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Bright solitons in spin-orbit-coupled Bose-Einstein condensates
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We study bright solitons in a Bose-Einstein condensate with a spin-orbit coupling that has been realized
experimentally. Both stationary bright solitons and moving bright solitons are found. The stationary bright
solitons are the ground states and possess well-defined spin-parity, a symmetry involving both spatial and spin
degrees of freedom; these solitons are real valued but not positive definite, and the number of their nodes depends
on the strength of spin-orbit coupling. For the moving bright solitons, their shapes are found to change with
velocity due to the lack of Galilean invariance in the system.

DOI: 10.1103/PhysRevA.87.013614 PACS number(s): 03.75.Lm, 03.75.Kk, 03.75.Mn, 71.70.Ej

I. INTRODUCTION

Solitons are one of the most interesting topics in nonlinear
systems. The most fascinating and well-known feature of
this localized wave packet is that it can propagate without
changing its shape as a result of the balance between nonlin-
earity and dispersion [1]. The achievement of Bose-Einstein
condensation in a dilute atomic gas has offered a clean and
parameter-controllable platform to study the properties of soli-
tons [2]. In a Bose-Einstein condensate (BEC), the nonlinearity
originates from the atomic interactions and is manifested by
the nonlinear term in the Gross-Pitaevskii equation (GPE),
which is the mean-field description of BEC [3]. With attractive
and repulsive interatomic interactions, the GPE can have
bright and dark solitons solutions, respectively. Such dark and
bright solitons in BECs have been studied extensively both
theoretically [4–10] and experimentally [11–18].

The developments with two-component BECs have further
enriched the investigation of solitons in matter waves. The two-
component BECs not only introduce more tunable parameters,
for example, the interaction between the two species, but also
bring in novel nonlinear structures which have no counterparts
in the scalar BEC, such as dark-bright solitons (one component
is a dark soliton while the other is bright) [19–22], dark-dark
solitons [23], bright-bright solitons [24–26], and domain walls
[27–29].

Recently, in a landmark experiment, the Spielman group at
NIST have engineered a synthetic spin-orbit coupling (SOC)
for a BEC [30]. In the experiment, two Raman laser beams are
used to couple a two-component BEC. The momentum transfer
between lasers and atoms leads to synthetic spin-orbit coupling
[31–40]. This kind of spin-orbit coupling has subsequently
been realized for neutral atoms in other laboratories [41–44].
These experimental breakthroughs [30,44,45] have stimulated
extensive theoretical investigation of the properties of spin-
orbit-coupled BECs [46–67], which includes some early
studies on solitons. For example, bright-soliton solutions were
found analytically for spin-orbit-coupled BECs by neglecting
the kinetic energy [68]. Dark solitons for such a system were
studied in a one-dimensional ring [69]. In this work we conduct
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a systematic study of bright solitons for a BEC with attractive
interactions and the experimentally realized SOC [30,42–44].
By solving the GPE both analytically and numerically, we find
that these solitons possess a number of novel properties due to
the SOC.

In particular, we find that the stationary bright solitons that
are the ground state of the system have nodes in their wave
function. For a conventional BEC without SOC, its ground
state must be nodeless thanks to the “no-node” theorem for
the ground state of a bosonic system [70]. Furthermore, these
solitons are found to have well-defined spin-parity, a symmetry
that involves both spatial and spin degrees of freedom, and can
exist in systems with SOC.

We have also found solutions for moving bright solitons.
They have the very interesting feature that their shapes change
dramatically with increasing velocity. For a conventional BEC,
the shape of a soliton does not change with velocity due to the
Galilean invariance of the system. In other nonlinear systems,
such as Korteweg–de Vries (KdV) systems, the shape of a
soliton changes only in height and width with velocity [71]. In
stark contrast, bright solitons in a BEC with SOC can change
shape dramatically from nodeless to having many nodes with
varying velocity. The new feature arises because of the lack
of Galilean invariance due to SOC [62]. It is worthwhile to
note that a similar model was proposed a long time ago in the
context of nonlinear birefringent fibers [72]. This shows that
our results will find applications in nonlinear optics.

