the 6p21 

chromosomal region and the protein-coding transcriptome of B-LCLs (*P < 0.008, **P < 2.05 

x 10-7, Fisher’s exact test). The average expression level (FPKM per gene) is shown on the top 

for both datasets. The 6p21 region analyzed was comprised between positions 30400001 and 

46200000 (UCSC genome browser and NCBI Map viewer). D) The 6p21 transcriptional hotspot 

is a preferential source of MIPs. Comparison of the proportion of MIP-coding transcripts locat-

ed in 6p21 (6p21+) and in the rest of the genome (6p21-) (*P = 0.013 x 10-6, Fisher’s exact test). 
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genome. This results show that the 6p21 transcriptional hotspot is a preferen-

tial source of MIPs.

3.5.5 The MIP repertoire is functionally connected to the transcriptome

In mouse thymocytes and dendritic cells, we found that the MIP repertoire 

conceals a cell type-specific signature.16, 17 To test whether this is also true in 

human cells, we first used the Ingenuity Pathway Analysis resource to identify 

major functional categories that were overrepresented in the set of proteins 

encoding MIPs in B-LCLs (Figure 4A). Some overrepresented categories were 

associated to basic cellular biological processes such as cell cycle, protein syn-

thesis and gene expression, reflecting intracellular events occurring in any 

proliferating cell. The salient finding is that several immune-specific function-

al categories were also overrepresented, including hematopoiesis, lymphoid 

tissue structure and development, and humoral and cell-mediated immune re-

sponses (Figure 4A, categories in red). Furthermore, these major immune cat-

egories included B cell-specific functions such as proliferation, development 

and differentiation of B lymphocytes, class switching and development of pre-

B and pro-B lymphocytes (Table S2). Moreover, the MIP repertoire reflected im-

mune-associated, as well as intracellular pathways important for B cell biology 

(Figure 2B, pathways in red). Among the overrepresented pathways, we found 

antigen presentation, IL-6 signaling (required for B cell maturation), PI3K sig-

naling in B lymphocytes (crucial in B-cell development) and JAK2 in cytokine 

signaling (very active in stimulated B cells). 

If the MIP repertoire is molded by the cell type-specific transcriptome, then 

the set of MIP-encoding proteins in B-LCLs should be functionally connected to 

the B-LCLs’ transcriptome. To test this hypothesis, we used our shortest path 

matrix method18 to evaluate the functional connectivity between the set of MIP 

source proteins and the protein-coding transcriptome of B-LCLs and compare 

this connectivity to the connectivity scores of 105 random human transcrip-

tome sets (Figure 4B). The functional connectivity found between MIP coding 

transcripts and the transcriptome of B-LCLs was significantly greater than the 

MIP connectivity to control transcriptomes (bootstrapping, P < 0.0001). Inter-

estingly, the MIP-transcriptome connectivity increased as a function of the ex-
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pression level of MIP coding transcripts (Figure S3). Thus, the connectivity 

of MIP-encoding transcripts to the transcriptome reached its maximum value 

when only highly abundant transcripts were considered. We conclude that the 

MIP repertoire of human cells is functionally connected to the cells’ transcrip-

tome in a transcript level-dependent manner. 

Figure 4. The MIP repertoire is functionally connected to the transcriptome

A) Graph showing the major functional categories that are overrepresented in the 

MIP repertoire of B-LCLs. Overrepresented functional categories were identified with 

the Ingenuity Pathway Analysis resource and are sorted by their statistical signifi-

cance [-log(p value), calculated with the right-tailed Fisher’s exact test]. Higher val-
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ues indicate increased association between the MIP source proteins and a given cat-

egory. The dotted line represents the threshold for statistical significance (P < 0.05). 

Immune-associated categories are highlighted in red. More details on functional an-

notations represented in immune-associated categories are provided in Table S2. B) 

The immunopeptidome of B-LCLs is functionally connected to the transcriptome of 

B-LCLs. An all-pairs-shortest-path matrix was used to calculate the functional asso-

ciation between MIP source proteins and the protein-coding transcriptome of B-LCLs 

(see material and methods for details). The functional association was measured as 

a connectivity score, which corresponds to the mean of the shortest path distance 

between every pair of proteins in an interaction network, i.e. one MIP-source protein 

and one expressed transcript of B-LCLs. The red line represents the connectivity score 

between MIP source proteins and transcripts expressed by B-LCLs. A bootstrap proce-

dure, represented by the Gaussian distribution, was used to calculate control connec-

tivity scores between MIPs source proteins and random sets of the human transcripts. 

3.5.6 MIPs preferentially derive from transcripts containing miRNA-bind-

ing sites

According to the dominant paradigm, MIPs derive primarily from DRiPs gen-

erated by yet elusive biochemical processes.10, 13 Theoretically, the amount of 

MIPs generated by a transcript should therefore be dictated by two factors: the 

transcript abundance and the transcript DRiP rate. In accordance with this as-

sumption, medium and highly abundant transcripts were a preferential source 

of MIPs (Figure 3A), However, some MIPs derived from transcripts expressed at 

low or very low levels (Figure 3A). We therefore speculated that low abundance 

transcripts/proteins that generate MIPs, do so because they have a high DRiP 

rate. miRNAs are a class of non-protein-coding RNAs that bind to MREs on tar-

get transcripts causing destabilization of the target transcript or inhibition of 

its translation.39 Destabilization of target mRNAs by miRNAs could constitute 

a possible mechanism by which DRiPs are generated. To test whether miRNA 

targets are a preferential source of MIPs, we first calculated the proportion 

of transcripts containing MREs in 3 datasets: transcripts source of MIPs in 

our B-LCLs, all human protein-coding transcripts (Figures 5A and S4A), and 

protein-coding transcripts expressed in our B-LCLs (Figures S4C-D). We used 

2 different databases to identify validated and predicted transcripts recog-

nized by miRNAs, TargetScan v5.127 and the Molecular Signature Database v3.0 

(MSigDB)28, and performed independent analyses with both databases (Figures 
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5A and S4). These analyses revealed that when compared to the B-LCL tran-

scriptome (Figures S4C and D) or to the human protein-coding transcriptome 

(Figure 5A), the set of transcripts encoding MIPs identified in B-LCLs from each 

sibship was significantly enriched in transcripts containing MREs.

Figure 5. The MIP-coding transcriptome is enriched in transcripts containing miR-

NA-binding sites

A) Human transcripts containing miRNA-binding sites are a preferential source of 

MIPs. The proportion of MIPs that derive from miRNA targets was calculated for vari-

ous datasets: B-LCLs from sibships 1 and 2 (this study), B-LCLs19, renal cell carcino-

mas29 and all human peptides listed in the IEDB23. A list of 8,725 human protein-

coding miRNA targets was extracted from TargetScan.27 Numbers on the bottom 

indicate the number of entries for each dataset. The proportion of MIPs that derive 

from miRNA targets for all datasets was significantly higher than the proportion of 

miRNA targets in the human protein coding transcriptome (PCT) a) P < 2.2 x 10-16, b) 

P < 3.3 x 10-9, c) P < 0.01, d) P < 2.12 x 10-9, e) P < 1.38 x 10-4, Fisher’s exact test). B) 

Mouse transcripts containing MREs are preferential sources of MIPs. The proportion 

of MIPs that derive from miRNA targets was calculated for various datasets: dendritic 

cells (DCs)17, thymocytes16 and all mouse peptides listed in the IEDB23. A list of 504 

mouse protein-coding miRNA targets was extracted from TargetScan.27 Numbers on 
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the bottom indicate the number of entries for each dataset. The proportion of MIPs 

that derive from miRNA targets for all MIP datasets was significantly higher than the 

proportion of miRNA targets in the mouse protein coding transcriptome (PCT) (a) P < 

1.0 x 10-11, b,c) P < 2.2 x 10-16,Fisher’s exact test).  

To determine whether this feature of the MIP-coding transcriptome was cell 

type-specific, we carried out the same analysis on publicly available datasets 

of human MIPs: B-LCLs expressing HLA-B*180119, renal cell carcinomas29 and 

a list of all human peptides identified in at least 20 different cell types and 

extracted from the IEDB.23 In all cases, the proportion of MIP source transcripts 

bearing MREs was higher than expected (Figures 5A and S4A). We then tested 

whether this was also true for mouse MIPs (Figures 5B and S4B). Analysis of 

mouse MIPs previously identified by our group in DCs17 and thymocytes16, 

as well as MIPs from different cell lines listed in the IEDB23, showed that the 

mouse MIP-encoding transcriptome was also significantly enriched in miRNA 

targets. In summary, these results show that irrespective of cell type, both 

mouse and human MIP-coding transcripts are enriched in miRNA targets.

3.5.7 MIPs from HLA-disparate sibships derive from different sets of tran-

scripts regulated by similar miRNomes

We used the WebGestalt analysis program30 to identify the specific MREs en-

riched in the 3’-UTR of MIP coding transcripts identified in B-LCLs from our 2 

HLA-disparate sibships (Figure 6A). A representative set of enriched MREs is 

shown in Table 2 and the complete list can be found in Table S3. 

Table 2. Representative set of enriched miRNA binding sites present in transcripts 

that are source of MIPs in B-LCLs from both sibships

The WebGestalt analysis tool was used to calculate the enrichment. N: number of tran-

scripts source of MIPs that contain the 3’-UTR binding site recognized by the specified 

miRNAs. RE: Ratio of enrichment (observed/expected number of transcripts). P value: 

calculated from the hypergeometric test.

3’-UTR 
binding 
site

miRNA sibship 1 sibship 2

N RE P value N RE P value

TGCACTT MIR-519C 
MIR-519B 
MIR-519A

51 4.21 5.93E-18 9 2.23 2.15E-02
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ACATTCC MIR-1     
MIR-206

40 4.94 8.63E-17 11 4.07 9.95E-05

TGCCTTA MIR-124A 53 3.53 2.87E-15 11 5.02 1.31E-02

CTTGTAT MIR-381 30 5.64 1.66E-14 5 2.81 3.36E-02

ACCAAAG MIR-9 48 3.48 9.38E-14 16 3.48 2.01E-05

TAGCTTT MIR-9 48 3.48 9.38E-14 16 3.48 1.95E-02

TGAATGT MIR-181A 
MIR-181B 
MIR-181C 
MIR-181D

47 3.51 1.23E-13 9 2.01 3.72E-02

GTGCCTT MIR-506 57 2.93 7.65E-13 20 3.08 1.16E-05

ACTTTAT MIR-142-5P 34 4.28 1.18E-12 11 4.15 8.38E-05

TTTGCAC MIR-19A 
MIR-19B

46 3.28 2.41E-12 14 2.99 3.00E-04

TTTGTAG MIR-520D 35 3.93 6.75E-12 7 2.36 3.08E-02

GTATTAT MIR-369-3P 25 4.51 3.62E-10 6 3.24 1.11E-02

GTTTGTT MIR-495 27 4.05 8.41E-10 8 3.6 1.90E-03

TTTGCAG MIR-518A-2 24 4.33 1.88E-09 7 3.79 2.70E-03

CTTTGTA MIR-524 36 3.01 5.82E-09 13 3.26 2.00E-04

CAGTGTT MIR-141 
MIR-200A

28 3.33 3.32E-08 10 3.57 6.00E-04

TATTATA MIR-374 26 3.44 5.41E-08 8 3.17 4.10E-03

TTTTGAG MIR-373 23 3.77 5.75E-08 8 3.93 1.10E-03

CTCAGGG MIR-125B  
MIR-125A

28 3.20 7.76E-08 7 2.4 2.84E-02

TGTTTAC MIR-30A-5P 
MIR-30C 
MIR-30D 
MIR-30B 
MIR-30E-5P

40 2.54 9.80E-08 11 2.09 1.78E-02

TGGTGCT MIR-29A 
MIR-29B 
MIR-29C

37 2.65 9.83E-08 12 2.58 2.80E-03

GCAAAAA MIR-129 20 4.09 1.07E-07 6 3.68 6.20E-03

ATTCTTT MIR-186 25 3.35 1.63E-07 6 2.41 4.03E-02

ATACTGT MIR-144 21 3.81 1.77E-07 10 5.44 1.83E-05

We then asked whether the MIP repertoire would reflect the miRNome. In ac-

cordance to the observation that MIPs of HLA-disparate sibships derive from 

different sets of proteins (Figure 2A), the sets of MIP source transcripts bear-

ing enriched MREs in the two sibships displayed minimal overlap (7%; Figure 

6A). Having compared miRNA targets, we next compared the miRNAs recog-
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nizing MREs in MIP source transcripts. Enriched miRNA targets were classified 

according to their specific 3’-UTR MREs. We then compared the miRNAs that 

were predicted to regulate MIP source transcripts in the 2 sibships. Notably, 

we found a 57% overlap among enriched miRNAs regulating MIP source tran-

scripts in the two sibships (Figure 6B). Collectively, these results suggest that 

MIPs from HLA-disparate subjects derive from different sets of transcripts 

regulated by mostly similar miRNAs.

Figure 6. MIPs from HLA-disparate sibships derive from different sets of tran-

scripts regulated by similar miRNomes

A) Venn diagram shows that MIPs of HLA-disparate sibships derive from different 

sets of miRNA targets. The WebGestalt analysis program30 was used to identify tran-

scripts significantly enriched in 3’-UTR binding sites of specific miRNAs among all 
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MIP source transcripts identified in sibships 1 and 2 (P < 0.05, hypergeometric test). 

Total number of MIP source transcripts that are miRNA targets for each sibship are 

shown in colors. B) Different sets of MIP source transcripts are predicted to be reg-

ulated by mostly the same miRNAs. The WebGestalt analysis program30 was used 

to identify miRNAs that recognize the 3’-UTR binding site present in enriched MIP 

source transcripts. Numbers and percentages of miRNAs are depicted for each cat-

egory. Total number of miRNAs that target MIP source transcripts in each sibship are 

shown in colors. C) miRNA profiling shows that B-LCLs from HLA-disparate sibships 

have similar miRNA expression profiles. Human miRNA microarrays were used to as-

sess the expression of 1,205 human and 144 viral miRNAs, in B-LCLs (2 subjects from 

each sibship), CD19+CD20+ cells isolated from PBMCs of one member of sibship 2, and 

two non-lymphoid cell lines (HEK293 and HeLa). Hierarchical clustering was used to 

calculate the correlation between various profiles (represented by a dendrogram). D) 

miRNAs that target MIP source transcripts in B-LCLs are expressed at higher levels 

in B-LCLs than in other cell types. All miRNAs studied were ranked from high to low 

according to their expression level in each cell line. Among them, the ranking of each 

of the 133 miRNAs predicted to regulate MIP source transcripts in B-LCLs was deter-

mined in B-LCLs, primary CD19+CD20+ cells, HEK293 cells and HeLa cells. Each dot 

corresponds to one miRNA. The median rank is shown for each cell population (red 

line and values). In average, miRNAs predicted to recognize MIP source transcripts 

are ranked significantly higher (i.e. more expressed) in B-LCLs than in non-lymphoid 

cell lines (*P < 0.05, one-way ANOVA and Bonferroni’s multiple comparison test). B-

LCL-1.1: from subject 1 of sibship 1, B-LCL-1.2: from subject 2 of sibship 1, B-LCL-2.1: 

from subject 1 of sibship 2, B-LCL-2.2: from subject 2 of sibship 2.

To confirm that the miRNome of our 2 sibships was indeed similar, we per-

formed genome-wide miRNA profiling in 8 different cell lines: B-LCLs from the 

4 subjects (2 siblings from each sibship), primary CD19+CD20+ B cells from 

one of the subjects and 2 non-lymphoid human cell lines, HEK293 and HeLa 

(Figure 6C). Hierarchical clustering analysis revealed that the highest similarity 

was found between B-LCLs from the 2 sibships, which formed a separate clus-

ter. Hence, as expected, B-LCLs express a cell type-specific miRNome that is 

independent of the HLA genotype or other interindividual genetic differences. 

We then asked whether enriched miRNAs that were predicted to regulate MIP 

source transcripts in the 2 sibships (Tables 2 and S3) were indeed expressed in 

the B-LCLs of our four subjects and if so, at what level. All 1,349 profiled miR-

NAs were ranked from high to low according to their expression level in each 
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cell line. Among them, the ranking of each of the 133 miRNAs predicted to 

regulate MIP source transcripts in B-LCLs was determined in B-LCLs, primary 

CD19+CD20+ cells, HEK293 cells and HeLa cells (Figure 6D). Importantly, en-

riched MREs can be recognized by more than one miRNA (Table 2), and we can-

not assign which of the predicted miRNAs was indeed acting on the transcript 

source of MIPs. Despite this source of uncertainty, we found that in average, 

miRNAs predicted to recognize MIP source transcripts ranked significantly 

higher in B-LCLs than in control cell lines. Thus, miRNAs predicted to recog-

nize MIP source transcripts in B-LCLs were expressed at higher levels in B-LCLs 

than in other cell types. This supports the concept that the immunopeptidome 

of a cell is molded by its miRNome. 

3.6 Discussion

Self MIPs regulate all key events in the life of CD8 T cells. Indeed, CD8 T cells 

are selected on self MIPs, sustained by self MIPs, and activated in the presence 

of self MIPs.40 Moreover, MIPs are the targets of several immune processes in-

cluding autoimmunity, graft rejection, graft-.vs.-host disease and the graft-vs.

leukemia effect.5, 6, 37 Estimates suggest that the immunopeptidome comprises 

about 0.1% of the nonapeptide sequences (the typical length of MIPs) found 

in the proteome.5 Despite the important role of MIPs in health and disease, 

we know little about their biogenesis except for the fact that they derive from 

DRiPs whose physical nature remains ill-defined.13 In this study, we aimed to 

characterize the global landscape of MIPs on human cells and to gain insights 

in the biogenesis of the human immunopeptidome. We used B-LCLs as they can 

be obtained from practically any subject, they proliferate extensively in vitro, 

express high levels of MHC I molecules at the surface and have been shown to 

be a reliable tool for high-throughput genomic studies.41 We found that most 

MIPs bind one unique HLA among all available MHC allelic products, and they 

do so with different predicted binding affinities. In general, HLA-A-associated 

peptides had a significantly higher binding affinity than HLA-B-associated pep-

tides. This probably results from differences in the permissiveness of the HLA 

binding motifs. We also observed that subjects with no shared HLA-A and -B 

alleles present different MIP repertoires, showing that the immunopeptidome 

of an individual is ultimately determined by the combination of its HLA allelic 

products. This result was expected based on the specificities of the various 
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HLA binding motifs9 and is in accordance with a recent MS-based study that 

showed minimal overlap in the identity of soluble plasma MIPs found in two 

HLA-different individuals. 

Three salient findings emerged from the present work. Firstly, even though 

HLA-different subjects present different MIPs derived from different proteins, 

these MIPs originate from proteins that are functionally interconnected and 

implicated in the same biological pathways. In our B-LCLs, many MIP source 

proteins were associated to functional categories or involved in signaling path-

ways characteristic of the immune system or specific to B cell biology. Ac-

cordingly, we found that the MIP repertoire of B-LCLs was intimately linked 

to the transcriptome of B-LCLs. This further supports our previous results on 

mouse MIPs identified on thymocytes and DCs showing that the MIP repertoire 

conceals a tissue/cell-specific signature.16, 17 This means that the immunopep-

tidome is not monopolized by MIPs derived from ubiquitous housekeeping 

genes. The notion that the MIP repertoire is cell type-specific has to be taken 

into account in immunotherapeutic interventions such as leukemia immuno-

therapy.42 

Secondly, our results show that under basal conditions, the MIP repertoire 

of human B-LCLs derived preferentially from abundant transcripts. This was 

true when taking into consideration the whole exome (Figure 3 A-B) or a single 

transcriptional hotspot (the 6p21 chromosomal region; Figure 3 C-D). Notably, 

we used as a reference the average mRNA expression estimated by RNA-seq 

in B-LCLs from 20 unrelated individuals26, which provides an accurate esti-

mation of transcript abundance in this cell type. A correlation between tran-

script abundance and MIP presentation was also observed in MS studies on 

primary mouse thymocytes.16 However, this correlation was absent in studies 

analyzing changes in MIP abundance induced by neoplastic transformation or 

metabolic stress.16, 18, 29 All of these reports can be reconciled with a parsimoni-

ous explanation: i) in healthy normal cells, MIPs preferentially derive from the 

most abundant transcripts, and ii) in stressed cells, changes in MIP abundance 

result to a large extent from co- or post-translational processes that regulate 

the DRiP rate.
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Finally, perhaps the most exciting finding reported herein is that MIPs derive 

preferentially from transcripts bearing MREs. miRNA profiling experiments re-

vealed that the miRNAs which recognize MIP source transcripts in our B-LCLs 

were expressed at higher levels in B-LCLs than in other cell types. Furthermore, 

even though MIPs from HLA-disparate subjects derived from different tran-

scripts, miRNA profiling experiments confirmed that these sets of transcripts 

are regulated by similar miRNomes as predicted by bioinformatic analysis. 

Notably, we found that transcripts containing MREs were a preferential source 

of MIPs not only in our B-LCLs but also in various mouse and human cell types 

analyzed by our group and others. The relation between MREs and MIPs is 

therefore very robust as it holds true across species and cell types. Though we 

still have to investigate how miRNAs could enhance the generation of MIPs, 

our working hypothesis is that destabilization of mRNAs by miRNAs gener-

ates DRiPs. Consistent with this idea, studies on cells transfected with shRNA 

or mRNAs carrying premature stop codons have revealed that the nonsense-

mediated decay pathway can generate MIPs, presumably as a result of DRiP 

formation.43, 44 Indeed, miRNAs can decrease the levels of the targeted protein 

via various mechanisms including slowing of elongation, ribosome drop-off 

and nascent polypeptides degradation.45, 46 We therefore postulate that miR-

NAs are major regulators of the DRiP rate. Given the pervasive influence of 

miRNAs on all cellular processes including normal and neoplastic lympho-

hematopoiesis,47-50 further studies are warranted to understand how miRNA 

may mold the immunopeptidome of normal and neoplastic cells. In addition 

we propose that the engineering of the MIP repertoire via the miRNome might 

be relevant in immunotherapy. 
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3.11 Supplemental methods

3.11.1 Mass spectrometry and peptide sequencing 

MIPs were released by mild acid treatment and separated by ion exchange 

chromatography using an off-line 1100 series binary LC system (Agilent Tech-

nologies) as previously described.16 Peptides were loaded at 8 uL/min on a 

homemade strong cation exchange (SCX) column (0.3 mm internal diameter × 

50 mm length) packed with SCX bulk material (Polysulfoethyl ATM, PolyLC). 

Peptides were separated into five fractions using a linear gradient of 0–25% B 

in 25 min (solvent A: 5 mM ammonium formate, 15% acetonitrile, ACN, pH 3.0; 

solvent B: 2 M ammonium formate, 15% ACN, pH 3.0) and brought to dryness 

using a speedvac. MIP fractions were resuspended in 2% aqueous ACN (0.2% 

formic acid) and analyzed by LC-MS/MS using an Eksigent LC system coupled 

to a LTQ-Orbitrap mass spectrometer (Thermo Electron).16-18 Peptides were 

separated in a custom C12 reversed phase column (150 μm i.d. X 100 mm, 

Jupiter Proteo 4 μm, Phenomenex) at a flow rate of 600 nL/min using a linear 

gradient of 3-60% aqueous ACN (0.2% formic acid) in 69 mins. Full mass spec-

tra were acquired with the Orbitrap analyzer operated at a resolving power of 

60 000 (at m/z 400) and collision-activated dissociation tandem mass spec-

tra were acquired in data-dependent mode with the linear ion trap analyzer. 

Mass calibration used an internal lock mass (protonated (Si(CH3)2O))6; m/z 

445.120029) and mass accuracy of peptide measurements was within 5 ppm.

3.11.2 MS/MS sequencing and peptide clustering 

Mass spectra were analyzed using Xcalibur software and peak lists were gener-

ated using Mascot distiller version 2.1.1 (http://www.matrixscience.com). Da-

tabase searches were performed against a non-redundant IPI human database 

containing 150,858 sequences (version 3.54, released January 2009) using 

Mascot (version 2.2, Matrix Science). A Mascot search against a concatenated 

target/decoy database consisting of combined forward and reverse versions 

of the IPI human database was performed to establish a cutoff score threshold 

of typically 25. Non-redundant peptide sequences with a Mascot score higher 

than 25 were selected. The tolerance for precursor and fragment mass values 



127

were set to 0.02 and 0.5 Da, respectively. Searches were performed without 

enzyme specificity and a variable modification for oxidation (Met) and deami-

dation (Asn, Gln). Raw data files were converted to peptide maps comprising 

m/z values, charge state, retention time and intensity for all detected ions 

above a threshold of 15000 counts using in-house software (Mass Sense).16-18 

Peptide maps were aligned and clustered together to profile the abundance 

of Mascot identified peptides using hierarchical clustering with criteria based 

on m/z and time tolerance (±0.02 m/z and ±1 min). This resulted in a list of 

non-redundant peptide clusters for all replicates of all samples. MS/MS of all 

peptide identifications are available through ProteoConnections24 at http://

www.thibault.iric.ca/proteoconnections under the project 111. 

3.11.3 Functional connectivity score

To calculate the score, we first computed a distance (D) between each pair of 

neighbor nodes in an interaction network, D = –log2(P), where P is the prob-

ability that an interaction exists between 2 nodes given by the STRING data-

base 9.0 (http://string-db.org/)25. STRING is a database of both known and pre-

dicted protein-protein interactions. It includes direct (physical) and indirect 

(functional) associations, which are derived from different sources: genomic 

context, high-throughput experiments, coexpression, and prior knowledge. 

Procedures to compute experimental scores are described in http://string-

stitch.blogspot.com/2008_06_01_archive.html. We then summed the distanc-

es between nodes composing the shortest path between each pair of proteins 

in the matrix (one protein from each list). The connectivity score was then 

obtained by calculating the mean of the shortest path distance between every 

pair of nodes in a given matrix.

