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Résumé 
Les rétinoïdes sont utilisés dans le traitement d’une variété de tumeurs malignes et 

lésions précancéreuses. Leurs effets dans des lignées cellulaires dérivées de tumeurs solides 

tel que le cancer du sein ont été étudiés extensivement. Cependant, les bénéfices dans le 

cancer du sein restent à date peu clairs. Ceci est probablement du à l’hétérogénéité des 

tumeurs mammaires et la réponse très variable aux effets antiprolifératifs de l’acide 

rétinoïque. Dans les lignées cellulaires cancéreuses mammaires, la réponse l’AR est 

fortement corrélée au niveau d’expression du récepteur aux estrogènes alpha (ER!), qui 

régule l’expression du gène qui encode le récepteur à l’acide rétinoïque alpha, RARA.  

Malgré cela, certaines lignées cellulaires ER-négatives, comme la lignée HER2-positive 

SK-BR-3, ont été décrites comme étant sensibles à l’AR.  

Dans le Chapter 2: de cette thèse, nous avons étudié les mécanismes de la signalisation 

ER-dépendante et ER-indépendante dans les cellules cancéreuses mammaires. Nous avons 

utilisé des lignées ER-négatives et ER-positives pour démontrer qu’une partie de la réponse 

à l’AR est indépendante de la signalisation par ER. Nous avons identifié plusieurs gènes 

cibles primaires de l’AR qui ont des effets similaires à l’AR quand ils sont surexprimés 

dans des cellules mammaires cancéreuses. Cette étude apporte une meilleure 

compréhension des mécanismes complexes qui mènent à l’arrêt de croissance induit par 

l’AR dans les cellules cancéreuses mammaires.  

Dans le Chapitre 3, nous avons regardé plus en détails la signalisation ER-

indépendante par l’AR dans des cellules ayant une amplification des gènes HER2 et RARA 

et nous avons identifié une synergie entre l’AR et le Herceptin dans ces cellules. Nous 

proposons que les gènes FOXO jouent une rôle dans cette synergie. Les cellules SK-BR-3, 

ayant une coamplification HER2/RARA, pourraient représenter une classe de tumeurs qui 

pourraient bénéficier d’un traitement avec des rétinoïdes, en augmentent la réponse au 

Herceptin et potentiellement en réduisant la résistance au Herceptin. 

En conclusion, les données présentées dans cette thèse aident à mieux comprendre les 

mécanismes menant à l’arrêt de croissance induit par l’AR dans les cellules cancéreuses 
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mammaires et fournissent une application potentielle pour l’utilisation de l’AR dans le 

traitement du cancer du sein. 

Mots-clés : Cancer du sein, acide rétinoïque, HER2, ER!, Herceptin 
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Abstract 

Retinoids are being used in the treatment of several malignancies and precancerous 

lesions. Their effects on cell lines derived from solid tumors, such as breast cancer, have 

also been described extensively. Their benefit in breast cancer, however, remains unclear. 

This might be because of the high levels of heterogeneity of breast tumors and the very 

variable response to the antiproliferative effects of retinoic acid. In mammary tumor cell 

lines, the response to retinoic acid is highly correlated with the expression of the estrogen 

receptor alpha (ER!), which regulates the expression of the retinoic acid receptor alpha 

gene RARA. However, some ER-negative cell lines, such as the HER2 positive SK-BR-3 

cell line, have been reported to be RA-sensitive.  

In Chapter 2: of this thesis we have investigated the mechanisms of ER-dependent and 

ER-independent RA signaling in breast cancer cells. Using ER-positive and ER-negative 

cell lines, we show that part of the response to RA is independent of ER signaling. Several 

direct retinoic acid targets were identified that could mimic antiproliferative effects of 

retinoic acid when overexpressed in breast cancer cells. This study has provided better 

insight in the complex mechanisms that lead to RA-induced growth arrest in breast cancer 

cells. 

In Chapter 3: we looked further into the ER-independent RA signaling in 

HER2/RARA-amplified cells and identified a synergy between RA and Herceptin in these 

cells. We propose a role for FOXOs in mediating this synergy. HER2/RARA coamplified 

breast tumors might represent a subclass of tumors that could benefit from retinoid 

treatment, both increase antitumor effects of Herceptin, as well as in potentially reducing 

Herceptin resistance. 

In conclusion, data presented in this thesis give better insight in the mechanisms of RA 

induced growth arrest in breast cancer cells and provide a potential application of retinoids 

in a subset of breast tumors. 

Keywords : Breast cancer, retinoic acid, HER2, ER!, Herceptin 
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Chapter 1:  Introduction 

1.1 Metabolism and physiology of retinoids 

Dietary vitamin A has been recognized for almost a century (1, 2) as essential for the 

life of all chordates. Since its discovery, a substantial amount of research has shown this 

vitamin to be essential for embryonic development, reproduction, vision, immune function 

and tissue homeostasis. Different types of active metabolites are responsible for controlling 

these functions. 11-cis-retinal play an important role in the visual cycle as a mediator of 

phototransduction. All-trans-retinoic acid (RA) and 9-cis-retinoic acid (9cRA) can regulate 

the expression of a wide range of target genes through the activation of retinoic acid 

receptors (RARs), and as such control multiple networks that are important for embryonic 

development and adult tissue maintenance (3). 

1.1.1 Normal retinoid metabolism 

1.1.1.1 Retinoids 

Vitamin A (all-trans-retinol; atRol) and all its metabolites are collectively called 

retinoids. Natural retinoids share a chemical structure composed of a !-ionine ring, a 

polyene side chain and a polar end group ((4); Figure 1A). No animal species can make de 

novo vitamin A. They can however convert dietary carotenoids into active retinoids. 

Another source of retinoids from the diet are retinyl esters and retinol that can be found in 

some animal tissues such as the liver. RA, the most active retinoid metabolite, is formed in 

target cells from all-trans-retinol by a two step oxidation process: all-trans-retinol is 

converted into all-trans-retinal (at-Ral), which is subsequently converted into RA.  
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Figure 1 Structure and metabolism of retinoids 
(A) Chemical structures of some naturally occuring retinoids. Adapted from (5). (B) Schematic overview of 
retinoid metabolism. Endogenous retinoids are boxed and gray circles highlight major physiologial responses 
to the different retinoids. The enzymes responsible for the various steps of retinoid metabolism are indicated. 
Certain enzymes can catalyze the synthesis or degradation of RA in vitro, indicated by asterisks. ADH 
Alcohol dehydrogenase (ADH1,3,4), BCO-I !,!-carotene-15,15'-monooxygenase, BCO-II !,!-carotene-
9',10'-dioxygenase, CYP26 cytochrome P450 family 26, LRAT lecithin:retinol acetyltransferase, RA retinoic 
acid, RALDH retinaldehyde dehydrogenases (RALDH1, 2, 3, 4), REH retinol ester hydrolase, RPE65 retinal 
pigment epithelium-specific protein 65 kDa, SDR short-chain dehydrogenase/reductase. Adapted from (6). 

1.1.1.2 Metabolic generation of RA 

Active retinoid metabolites are generally believed to be synthesized in target tissues, 

where it acts in an autocrine and/or paracrine manner. In higher vertebrates, the most 

important source of this synthesis is all-trans-retinol that is taken up from the plasma (7). A 

�-carotene

R

COOH

COOH13-cis-RA 9-cis-RA

R = CH2OH   All-trans-retinol
R = COOH   All-trans-retinoic acid
R = CHO   All-trans-retinaldehyde
R = CH2 + fatty acid ester All-trans-retinyl esters

A.

B.
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schematic overview of retinoid metabolism is shown in Figure 1B, and the process will be 

discussed in detail below. 

Retinoid uptake and transporting proteins 

Dietary provitamin A carotenoids such as !-carotene enter enterocytes in the small 

intestine by passive diffusion, to subsequently be cleaved into two molecules of retinal. 

This retinal will then be reduced to retinol by retinal reductases. Dietary retinyl esters will 

be converted into retinol in the intestinal lumen before uptake by the enterocytes (7). In the 

enterocytes, the retinol will bind to cellular retinol binding protein type II (CRBP-II). Most 

of the retinol in the enterocytes will then be re-esterified, a process that is facilitated by 

binding of CRBP-II. The retinyl esters are then incorporated in large lipoprotein complexes 

called chylomicrons and transported to the liver. Here, they will either be stored in stellate 

cells (mainly as retinyl esters) or be hydrolyzed and bound to retinol binding protein 

(RBP1). The retinol-RBP1 will then be released in the plasma and absorbed by target cells 

expressing the RBP1 receptor STRA6 (6). STRA6 is a multitransmembrane protein and 

widely expressed in mouse embryos, whereas the expression in the adult is much more 

restricted. STRA6 has been shown to be upregulated by retinoids in mouse mammary 

epithelial cells (8). 

Retinol processing by retinol dehydrogenases 

The first step in the production of all-trans-retinoic acid in target tissues is the 

oxidation of retinol into retinal (retinaldehyde). This process is mediated by retinol 

dehydrogenases, which are members of the families of cytosolic medium-chain alcohol 

dehydrogenases (ADH) or membrane-bound short-chain dehydrogenase/reductases (SDR) 

(9).  

The ADHs ADH1, ADH3 and ADH4 are all capable of oxidizing at-Rol into at-Ral in 

vitro. ADH4 is the most efficient of the four. Contrary to vertebrates that have multiple 

ADHs, invertebrates only have one, most often ADH3. The latter is ubiquitously expressed, 

whereas ADH1 and ADH4 show a more tissue-specific expression pattern (6, 7). Studies 

with knock-out mice suggest that Adh3 is the ubiquitous ADH under normal physiological 

conditions, whereas Adh1 and Adh4 seem to be necessary in cases of vitamin A excess or 
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deficiency, respectively (10-12). ADH1 and ADH4 can compensate for lack of ADH3 in 

the case of sufficiently high retinol levels, but are incapable of doing so in the case of 

limited retinol supply (13). The ADHs do not seem to be able to oxidize at-Rol when it is 

bound to RBP1 (7).  

The other family of enzymes capable of oxidizing at-Rol are the SDRs. Contrary to the 

ADHs that are cytosolic, these enzymes are microsomal. Several members of this family 

that have been shown to function as retinol dehydrogenases include RDH1, RDH5, 

RDH10, RDH11, CRAD1, CRAD2, CRAD3 and retSDR1 (10). Genetic studies have been 

performed only with RDH5 and RDH10. Whereas RDH5 is important for vision, it does 

not seem to play a vital role in  in vivo retinoic acid synthesis (10). RDH10 on the other 

hand is important for embryonic RA synthesis and its loss results in embryonic lethality 

(14). As opposed to ADHs, SDRs use RBP1-bound retinol as a substrate. RBP1 functions 

as a chaperone directing retinol to the metabolizing enzymes (15). 

Retinal oxidation by retinal dehydrogenases 

The retinal that is being produced by oxidation of retinol is then further processed into 

RA by a second, irreversible oxidation process. This oxidation of retinal is mediated by 

retinal dehydrogenases (RALDHs) (16). Vertebrates generally express four RALDHs, 

RALDH1 or ALDH1A1, RALDH2 or ALDH1A2 and RALDH3 or ALDH1A3 of the 

ALDH1A class, and RALDH4 of the ALDH8 class. Unlike the expression of ADH3 which 

is ubiquitous, the expression of the RALDHs shows a high level of tissue specificity. This 

implicates that although retinal can be produced in a ubiquitous manner in the organism, 

the production of RA is a localized process (17). Notably, the RALDHs are expressed 

specifically in epithelia whose the differentiation is regulated by RA (10). Besides the 

RALDHs, several cytochrome P450 enzymes (CYPs), CYP1A1, 1A2, 2C3 and 2J3, have 

also been shown to be capable to oxidize retinal in vitro (5). 

RALDH1 expression is observed in the dorsal retina of embryos, as well as in several 

adult epithelial tissues, including testes, brain, lungs, kidneys and mammary epithelium 

(18-21). RALDH1 knock-out mice are morphologically normal, viable and fertile. Also the 

effects on the dorsal retina are fairly minor. Raldh1-/-  mice do present with a very low 



6 

 

capacity to produce RA in the embryonic dorsal retina and the adult liver (22). When 

overexpressed in Xenopus embryos, RALDH1 leads to premature RA synthesis, showing 

that this enzyme can be a functional retinol dehydrogenase in vivo (10). It has been 

suggested that the main role of RALDH1 is in the catabolism of excess retinol (6). Several 

lines of evidence also suggest RALDH1 to be a marker of stem cells and progenitors in 

different tissue types, including muscle (23), brain (24), intestine and adipose tissue (25), 

prostate (24), the hematopoietic system (26, 27), as well as the mammary gland (19). 

RALDH2 expression occurs in multiple tissues in both the embryo and the adult. 

Raldh2-/- mice show shortening of the anteroposterior axis and lack limb bud formation 

due to the absence of RA (28, 29). These embryos die at midgestation because of defects in 

heart development. These defects can be overcome to a large extent by the maternal  

administration of RA, leading to the conclusion that the main role of RALDH2 is to 

provide RA for embryonic development (28). 

RALDH3 was isolated from human salivary glands (30) and was subsequently shown 

to be expressed in various adult tissues such as intestines, liver, prostate, pancreas and 

lungs (31). Unlike RALDH1 and RALDH2 that show activity with 9-cis-, 13-cis- and all-

trans-retinal, this family member seems to be active solely with the all-trans isoform (32). 

In the developing embryo, RALDH3 expression is found in the retina, lens and olfactory 

pit, as well as in ureteric buds and surface ectoderm in the developing forebrain (10). 

RALDH3-null mice have severe cranio-facial defects and die shortly after birth because of 

respiratory distress. Defects during embryonic development of RALDH3-null mice can be 

partially overcome, like in the case of RALDH2, by administration of RA to the mother 

(33). This shows that RALDH3 also has important roles in RA synthesis during embryonic 

development. In spite of its broad expression in the adult, its role remains unclear. 

RALDH3 is also expressed in normal mammary epithelial, but the breast cancer cell line 

MCF-7, which lacks the capacity of RA synthesis, does not express this enzyme (34, 35). 

RALDH4 is the least characterized of the RALDHs. It is expressed in mouse liver and 

kidney and preferentially functions with 9-cis-retinal, with which it is about two times as 

active as with the all-trans isoform (36). Therefore it has been suggested that this enzyme 
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plays a role in the synthesis of 9cRA, but due to the lack of studies performed on this 

subject, the in vivo role of RALDH4 remains largely unclear. 

Retinoic acid transport by CRABPs 

Cellular retinoic acid binding proteins type I and II (CRABP-I and CRABP-II) will 

bind the newly synthesized RA and transport it to either the nucleus where it will activate 

target gene transcription, or to nearby target cells. CRABP-I shows higher affinity for RA 

than CRABP-II and both have higher affinity for RA than for 9cRA (37).  

CRABP-II was suggested to act as a facilitator of RA uptake and metabolism and to 

have a role as a cofactor in RA signaling (38). Its expression is cytosolic in the absence of 

ligand, but when RA is present it quickly translocates to the nucleus. Here, the RA-

CRABP-II complexes interact directly with retinoic acid receptors, transferring the ligand 

to the receptor. CRABP-I on the other hand seems to play a role in regulating the metabolic 

inactivation of RA (39). Overexpression of CRABP-I in F9 cells by transfection led to 

higher levels of RA inactivation and loss of RA sensitivity (40, 41).  