II. MODEL EQUATION

A BEC with the experimentally realized SOC is described
by the following GPE:

ih̄
∂�

∂t
=

[
1

2m
(px + h̄κσy)2 + h̄�σz − g�† · �

]
� , (1)

where the spinor wave function � = (�1,�2)T and �† · � =
|�1|2 + |�2|2, with �1 for up spin and �2 for down spin.
The nonlinear coefficient −g < 0 is for attractive interatomic
interactions, and we have taken g11 = g22 = g12 for simplicity.
The SOC is realized experimentally by two counterpropagat-
ing Raman lasers that couple two hyperfine ground states �1

and �2. The strength of SOC κ depends on the relative incident

013614-11050-2947/2013/87(1)/013614(5) ©2013 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15154736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevA.87.013614


YONG XU, YONGPING ZHANG, AND BIAO WU PHYSICAL REVIEW A 87, 013614 (2013)

angle of the Raman beams and can be changed [65]. The Rabi
frequency � can be tuned easily by modifying the intensity of
the Raman beams. σ are Pauli matrices. A bias-homogeneous
magnetic field is applied along the y direction. We consider the
case that the radial trapping frequency is large, and therefore,
the system is effectively one-dimensional [14,15].

For numerical simulation, we rewrite Eq. (1) in a dimen-
sionless form by scaling energy with h̄� and length with√

h̄/m�. The dimensionless GPE is

i∂t� = [− 1
2∂2

x + iασy∂x + σz − γ�† · �
]
� . (2)

The dimensionless parameters α = −κ
√

h̄�/m and γ =
Ng

√
m/(h̄�)/h̄, with N being the total number of atoms.

The dimensionless wave functions � satisfy
∫

dx(|�1|2 +
|�2|2) = 1. The SOC term iασy∂x in Eq. (2) indicates that
spin σy only couples the momentum in the x direction. The
energy functional of our system is

E =
∫

dx

[
1

2
|∂x�1|2 + 1

2
|∂x�2|2 + |�1|2 − |�2|2

+α�∗
1∂x�2 − α�∗

2∂x�1 − γ

2
(|�1|4

+ |�2|4 + 2|�1|2|�2|2)

]
. (3)

III. STATIONARY BRIGHT SOLITONS

We focus on the simplest stationary bright solitons, which
are the ground states of the system. To find these solitons, we
solve Eq. (2) by using an imaginary time-evolution method.
Two typical bright solitons are shown in Fig. 1. One interesting
feature is immediately noticed. There are “nodes” in these
ground-state bright solitons. This is very different from the
conventional BEC, where there are no nodes in this kind of
ground-state soliton, as demanded by the no-node theorem for
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FIG. 1. Stationary bright solitons at γ = 1.0. The solid lines are
numerical results, and the circles are from the variational method. In
(a) and (b), α = 1.0. In (c) and (d), α = 2.0.

the ground state of a boson system. Our results confirm that
this no-node theorem does not hold for systems with SOC [70].

There can exist a unique symmetry for systems with SOC,
spin-parity, which involves both spatial and spin degrees of
freedom. The operator for spin-parity is defined as

P = Pσz, (4)

where P is the parity operator. It is easy to verify that our
system is invariant under the action of spin-parity P . By direct
observation, one can see that the bright solitons shown in Fig. 1
satisfy

P
(

�1(x)

�2(x)

)
= −

(
�1(x)

�2(x)

)
(5)

as the up component �1 has odd parity while the other
component �2 is even. Therefore, these bright solitons have
spin-parity −1. In fact, all the ground-state bright solitons that
we have found have spin-parity −1. That the eigenvalue of P
for these solitons is −1 and not 1 can be understood in the
following manner. When the strength of SOC α decreases to
zero, the up component �1 shrinks to zero, and only the down
component survives. Since the system becomes a conventional
BEC without SOC, the no-node theorem demands that the
surviving down component has even symmetry. As the SOC
is turned up continuously and slowly, the symmetry of the
second component should remain, and the spin-parity has to
be −1.