3.11.4 Analysis of SNP frequency

We have used the in-house developed software pyGeno to estimate the fre-

quency of single nucleotide polymorphisms (SNPs) in the MIP coding genomic 

sequences and in the human exome. PyGeno is a Python module that inte-

grates Ensembl GTF files (GRCh37.65) for gene annotations, the reference hu-

man genome (GRCh37.p2) and the reference database of SNPs dbSNP (Build 
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135). We first located exomic sequences corresponding to each MIP and then 

searched for validated SNPs in the peptide-coding region. Similarly, validat-

ed SNPs were located in the whole human exome corresponding to 264,401 

coding sequences (CDS) extracted from Ensembl. We then classified SNPs as 

synonymous (nucleotide variation not leading to an amino acid change) or 

non-synonynous (nucleotide variation leading to an amino acid change). Syn-

onymous SNPs correspond to the dbSNP function class ‘synonymous-codon’ 

and non-synonymous SNPs comprise the dbSNP function classes ‘stop-gained’, 

‘missense’, ‘stop-lost’, ‘cds-indel’ and ‘frameshift-variant’. The number of SNPs 

inside all MIP-coding regions where summed and divided by the total length 

in base pairs (bp) of all MIP-coding regions to determine the SNP frequency 

(SNP/bp). The same approach was applied to estimate the SNP frequency in the 

exome, considering all CDS instead of MIP coding regions. The SNP frequency 

in MIP coding sequences and in the exome not encoding MIPs was compared 

with a two-tailed Fisher’s exact test. 

3.11.5 Transcriptome of B-LCLs 

We used reported gene expression profile data of B-LCLs from 20 unrelated in-

dividuals performed by RNA-seq26 and available at the GEO repository (http://

www.ncbi.nlm.nih.gov/geo/, GSE29158). RNA expression levels are given in 

fragments per kilobase of exon model per million mapped reads (FPKM) and 

the expression level for a gene is the sum of the FPKM values of its isoforms. 

For each coding transcript we calculated the average expression (AE) of the 

20 B-LCLs. Non-protein coding and not-expressed transcripts were excluded. 

A total of 15,737 protein-coding transcripts expressed in B-LCLs were classi-

fied into four expression categories based on Toung et al.26: very low (AE>0), 

low (0.05<AE≤ 2.3), medium (2.3<AE≤163) and high (163<AE). We used the 

UCSC genome browser to map the 6p21 chromosomal region between posi-

tions 30400001 and 46200000 bp and the NCBI Map viewer to obtain the list of 

genes comprised in that region. Of those, we considered only genes classified 

as ‘protein-coding’ and with a RefSeq status ‘validated’, ‘reviewed’ or ‘model’. 

The average expression level (FPKM per gene) was calculated for all protein-

coding genes in 6p21 and all protein-coding genes expressed in B-LCLs.
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3.12 Supplemental Figures

Figure S1. Comparison of the predicted MHC I binding affinity (IC50) of MIPs

Predicted MHC I binding affinity (IC
50

) of eluted peptides to different HLA allelic prod-

ucts, based on bioinformatic predictions with NetMHC/NetMHCpan. 

Figure S2. Random changes of mRNA expression thresholds set to define expres-

sion categories do not affect the differences in expression between transcripts 

encoding MIPs and all the transcripts expressed in B-LCLs

Random thresholds of mRNA expression level were set. For each threshold, a Fisher’s 

exact T test was performed to compare the frequency of mRNA expression levels 

above and below a given threshold in MIP source transcripts vs. the transcriptome. 

The P value obtained by this test is shown for each random threshold of mRNA ex-

pression level analyzed (black line). The dotted blue lines represent the thresholds 

used to define expression categories in Figure 3. The red line indicates the limit P 

value for significance. Each significant P-value indicates that the proportions on both 

sides of the threshold in the 2 datasets are significantly different. Thus, this analysis 

shows that after setting the expression categories thresholds anywhere between -10 
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and 10, the comparison of the proportion of transcripts in each category is signifi-

cantly different between MIP source transcripts and the transcriptome of B-LCLs.

Figure S3. The MIP-transcriptome connectivity correlates with the level of expres-

sion of the transcripts in the transcriptome

The connectivity scores between MIP source proteins and 3 different sets of the pro-

tein-coding transcriptome of B-LCLs were calculated with the all-pairs-shortest-path 

matrix as described (Figure 4B). The 3 sets of transcripts analyzed were as follows: i) 

high, medium and low (H+M+L) (top), ii) high and medium (H+M) (middle) and iii) low 

(L) (bottom). The scores are indicated in red and represented by red lines. A bootstrap 

procedure, represented by the Gaussian distribution, was used to calculate control 

connectivity scores between MIPs source proteins and random sets of the human pro-

tein coding transcriptome. (*P < 0.0001, calculated as the number of times that the 

score of the bootstrap is smaller than the score of the sample/ number of bootstraps). 

Figure S3
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Figure S4. MIPs coded by miRNA targets are overrepresented in the mouse and 

human immunopetidomes

The same approach as the one described in Figure 5 A and B was used. In this case, 

the list of A) 5,887 human and B) 3,803 mouse protein-coding miRNA targets was 

extracted from MSigDB.28 Numbers on the bottom indicate the number of entries for 

each dataset. A) The proportion of MIPs that derive from miRNA targets for all human 

datasets was significantly higher than the proportion of miRNA targets in the human 

protein coding transcriptome (PCT) (a) P < 2.2 x 10-16, b) P < 2.43 x 10-11, c) P < 2.35 x 

10-3, d) P < 3.3 x 10-8, e) P < 1.38 x 10-6, Fisher’s exact test). B) The proportion of MIPs 

that derive from miRNA targets for all mouse datasets was significantly higher than 

the proportion of miRNA targets in the mouse protein coding transcriptome (PCT) 

(a,c) P < 2.2 x 10-16, b) P < 3.52 x 10-8, Fisher’s exact test). C) and D) Proportion of 

miRNA targets in MIP source transcripts vs. the protein coding transcriptome of B-

LCLs. A list of C) 5,813 and D) 8,621 human protein-coding miRNA targets extracted 

from MSigDb28 and TargetScan27, respectively, was used to calculate the proportion 

of targets in 15,730 protein-coding transcripts expressed by B-LCLs26 and 1,577 tran-

scripts source of peptides eluted from B-LCLs of both sibships. The proportion of 
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miRNA targets is significantly higher in MIP coding transcripts than in the proteincod-

ing transcriptome of B-LCLs (a) P < 1.96 x 10-10, bP < 1.25 x 10-7, Fisher’s exact test).

3.13 Supplemental Tables

Supplemental tables S1-S3 are available on http://bloodjournal.hematologyli-

brary.org/content/119/26/e181/suppl/DC1.



CHAPTER 4



134

4 Minor histocompatibility antigens

Minor histocompatibility antigens (MiHAs) are a particular type of MHC I or 

MHC II-associated peptides that were originally discovered in a transplanta-

tion context, where they play a role in modulating immune reactions between 

donor and recipient cells [1,2]. In a transplantation setting between two per-

fectly HLA-matched (i.e. MHC-identical) individuals, recipient cells present a 

repertoire of MHC I-peptides that is not perfectly identical to the repertoire of 

peptides presented on donor cells [3]. Those MHC peptides that differ between 

patient and donor and that result from donor/recipient genetic disparity out-

side the MHC are known as MiHAs [4]. Hence, in the context of two HLA-identi-

cal subjects, MiHAs represent non-self peptides and therefore are not subject 

to tolerance mechanisms [5]. Consequently, MiHAs can induce and modulate T 

cell allo-responses in the recipient-to-donor or donor-to-recipient direction [5]. 

4.1 Origin of MiHAs

MiHAs result from any type of genetic variation in genes outside the MHC al-

tering the amino acid sequence of the peptide or the expression of the protein 

source of peptide [6]. Most MiHAs discovered to date are caused by one or 

more nonsynonymous single nucleotide polymorphisms (ns-SNPs) in protein 

coding sequences that give rise to single or several amino acid substitutions in 

the polymorphic peptide [3]. Moreover, MiHAs can result from insertions, de-

letions, copy number variations (CNVs), frame-shift mutations and nonsense 

mutations [3,7-9]. The type and location of the genomic polymorphism can 

either affect the generation [9,10], the processing [11,12], the presentation 

[13-16] or the recognition of the peptides by the TCR [13,14,17,18] (Figure 1). 

Since in most human cases the alternative potential MiHA variant never reach 

the cell surface or is not immunogenic, most MiHAs possess only one immu-

nogenic allele and only unidirectional recognition is seen [5].
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In various instances genetic variation impedes the generation of the protein 

source of peptides leading to MiHAs. The first MiHA was discovered following 

rejection of transplanted HLA-matched bone marrow cells from a male donor 

by his female recipient sibling [1]. The cause of rejection was the recognition 

of a male antigen derived from a gene on the Y- chromosome by the female T 

cells. Hence, the absence of Y chromosome-encoded proteins in female cells 

due to a “sex-mismatch” can lead to a particular type of MiHAs, referred to as 

HY MiHAs. The genes KDM5D and UTY located in the Y chromosome encode 

more than 6 distinct HY MiHAs [19]. Another example is the non-deleterious 
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Figure 1. Mechanisms of generation of MiHA disparities

Genomic polymorphisms can affect multiple steps in the MHC I antigen 

processing and presentation pathway. Examples of human MiHAs are given 

in each step.
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homozygous deletion of the UGT2B17 gene that is responsible for the genera-

tion of at least 2 known MiHAs [10,20,21]. Additionally, the PANE1 MiHA re-

sults from an nonsense SNP that generates a premature termination codon in 

the MiHA negative (variant) allele [9]. Similarly, the P2X5 MiHA results from a 

single nucleotide insertion/deletion (indel) that causes a frameshift and leads 

to a different protein sequence and thus the absence of peptide [8].

MiHAs can also result from SNPs in non-coding regions, such as 3’ or 5’ UTRs 

of protein-coding genes [22-24]. The HY-A33 MiHA results from a SNP present 

in the 5’ UTR of the TMSB4Y gene leading to the expression of a protein vari-

ant in an alternative reading frame that is absent in the TMSB4Y homologue 

on chromosome X [23]. MiHAs can also be created by intronic SNPs in splicing 

sites leading to different splicing variants and thus the presence of a MiHA in 

some subjects and its absence in others [25,26]. This is the case of the ACC-

6 MiHA, which derives from an alternative splice variant of the HSMD gene 

[25]. Likewise, MiHAs can be generated by SNPs in cryptic, noncanonical open 

reading frames in “genes” that are otherwise not known to generate a protein 

product. This is the case of the HB-1 MiHA encoded by a short 41 amino acids 

sequence whose function is unknown and that results from translation start-

ing at a CUG codon [27]. 

Ns-SNPs have also been shown to affect the processing of the peptide [11,12,28-

31]. For example, the methionine residue in the sequence of the HA-3T MiHA 

allelic variant (named HA-3M) causes the destruction of the precursor peptide 

by proteasomal cleavage C-terminal to the methionine residue [12]. Also, the 

ns-SNP in the coding region of HA-8 leads to inefficient translocation of pep-

tide precursors into the ER by TAP and thus the corresponding variant peptide 

is absent on the cell surface [11]. A more peculiar example is the SP110 MiHA, 

produced by an exonic ns-SNP that causes the natural splicing of two non-con-

tiguous peptide fragments in the reverse order by the proteasome resulting in 

a novel MiHA whose sequence is not encoded by the genome [30]. 

Finally, MiHAs can result from amino acid substitutions that affect the bind-

ing to MHC molecules or the recognition by the TCR [14,27]. In the first case, 

ns-SNPs that lead to changes in residues at anchor positions of the peptide 
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frequently affect the stability and binding of the peptide to MHC molecules. In 

the second scenario, the MiHA and its allelic counterpart are highly discrimi-

nated by T cells due to the fine specificity of the TCR in distinguishing non-self 

from self [32]. This situation is exemplified by the HA-1H MiHA variant (HA-

1R) that do bind the HLA molecule but is not recognized by the TCR [14]. Since 

both MiHA variants are presented at the cell surface, these type of MiHAs can 

exhibit reciprocal antigenicity, such that both allelic peptide variants can elicit 

a T cell response [32,33]. Notably, posttranslational modifications can also 

lead to discrimination by the TCR [34-36]. For instance, the murine MiHA H4b 

contains a phosphorylated threonine residue that distinguishes it from the not 

immunogenic variant that contains an isoleucine residue instead [34]. Analo-

gously, the cysteinylation of the cysteine residue contained in the HY-A2 MiHA 

can augment the recognition by a T cell clone, despite the fact that it slightly 

reduces the binding affinity for HLA-A*0201 [35]

4.2 MiHAs and allo-recognition

In an HLA-matched transplantation setting, MiHAs encoded by biallelic genes 

can differ between patient and donor due to genomic polymorphisms and trig-

ger 3 types of bidirectional immune responses between donor and recipient 

cells: graft rejection, graft-versus-host disease (GvHD) and graft-versus-tumor 

(GvT) or graft-versus-leukemia (GvL) reactions. Graft rejection occurs when 

recipient T cells respond and target immunogenic peptides on the graft itself 

[37]. Inversely, donor T-cell responses directed against MiHAs of the recipient 

that are not present on donor cells, can cause the detrimental GvHD, but also 

elicit the curative GvT or GvL reactions [38]. The cell and tissue expression of 

the MiHAs determine in some extent the direction and type of reaction [39]. 

For instance, an HLA-matched donor who is homozygous for the MiHA ‘nega-

tive’ allele may have T cells that recognize recipient cells that are heterozygous 

or homozygous for the MiHA ‘positive’ allele [32,40]. In this donor-to-recipient 

scenario, MiHAs restrictively expressed in hematopoietic cells or tissue (in-

cluding leukemic cells) induce specific allo-immune responses of donor T cells 

against recipient hematopoietic/leukemic cells that can lead to destruction 

of cancer cells (GvT/GvL reactions). On the contrary, MiHAs ubiquitously ex-

pressed in the recipient participate not only in GvL but also in GvHD [41,42], in 
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which donor T cells damage recipient target organs including the skin, gastro-

intestinal tract, liver and lung [43]. 

HY MiHA-specific T cells can be readily isolated from male recipients of MHC-

matched female grafts [44]. Accordingly, the rate of relapse after transplanta-

tion is decreased in male recipients of MHC-matched female grafts owing to 

alloreactivity against male-specific HY MiHAs that contribute to GvL activity 

[45-48]. Paradoxically, male recipients of female donors do not necessarily ex-

perience increased survival due to increased morbidity and mortality caused 

by a higher risk of acute GVHD in these patients [41,45,46,49,50]. 

Apart from their central role in mediating transplantation outcomes, MiHAs 

are also important in “natural” allo-recognition conditions such as pregnancy. 

The role of MiHAs in pregnancy was first considered following the observation 

that parous female donors were more likely to elicit GvHD in transplant recipi-

ent than non-parous female or male donors [45]. Several studies have shown 

that the maternal immune system can recognize and respond to fetal MiHAs 

(reviewed in [51]).  For instance, T cells specific for the MiHAs HA-1, HA-2 

and HY have been found in maternal blood following pregnancy of mothers 

lacking the corresponding immunogenic alleles [51-53]. Indirect evidence sug-

gests that fetal MiHAs might play a role in pregnancy complications. Increased 

expression of the MiHA HA-1 has been measured in preeclamptic placentas. 

Also, epidemiologic evidence suggests that recognition of fetal MiHAs might 

be implicated in secondary recurrent miscarriage, specially in women who 

have previously given birth to a male baby [51].  

4.3 MiHA-based immunotherapy

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an estab-

lished potentially immunotherapeutic approach for several hematological 

malignancies [54]. Originally, the role of allo-HSCT was to reconstitute the 

patient hematopoietic compartment after sublethal chemoradiotherapy with 

the engrafted immune system from the donor. Nevertheless, it shortly became 

evident that donor lymphocytes could mediate the curative GvT/GvL effect 

after allo-HSCT, which could be exploited in cancer immunotherapy [54,55]. 
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To reduce the development of GvHD following allo-HSCT, donor T cells can be 

depleted from the stem cell graft and re-administered after allo-HSCT in case 

of relapse in a process termed donor lymphocyte infusion (DLI). Compelling 

direct and indirect evidence suggest that the curative capacity of allo-HSCT 

results from a potent GvL/GvT effect mediated by donor lymphocytes [56]. 

First, it has been shown that following allo-HSCT, both CD8+ and CD4+ T cells 

specific for MiHAs on recipient cells are activated in vivo and can be isolated 

in vitro [2,57]. Second, human MiHA-specific CD8+ T cells have been shown 

to lyse primary leukemic cells in vitro [57-60]. Third, an increased incidence 

of leukemic relapse has been observed after autologous, syngeneic (identical 

twin) or T-cell depleted allo-HSCT [54]. Lastly, donor lymphocyte infusion is 

very effective to treat patients who relapsed after allo-HSCT [54]. Unfortunate-

ly, the successful application of the GvL/GvT effect in allo-HSCT is masked by 

the considerable morbidity and mortality of GvHD [56]. Currently, one of the 

main focus of research in the field is strategies to augment the GvL effect to 

prevent and treat relapse, while diminishing or avoiding GvHD [5].

The association of transplantation outcome and donor/recipient mismatching 

at loci encoding MiHAs has been evaluated by numerous retrospective studies 

yielding conflicting results even when analyzing the same MiHA [3,49,50,61-

63]. Some studies have associated MiHA mismatch with GvL effect and long 

term survival in patients who received donor lymphocyte infusion to treat 

post-transplant relapse [14,60,64,65]. For instance a retrospective study has 

shown that one or more MiHA mismatches between HLA-matched donor and 

recipients in a large cohort of patients, who underwent T cell-depleted allo-SCT, 

resulted in improved relapse-free survival [49]. Other studies have not found 

a significant correlation between specific MiHA disparities and allo-HSCT out-

come [61-63,66]. In opposition, some studies have shown that certain (but not 

all) MiHA mismatches between donor and recipient can increase the incidence 

and severity of GvHD [39,67,68], suggesting that some MiHAs might be pre-

ferred in allo-SCT. Despite the need of more systematic and comparable stud-

ies to establish the relation of allo-HSCT outcome and each MiHA mismatch, 

collectively these results suggest that early identification of MiHA mismatches 

between recipient and potential donors may help improving donor selection, 

improve allo-HSCT outcome, while minimizing GvHD [67].
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The concept of targeting hematopoietic tissue-restricted MiHAs for immuno-

therapy of hematological malignancies was introduced in the mid-nineties. Var-

ious studies have shown that MiHA-based immunotherapy can very effectively 

destroy tumor cells in mouse models [69-72]. Moreover, it has been shown 

that adoptive transfer of CD8+ cytotoxic T cells directed at a single MiHA can 

effectively eradicate leukemia and melanoma without GvHD in mouse models 

[73,74]. Several strategies have been developed for using MiHAs to elicit GvL 

and GvT effects in humans [75]. Examples include in vitro isolation and expan-

sion MiHA-specific T cells, vaccination of patients and donors with dendritic 

cells pulsed with MiHA or modified to present MiHA source proteins, mRNA 

or DNA and redirection of T cell specificity by gene transfer of MiHA-specific 

TCR [32,54]. An alternative approach is to isolate MiHA-specific T cells directly 

from the donor before allo-HSCT and administer them as part of the graft or 

shortly after transplant (reviewed in [5]).

Currently, the hematopoietic-restricted HA-1 [28] and HA-2 MiHAs are the 

most extensively explored MiHAs in immunotherapy. HA-1 is probably the 

most therapeutically-relevant MiHA, that could be applied in 6-12% of patients, 

depending on the transplantation setting (HLA-matched sibling vs. unrelated 

donor transplantation) [76]. Recently, Warren and coworkers have proposed 

the modulation of T cells specific for MiHAs to augment GvL and GvT effects, 

while reducing the need of immunosuppressive drugs [77]. In this approach, 

donor T cells specific for a particular MiHA expressed exclusively in leuke-

mic/tumor cells are isolated from the recipient’s blood following transplanta-

tion and expanded ex vivo [77]. The expanded T cells are re-infused into the 

recipient following a disease relapse. A preliminary clinical trial of adoptive 

immunotherapy using MiHA-specific T cells (although poorly characterized), 

showed some success in treating relapse but also pulmonary toxicity at high 

T-cell doses which correlated with MiHA expression in pulmonary endothelial 

cells [77]. 

The limited number of identified human MiHAs has been one major barrier for 

the broad clinical application of MiHAs in immunotherapy [5]. Ideally, a large 

panel of MiHAs would facilitate the selection of the best target as the tissue ex-
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pression of the MiHA, the HLA-restricting molecule and the correct directional 

disparity between donor and recipient, reduce the real number of usable MiHA 

for each particular transplantation case. Preferably, MiHAs need to fulfill vari-

ous characteristics for broad application in immunotherapy of leukemia. First, 

a restricted expression of MiHAs to hematopoietic cells would maximize the 

GvT effect without causing GvHD [55]. Second, MiHAs presented by common 

HLA molecules and that display an equally balance phenotype population fre-

quency (to increase the chance of MiHA-mismatch) would have a broader ap-

plication [78]. Additionally, the genetic nature of the MiHA could increase its 

potency.  It has been suggested that MiHAs resulting from gene deletions (such 

as UGT2B17) could have more impact than MiHAs resulting from SNPs, as this 

will increase the potential of multiple antigenic epitopes associated to differ-

ent HLA molecules to trigger an immune response [67,68].

4.4 The arduous identification of MiHA 

Since the discovery of the first MiHA almost 4 decades ago [1], new MiHAs have 

been identified at a very slow rate. A summary of all currently known MiHAs 

associated to MHC I and MHC II is presented in table 1. There are currently 59 

MiHAs reported in the literature, of which 12 are associated to MHC II and 47 

to MHC I molecules. They derive from 44 autosomal and 6 Y-chromosome-en-

coded genes of broad or restricted expression. Notably, 33 of them (56 %) have 

been identified in the last 5 years, illustrating how recent advances in human 

genomics and bioinformatics have accelerated the pace of MiHA discovery. 

Several techniques including both forward and reverse immunology approach-

es have been developed to identify MiHAs. Classically, the identification of 

MiHAs starts with a MiHA-reactive T cell clone obtained from a patient show-

ing a clinical response to DLI after allo-HSCT, followed by elucidation of the 

antigens that are recognized. These T-cell based approaches are referred to as 

forward immunology approaches. The T cell clone is used to investigate the 

MiHA specificity, the HLA allele that presents it and the basis of its immunoge-

nicity, using techniques such as cDNA-expression cloning [10,17,22,25,27,79-

82], high performance liquid chromatography (HPLC) and mass spectrometry 

(MS) [13,18,28,35,36,83-85], genetic linkage analysis [8,11-13,28,29,86,87] or 
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whole genome association scanning [21,22,81,88,89]. 

The first MiHAs were discovered using T-cell based immunology approaches 

combined with HPLC and MS. In this strategy, peptides are extracted directly 

from the recipient cell and fractionated by HPLC to identify fractions that 

contain the epitope recognized by cytotoxic T cells. Positive fractions are then 

analyzed by MS [13,28,35,36,84]. Alternatively, T cell-based approaches have 

been combined with cDNA expression cloning. Here, MiHA-specific cytotoxic 

T cells are screened against COS7 or 293T cells cotransfected with pools of 

plasmid cDNA library prepared from MiHA-positive cells and with a plasmid 

encoding the HLA-restricting allele [17,24,25,27,30,33,90]. Positive cells are 

subcloned to identify those that express the cDNA encoding the MiHA, which 

is then localized by transfecting truncated versions of the gene or by predic-

tion algorithms for HLA binding [6]. This technique has been more recently 

adapted for the identification of MHC II-associated MiHAs by expressing the 

cDNA library in bacteria and then loading the modified bacteria into MHC II-

positive B-LCLs [82,91]. 

Alternatively, MiHAs have been discovered by testing the reactive T cell clones 

against a panel of B-LCLs from large pedigrees such as the Centre d’Etude Poly-

morphism Humain (CEPH) families that have been mapped for genetic mark-

ers, followed by genetic linkage analysis to identify the chromosomal region 

underlying the MiHA [8,81,92].

Important development in the field are genome-based strategies for MiHA 

identification such as genome-wide-association studies, HapMap screening, 

whole genome association scanning and genome-wide zygosity-genotype cor-

relation analysis [21,22,88,89,92,93]. Basically, these approaches analyze the 

relationship between patterns of expression of the MiHA phenotype of B-cell 

lymphoblastoid cell lines (B-LCLs), measured by in vitro cytotoxicity or cyto-

kine secretion assays, and their pattern of SNPs genotype obtained from pub-

licly available B-LCLs of known genotypes or from databases such as HapMap 

[94]. In contrast to genetic linkage analysis, these approaches are more rapid 

and powerful because the genome-wide analysis is performed simultaneously 

for all SNPs across the whole genome.
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The genome-wide zygosity-genotype correlation analysis allows to precisely 

map the genomic locus of MiHAs and identify the MiHA amino acid sequence 

[89,92]. This method starts with the isolation of CTLs from allo-SCT recipi-

ents with a strong GvT response. The CTLs are tested in vitro for recognition 

of recipient’s but not donor’s APCs. Selected CTLs are then screened using 

a panel of B-LCLs with different combinations of HLA molecules to identify 

the specific HLA molecule presenting the MiHA. Then, B-LCLs from multiple 

individuals carrying the specific HLA and from different father-mother-child 

trios are tested against the CTL.  Using a Mendelian segregation pattern of the 

father-mother-child trios the MiHA zygosities are deduced for various indi-

viduals and a genome-wide zygosity-genotype correlation analysis allows the 

identification of candidate SNPs, of which only non-synonymous coding SNPs 

are retained. Lastly the SNP disparity in donor and recipient cells is confirmed 

and all possible nonameric sequences including the SNP are synthesized and 

tested in vitro with the CTL (IFN-γ response). This approach allowed the recent 

identification of the UTA2-1 MiHA, among others [76].