RA catabolism 

To control the levels of RA in cells and tissues, a tight balance exists between the 

synthesis and catabolism of RA. The catabolism of RA is mediated mainly by the 

cytochrome P450 enzymes of the CYP26 family, although several other CYPs have also 

been implicated in RA modifictaion in vitro (6). The first CYP26 to be identified was 

CYP26A1, which was first cloned from zebrafish and the human variant was cloned not 

long after by the same group (42, 43). Subsequently, CYP26B1 and CYP26C1 have also 

been identified (44, 45), and like CYP26A1 these enzymes metabolize RA into more polar 

metabolites such as 4-oxo-RA, 8-hydroxy-RA and 15-hydroxy-RA (42, 44, 45). Different 

expression patterns of the three CYP26s suggest individual roles for each enzyme in RA 

catabolism (46). 

Although RA metabolites were initially thought to be inactive, Pijnappel and 

colleagues have shown that 4-oxo-RA respecifies the head-to-tail axis in the Xenopus 

embryo and that it appears to bind and activate specific RARs, notably RAR! (47). In 
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addition, overexpression of CYP26 in embryonal carcinoma cells can induce neuronal 

differentiation (48). 

1.1.2 Retinoic acid in normal physiology 

1.1.2.1 Embryonic development 

Retinoic acid is essential for embryonic development. Abnormalities in vitamin A 

deficient embryos were first described in 1933 (49) and many other malformations, 

affecting heart, bones, eyes, limbs, brain and nervous system, have been described since 

(50). Both excess and insufficient levels of RA during embryogenesis have teratogenic 

effects. Although studies with excess or insufficient vitamin A give good insight on its 

importance during embryonic development, such studies are not the best option for 

studying its physiological roles, since the thightly regulated homeostasis of retinoids makes 

it extremely difficult to achieve total depletion. A large body of loss-of function studies of 

RA synthesizing enzymes and receptors now provide extended information on the roles of 

RA throughout embryonic development. These roles are numerous and depend on the 

regulation of specific sets of target genes (16).  Some well-studied examples will be 

described below. 

Neural development 

Treatment of mouse embryonic stem cells or embryonal carcinoma cells with high 

concentrations of RA can induce neural differentiation of these cells (51). In normal mouse 

development however, RA is not produced until well after induction of neuroectoderm and 

it has been demonstrated that neural induction does not require RA (52, 53). The role of RA 

in neural differentiation is to act on the neuroectoderm to induce its further differentiation. 

Data from knockout studies with Raldh1/2/3 show that RA signaling in early neural 

development is only required in posterior structures such as the hindbrain, the spinal cord 

and eye (54, 55). 
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Hindbrain patterning 

An important feature in the developing hindbrain is the differential expression along 

the anteroposterio axis of a cluster of genes called the Hox genes. The regulation of several 

of these genes by RA has been well documented and appears to be one of the major roles of 

RA in hindbrain patterning (56-58). For example, RA has been shown to directly regulate 

the expression of the Hox gene Hoxb1 by both induction and repression, thereby tightly 

controlling the spatial expression of this gene (59, 60).  Boundaries of RA signaling in the 

developing brain are created by the expression in the mid-and forebrain of the RA 

degrading enzymes Cyp26a1 and Cyp26c1. Knockout models of these enzymes in 

developing mouse or zebrafish embryos lead to posteriorization of the expression pattern of 

Hoxb1 and other RA target genes and subsequent posteriorization of the developing brain 

structures at the expense of the anterior structures (61, 62).   

Anteroposterior patterning of the heart 

RA signaling is also necessary for the anteroposterior patterning of the heart. 

Expression of RALDH2 just posterior of the developing heart leads to the production of 

RA that will localize to the posterior heart mesoderm (63). The role of RA in the 

development of the heart is repressive rather than inductive. These effects are mediated 

through the negative regulation of the growth factor Fgf8 (64), normally expressed in the 

posterio-medial region of the heart tube. Mouse embryos that lack expression of RALDH2 

show increased posterior expression of Fgf8 and its downstream target Isl1 (65, 66). Lack 

of RA signaling in the posterior part of the heart tube leads to a severely reduced inflow 

tract domain and abnormal cavity formation in the outflow tract domain (67). 

Limb development 

For a long time it was thought that RA plays an instructive role in limb development. 

Recently however, people have challenged this model and proposed a more permissive role. 

Originally, the model was that an anteroposterior gradient of RA is responsible for the 

induction of genes important for limb bud development and outgrowth, such as Tbx5 and 

Hand2, which in turn regulates the induction of the essential gene Shh (68). However, the 

distribution of RA along the anteroposterior axis is equal, and instead a gradient is observed 
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along the proximodistal axis, where higher activity is observed in the proximal region (69). 

Other studies suggested that RA produced by Raldh2 in the flank will induce the proximal 

limb markers Meis1 and Meis2 and that these genes are repressed by the distally expressed 

Fgf8 (70). It has been shown that FGF signaling at the distal end is required for 

proximodistal patterning and distal expression of Cyp26b1 is necessary to avoid RA 

induced teratogenesis in the developing limb. However, the requirement of RA signaling in 

the proximal region for the formation of the proximodistal axis has not been clearly shown 

(68).  

Knockout studies with Raldh2-/- mice showed lack of forelimb development, 

suggesting a role for RA signaling in the induction of limb bud development, prior to limb 

patterning (28). Treatment with maternal dietary RA supplements do induce limb 

development, resulting in close to normal hindlimbs and undersized forelimbs, with 

abnormal expression patterns of Shh and Fgf in the forelimb. 

In recent studies using Raldh2 and Raldh3 knockouts, Zhao and colleagues provide 

proof for a model in which the repression of Fgf8 by RA in the proximal region is required 

for forelimb development, similar to the role of RA in heart development (64). They show 

direct binding of RARs to the Fgf8 promoter in vivo and show that the effects of RA 

deficiency on limb development can be overcome by the use of an FGF receptor antagonist. 

Thus, it appears that the effects of RA on limb development are by creating a permissive 

environment through the repression of Fgf8 expression.   

1.1.2.2 Adult differentiation and tissue homeostasis 

Aside from the multiple effects on embryonic development, RA also plays a vital role 

in adult tissue differentiation and homeostasis.  

Skin differentiation 

One of the physiological roles of RA signaling in the adult is the maintenance of 

skin epithelium integrity. Human skin is formed of two major compartments, the dermis 

and the epidermis, that are separated by the basement membrane. The epidermis, the outer 

protective layer of the skin, is made up primarily of keratinocytes (71). Treatment of the 
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skin with RA inhibits terminal differentiation of keratinocytes (72), stimulates the 

proliferation of keratinocytes and increases the thickness of the epidermis (73, 74). A recent 

study has identified several RA regulated genes implicated in this process (75). During their 

differentiation, keratinocytes will produce a specific type of fibrous proteins called keratins. 

Several studies have shown that animals on a vitamin A deficient diet will present with 

keratinization of the skin and muquous tissues. This can generally be treated with RA (76). 

Immune function 

The roles of retinoids in the immune system have long been recognized. Vitamin A 

deficiency leads to impaired functioning of various components of the innate as well as the 

adaptive immune system (77). Reduced vitamin A levels have been correlated with reduced 

natural killer (NK) cell number and function in rats and human (78, 79). T helper 

lymphocyte stimulated antibody production by B cells also requires vitamin A and it was 

shown that defects in this process in vitamin A deficient mice can be overcome by 

supplying them with T helper cells from vitamin A proficient mice (80). Antigen presenting 

cells express STRA6 and RALDH2 and produce RA (81). Upregulation of CD1d by 

retinoic acid leads to activation of invariant NK T cells (82). RA regulation of the matrix 

metalloprotease 9 (MMP-9) is important for migration of dendritic cells (DC) to 

inflammatory sites. Immature DC cells that were cultured in the presence of 

pharmacological doses of RA were found to be more migratory in vitro as well as when 

injected in tumors (83). 
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1.2 Retinoic acid signaling pathways 

1.2.1 The concept of nuclear receptors 

In the 1950s, it was thought that the small lipophilic hormones such as steroids, 

retinoids, thyroid hormones and vitamin D3, all potent regulators of cell proliferation and 

differentiation, functioned through a series of oxidation steps which would liberate energy 

for such roles. These ideas changed radically because of pioneer work by E.V. Jensen. He 

used radioactively labeled hormones to show the existence of proteins that bound the 

hormones and subsequently translocated from the cytoplasm to the nucleus. The idea of 

intracellular hormone receptors was born, suggesting a link between transcriptional control 

and physiology (84, 85).  

1.2.1.1 Cloning of the first nuclear receptors 

To better understand the mechanisms of steroid hormones, the cloning of the receptors 

was absolutely essential. The first nuclear receptors to be cloned in the mid-1980s were the 

estrogen receptor (ER) and the glucocorticoid receptor (GR) (86-89). Based on the 

homology of these receptors to the v-erbA oncogene, this led to the subsequent discovery of 

the c-erbA locus as the thyroid hormone receptor (TR) (90, 91). Although the ligands are all 

chemically different, these receptors are structurally similar. The idea of a nuclear receptor 

superfamily (92) was reinforced in 1987, when two independent research groups cloned a 

nuclear receptor for retinoic acid (93, 94). 

1.2.1.2 The nuclear receptor superfamily 

Since the discovery of these first nuclear receptors, many more have been identified by 

homology in both vertebrates and invertebrates. The nuclear receptor superfamily is now 

comprised of 48 closely related family members in humans, 21 in Drosophila and no less 

than 270 in C. elegans (95-97). 
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The general structure of nuclear receptors 

Nuclear receptors are ligand-dependent transcription factors that all share the same 

modular structure composed of six regions of homology (Figure 2). The highly variable N-

terminal A/B region harbors the AF-1 (Activation Function 1) domain, a hormone-

independent transactivation domain (98, 99).  

Figure 2 General structure of nuclear receptors 
Nuclear hormone receptors are composed of a highly conserved DNA binding domain (C-region), a variable 
amino terminus (A/B-region), harboring the ligand-independent transactivation domain 1 (AF-1) and a 
conserved carboxy-terminus (D, E and F-region), harboring the ligand binding domain (LBD) and the ligand-
dependent transactivation domain 2 (AF-2). 
 

The DNA binding domain (DBD) is the most conserved region of the receptor 

structure, found in the C region. The DBD is essential for the recognition of DNA 

sequences called hormone response elements by the receptor. It contains two C2-C2 type 

zinc fingers, of which four highly conserved cysteine residues coordinate the binding of one 

Zn2+ ion. Additional residues in the N- and C-terminal of the DBD are necessary, however, 

for optimal DNA binding (100). The only human nuclear receptors that do not possess a 

DBD are SHP and DAX (101, 102).  

The evolutionary conserved C-terminal domainis responsible for multiple functions, 

such as ligand binding and transactivation (103).The transactivation function of the AF-2 

domain depends on the binding of the ligand to the ligand binding domain (LBD). The 

LDB is moderately conserved throughout the family, though highly within isotypes of a 

receptor, such as RAR", RAR! and RAR#.  However, its structural organization is 

preserved within the NR superfamiliy. The LBD secondary structure is composed of 12 
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!-helices that together form the ligand binding pocket, the dimerization surface and the 

AF-2, and is much more conserved than the sequence (104, 105). In addition to the AF-2 

transactivation domain in the C-terminus, a silencing function has been described that 

occurs in members of the thyroid hormone/retinoid receptor class of nuclear receptors 

(103).  

Some nuclear receptors also contain a C-terminal F-region. This region is highly 

variable and its structure and function are not known. 

Different classes of nuclear receptors and their mode of action 

Nuclear receptors can be classified into four distinct classes based on their DNA 

binding and dimerization  (85, 103).  

Figure 3 Classes of nuclear receptors 
Four classes of nuclear receptors can be identified according to ligand binding, DNA binding, and 
dimerizationproperties: steroid receptors, RXR heterodimers, homodimeric orphan receptors, and monomeric 
orphan receptors. Representative receptors are presented for each group. Figure modified from Mangelsdorf et 
al. (85). 
 

The first class is composed of steroid receptors such as GR, ER, AR and PR. These 

receptors associate with heat shock proteins and are localized in the cytoplasm in the 

absence of ligand. The binding of ligand induces a conformational change allowing for 

dissociation from the heat shock proteins and formation of homodimers. Class I receptors 

bind response elements with half-sites organized as inverted repeats (palindromes).  

ER ER

Class I:
Steroid receptors

ER, GR, MR, AR, PR

RXR RAR

Class II:
RXR heterodimers

RAR, TR, PPAR, VDR

RXR RXR

Class III:
Dimeric orphan 

receptors

RXR, COUP-TF

NGFI-B

Class IV:
Monomeric orphan

receptors

NGFI-B
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The second class contains receptors such as TR, PPAR and RAR, that instead of 

forming homodimers, function as heterodimers with RXR. These heterodimers are present 

on the DNA even in the absence of ligand. The conformational change that is induced by 

ligand binding results in transcriptional activation. Class II receptors preferentially bind to 

response elements of the direct repeat type, although everted and inverted repeats can also 

be bound by several heterodimers.  

The last two classes are composed of orphan nuclear receptors, for which no ligand has 

been discovered. These receptors bind as dimers to direct repeats (class III) or as monomers 

to extended core sites (class IV).  

1.2.2 RAR and RXR: ligand-dependent transcription factors 

1.2.2.1 Retinoic acid receptors 

Even before the discovery of the retinoic acid receptors, it was proposed by P. Chambon that 

RA could be the ligand of a nuclear receptor (92). Three retinoic acid receptor isoforms have 

now been identified. The first one was identified in 1987 and named RAR, later RAR! (93, 

94). Subsequently, two additional RARs, RAR" and RAR# have been identified (106, 107). 

Several isoforms exist of each isotype, produced by the use of different promoters, for 

example five isoforms are known to exist for RAR" (108, 109). The isoforms differ only in 

their N-terminus (105). Several of the RAR isoforms are themselves RA inducible, as 

summarized in Table I. The suggestion that RAR!, RAR" and RAR# each have their own 

specific function followed from the observation that there is a much higher level of 

interspecies conservation among members of the RAR family than there is conservation of the 

three receptors within the same species (110).  

 

Table I RAR isoforms and their RA regulation. 

Receptor isoform RA regulation Species References 

RAR!2 Induction Mouse (111) 

RAR"2 Induction Mouse, human (112-114) 

RAR#2 Induction Human (115) 
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Individual knockouts for the different RARs do not shown very drastic phenotypes. 

Knockout mice show some features of vitamin A deficiency, including growth deficiency 

and male sterility (116). Observations with the single knockout mice suggest high levels of 

functional redundancy, at least during development. The phenotype observed in double 

knockouts is much more serious and leads to reduced viability. Various malformations 

related to vitamin A deficiency cause these mice to die in utero or shortly after birth (6). 

The high level of resemblance between defects observed in vitamin A deprived mice or 

mice with defects in RA synthesis and the RAR knockout confirms the importance of the 

receptors in RA signaling.  

1.2.2.2 Retinoid X receptors 

The discovery of the retinoid X receptor meant a great leap forward in the 

understanding of the selectivity of DNA binding by non-steroid receptors, most of which 

form heterodimers with RXRs, as well as the discovery of a receptor for another retinoid, 

9-cis-RA (117). Three isotypes exist, RXR!, RXR" and RXR#, the primary sequence of 

which differs substantially from the RARs (118). Like for the RARs, multiple isoforms 

have been identified. 