For a more detailed analysis of these bright solitons, we
attempt to find an analytical approximation for the wave func-
tions using the variational method. Motivated by the features
of the stationary bright solitons shown in Fig. 1, we propose
the following trial wave functions for these solitons:

� =
(

A sin(2πx/J )

B cos(2πx/J )

)
sech(x/S) . (6)

The parameters A, B, J , and S are determined by minimizing
the energy functional in Eq. (3) with the constraining normal-
ization. The results of the trial wave functions are compared
with the numerical results in Fig. 1, where it can be seen that
they are in excellent agreement.

It is clear from Eq. (6) that the parameter 2π/J can be
regarded roughly as the number of nodes in the bright solitons,
while S is for the overall width of the soliton. Both of them
depend on the SOC strength α and the interaction strength
γ . In Fig. 2 we have plotted the relation between 2π/J and
S, demonstrating how the number of nodes is related to the
soliton width for different values of α and γ . As shown in
Fig. 2, for solitons with the same number of nodes, they are
wider for smaller interaction strength γ [Fig. 2(a)]; the solitons
with the same width have more nodes for larger SOC strength
α [Fig. 2(b)].

It has been reported that there exists a quantum phase
transition for the ground states in the spin-orbit-coupled system
with repulsive interaction [65]. It is interesting to check
whether such a phase transition exists for the case of attractive
interaction. For this purpose, we have computed the spin
polarization 〈σz〉 = ∫

dx(�2
1 − �2

2) for these bright solitons,
and the results are plotted in Fig. 3. We see that for a given γ ,
it changes smoothly with the SOC strength α. For the cases of
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FIG. 2. The relation between the number of soliton nodes 2π/J

and the soliton width S. (a) Circles, squares, and stars are for γ =
1.0,1.5,2.0, respectively. Here α increases from 0.5 to 2.0 (the arrow
direction). (b) Circles, squares, and stars are for α = 1.0,1.5,2.0.
Here γ increases from 1.0 to 4.0 (the arrow direction). The open
circle and square correspond to the bright solitons in Figs. 1(a) and
1(b) and Figs. 1(c) and 1(d), respectively.

repulsive interaction and no interaction, the spin polarization
is found to change sharply with α, indicating a quantum phase
transition [65]. The smooth behavior of Fig. 3 suggests there
is no quantum phase transition.

IV. MOVING BRIGHT SOLITONS

After the study of stationary bright solitons, we turn our
attention to moving bright solitons. For a conventional BEC
without SOC, it is straightforward to find a moving bright
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FIG. 3. The spin polarization 〈σz〉 as a function of α and γ .
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FIG. 4. Moving bright soliton profiles �v(x) from the numerical
calculation (solid line) and the variational method (circles) with
Eq. (9). γ = 1.0. In (a) and (b), α = 1.0. In (c) and (d), α = 2.0.

soliton from a stationary soliton: if the wave function �s

describes a stationary soliton, then exp(ivx)�s(x − vt) is the
wave function, up to a trivial phase, for a soliton moving at
speed v. This is due to the invariance of the system under
Galilean transformations.

However, Galilean invariance is violated for a spin-orbit-
coupled BEC [62]. To see this explicitly, we assume moving
solitons having the following form:

�M (x,t) = �v(x − vt,t) exp
(
ivx − i 1

2v2t
)
, (7)

where �v is a localized function. Substitution of �M (x,t) into
Eq. (2) yields

i∂t�v = [− 1
2∂2

x + ασy(i∂x − v) + σz − γ�†
v · �v

]
�v . (8)

Compared to Eq. (2), this dynamical equation has an additional
term αvσy , indicating the violation of Galilean invariance. This
violation means that it is no longer a trivial task to find a moving
bright soliton for a BEC with SOC.