Alternative approaches not requiring father-mother-child trios are those based 

on whole-genome association scanning (WGAs) [21,22,81,88]. In this strategy, 

a panel of SNP-genotyped B-LCLs (either expressing the patient’s HLA mol-

ecules or retrovirally transduced with the HLA genes of the patients) are test-

ed for recognition by the CD8+ T cells isolated from patients with leukemia 

who responded to DLI with minor GvHD. The genetic origin of MiHAs is then 

identified based on an analysis of association between T cell recognition of 

each B-LCL and individual SNP genotypes. The precise identity of the MiHA is 

determined using synthetic peptides. Recently, a similar approach combining 

microarray-based SNP genotyping followed by peptide prediction and in vitro 

peptide binding assays has been used for the identification of MiHAs associat-

ed to MHC II [93]. Genome-based approaches represent one of the most prom-

ising methods currently available for high-throughput identification of MiHAs.

Forward approaches based on cytotoxic T cell clones have the advantage of 

identifying clinically relevant MiHAs, as frequently MiHA specific- T cells cor-

relate with clinical responses [60]. However, one of the major constraints of 
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T cell-based approaches is the relative scarcity of CD8+ T cells in peripheral 

blood and target sites. Furthermore, MiHA-specific T-cell responses may go 

undetected, especially when analyzed directly ex vivo in clinical specimens 

that are not obtained during the peak GVL response. In addition, T cells be-

ing extremely cross-reactive, T-cell based antigen discovery (in the absence of 

MS) is associated with a high rate of false positives [95,96]. Hence, it is often 

necessary to fish a target population with MHC multimers and expand the T 

cells ex vivo using cytokines and antigen, potentially altering their functional-

ity [97,98]. Novel alternative approaches have been proposed to facilitate the 

cumbersome task of isolating T cell clones from blood of allo-HSCT recipients. 

Bleakley and coworkers have successfully applied the in vitro stimulation of 

naive CD8+ T cells from unprimed donors with monocyte-derived dendritic 

cells from the HLA-identical sibling for the identification of novel MiHAs [40]. 

Hombrink and coworkers also developed an highthroughput approach to si-

multaneously isolate different reactive T cells from peripheral blood mono-

nuclear cells (PBMCs) by using a large collection peptide-MHC tetramers and 

then expanding the cells in vitro prior to analysis by flow cytometry [99].

Because T cell are not always available, reverse immunology approaches 

based on bioinformatic predictions of MiHA have been developed [19,93,99-

101]. These approaches start with prediction of candidate peptides and subse-

quently in vitro screening using proteasome digestion, HLA-binding, and test-

ing for their ability to activate T cells. An example of this strategy is the recent 

work by Mortensen and coworkers, who predicted all possible 8-11mer pep-

tides derived from the UTY gene located on the Y-chromosome that could bind 

the 15 most common HLA-A and HLA-B molecules [102]. The predicted pep-

tides were ranked, synthesized and tested for induction of cytokine response 

upon contact with PBMCs from a lymphoma patient who was in remission after 

allo-HSCT. Subsequently, the candidate MiHA was confirmed with HLA-peptide 

binding assays and tetramer staining. Another example is a recent reverse im-

munology approach proposed by Robins and coworkers, in which candidate 

MHC-binding nonamers are generated in silico based on single mutations iden-

tified by exome sequencing of melanoma cell lines obtained from patients and 

tested for recognition by autologous tumor-infiltrating lymphocytes [103].
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Although reverse immunology strategies are less laborious than forward ap-

proaches, they often fail to confirm the processing and immunogenicity of the 

candidate MiHAs under natural conditions because they suffer from a high 

false discovery rate that can represent 95% of candidate peptides [103]. Cur-

rently, reverse immunology approaches reflect the limited knowledge and un-

predictability of the antigen processing pathway, in which only 0.1 % of the 

produced peptides are indeed presented on the cell surface [104].  To improve 

discovery, novel approaches have combined bioinformatics predictions with 

experimental identification of HLA-presented MIPs and MiHAs by mass spec-

trometry without the need of T cell clones [105]. For example, van Veelen and 

coworkers have developed a database of all possible polymorphic proteins 

generated from all reported ns-SNPs that can be used for identification of 

polymorphic MIPs and potential MiHAs by mass spectrometry [106]. Although 

this strategy relying on naturally presented peptides, instead of predicted pep-

tides, has allowed the identification of the LB-NISCH-1A MiHA [107], the use of 

a generalized database for MS-based peptide identification introduced another 

type of bias leading to 25% of false positive peptide identifications [105,107].
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5.3 Abstract

We developed a novel approach combining next-generation sequencing, bioin-

formatics and mass spectrometry to assess the impact of non-MHC polymor-

phisms on the repertoire of MHC I-associated peptides (MIPs). We compared 

the genomic landscape of MIPs eluted from B lymphoblasts of two non-twin 

MHC-identical siblings and discovered that 0.5% of non-synonymous single 

nucleotide variations were represented in the MIP repertoire. We identified 34 

polymorphic MIPs which were encoded by biallelic loci and behaved as domi-

nant or recessive traits. We determined that, at the population level, at least 

536 polymorphic MIPs can be presented by the five HLA class I allotypes ex-

pressed by our subjects and that 12% of the MIP-coding exome is polymorphic. 

Our method provides fundamental insights into the relation between the ge-

nomic self and the immune self and accelerates the discovery of polymorphic 

MIPs (also known as minor histocompatibility antigens), which play a major 

role in allorecognition.
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5.4 Introduction

Multicellular organisms distinguish self and genetically distinct members of 

the same species (nonself) based on recognition of polymorphic cell surface 

molecules referred to as “histocompatibility antigens”1. The capacity to dis-

tinguish self from allogeneic histo-incompatible “nonself” (allorecognition) is 

critical for multicellular life2-4. In Botryllus schlosseri, a member of the urochor-

dates (the closest living sister group of vertebrates), self is defined by a single 

polymorphic gene, BHF5. The definition of self is more complex in vertebrates. 

Thus, the TCR of classic adaptive CD8 T cells recognizes MHC class I-associat-

ed peptides (MIPs), and the ensemble of MIPs presented on the surface of a cell 

(the “immunopeptidome”) establishes its immunologic identity6. CD8 T cells 

are eminently self-referential and highly discriminant: they are selected on 

self-MIPs, sustained by self-MIPs, and must swiftly react when confronted with 

nonself MIPs interspersed in a sea of self-MIPs7, 8. Understanding the molecular 

definition of self for CD8 T cells has been made possible by high-throughput 

mass spectrometry (MS) analyses of MIPs9-15. Progress in this field has been 

heralded by the development of MS instruments whose sensitivity, dynamic 

range and mass accuracy are orders of magnitude superior to those of analyz-

ers available a decade ago16. The immunopeptidome is shaped by numerous 

co- and post-translational events9, 17, 18. Accordingly, high-throughput MS stud-

ies have revealed that the immunopeptidome is highly complex and that its 

composition (i.e., the source of MIPs) cannot be inferred solely from transcript 

or protein abundance10, 12, 15, 19-21. 

The MHC I region contains two major classes of genes: modern classical MHC 

Ia genes (e.g., HLA-A, HLA-B and HLA-C in humans) and more ancient MHC 

Ib genes (e.g., HLA-E and HLA-G). MHC Ia molecules play a dominant role in 

adaptive immunity. They bind MIPs and are encoded by the most polymorphic 

genes known22, 23. Since MHC Ia allotypes display distinct peptide binding mo-

tifs, the HLA genotype has a major impact on the MIP repertoire24. Notably, 

almost all genetic polymorphisms in HLA Ia alleles are located in exons 2 and 

3, which encode the MIP-binding pocket. These exons contain less than one 

millionth of the 3.3 × 109 bases in the haploid human genome25. Besides, the 

1000 Genomes Project Consortium has identified 38 million single nucleotide 
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polymorphisms (SNP), 1.4 million short insertions and deletions, after com-

prehensive studies on 1,092 subjects23. This raises the fundamental question: 

what might be the impact of the numerous polymorphisms outside of the MHC 

on the MIP repertoire? In other words, to what extent do genomic polymor-

phisms translate into differences in the immunopeptidome? 

Several MIPs have been found to derive from polymorphic genomic regions26, 

27. For historical reasons, these polymorphic MIPs are referred to as minor his-

tocompatibility antigens (MiHAs). MiHAs are a consequence of genetic varia-

tions that hinder MIP generation (e.g., gene deletion) or the structure of a MIP 

[e.g., high frequency non-synonymous SNPs (ns-SNPs) or less-well character-

ized non-synonymous single nucleotide variations (ns-SNVs)]25, 28, 29. MiHAs are 

generally defined according to three criteria: they are present in some but not 

in all subjects bearing a given HLA allele, their presence/absence is linked to 

a well-defined genetic polymorphism, and they can elicit allo-immune T-cell 

responses25, 28, 29. Three decades of research have led to the discovery of about 

35 human MiHAs encoded by autosomes and presented by HLA class I mol-

ecules25, 29. The discovery of each MiHA has been a major endeavor, if not a 

technical tour de force30-35. However, due to the lack of a suitable systems level 

approach, we ignore the global impact of non-MHC genomic polymorphisms 

on the immunopeptidome (i.e., what proportion of MIPs are MiHAs). Based on 

various theoretical premises, it has been speculated that the number of Mi-

HAs expressed by an individual might be very low (less than ten) or very high 

(greater than 1,000)25, 27. In addition to its conceptual importance, the impact 

of genetic polymorphisms on the immunopeptidome is of considerable medi-

cal relevance because MiHAs are the targets of three allo-immune processes: 

graft rejection, graft-versus-host disease and graft-versus-tumor reaction25, 36-

41. 

Systems-level molecular definition of the immunopeptidome can be achieved 

only by MS studies. However, since current MS approaches cannot reliably de-

tect polymorphic peptides, they are inadequate for MiHA discovery42. Further-

more, since several steps of MIP processing cannot be modeled with available 

algorithms [e.g., formation of defective ribosomal products43], MiHA identifica-

tion using prediction tools is a daunting task fraught with high false discov-

ery rates42. To resolve this conundrum, we have developed a genoproteomic 
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strategy that hinges on a combination of next-generation sequencing and high-

throughput MS peptide identification. Our personalized platform provides un-

precedented insights into the genomic landscape of human MIPs and enables 

high-throughput identification of MiHAs and of their underlying genomic 

polymorphisms.

 

5.5 Results

5.5.1 Development of a combined MS, next-generation sequencing and bio-

informatics approach for the identification of MIPs

To evaluate the impact of non-HLA genetic polymorphisms on the MIP reper-

toire, we analyzed the immunopeptidome of Epstein-Barr virus-transformed 

B lymphoblastoid cell lines (B-LCLs) from two non-twin HLA-identical siblings 

(Fig. 1a). The success of our endeavor hinged on two factors: the need to reli-

ably identify MIPs encoded by polymorphic genomic regions and to maximize 

the coverage of the immunopeptidome (the number of unique MIPs identified).
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Figure 1. High-throughput genoproteomic strategy used for the identification of 

polymorphic MIPs on B-LCLs from 2 HLA-identical siblings

(a) General overview of the personalized approach, which combines next-generation 

sequencing, MS and bioinformatics. (b) Schematic representation of the combinatorial 

method used to translate in silico polymorphic regions containing ns-SNVs. (c) Com-
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bining the predicted MHC binding affinity and Mascot score enables to discriminate 

between MIPs and contaminant peptides. The dataset of peptides identified with an 

FDR ≤ 5% was filtered according the Mascot score (which represents the confidence 

level of a peptide assignation), and the predicted MHC binding affinity. The red rect-

angle and lines indicate the combination of values (IC50 ≤ 1,250 nM and Mascot score 

≥ 21) that allowed identifying the maximum number of MIPs with a 5% FDR threshold.

5.5.2 Detection of MIPs encoded by polymorphic genomic sequences using 

personalized proteomic databases 

Large-scale MS-based analyses represent the sole approach enabling compre-

hensive molecular definition of the MIP repertoire6, 15, 44. However, standard 

high-throughput MS is blind to a whole universe of polymorphic peptides. 

Indeed, sequencing (or assignation) of peptides by tandem MS is done using 

engines (e.g., Mascot) that attempt to correlate tandem MS fragment ions from 

a sample under study with those predicted from available protein databas-

es (e.g. UniProt). Unfortunately, most polymorphic peptides are absent from 

these databases and tandem MS spectra from unlisted polymorphic peptides 

will inevitably remain unassigned or misassigned. We reasoned that the most 

straightforward solution to this conundrum would be to use next generation se-

quencing data to create subject-specific proteomic databases that would serve 

as a reference for MS sequencing. We therefore sequenced both the exome and 

the transcriptome of B-LCLs from each subject in order to combine the ben-

efits of both sequencing technologies and to cover as much as possible each 

individual’s coding genome45 (Fig. 1a). Next-generation sequencing data were 

then used to build in silico the proteome of B-LCLs from our subjects using the 

in-house developed python module pyGeno24 (Fig. 1b). Following integration 

of exome and transcriptome sequencing, similar number of base pairs and 

proportions of the human exome were covered in both siblings (Fig. 2 track 3 

blue vs. orange and Supplementary Data 1 available online). Exome and tran-

scriptome sequencing data of each subject were used to identify SNVs with 

respect to the reference genome (GRCh37.p2, NCBI). SNVs were then filtered 

according to their quality, combined into a single set and integrated at their 

respective position on the reference human genome to obtain two “personal-

ized genomes”, from which we extracted and translated every transcript (see 

“In silico generated proteomes”). The translations were then compiled in two 



168

“personalized protein databases”, one for each subject.

Figure 2. Integrative view of the genomic landscape of the MIP repertoire of HLA-

identical siblings

Circos plot showing similar proportions of sequenced genomic and transcriptomic 
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regions in both siblings and the relatively small number of regions that give rise to 

MS-detected MIPs including polymorphic MiHAs among all sequenced genes. From 

outermost to innermost tracks: 1) ideogram indicating chromosomal positions for 

each chromosome, 2) histogram depicting the number of genes for 500-Kb windows, 

3) heat map showing the fraction of bases of 500-Kb windows covered by exome 

(outer circle) or transcriptome (inner circle) sequencing of subjects 1 (orange) and 2 

(blue), 4) tile graph of 4,833 ns-SNV between siblings (purple), 5) tile graph of 3,774 

heterozygous loci where both alleles are shared by the two subjects and lead to non-

synonymous amino acid changes (green), 6) tile graph representing genomic regions 

that give rise to 4,468 MIPs, 7) Each dot represents one single gene-encoded MiHA 

deriving from regions containing ns-SNVs and detected by MS in subjects 1 (orange), 

2 (blue) or both (green).

5.5.3 Maximizing the level of coverage of the immunopeptidome 

MIPs were eluted from the cell surface by mild acid elution performed on 4 

biological replicates of 500 million cells for each subject. Eluted peptides were 

desalted and separated on strong cation exchange chromatography prior to 

LC-MS/MS analyses using high resolution precursor and product ion spectra. 

Compared to other methods such as MHC I immunoprecipitation, acid elution 

has the advantage of harvesting almost all MIPs, irrespective of their MHC 

binding affinity46. However, direct acid elution can increase the amount of 

non-MHC contaminant peptides that are recovered11. In order to maximize 

the sensitivity and specificity of MIP detection, we have therefore developed an 

analysis pipeline that relies on a combination of four parameters: i) the canoni-

cal MIP length of 8 to 11 amino acids, (ii) the predicted MHC binding affinity 

given by the NetMHCcons algorithm47, (iii) the Mascot score, which reflects the 

quality of peptide assignation, and (iv) the false discovery rate (FDR), which 

indicates the proportion of decoy (false) vs. target (true) identifications (see 

Materials and methods). We found that for an FDR of 5%, the best coverage of 

the immunopeptidome was obtained by combining a Mascot score ≥ 21 and an 

MHC binding affinity ≤ 1,250 nM (Fig. 1c and Supplementary Fig. S1-S2).

Next, we compared the number of peptide identifications obtained by Mascot 

using the regular human protein database (UniProt) and personalized databas-

es based on exome and transcriptome sequencing (Supplementary Fig. S3A). 
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We identified 4,468 unique MIPs from the 2 personalized databases (Supple-

mentary Data 2). The numbers of MIPs identified with the reference database 

vs. personalized databases were similar with a 96% overlap (Supplementary 

Fig. S3A). Notably, replacement of reference with the personalized databases 

had no impact on the quality (Mascot score) of identified peptides (Supplemen-

tary Fig. S3B). 

5.5.4 The MIP repertoire of HLA-identical siblings is similar but not identi-

cal

We have previously shown that the HLA genotype has a major impact on the 

MIP repertoire of MHC-mismatched individuals24. Here, we compared the MIP 

repertoire of HLA-identical siblings to evaluate the impact of non-HLA genetic 

polymorphisms on the immunopeptidome. In addition to having identical HLA 

genotypes, the two siblings showed similar expression levels of the HLA-A, 

HLA-B and HLA-C genes (Supplementary Data 3) and of the total amount of 

MHC class I molecules at the cell surface (Supplementary Fig. S4). Following 

mild acid elution of peptides of comparable efficacy between subjects (Supple-

mentary Fig. S4), we identified a total of 4,468 MIPs encoded by genes from 

all chromosomes (Fig. 2 track 6 and Supplementary Data 2), detected in a vari-

able number of biological replicates (Fig. 3A) and associated to HLA-A*0301, 

-A*2902, -B*0801, -B*4403 or –C*1601. Similar numbers of MIPs were identi-

fied from the two subjects (4,114 in subject 1 and 4,186 in subject 2). As ex-

pected, the majority of the MIPs (86%) were detected in both subjects (Fig. 3a). 

Most MIPs (75%) had a predicted binding affinity < 500 nM (Fig. 3b). We found 

no significant difference in the average binding affinity of 282 peptides exclu-

sively detected in subject 1 vs. 351 peptides exclusively detected in subject 2 

(Fig. 3b). Furthermore, the number of peptides predicted to bind each of the 

HLA molecules was similar between the 2 subjects, suggesting that both sib-

lings have comparable surface expression of each of the 5 HLA allelic products 

tested (Fig. 3c). Collectively, these results show that the MIP repertoire of HLA-

identical subjects is similar yet not identical. 
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Figure 3. HLA-identical siblings present similar but not identical MIP repertoires

(a) Venn diagram showing that 86% of MIPs from HLA-identical siblings were detected 

in both subjects. A total of 4,468 MIPs were identified in the siblings after analysis of 

8 biological samples (4 biological replicates per sibling). MIPs were detected in vari-

able number of biological replicates. For peptides exclusively detected in one subject, 

the number of replicates in which the peptide was found is shown. The total numbers 

of MIPs exclusively detected in subject 1 or 2 are shown in red and blue, respectively. 

(b) Scatter plot showing that 75% of identified MIPs are predicted to bind their respec-

tive HLA molecules with an IC50 < 500 nM. The IC
50

 for 5 HLA alleles was calculated 

with the NetMHCcons algorithm. For each peptide (represented by dots), the best 

binding score for a specific allele was kept. The yellow boxes highlights 75% of all 

peptides. The black lines and values indicate the average binding affinity of all pep-
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tides identified in each sibling. Red and blue lines and numbers represent the average 

binding affinity of 282 and 351 unshared peptides exclusively detected in subject 1 

or 2, respectively. The predicted binding affinity of the two sets of unshared MIPs 

was statistically indistinguishable (P = 8.5 x 106 by 2-tailed Mann-Whitney test). (c) 

The number of peptides associated to each HLA molecule was similar between the 2 

subjects. 

5.5.5 Identification of MiHAs among unshared MIPs 

MiHAs are typically encoded by bi-allelic loci28, 29. For each locus where two al-

leles are present in our subjects, three genotypes are possible: AA, AB and BB. 

At the peptidomic level, each allele can be dominant (generate a MIP) or reces-

sive (a null allele that generates no MIP). Moreover, by comparing MIPs eluted 

from two HLA-identical individuals, dominant MiHAs can be separated into 

two groups: unshared MIPs (genotypes AA vs. BB, AB vs. AA or BB), or shared 

MIPs (AB vs. AB). If one allele is recessive (e.g., B), subjects can be similar at the 

peptidomic level (express the A MiHA) even though they have different geno-

types (AA vs. AB) (Fig. 4).

In our search for MiHAs, we first performed in-depth analyses of MIPs detected 

in only one subject (unshared MIPs; Fig. 3a). Here the key finding was that out 

of 633 unshared MIPs, only 13 (2%) were encoded by genomic regions harbor-

ing ns-SNVs between the two subjects (Fig. 4 and Supplementary Data 2). The 

origin of 3 of these 13 MIPs was ambiguous (they could derive from several 

Type and number of identified MiHAs

AA vs. BB
AB vs. AA
AB vs. AA
(Table 1A)

AB vs. AA
(Table 1B)

AB vs. AB
AB vs. AB  
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genes), whereas the other ten MiHAs were assigned to a single gene (Fig. 4 

and Table 1A). The genetic polymorphisms responsible for almost all MiHAs 

corresponded to SNPs reported in the dbSNP database48 (Table 1A). Consis-

tent with previous findings on human MiHAs29, only one of the two possible 

variants was detected by MS for each MiHA locus (Table 1A). In other words, 

at the peptide level, one allele was dominant (generated a MIP) and one was 

recessive (generated no MIP) (Table 1A). In 4 out of 10 cases, absence of the 

variant MiHA at the cell surface could be explained by a decreased binding af-

finity of the variant for the corresponding HLA molecule (IC
50
 difference ≥ 2x). 

Nine of our best characterized MiHAs are novel, while one (KEFEDGIINW) has 

been previously reported49. Four MiHAs were detected by MS in the subject 

homozygous for the corresponding allele but not in the heterozygous subject 

(Table 1A, rows 7-10). This suggests that zygosity influences MiHA abundance 

and that low abundance MiHAs may fall below the MS detection threshold in 

heterozygous subjects. Consistent with this, the MS intensity for these four 

MiHAs was low in homozygous subjects (Supplementary Data 2). Six MiHAs 

were coded by an allele present only in one subject (Table 1A, rows 1-6), and 

were thus potentially immunogenic for the other sibling. We further validated 

the presence of the ns-SNV in the corresponding DNA and/or cDNA regions 

of these six MiHAs in both subjects by Sanger sequencing to discard errors in 

base calling or mapping (Supplementary Fig. S5). Then, we assessed the im-

munogenicity of four of these MiHAs by cytotoxicity assays. In all cases, in 

vitro generated MiHA-specific CTLs selectively killed allogeneic MiHA-positive 

B-LCLs (to similar levels as autologous B-LCLs pulsed with the MiHA) but not 

autologous MiHA-negative unpulsed B-LCLs (Fig. 5a). 

Table 1. MiHAs resulting from ns-SNVs in the MIP-coding region and detected in 

(A) one of the two subjects or in (B) both subjects

Selected features of the MiHAs are shown, including the amino acid sequence, the 

subject (S) in which the MiHA was detected, the source gene, the HLA molecule for 

which the MiHA has the best predicted binding affinity (IC
50

), the translated genotype 

shown in amino acids (AA), the alternative MiHA variant and its predicted HLA bind-

ing affinity (IC
50

), and the dbSNP identification when the ns-SNV corresponds to a 

known SNP. The MS-detected and non-detected polymorphic residues are highlighted 

in bold underlined and bold italics, respectively. IC
50

 values of the non-detected MiHA 

variants are shown in italics when they show a fold difference ≥ 2 relative to the de-
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Figure 5. Unshared MIPs encoded by polymorphic loci are immunogenic

Frozen PBMCs from the MIP-negative subject were thawed and stimulated with au-

tologous dendritic cells pulsed with an unshared MIP detected in the other individual. 

Primed cells were restimulated with irradiated autologous B-LCLs pulsed with the 

same peptide for another 7 days. Restimulated cells were tested for in vitro cytotox-

icity activity against autologous B-LCLs pulsed with the relevant peptide (positive 

control, black), unpulsed autologous B-LCLs (negative control, white), or MIP-positive 

allogeneic B-LCLs (test, grey) at various effector-to-target (E:T) ratios. The minimal 

cytotoxic activity against unpulsed autologous B-LCLs is most likely due to recogni-

tion of EBV epitopes. Average and S.D. of three or four independent experiments 

are shown. Significant differences are indicated by * P < 0.05 or ** P < 0.01, 2-tailed 

Student t-test. (a) Unshared MIPs encoded by polymorphic loci. (b) Unshared MIPs en-

coded by non polymorphic loci.
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Could they be MiHAs whose presence is regulated by cis- or trans- acting poly-

morphisms (outside of the MIP-coding genomic sequence) that would affect 

MIP processing25, 28? The MS/MS spectra of each of these MIPs were manually 

validated and to further confirm the absence of these MIPs in one of the two 

subjects, we searched these MIPs in two additional biological replicates from 

each cell line. Most non polymorphic unshared MIPs were detected in only one 

or two replicates (Fig. 3a). This suggests that the presence of these MIPs was 

inconsistent, perhaps because of the shotgun nature of MS. Another possible 

explanation is that these MIPs derive from proteins expressed only in specific 

stages of the cell cycle11, and that they are not genuine MiHAs. However, 41 

unshared MIPs could not be discarded so easily because they were detected 

in 3-6 replicates of one sibling and absent in 6 replicates of the other sibling. 

Except for 2 cases, exclusive detection of these MIPs in one of the siblings was 

not caused by differences in abundance of the MIP-source transcript (Supple-

mentary Fig. S6a) or in the expression of the MIP-coding exon between sub-

jects (Supplementary Fig. S6b), nor by differences in the expression of genes 

involved in the antigen processing and presentation pathway (Supplementary 

Data 3). We therefore evaluated the immunogenicity of the three most entic-

ing unshared MIPs coded by non-polymorphic regions, i.e., those showing the 

highest MS intensity and reproducibility (Fig. 5b and Supplementary Data 2). 