Rxra-/- mice die around embryonic day 14.5 due to hypoplastic development of the 

ventricular chamber of the heart. Mice also have ocular malformations, and both these 

phenotypes are consistent with vitamin A deficient models, supporting the idea that RXR! 

plays a role in RA signaling in vivo (119). Malformations observed in RXR" and RXR# 

knockouts are fairly minor; the former results in 50% embryonic lethality with male 

sterility in surviving offspring (120), the latter have no obvious phenotype apart from 

thyroid hormone resistance (121). Knocking out both RXR" and RXR# together did not 

result in any obvious morphogenetic defects, even when one allele of RXR! was deleted at 

the same time. This shows that one copy of RXR! is sufficient to perform most RXR 

functions (121). 
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1.2.3 Regulation of gene expression by RAR/RXR heterodimers 

As mentioned before, RARs are class II nuclear receptors that function as heterodimers 

with RXR. It has been shown in in vitro  binding studies that both all-trans-RA and 9-cis-

RA are high affinity ligands for RARs, but only 9-cis-RA is able to bind to RXRs (122). 

However, the in vivo existence and the physiological roles of 9-cis-RA are still highly 

disputed (123). Some other naturally occurring retinoids are also capable of binding and 

transactivating RARs, such as all-trans-4-oxo-RA and all-trans-4-oxo-retinol, but the most 

important ligand for the RAR-RXR heterodimer seems to be all-trans-RA (RA) (6). 

1.2.3.1 Retinoic acid response elements 

RAR-RXR heterodimers bind to the DNA on so-called RAREs (retinoid acid response 

element). Typically, these elements are composed of a direct repetition (DR) of the core 

motif PuG(G/T)TCA or closely related motifs (3). The alternative motif 

PuG(G/T)(G/T)(G/C)A is also used and represents a 10% consensus. Most frequently, the 

DRs are separated by 5 nucleotides (DR5), although DR1 and DR2 (1 or 2 nucleotide 

spacer, respectively) elements are also found frequently. Alternatively, DRs with varying 

spacers as well as inverted repeat (IR) elements have been described as functional RAREs 

(124). Various groups have been able to show that binding of the heterodimer to DR2 and 

DR5 elements occurs in the orientation 5’-RXR-RAR-3’ (125-127), whereas DR1 elements 

are bound in the opposite orientation (128). Some examples of well characterized RAREs 

are listed in Table II. 

1.2.3.2 Target gene repression in the absence of ligand 

As previously discussed, unlike steroid hormone homodimers, the RAR-RXR 

heterodimers can bind DNA in the absence of ligand, if the conformation of the chromatin 

does not impede recognition of the RARE (105). This transcriptional repression is due to 

the association of the unliganded form of RAR with corepressors. These corepressors, such 

as NCoR (nuclear receptor corepressor) or SMRT (silencing mediator for RAR and TR), 

allow for the recruitment of specialized complexes with histone deacetylase (HDAC) 

activity. These HDAC complexes play well-known roles in transcriptional repression, by 
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deacetylating the N-terminal tails of histones. This leads to condensation of the chromatin 

at the promoter of target genes, rendering the transcriptional start site (TSS) inaccessible for 

the general transcription factors (105, 135).  

Other corepressors recruited to RARs in a ligand-dependent mannder include 

RIP140/NRIP1 (receptor interacting protein of 140 kDa), PRAME (preferentially expressed 

antigen in melanoma) and TIF1"/Trim24 (transcription intermediary factor 1-"). It has 

been suggested that these corepressors could limit or end the RA signal (105). This is 

supported also by the fact that at least one of these corepressors, NRIP1, is by itself RA-

inducible (136, 137), and may thus be implicated in a negative feedback mechanism. 

 

Table II  Examples of some known RAREs 

Gene Species RARE type, sequence Distance from TSS Refs. 

RAR!2 Mouse DR5 : 5’-GGTTCAccgaaAGTTCA-3’ -53 bp (112) 

CYP26A1 
Mouse 

Mouse 

DR5 : 5’-AGTTCAcccaaAGTTCA-3’ 

DR5 : 5’-AGTTCAcaggcAGTTCA-3’ 

-223 bp 

-2,005 bp 

(129) 

(130) 

FOXA1 Mouse DR5 : 5’-AGGTCAgggggAGGGGA-3’ -1,300 bp (131) 

BTG2 Human DR2 : 5’-GGaTCAcgAGGTCAagAGATCA-3’ -3,357bp (132) 

CASP9 Human DR2 : 5’-AGGTCAggAGTTCA-3’ +9,461bp (133) 

CRBPI Mouse DR2 : 5’-AGGTCAaaAGGTCA-3’ -1,010bp (134) 

 

1.2.3.3 Activation of transcription by RA 

It is now widely accepted that upon binding of RA to RAR a conformational change is 

induced that leads the corepressors that are bound to RAR-RXR heterodimers to be 

exchanged for coactivators. Upon ligand binding, helix 12 in the LBD gets reoriented and 

forms a charge clamp with helix 3, allowing for binding of the LXXLL motif of 

coactivators (105). Interaction with coactivators of the p160 subfamily of steroid receptors 

(SRC), SRC-1 (NCo-A1) (138), SRC-2 (TIF-2, GRIP-1) (139, 140) and SRC-3 (pCIP, 

ACTR, AIB1, TRAM1, RAC3) (141, 142), that act as adaptor proteins, leads to the 
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recruitment of other activator complexes, that have different enzymatic activities (105). 

Different classes of coactivators are (i) histone acetyl transferases, notably CBP/p300 

(CREB binding protein) and p/CAF (p300/CBP associated factor); (ii) histone 

methyltransferases like CARM1 (coactivator associated arginine methyltransferase 1) and 

PRMT1 (protein arginine methyltransferase 1); (iii) ubiquitinases/deubiquitinases and (iv) 

ATP-dependent nucleosome remodeling complexes. The LXXLL motif is a recurrent 

structural attribute of most AF2-dependent nuclear receptor coactivators (143). All these 

complexes will alter the chromatin structure around the promoters of target genes, in a 

process referred to as derepression (135). Finally, it has been shown that activated RARs 

can directly interact with a subunit of the mediator complex, DRIP205/TRIM220, which 

contains two LXXLL motifs (144). This interaction leads to the recruitment of the mediator 

complex, the RNA polymerase II and the general transcription factors (105), allowing 

eventually for the initiation of transcription. 

1.2.3.4 Modulation of RA signaling by other signaling pathways 

Various major signaling pathways have been shown to influence the levels of RA 

signaling in cells. The most important ones will be discussed here. 

MAPK signaling 

RA rapidly induces the activation of the p38MAPK/MSK1 signaling pathway. Several 

phosphorylation events have been identified in the RARs, which appear to be regulated in a 

highly coordinated RA-induced phosphorylation cascade starting with RAR 

phosphorylation by MSK1 (145). Upon stimulation with RA, RAR" rapidly gets 

phosphorylated on two serines, S369 in the LBD and S77 in the N-terminus (145). S77 is a 

target for the cdk7 subunit of the general transcription factor TFIIH (146). This 

phosphorylation event depends on the docking of Cyclin H at a site in the LBD (147) and is 

important for transcriptional activation (146, 148). S369 corresponds to a consensus site for 

multiple kinases, such as PKA and MSK1 and might integrate signals from various 

signaling pathways (145, 147). Phosphorylation of this site by MSK1 leads to increased 

interaction with Cyclin H and subsequently cdk7. The phosphorylation of S77 is thus a 
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downstream consequence of the phosphorylation of S369. The phosphorylation of S77 is 

conserved in RAR#, but it is not clear whether RAR# can be phosphorylated in the LBD by 

MSK1. RAR# can also be phosphorylated in the N-terminus by p38MAPK, but this event is 

not conserved in RAR". Finally, RA also activates p40/42MAPK, but it has not been 

shown whether this affects RAR phosphorylation (105). 

MSK1 also contributes to activation of RA target genes by phosphorylating histone H3 

in the promoter regions of these genes (145, 149). 

Protein kinase C 

Protein kinase C (PKC) is a protein family of serine/threonine kinases that have roles 

in the regulation of fundamental cellular processes such as proliferation, differentiation and 

apoptosis, as well as tumorigenesis (150, 151). Clues for a role of PKCs in RA signaling 

come from the fact that in several tumor cell lines, treatment with RA largely increases 

PKC levels (152, 153). Also, overexpression of PKC" in B16 mouse melanoma cells and 

F9 teratocarcinoma cells leads to phenotypical changes induced by RA (152, 154). RA 

induced differentiation of these cell lines also leads to strong induction of PKC" at both the 

mRNA and the protein level (152, 155, 156). PKCs, particularly PKC", also appear to be 

important for the anti-proliferative effects of RA in several breast cancer cell lines (157-

159). PKC inhibitors were shown to reduce the binding activity of a RAR"/RXR" dimer to 

DNA and reduce transcriptional activity from an RA inducible promoter. PKC" 

overexpression was able to compensate for this effect and PKC" was found to 

phosphorylate RAR" in vitro (160). Later, the same group identified the Ser157 site in the 

DNA binding domain as a PKC phosphorylation site and showed that this site can be 

phosphorylated by both PKC" and PKC#. Phosphorylation of this site reduced 

transcriptional activity of RAR" as well as its capacity to heterodimerize with RXR" 

(161). Another group however showed that this phosphorylation could not be observed  in 

vivo, and instead showed that activation of PKC leads to an increase of RAR" half-life and 

AF-2-dependent transcriptional activity (162). All in all, a cross-talk between PKC and RA 

pathways clearly exists, but more research will be needed to understand the full extent of it. 
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Phosphorylation of cofactors 

In addition to the RARs, several coactivators and –repressors have also been shown to 

be modulated by MAPK and other kinases. SRC-3 and TBLR1, a corepressor, are 

phosphorylated respectively by p38MAPK and PKC$ in response to RA (163, 164). p160 

family members, p300/CBP and SMRT and NRIP1 corepressors have been shown to be 

phosphorylated by MAPKs and other kinases, but whether these effects are RA-dependent 

remains to be investigated (105). 

1.2.4 Non-canonical RA receptors  

Apart from the well recognized interaction of RA with RAR-RXR heterodimers, 

various studies have come out in the last couple of years strongly suggesting that RA can 

also function through other nuclear receptors. This idea is also supported by observations 

such as the fact that RA is important for skin maintenance, but that this is not RAR-

mediated. 

1.2.4.1 RA signaling through PPAR!/" 

It has recently been shown by the group of N. Noy that RA can function as a high 

affinity ligand for the orphan nuclear receptor PPAR!/$, when compared to PPAR" and 

PPAR# (165). The same group next published a set of results that suggest RA could be 

directed to PPAR!/$ by FABP5, in a similar way as the shuttling of RA to RARs by 

CRABP-II. They used knockdown methods to alter FABP5/CRABP-II ratios and 

concluded that RA activation of PPAR!/$ leads to activation of pro-proliferative and anti-

apoptotic effects, in contrast to the well-known anti-proliferative and apoptosis promoting 

effects of RAR activation by RA (166). Another group not long after studied the effects of 

PPAR!/$ by RA compared to known high- and low-affinity PPAR ligands and concluded 

RA is not likely to be a ligand for PPAR!/$ (167). The latter two studies did not used the 

same cellular models and reporter constructs, which might in part account for the 

discrepancies between them. Another point to be kept in mind is that in none of the above 

mentioned studies the affinities of RA towards FABP5 and PPAR!/$ were compared to 

those towards CRABP-II and RAR. It is possible that RA functions as a ligand for 



22 

 

PPAR!/$ in some context, but more studies are necessary to better understand the 

physiological relevance of these observations. 

1.2.4.2 RA as a ligand for ROR! 

A family of nuclear receptors that are closely related to the RARs is that of the RA 

receptor-related orphan receptors (RORs). RORs play important roles in cellular 

differentiation and development, but physiological ligands have not been identified (168). 

RA and several synthetic retinoids have been shown to be able to act as functional ROR! 

ligands, binding to the ROR!-LBD in E. coli binding assays. RA also partially inhibited 

transcriptional regulation by ROR! in neuronal HT22 cells, but not in NIH3T3, 293 or P19 

cells. This suggests that the antagonistic effects of RA on ROR! are cell-type specific 

(169). More studies will be needed to understand the in vivo relevance of these 

observations. 

1.2.4.3 RA activation of COUP-TFII 

Finally, it has been shown that the chicken ovalbumin upstream promoter-transcription 

factor COUP-TF-II can be activated by micromolar concentrations of RA (170). COUP-TFI 

and II are amongst the most conserved nuclear receptors and play roles in organogenesis, 

angiogenesis, cell fate determination and neuronal development as well as metabolic 

homeostasis and circadian rhythm (6). Both RA and 9cRA can serve as low affinity ligands 

for COUP-TFII in cell culture models (170). However, concentrations needed for receptor 

activation make it highly doubtful that there is a physiological role to this activation. 

Nonetheless, this is interesting to keep in mind in cases where cells are treated with 

pharmacological doses of RA.  

1.2.5 Transcriptional regulation through interaction with other transcription 

factors 

An alternative mechanism of gene expression regulation by nuclear receptors is 

through interaction with and repression of the activity of other transcription factors (171). 
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This transrepression activity has been observed for several NR ligands, such as 

glucocorticoids and retinoids. 

1.2.5.1 Transrepression of AP-1 activity 

AP-1 is a transcription factor complex composed of members of the Jun (c-jun, junB, 

junD) and Fos (c-fos, FosB, Fra1, Fra2) families of proto-oncogenes (171). Its activity is 

associated with cellular proliferation and tumorigenesis (172). The transactivation of AP-1 

is necessary for in vivo tumor promotion (173). AP-1 activity is highly responsive to 

extracellular stimuli because of regulation by a network of various protein kinases, such as 

JNK and SAPK for c-jun  and FRK for c-fos (174-176). 

Retinoids can alter the activity of AP-1 in several ways, that do not all seem to require 

RAR transcriptional activity. Several so-called dissociated retinoids exist that are not able 

to transactivate through RARs, but that do induce AP-1 transrepression (177-180). Also 

several RAR mutants have been described that have altered transactvating properties, but 

behave normally when it comes to transrepression (181). The contribution of the different 

RAR and RXR isoforms to AP-1 transrepression are not fully understood and seem to be 

very cell-type specific (182-184). Several reports suggest that the RAR DBD is required for 

AP-1 transrepression (185-187). 

Direct binding of RAR to c-jun was shown to interfere with the binding of c-jun 

homodimers to AP-1 binding sites in vitro (186). RAR also interferes with the formation of 

c-jun/c-fos heterodimers in some cell types (188). A cooperation of COUP-TF with RAR to 

inhibit AP-1 activity has been shown in 1) its ability to increase RAR!2 promoter activity 

(189) and 2) inhibit c-jun DNA binding trough direct interaction (190). RARs were also 

reported to inhibit the expression of c-jun and c-fos in pituary cells and keratinocytes (183, 

191). Finally, RARs might inhibit AP-1 activity by competition for available coactivators. 

Although this could be a plausible explanation of the transrepression effects, reports are 

contradictory. Also, this model would not explain functioning of dissociated retinoids 

(171).  
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1.2.5.2 Transcriptional regulation through modulation of Sp1 

Sp1 and Sp3 are transcription factors that are members of the Specificity 

Protein/Krüpel-like Factor (SP/KLF) family. They are expressed in all mammalian cells 

and regulate genes involved in differentiation and cell cycle progression (192). Several 

nuclear receptors have been shown to be able to interact with Sp1, such as ER and COUP-

TF (193, 194).  