To find moving bright solitons, we numerically solve
Eq. (8) using the imaginary time-evolution method. Two
typical moving bright solitons are shown in Fig. 4, where we
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FIG. 5. Dynamical evolution of a bright soliton under the in-
fluence of a small linear potential V (x) = ηx. α = 1.7, γ = 1.0,
η = 0.001. For better comparison of shapes, the centers of the soliton
densities have all been shifted to the zero point. The velocity of the
soliton is labeled tot the right of (b).

see clearly that the shapes of moving bright solitons change
with their velocities. As seen in Figs. 4(a) and 4(b), when
the velocity v is changed from 0.1 to 1, the density of the
up component changes from having two peaks to having only
one. At a larger SOC strength, such as α = 2 in Figs. 4(c) and
4(d), a small change in velocity leads to a dramatic change in
the soliton profiles.

Similar to the stationary soliton, these moving bright
solitons can also be found with the variational method by
minimizing the energy functional with the following trial wave
function:

�v(x) =
(

A
[

sin 2πx
J

+ ρ1i cos 2πx
J

]
B

[
cos 2πx

J
+ ρ2i sin 2πx

J

]
)

sech
x

S
, (9)

with two new parameters, ρ1 and ρ2. When ρ1 = ρ2 = 0, we
recover the stationary soliton in Eq. (6). The solutions obtained
with the variational method are plotted in Fig. 4, and they agree
well with the numerical results. It is clear from the trial wave
function that the moving bright soliton has no well-defined
spin-parity P .

These moving bright solitons are adiabatically linked to the
stationary bright solitons. To see this, we slowly accelerate the
stationary bright soliton by adding a small linear potential in
Eq. (2) integrating with a stationary bright soliton as the initial
condition. The dynamical evolution of this soliton is shown in

Fig. 5, where we see clearly how a stationary soliton is devel-
oped into a moving soliton with its shape changing constantly.
Note that the centers of solitons in Fig. 5 have all been shifted
to the zero point for better comparison between shapes.

We note that there are other solitons, which also change
their shapes with velocity, for example, dark solitons in a BEC
and bright solitons in the KdV system [71]. This change is also
caused by the lack of the Galilean invariance in the system. For
the dark soliton, the constant background provides a preferred
reference frame and breaks the Galilean invariance. In the
KdV system, the violation is caused by the nonquadratic linear
dispersion. However, in these systems, the change in shape
with velocity is not as dramatic: there are only changes in the
height and width of the solitons. With a spin-orbit-coupled
BEC, the number of peaks in the solitons can change with a
slight change in velocity.

V. CONCLUSION

We have systematically studied both stationary and moving
bright solitons in a spin-orbit-coupled BEC. These bright
solitons have features not present without spin-orbit coupling,
for example, the existence of nodes and spin-parity in the
stationary bright solitons and the change in shape with velocity
in the moving bright solitons. Although there are multiple
peaks in the soliton profiles, the bright solitons that we have
found are single solitons. It would be very interesting to
seek out multiple-soliton solutions for this spin-orbit-coupled
system. These bright solitons should be able to be observed
in experiment. One can apply the same Raman laser setup to
generate the synthetic spin-orbit coupling for an optical dipole-
trapped 7Li condensate where the interatomic interaction is
attractive by nature.

Note added. Recently, we noticed a newly posted preprint
on bright solitons in a BEC with SOC [73]. Some of their
results overlap with ours.
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Phys. 83, 1523 (2011).
[39] J. D. Sau, R. Sensarma, S. Powell, I. B. Spielman, and S. Das

Sarma, Phys. Rev. B 83, 140510(R) (2011).
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