We reasoned that if these MIPs were MiHAs, they should be immunogenic, 

even if their presence was dictated by unidentified polymorphisms outside of 

the MIP-coding genomic sequence25, 28. None of the tested MIPs could elicit the 

generation of cytotoxic T cells in the MIP-negative sibling. We therefore failed 

to discover a single MiHA among unshared MIPs coded by non-polymorphic 

regions. The most parsimonious explanation is that these MIPs were simply 

differentially expressed peptides whose abundance was below the MS detec-

tion threshold in B-LCLs from one subject. Though further studies may be war-

ranted to understand interindividual differences in the abundance of specific 

MIPs, we predict that in most if not all cases, differentially expressed peptides 

coded by non-polymorphic regions are irrelevant as regards alloreactivity. Ac-

cordingly, we conclude that identification of MiHAs absolutely requires a com-

bination of MS and genomic data. Reliance solely on MS detection of unshared 

MIPs would overestimate the number of MiHAs. In contrast, the use of person-

alized databases based on whole exome and transcriptome sequencing allows 
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to rapidly identifying genuine MiHAs coded by polymorphic loci. 

5.5.6 The global imprint of ns-SNVs on the MIP repertoire

In order to assess the global imprint of ns-SNVs on the MIP repertoire, we 

asked the question: what proportion of ns-SNVs between our two subjects 

were located in MIP coding exomic sequences? By comparing the whole exome 

and RNA-seq data from our two HLA-identical siblings, we found a total of 

4,833 ns-SNVs (Fig. 2, track 4). Overall, 26 of these ns-SNVs were located in 

regions coding for 22 MiHAs identified by MS, of which 14 originated from a 

single gene and are depicted in the Circos plot (Fig. 2 track 4 vs. 7 blue, orange 

and pink) and 8 have an ambiguous origin (e.g., immunoglobulin genes) (Fig. 

4, n=3+5 and Supplementary Data 2). The 14 unambiguously assigned MiHAs 

were unshared (Table 1A) or shared (Table 1B rows 1-4) at the peptidomic 

level. Thus, from a genomic perspective, only 0.5% of all ns-SNVs (26/4,833) 

found between our subjects were represented in their MIP repertoire. 

5.5.7 Identification of MiHAs among shared MIPs

Among 3,835 shared MIPs, 21 were encoded by bi-allelic loci and therefore rep-

resent MiHAs (Fig. 4, n=9+12). These shared MIPs would not be immunogenic 

for our subjects but would be immunogenic for subjects homozygous for the 

alternative allele. In 9 cases, one subject was homozygous for a dominant 

MiHA allele (AA) and the other subject was heterozygous for the dominant and 

a recessive allele (AB) (Fig. 4). The origin of five of these 9 MiHAs was ambigu-

ous (they could derive from several genes), whereas the other four MiHAs were 

assigned to a single gene (Table 1B, rows 1-4 and Fig. 4). The exome of our 

subjects shared 3,774 heterozygous loci (Fig. 2, track 5). Twelve MiHAs derived 

from such bi-allelic loci for which our subjects shared the same heterozygous 

genotype (AB). Eight of these twelve MiHAs could be unambiguously assigned 

to a single gene (Fig. 2 track 7 in green, Fig. 4 and Table 1B rows 5-11). The two 

alleles were co-dominant in one case, whereas only one allele was dominant 

(identified by MS) in all other cases. MIP dominance did not reflect allelic im-

balance at the transcript level (data not shown). Nonetheless, in four cases of 

shared MiHAs, the product of the recessive allele was predicted to have a lower 
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MHC binding affinity than the product of the dominant allele (Table 1B). 

5.5.8 Overall differences in the MIP repertoire of HLA-identical siblings

Comparison of genomic and proteomic data from our subjects led to the dis-

covery of 34 MiHAs (Fig. 4), of which 22 were unambiguously assigned to a 

specific gene (Fig. 2, track 7 and Table 1). Out of 34 MiHAs, 13 were found in 

only one of the two subjects whereas 21 MiHAs were shared MIPs (Fig. 4). This 

means that out of 4,468 MIPs only 13 (0.3%) would be immunogenic for one of 

our subjects. If all unshared non-polymorphic MIPs are not immunogenic, as 

we observed with the 3 MIPs tested (Fig. 5b), this would mean that each sub-

ject would be tolerant to about 99.7% of the MIPs found on the B-LCLs of this 

sibling. The use of personalized databases for tandem MS sequencing was in-

strumental in the discovery of many MiHAs. Taking into account only the best 

characterized MiHAs, 6 out of the ten listed in Table 1A (unshared MIPs) and 

5 out of the 12 listed in Table 1B (shared MIPs) would have been missed in the 

absence of personalized databases, because these 11 peptides were absent in 

the Uniprot database. 

5.5.9 What proportion of MIP coding regions is polymorphic at the popula-

tion level? 

To address this question, we searched in the dbSNP database for validated ns-

SNPs in the genomic sequences coding our 4,468 MIPs. We found that at the 

population level, 88% of our MIP coding sequences were invariant whereas 12% 

contained at least one ns-SNP: 670 ns-SNPs were found in the genomic region 

coding for 536 MIPs (Fig. 6a-b and Supplementary Data 4). Hence, at the popu-

lation level, 536 MiHAs can be presented by the five HLA class I molecules 

studied herein: HLA-A*0301, -A*2902, -B*0801, -B*4403 and –C*1601. Further 

studies will be required to determine the number of dominant and recessive 

peptide variants encoded by these 536 MiHA loci.
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Figure 6. Frequency of ns-SNPs in the MIP coding exome

(a) Circos plot illustrates the relative proportion of polymorphic MIPs (n = 536) in 

the immunopeptidome and the genomic location of their coding loci. (b) Histogram 

showing the number and percentages of MIP coding regions containing ns-SNPs in 
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the global population. We used dbSNP to find validated ns-SNPs in the exomic se-

quences encoding the 4,468 MIPs identified in our subjects. In the case of MIPs de-

riving from multiple source regions, the average number of ns-SNPs of all possible 

MIP source regions was calculated. (c) The 4,468 MIPs of our subjects were encoded 

by 13,404 nucleotides. We performed 10,000 random samplings of 4,468 exomic se-

quences (containing a total of 13,404 nucleotides) from the human reference exome 

(Ensemble GRCh37.65). In all samplings, the frequency of exomic sequences coding 

for 8-,9-,10- and 11-mers was identical to the frequency found in the 4,468 MIP cod-

ing sequences from our subjects. The histogram depicts the distribution of validated 

ns-SNPs (dbSNP) in exomic sequences from the global population found in 10,000 

random samplings of the whole exome. The average number of ns-SNPs of all random 

samplings was 708 (s.d. 30.4, 95% confidence interval: 650-768 shown in orange). The 

blue dotted line shows the number of ns-SNPs (n = 670) in the exomic sequences cod-

ing for the MIPs detected in our subjects.

5.5.10 Is there a bias in favor or against ns-SNPs in MIP coding regions? 

To address this question, we wished to compare, in the global population, the 

frequency of ns-SNPs in the whole exome vs. the frequency in the 4,468 exomic 

sequences coding for the MIPs identified herein. To this end, we designed a 

bootstrap procedure (10,000 iterations) based on random samplings of 4,468 

peptide-coding regions (13,404 base pairs/sampling) from the human refer-

ence exome (Ensemble GRCh37.65). For each sampling, we then calculated the 

number of validated ns-SNPs reported in dbSNP (Fig. 6c). In all samplings, the 

frequency of exomic sequences coding for 8-,9-,10- and 11-mers was identical 

to the frequency found in the 4,468 MIP coding sequences from our subjects. 

The number of ns-SNPs in the MIP coding exome (n = 670) fell in the range 

of ns-SNPs found in 10,000 random samplings of the whole exome (average 

= 708; 95% confidence interval 650-768). We therefore conclude that the MIP 

coding exome reflects the frequency of ns-SNPs in the human genome. 

 

5.6 Discussion

MS is the sole method that enables direct identification of MIPs and large scale 

analyses of the MIP repertoire6, 20. Indirect predictions based on reverse immu-

nology approaches are fraught with false discovery rates that may reach 95%50, 

51. Currently, MS sequencing has been largely limited to peptides represented 
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in the reference UniProt database. Our work demonstrates that the universe of 

peptides identified by MS can be expanded and refined by using personalized 

databases that include whole exome and transcriptome sequencing data. 

As well stated by J. Yewdell et al. “Despite the fact that quantitative aspects 

of systems are critical to their understanding, they are frequently ignored”52. 

In line with this concept, our data provide the answer to a longstanding ques-

tion: what is the proportion of invariant vs. polymorphic MIPs presented by 

MHC molecules? In other words, to what extent do non-MHC genomic poly-

morphisms enhance the interindividual variability of the immunopeptidome? 

We found that, at the population level, at least one ns-SNP is found in 12% of 

exomic sequences coding the MIPs presented by five common HLA class I al-

lotypes. That about 88% of the immunopeptidome of HLA-identical siblings 

is invariant in the global population illustrates the overwhelming importance 

of the HLA genotype in defining the content of the MHC class I immunopepti-

dome. 

In depth analyses of genomic and proteomic data revealed that about 0.5% 

of ns-SNVs between the exome of our subjects were represented in their MIP 

repertoire. Consequently, 13 MIPs were unique to one subject and might elicit 

allogeneic T-cell responses from his sibling, as demonstrated for four of them. 

Integration of personalized genomic and proteomic data was absolutely es-

sential for identification of these rare polymorphic MIPs interspersed among 

thousands of non-polymorphic MIPs. Since the MIP repertoire is molded by the 

transcriptome, some MIPs are ubiquitous and others are cell lineage-specific11, 

53. Accordingly, various cell types present non-identical MIP repertoires. MIPs 

derive mostly from transcripts expressed at medium to high levels (as op-

posed to very low or low levels), and about 8,500 transcripts are expressed at 

medium to high levels in B-LCLs24. We therefore posit that, at the organismal 

level, the total number of unshared MiHAs between two HLA-identical siblings 

would be about 2.5-fold the number found in B cells, assuming a total number 

of 21,000 human transcripts (i.e., 13 x (21,000/8,500) = 32). Unrelated indi-

viduals share fewer gene sequences than siblings. As a consequence, it has 

been calculated that the frequency of unshared MiHAs is increased by about 

1.8-fold in unrelated (HLA-matched) subjects relative to siblings29. Thus, two 
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unrelated HLA-identical subjects would display about 58 unshared MiHAs. Of 

note, these numbers might increase with more sensitive MS instruments and 

better sequencing coverage of difficult regions (e.g. GC-rich). 

All MHC antigens are dominant. Our data show that this is not the case for Mi-

HAs. Out of 21 MiHA loci (Table 1), 20 had one dominant (MIP generating) and 

one recessive (no MIP generated) allele. This observation is clearly consistent 

with population analyses of ten well characterized autosomal MiHA loci: only 

one locus had two dominant alleles29. The absence of MIP could be explained 

by a decreased MHC binding affinity of peptides coded by eight of our 21 

recessive alleles. We infer that for the other 13 recessive alleles, the absence 

of MIP must be due to interference of the polymorphism with some step in 

MIP processing that precedes MHC binding (e.g., cleavage by the proteasome 

or other proteases)18, 43. With tens of thousands of proteins, mammalian cells 

are the most complex entity in the antigenic universe faced by our immune 

system54. Theoretical estimates suggest that the immunopeptidome contains 

0.1% of the 9-mer sequences present in the proteome6. Few peptides win the 

fierce competition for inclusion in the immunopeptidome. Thus, if we con-

sider MiHAs coded by dominant alleles, as winners, it follows that in 20 out of 

21 cases (the recessive alleles), a single amino acid substitution transformed 

winners into losers. This is an eloquent reminder that we cannot predict the 

molecular composition of the immunopeptidome based on our limited under-

standing of the complexity of the MIP processing pathway.

Allogeneic hematopoietic cell transplantation has led to the discovery of the 

allogeneic graft-versus-leukemia (GVL) effect, which remains the most wide-

ly effective strategy for cancer immunotherapy in humans. GVL is mediated 

mainly, if not exclusively, by donor T cells that recognize host MiHAs. In line 

with recent progress in the field of cell therapy, MiHAs are therefore attractive 

targets for adoptive T-cell immunotherapy of cancer, particularly hematologic 

cancers36-41. However, because of the low number of molecularly defined hu-

man MiHAs, less than 30% of patients would currently be eligible for immu-

notherapy targeted to specific MiHAs55. Our report reveals a strategy for high-

throughput MiHA discovery that could greatly accelerate the development of 

MiHA-targeted immunotherapy. 
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Our genoproteomic method combining next generation sequencing and MS 

shows how it is possible to accurately identify by MS any peptide, provided 

that its source DNA or RNA has been sequenced. This notion opens new av-

enues in systems immunology and should be invaluable for exploration of 

several “black holes” in the immunopeptidome. One particularly important 

black hole is the “cancer immunome”56. Compelling evidence suggests that 

the most immunogenic antigens present on cancer cells are mutant peptides 

derived from the numerous mutations found in neoplastic cells57-59. However, 

tumor-specific mutant peptides (alike MiHAs) are not detected by standard 

large scale MS approaches. We posit that our method should enable discovery 

of tumor-specific peptides (the product of somatic mutations) with the same 

accuracy as MiHAs (the product of germline genetic polymorphisms). Accord-

ingly, our next priority will be to use this method to explore the impact of the 

cancer mutations on the immunopeptidome of cancer cells. 

 
5.7 Methods

5.7.1 Cell culture and HLA typing

This study was approved by the Comité d’Éthique de la Recherche de l’Hôpital 

Maisonneuve-Rosemont and all subjects provided written informed consent. 

Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples 

of 2 non-twin HLA-identical Caucasian female siblings. B-LCLs were derived 

from PBMCs with Ficoll-Paque Plus (Amersham) as described60. High-reso-

lution HLA genotyping was performed at the Maisonneuve-Rosemont Hospi-

tal. The two siblings are HLA-A*03:01,*29:02; B*08:01,*44:03; C*07:01,*16:01; 

DRB1*03:01,*07:01. 

5.7.2 RNA extraction and preparation of transcriptome libraries

Total RNA was isolated from 5 million B-LCLs using RNeasy mini kit including 

DNase I treatment (Qiagen) according to the manufacturer’s instructions. Total 

RNA was quantified using the NanoDrop 2000 (Thermo Scientific) and RNA 

quality was assessed with the 2100 Bioanalyzer (Agilent Technologies). Tran-

scriptome libraries were generated from 1 μg of total RNA using the TruSeq 



184

RNA Sample Prep Kit (v2) (Illumina) following the manufacturer’s protocol. 

Briefly, poly-A mRNA was purified using poly-T oligo-attached magnetic beads 

using two rounds of purification. During the second elution of the poly-A RNA, 

the RNA was fragmented and primed for cDNA synthesis. Reverse transcrip-

tion of the first strand was performed using random primers and SuperScript 

II (InvitroGene). A second round of reverse transcription was done to generate 

a double-stranded cDNA, which was then purified using Agencourt AMpure XP 

PCR purification system (Beckman Coulter). End repair of fragmented cDNA, 

adenylation of the 3’ ends and ligation of adaptors were completed following 

the manufacturer’s protocol. Enrichment of DNA fragments containing adapt-

er molecules on both ends was done using 15 cycles of PCR amplification and 

the Illumina PCR mix and primers cocktail.

5.7.3 DNA extraction, preparation of genomic DNA libraries and exome 

enrichment

Genomic DNA was extracted from 5 million B-LCLs using the PureLink Genom-

ic DNA Mini Kit (Invitrogen) according to the manufacturer’s instructions. DNA 

was quantified and quality-assessed using the NanoDrop 2000 (Thermo Scien-

tific). Genomic libraries were constructed from 1μg of genomic DNA using the 

TruSeq DNA Sample Preparation Kit (v2) (Illumina) following the manufactur-

er’s protocol. We used 500 ng of DNA-Seq libraries for hybrid selection-based 

exome enrichment with the TruSeq exome enrichment kit (Illumina) according 

to the manufacturer’s instructions.

5.7.4 Whole transcriptome sequencing (RNA-Seq) and exome sequencing

Paired-end (2 x 100 bp) sequencing was performed using the Illumina HiSeq2000 

machine running TruSeq v3 chemistry. Cluster density was targeted at around 

600-800k clusters/mm2. Two RNA-Seq or four exomes libraries were sequenced 

per lane (8 lanes per slide). More than 53 and 50 million of mega bases (Mb) 

of annotated exons were covered (≥ 5 reads) in subjects 1 and 2, representing 

76-81% of the human annotated exome (Supplementary Data 1). Sequence data 

were mapped to the human reference genome (hg19) using the Casava 1.8.1 

and the Eland v2e mapping softwares (Illumina). First, the *.bcl files were con-
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verted into compressed FASTQ files, following by demultiplexing of separate 

multiplexed sequence runs by index. Single reads were aligned to the human 

reference genome using the multiseed and gapped alignment method. Multi-

seed alignment works by aligning the first seed of 32 bases and consecutive 

seeds separately. Gapped alignment extends each candidate alignment to the 

full length of the read and allows for gaps up to 10 bases. The following criteria 

were applied: i) a read contains at least one seed that matches with at most 2 

mismatches without gaps and ii) gaps were allowed for the whole read, as long 

as they correct at least five mismatches downstream. For each candidate align-

ment a probability score, which is based on the sequencing base quality values 

and the positions of the mismatches, was calculated. The alignment score of 

a read, which is expressed on the Phred scale, was computed from the prob-

ability scores of the candidate alignments. The best alignment for a given read 

corresponded to the candidate alignment with the highest probability score 

and was kept if the alignment score exceeded a threshold. Reads that mapped 

at 2 or more locations (multireads) were not included in further analyses. For 

the exome paired-end libraries, the best scoring alignments for each half of 

the pair were computed and compared to find the best paired-read alignments 

according to the estimated insert size distribution. In the case of RNAseq li-

braries, an additional alignment was performed against splice junctions and 

contaminants (mitochondrial and ribosomal RNA). Sequences mapping to con-

taminants were discarded whereas reads uniquely mapping to splice junctions 

were kept and converted back to genome coordinates. The Integrative Genom-

ics Viewer v2.0 (http://www.broadinstitute.org/igv/)61 was used to visualize 

the mapped reads. 

5.7.5 Quantification of transcript expression

We used two methods to estimate and compare transcript expression between 

subjects. In the first method, the Casava 1.8.1 software (Illumina) was used 

to estimate gene or exon expression levels (RNA-seq) measured as RPKM (i.e. 

Read Per Kilobases of exon model per Million mapped reads) using the follow-

ing formula: Gene or exon RPKM = 109 x Cb/Nb L, where Cb is the number of 

bases that fall on the feature, Nb is the total number of mapped bases and L 

is the length of the feature in base pairs. We also used the DESeq package62, 
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which is based on raw counts, to compare transcript expression.

5.7.6 Identification of single nucleotide variations and read counting

Variant call, indel detection and read counting were done using the Casava 

1.8.1 software (Illumina). Reads were re-aligned around candidate indels to im-

prove the quality of variant calls and site coverage summaries. Casava was also 

used to retrieve all SNVs observed between the reference genome (GRCh37.p2, 

NCBI) and the sequenced transcriptome and exome of our subjects. For each 

called SNV, Casava retrieves and calculates various statistics including its po-

sition, the reference base, the number of base calls for each nucleotide, the 

most probable genotype (max_gt), and a Q-value expressing the probability 

of the most probable genotype (Qmax_gt). The Q-value is a quality score that 

measures the probability that a base is called incorrectly. This information was 

loaded into an in-house python module, pyGeno24, for further processing and 

filtering (see “In silico generated proteomes” section).

5.7.7 In silico generated proteomes (personalized databases)

As the transcriptome is functionally closer to the proteome than the genome, 

we used the transcriptome sequencing data as the main information to con-

struct personalized databases. To further increase the sequencing coverage of 

our subjects and thus improve the personalized databases, we integrated the 

exome sequencing data to the transcriptome sequencing data. For every SNV 

found by transcriptome sequencing, we retained the most probable genotype 

if the Q-value (Qmax_gt) was ≥20, which corresponds to a 1% error rate (a 

higher quality score indicates a smaller probability of error). We also included 

the genotypes of SNVs that were only found by exome sequencing and that 

had a Q-value ≥20. Lastly, we included all bases of SNVs called by both the 

transcriptome and exome sequencing, regardless of the Q-Value. The retained 

genotypes of all SNVs were then integrated in the reference genome (GRCh37.

p2) at their right position to construct a “personalized genome” for each sub-

ject. These personalized genomes were used to extract all transcripts reported 

in the Ensembl gene set (GRCh37.65) for all chromosomes except for the Y 

chromosome and mitochondrial DNA. These transcripts were then in silico 
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translated into proteins using the reading frame specified in the Ensembl gene 

set. Considering that the vast majority of MIPs have a maximum length of 11 

amino acids, we established a window of 21 amino acids centered at each het-

erozygous ns-SNV. When a window contained more than one SNV, we trans-

lated in silico all possible combinations and included them in the personalized 

databases (Fig. 1b). Finally, we compiled all translation products into two data-

bases (one for each subject) that were used for the identification of MIPs (see 

“MS/MS sequencing and peptide clustering” section). Both resulting databases 

had a similar size, in terms of number of residues (36,007,210 in subject 1 and 

36,010,026 in subject 2) and number of entries (95,806 in subject 1 and 95,687 

in subject 2). Moreover their size is comparable to the size of the reference 

UniProt human database used (43,384,120 residues and 75,530 entries).

5.7.7 MS/MS sequencing and peptide clustering

Based on our previous studies on MS data reproducibility across technical and 

biological replicates11, we prepared four biological replicates of 5 x 108 expo-

nentially growing B-LCLs from each subject. MIPs were released by mild acid 

treatment, desalted on an HLB cartridge 30cc, filtered with a 3000Da cut-off 

membrane and separated into seven fractions by cation exchange chromatog-

raphy using an off-line 1100 series binary LC system (Agilent Technologies) 

as previously described11, 12. Fractions containing MIPs were resuspended 

in 0.2% formic acid and analyzed by LC-MS/MS using an Eksigent LC system 

coupled to a LTQ-Orbitrap ELITE mass spectrometer (Thermo Electron). Pep-

tides were separated on a custom C18 reversed phase column (150 μm i.d. X 

100 mm, Jupiter Proteo 4 μm, Phenomenex) using a flow rate of 600 nL/min 

and a linear gradient of 3-60% aqueous ACN (0.2% formic acid) in 120 mins. 

Full mass spectra were acquired with the Orbitrap analyzer operated at a re-

solving power of 30 000 (at m/z 400). Mass calibration used an internal lock 

mass (protonated (Si(CH3)2O))6; m/z 445.120029) and mass accuracy of pep-

tide measurements was within 5 ppm. MS/MS spectra were acquired at higher 

energy collisional dissociation (HCD) with a normalized collision energy of 

35%. Up to 6 precursor ions were accumulated to a target value of 50000 with 

a maximum injection time of 300 ms and fragment ions were transferred to 

the Orbitrap analyzer operating at a resolution of 15000 at m/z 400. 
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Mass spectra were analyzed using Xcalibur software and peak lists were gener-

ated using Mascot distiller Version 2.3.2 (http://www.matrixscience.com). Da-

tabase searches were performed against UniProt Human database (43,384,120 

residues, released on April 2, 2013), databases specific to subjects 1 and 2 

(34,976,580 and 34,990,381 residues, respectively, see “in silico generated 

proteome” section) and EBV_B95.8 database (40,946 residues), using Mascot 

(Version 2.3.2, Matrix Science). To calculate the false discovery rate (FDR), we 

performed a Mascot search against a concatenated target/decoy database us-

ing the human UniProt or subject-specific databases. The target represents the 

forward sequences and the decoy its reverse counterparts. Mass tolerances 

for precursor and fragment ions were set to 5 ppm and 0.02 Da, respectively. 

Searches were performed without enzyme specificity with variable modifica-

tions for cysteinylation (Cys), phosphorylation (Ser, Thr and Tyr), oxidation 

(Met) and deamidation (Asn, Gln). Raw data files were converted to peptide 

maps comprising m/z values, charge state, retention time and intensity for all 

detected ions above a threshold of 8,000 counts using in-house software (Pro-

teoprofile)12. Peptide maps corresponding to all identified peptide ions were 

aligned together to correlate their abundances across sample sets and repli-

cates. The MS/MS spectra of unshared MIPs were validated manually.

5.7.8 Identification of MIPs

MIP identification was based on four criteria: i) the canonical MIP length of 8 to 

11 amino acids, (ii) the predicted MHC binding affinity given by the NetMHC-

cons algorithm47, (iii) the Mascot score, which reflects the quality of peptide as-

signation, and (iv) the false discovery rate (FDR), which indicates the proportion 

of decoy (false) vs. target (true) identifications. First, we evaluated the correla-

tion between these parameters. We found a strong correlation (0.88) between 

FDR values <60% and MHC binding affinity values ≤ 1,750 nM for all 8-11mers 

(Supplementary Fig. S1). Indeed, the proportion of peptides with an MHC bind-

ing affinity ≤ 1,750 nM increases as the FDR decreases (Supplementary Fig. 

S2a). This correlation was specific to MIPs, since no correlation was found for 

random peptides (Supplementary Fig. S1 and S2b). These results show that low 

FDR values allow enrichment of high affinity peptides (MHC binding affinity ≤ 
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1,750 nM) and thus of MIPs. However, the drawback of using a stringent low 

FDR as the main filter is that the total number of identifications considerably 

decreases (Supplementary Fig. S2a) as well as the proportion of small pep-

tides (8-9 mers) identified (Supplementary Fig. S2c). Accordingly, the relative 

proportion of peptides found in target vs. decoy decreased with increasing 

peptide length63, in accordance with the notion that short peptides such as 

MIPs generally require higher Mascot scores to achieve a low FDR. Moreover, 

the tandem MS fragment ions of MIPs are less predictable and evenly distrib-

uted than those of tryptic peptides which further complicate their assignment 

by database search engines such as Mascot. To set a more suitable Mascot 

score threshold for high-throughput MIP detection, we evaluated the relation 

between the Mascot score and the predicted binding affinity for all 8-11 mer 

peptides identified with an FDR ≤ 5% (Fig. 1c). Then, we calculated the number 

of MIPs identified with all combinations of Mascot score and predicted binding 

affinity. We found that the highest number of MIP identifications was obtained 

by combining a Mascot score ≥ 21 and an MHC binding affinity ≤1,250 nM at a 

5% FDR (Fig. 1c). 