Suzuki and colleagues first showed the involvement of Sp1 in RA-mediated gene 

regulation for the induction of urokinase plasminogen activator (uPA). RAR/RXR directly 

interact with Sp1, increasing Sp1 binding to the GC box in the promoter of uPA and uPA 

transcription (195). Similarly, Sp1 binding to the promoter of the tPA (tissue-type 

plasminogen activator) gene is necessary for RA-mediated induction of this gene through a 

DR5 enhancer element. This is specific for Sp1 and similar results could not be observed 

for Sp3 (196). The enzyme 17!-hydroxysteroid dehydrogenase type 2 (HSD17B2) is 

responsible for the rapid conversion of estrogen to estrone. In human endometrial and 

placental cells HSD17B2 mRNA and enzymatic activity are induced by RA. This induction 

depends on availability of RARs and RXRs, as well as functional Sp1 and Sp3 binding to 

the promoter. RA was found to induce an in vivo interaction between RAR and Sp1/Sp3 

(197).  

Other genes that are regulated by RA through Sp1 include CREB ((198), reelin (199), 

secretin (200), lamin A and C (201, 202), BMP2 (203), folate receptor beta (204), CD18 

(205) and IL-1! (206). 

1.2.6 Non-genomic actions of retinoic acid 

Aside from the classical signaling through RAR-RXR heterodimers and activation of 

transcription, it has been shown that RA can also function through activation of non-

genomic pathways. These occur both in the presence and in the absence of RARs. 

1.2.6.1 Non-genomic signaling of RARs 

RARs have been implicated in mediating non-genomic actions of RA. RAR" was 

shown to be required for RA-dependent homeostatic synaptic plasticity in neurons, in a 
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manner that is independent of transcription (207). RAR" functions as an inhibitor of 

translation by binding to specific mRNAs, such as the mRNA for the glutamate receptor 1 

(GluR1). RA binding to RAR" diminishes the association with the mRNA and allows for 

translation to take place (207, 208). RAR! was shown to augment the frequency of 

transmitter release in developing neuromuscular synapses in Xenopus cell cultures (209). 

This was shown to be mediated PLC# and PI3K signaling pathways and SRC activation 

that lead to changes in intracellular Ca2+ levels (210). 

1.2.6.2 Interaction with the PI3K/Akt pathway 

Several reports have described both positive and negative interactions between RA and 

PI3K/Akt signaling in numerous cell types. ATRA activates PI3K in HL-60 cells 

(monitored by PIP3 recovery) and this is required for RA induced granulocytic 

differentiation (211). In NIH3T3 cells, rapid induction of PI3K activity by RA, but not 

EGF, is required for RA-stimulated expression of tissue transglutaminase (TGase), as well 

as for its GTP binding activity (212). This RA-induced TGase expression was inhibited by 

EGF treatment through activation of Ras-ERK signaling (213). RA can induce neural 

differentiation in SH-SY5Y cells. This differentiation involves downregulation of ID1, ID2 

and ID3, which requires RA-induced activation of the PI3K/Akt signaling pathway (214). 

The rapid activation of PI3K signaling in SH-SY5Y cells requires RARs, interacting in a 

complex with the p85 subunit of PI3K (215). Other interactions of RARs with PI3K 

subunits have been described. Farias et al. showed that CRBP-I inhibits the PI3K/Akt 

pathway in an RAR-dependent manner by decreasing p85-p110 heterodimerization in 

transformed MTSV1-7 breast epithelial cells. RA treatment was found to mimic these 

effects of ectopic CRBP-I (216). Retinoic acid also stimulates the sodium/iodide symporter 

(NIS) in MCF-7 breast cancer cells and this is mediated by the insulin growth factor-I/PI3K 

and p38MAPK signaling pathways (217). This RA induction of NIS in MCF-7 cells is was 

found to be mediated by rapid activation of the PI3K pathway and appears to involve direct 

interaction of p85 with RAR and RXR (218). RA-induced PI3K/Akt activation was also 

found to be implicated in induction of Nanog expression in the early stage of differentiation 

of F9 cells (219). Finally, using a DN Akt as well as PI3K inhibitors, it was shown that 
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downregulation of PI3K/Akt signaling is required for RA-induced RAR#2 phosphorylation 

by p38MAPK in RAR#2 transfected COS-1 cells (220). 

1.2.6.3 Impact on PKC# signaling 

Crosstalk between retinoids and PKCs, both positive and negative, has also been 

described by various groups. The effects of PKC on RAR" and RA signaling have been 

discussed above. RA can also influence the activity of PKCs, and based on structure 

analysis and binding assays it was proposed that this is due to direct binding of RA to PKC 

(221). More recently it has been shown that RA binds directly to one of the regulatory units 

of PKC", thus competing with binding of acidic phospholipids and acting as an inhibitor of 

PKC" signaling (222). PKC$ on the other hand was shown to be activated in an RA 

dependent fashion (223). RA also exerts classic genomic effects on some of the PKCs, as a 

functional RARE has been identified in the promoter of the murine PKC" gene (224). 

1.2.7 Retinoic acid in human disease 

The role of RA in mediating processes such as differentiation and proliferation have 

made it a molecule of outstanding interest for the treatment of various diseases. Already in 

1925, the potential of retinoids as anti-cancer agents was recognized by Wolbach and 

colleagues (225). Various natural and synthetic ligands are being tested for the treatment of 

human cancers, as well as skin diseases such as psoriasis and acne (reviewed in (226, 227)). 

Retinoids have been found to be particularly useful in the treatment of acute promyelocytic 

leukemia, but also other cancers have been described to benefit from retinoid treatment, 

either in treatment or prevention settings. 

1.2.7.1 Acute promyelocytic leukemia 

Probably the best known application for RA in the treatment of cancer is in acute 

promyelocytic leukemia or APL (228). APL is due to chromosomal translocations of the 

RAR" gene. This leads to gene fusions, most often including the N-terminal part of the 

PML gene (229, 230). The resulting PML-RAR" fusion protein interferes with normal RA 

dependent transcriptional regulation (231). However, the protein remains RA-responsive 
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and treatment of APL patients with RA as a single agent can induce complete remission in 

most patients because of the reactivation of normal signaling pathways (227, 228, 232). 

However, remissions are not sustained. When consolidation chemotherapy is given after 

treatment with RA to newly diagnosed patients, this improves the remission duration (233). 

Clinical trials were done to compare treatment with RA and conventional chemotherapy, 

and investigate benefits of concurrent or sequential combination therapies. Early studies 

with RA compared its efficacy against classical chemotherapeutic agents such as ara-C, as 

well as the benefits of maintenance treatment with RA during one year after induction 

treatments. In this study, the best outcome was observed in patients who received RA for 

both induction and maintenance treatment, with up to 75% of patients apparently cured of 

their disease (234). More recent studies showed the concurrent use of RA and 

chemotherapy to be more efficient than subsequential use (235-237). Long-term follow-up 

of clinical trials with RA in APL confirmed the benefits of combination therapy with RA 

and chemotherapy (238, 239). Currently, treatment with RA and chemotherapy is the 

standard for newly diagnosed cases of APL. 

Besides PML-RAR", other fusion proteins that are involved in PML include PLZF-

RAR", NuMA-RAR", NPM-RAR" and Stat5-RAR" (240). The response of these fusion 

proteins to RA is variable. On the whole, treatment with RA has made APL the most 

curable type of acute myeloid leukemia in adults (241). 

1.2.7.2 Retinoids in chemoprevention and treatment of solid tumors 

In addition to the beneficial effects of RA in the treatment of APL, retinoids have been 

shown to be effective therapeutic and preventive agents in several other types of cancers 

and precancerous lesions. Early studies in rodents have shown that retinoids are effective in 

reducing the tumorigenesis of several types of epithelium, such as skin, respiratory, 

mammary, buccal and stomach epithelia (76). In humans, retinoids have been shown to be 

effective in reversing premalignant epithelial lesions, inducing myeliod cell differentiation 

and preventing liver, lung, breast and ovarian cancer (242-245). Furthermore, clinical trials 

are ongoing for the use of all-trans RA for the treatment of lung cancer, cervical cancer, 

kidney cancer, neuroblastoma, glioblastoma, lymphoma, leukemia and melanoma, 
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combined or not with other drugs (based on information available on 

www.clinicaltrails.gov using the search criteria « all trans retinoic acid cancer », on 

September 19, 2011). 

Visibly, retinoids are a potent class of molecules with various potential applications in 

the field of cancer treatment and chemoprevention. Nevertheless, the frequent occurrence 

of unwanted effects and problems of resistance make further research into the molecular 

mechanisms of the antitumor effects of retinoids essential before standard implementation 

in treatment regimens. 
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1.3 The mammary gland : normal physiology and malignancy 

1.3.1 Normal breast physiology and development 

The principal function of the mammary gland is to secrete milk during lactation. It has 

a unique developmental program, with the majority of the development taking place after 

birth, in puberty and during pregnancy (246). 

1.3.1.1 Mammary gland morphology 

At birth, a rudimentary mammary gland is present in both females and males. This 

rudimentary breast is composed of 15-25 mammary ducts that come together in 

approximately 10 major ducts near the epidermis (247). Further development of the female 

breast starts in puberty, whereas the male breast will not undergo significant development 

after birth and will remain rudimentary (248). 

The adult mammary gland is composed of three distinct types of structures: skin, 

subcutaneous tissue and breast tissue (248). The latter can be subdivided into the 

parenchyma, mammary epithelium organized in an extensively branched ductal-lobular 

system and the mesenchyma or stroma, a heterogeneous layer of connective tissue in which 

the parenchyma is embedded (249, 250). The parenchyma is composed of 15-20 segments, 

the lobules. These lobules drain in a network of milk collecting ducts. Around 10 major 

collecting ducts converge and open at the nipple ((248); Figure 4A). Stromal and epithelial 

cells in the mammary gland communicate though the extracellular matrix (ECM) and this is 

crucial for normal patterning and function of the gland. Disruption of this communication 

can lead to both induction and promotion of breast cancer (251). 

Stroma 

The biggest part of the human mammary gland is made up of stroma (Figure 4A). The 

stroma and the subcutaneous tissue of the mammary gland are composed primarily of 

adipose tissue and connective tissue, in which is contained an extensive network of blood 

vessels, nerves and lymphatics (248). The stroma is important not only as supportive tissue 

for the epithelium, but also plays an important role in the development and morphology of 
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the mammary gland (252, 253). Stromal cells were shown to secrete factors that can 

stimulate the growth of epithelial cells in a cell culture system (254). Injection of non-

mammary stem cells in the mammary stroma was shown to induce their expression of 

mammary epithelial markers such as !-casein and ER" and induce stromal invasion and 

formation of ducts and lobules (255-257). This reinforces the idea that the stroma plays an 

important role in the development of the mammary epithelium. 

Figure 4 Schematic overview of the adult mammary gland (A) and a TEB (B) 
Figure adapted from (258, 259) 
 

Mammary epithelium : the parenchyma 

The mammary epithelium or parenchyma is organized in a branched network of ducts 

ending in structures called terminal ductal lobulo-alveolar units (TDLUs or terminal end 

buds (TEBs) in mouse) (259). The TDLUs are clustered together in the before mentioned 

lobules (Figure 4A; inset). The normal mammary epithelium consists of a bilayer of inner 

luminal cells that are implicated in milk production and an outer basal layer composed 

A. B.

{
Stroma
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mainly of myoepithelial cells that eject milk into the ducts (260). The epithelial cells are 

separated from the stroma by the basement membrane ((259); Figure 4B). 

The basal layer of mammary epithelium comprises all cells that are not in direct 

contact with the lumen. As mentioned above,  this includes primarily myoepithelial cells, 

however this layer also contains mammary stem cells and progenitors (259). The 

myoepithelial cells, because of their contractile properties, are important in the excretion of 

milk into the ducts. These cells are characterized by the specific expression of markers such 

as cytokeratin 5 and 14, !2 and "2 integrins and smooth muscle actin (SMA) (261, 262). 

The inner layer of luminal cells is composed of highly differentiated, polarized cells. 

Their most important role is the production and secretion of milk. Typical markers for this 

cell type are cytokeratin 8/18, FOXA1 and GATA-3 (262-264). Also, around 10-15% of 

luminal epithelial cells express the nuclear hormone receptors ER" and PR (progesterone 

receptor) (265). The existence of at least two distinct types of luminal cells has been 

described : ductal and lobular cells (263).  

1.3.1.2 Post-natal mammary gland development 

At puberty the rudimentary mammary gland that was formed during fetal development 

will continue its development. Hormones from the ovaries and the pituitary gland, as well 

as local growth factors and cytokines will initiate branching morphogenesis of the simple 

pre-puberty glands (266). This expansion is driven by the highly proliferative 

TEBs/TDLUs. These structures penetrate into the fat pad as the ducts are elongating and 

the mature epithelial ductal tree will be formed (267). Two types of cells are present in the 

TEBs : cap cells and body cells (Figure 4B). The cap cells, located in the outer layer of the 

TEB and in contact with the stroma, are progenitors for the myoepithelial cells, whereas the 

body cells are progenitors for cells of the luminal lineage (268). 

Ductal branching morphogenesis is directed by the TEB and depends on the local 

availability of growth factors. The first cue for ductal morphogenesis comes from estrogens 

produced in the ovaries. Ovariectomized mice, as well as ER" deficient mice fail to 

develop a ductal network (269, 270). Expression of ER" is required in the epithelial cells 
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and not in the stroma, as can be seen from transplantation experiments using ER"-/- 

epithelial cells or fat pads (271). This estrogen-driven development of the mammary gland 

also requires growth hormones produced by the pituitary gland. The hormones GH (growth 

hormone) and Prl (prolactin) are both required and function through activation of the Jak-

Stat signaling pathway (267). Stat5a knock-out mice have defects in lateral and secondary 

branching. IGF1 produced in the mammary gland acts as the local effector of GH (272). It 

is produced in both stromal and epithelial cells during postnatal mammary gland 

development and its absence leads to a strong reduction of the outgrowth potential (273, 

274). Knock-out studies have shown that EGFR in the stroma is also essential for normal 

outgrowth of the mammary tree at puberty (275). HER2 signaling appears to be required 

for initiation stages of ductal morphogenesis (276).  

The formation of a lumen is essential in the development of a functional ductal system 

in epithelial organogenesis of for example the mammary gland (268). This can occur in 

different ways, such as deformation of an epithelial sheet in for example lung development, 

and cavitation in breast development (277, 278). Epithelial cells in the breast are organized 

in so-called acini, spherical structures with a lumen that is formed by apoptotic clearance of 

the inner layers of newly formed branches of epithelial cells (277, 279). Apoptosis has been 

detected in the body cells of TEBs (Figure 4B; (280)). The maintenance of the lumen in 

expanding ducts appears to depend on caspase-dependent apoptosis, mediated by the pro-

apoptotic factor BIM (281, 282). 

The final step of mammary differentiation takes place during pregnancy, when alveolar 

differentiation and lactation are induced under the influence of rising levels of prolactin, 

estrogen and progesterone. 
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1.3.1.3 Mammary stem cells 

The existence of mammary stem cells was suggested after transplantation experiments 

showed that explants taken from different regions of the mammary gland were able to 

reconstitute a fully functional mammary gland in the cleared fat pad of mice (283). Using 

MMTV-infected donor tissue Kordon and Smith were able to show the clonality of these 

mammary outgrowths, suggesting that a single stem cell was able to repopulate the entire 

mammary epithelium (284). Using flow cytometry, several different epithelial 

subpopulations have been identified based on the expression of several cell surface markers 

(Figure 5). A strong enrichment of mouse mammary cells (regenerating a fully functional 

mammary tree) was found in the CD49fhiCD29hiCD24+Sca- subpopulation (285-287). 