5.7.9 ns-SNPs found in MIP coding genomic regions in the population

For each MIP, we retrieved the coordinates of the peptide-coding DNA region. 

These coordinates were then used to extract both the corresponding reference 

sequence and all non-synonymous validated SNPs reported by dbSNP (Build 

137) for that region. For MIPs deriving from multiple source regions, the num-

ber of ns-SNPs reported, corresponds to that of the MIP source region possess-

ing the maximal number of ns-SNPs.

5.7.10 Random peptide sampling

We constructed a genome-wide index. To do so, we indexed every coding se-

quences reported in the Ensembl gene set (GRCh37.65), except for those lo-

cated in the Y chromosome or the mitochondrial DNA, into a segment tree. 

Next, we kept only the first layer of the tree and removed the gaps between the 

indexed regions, effectively transforming the tree into a coding DNA sequence 

list, which was used for the random peptide sampling. For each of the 4,468 
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identified peptides, a random peptide of the same length and that fell en-

tirely into a single coding DNA sequence, was chosen. Next, for each randomly 

selected peptide, we counted the number of ns-SNPs reported in dbSNP137 

(validated and missense). The distribution was obtained after repeating the 

sampling of 4,468 random peptides 10,000 times. 

5.7.11 PCR and Sanger sequencing

PCR amplification of the MiHA-encoding DNA and cDNA regions was per-

formed with the Phusion ® High-Fidelity PCR kit (New England BioLabs). For 

each candidate, 1-2 pairs of sequencing primers were designed manually and 

with the PrimerQuest software (Integrated DNA Technologies) (Supplemen-

tary Table S1), and were synthesized by Sigma. PCR products were purified 

with the PureLink Quick Gel Extraction Kit (Invitrogen). Sanger sequencing 

was performed on candidate DNA and cDNA at the IRIC’s Genomics Platform. 

Sequencing results were visualized with the Sequencher software v4.7 (Gene 

Codes Corporation).

5.7.12 Cytotoxicity assays

Dendritic cells (DCs) were generated from frozen PBMCs, as previously de-

scribed64. To generate cytotoxic T cells, autologous DCs were irradiated 

(4,000 cGy), loaded with 2 μM of peptide and cultured for 7 days with freshly 

thawed autologous PBMCs at a DC:T cell ratio of 1:10. From day 7, responder 

T cells were restimulated for 7 additional days with irradiated autologous B-

LCLs pulsed with the same peptide (B-LCL:T cell ratio 1:5). Expanding T cells 

were cultured in RPMI 1640 (Invitrogen) containing 10% human serum (Sigma-

Aldrich) and L-glutamine. IL-2 (50 U/ml) was added for the last 5 days of the 

culture. Cytotoxicity assays were performed as described12, with minor modi-

fications. Briefly, B-LCLs were labeled with carboxyfluorescein succinimidyl 

ester (CFSE) (Invitrogen), extensively washed, irradiated (4,000 cGy) and then 

used as targets in cytotoxicity assays. Target cells were plated in 96-well U-bot-

tom plates at 5,000 cells/well. Effector cells were added at different effector-

to-target ratios in a final volume of 200 µl/well. Plates were centrifuged and 

incubated for 18h-20h at 37°C. Flow cytometry analysis was performed using 
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a LSRII cytometer with a high throughput sampler device (BD Biosciences). 

The percentage of specific lysis was calculated as follows: [(number of CFSE+ 

cells remaining after incubation with unpulsed target cells – number of CFSE+ 

cells remaining after incubation with peptide-pulsed target cells) / number of 

CFSE+ cells remaining after incubation with unpulsed target cells] x100. 

5.7.13 Statistical analysis and data visualization

The 2-tailed Student t-test was used to identify differentially expressed MIPs 

and MiHAs that induced cytotoxicity. The 2-tailed Mann-Whitney test was used 

to compare the MHC binding affinity of unshared MIPs. Differentially expressed 

transcripts were identified with the DESeq package that uses a model based on 

the negative binomial distribution62. The Spearman correlation was used to 

evaluate the relation between differences in MIP abundance and differences in 

MIP-coding gene or exon expression. The genomic location of identified MIPs 

including MiHAs and the RNA-seq and exome sequencing coverage were visu-

alized with the Circos software65 .
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Supplementary Figure S1. Global false discovery rate (FDR) and predicted binding 

affinity allow discrimination between MIPs and contaminant (non-MIP) peptides

Predicted binding affinity to the relevant HLA molecules of 20,380 eluted peptides 

(black) and 20,380 random peptides generated from the personalized protein data-

bases of subjects 1 and 2 (grey) was calculated using NetMHCcons. Binding score cat-

egories were generated by intervals of 500 nM (IC50). Each dot represents the mean 

predicted binding affinity for peptides in a given bin. For each category, the level 

of accuracy in the peptide identification is shown as the FDR. The FDR (database of 

20,319 target/12,011 decoy peptides identified by Mascot and defined by the cluster-

ing) was calculated for the eluted and the random peptides. The inset shows a high 

correlation between FDR values < 60% and PBA values < 1,750 nM. The distribution 

of random peptides shows no correlation between the predicted binding affinity and 

the FDR. 
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Supplementary Figure S2. The global false discovery rate (FDR) allows enrich-

ment of MIPs and affects the proportion of small (8-9mers) and long peptides (10-

11mers) identified

a) We calculated the predicted binding affinity (IC50) for the 8-11mer peptides ob-

tained after applying different FDR thresholds. FDR values were calculated from a 

dataset of 20,319 eluted peptides (target) and 12,011 reverse peptide versions (de-

coy). Without filtering any 8-11mer peptide identified by Mascot, the FDR value cor-

responds to 59% (maximal FDR). Bars show the number of peptides with a predicted 

binding affinity ≤ 1,750 nM (blue) or > 1,750 nM (red). The second y-axis shows the 

enrichment in MHC I-peptides calculated as the ratio of peptides with a predicted 

binding affinity ≤1,750 / >1,750 nM. b) We performed the same analysis by randomly 

generating the same amount of peptides for each FDR threshold. The figure shows 

that lower FDR thresholds increase the proportion of eluted peptides with high pre-

dicted binding affinity (a) but have no impact on random peptides (b). c) Proportion 

of 8 – 11mers identified by applying different FDR thresholds. Low FDR values favor 

the identification of long peptides and disfavor the identification of short peptides. 
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Supplementary Figure S3. Comparison of MIPs identified using UniProt vs. person-

alized databases built with next generation sequencing data

(a) Venn diagram comparing the number and percentage of unique and common MIP 

sequences found using UniProt vs. personalized databases. (b) Mascot score of MIPs 

identified with each database.
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Supplementary Figure S4. Quantification of surface HLA-ABC before and after pep-

tide elution

B-LCLs from subjects 1 and 2 were stained with PE anti human HLA-ABC monoclonal 

antibody or the corresponding isotypic control and the mean fluorescence intensity 

(MFI) was analyzed by flow cytometry before or after mild acid elution of peptides. 

The histogram shows similar levels of HLA-ABC surface expression before and after 

peptide elution in representative samples of subjects 1 and 2.
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Supplementary Figure S5. Validation of 6 MiHA-coding sequences by Sanger se-

quencing

Chromatograms obtained after Sanger sequencing of PCR-amplified DNA or cDNA 

encoding 6 MiHAs. The primers used are shown in Supplementary Table S1. Polymor-

phic loci are highlighted in grey. The IGLV2-11-1HH MiHA results from 2 nucleotide 

changes at the transcript level in subject 2.
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Supplementary Figure S6. Differential expression of non-polymorphic MIPs does 

not correlate with differences in MIP-coding genes or exons between subjects

For 41 non-polymorphic MIPs that were exclusively detected in one sibling, we calcu-

lated the fold difference in intensity of the MIP and the fold difference in expression 

of the underlying MIP-coding gene (a) or exon (b) measured in Reads Per Kilobase per 

Million mapped Reads (RPKM). In only 2 cases, MIP abundance differences reflect MIP-

coding transcript differences (dots in red and blue). The calculated Spearman r value 

(rs2) shows no correlation.

5.15 Supplementary Data 

Supplementary data 1-4 are available upon request.
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6 Discussion

6.1 The influence of specific HLA allelic products on the MHC I immu-

nopeptidome 

A subject who is heterozygous for HLA-A, HLA-B and HLA-C genes would ex-

press 6 different types of MHC I molecules on the cell surface. Our analyses 

of the MHC I immunopeptidome of B-LCLs from HLA-disparate families con-

firmed that the HLA genotype ultimately defines the immunopeptidome of a 

cell. This result was expected based on the specificities of the various binding 

motifs [1] and is in accordance with a recent MS-based study of soluble plasma 

MIPs showing that two individuals with no shared HLA alleles present little 

more than 10% of the same peptides [2]. 

Different MHC I molecules not only possess distinct binding motifs, but also 

interact in different ways with various components of the PLC and TAP [3-5] 

and this probably influences in some extent the set of peptides that bind each 

MHC I allelic product. Accordingly, it has been reported that 2 different HLA 

allelic products can compete in the ER for the presentation of a viral peptide 

[6]. In line with this, ~9% of MHC I peptides identified in our studies showed 

predicted promiscuous binding to two or more HLA allotypes of the same 

subject. Since we elute all the peptides from the cell surface, our method does 

not enable to determine whether promiscuous peptides were bound to one 

or all predicted HLA molecules. Nevertheless, we found that most promiscu-

ous MHC I peptides were predicted to bind strongly to one HLA and weakly 

to another HLA allelic product. We also remarked the presence of overlapping 

peptides deriving from the same or from different proteins. Based on these 

observations, one can expect some level of “competition” in the ER between 

the HLA allotypes for the pool of peptides. For example, let’s suppose that the 

same N-terminal extended precursor peptide “ABCDEFGHIJ” binds “HLA#1” 

(weakly) and “HLA#2” (strongly) in the ER and that both HLA molecules are 

expressed at the same level, then the binding affinity and/or other unknown 

factors should determine whether “HLA#1”, “HLA#2” or both HLA molecules 

will bind and present the peptide and how much of it. Moreover, the presented 

peptide could be the same or slightly different (e.g. CDEFGHIJ or ABCDEF-
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GHIJ) depending on the peptide optimization done in the ER which is adapted 

according to the HLA molecule [7-9], similar to what was found for a viral 

peptide [6]. The scenario should be probably different for a subject who only 

possesses “HLA#2” and lacks “HLA#1”. Would the peptide be less or more 

abundant? I presume that the repertoire and quantity of peptides presented 

by a given MHC I molecule will be influenced in some extent by the other HLA 

alleles expressed by the individual. To test this hypothesis, the immunopep-

tidome of various individuals who share only 1 HLA allelic product could be 

compared. Notably, this type of analysis is only possible with high-throughput 

studies as the one presented here. If this concept is true, then we should not 

only analyze the peptide coding region and its predicted binding affinity for 

one given MHC to predict whether a peptide will be presented by a subject, but 

take into account possible interactions with all other MHC allelic products of 

the individual. 

6.2 The MHC I immunopeptidome is cell-specific and subject–specific 

Since the HLA genotype is the most determinant factor in defining the im-

munopeptidome of a person, one would expect to find very similar immuno-

peptidomes in HLA-identical subjects. Accordingly, our analyses of the im-

munopeptidome of HLA-identical siblings showed that 86% of the identified 

peptides were shared. The shotgun nature of the MS [10] or inter-replicate 

variations in gene expression could explain the exclusive detection of certain 

peptides in only one subject. However, 41 out of 4,468 (0.9%) peptides were 

constantly present in one subject and absent across 6 replicates of the other 

subject, suggesting that those peptides represent real differences in the im-

munopeptidomes of these siblings. Of note, the exclusive detection of 13 out 

of 41 unshared peptides in one of the siblings could be explained by ns-SNVs 

in the peptide-coding region affecting the peptide binding or perhaps its pro-

cessing. We ignore the mechanism underlying the exclusive expression of the 

remaining peptides but it could be due to genomic polymorphisms elsewhere 

than in the peptide-coding region or to posttranslational or epigenetic mecha-

nisms. Our results show that non-HLA inter-individual differences account for 

at least 0.9% differences in the repertoire of MHC I peptides of HLA-identical 

siblings. Hence, our results show that the MHC I immunopeptidome of an in-
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dividual is shaped by its genome and ultimately defined by the HLA genotype.  

In line with this, we found that the MHC I-peptide repertoires and transcripts 

source of peptides were different in HLA-disparate families. However, these 

different sets of transcripts/proteins were functionally interconnected and 

implicated in the same biologic pathways. Moreover, several immune-specific 

and B cell-specific functional categories were overrepresented in the set of 

proteins encoding MHC I peptides in B-LCLs. In contrast, comparison of the 

immunopeptidome of two different mouse cell types (DCs and thymocytes) 

showed that their peptide repertoires originated from transcripts with distinct 

biologic functions that were specific to each cell type (appendix 2) [11]. Hence, 

collectively these results show that the immunopeptidome is subject-specific 

regarding the nature of the peptides and cell-specific regarding the functional 

origin of those peptides. 

The identification of the source proteins from which the peptides originate 

can give us some cues about the factors that govern peptide processing. More-

over, it can stimulate new questions about how the immune system is able to 

distinguish self from non-self. For instance, it would be very interesting to ana-

lyze proteins that generate many different peptides and proteins that gener-

ate many copies of the same peptide. Which biological or chemical properties 

make of them a preferential or efficient source of MHC I peptides? Previous 

independent studies have found that for specific proteins, some properties 

such as the degree of hydrophobicity [12,13], the presence of transmembrane 

domains [12], the presence of degradation signals [14,15], the tendency to mis-

fold [14,16] and the intracellular localization [14,17,18], can enhance peptide 

presentation. However, other studies have found that some of these features 

do not affect antigen presentation from other proteins [15]. These studies have 

been done in particular cellular models and have been observed for specific 

proteins. We can now explore big datasets such as the ones presented here to 

determine whether these observations can be generalized to other proteins 

source of peptides and discover other features that are common to source 

proteins. 
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6.3 Influence of the transcriptome on the MHC I immunopeptidome

Our study in human cells helped resolve previous contradicting results regard-

ing the relationship between the transcriptome and the immunopeptidome 

[19-22]. We found that the MHC I immunopeptidome derived preferentially 

from abundant transcripts, although transcripts expressed at low levels gener-

ated MHC I peptides. This result confirms previous results from our laboratory 

in mouse thymocytes [21] and is in a agreement with bioinformatic analysis 

of the expression profile of transcripts coding for MHC I peptides [22]. On 

the contrary, the transcriptome-immunopeptidome correlation was absent in 

studies comparing changes in peptide and transcript abundance induced by 

neoplastic transformation or metabolic stress [20,21,23]. This suggest that un-

der steady-state conditions, the MHC I immunopeptidome is biased toward 

peptides that derive from abundant transcripts, but that this tendency is ab-

sent in stressed cells. Accordingly, we have previously shown that ER stress 

and the unfolded protein response impaired the presentation of MHC I-associ-

ated peptides owing to post-transcriptional mechanisms: inhibition of overall 

protein synthesis and reduced supply of peptides (appendix 1). Moreover, we 

showed that the impact was more severe when a model protein source of pep-

tides was localized in the cytosol than in the ER, suggesting that stress could 

affect in different extents proteins source of peptides depending on their loca-

tion. Another study from our laboratory has shown that changes in the immu-

nopeptidome induced by metabolic stress (inhibition of the mTOR pathway) 

were mainly caused by co- and/or post-translational mechanisms [23]. The 

plasticity of the immunopeptidome could reflect not only metabolic changes 

but also changes in the mechanisms responsible for the generation of peptides 

under particular conditions. This could be further investigated in other types 

of cells and under other types of stresses. 

In a related observation, among the functional categories and pathways that 

were enriched in transcripts source of MIPs, we found terms associated to 

protein synthesis and transcription. Notably, Toung and coworkers found an 

enrichment of equivalent GO-term categories in medium and high-expressing 

genes in an RNA-sequencing analysis of human B-LCLs [24]. Thus, the over-

representation of some functional categories such as protein synthesis and 
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transcription in the immunopeptidome of B-LCLs could be reflecting those 

transcripts source of peptides that are abundant.

Since transcript abundance is the net result of ongoing transcription and tran-

script degradation [25], it would be necessary to dissociate the effect of active 

transcription vs. low rate of degradation of transcripts source peptides on 

the immunopeptidome. We showed that the enrichment for highly abundant 

transcripts as a source of MHC I peptides is accentuated in the transcriptional 

hotspot comprised in the 6p21 chromosomal region. This results points to-

wards transcription rate as the major player but further studies are needed to 

prove this hypothesis (see perspectives). In line with this, it would be of great 

interest to test whether other transcriptional hotspots would be a preferential 

source of MHC I peptides or whether this is a unique property of the 6p21 

region. A high transcription rate comes with an increased number of errors 

during transcription and perhaps our results reflect a selective mechanism for 

choosing RNAs for translation into DRiPs based on quality and not quantity. 

6.4 The immunopeptidome preferentially derives from transcripts 

bearing microRNA response elements (MREs)

We discovered that MIPs derive preferentially from transcripts bearing MREs. 

This relationship was observed in different cell types of mouse and human 

origin and hence it appears to be a generalized phenomenon. We further con-

firmed that the microRNAs (miRNAs) that were predicted to target transcripts 

source of MHC I peptides were indeed expressed at higher levels in our cells 

compared to non-lymphoid cell lines.

miRNAs regulate gene expression posttranscriptionally by base-pairing to the 

mRNA 3’-UTR leading to mRNA decay and/or repression of protein synthesis 

by mechanisms that are not fully understood [26]. Although we did not explore 

how mRNA targeting by miRNAs could favor MHC I-peptide presentation, we 

hypothesize that miRNAs could represent major regulators of the DRiP rate 

via destabilization of mRNAs. miRNAs could generate DRiPs during the tar-

geted mRNA degradation step and/or during translation inhibition. This idea 

is supported by previous studies implicating RNA regulation in DRiP genera-
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tion [27]. It was reported that a small interfering RNA (siRNA) targeted down-

stream of a reporter peptide results in production of 5’mRNA products in the 

absence of full-length mRNA. These products were translated into truncated 

proteins resulting in enhanced antigen presentation in vitro and increased tu-

mor destruction in vivo [27]. miRNAs can also repress translation in different 

ways: inhibition of translation initiation, slow down or inhibition of translation 

elongation, ribosome drop-off leading to premature termination of transla-

tion and co-translational degradation of the nascent polypeptide [26,28-30]. 

All these events can potentially generate DRiPs. In fact, it has been shown 

that mRNAs carrying premature stop codons that prevent the production of 

full-length proteins via the nonsense-mediated decay pathway can produce 

MHC I peptides by a noncanonical mRNA translation process [31,32]. Similarly, 

miRNA targeting could increase the number of pioneer translation products 

produced during translation initiation.

One could argue that if the ribosomes would pre-terminate before reaching 

the 3’ of the ORF or if 5’mRNA products are produced, there should be enrich-

ment for peptides from the N-terminus of the protein (i.e. the 5’ of the mRNA 

coding sequence) in the immunopeptidome. Yewdell and coworkers have re-

cently analyzed the locations of a large set of known viral epitopes within their 

proteins and found a significant bias in the central region of the proteins [33]. 

On the contrary, recent bioinformatics analyses made in our laboratory show 

that the C-terminal portion of proteins are underrepresented in the immuno-

peptidome of B-LCLs (T. Daouda, unpublished data), which would be in line 

with our results. Of note, viral infection induce a variety of metabolic changes 

including ER stress leading to global attenuation of protein synthesis [34,35]. 

In response, viruses often use internal ribosomal entry sites (IRES) allowing 

translation initiation in the middle of the mRNA [36]. Therefore, the location 

of the peptide in the protein source could be different for viral antigens than 

for self-peptides and this could explain the discrepancies in the location bias 

found between Yewdell’s work and our laboratory. 
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6.5 Which factors determine the number of MHC I peptides generated 

by a transcript?

Our results show that the number of MHC I peptides generated by a source 

transcript can be influenced by at least two factors: the transcript abundance 

and the presence of MREs in the transcript. 

A priori our results seem contradictory, since recognition by miRNAs can lead 

to translation inhibition and/or to the degradation of the targeted mRNA and 

probably to decreased transcript abundance. However, it is important to con-

sider that transcript abundance reflects the net effect of ongoing transcription 

and mRNA degradation. For instance, increased mRNA degradation will be 

masked by a high transcription rate. Moreover, some mRNA targets of miRNAs 

can be translationally repressed with little if not change in mRNA abundance 

[29]. 

One possibility is that transcript abundance and the presence of MREs in the 

transcript are related factors. In this scenario, lowly abundant mRNAs that 

generate MHC I peptides could do so because they are highly targeted by miR-

NAs (and presumably resulting in a high DRiP rate). If true, we would expect to 

find more miRNA targets among lowly abundant transcripts that give rise to 

peptides. We tested this hypothesis and found similar proportions of miRNA 

targets among low and high abundant transcripts (data not shown). Although 

this preliminary analysis was based on what is predicted to be targeted and 

not what is indeed targeted by miRNAs and thus can be further improved with 

experimental data, it suggests that predicted miRNA targeting cannot explain 

per se how low abundance transcripts generate MHC I peptides. Perhaps, other 

mechanisms, such as nonsense-mediated decay pathway [37-39] could explain 

this observation.

Another possibility is that transcript abundance and miRNA targeting con-

stitute features of a “special” set of transcripts that are a preferred source 

of peptides. This set of transcripts could represent those that are bound by 

“immunoribosomes” [38,40] in a selective mechanism for choosing RNAs for 

translation into DRiPs and rapid peptide generation. 
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6.6 A novel personalized approach for the identification of MHC I-asso-

ciated peptides including MiHAs 

Current high-throughput MS approaches rely on traditional search engines (e.g. 

Mascot) that match tandem mass spectra sequences against hypothetical spec-

tra generated from known protein sequence databases (e.g. UniProt Human da-

tabase) [41-43]. This algorithmic strategy limits peptide identification only to 

reference proteins and is blind to variations in the amino-acid sequence [44]. 

Hence, conventional MS is inadequate for MiHA detection because it cannot 

detect polymorphic peptides. Previous efforts have been made in the develop-

ment of databases suitable for identification of polymorphic peptides [44-46]. 

However, the inclusion of all reported protein variants considerable increases 

database size rendering it impractical and leads to the assignment of peptides 

to sequences that are not necessary present in the analyzed sample (false posi-

tives). To overcome these obstacles, we developed a novel strategy that hinges 

on high-throughput identification of MHC I peptides by tandem MS analyses 

with a personalized proteome database generated from in silico translation of 

combined exome and transcriptome sequencing data. This approach enable 

us to identify 4,468 MHC I peptides including 34 MiHAs. This personalized 

method allows a more precise MS-based identification of any peptide whose 

DNA or RNA coding region has been sequenced. Although the comparison of 

the immunopeptidome identified with a reference database vs. the personal-

ized database showed that the number and nature of identified peptides is 

very similar (96% overlap), we demonstrated that ~50% of identified MiHAs 

would have been missed in the absence of a personalized database. Moreover, 

the use of both exome and transcriptome sequencing allows the validation of 

ns-SNVs in the peptide-coding region with 2 independent approaches.

Both forward and reverse immunology strategies have been used for the iden-

tification of MHC peptides including MiHAs (chapter 4). Previous reverse im-

munology approaches have combined genome sequencing and bioinformatics. 

A recent study compared ns-SNP differences between HLA-identical siblings 

using a microarray-based SNP genotyping assay for 10,000 validated ns-SNPs 

[47]. The protein coding variations unique to one of the siblings were used to 

predict epitopes that could bind HLA-DRB1*0301 and 10 of these candidates 



215

were tested in vitro for DRB1*0301 binding and stimulation of CD4+ T cell 

responses. Interestingly, only 2 out of 10 candidates could induce CD4+ T cell 

responses. This means that only 20% of predicted peptide candidates based on 

genomic differences and binding predictions were truly MiHAs. Similarly, Rob-

ins and coworkers synthesized candidate MHC-binding nonamers that were 

predicted in silico based on single mutations identified by exome sequencing 

of patient-derived melanoma cell lines and tested the peptides for recognition 

by autologous tumor-infiltrating lymphocytes [48]. They found that only 5% of 

the predicted peptides were indeed recognized by the tumor infiltrating lym-

phocytes. These two examples illustrate that reverse immunology approaches 

based on genomic sequencing and bioinformatic predictions suffer from a high 

false discovery rate reflecting our limited knowledge and the unpredictability 

of the antigen-processing pathway. We identified 4,833 ns-SNVs between these 

siblings of which only 0.5% (26) were detected in the coding region of 22 Mi-

HAs. Of note, identified MiHAs behave as recessive or dominant traits at the 

cell surface and hence only one of the two possible variants was detected. 

Moreover, we showed that in several cases the amino acid change considerably 

decreased the binding affinity of the peptide for the HLA molecule. Although 

more sensitive MS instruments could enhance MHC I peptide identification, 

these results suggest that only a tiny fraction of all potential MiHAs that could 

be generated from each ns-SNV, reach the cell surface. We further examined 6 

MiHAs that were coded by an allele present only in one subject and found that 

all 6 MiHAs induced selective killing by MiHA-specific CTLs (i.e. were immuno-

genic). Our approach demonstrates the necessity of using not only genomics 

and bioinformatics, but also proteomics data to identify those “winner pep-

tides” that are successfully processed and presented in a given cell type and 

thus decrease the number of false discoveries.

There are currently 47 reported MiHAs (table 1, chapter4). Our method enabled 

the discovery of 34 MiHAs and 536 potential MiHAs in the general population, 

by analyzing one single couple of HLA-identical siblings. Hence, this strategy 

could greatly accelerate the development of MiHA-targeted immunotherapy. 

Importantly, our approach can be further improved at various steps.
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6.7 Proposed improvements to our personalized approach: the data-

base

Our approach focused on the identification of MiHAs caused by ns-SNPs in 

the peptide-coding region. Nevertheless, any genetic polymorphism that quali-

tatively or quantitatively affects the display of self-peptides at the cell sur-

face could in principle give rise to MiHA disparities. Other type of genomic 

polymorphisms such as indels (insertions/deletions), gene deletions and copy 

number variants (CNVs) could be considered. 

Gene deletions can be quite frequent without causing any phenotype, espe-

cially for genes with high degree of homology [49,50]. For example, the fre-

quency of the homozygous deletion of the UGT2B17 gene can be more than 

80% in some populations [51]. Deletion of the UGT2B17 gene is responsible for 

the generation of at least 2 known MiHAs (and probably many other uniden-

tified MiHAs) presented by 3 different HLA molecules. Y chromosome genes 

can also encode many HY MiHAs, as illustrated by KDM5D and UTY genes 

encoding more than 6 distinct HY MiHAs [52]. HY MiHAs could be identified 

in the future by studying sister-brother siblings. Also, CNVs and short indels, 

which are quite frequent in the human genome [53,54], could be detected from 

the exome data using algorithms such as Splitread [50]. Finally, mitochondrial 

DNA could be sequenced and incorporated in the database. Indeed, peptides 

of mitochondrial origin can be presented by MHC I molecules and mitochon-

drial MiHAs have been identified in mice [55,56]. The drawback of including 

all these types of genetic variations is a considerable increase in database size, 

since all possible protein combinations are predicted in silico from genomic 

variation. This combinatorial problem gets bigger in highly polymorphic re-

gions where various SNPs (and perhaps indels and CNVs) are contained in a 

short frame. One alternative would be to search for genetic linkage informa-

tion in order to reduce the number of combinations.

The in silico translation of exome and transcriptome sequences was done ac-

cording to the canonical ORF. However, it is widely known that cryptic MHC 

I peptides including MiHAs can derive from products of ARFs [57,58]. Hence, 

it would be relevant to include all 3 forward and 3 reverse reading frames in 
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the database to discover not only MiHAs but also cryptic peptides in general. 

Of note, MiHAs deriving from ARFs have seldom been described [59,60]. This 

might reflect their scarcity or most probably the difficulty of identification. 

In line with this, MHC I peptides including MiHAs can also arise from transla-

tion of “untranslated” 3’- and 5’-UTRs and from intronic regions [60-62]. In 

our RNA-seq experiments, a significant proportion of sequenced reads (~10%) 

mapped to introns. This information as well as sequences from UTR were not 

analyzed but could be considered in the construction of the database. Inter-

estingly, we identified a set of 700 peptides by MS that the search engine 

(Mascot) couldn’t match to any sequence in our personalized proteomes (data 

not shown). One possibility is that these peptides correspond to erroneous MS 

sequencing or to peptides that do not fragment well in the MS and thus have 

a bad identification quality. Although, a manual inspection of the sequences 

will be needed to discard this possibility, another explanation will be an “atypi-

cal” origin of those peptides. They could represent any type of sequence not 

contained in the reference proteome: 5’ or 3’ UTRs, translation products of 

ARFs or posttranslational protein splicing events [63-66]. The identification of 

this latter category of peptides is currently the most challenging. We currently 

ignore how frequently these events occur and what proportion of the MHC 

I immunopeptidome originates from those non-conventional sources. Their 

existence suggest that the MHC I immunopeptidome is probable more diverse 

and larger than anticipated and that many MHC I peptides including MiHAs 

cannot be predicted merely on genomic polymorphisms. 

6.8 Proposed improvements to our personalized approach: peptide elu-

tion and MS analyses

The identification of MHC I peptides by MS is relatively challenging given the 

complexity of the peptide mixture [19,42,67]. This complexity is even higher in 

samples obtained with mild-acid elution composed of thousands of MHC I and 

non-MHC I peptides, most of them with homogeneous size [67]. Because MHC 

I peptides are relatively short, their fragmentation spectra frequently do not 

allow unambiguous matches to database sequences [43]. Moreover, the fact of 

having mostly only 1 MHC I peptide representative of each protein in one sam-

ple renders protein identification more difficult [42]. Finally, most current MS 
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approaches have been developed to favor the identification of peptides result-

ing from trypsin digestion. Tryptic peptides are characterized by the presence 

of a basic residue (lysine or arginine) at the C-terminus, which favors peptide 

fragmentation and leads to better MS/MS spectra [67]. MHC I peptides do not 

necessarily show these features and are fragmented randomly depending on 

their amino acid composition [67]. 

A quality score such as the Mascot score is commonly used in proteomics to 

estimate the quality of the MS/MS identification. However, the score is directly 

correlated with the peptide length [68], which means that short peptides such 

as MHC I-peptides would tend to have lower scores despite good spectra qual-

ity. We demonstrated that the Mascot score can be combined with the pre-

dicted binding affinity to adapt this MS quality measure to MHC I peptides. 

Our study suggest that the frequently used Mascot score threshold of 35 is 

too stringent for MHC I peptides, as approximately half of the identified MHC 

I peptides including MiHAs had Mascot scores <35. 

These challenges merit further development of MS algorithms that predict the 

characteristics of MHC I peptides to enhance their identification. Also, novel 

MS approaches not relying on proteomic databases such as de novo sequenc-

ing [69] could enable the identification of MHC I peptides not encoded in the 

genome such as peptides resulting from posttranslational protein splicing 

events [66].

We identified four MiHAs in the subject homozygous for the corresponding 

allele but not in the heterozygous subject. This suggests that zygosity influ-

ences MiHA abundance and that low abundance MiHAs may fall below the MS 

detection threshold in heterozygous subjects. Consistent with this, the MS in-

tensity for these four MiHAs was low in homozygous subjects. Similarly, we as-

sessed the immunogenicity of three MHC I peptides that had identical peptide 

coding sequences in both subjects but were detected in one sibling and absent 

in all replicate samples from the other sibling. However, none of these three 

peptides could elicit CTLs in the MHC I-peptide-negative sibling. This suggests 

that these peptides were differentially expressed in both siblings and that its 

abundance was below the MS threshold in one subject. We presently ignore the 
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number of peptides whose abundance at the cell surface is below the MS detec-

tion limit. We believe that we are currently detecting “the top of the iceberg” 

and that many more peptides are probably presented by MHC I molecules, but 

they might escape detection because of low abundance and/or relatively low 

sensitivity in the electrospray ionization process. It becomes necessary to ac-

curately determine the detection threshold of our current MS technique. The 

concentration of peptides in the ER is supposed to be the rate-limiting step 

for MHC I-peptide presentation [70]. With the development of more sensitive 

instruments we will probably be able to precisely answer the question: what 

is the total amount of peptide complexes that is exposed at the cell surface? 

Also, we need to apply absolute quantitative approaches to estimate the total 

number of copies of each specific complex. 

MS also allowed the identification of 652 peptides with post-translational mod-

ifications including oxidation, deamidation, cysteinylation and phosphoryla-

tion that merit further investigation. Although we know that post-translational 

modifications can affect the processing, presentation or recognition of certain 

peptides by CD8 T cells [71], our current knowledge of the biological signifi-

cance of these types of peptides is very limited due to their rarity. In fact, we 

ignore whether post-translationally modified MHC I peptides are indeed rare 

or simply not targeted by current MS protocols. Our method to process eluted 

MHC I peptides could be better adapted to identify post-translationally modi-

fied peptides. In the future, it could be interesting to explore and compare the 

proportion of post-translational modifications in the immunopeptidome and 

in the proteome. Since most (but not all) post-translational modifications oc-

cur post translation, an underrepresentation of posttranslationally modified 

peptides could give some cues about the preferred source of MHC I peptides. 

If DRiPs are the major source of MHC I peptides then one would expect to find 

less post-translational modifications in these peptides in comparison to the 

proportion found in the proteome. However, it would be also necessary to pre-

cisely determine when and where the post-translational modification occurs.

6.9 Impact of genomic polymorphisms on the MHC I immunopeptidome

We studied the effect of non-MHC SNPs on the MHC I immunopeptidome. We 



220

concentrated our analyses to ns-SNPs in the peptide-coding region. Neverthe-

less, ns-SNPs in the vicinity of the peptide coding region could produce chang-

es in the MHC I immunopeptidome of HLA-identical subjects. For instance, 

MiHA disparities can be generated by ns-SNPs in the peptide flanking region 

that affect peptide translocation by TAP or its degradation by the proteasome 

[72-74]. In addition, polymorphisms can affect the expression of genes in trans 

[75] and this could quantitatively and qualitatively affect the MHC I-peptide 

repertoire. Polymorphisms in non-coding regions could not only modulate 

gene expression but also affect alternative splicing, RNA editing and generate 

cryptic translation products. For example, polymorphisms in MREs can affect 

recognition by miRNAs with a consequent impact on target transcripts [76].

We concentrated our analyses to SNPs that change the amino acid sequence. 

Nevertheless, synonymous SNPs (s-SNPs) in the mRNA source of peptides or in 

trans could also affect the immunopeptidome. “Silent” or synonymous codon 

positions, define mRNA secondary structure and stability and affect the rate 

of translation, folding and post-translational modifications of nascent poly-

peptides [77,78]. Since the number of s-SNVs that can be found in the peptide-

coding regions of two individuals might lie in the order of thousands, bioin-

formatic tools could be used to filter those s-SNVs that are predicted to affect 

mRNA abundance or the corresponding protein. Further biochemical studies 

will also be needed to understand how s-SNPs affect the immunopeptidome, 

although this would not be an easy task.

Our results suggest that zygosity influences MiHA abundance, as evidenced by 

the detection of four MiHAs in the subject homozygous for the correspond-

ing allele but not in the heterozygous subject. However, we ignore whether 

differences in peptide abundance caused by zygosity could lead to immune 

responses. Neoplastic transformation can provoke differential expression of 

peptides or so called tumor-associated antigens, which can be immunogenic 

[21]. Similarly, it would be of great interest to test whether allelic dosage could 

be sufficient to cause immunogenicity.

We found that at least 41 MHC I peptides were exclusively detected by MS in 

one sibling and constantly absent in the other sibling yet the peptide-coding se-
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quence was identical in the 2 individuals. With the aim of explaining the origin 

of these peptide differences, we analyzed various possible mechanisms. First, 

we did not find any correlation between the exclusive detection of a peptide 

in a subject and an increased expression of the transcript source of peptide 

in the same subject. Second, we compared the level of transcript expression 

of the main known players in the antigen processing pathway between sib-

lings and found no significant differences. Although transcript abundance is 

a very rough estimate of protein levels, our results would discard quantitative 

differences in molecules involved in the antigen processing to explain pep-

tide discrepancies in this sibling. Nevertheless, not only quantitative but also 

qualitative differences in molecules involved in the antigen processing could 

induce changes in the immunopeptidome. As described in the first chapter, 

many proteins participate in the antigen processing and presentation pathway 

and many others are probably unknown. Polymorphisms in one or more of 

these molecules, especially those in active sites or affecting the conformation 

of enzymes could affect their interaction with the peptide or their function. 

For example, ns-SNP in ERAP1 can affect the protein structure, its cleavage ca-

pacity and thus the generation of some peptides [79]. Accordingly, it has been 

shown that some ERAP1 mutants have a ~40% lower peptidase activity in vitro 

[80] and defects in basic enzymatic properties [81]. In another example, An-

drés and coworkers described a polymorphism inducing destruction of ERAP2 

mRNA by nonsense-mediated decay leading to very low ERAP2 protein levels 

and reduction in MHC I surface expression in B-LCLs [82]. Based on these stud-

ies and since ERAP1 and ERAP2 are the main aminopeptidases responsible for 

trimming the N-terminus of peptides, we search for non-synonymous poly-

morphisms between these subjects. We found 2 ns-SNPs that have been shown 

to affect the enzymatic activity of ERAP1 (data not shown) and therefore, I 

presume that polymorphisms in molecules involved in the antigen process-

ing pathway such as ERAP could indirectly change the repertoire of the MHC I 

peptides. 

6.10 MHC I peptides encoded by conserved and polymorphic genomic 

regions

We explored whether MHC I-associated peptides derive preferentially from in-
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variant vs. polymorphic genomics regions. This yet unexplored question is not 

only biologically important but also very pertinent to clinical transplantation: 

can we expect MiHAs to be derived from allogeneic polymorphisms through-

out the human genome, or are person-to-person differences in select proteins 

more subject to presentation? Our results showed that the MHC I immunopep-

tidome is not enriched with polymorphic or invariant peptides. This result was 

supported by two independent analyses: i) a comparison of the frequency of 

SNPs/bp in the peptide-coding DNA sequence and in the human exome (chap-

ter 3) and ii) a bootstrapping procedure to compare the number of ns-SNPs 

(reported in db-SNP) found in 10,000 random samplings of 4,468 hypothetical 

peptide-coding regions from the human reference exome vs. the number of ns-

SNPs found in the regions coding for 4,468 identified peptides (chapter 5). We 

found that at the population level, 88% of peptide-coding sequences identified 

were invariant whereas 12% contained at least one ns-SNP: 670 ns-SNPs were 

found in the genomic region coding for 536 MHC I polymorphic peptides. Our 

results were confirmed by a recent study in which a similar proportion (10%) 

of polymorphic MHC I peptides were identified with a immunoprecipitation-

based mass spectrometry approach [83].

6.11 Identification of potential MiHAs in the general population

Our approach can be used to discover potential MiHAs in the general popula-

tion by identifying MHC I peptides that derive from known polymorphic re-

gions using databases such as dbSNP. To choose the best potential MiHAs, 

one could further select those MHC I peptides whose coding region contains 

ns-SNPs that have balanced allele frequencies in a population to increase the 

chance of observing a disparity between donors and recipients. Moreover, the 

expression of genes source of MiHAs could be verified in different cells and 

tissues to favor those whose expression is restricted to hematopoietic cells 

and cancer cells and thereby favor GvL or GvT effect and avoid GvHD. Gene 

expression could be tested in silico using publicly available databases for dif-

ferent cells and tissues such as BioGPS (http://biogps.org/). Moreover, avail-

able RNA-seq data could be interrogated to have a more precise idea of the ex-

pression of MiHA-encoding transcripts in small subpopulations in each tissue. 

Importantly, lowly expressed transcripts cannot be totally neglected, as our 
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results showed that low abundant transcripts can generate MHC I peptides. 

Thus, although a preliminary in silico inspection can be very informative, pro-

teomic confirmation of the presence or absence of a given MiHA in a specific 

tissue or cell type would be preferable. It would be also important to verify 

whether the potential MiHAs are encoded by a single gene. Lastly, identifica-

tion of MiHAs that are promiscuous binders might have a broader application 

as they could be naturally presented by more than two HLA alleles [84].

6.12 How many human MiHA exist?

The 1000 Genomes Project Consortium has recently reported 38 million SNPs, 

1.4 million short indels and more than 14,000 larger deletions in humans 

[54]. In average, one individual human genome presents 3.6 million SNPs, 344 

thousand indels and 717 large deletions[54]. Because in principle, any genetic 

polymorphism that qualitatively or quantitatively affects the display of self-

peptides at the cell surface could give rise to MiHA disparities, these numbers 

would suggest that a large number of MiHAs mismatches would occur even 

despite selection for identity at the MHC in a clinical setting. Accordingly, 

we compared the exome and transcriptome of two HLA-identical siblings and 

found 4,833 ns-SNVs, most of which corresponded to reported SNPs.  This 

number lies in the range of ns-SNVs found by other groups comparing the 

exomes of 12 unrelated individuals (~3,600-6,400) [47,85]. Since only a frac-

tion of the proteome is sampled in the immunopeptidome owing to HLA bind-

ing selectivity and destruction during antigen processing, only a small fraction 

of the genetic disparities between two HLA-identical individuals is expected 

to be reflected in differences in the MHC I peptide repertoire. Our results re-

flected this selectivity since only 26 (0.5%) were detected in the coding region 

of 22 MiHAs, of which 13 MiHAs were encoded by an unshared allele. 

Theoretical estimates of the number of MiHAs between MHC-identical subjects 

range from 15 to thousands [86-88]. We addressed this issue experimentally 

and identified 13 MiHAs disparities in B-LCLs from two HLA-identical siblings. 

This means that out of 4,468 MHC I peptides present on B-LCLs, 13 (0.3%) 

would be immunogenic for one of these siblings. This number could vary de-

pending on the genes expressed by a given cell type and the genetic similarity 
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of the 2 individuals. The number of MiHAs between HLA-identical subjects 

might be probably much more greater since we restricted our analyses to Mi-

HAs resulting from ns-SNPs in the peptide-coding region. Indels, CNV as well 

as s-SNPs and ns-SNPs inside and outside the peptide-coding region might con-

siderably increase this number. Moreover, more sensitive MS instruments and 

better sequencing coverage could enable identification of more MHC I peptides 

(and thus MiHAs) as well as more polymorphisms, respectively.
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Perspectives

Study of the MHC I immunopeptidome from a systems biology perspec-

tive

Our work illustrates the utility of systems biology approaches to study the 

composition of the MHC I immunopeptidome as well as the “rules” or general 

patterns underlying its biogenesis. In line with this, the Human Immunopep-

tidome Project has been recently proposed with the aim of analyzing the full 

repertoire of HLA-associated peptides in health and disease and understand-

ing the molecular mechanisms involved in its formation [89]. 

In ecological sciences the biodiversity index of an ecosystem is often estimated 

to monitor changes or perturbations in the ecosystem’s functionality [90,91]. 

In immunopeptidomics, an analogous definition of a diversity index would be: 

a quantitative measure that reflects how many different peptides compose 

the immunopeptidome of a given cell under specific conditions, and simul-

taneously takes into account how evenly the number of copies per peptide 

are distributed. The value of a diversity index would increase both when the 

number of peptides increases and when evenness increases. Thus, for a given 

number of peptides, the value of a diversity index would be maximized when 

all peptides are equally abundant. With the development of more quantitative 

MS approaches, it would be feasible to calculate the diversity index of the im-

munopeptidome and compare and study its biological significance (if any) un-

der steady-state conditions and following intrinsic and extrinsic perturbations 

for different cells or tissues.

Since multiple events are involved in the generation of MHCI peptides includ-

ing MiHAs, I personally believe that approaches combining the analysis of vari-

ous functional genomic levels (genomic, transcriptomic, proteomic, degrado-

mic, peptidomic) could be very meaningful. Inclusion of bioinformatics tools 

and methods was crucial in our work and will be indispensable in this kind 

of studies. Although our results contributed to a better understanding of the 

genome-immunopeptidome and transcriptome-immunopeptidome relation-

ships, further experiments are needed to dissociate the contribution of actively 
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transcribed genes vs. that of very stable transcripts to the immunopeptidome. 

For example, RNA Polymerase II CHIP-seq transcription profiling could be used 

to measure transcription rates as a function of RNA Polymerase II occupancy 

across the genome, enabling the measurement of transcription rates without 

the influence of RNA half-life. Similarly, to systematically test the concept that 

the immunopeptidome samples what is being translated as opposed to what 

has been translated, genome-wide measurements of occupancy and density of 

ribosomes on mRNA [92-94] could be performed simultaneously with analysis 

of the immunopeptidome. It would be also of great interest to study the global 

contribution of the degradome to the immunopeptidome using quantitative 

proteomics [95]. Finally, the impact of epigenetic regulation on the MHC I im-

munopeptidome has never been addressed. Studies of the immunopeptidome 

and the “methylolme” of identical twins could reveal some surprises. These 

studies could be well complemented with molecular assays to validate data-

driven hypotheses.

Model to unravel the factors that control which MHC I peptides are dis-

played and in which quantity

Defining the nature of endogenous peptides contributes not only to the un-

derstanding of MHC I antigen presentation but to other central aspects of cell 

biology such as gene expression, protein synthesis and degradation. Our find-

ings can contribute to the optimal design of CD8+ T cell vaccines for tumors 

and pathogens and could be also applied in the autoimmunity field. One inter-

esting model to study the intrinsic factors that promote MHC I peptide gen-

eration are medullary thymic epithelial cells (mTECs). mTECs have the unique 

ability to transcribe otherwise tissue-restricted genes through the action of 

the transcription factor AIRE as well as AIRE-independent factors [96]. Accord-

ingly, RNA-seq experiments performed in our laboratory have recently shown 

that more genes are expressed in medullary thymic epithelial cells leading to 

increased average transcript abundance in comparison to other cell popula-

tions [97]. This promiscuous gene expression leads to presentation of tissue-

restricted antigens by mTECs and is instrumental during negative selection 

of T lymphocytes [96]. One would predict a high “diversity index” in the im-

munopeptidome of mTECs, i.e. the presence of a huge variety of peptides with 
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little variation in the number of copies per peptide. Furthermore, these cells 

would need an efficient mechanism for MHC I peptide generation or a special-

ized DRiP apparatus. This apparatus could be a highly active miRNAome or a 

specific set of miRNAs that efficiently act on transcripts leading to DRiPs for-

mation and facilitating the generation of MHC I peptides. Accordingly, recent 

studies have shown that AIRE can control the expression of miRNAs that char-

acterize mature mTECs [98,99]. These features made of mTECs a very interest-

ing model to study the biogenesis of the immunopeptidome.

MiHAs in personalized therapy

We have shown that the immunopeptidome is subject-specific and cell-specif-

ic. In this context, I envisage personalized therapies, where information of ge-

netic differences between donor and recipients are combined with proteomic 

studies for specific cell types and tissues to predict the outcome of transplan-

tation in different donor-recipient scenarios and thereby facilitate selection of 

the most optimal donor. However, some remaining obstacles need urgently to 

be bypassed before translation to the clinics. The first one is the identification 

of cryptic MiHAs generated by non-conventional processes and not encoded 

in the genome. De novo sequencing MS approaches seem promising in this 

regard [69]. The second challenge is the development of methods to discover 

MHC II-bound MiHAs. To date, very few MHC II-associated MiHAs are known 

despite renewed efforts in their identification. Because MHC II molecules are 

not expressed on most non-hematopoietic tissues under non-inflammatory 

conditions, MHC II-associated MiHAs are less likely to cause GvHD [100]. These 

antigens could be very useful if presented on leukemic or cancer cells express-

ing MHC II. Lastly, MS-based identification still requires huge amount of start-

ing material (500 mill cells for the strategy based on mild acid elution). This 

amount is even higher for cells that express low surface levels of MHC and 

for immunoprecipitation-based MS approaches. We are still far from a very 

sensitive technique that will allow quantification of peptides from small popu-

lations without the need of in vitro expansion and immortalization methods, 

such as infection with EBV. More sensitive approaches will definitely allow the 

characterization of the immunopeptidome in many more cell types and the 

application of approaches such as ours in the clinic. 
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Conclusion

We employed systems biology approaches to unravel the composition and cel-

lular origin of the self MHC I-associated peptide repertoire presented by B-

LCLs derived from 2 pairs of HLA-identical siblings.  

First, we found that HLA-different subjects present different immunopepti-

domes derived from different sets of proteins. These proteins were function-

ally interconnected, implicated in the same biological pathways and conveyed 

to the cell surface a cell type-specific signature. Our results showed that the 

human MHC I immunopeptidome is subject-specific and cell-specific.

Second, our analyses revealed that the MHC I immunopeptidome i) showed no 

bias toward conserved vs. polymorphic genomic sequences, ii) derived prefer-

entially from abundant transcripts and iii) was enriched in transcripts bearing 

MREs. Furthermore, while the MHC I immunopeptidome of HLA-disparate sub-

jects is coded by different sets of transcripts, these transcripts are regulated 

by mostly similar miRNAs. Our data support an emerging model in which the 

generation of MIPs by a transcript depends on its abundance and its regulation 

by miRNAs. 

Finally, we developed a novel personalized approach combining mass-spec-

trometry, next-generation sequencing and bioinformatics for high-throughput 

identification of MHC I peptides including MiHAs caused by ns-SNPs in the 

peptide-coding region. We discovered 34 MiHAs in a pair of HLA-identical sib-

lings and 536 potential MiHAs in the general population. Our results showed 

that MiHAs, which are encoded by biallelic loci, behaved as dominant or re-

cessive traits at the cell surface. Comparison of the genomic landscape of the 

MHC I-peptide repertoires identified in these siblings revealed that i) 0.5% of 

ns-SNVs were represented in the immunopeptidome and ii) 0.3% of the MHC 

I-peptide repertoire would be immunogenic for one of the siblings.

Our results are relevant for the design of peptide-based immunotherapeutics. 

In addition, our MHC I-peptide identification strategy could greatly accelerate 

the development of MiHA-targeted immunotherapy. Finally, our exome, tran-
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scriptome, miRNAome and immunopeptidome datasets of B-LCLs represent a 

new resource for other scientists interested in inter-individual differences and 

therefore is of great valuable for the scientific community. 
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Abstract 

Background. Viral infection and neoplastic transformation trigger endoplas-

mic reticulum (ER) stress. Thus, a large proportion of the cells that must be 

recognized by the immune system are stressed cells. Cells respond to ER stress 

by launching the unfolded protein response (UPR). The UPR regulates the two 

key processes that control major histocompatibility complex class I (MHC I)-

peptide presentation: protein synthesis and degradation. We therefore asked 

whether and how the UPR impinges on MHC I-peptide presentation.