Mammary stem cells are rare and even this highly enriched population comprises less than 

5% of these cells. Mammary stem cells differ from luminal epithelial cells in that they have 

lower levels of CD24 (286). Human mammary cells have also been isolated by several 

groups (19, 288, 289). Notably, human mammary stem cells appear to be marked by higher 

ALDH1 activity, indicated by the observation that ALDEFLUOR-positive cells isolated 

from mammary epithelium posess stem cell like properties (19). Mammary stem cells 

appear to exist only in the basal layers and could not be detected in the luminal 

compartment (290). 

The specification of various subtypes of progenitor cells in the differentiation hierarchy 

of the mammary epithelium from mammary stem cells is controlled by a network of 

transcription factors (Figure 5). GATA-3 is essential for the differentiation of the ductal and 

alveolar luminal lineages and is not expressed in the myoepithelial compartment (263, 291). 

Alveolar differentiation during pregnancy requires the additional activity of the ETS family 

member Elf5 (292). STAT5A was shown to be essential for the establishment of the 

luminal alveolar compartment. Knock-outs of this gene in the mammary gland resulted in a 

block in alveolar differentiation during pregnancy and these mice failed to lactate (293, 

294). The CCAAT/enhancer binding protein beta (C/EBP!) plays an essential role in 

proper lobuloalveolar differentiation (295). Finally %N-p63 is important for the 

development of basal cell lineages (296). 
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Figure 5 Model of mammary differentiation hierarchy 
Markers for different populations of progenitors and terminally differentiated cells are indicated in blue 
(markers for mouse mammary cells are given). In red, transcription factors implicated in different steps of 
differentiation are indicated. Figure adapted from (259) and (296). 

 

1.3.2 Breast cancer: Subtypes and their prognosis 

Breast cancer is the most frequent cancer in women in developed countries. In Canada, 

one woman in nine will develop a breast cancer during the course of her life and one in 

twenty-eight will die of it. Breast cancer is a very heterogeneous disease, different types of 

breast tumors exist with different characteristics. To better target therapies, various groups 

are working on the better understanding and classification of these different tumors (297-

300). Gene expression patterns have been used to classify breast tumors according to five 

distinct classes ((297, 298); Table III). It is also possible to classify cell lines into related 

classes using gene expression profiles. 

  

Secretory 
alveolar cell

ELF5



35 

 
Table III Classification of breast tumors. 
 Based on data from refs. (297, 298, 301, 302). Cell lines that were used in the studies presented in this thesis 
(Chapters 2 and 3) are indicated next to the most relevant class. Note that SK-BR-3 cells are often classified 
as luminal B cells, probably because of the presence of low levels of ER" mRNA. However, since no ER" 
protein can be detected in these cells, they are considered ‘HER2-overexpressing’ for the work presented 
here. 

Class Markers Survival rate Cell lines 

Luminal A 

Luminal B 

Basal 

 

Normal-like / Triple negative 

HER2-overexpressing 

ER+/PR+ 

ER+/PR-/HER2+/- 

ER-, PR-, HER2-,  

CK5/6+ and/or HER1+ 

ER-, PR-, HER2- 

ER-, PR-, HER2+ 

61,2% 

48,4% 

60,9% 

 

80,4% 

51,8% 

MCF-7 

BT-474; SK-BR-3 

MDA-MB-231 

 

 

SK-BR-3 

 

1.3.2.1 Origins of different breast cancer subtypes 

Several lines of evidence seem to show that different types of breast cancer are not 

derived from each other, but rather have different origins. For example, it has been shown 

that around 65% of low grade, ER-positive tumors have lost the long arm of chromosome 

16. This was observed in only 16% of the high grade, ER-negative tumors (303). Tumor 

grades classify tumors according to histological and clinical properties, with low grade 

tumors being less aggressive, slow growing and well differentiated and high grade tumors 

being more aggressive and generally undifferentiated. According to these observations, for 

a tumor to progress from low grade to high grade, it would have to regain genetic material, 

a highly unlikely event (260). Currently the model that seems most appealing is one where 

different tumor types arise from cancer stem cells (CSCs) or progenitors that are present in 

the constantly developing mammary gland. Figure 6 illustrates this model in a schematic 

overview of normal vs. tumor differentiation and molecular pathology. 
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Figure 6 Origins of breast cancer subtypes based on stem cell hierarchy 
A model of normal vs. cancer stem cell hierarchy and how this hierarchy could lead to the occurrence of 
different subtypes of breast cancer. AR, androgen receptor; CFU, colony forming unit; EPCAM, epithelial 
cell adhesion molecule; MRU, mammary repopulating unit; SLC, small light cell; ULLC, undifferentiated 
large light cell. Figure adapted from (260). 
 

1.3.2.2 Hormone dependent, ER-positive breast cancer 

About 70% of all breast tumors express the nuclear hormone receptor ER", estrogen 

receptor alpha. These tumors are called hormone-dependent, since the growth of such 

tumors is dependent on the presence of estrogens in the tumor microenvironment. Because 

ER" drives the proliferation of these ER-positive tumors, it is an ideal target for treatment 

of these tumors (304). 
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Antiestrogen therapies 

Due to their estrogen dependency, ER-positive breast tumors can be efficiently targeted 

by endocrine therapies, that is to say, therapies that either block estrogen production or ER 

function and by doing so inhibit estrogen-mediated cell proliferation (305). Antiestrogens, 

antagonists of estrogen receptors, can block their transcriptional effects. Two classes of 

antiestrogens exist, partial antiestrogens and total antiestrogens. The partial antiestrogens, 

also called selective estrogen receptor modulators (SERMs), have a tissue- and gene-

dependent partial estrogenic activity (306). They function by inhibiting the AF-2 domain of 

ER (307). Whereas these compounds are ER antagonists in the breast, they are agonists in 

for example bone (308). The best known partial antiestrogen is tamoxifen, successfully 

tested for breast cancer treatment in the 1970s (309). Full antiestrogens block ER 

transcriptional activity in all target tissues. These compounds inhibit both AF-1 and AF-2 

functions and also induce the degradation of ER (310, 311). The full antiestrogen 

fulvestrant is currently being used for treatment of postmenopausal women with recurrent 

ER-positive breast cancer (312). 

Aromatase inhibitors 

Another way of targeting ER-induced tumor cell proliferation is by inhibiting the 

production of estrogens. While circulating estrogen levels are very lwo in post-menopausal 

women, there is also local production from androgens by aromatase expressed in the stroma 

in the vicinity of the tumor (304). Aromatase inhibitors (AIs) inhibit this conversion and 

thus prevent estrogen signalling in the tumor. AIs treatment is associated with a slightly 

better prognosis and longer disease-free survival than tamoxifen in postmenopausal women 

(313).  

1.3.2.3 HER2 overexpressing tumors 

The oncogene HER2/neu encodes a 185 kDa transmembrane protein that is a member 

of the Epidermal Growth Factor Receptor family, a subgroup of receptor tyrosine kinases 

(RTKs), that play important roles in cell proliferation, metabolism, differentiation and 

survival and are often implicated in various kinds of cancers (314). The family is composed 
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of four members, namely EGFR (HER1 or Erb-B1), HER2/neu (Erb-B2), HER3 (Erb-B3 

and HER4 (Erb-B4). HER2 is overexpressed in about 25-30% of breast tumors. In the 

majority of cases, this overexpression is due to an amplification of the corresponding gene 

located on the long arm of chromosome 17 (17q12). The overexpression of HER2 in breast 

tumors is associated with reduced levels of disease-free and overall survival in metastatic 

breast cancer ((315, 316); Table III). 

The HER2 gene amplification 

The HER2 amplicon (Figure 7) has been extensively studied in order to better 

understand its impact on breast cancer treatment (317). A minimal region of amplification 

(small amplicon) of 280-750 kb was identified and may contain >20 genes (318, 319). A 

larger amplicon (long amplicon) may contain up to 40 genes (320) and extend as far as the 

TOP2A gene on 17q21 (321). Several of the genes that can be co-amplified with HER2 

have potential therapeutic applications (317).  

The amplification and overexpression of the TOP2A gene was shown to correlate with 

the response of tumors to anthracycline-based chemotherapeutics (322-325). It has been 

proposed that the amplification or deletion of TOP2A could be used as a predictive marker 

for response of HER2-positive patients to this kind of chemotherapy. Either amplification 

or deletion of the TOP2A gene occurs in up to 50% of all HER2-amplified tumors (321, 

326, 327). 

Another gene that can be co-amplified is STARD3, and the amplification of this gene 

has been associated with shorter overall and disease-free survival in breast cancer patients 

(328). The GRB7 gene has been found in tumor biopsies to be co-amplified with HER2 

(329). The knockdown of both STARD3 and GRB7 in HER2 overexpressing SK-BR-3 or 

BT-474 cells resulted in reduced cell proliferation, although not to the same extent as the 

knockdown of HER2 (330). The GRB7 gene is included in the prognostic gene-signature 

Oncotype DX (Genomic Health, Redwood City, CA, USA) for response to chemotherapy. 
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Finally, it is important to note that the gene encoding the RAR" receptor is also 

located within the large amplicon of HER2 and was found to be co-amplified with HER2 in 

2/6 tumor samples tested (321). However, overexpression of HER2 has been described to 

lead to RA resistance in mammary cells (331), thus the impact of RARA gene amplification 

is unclear.  

Figure 7 The HER2 locus on chromosome 17 
Ideogram of chromosome 17, focusing on the region from 17q12 to 17q21. Know RefSeq genes within the 
region are shown on the right, using the Gene_Seq track from the NCBI MapViewer, build 37.2 (November 
2010).  
 

The 717 kb  amplification region in between the HER2 and TOP2A genes contains 

about 35 genes, several of which, as noted above, are potentially interesting for cancer 



40 

 

treatment. However, due to the existance of breakpoints within the region, not all of these 

genes are similarly amplified. Also, the products of these genes are not necessarily all 

easily drugable targets. Given these facts, and before of our particular interest in the use of 

retinoids in breast cancer treatment, data presented in this thesis will focus on the 

amplification of RARA in combination with HER2.  

Targeting HER2 for breast cancer treatment : Herceptin™  

Because of the frequent strong and very uniform overexpression of HER2 in breast 

tumor cells and correlation with the prognosis of breast cancer, HER2 it has become an 

important therapeutic target (332). The first FDA-approved HER2 targeting therapy was 

Herceptin™ (trastuzumab; Genentech; South San Francisco, CA, USA). Herceptin™ is a 

humanized monoclonal antibody, that targets the extracellular domain of the HER2 protein. 

It is active as a single agent and as an adjuvant treatment in combination with 

chemotherapy (333). Several mechanisms of action of Herceptin™ on HER2 

overexpressing tumors have been described in both in vitro and in vivo models. These 

mechanisms are summarized in Table IV. 
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Table IV  Proposed mechanisms of Herceptin™ action.  
Several mechanisms of the inhibitory actions of Herceptin™ on HER2-overexpressing tumors have been 
described in both in vitro and in vivo models. Table adapted from refs. (332) and (334).  

Mechanism Evidence Reference 

Internalization and degradation of 

HER2.  

HER2 was shown to be downregulated in SK-BR-3 and 

MDA-MB-453 cells after Herceptin™ treatment. 

(335) 

G1 phase cell cycle arrest. Herceptin™ treatment of SK-BR-3 and BT-474 cells 

resulted in increased levels of p27Kip1 and p27Kip1-Cdk2 

complex formation, leading to reduced Cdk2 activity. 

(336) 

Disruption of PI3K/Akt signaling. Herceptin™ decreased Akt phosphorylation and activity 

and increased the membrane localization of the PI3K/Akt 

inhibitor PTEN.  

(337) 

(338) 

Inhibition of angiogenesis. Decreased levels of VEGF; decreased microvessel density 

in breast cancer xenografts. 

(339) 

Inhibition of DNA damage repair. Inhibition of repair of DNA adducts after cisplatin 

treatment; block of unscheduled DNA synthesis after 

radiation. 

(340-342) 

Inhibition of HER2 extracellular 

domain cleavage. 

Herceptin™ decreased proteolysis of the HER2 

extracellular domain in vitro, as well as in a Herceptin-

docetaxel phase II trial. 

(343, 344) 

Stimulation of natural killer cells and 

activation of ADCC. 

Strong NK cell activation was observed in patients and 

ADCC levels correlated with response. ADCC activation 

was also observed in xenograft models of BT474 cells and 

multiple breast cancer cell lines.  

(345) 

(346, 347) 

 

Resistance to Herceptin™ treatment 

As mentioned above, Herceptin™ can be used as a single agent as well as in 

combination therapy with chemotherapy. In a mono-therapy setting response rates are low, 

with a median duration of 9 months. Primary resistance to Herceptin™ mono-therapy 

ranges between 66% and 88% (348-350). Combined therapy with chemotoxins such as 

paclitaxel or docetaxel significantly increase response rates and overall survival compared 

to mono-therapy (343, 351, 352). However, even patients that initially respond to 
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Herceptin™ based regimens in combination therapy will develop resistance within the first 

year (333). Several molecular mechanisms of Herceptin™ resistance have been proposed 

and will be discussed below. 

One way in which tumor cells can achieve resistance to Herceptin™ treatment is by 

increasing signaling from other receptors, either within the HER family or of other receptor 

families. Some examples include increased levels of HER family ligands such as heregulin 

and EGF, as well as increased signaling through other HERs, including HER2/HER3 and 

HER2/EGFR heterodimers. Particularly important in this respect is signaling through 

HER3/EGFR heterodimers and EGFR homodimers (353, 354). Although HER2 is the 

preferred dimerization partners of all other HER family members, dimers without HER2 

can be formed, and such dimers will not be inhibited by Herceptin™ due to its specificity 

towards HER2 (334). Another pathway that has been described to be upregulated in 

Herceptin™ resistance is the insulin growth factor 1 receptor (IGF1R) signaling pathway. 

Several groups have shown that overexpression of IGF1R in otherwise Herceptin™ 

sensitive cells results in resistance to the drug (355-357). This resistance can be overcome 

by the overexpression of IGFBP3, an inhibitor of IGF1 mediated activation of IGF1R 

(356). Increased IGF1 signaling leads to increased levels of the p27Kip1 ubiquitin ligase 

SKP2 and thus to lower levels of p27Kip1, an event that depends on PI3K/Akt signaling. 

Inhibition of IGF1R signaling restores Herceptin™ sensitivity. 

Alterations in the interaction between ligand and receptor can also lead to resistance. In 

this respect, the membrane associated glycoprotein MUC4, a member of the mucin family, 

has been proposed to play a role in Herceptin™ resistance (333). MUC4 inhibits the 

immune recognition of cancer cells, suppresses apoptosis and promotes tumor progression 

and metastasis. It can also interact with and activate HER2 (358). One study using a 

Herceptin™ resistant cell line showed an inverse correlation between MUC4 levels and 

Herceptin™ binding to HER2. A knockdown of MUC4 in these cells restored Herceptin™ 

sensitivity (359). Another way of disrupting ligand-receptor interaction would be through 

mutations in the extra-cellular domain of HER2. Such mutations have however not been 

described to date for HER2 (334). 
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Altered expression of and signaling by components of the HER2 downstream signaling 

pathway have also been implicated in Herceptin™ resistance. Increased levels of active Akt 

were found in Herceptin™ resistant BT-474 cells, compared to sensitive parental cells 

(360). Decreased levels of the PTEN phosphatase decreased the sensitivity of breast cancer 

cell lines to Herceptin™ and loss of PTEN in HER2 positive tumors correlated with poor 

response to Herceptin ™-based treatments (338). Loss of p27Kip1 or its nuclear localization 

have also been correlated with Herceptin™ resistance in breast cancer cell lines (361). 

Finally, the full-length HER2 protein can be cleaved by matrix metalloproteases into 

an extracellular domain, which can be secreted in the culture medium or in the serum in 

vivo, and a truncated transmembrane domain with increased kinase activity (362-364). 

Increased levels of circulating ECD have been correlated with poor prognosis in patients 

with advanced stage breast cancer and might be implicated in Herceptin™ resistance 

through competition for antibody binding (365). On the other hand however, circulating 

levels of pre-treatment serum HER2 ECD seem to also be positively correlated with 

response (366) and Herceptin™ inhibits the cleavage of HER2 (344). 

1.3.3 Expression of ER!  and HER2 and the response to RA 

The response of breast cancer cell lines to the antiproliferative actions of retinoic acid 

is variable and appears to depend highly on the expression of RAR! (367-369). Schneider 

et al. have shown that maximum retinoid responses can be obtained in ER-negative and 

ER-positive cell lines by activating solely RAR! by means of specific ligands (370). 

1.3.3.1 ER-positivity and response to RA 

Various reports in the literature show a positive correlation between the expression of 

ER! and the response to RA (367, 371-373). Both ER-positive cell lines and tumors have 

been shown to have higher levels of RAR! RNA and protein levels (367, 374, 375). 

Estrogen has been shown to upregulate the levels of both RNA (376) and protein (377) of 

RAR! in ER!-positive cells. Furthermore, it has been demonstrated that the 

re-introduction of either ER! or RAR! in ER-negative cell lines sensitizes them to the 

growth inhibitory effects of RA (378, 379). Thus, the correlation between ER! expression 
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and RA sensitivity is the result of the regulation of RAR! by estrogens. Nonetheless, 

various research groups have reported RAR! expression and sensitivity to retinoids in ER-

negative cell lines, such as SkBr-3 and MDA-MB-435 (380, 381). Fitzgerald et al. showed 

retinoid sensitivity of two ER-negative cell lines, SkBr-3 and Hs578T. Response to 9cRA 

and a panel of synthetic retinoids correlated with high to moderate expression of RAR!, 

respectively. No correlation was observed with the expression of RAR" or RAR# (369). 

Inversely, RAR-agonists have been shown to increase response to antiestrogens in ER-

positive cell lines (382, 383). RA and tamoxifen were shown to inhibit the growth of berast 

cancer cells in a synergistic manner. Further studies in MCF-7 cells showed that this is due 

to a selctive synergistic effect on the activation of apoptosis through downregulateion of 

Bcl-2 mRNA and protein levels (382).  

1.3.3.2 HER2 overexpression and response to RA 

Contrary to ER! expression, the overexpression of HER2 is negatively correlated with 

the response of breast cancer cells to retinoid treatment (331). In an MMTV/neu mouse 

model (mammary specific overexpression of Her2), RA has even been shown to promote 

tumor growth and negatively impact survival (166). Tari and colleagues have shown that 

the overexpression of HER2 or Heregulin (HER2/3 activating ligand) in otherwise RA-

sensitive MCF-7 cells significantly reduces the anti-proliferative response of these cells 

after treatment with RA. On the other hand, inhibition of HER2 signaling by pretreating 

with Herceptin™ induced RA sensitivity in HER2-overexpressing cell lines BT-474 and 

MDA-MB-453 (331). Authors show that this induction of RA resistance depends on the 

activation of Grb-2 and Akt. Later it has been shown that HER2 signaling reduces RAR 

binding on RAREs and that this inhibition of binding also passed primarily through Akt 

(384). Akt has been shown to be able to phosphorylate RAR! in non-small cell long cancer 

(NSCLC). This phosphorylation on Ser96, a residue located in the DNA binding domain of 

the receptor, inhibited RAR transactivation and contributed to RA resistance of NSCLC 

cells (385). It has also been shown that HER dependent tyrosine kinase pathways regulate 

the expression of RAR! at the levels of the mRNA (380) and protein (331).  
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1.3.4 Retinoic acid signaling and breast cancer 

1.3.4.1 Alterations of RA metabolism and signaling in breast cancer 

Several modifications of normal retinoid metabolism and signaling have been 

described in breast cancer cells. Such changes have the potential of conferring a growth 

advantage to tumor cells. 

With respect to metabolism, it appears that various breast cancer cell lines have lost the 

capacity of RA synthesis from retinol, compared to normal human mammary epithelial 

cells (HMECs) or immortalized cell lines (34). For MCF-7 cells it has been shown that 

their incapacity to synthesize RA from retinol can be overcome by the expression of 

RALDH3, which is normally not expressed in this cell line, but is expressed in HMECs 

(35). On the other hand, the RA catabolizing enzyme CYP26A1 was found to be highly 

expressed in 42% of human cancers and its expression increases tumorigenicity of mouse 

mammary cells (386). Taken together, these observations suggest that tumor cells gain a 

growth advantage form creating an environment with low levels of RA.  

Another way for tumors to escape the inhibitory effects of RA is by reducing the 

expression levels of the RARs. RAR!2 was shown to be epigenetically silenced in MCF-7 

cells and this event was suggested to be important for the loss of RA signaling in mammary 

tumorigenesis (387). This idea was supported by the observation that in breast cancer cell 

lines expressing RAR!, full retinoid responses could be obtained by activating only this 

receptor (370). Expression of RAR"2 has also been shown to be frequently lost in 

mammary tumorigenesis (388, 389). This was found to be at least in part due to the 

hypermethylation of the promoter (390, 391). Treatment of breast cancer cell lines with the 

demethylation agent 5-aza-2deoxycytidine leads to re-expression of RAR"2 and induction 

of cell cycle and growth arrest (392). However, the hypermethylation could not fully 

explain loss of RAR"2 expression (393). Loss of heterozygosity of the RAR" locus on 

chromosome 3p24 has also been described, but did not correlate with loss of RAR"2 

expression (394). Yet another study showed that the PI3K/Akt signaling pathway induces 
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transcriptional repression of the RAR!2 gene by increased phosphorylation and enhanced 

recruitment of SMRT to the RAR!2 promoter (395). 

A more recent study suggested that the loss of response to the anti-proliferative effects 

of RA in advanced stages of mammary tumorigenesis is not correlated with lower 

expression of RAR", RAR! or RAR#, but was instead associated with the overexpression 

of HER2 (396). 

1.3.4.2 The effects of retinoic acid on breast cancer cell lines 

As already mentioned before, retinoic acid can provoke anti-proliferative effects in 

various breast cancer cell lines. Various responses and implicated signaling pathways have 

been described and will be summarized below. 

Reintroduction of RAR! in ER-positive MCF-7 cells resulted in the induction of 

growth inhibition followed by apoptosis after 4-6 days of RA treatment, whereas in ER-

negative MDA-MB-231 cell growth inhibition without apoptosis was observed. In MDA-

MB-231 cells, but not in MCF-7 cells, the growth inhibition was associated with 

downregulation of c-myc mRNA (397). In HMECs however, the same group showed that 

RA only induces a G1 arrest, which is associated with reduced levels of 

hyperphosphorylated retinoblastoma (Rb) protein (398). Another group recently suggested 

that the induction of apoptosis in MCF-7 cells by RA is mediated by the regulation of 

antioxidant enzymes (399). RA was also shown in MCF-7 cells to specifically decrease 

protein levels and IGF-I induced tyrosine phosphorylation of the IGF-IR downstream target 

IRS-1, impairing Akt but not ERK1/2 activity and resulting in growth inhibition (400). This 

downregulation was later also shown in the ER-positive cell lines T47D and Zr75.1, but 

could not be observed in the ER-negative cell lines MDA-MB-231 and MDA-MB-453. The 

downregulation of IRS-1 was shown to be a result of increased degradation due to PKC-

dependent activation of the ubiquitin-proteasome pathway (401). 

Nakagawa et al. showed that the RA induced growth arrest in ER-negative SkBr-3 

cells corresponds to a G1 arrest and decreased levels of ERK phosphorylation. These 

effects could be overcome by overexpression of PKC" (158). Also using SkBr-3 cells, it 
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was shown that prolonged exposure (3-9 days) to a high dose of RA (2 !M) reduced 

acetylation at the hTERT promoter and decreased telomerase activity (402). The authors 

also observed a significant decrease in colony formation in soft agar when cells were 

treated with RA, as well as a strong induction of apoptosis in the first 6 days of treatment 

(402). RA and 9cRA, as well as the RAR! specific ligand TTAB, also induce epithelial 

differentiation and cell-cell adhesion in SkBr-3 cells (403). This appears to be mediated 

through stabilization and translocation to the cell membrane of "-catenin protein. 

9cRA and some receptor-selective retinoids were shown to induce a G1 cell cycle 

block in several normal and malignant mammary cell lines through modulation of Cyclin 

D1 and D3 (404). All tested retinoids in this study inhibited the phosphorylation of Rb. In 

normal 184 cells and T47D tumor cells 9cRA induced low levels of apoptosis, as measured 

by caspase 3 and Annexin V assays (404). 

1.3.4.3 Direct RAR targets in breast cancer 

A number of direct RAR target genes has been identified that have been suggested to 

play a role in the antiproliferative effects of RA in breast cancer cells.  

HOXA5 was shown to be a direct target of RA and an RARE located in the 3’ end of 

the gene was found to be bound by RAR" (405). The expression HOXA5 was found to be 

lost through promoter methylation in 16 out of 20 p53-negative tumor samples (406). The 

loss of HOXA5 in a p53+/- background was suggested to trigger mammary tumor 

development (407). It has been shown that this gene induces apoptosis in breast cancer cell 

lines, through p53 and caspase 2/8 dependent pathways (406, 408). Also, the knockdown of 

HOXA5 reduced RA-induced apoptosis and promoted cell survival after RA treatment 

(405).  

SOX9 expression was shown to be rapidly induced by RAR pan-agonists and the 

RAR! selective agonist Am580 in the ER-positive cell lines MCF-7 and T47-D (409). 

Upregulation of this member of the high mobility group of transcription factors in mouse 

and human melanomas inhibited their growth and restored their sensitivity to RA (410). 

Overexpression of SOX9 mimicked RA treatment and using a dominant negative form of 
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SOX9 it was shown that the induction of this gene is essential for RA-induced cell cycle 

arrest in T47-D cells (409). Furthermore, it was shown that SOX9 regulates the expression 

of the HES-1 gene (411), which was shown to be important for the response of MCF-7 cells 

to RA (412). 

BTG2 is a p53 induced gene (413) and has been shown to inhibit G1/S transition of the 

cell cycle in an pRb dependent manner through the inhibition of cyclin D1 transcription 

(414). It is also a direct RA target gene in MCF-7 cells and its induction leads to a decrease 

in Cyclin D1 expression (132). The authors therefore conclude that BTG2 mediates at least 

part of the antiproliferative actions of RA in MCF-7 cells.  

The PDCD4 gene was shown to be regulated by RAR agonists, antiestrogens and 

HER2 antagonists in breast cancer cells. Induction of this gene by such a broad range of 

antiproliferative compounds suggests a prominent role in breast cancer cell growth 

inhibition. When overexpressed in T47-D or MDA-MB-231 cells PDCD4 induced 

apoptosis (415). 

1.3.4.4 Use of retinoids in the treatment of breast cancer 

It may be clear from the effects observed in mammary tumor cell lines that retinoids 

are interesting candidates for cancer treatment (416-418). Several papers describe the use of 

natural and synthetic ligands in mouse models as well as clinical trials. Already some 30 

years ago it was shown that the synthetic retinoid N-(4-hydroxyphenyl)retinamide (4-HPR 

or fenretinide) is capable of reducing the incidence and growth of chemically induced 

mammary lesions in mice (419, 420). The RAR! selective retinoid AM580 inhibits the 

formation of mammary tumors in the MMTV-neu and MMTV-Wnt1 models (421). The 

rexinoid (RAR and RXR ligand) bexarotene can prevent the occurrence of premalignant 

lesions in an MMTV-ErbB2 mouse model (422). 

Various clinical trials show that the effects of retinoids on mammary tumors are 

generally beneficial, although there is a lack of strong objective response and severe side 

effects have been described (383, 423-425). The retinoid fenretinide appears to be of 

particular interest in the prevention of cancer (426). Because of its selective accumulation 

in breast tissue and favorable profile of secondary effects, it is the most studied retinoid in 
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trials of breast cancer chemoprevention (427). It has been shown to strongly reduce 

recurrence of breast cancer in premenopausal women after a median follow-up of 97 

months (428). 15 year follow-up of the same study showed marginally significant reduction 

of occurrence of second breast cancer incidence overall (17%) and a strong reduction of 

38% in premenopausal women (429). Bexarotene is also being tested in the clinic and 

appears to be beneficial in about 20% of patients with metastatic breast cancer (430).  
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1.4 Objectives 

Although the potential benefits of administering retinoids to (breast) cancer patients 

has been recognized for several years now, in practice the benefits of retinoid treatments 

have been limited in breast cancer. In order to better employ the benefits of retinoid acid to 

the advantage of cancer treatment, it is of capital importance to better understand the 

signaling pathways leading to antiproliferative responses. Other problems lay in the 

difficulty of identifying classes of tumors that would benefit from such a treatment. 

Therefore, it is also important to find better identifiers for the possibly relatively small 

subclass of tumors that can really benefit from retinoid treatment. 

Several groups have shown the importance of functional signaling by RARs in 

breast tumor cells is essential for antiproliferative responses. This points toward an 

important role for direct RA target genes in the regulation of these responses. A number of 

direct RA targets have been shown or suggested to mediate at least part of the RA response 

in some cell lines. We hypothesize that by performing large-scale gene regulation analyses 

we could identify more genes important for the cellular responses to RA in breast tumor 

cell lines. Particularly, we are interested in comparing the signaling in ER-positive and ER-

negative RA-sensitive cells in order to identify common and specific mediators of response. 

Using such a study will allow us to identify specific gene regulatory programs that 

determine the anti-proliferative and pro-apoptotic responses to retinoic acid treatment. 

Although most RA-sensitive cell lines are ER-positive and an importance for ER 

signaling in RA mediated growth responses has been suggested, some ER negative cells 

have also been shown to be growth inhibited by RA. The best know example is the cell line 

SK-BR-3, which in spite of being HER2 amplified and ER-negative, is particularly 

sensitive to RA. Since it has been suggested that the RARA gene is included in the HER2 

amplicon in this cell line, it could represent a subclass of breast tumors that may benefit 

from treatment with retinoids. We propose that in such RA/HER2 amplified cells there 

could be an additional benefit in combining treatments directed against HER2 and RAR. 

This appears particularly interesting because of known interactions between the two 
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signaling pathways. We therefore investigated the possibility of a synergy between RA and 

Herceptin treatments in this type of tumor using SK-BR-3 cells as a model. 
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SUMMARY 
Retinoids are used clinically for the treatment of specific malignancies and 

precancerous conditions, but their benefit is unclear in breast cancer, possibly due in part to 

the variable sensitivity of breast tumor types to the antiproliferative effects of retinoic acid. 