Results. We evaluated the impact of the UPR on global MHC I expression and 

on presentation of the H2Kb-associated SIINFEKL peptide. EL4 cells stably 

transfected with vectors coding hen egg lysozyme (HEL)-SIINFEKL protein vari-

ants were stressed with palmitate or exposed to glucose deprivation. UPR de-

creased surface expression of MHC I but did not affect MHC I mRNA level 

nor the total amount of intracellular MHC I proteins. Impaired MHC I-peptide 

presentation was due mainly to reduced supply of peptides owing to an inhibi-

tion of overall protein synthesis. Consequently, generation of H2Kb-SIINFEKL 

complexes was curtailed during ER stress, illustrating how generation of MHC 

I peptide ligands is tightly coupled to ongoing protein synthesis. Notably, the 

UPR-induced decline of MHC I-peptide presentation was more severe when the 

protein source of peptides was localized in the cytosol than in the ER. This 

difference was not due to changes in the translation rates of the precursor 

proteins but to increased stability of the cytosolic protein during ER stress. 

Conclusion. Our results demonstrate that ER stress impairs MHC I-peptide 

presentation, and that it differentially regulates expression of ER- vs. cytosol-

derived peptides. Furthermore, this work illustrates how ER stress, a typical 

feature of infected and malignant cells, can impinge on cues for adaptive im-

mune recognition.  
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Background 

The ultimate role of the immune system in host defense is to eliminate infected 

and transformed cells [1, 2]. A fundamental feature of infected and neoplastic 

cells is that they are stressed cells [3-5]. In line with this, the innate immune 

system uses receptors such as NKG2D to recognize stressed cells [4, 6, 7]. One 

key question, however, is whether cellular stress can influence recognition of 

transformed or infected cells by the adaptive immune system [4, 8].

The single feature uniting different stress stimuli (heat shock, hypoxia, viral 

replication, abnormal proteins, starvation or transformation) is that they all 

ultimately lead to accumulation of unfolded or misfolded proteins in the lu-

men of the ER [4, 5]. Infection and neoplastic transformation increase protein 

translation and thereby the folding demand on the ER [9, 10]. This is particu-

larly true for cells submitted to hypoxia, nutrient deprivation or low pH in 

poorly vascularized bulky tumors, metastases and sites of inflammation [11, 

12]. Moreover, acquisition of numerous mutations during tumor progression 

leads to accumulation of abnormal proteins with an increased propensity to 

misfolding that further raises the ER folding burden [3, 13].

The ER responds to the accumulation of unfolded proteins by activating in-

tracellular signal transduction pathways, collectively called the unfolded pro-

tein response (UPR) [14, 15]. The UPR is a highly conserved adaptive response 

that allows survival to limited stress but leads to apoptosis in the presence of 

overwhelming stress [16, 17]. Mammalian UPR acts through three main trans-

ducers (PERK, ATF6 and IRE1) that are activated by dissociation of the master 

chaperone BiP/GRP78 [5, 15]. Activation of PERK leads to phosphorylation of 

the translation initiation factor eIF2α and attenuation of cap-dependent trans-

lation [18]. The endonuclease activity of IRE1 generates a frameshift splice 

variant of XBP-1 encoding an active transcription factor that activates genes 

involved in protein degradation and controls the transcription of chaperones 

[19-21]. Targets of the cleaved active form of ATF6 include the chaperones BiP 

and GRP94, and the transcription factors XBP-1 and CHOP [17, 19]. Activation 

of these UPR transducers has pervasive effects on cellular protein economy: 

i) attenuation of protein translation, ii) increased degradation of ER proteins 
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by ER-associated degradation (ERAD), iii) transcriptional activation of genes 

involved in the folding machinery of the ER and iv) increased degradation of 

ER-localized mRNAs [14, 22].

Presentation of MHC I-associated peptides to CD8 T cells is tightly linked to 

protein economy. MHC I peptides are preferentially generated from newly syn-

thesized but rapidly degraded polypeptides relative to slowly degraded pro-

teins [23, 24]. Following proteasomal degradation, peptides are translocated 

into the ER where they undergo N-terminal trimming, loading onto MHC I/β2-

microglobulin (β2m) heterodimers and export at the cell surface [25-29]. Since 

the UPR regulates the two key processes that shape MHC I peptide processing 

(protein translation and degradation) we reasoned that ER stress should im-

pinge on MHC I peptide presentation. We addressed this question and found 

that MHC I presentation was impaired during ER stress induced by palmitate 

or glucose starvation. Moreover, ER stress differentially affected presentation 

of peptides derived from a protein localized in the ER vs. the cytosol.

 

Results 

Engineering of Kb-SIINFEKL stable transfectant cell lines

Evidence suggests that subcellular localization of a protein (e.g., in the cytosol 

vs. the secretory pathway) may influence MHC I presentation of peptides de-

rived from that specific protein [30-32]. Moreover, the UPR is primarily orches-

trated to decrease protein overload in the ER [14, 15]. We therefore wished to 

determine whether the UPR would differentially affect MHC I presentation of 

peptides derived from a precursor protein located in the cytosol versus the ER. 

To this end, we created stable EL4 transfectant cell lines expressing a chimeric 

protein located either in the ER or the cytoplasm (Figure 1A). We selected the 

EL4 thymoma cell line as a model because it expresses relatively high levels of 

MHC I [33] which allows us to assess changes of MHC I abundance over a wide 

dynamic range. To create the chimeric constructs, a minigene coding for the 

SIINFEKL peptide was fused to previously described plasmids encoding hen 

egg lysozyme (HEL) targeted to the ER or the cytosol [34, 35] (see methods). 

The ovalbumin-derived SIINFEKL peptide is presented by H2Kb and cell sur-
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face expression of Kb-SIINFEKL complexes was assessed by staining with the 

25-D1.16 monoclonal antibody [36]. As shown in Figure 1B, EL4 stably trans-

fected clones, denoted EL4/HEL-ER-SIINFEKL and EL4/HEL-Cyto-SIINFEKL, can 

process and present SIINFEKL derived from an ER-localized or a cytosolic chi-

meric protein, respectively. These two clones, which display similar amounts 

of Kb-SIINFEKL at the cell surface, were used in further experiments.

Figure 1. EL4 stable transfectants express the SIINFEKL peptide derived from HEL 

targeted to the ER or to the cytosol

(A) Schematic representation of the constructs used to generate EL4 stable transfec-

tants. Modified coding sequences of HEL [34, 35] in frame with the region coding for 

the ovalbumin-derived peptide SIINFEKL and its flanking region were cloned into the 

pIRES-EGFP2 vector. HEL-ER-SIINFEKL possesses HEL N-terminal signal sequence (ss) 

and the ER-retention signal KDEL and targets HEL to the ER; HEL-Cyto-SIINFEKL lacks 

the N-terminal signal sequence and the ER-retention signal and targets HEL to the 

cytoplasm (see materials and methods). (B) EL4 stable transfectants express Kb-SIIN-

FEKL at the cell surface. EL4 cells were transfected with the pIRES-EGFP2 vector en-

coding HEL-ER-SIINFEKL or HEL-Cyto-SIINFEKL. Stable transfectants were selected by 

repeated cycles of FACS of EGFP-positive cells combined with drug resistance (1000 

µg/ml of G418). Cells were stained with 25-D1.16 monoclonal antibody, recognizing 

the Kb-SIINFEKL complex, followed by staining with APC-conjugated anti-mouse IgG1 

as secondary antibody. Depicted in the graphs are EGFP and Kb-SIINFEKL MFI values 

of untransfected EL4 cells (upper left), EGFP-transfected cells (lower left) and the two 

representative clones that were used in further studies: EL4/HEL-ER-SIINFEKL (upper 

right) and EL4/HEL-Cyto-SIINFEKL (lower right). Percentages represent the proportion 

of cells expressing EGFP and Kb-SIINFEKL.
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UPR activation impairs MHC I surface expression

Various pharmacological agents are widely used to induce ER stress. For in-

stance, tunicamycin and dithiothreitol are known to cause ER stress by pre-

venting N-linked glycosylation or disrupting disulfide bond formation in the 

ER, respectively [37, 38]. However, since MHC I proteins are glycosylated and 

contain disulfide bonds, we surmised that tunicamycin and dithiothreitol 

would directly hinder the assembly of MHC I molecules. We elected to use 

more physiological ER stress stimuli that should have less drastic effects on 

the synthesis of MHC I molecules: palmitate and glucose starvation. Palmi-

tate is a saturated fatty acid recently shown to cause ER stress by disrupting 

mainly the structure and integrity of the ER [39-41]. Palmitate is abundant in 

the ‘high fat Western diet’, which renders this type of stress more physiologi-

cal [42]. Glucose starvation is a common condition present for instance in vas-

cularized bulky tumors and metastases, and is also a prototypical and strong 

inducer of ER stress [43].

Activation of the UPR was monitored by quantitative real-time reverse tran-

scriptase polymerase chain reaction (RT-qPCR) analysis of BiP, CHOP and the 

normal and spliced XBP-1 transcripts, which are known to be induced during 

ER stress [19, 44]. As expected, treatment of both EL4 transfectants, EL4/HEL-

Cyto-SIINFEKL and EL4/HEL-ER-SIINFEKL (data not shown), with palmitate for 

18 hours induced a mild UPR that was similar in both EL4 cell lines and of 

lesser magnitude than that induced by tunicamycin stimulation (Figure 2A). 

Similarly, we monitored UPR induction in EL4 cell lines grown in high glucose 

(4.5 mg/ml), low glucose (1 mg/ml) or no glucose-containing medium for dif-

ferent time durations (Figure 2B). BiP, XBP-1 and CHOP transcripts were sig-

nificantly induced in both EL4 cell lines when they were completely deprived 

of glucose for 18 or 24 hours, indicating activation of the UPR under these 

conditions. However, none of these UPR markers were upregulated in cells 

grown in low glucose-containing medium, suggesting that 1 mg/ml of glucose 

is sufficient to keep the homeostasis of the ER in EL4 cells. The notable point 

here is that glucose starvation for 18-24h induced a robust UPR that seemed 

to be of greater magnitude than that induced by palmitate (Figures 2A and B). 

Thus, ER stress induced by palmitate treatment or glucose starvation activates 
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the UPR in EL4 cells, albeit to different extents.

Figure 2. Induction of ER stress in EL4 cells

(A) UPR activation induced by palmitate treatment. EL4/HEL-Cyto-SIINFEKL cells were 

either non-treated or treated with 0.25 mM of palmitate or 2.5 µg/ml of tunicamycin 

for 18 hours. BiP, XBP-1 and CHOP mRNA levels were analyzed by RT-qPCR. Expres-

sion levels were normalized to the endogenous control gene β-actin. Transcript levels 

of treated cells were compared with basal mRNA values of untreated cells (dotted 

line), which were set to 1. (B) UPR activation induced by glucose deprivation. EL4 

stable cell lines were incubated in DMEM medium lacking glucose or containing low 

glucose (1 mg/ml) or high glucose (4.5 mg/ml) for different durations. BiP, XBP-1 and 

CHOP mRNA levels were analyzed by RT-qPCR. Expression levels were normalized to 

the endogenous control gene β-actin. Transcript levels of cells incubated under low 
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(purple) or no glucose (green) were compared to levels of cells grown in high glucose 

medium (dotted line), which were set to 1. Similar results were obtained with EL4/HEL-

ER-SIINFEKL cells (data not shown). Bars represent the mean and SD from three in-

dependent experiments performed in triplicate. *P < 0.05 when comparing untreated 

with palmitate- or tunicamycin-treated cells, or high glucose with low glucose or no 

glucose conditions.

To evaluate the effect of the UPR on MHC I expression, we quantified by flow 

cytometry surface levels of H2Kb and H2Db in both EL4 cell lines submitted 

to ER stress (Figure 3). Cells in later apoptotic stages were excluded from the 

analysis by gating on propidium iodide-negative cells. Activation of the UPR 

with palmitate reduced cell surface expression of H2Db and H2Kb by 30-40% 

in both cell lines (Figure 3A). Likewise, we evaluated whether UPR induced by 

glucose deprivation also affected MHC I surface expression. EL4 stable cell 

lines were incubated in medium lacking glucose or containing low glucose 

(1 mg/ml) or high glucose (4.5 mg/ml) for 18 hours and MHC I surface levels 

were measured by flow cytometry (Figure 3B). MHC I expression was impaired 

in cells grown both in low or no glucose conditions, albeit to a different ex-

tent. Cells that were completely deprived of glucose expressed only 25-30% of 

normal H2Kb and H2Db levels, similar to the decline produced by tunicamycin 

(not shown). On the contrary, cells incubated in low glucose medium were less 

affected since around 70–90% of normal H2Kb and H2Db levels were detected. 

Of note, a glucose dose of only 1 mg/ml was sufficient to raise MHC I levels by 

around three-fold (compare no-glucose with low glucose conditions in Figure 

3B). As observed in the case of palmitate treatment, glucose starvation caused 

a similar downregulation of MHC I in the two stable cell lines (Figure 3B). These 

results show that ER stress induced by glucose deprivation or palmitate treat-

ment causes decreased expression of surface MHC I molecules in EL4 cells.
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Figure 3. ER stress impairs MHC I surface expression

(A) Decreased MHC I surface expression induced by palmitate treatment. EL4 cells 

were either non-treated (dotted line) or treated with 0.25 mM of palmitate (orange) for 

18 hours. EL4/HEL-Cyto-SIINFEKL (top) and EL4/HEL-ER-SIINFEKL (bottom) cells were 

stained with antibodies against H2Kb, H2Db or the corresponding isotypic control 

and analyzed by flow cytometry. Representative histograms of one of three indepen-

dent experiments are depicted. Bars represent % of MFI intensity in treated EL4/HEL-

Cyto-SIINFEKL (blue) and EL4/HEL-ER-SIINFEKL (red) cells relative to untreated cells 

(dotted line). Differences between untreated and treated cells are all significant (P < 
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0.05). (B) Decreased MHC I surface expression induced by glucose deprivation. EL4 

cells were incubated in medium lacking glucose (green) or containing low glucose (1 

mg/ml) (purple) or high glucose (4.5 mg/ml) (dotted line) for 18 hours and analyzed 

as in A. Bars represent % of MFI intensity in glucose-deprived EL4/HEL-Cyto-SIINFEKL 

(blue) and EL4/HEL-ER-SIINFEKL (red) cells relative to untreated cells (dotted line). Bars 

represent the mean and SD from three independent experiments performed in trip-

licate. Differences between control and glucose-deprived cells are all significant (P < 

0.05).

Posttranscriptional mechanism(s) cause decreased expression of surface 

MHC I molecules during ER stress

Since the UPR blocks transcription of numerous genes and can provoke prema-

ture degradation of mRNAs encoding secreted or membrane proteins [22], we 

investigated whether decreased MHC I surface expression was due to downreg-

ulation of MHC I transcripts. Using RT-qPCR, we found that mRNA expression 

levels of H2Kb, H2Db and β2m were unaffected in glucose-deprived or pal-

mitate-treated cells (Figure 4A). In fact, the abundance of the β2m transcript, 

whose protein is essential for the formation of stable MHC I-peptide com-

plexes, tended to increase in stressed cells relative to control cells (although 

this increase was not statistically significant). We therefore conclude that UPR 

induced with palmitate or glucose starvation leads to posttranscriptional at-

tenuation of cell surface MHC I molecules. 

To test whether diminished MHC I upon ER stress occurred only at the cell 

surface, we quantified total MHC I protein amount from whole lysates of cells 

previously treated with palmitate or deprived of glucose. We found that none 

of these conditions affected the steady state level of MHC I (Figure 4B). Nev-

ertheless, one of the consequences of UPR activation is attenuation of protein 

synthesis [18]. Thus, we tested whether the UPR could impact on synthesis 

of MHC I in metabolically-labeled EL4 cells previously subjected to glucose 

deprivation or palmitate treatment for 18 hours. We found that glucose star-

vation, and to a much lesser extent palmitate, curtailed the synthesis of new 

MHC I molecules by around 40% and 5%, respectively (Figure 4C). Of note, the 

MHC I band in the no-glucose condition migrated faster than the bands in the 

control and the palmitate conditions. This effect is likely due to incomplete 
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glycosylation of MHC I molecules in glucose-deprived cells. Thus, under our 

experimental conditions, ER stress did not affect the level of MHC I transcripts 

nor the total amount of MHC I protein (Figure 4A and B), but decreased the 

synthesis of new MHC I molecules (Figure 4C) and the amount of MHC I mol-

ecules at the cell surface (Figure 3).

Figure 4. ER stress impairs cell surface MHC I expression through posttranscrip-

tional mechanism(s)

EL4 cells were incubated in DMEM control medium containing glucose (4.5 mg/ml), or 

in medium lacking glucose or supplemented with 0.25 mM of palmitate for 18 hours. 

(A) ER stress does not decrease MHC I mRNA levels. H2Kb, H2Db and β2m mRNA lev-

els were assessed and analyzed by RT-qPCR. Expression levels were normalized to the 

endogenous control gene β-actin. Transcript levels of glucose-starved (green) or pal-

mitate-treated (orange) cells were compared with basal mRNA values of control cells 

(dotted line), which were set to 1. Bars represent the mean and SD from three indepen-

dent experiments performed in triplicate. No significant differences were detected 

between untreated and treated cells (P < 0.05). (B) ER stress does not affect total MHC 

I protein amount. MHC I proteins from whole cell lysates were detected by Western 
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blot with anti-MHC I antibodies. α-tubulin was used as loading control. A represen-

tative image of three independent experiments is shown. (C) ER stress differentially 

affects synthesis of MHC I. EL4 cells were incubated in control conditions, deprived 

of glucose or treated with 0.25 mM of palmitate for 17 hours and pulse-labeled with 

[35S]methionine/ [35S]cysteine for 1 hour. Cell extracts were lysed and subjected to 

immunoprecipitation with anti-MHC I antibody or the corresponding isotypic anti-

body. Immunoprecipitated proteins were separated by SDS-PAGE and analyzed by 

fluorography. One representative experiment out of two is shown.

Decreased overall protein synthesis hinders MHC I-peptide presentation 

during ER stress

To understand how ER stress decreased cell surface expression of MHC I pro-

teins, we evaluated the impact of ER stress on surface expression of a variety 

of glycoproteins (Figure 5). As shown before, palmitate treatment and glucose 

starvation severely impacted MHC I surface level. In contrast, surface expres-

sion of glycoproteins CD32, CD45.2, TCR-β and CD5 (Ly1) was minimally or 

not affected. These results show that the deleterious impact of the UPR is 

more severe on surface MHC I expression than on other glycoproteins. This 

suggests that reduction in the amount of cell surface MHC I molecules dur-

ing ER stress cannot be attributed solely to defective MHC I synthesis. That 

contention is further supported by two elements. First, a 5% decline of MHC 

I synthesis in palmitate-treated cells (Figure 4C) is not commensurate with a 

30-40% reduction of MHC I molecules at the cell surface (Figure 3A). Second, 

the total amount of MHC I proteins was not affected in stressed cells (Figure 

4B), suggesting that MHC I proteins were relatively stable and that they did not 

reach the cell surface because they were not properly loaded with their peptide 

cargo and were therefore retained in the ER.
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Figure 5. Differential effects of ER stress on surface expression of various glyco-

sylated proteins

EL4 cells were incubated in high glucose (4.5 mg/ml) medium (dotted line) or in medi-

um lacking glucose (green) or supplemented with 2.5 mM of palmitate (orange) for 18 

hours. (A) Effect of glucose starvation or palmitate treatment on surface expression 

of glycosylated proteins. Surface expression of H2Kb, H2Db, CD32, CD45.2, TCR-β 

and CD5 (Ly1) was determined by flow cytometry analysis. Representative histograms 

of one of three independent experiments are depicted. (B) Comparative effect of pal-

mitate treatment and glucose starvation on surface expression of glycosylated pro-

teins. Bars represent % of MFI intensity in glucose-starved (green) or palmitate-treated 

(orange) cells relative to control cells (dotted line). Bars represent the mean and SD 

from three independent experiments. *P <0.05 and **P<0.01 when comparing no glu-

cose or palmitate with control conditions.

Assembly and presentation of MHC I-peptide complexes at the cell surface 

requires peptide delivery to the ER [28, 45]. Since MHC I binding peptides de-
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glucose starvation and palmitate treatment attenuated protein translation. To 

test this idea we determined the rate of global protein synthesis in ER-stressed 

EL4 cells by measuring the rate of [3H]leucine incorporation. Translation was 

severely compromised in cells deprived of glucose, which showed a 75% de-

cline in the rate of protein synthesis (Figure 6A). The impact on protein synthe-

sis was comparable to that observed with the translation inhibitor cyclohexi-

mide (Figure 6A). Protein synthesis was less attenuated in palmitate-treated 

cells, but yet decreased by approximately 25%. Of note, ER stress produced 

similar inhibition of protein synthesis in EL4/HEL-Cyto-SIINFEKL and EL4/HEL-

ER-SIINFEKL cells.

Figure 6. ER stress inhibits protein synthesis through phosphorylation of eIF2α in 

EL4 stable cell lines

(A) Decreased overall rate of protein synthesis upon ER stress. EL4 stable cell lines 

were deprived of glucose, treated with 0.25 mM of palmitate, 100 µg/ml of cyclo-

heximide or cultured under control conditions for 19 hours. [3H]Leucine (10µCi/mL) 

was added during the last hour. The rate of protein synthesis was measured by [3H]

leucine incorporation. The results are expressed as the % of [3H]leucine incorporation 

per cell relative to control cells (dotted line) in EL4/HEL-Cyto-SIINFEKL (blue) and EL4/

HEL-ER-SIINFEKL (red) cells. Bars depict the mean and SD of one representative experi-

ment performed in triplicate. Differences between untreated and treated cells are all 

significant (P < 0.05). (B) Phosphorylation of eIF2α. EL4 cells were deprived of glucose 

or treated with 0.25 mM of palmitate for different durations over a 24-h period. Total 

cell lysates were immunoblotted against phosphorylated eIF2α (Ser51) or total eIF2α. 

α-tubulin was used as loading control. One representative experiment out of three is 

shown.

B

0

20

40

60

80

100

No glucose Palmitate Cycloheximide

Le
uc

in
e 

in
co

rp
or

at
io

n
 (c

pm
/c

el
l)

A
Cyto
ER

1       4        8      18      24
PalmitateGlucose starvation

α-tubulin

P-eIF2α (Ser51)

eIF2α

hours
Ctrl

1        4       8       18      24



xxxvii

Following UPR signaling, inhibition of cap-dependent translation occurs via 

phosphorylation of Ser51 of the translation initiation factor eIF2α by activated 

PERK [18]. In line with this, we detected a rapid phosphorylation of eIF2α in 

EL4 cells after only 1 hour of glucose deprivation or treatment with palmitate 

(Figure 6B). This phosphorylated form persisted for 24 hours in both cases. 

These results show that eIF2α-mediated inhibition of protein synthesis occurs 

during glucose starvation or palmitate treatment and support the idea that 

impaired surface MHC I expression is caused by an inadequate peptide supply.

Differential cell surface presentation of ER- vs. cytosol-derived peptide by 

MHC I molecules during ER stress

In the next series of experiments, we studied the impact of ER stress on MHC 

I-peptide presentation, using the SIINFEKL peptide as a model. Kb-SIINFEKL 

surface expression was quantified by flow cytometry in EL4 stable cell lines 

submitted to ER stress by glucose deprivation or palmitate treatment for 18 

hours. We found that abundance of cell surface Kb-SIINFEKL decreased by more 

than 40% in cells that were completely deprived of glucose relative to control 

cells (Figure 7A). Similarly, Kb-SIINFEKL complexes were diminished by 20% or 

more in the presence of palmitate and by 10% in cells grown in the presence 

of low glucose. Thus, consistent with what we observed in the case of surface 

MHC I molecules, MHC I-peptide presentation is reduced during ER stress.

In addition, we found that although Kb-SIINFEKL expression was reduced in 

both cell lines upon ER stress, EL4/HEL-ER-SIINFEKL cells presented signif-

icantly more complexes than EL4/HEL-Cyto-SIINFEKL cells (Figure 7A). This 

difference occurred during complete glucose starvation, or treatment with 

palmitate (Figure 7A) or tunicamycin (not shown), but not when the glucose 

concentration was low, suggesting that it is UPR-specific (Figure 7A). Of note, 

both cell lines displayed similar amounts of Kb-SIINFEKL complexes under 

normal conditions (Figure 1B and Figure 7B top). We wish to emphasize that 

differences in abundance of Kb-SIINFEKL among the two types of EL4 transfec-

tants during ER stress (Figure 7A) cannot be ascribed to an overall difference 

in expression of H2Kb at the cell surface (Figure 3A and B). We therefore con-

clude that during ER stress, diminution of Kb-SIINFEKL presentation was more 

drastic when the peptide derived from a protein localized in the cytosol than 
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from an ER-retained protein.

Figure 7. Increased presentation of SIINFEKL peptide derived from ER-localized 

relative to cytosolic HEL protein during ER stress

(A) ER stress differentially affects surface expression of Kb-SIINFEKL complexes. EL4 

stable cell lines were incubated in medium lacking glucose or containing low glucose 

(1 mg/ml) or high glucose (4.5 mg/ml) or supplemented with palmitate (2.5 mM) for 

18 hours. Kb-SIINFEKL abundance was assessed with the 25-D1.16 monoclonal an-

tibody and APC-conjugated anti-mouse IgG1 antibody. Graph represents MFI values 

of glucose-deprived EL4/HEL-Cyto-SIINFEKL (blue) or EL4/HEL-ER-SIINFEKL (red) cells 

normalized to values of control cells, which were set to 1 (dotted line). (B) ER stress 

differentially affects surface expression of newly generated Kb-SIINFEKL complexes. 