In breast tumor cell lines, sensitivity generally correlates with expression of estrogen 

receptor alpha (ER!), which regulates expression of the RARA gene. However, the ER-

negative SK-BR-3 cell line is also sensitive to the antiproliferative effects of RA and of 

RAR!-selective ligands. We report here that patterns of gene regulation in two RA 

sensitive cell lines, ER-positive MCF-7 and ER-negative SK-BR-3 cells, are largely 

overlapping, indicating that part of the antiproliferative effects of RA is independent of 

estrogen signaling. Compatible with direct response element recognition by RARs, we 

found a strong enrichment of RA response elements (RAREs) in primary up-regulated RA 

target genes in both cell lines. Several other transcription factor binding sites were also 

over-represented, suggesting the involvement of tethering or non-genomic mechanisms in 

the regulation of primary RA targets. While a subset of common up-regulated RA target 

genes were regulated in an opposite manner by RA and estrogens in MCF-7 cells, most 

were sensitive to cycloheximide for down-regulation by estrogens, indicating that protein 

synthesis is required for this antagonistic effect. Several primary RA target genes, including 

the transcription factors SOX9 and FOXA1, were found to inhibit cell cycle progression 

when overexpressed in ER-negative SK-BR-3 cells. Overexpression of these two genes also 

lead to the transcriptional regulation of secondary RA target genes with antiproliferative 

activity. Finally, consistent with our observation that RA directly up-regulates expression 
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of proteins involved in the control of ER expression and signaling, such as FOXA1 and 

GATA3, RA primary target genes identified in ER-negative SK-BR-3 cells were found to 

discriminate between ER+ and ER- tumors, suggesting that RA signaling contributes to 

luminal breast cancer cell differentiation. 

Keywords:  retinoic acid, breast cancer, estrogen receptor, luminal differentiation
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INTRODUCTION 
 

Retinoids include natural forms of vitamin A such as retinol and its derivatives, retinal 

and RA. RA acts by binding retinoic acid receptors (RARs), which belong to the nuclear 

receptor superfamily (1-3). RA target genes are regulated by heterodimers between RARs 

and members of a second family of nuclear receptors, the RXRs (4, 5). Both RAR and RXR 

families are composed of three members: !, " and #, each of which is expressed as several 

N-terminal variant isoforms (4). Two main isomers of RA, all-trans- and 9-cis-RA bind 

these receptors. All-trans RA (ATRA) is the natural ligand for RARs, whereas 9-cis RA 

binds both RARs and RXRs. RAR-RXR heterodimers bind response elements in the form 

of direct repeats of PuG(G/T)TCA motifs separated by 1, 2 or 5 base pairs (DR1, DR2 or 

DR5 elements) (6-9). RA binding induces recruitment of coactivator complexes required 

for transcriptional activation, including p160 coactivators (NCOA1/2/3), the CREB binding 

protein (CBP) and its homologue p300, which possess histone acetyltransferase (HAT) 

activity, and large complexes of proteins required for recruitment of the transcriptional 

machinery such as the DRIP/TRAP complex (10, 11). 

The roles of the RARs and RXRs during mammalian development have been 

demonstrated by gene ablation studies (see (2) for a review). Vitamin A deficiency in adult 

murine models results in squamous metaplasia of numerous epithelia. Animal models have 

also demonstrated potent chemopreventive effects of retinoids on epithelial tissues exposed 

to carcinogens (12). The inverse relationship between incidence of various cancer types and 

serum vitamin A or "-carotene levels prompted investigation of the use of retinoids for 
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cancer treatment or prevention, in particular for acute promyelocytic leukemia and head 

and neck cancer (13-15). In breast cancer, in spite of promising results on reduction of 

second malignancies by RA (14, 16) and on a decrease in rates of contralateral tumors in 

premenopausal women with stage I breast cancer by the synthetic retinoid fenretinid (17, 

18), retinoid-based therapies have failed to achieve a significant break-through. This may 

be due to a failure to predict accurately which tumors will exhibit sensitivity to retinoids.  

In cultured breast cancer cell models, sensitivity to RA is cell line-specific. ER-positive 

cells are sensitive to the antiproliferative effects of ATRA, while the majority of ER-

negative cells are not (19-21). This may be due to the induction of RAR! expression by 

estrogens (20, 22, 23). In addition, recent large-scale chromatin immunoprecipitation 

experiments have identified a large overlap in the chromatin regions bound by ER and 

RAR!, suggesting that an interplay between retinoic and estrogen signaling (24, 25). 

Surprisingly however, ER!-negative, ERBB2-positive SKBR-3 cells are very sensitive to 

the anti-proliferative effects of ATRA. This may be explained by the high expression levels 

of RAR! in this cell line (21), and suggests that sensitivity to the anti-proliferative effects 

of RA is not dependent on ER expression.  

In RA-sensitive cell lines, retinoids have antiproliferative and/or proapoptotic activities 

through mechanisms that remain incompletely understood (26-30). The antiproliferative 

effects of RA in MCF-7 breast cancer cells have been linked to decreased expression and 

phosphorylation of Rb, as well as decreased expression of cyclin D3 and CDK4 (31) and/or 

cyclin D1 (32). In SK-BR-3 cells, RA treatment was shown to also decrease Rb 

phosphorylation and expression of cyclins A and E (33). Induction of several pro-apoptotic 
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genes has been observed in MCF-7 cells, including CASP7 and 9 (32). Several RA target 

genes have been proposed to act as mediators of these effects. BTG2 is an RA- and p53-

target gene that regulates phosphorylation of Rb and modulates expression of cyclin D1 and 

cyclin E in mouse fibroblasts (34, 35). SOX9 also plays roles in the control of the cell cycle 

in breast cancer cell lines sensitive to RA, increasing the percentage of cells in G0/G1 (36). 

In addition, induction of HOXA5 was shown to contribute to the pro-apoptotic effects of 

RA in MCF-7 cells (37). Nevertheless, the overall mechanisms of gene regulation and of 

the antiproliferative effect of RA in sensitive breast cancer cell lines remain incompletely 

understood. 

In this article, we characterized the effects of RA on primary and secondary target gene 

expression in both ER-positive MCF-7 and ER-negative, HER2-positive SK-BR-3 cells. 

Our results indicate a large overlap in regulation of both primary and secondary target 

genes, suggesting ER-independent mechanisms of regulation in both cell lines. RARE 

motifs were found enriched specifically in primary up-regulated target genes in both cell 

lines. In addition, other types of transcription factor binding sites were over-represented in 

primary responsive genes, suggesting a contribution of tethering or non-genomic 

mechanisms to primary target gene regulation. We identify transcription factors FOXA1 

and SOX9 as RA targets in both cell lines and demonstrate that their overexpression results 

in antiproliferative effects and modulation of expression of several secondary RA target 

genes in SK-BR-3 cells. Finally, RA regulation of luminal differentiation genes FOXA1 

and GATA3 in SK-BR-3 cells suggests a role of RA in the initiation and/or maintenance of 
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luminal differentiation. Accordingly, several primary up-regulated RA target genes are 

strongly associated with the luminal phenotype and ER-positive status in breast tumors. 

. 
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MATERIALS AND METHODS 

Cell culture and treatments 

MCF-7 and SK-BR-3 cells (ATCC, Manassas, VA, USA) were maintained in 

Dulbecco’s Modified Eagle Medium (DMEM) (Wisent, St-Bruno, QC, Canada) 

supplemented with 10% fetal bovine serum (FBS) (Sigma-Aldrich, Oakville, ON, Canada). 

MDA-MB-231 cells were maintained in DMEM supplemented with 5% FBS. Three days 

before experiments, cells were plated in DMEM supplemented with 10% or 5% charcoal-

stripped FBS, respectively. For treatments, cells were seeded at a density of 1-1.5 million 

cells per 10 cm plate in medium containing charcoal-stripped FBS and the next day cells 

were treated with all trans-retinoid acid (RA, 100 nM, Sigma) or vehicle (0.1% DMSO) for 

indicated periods of time. Where mentioned cells were pretreated for one hour before RA 

treatment with cycloheximide (CHX, 10!g/ml, Sigma). 

 

Growth assays 

Cells were seeded in 6-well plates at a density of 30,000 cells per well and treated every 

2-3 days with vehicle (0, 0.1% DMSO), retinoic acid (RA) or AM580 (J. Gleason, McGill 

University, Montreal, QC) at indicated concentrations in medium containing 5% charcoal-

stripped FBS. After 9 days, protein concentrations were measured as described previously 

(38).  
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RNA purification and DNA microarrays 

Three days prior to the experiments, cells were switched to medium containing charcoal 

stripped medium to eliminate estrogenic activity. One day before RA treatment, cells were 

plated at a density of 1-1.5 million cells per 10 cm plate in medium containing charcoal-

stripped FBS. 8 hours after treatment with vehicle or RA (100 nM) cells were collected in 1 

ml of TRIZOL (Invitrogen). Total RNA was extracted as recommended by the 

manufacturer and further purified with RNeasy MinElute Cleanup Kit (QIAgen, 

Mississauga, ON, Canada). cRNA synthesis from total RNA, labeling and hybridization to 

Affymetrix HG-U133 2.0 Plus gene chips (>54,000 probe sets to cover >47,000 transcripts 

and variants) were performed at the Genome Quebec and McGill University Innovation 

Center using standard protocols (http://www.genomequebec.mcgill.ca/). Experiment #1:  

SK-BR-3, MCF-7 and MDA-MB-231 were RA treated in the absence of cycloheximide 

(CHX) and in addition MCF-7 cells were analyzed in the presence of 10 !g/ml of CHX 

added one hour before RA treatment. Three biological replicates for each condition were 

used for microarray analysis. Experiment #2: SK-BR-3 cells were treated for 8 hours with 

100 nM RA in the presence or absence of 10 !g/ml CHX added one hour before RA 

treatment. Four biological replicates were used. The 8 hour time point was chosen to allow 

for the identification in the same samples of both primary (early induced) and secondary 

targets (induced at later times). 

Affymetrix microarrays were normalized with the affy bioconductor package using the 

Robust Multi-array Average (RMA) normalization method (39). Illumina microarrays were 

normalized with the lumi biobonductor package using the quantile method and the variance 
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stabilizing transform (40). Moderated t-statistics (41) from the limma bioconductor package 

were used to identify statistically significant change of gene expression between vehicle 

and RA treatments. Genes deemed significantly regulated were those with 1.4-fold change, 

average log2-expression levels greater than 5 across all samples (A-value) and a P-value 

smaller than 0.01. P-values were adjusted to control the false discovery rate with the 

Benjamini and Hochberg method (42). 

For overexpression studies, SK-BR-3 cells were electroporated with plasmids of 

interest and RNA was extracted 48 hours after transfection as mentioned above. 24h RA 

treated samples were inculded as controls. Triplicate samples were analyzed for each 

condition. cRNA synthesis from total RNA, labeling and hybridization to Illumina WG-6 

v3.0 BeadChips were performed at the Genome Quebec and McGill University Innovation 

Center.  

 

Screening for transcription factor binding sites 

Human Genomic sequences  +/- 10 Kbp around the transcription start sites (TSS) were 

extracted for all annotated gene in the RefSeq track (43) from the UCSC Genome Browser 

Database (hg17, May 2004) (44). Custom RAR matrices and matrices from TRANSFAC 

2010.2 (45) were used to screen these sequences for transcription factor binding sites using 

a base score cutoff of 65% and 5% increments as described previously (46). For each 

transcription factor, four cutoffs were chosen with frequencies in all gene promoters closest 

to those of RAREs DR5 (70%: 1.14 DR5/gene, 75%: 0.65 DR5/gene, 80%: 0.21 DR5/gene, 

85%: 0.05 DR5/gene).  Z-scores and P-values from a Fisher exact test were used to evaluate 
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the significance of the observed enrichment in promoters of different sets of regulated genes 

versus those of all annotated genes. The Z-scores and P-values were calculated with 

programs adapted from oPOSSUM perl application programming interface (API) using the 

cutoff (Z-scores >10, P-value <0.01) recommended by the authors (47). 

 

Gene expression quantification 

Cells were treated with RA (100 nM) for the indicated time periods and total RNA was 

extracted as described earlier. Aliquots of 2 µg were reverse transcribed using the 

RevertAid H first minus strand cDNA synthesis kit (MBI Fermentas, Burlington, ON, 

Canada) as recommended by the manufacturer. Reverse transcription products were diluted 

10 times in pure water prior to real-time quantitative PCR. Gene expression levels were 

determined using primer and probe sets from the Universal Probe Library 

(https://www.roche-applied-science.com) as previously described (46). 

 

Cell cycle analysis 

For analysis of the effect of RA and Am580 on cell cycle distribution, cells were seeded 

at a density of 1-1.5 million cells per 10 cm dish and treated for 48 hours at indicated 

concentrations. Cells were then trypsinized and fixed and permeabilized for at least 16 

hours in 70% EtOH. Cells were then stained for 20' at room temperature with a solution 

containing 50 mg/ml propidium iodine (Sigma-Aldrich) and analyzed on a Canto flow 

cytometer with FACS Diva software (BD Biosciences). At least 15,000 single cell events 
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were used for cell cycle analysis using ModFit LT 3.2 software (Verity Software House, 

Topsham ME). 

For analysis of the effect of RA target gene overexpression, SK-BR-3 cells were 

electroporated (5 million cells, 240 V, 950 !F) with 6 !g of either the parental pCMV_XL5 

vector or vectors expressing selected RA target genes (Open Biosystems and Origene), 

together with a ten-fold lower amount of an expression vector for membrane-targeted 

EGFP (pEGFP-spectrin, (48)). Cells were seeded in 10 cm plates in DMEM (Wisent) 

supplemented with 10% FBS (Sigma-Aldrich) and 1% Penicillin/Streptomycin (Sigma-

Aldrich). After 72 h cells were trypsinized and fixed in 70% EtOH. Cells were stained with 

propidium iodine (Sigma-Aldrich) and analyzed on a Canto flow cytometer with FACS 

Diva software (BD Biosciences). At least 15,000 GFP-positive single cell events were used 

for each condition for cell cycle analysis with ModFit LT 3.2 software (Verity Software 

House, Topsham ME). 

 

Western blotting 

For detection of RAR and ERa proteins by western blot, cells were lysed for 30 minutes 

on ice in E1A lysis buffer (ELB; 150 mM NaCl, 50 mM Hepes pH 7.5, 5 mM EDTA, 0.1% 

Nonidet P-40, supplemented with protease inhibitors (Sigma-Aldrich)). Bradford method 

was used to quantify protein samples. 35 !g of protein were used for analysis on 8% SDS-

PAGE gels and subsequent blotting onto PVDF membranes (Millipore). Antibodies for 

RAR! (C-20), RAR" (C-19) and RAR# (C-19) rabbit polyclonal antibodies were obtained 

from Santa Cruz Biotechnology and used at a dilution of 1/2500. Anti-ERa rabbit 
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monoclonal antibody (clone 60C; Millipore, Billerica, MA, USA) was diluted 1/1000. 

Secondary antibodies were obtained from Jackson ImmunoResearch (West Grove, PA, 

USA) and used at a dilution of 1/10,000. The blots were developed using enhanced 

chemiluminescence using home-made solutions. 
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RESULTS 

Sensitivity to the antiproliferative effects of RA correlates with differential expression 

of RAR!  

The anti-proliferative effects of RA have been associated with ER-positive (luminal) 

breast cancer cells (19-21). However, the SK-BR-3 cell line is known to be sensitive to RA 

treatment in spite of lack of ER protein expression and overexpression of ERBB2 (21, 33). 