EL4 stable cell lines were incubated under control conditions (top), deprived of glu-
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cose (middle) or treated with 0.25 mM of palmitate (bottom) for 18 hours. Existent 

MHC-I complexes were eluted by acid strip and expression of new Kb-SIINFEKL com-

plexes was assessed as in A at the indicated times. MFI values of unstripped cells 

incubated under normal conditions and representing normal level of Kb-SIINFEKL in 

each cell line were used to normalize MFI values of stripped cells. Bars represent the 

mean and SD from three independent experiments performed in triplicate. *P<0.05 

and **P<0.01 when comparing normalized Kb-SIINFEKL expression in EL4/HEL-Cyto-

SIINFEKL with that of EL4/HEL-ER-SIINFEKL.

Cell surface Kb-SIINFEKL complexes have been shown to be very stable [46]. We 

therefore postulated that monitoring Kb-SIINFEKL in the aforementioned ex-

perimental conditions might lead us to underestimate the impact of ER stress 

on exportation of “new” MHC I-peptide complexes at the cell surface. Thus, 

in the next series of experiments, we took advantage of the fact that cell sur-

face MHC I-peptide complexes can be disrupted by mild acid elution at pH 3.3 

[47-49]. EL4 stable cell lines were submitted or not to ER stress, then existent 

Kb-SIINFEKL complexes were acid stripped and generation of new complexes 

was measured at different time points. We reasoned that in this way we could 

directly assess the effect of the UPR on the generation of new Kb-SIINFEKL 

complexes. In control conditions, cells rapidly re-expressed Kb-SIINFEKL and 

initial control levels were reached 9 hours after acid stripping (Figure 7B, top). 

Notably, EL4/HEL-ER-SIINFEKL and EL4/HEL-Cyto-SIINFEKL cell lines showed 

similar kinetics. In contrast, stressed cells were not able to reach basal amount 

of Kb-SIINFEKL after acid strip (Figure 7B, middle and bottom). This effect 

was more striking in glucose-starved than in palmitate-treated cells, consis-

tent to what we observed for MHC I expression (Figure 5B). Remarkably, EL4/

HEL-ER-SIINFEKL cells generated significantly more cell surface Kb-SIINFEKL 

complexes than EL4/HEL-Cyto-SIINFEKL during ER stress (Figure 7B, middle 

and bottom). It should be noted that it was not possible to measure generation 

of complexes at time points later than 9 hours after acid strip, since at this 

time cells had already been stressed for 24 hours and cell death became a con-

founding variable. We conclude that ER stress decreases presentation of both 

existent (Figure 7A) and newly generated (Figure 7B) Kb-SIINFEKL complexes 

and that it differentially affected abundance of SIINFEKL derived from an ER- 

vs. a cytosol-localized protein.



xl

Changes in stability of cytosolic and ER-retained HEL during ER stress

As mentioned above, newly synthesized proteins are the major substrates for 

MHC I processing. In addition, it has been shown that the protein synthesis 

machinery of the cytosol and ER compartments is under distinct regulatory 

control during the UPR [50]. Thus the differential effect of ER stress on presen-

tation of ER- or cytosol-derived SIINFEKL could be due to changes in the trans-

lation rates of the source proteins. We explored this possibility and compared 

the synthesis rate of HEL-ER and HEL-Cyto in EL4 stable cell lines under normal 

conditions and during glucose starvation in metabolic labeling experiments. 

The rate of synthesis of cytosolic HEL and ER-retained HEL was not affected by 

glucose deprivation (Figure 8A). Hence, the different abundance of SIINFEKL at 

the surface of these cell lines during ER stress is not due to changes in the rate 

of synthesis of the precursor proteins
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Figure 8. Stability of cytosolic HEL and ER-retained HEL during ER stress

(A) Rate of synthesis of cytosolic HEL and ER-retained HEL. EL4/HEL-ER-SIINFEKL and 

EL4/HEL-Cyto-SIINFEKL cells were incubated in control conditions (4.5 mg/ml) or de-

prived of glucose for 17 hours and pulse-labeled with [35S]methionine/ [35S]cyste-

ine for 1 hour. Cell extracts were lysed and subjected to immunoprecipitation with 

anti-HEL antibody. Immunoprecipitated proteins were separated by SDS-PAGE and 

analyzed by fluorography. One representative experiment out of two is shown. (B) Sta-

bility of cytosolic HEL and ER-retained HEL. EL4/HEL-ER-SIINFEKL and EL4/HEL-Cyto-

SIINFEKL cell lines were incubated in control conditions (4.5 mg/ml) or deprived of 

glucose for 18 hours. Then, 100 µg/ml of cycloheximide were added to inhibit protein 

synthesis and cell lysates taken at different times were immunoblotted against HEL 

or β-actin (used as loading control). One representative immunoblot out of three is 

shown. (C) Graph represents relative intensities of HEL (means and SD) from three in-

dependent experiments. *P <0.05 when comparing control vs. no glucose conditions.

MHC I-peptide presentation not only relies on protein synthesis but also on 

protein degradation. Therefore, we explored whether the stability of these pro-

teins could be differentially affected during ER stress. EL4 stable cell lines were 

deprived or not of glucose for 18 hours and then treated with cycloheximide to 

inhibit protein synthesis. The protein levels of cytosolic HEL and ER-retained 

HEL were assessed by Western blot thereafter. We observed an increased stabil-

ity of cytosolic HEL in the absence of glucose compared to control conditions 

(Figure 8B and C). In contrast, the stability of ER-retained HEL was the same in 

control conditions and during glucose starvation. These results suggest that 

reduced presentation of SIINFEKL by H2Kb when the peptide derives from the 

cytosolic protein compared to the ER-retained protein is due to increased sta-

bility of the cytosolic protein during ER stress.

 

Discussion 

The ER stands at the crossroad of two fundamental cellular processes: MHC I 

antigen presentation and UPR activation during ER stress. The UPR regulates 

protein synthesis and degradation, chaperoning and decay of ER mRNAs [14, 

15]. Thus, it has enormous potential to impinge on MHC I antigen processing 

which relies on all these processes. Here, we assessed the effect of ER stress on 

the final outcome of antigen processing and presentation: MHC I-peptide abun-

dance. We demonstrated that ER stress induced by tunicamycin, palmitate or 
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glucose deprivation, decreases peptide presentation by MHC I molecules. This 

finding is consistent with prior studies reporting reduced MHC I surface levels 

in human cells expressing a mutant HFE protein or overexpressing transcrip-

tionally active isoforms of UPR-activated transcription factors ATF-6 and XBP-

1 [51, 52]. Recently, reduced expression of MHC I molecules was also observed 

in antigen presenting cells during palmitate treatment [53]. Thus, diminution 

of MHC I surface expression upon UPR activation appears to be a generalized 

phenomenon occurring during ER stress induced by a variety of stimuli (phar-

macological agents, mutant proteins, glucose starvation and saturated fatty 

acid). 

Since the UPR provokes the degradation of ER-localized mRNAs [22], acceler-

ated decay of MHC I mRNA might have been responsible for the reduction of 

cell surface MHC I expression. However, the presence of normal levels of MHC 

I and β2m transcripts allowed us to exclude this possibility. During ER stress, 

transducers of the UPR seek to decrease the ER burden by suppressing trans-

lation initiation through phosphorylation of eIF2α by activated PERK [14, 15]. 

We demonstrated that inhibition of protein synthesis and phosphorylation of 

eIF2α did occur in EL4 cells treated with palmitate or deprived of glucose. Of 

note, the effect of these two treatments on phosphorylation of eIF2α was simi-

lar, yet inhibition of overall protein synthesis was more severe in glucose-de-

prived than in palmitate-treated cells. We presume that this discrepancy was 

due to brisk inhibition of the mammalian target of rapamycin (mTOR) pathway 

during glucose starvation [54]. Inhibition of mTOR blocks phosphorylation of 

p70 ribosomal S6 kinase and eukaryotic initiation factor 4E binding protein 1 

and thereby leads to inhibition of protein synthesis. Given the dramatic inhi-

bition of protein synthesis during glucose starvation, it was notable that the 

translation rate of the two HEL variants was not affected. That feature of our 

HEL variants is not unique as there are several proteins whose synthesis is un-

affected during ER stress [9, 54].

We found that ER stress-induced inhibition of overall protein synthesis cur-

tails the synthesis of new MHC I molecules. Nevertheless, we do not believe 

that decreased synthesis of MHC I proteins per se was a leading factor respon-

sible for decreased levels of MHC I molecules at the cell surface. Our assertion 
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is based on three lines of evidence: i) a 5% decline of MHC I synthesis in pal-

mitate-treated cells was not commensurate with a drop of 30-40% of surface 

MHC I, ii) during ER stress, cell surface levels of MHC I proteins were decreased 

much more than those of other glycoproteins that must also pass through the 

same maturation process and quality control in order to be exported at the 

cell surface, and iii) the total amount of intracellular MHC I proteins was not 

decreased during stress suggesting that MHC I molecules did not reach the 

cell surface mainly because they were sequestered in the ER. In addition, de 

Almeida et al. showed that a partial UPR signaling induced by overexpression 

of ATF-6 or XBP-1 in the absence of genuine stress stimulus also resulted in de-

creased MHC I surface expression [52]. MHC I heavy chains and β2m are pres-

ent in excess in the ER. The limiting factor in the assembly and presentation 

of MHC I-peptide complexes is peptide delivery to the ER [28, 45]. Moreover, 

peptides presented by MHC I molecules derive mainly from proteins that are 

degraded a few seconds or minutes after their synthesis as opposed to stable 

proteins with a slow turnover. Thus, generation of MHC I peptide ligands is 

tightly coupled to ongoing protein synthesis and inhibition of translation rap-

idly decreases the amount of cell surface MHC I-peptide complexes [55]. Our 

favorite hypothesis is therefore that decreased MHC I presentation during ER 

stress is due mainly, albeit not exclusively, to restriction of peptide availabil-

ity. Given that MHC I molecules preferentially sample polypeptides that are 

being actively translated [55], we posit that global attenuation of protein syn-

thesis caused by palmitate and glucose starvation limits the amount of a vast 

repertoire of peptides available for insertion in MHC I molecules. Nevertheless, 

we do not exclude the possibility that defective synthesis of MHC I and other 

possible mechanisms such as inappropriate loading of peptides, contribute 

to diminution of MHC I-peptide presentation. This would be mainly the case 

of peptides deriving from proteins whose synthesis is not curtailed upon ER 

stress. For instance, our results show that ER stress diminished presentation 

of Kb-SIINFEKL complexes even though the synthesis of the proteins source of 

this particular peptide (HEL variants) was not affected. 

A main conclusion of our work is that ER stress-induced attenuation of MHC 

I-peptide presentation is more severe when the source protein is localized in 

the cytosol than in the ER. The difference between proteins in these two cell 
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compartments was UPR-specific because it did not occur in the low glucose 

condition in which no UPR markers were significantly induced. Our cell lines 

expressing HEL-Cyto-SIINFEKL and HEL-ER-SIINFEKL displayed identical re-

sponses to palmitate treatment or glucose starvation. The two cell lines showed 

similar upregulation of UPR markers and equivalent reduction in cell surface 

levels of H2Kb and H2Db during ER stress. Despite the fact that the translation 

rates and degradation profiles normally differ in both cell lines, they displayed 

similar levels of Kb-SIINFEKL complexes under steady-state conditions. On the 

contrary, presentation of Kb-SIINFEKL complexes was differentially affected in 

these cell lines during ER stress. Only 1-2 out of every 10,000 peptides gener-

ated by the proteasome bind to MHC I molecules [28]. Our data therefore beg 

the question: how would an ER-retained protein generate more peptides than 

a cytosolic protein during ER stress? We showed that this difference was not 

due to variations in the translation rate of each precursor protein during ER 

stress. This suggests that differences in peptide presentation resulted from 

discrepancies in the degradation of ER vs. cytosolic proteins during ER stress. 

UPR transducers specifically enhance degradation of proteins in the secretory 

pathway in order to decrease the ER folding load. During ER stress, cotransla-

tional protein translocation is inhibited and newly-synthesized ER proteins are 

triaged for degradation (ERAD) [38, 56, 57]. Furthermore, retrotranslocation of 

ER-resident proteins in the cytosol for proteasomal degradation is enhanced 

[58]. Based on this, we expected to see an increased degradation of the ER-

retained HEL variant during ER stress. However, the stability of the ER-retained 

protein remained unchanged while the stability of the cytosolic HEL variant 

increased during ER stress. The most parsimonious explanation for the lat-

ter findings would be that during ER stress, proteasomes focus primarily on 

degradation of ER as opposed to cytosolic proteins. This would be consistent 

with the fact that the primary role of the UPR is to decrease the folding bur-

den in the stressed ER. We therefore propose that regulation of proteasomal 

degradation during ER stress leads to a reduction in MHC I peptide ligands 

generated from cytosolic precursors. Further studies will be needed to deter-

mine whether this concept can be generalized to other proteins and other MHC 

I-associated peptides.

What might be the impact of the UPR on immune recognition of infected and 
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neoplastic cells? Paradoxically, if the decreased generation of MHC I-peptide 

complexes results mainly from inhibition of translation, it could facilitate rec-

ognition of virus-infected cells. Phosphorylation of eIF2α hampers canonical 

cap-dependent translation initiation which regulates synthesis of 95-98% of 

cellular mRNAs [9]. However, some viruses can use internal ribosomal entry 

sites in their 5’ noncoding region to initiate cap-independent translation [9, 

59]. Thus, by preferentially repressing presentation of self peptides, the UPR 

could facilitate recognition of viral peptides (the needle in the haystack [60]). 

The potential impact of the UPR on recognition of neoplastic cells is not inher-

ently obvious. On the one hand, by repressing production of MHC I-peptide 

complexes, the UPR may hinder presentation of tumor antigens to CD8 T cells. 

Indeed, generation of optimal CD8 T cell responses is promoted by high epi-

tope density on antigen presenting cells [61, 62]. However, an elegant study 

by Schwab et al. has shown that upon induction of eIF2α phosphorylation by 

ER stress, cells can generate MHC I-associated peptides derived from cryptic 

translational reading frames [63]. Expression of such cryptic peptides by neo-

plastic cells might trigger recognition of stressed cells by CD8 T lymphocytes. 

Finally, a high fat diet rich in saturated fatty acids such as palmitate, could 

potentiate the conditions of ER stress found in tumour cells and lessen even 

more MHC I-peptide presentation. In fact, obesity has been associated with 

increased susceptibility to infection and impaired immune responses [53, 64]. 

We anticipate that high-throughput sequencing of MHC I-associated peptides 

[33] will be necessary to comprehensively evaluate how ER stress molds the 

peptide repertoire (in terms of both abundance and diversity), and to gain fur-

ther insights into the global impact of the UPR on recognition of stressed cells 

by CD8 T lymphocytes. 

 

Conclusions 

Our work shows that ER stress impinges on the MHC I peptide repertoire in 

two ways: by decreasing overall MHC I-peptide presentation and by changing 

the relative contribution of ER- vs. cytosol-proteins to the MHC I peptide rep-

ertoire. Since ER stress is a characteristic feature of infection and malignancy, 

dysregulation of MHC I-peptide presentation could have major implications in 

the recognition of infected and transformed cells by CD8 T lymphocytes.
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Methods

Cell lines 

EL4 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

(GIBCO Burlington, ON, Canada) supplemented with 5% fetal bovine serum 

(FBS) and antibiotics. EL4 stable transfectants were grown in the same medium 

supplemented with 1000 µg/ml of G418. 

DNA constructs

pHYK/HEL-ER/myc and pCMV/HEL-Cyto/myc plasmids encoding ER-retained 

or cytoplasmic HEL, respectively, were provided by S. Ostrand-Rosenberg (Uni-

versity of Maryland, Baltimore, USA). The pHYR/HEL-ER plasmid contains the 

HEL gene (that includes a signal sequence) fused to the ER-retention signal 

KDEL, whereas pCMV/HEL-Cyto codes for HEL with a modified N-terminus and 

lacks ER-retention signal. These plasmids have successfully been shown to tar-

get HEL to the ER or to the cytosol [34, 35]. pHYK/HEL-ER and pCMV/HEL-Cyto 

were sequenced to ascertain correct sequence and reading frame. Fragments 

coding for HEL-ER or HEL-Cyto were fused by PCR to the region coding for 

the ovalbumin-derived peptide SIINFEKL, flanked by a sequence of 18 bp (LE-

QLE-SIINFEKL-TEWTS, here referred to as SIINFEKL) to ensure proteasome- and 

TAP-dependent peptide processing [65, 66]. PCR amplification products were 

subcloned into the pPCR-Script Amp cloning vector (Stratagene, Cedar Creek, 

TX, USA). HEL-ER-SIINFEKL or HEL-Cyto-SIINFEKL were excised and cloned into 

the bicistronic pIRES-EGFP2 vector (Clontech, Mountain View, CA, USA) to gen-

erate pIRES-EGFP2/HEL-ER-SIINFEKL and pIRES-EGFP2/HEL-Cyto-SIINFEKL (Fig-

ure 1A). Both constructs were sequenced to ascertain correct sequence and 

reading frame.

Stable transfectants

EL4/HEL-ER-SIINFEKL and EL4/HEL-Cyto-SIINFEKL were generated by transfect-

ing EL4 cells with the appropriate HEL-containing pIRES-EGFP2 plasmid. Trans-

fections were done with Lipofectamine LTX Reagent (Invitrogen, Burlington, 
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ON, Canada) as instructed by the manufacturer. 24 hours after transfection, 

single cells expressing the brightest signal of EGFP were sorted by fluores-

cence-activated cell sorting (FACS) on a FACSAria cell sorter (BD Biosciences, 

Mississauga, ON, Canada). Stable transfected clones were further selected by 

drug resistance (1000 µg/ml of G418) in combination with repeated cycles of 

FACS of EGFP-positive cells. Clones expressing similar levels of Kb-SIINFEKL at 

the cells surface were selected for use in further experiments.

Stress induction 

ER stress was induced by incubating cells in fresh medium containing 0.25 mM 

of palmitate or 2.5 µg/ml of tunicamycin (Sigma-Aldrich, St. Louis, MO, USA) 

for the indicated times. Palmitate was prepared as described previously [67] 

and delivered as a complex with fatty acid-free BSA. Glucose starvation was in-

duced by culturing cells in glucose and sodium pyruvate-free or in low glucose 

(1000 mg/L) DMEM medium (GIBCO) supplemented with 5 % dialyzed FBS and 

antibiotics for the indicated times. Control cells were grown in high glucose 

DMEM medium, containing 4500 mg/L of glucose and 110mg/L of sodium py-

ruvate supplemented with 5% FBS and antibiotics. 

Flow cytometry

MHC I molecules at the cell surface were stained with biotin-conjugated an-

ti-H2Kb (clone AF6-88.5) and biotin-conjugated anti-H2Db (clone KH95), fol-

lowed by PeCy5 or APC-conjugated streptavidin. Other cell surface glycosyl-

ated proteins were stained with FITC-conjugated anti-CD45.2, FITC-conjugated 

anti-CD5 (Ly1), APC-conjugated anti-TCR-β and PE-conjugated anti-CD32. All 

antibodies were purchased from BD Biosciences. Kb-SIINFEKL levels were de-

termined with the 25-D1.16 antibody [36] followed by staining with APC-con-

jugated anti-mouse IgG1 (Clone X56). Propidium iodide (BD Biosciences) was 

used to exclude cells in later apoptotic stages from the analysis. Cells were 

analyzed on a BD LSR II flow cytometer using FACSDiva (BS Biosciences) and 

FCS Express softwares (De Novo Software, Los Angeles, CA, USA) [68, 69].

Acid strip assay
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MHC I-peptide complexes were eluted with acid treatment as previously de-

scribed [47-49]. Briefly, cells (~5 x 105) were resuspended in 0.2 ml of ci-

trate phosphate buffer at pH 3.3 (0.131 M citric acid/0.066 M Na2HPO4, NaCl 

150mM) for 1 minute, neutralized with appropriate medium pH 7.4 and either 

reincubated in fresh medium or stained for flow cytometry analysis.

RNA extraction, reverse transcription and RT-qPCR

Total RNA was isolated with TRIzol reagent (Invitrogen) according to the man-

ufacturer’s instructions. Purified RNA was reverse transcribed using the High 

Capacity cDNA reverse transcription Kit with random primers (Applied Biosys-

tems, Foster City, CA, USA) as described by the manufacturer. A reference RNA 

(Stratagene, La Jolla, CA, USA) was also transcribed in cDNA. Expression level 

of target genes was determined using primer and probe sets from Universal 

ProbeLibrary (https://www.roche-applied-science.com/sis/rtpcr/upl/index.

jsp) or Applied Biosystems (ABI Gene Expression Assays or SYBR green PCR 

Master Mix, http://www.appliedbiosystems.com/). Primer sequences are given 

in Additional file 1. RT-qPCR assay for XBP-1 was designed to amplify both the 

normal and spliced forms.  Pre-developed TaqMan® assays for β-actin were 

used as endogenous controls. RT-qPCR analyses were performed as described 

using a PRISM® 7900HT Sequence Detection System (Applied Biosystems) [70]. 

The relative quantification of target genes was determined by using the rrCT 

(cycle threshold) method. Relative expression (RQ) was calculated using the 

Sequence Detection System (SDS) 2.2.2 software (Applied Biosystems) and the 

formula RQ = 2-rrCT. 

Protein synthesis and metabolic labeling

To measure protein synthesis, EL4 cell lines were cultured in presence or ab-

sence of glucose (4.5 mg/ml) for 18 hours. [3H]Leucine (10µCi/mL) was added 

during the last hour. Cells were washed twice with ice-cold PBS and fixed for 

30 minutes on ice with 10% TCA. Cells were then rinsed with water and lysed 

with 0.1N NaOH. Radioactivity incorporation was determined with a liquid 

scintillation analyzer Tri-CArb 2800TR (Perkin Elmer).
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In vivo biosynthetic labeling experiments were carried out as described previ-

ously [71]. Briefly, to evaluate the rate of synthesis of HEL and MHC I, EL4 cell 

lines were grown in control conditions or in the presence of 2.5 mM of palmi-

tate or in the absence of glucose for 17 hours. After this period, 107 cells per 

condition were starved of methionine and cysteine for 30 min. 35S-labeled 

methionine and cysteine (220µCi/mL) were then added for 1 hour. Cells were 

harvested and lysed in Triton X-100 buffer (50mM Tris pH7.5, 150mM NaCl, 

1% Triton X-100, 1mM EDTA, 40mM β-glycerophosphate) supplemented with 

complete protease inhibitor cocktail (Roche Molecular Biochemicals, Laval, QC, 

Canada) and phosphatase inhibitors (1 mM Na3VO4 and 5 mM NaF). Immuno-

precipitation of ER-retained HEL or cytosolic HEL and MHC I were performed 

using anti-HEL antibody purchased from Affinity BioReagents (Golden, CO, 

USA) or anti-H2Kb or anti-H2Db hybridoma culture supernatans antibody [49], 

according to the method described previously [71]. Proteins were separated by 

SDS-PAGE and labeled proteins were detected by fluorography.

Immunoblotting

EL4 cell lines were cultured under control conditions or submitted to glucose 

deprivation or palmitate treatment (0.25 mM) for the indicated times. When 

indicated, 100 µg/mL of cycloheximide (Sigma-Aldrich) was used for various 

durations to measure the stability of HEL variants. Cells were harvested and 

lysed in Triton X-100 buffer. The lysates were cleared by centrifugation and 

the protein content was measured by the Bradford method (Biorad, Mississau-

ga, ON, Canada). Samples were resolved by SDS-PAGE and immunoblotted with 

the following antibodies: anti-β-actin (AC-15) from Sigma-Aldrich, anti-HEL 

from Affinity BioReagents, anti-MHC class I (2G5) from Santa Cruz Biotechnol-

ogy Inc. (Santa Cruz, CA, USA), anti-α-tubulin, anti-phospho-eIF2α (Ser51), anti-

eIF2α and horseradish peroxidase (HRP)-conjugated anti-rabbit IgG from Cell 

Signaling Technology (Beverly, MA, USA), and HRP-conjugated goat anti-mouse 

IgG from BD Pharmigen (San Diego, CA, USA). Chemiluminescent signal was 

detected using a LAS3000 imaging system (Fujifilm, Tokyo, Japan) and quanti-

fication of band intensities was done using the Multi Gauge v3.0 (Fujifilm) and 

the ImageQuaNT v5.0 (Molecular Dynamics, Sunnyvale, CA, USA) softwares.
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Statistical analysis

The means of normally distributed data were compared using the Student t 

test, with a P value of < 0.05 considered significant. Data are presented as the 

mean and SD. Whenever the results are expressed as a percentage of control, 

the statistical analysis was performed on the actual value.
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FIG. 2. The MIP repertoire conceals a cell–type specific signature. (A) Venn diagram representation of the relation between MIPs (and
their source proteins) eluted from C57BL/6 thymocytes and DCs. (B) Cell surface expression of MHC I allelic products was evaluated by flow
cytometry. Histogram shows the DC/thymocyte mean fluorescence intensity ratio for H2Db (p 6 10 5; Student t test), H2Kb (p 6 10 7),
Qa1 (p 7 10 6) and Qa2 (p 3 10 2) (mean S.D. of triplicate experiments). (C) Proportion of peptides associated to different MHC
I allelic products in DCs and thymocytes. (D) Pie charts represent the relations between peptide source genes (389 for DCs, 186 for thymocytes)
and KEGG pathways. Examples of pathways enriched in the gene datasets are depicted (with p value for enrichment in parentheses).

APPENDIX 2 

I participated in the analysis of the MHC I immunopeptidomes from mouse 

DCs and thymocytes. The results were included in a published article: 

Deletion of Immunoproteasome subunits imprints on the transcriptome 

and has a broad impact on peptides presented by major histocompatibil-

ity complex I molecules

Danielle de Verteuil, Tara L. Muratore-Schroeder, Diana P. Granados, et. al. Mo-

lecular & Cellular Proteomics, Volume 9:2034-2047 (2010)

Comparison of both sets of peptides revealed that the MHC I peptide-repertoire 
(MIP) of DCs conceals a unique signature.
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