Direct comparison of the effects of RA on ER-positive MCF-7 cells and ER-negative SK-

BR-3 cells indicates that RA was more potent in SK-BR-3 cells compared to MCF-7 cells, 

while ER-negative MDA-MB-231 cells were, as previously reported (49, 50), insensitive to 

the effects of RA (Figure 1A). The antiproliferative activity of RA in SK-BR-3 cells 

corresponded to an increase at 48h in the percentage of cells in G0/G1 (Figure 1B). RAR! 

has been proposed to be the key regulator of RA-induced antiproliferative and apoptotic 

events in breast cancer cells (21). Accordingly, RARA mRNA and protein levels were 

found to be at least 2-fold higher in SK-BR-3 cells compared to ER-positive MCF-7 cells, 

while RAR" protein was expressed to similar levels and RAR# was expressed to lower 

levels. The decrease in RAR! expression levels in the presence of RA likely results from 

the reported induction of proteasomal degradation of this receptor (51). Very low levels of 

RAR" and no detectable expression of RAR! and RAR# proteins were observed in MDA-

MB-231 cells (Figure 1C-D). Consistent with previous reports of antiproliferative activity 

of RAR!-selective ligands (21, 52), the RAR!-selective AM580 retinoid (53) inhibited 

proliferation of both SK-BR-3 cells and MCF-7 cells, but with greater potency in SK-BR-3 
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cells (Figure 1A). Finally, the antiproliferative effects of RA were reduced in SK-BR-3 

cells and nearly abolished in MCF-7 cells by sh-RNA mediated partial down-regulation of 

RAR! (Suppl. Figure 1). Together, these results suggest that high levels of RAR! in SK-

BR-3 cells contribute to their sensitivity to RA in spite of lack of ER! expression at the 

protein level (Figure 1D). 

 

Sensitivity to the antiproliferative effects of RA correlates with transcriptional 

regulation 

To investigate the mechanisms of transcriptional regulation by RA in sensitive breast 

cancer cells, we screened Affymetrix HG-U133 Plus 2.0 chips in triplicates for SK-BR-3, 

MCF-7 and MDA-MB-231 cells treated or not with RA for 8 h within the same experiment. 

Regulated genes were identified by assessing the ratio between the average of the replicates 

treated with RA versus the vehicle control. A cutoff of 1.4-fold differential expression was 

applied and adjusted p-values smaller than 0.01 were considered (please refer to Materials 

and Method section for details), identifying regulated genes in SK-BR-3 (196 regulated 

genes) and MCF-7 (341 regulated genes) cells (Table I; top ranked regulated genes in SK-

BR-3 and MCF-7 cells can be found in Suppl. Table I and Suppl. Table II, respectively). To 

assess reproducibility of results, the experiment in SK-BR-3 was repeated using the same 

experimental conditions, except that quadruplicates were used instead of triplicates. While 

the number of genes found to be regulated in a statistically significant manner was much 

larger (878 instead of 196), 90% of the target genes identified in the first experiment were 

also observed in the second experiment (Suppl. Figure 2). Variability between the two 
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experiments affected mostly down-regulated genes, with 22.7% of the genes in the smaller 

dataset not reproduced in the larger one compared to 1.7% in the up-regulated genes. 

Substantial overlap in regulated genes was observed between MCF-7 and SK-BR-3 cells 

using either SK-BR-3 datasets, especially in up-regulated target genes. Overlap between the 

MCF-7 and the first SK-BR-3 dataset represented 16.5% of the MCF-7 dataset and 35.5% 

of the first SK-BR-3 dataset for up-regulated target genes (43 genes), but 7.4% of MCF-7 

and 8% of the first SK-BR-3 dataset for down-regulated target genes (6 genes). Similarly, 

overlap between the MCF-7 and the second SK-BR-3 dataset represented 37.3% of the up-

regulated genes in MCF-7 cells and 20.4% of the ones in the second SK-BR-3 dataset (97 

up-regulated genes), compared to 24.7% of the down-regulated genes in MCF-7 and 5% of 

the ones in the second SK-BR-3 dataset (20 down-regulated genes) (Figure 2). 

In contrast to what was observed in luminal cells, only 2 genes (NRIP1, DHRS3) were 

found regulated using adjusted p-values in RA-insensitive MDA-MB-231 cells (Table I). 

Both genes were also identified as up-regulated RA target genes in SK-BR-3 and MCF-7 

cells. Additional genes (70 total) were regulated in MDA-MB-231 cells when using non-

adjusted p-values, but differed largely from those identified in MCF-7 and SK-BR-3 cells 

(14 identical target genes over 70, 20%, Suppl. Figure 3).  

Together, these results indicate that RA sensitivity in growth assays correlates with 

transcriptional response, and that RA signaling is largely conserved between ER-positive 

MCF-7 and ER-negative SK-BR-3 cells. 
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Overlap in primary target genes regulated by RA in MCF-7 and SK-BR-3 cells.  

To investigate whether common gene expression in MCF-7 and SK-BR-3 cells results 

from a common set of primary target genes in both cell types, we compared results from 

microarrays performed in MCF-7 and SK-BR-3 cells with those obtained from the same 

cell lines after pre-treatment with the protein synthesis inhibitor cycloheximide (CHX) 

before treatment with RA (8h) (experiment 1 for MCF-7 and experiment 2 for SK-BR-3 

cells). Proportions of primary target genes, defined as genes regulated in the presence of 

CHX, were highly similar in SK-BR-3 and MCF-7 cells (28.1% for SK-BR-3 vs. 27.5% for 

MCF-7 cells (Figure 3A-B). 41 genes were identified as direct targets in both cell lines (39 

up-regulated, 2 down-regulated), and this number increased to 78 (69 up, 9 down) when 

genes that were primary in one cell line and secondary in the other were also taken into 

account (Figure 3C, Table II).  

Genes common to MCF-7 and SK-BR-3 cells include genes participating in RA 

transport and metabolism and in RAR activation, such as the receptor for retinol/retinol 

binding protein STRA6, the metabolic enzyme retinal short chain dehydrogenase 

DHRS3/RetSDR1, involved in accumulation of retinyl esters and often deleted in human 

neuroblastoma cell lines (54), and CYP26A1 and CYP26B1, involved in the inactivation 

process of RA (55). RAR coactivator NCOA3 and corepressors NCOR2 and NRIP1 (56-

58) were also common targets.  

In addition, a common set of genes with proposed or known 

antiproliferative/apoptotic/tumor suppressor functions was identified in both cell lines, 

including the transcription factors BTG2 and SOX9 (see Figure 4 for induction kinetics in 
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MCF-7 and SK-BR-3 cells), which have demonstrated antiproliferative activity in ER-

positive MCF-7 or T47-D breast cancer cells (34-36), the proposed tumor suppressor and 

ER corepressor AHRR (59, 60) and the proposed tumor suppressor TFPI2 (61). In addition, 

RA up-regulated dual specificity phosphatase 4 (DUSP4), a likely cause of the reported 

RA-induced decrease in ERK MAP kinase phosphorylation (33). 

RA also induced expression of primary target genes with roles in apoptosis, including 

the tumor protein p53 inducible nuclear protein 1 (TP53INP1), both a target and cofactor of 

p53 that triggers G1 arrest as well as increasing p53-mediated apoptosis (62, 63) (see 

Figure 4 for induction kinetics of TP53INP1 in MCF-7 and SK-BR-3 cells). Ingenuity 

pathway analysis indicated that when considering all target genes (primary and secondary), 

apoptotic signaling was more represented in SK-BR-3 than in MCF-7 cells, with induction 

of APAF1, BID, CAPN5, CASP3, 8, 9 (64), MAP3K5, MAPK8, and TNFSF15 (65). RA 

regulated several genes in the TGF! pathway, inducing SMAD3, a known mediator of the 

apoptotic effects of TGF! in breast cancer cells (66-68). TIAF1 is a 12 kDA TGF-!1-

induced gene whose overexpression induces growth inhibition and apoptosis of several cell 

types including MCF-7 cells, while its inhibition by antisense RNA enhances epithelial cell 

proliferation; TIAF1 upregulates p53 and p21 expression but represses ERK 

phosphorylation (69), thus acting as another potential mediator of the reported effects of 

RA on suppression of MAPK activation (33). RA exerted multiple effects on the TGF! 

signaling pathway, inducing the TGF!-regulated protein DEC1/STRA13, associated with 

the hypoxic response and with high tumor grades in breast cancer (70, 71), but repressing 
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TGF!-family member BMP7, an inducer of apoptosis through telomere shortening in breast 

cancer cells (72).  

 

Differential regulation in MCF-7 and SK-BR-3 cells results in part from differences in 

basal expression levels of target genes. 

Several primary RA target genes were differentially regulated in SK-BR-3 and MCF-7 

cells. To investigate whether this may be due to different kinetics of regulation, we 

monitored expression of differentially regulated target genes by RT-qPCR and confirmed 

MCF-7-specific regulation of HOXA5, CBFA2T3, and PRKCD, and SK-BR-3-specific 

regulation of GATA-3 and UBD (Figure 4). FOXO3A was regulated more strongly in SK-

BR-3 cells than in MCF-7 cells, where a 2-fold regulation was detected with similar 

kinetics as in MCF-7 cells. Conversely, FOXA1 was up-regulated at early time points in 

MCF-7 cells, but at later time points in SkBR3 cells (Figure 4).  

Lack of regulation in one of the two cell lines could be attributed in some cases to 

different levels of basal gene expression. For instance, basal levels of GATA3 expression 

are much higher in MCF-7 cells (26 fold for the average of the three probes in the 

Affymetrix arrays), where its expression is not affected by RA, than in SK-BR-3, where it 

is up-regulated up to 4-fold (Figure 4). Conversely, PRKCD is much more expressed in 

SK-BR-3 cells (28-fold) and is regulated only in MCF-7 cells. These results suggest that 

up-regulation by other transcription factors can saturate or mask regulation by RA in a cell-

specific manner.  
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DR5 elements are enriched in up-regulated, but not down-regulated primary RA 

target genes in SK-BR-3 and MCF-7 cells.  

RARs regulate gene expression via binding as heterodimers to response elements 

composed of PuGG/TTCA motifs arranged as direct repeats with 1, 2, or 5 bp spacing. We 

examined whether DR5, DR2 or DR1 elements are found enriched in the flanking 

sequences of RA primary up- or down-regulated primary and secondary target genes 

compared to average representation in similar windows (2.5, 5 or 10 kb around the 

transcriptional start site; over-representation by more than 1.5 fold was considered if 

associated p-values from a Fisher’s exact tests were lower than 0.01 and Z scores higher 

than 10). DR5 response elements were enriched in up-regulated primary target genes in 

both SK-BR-3 and MCF-7 cells. This enrichment was detected at up to 10 kb from the 

transcriptional start site (Figure 5B-C). Enrichment in DR2 elements was also detected in 

up-, but not down-regulated primary genes. DR1 were not detectably enriched in either up- 

or down-regulated target genes, but DR0, DR4 and DR6 elements were significantly over-

represented in primary up-regulated targets in SK-BR-3 cells (Suppl. Table III). We also 

detected enrichment in EREs (IR3) as well as in IR2/4/5/6 elements. Everted repeats with 

variable spacings (ER0/2/3/4/5) were also enriched more than 1.5 fold. Down-regulated 

primary target genes were not found enriched in canonical RAREs, although half sites were 

over-represented with respect to overall genomic distribution.  

Sites for other transcription factors were found enriched in the flanking regions of either 

up- or down-regulated primary target genes. Comparison with sites enriched in published 

large-scale ChIP experiments (24, 25) suggests that some of these factors may be involved 
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in recruitment of RAR via tethering. For instance, sites for TFs HNF4, LRH1, ARNT, 

MYC/MAX, MYOD, SREBP, TEF1, NFIA/C, AML (RUNX1/2), NERF (ELF2), ETS1/2, 

HFH3, FOXO1, CTCF, Sp1, CACC binding factor, ZNF263, AP1/MAF (NF2L2), and 

EBF were found enriched in primary up-regulated RA target genes in SK-BR-3 cells and/or 

MCF-7 cells (Suppl. Table III), as well as in ChIP-chip and/or ChIP-seq experiments in 

MCF-7 cells (data not shown). In primary down-regulated RA target genes in either cell 

line, binding sites for HNF3/FOX, Sp1, GATA, AP1, AP2, CEBP, Pax, Oct, AML/PEBP 

(RUNX1/2), HNF1(TCF1) were found over-represented as well as in ChIP experiments 

(Suppl. Table III and data not shown).  

In addition, some TF binding sites enriched in primary RA target genes were not found 

enriched in RAR-binding chromatin regions. This suggests that the action of those 

transcription factors is mediated through non-genomic regulation by RA, not necessitating 

RAR binding to the DNA. These TF binding sites include sites for CP2, EGR/KROX, 

SMAD, ZFX, SOX9, NFKB, STAT1/4, E2F1, TAL1, POU3F2, STAT, GATA, SMAD, 

and MYB (Suppl. Table III).  

 

Identification of primary target genes with opposite regulation by RA in sensitive 

MCF-7 and SK-BR-3 cells and by estradiol in MCF-7 cells 

Several of the RA target genes that are primary target in SK-BR-3 and/or MCF-7 cells 

and commonly regulated in the absence of CHX were regulated in opposite directions by 

estrogens in MCF-7 cells, consistent with potential roles in cell proliferation (Table III). All 

genes for which opposite regulation was observed were induced by RA and repressed by 



 

 

75 

estradiol, mostly as secondary targets (23 genes with repression by E2 below the threshold 

of 1.4 fold in the presence of CHX). However, TP53INP1, SCNN1A, CYP26A1, GPR160, 

FGD3, KLHDC2, IDH1 and GABBR2 are exception, being primary targets of E2 in MCF-

7 and RA in MCF-7 and/or SK-BR-3 cells (genes were considered primary targets of E2 

when significantly regulated in the presence of CHX, even if regulation did not reach 

significance in its absence. SOX9 was excluded from this list because of opposite 

regulation by E2 in the presence and absence of CHX). 

An example of a gene differentially regulated by RA and E2 is BTG2, a primary RA 

target and secondary E2 target in MCF-7 cells.  BTG2 is a p53 target gene and is also up-

regulated by activated PKC!. Of note, PKC! is also induced by RA in MCF-7 cells 

(PRKCD, Figure 4 and Suppl. Table II). BTG2 induces cell cycle arrest and/or apoptosis by 

p53- and Rb- dependent and independent mechanisms, including relocalization of Pin1 to 

the cytoplasm, reduction of CCND1 expression and inhibition of CDC2 kinase activity 

(73). BTG2 expression has also been shown to be inhibited by estrogen both in breast 

cancer cell lines in vitro and in the rat mammary gland during pregnancy and lactation, 

while it is induced during involution (74). In addition, BTG2 was shown to interact with 

estrogen receptor via LXXLL motifs (75) and may therefore also act as an RAR cofactor.  

In comparison with RA target genes with opposite regulation in MCF-7 cells, a smaller 

fraction of RA primary target genes (11 genes) were regulated in the same direction by RA 

and E2, with most target being regulated by E2 in the presence of CHX. These included the 

nuclear receptor co-repressor NCOR2 and RA inactivating enzyme CYP26B1, suggesting 

cross-talk between estrogen and RA signaling through target gene regulation.  
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These results indicate that the interplay between RA and E2 signaling is complex, 

including effects in the same or opposite direction. However, the observation that 

regulation by RA is observed in SK-BR-3 cells as well as in MCF-7 cells strongly suggests 

that RA is not acting mainly as a co-factor of ER in regulation of these target genes, but as 

a primary regulator.  

 

Several common direct RA target genes inhibit proliferation in ER-negative SK-BR-3 

cells 

Because the anti-proliferative effects of RA are the result, at least in part, of a cell cycle 

arrest in the G0/G1 phase, we investigated the effect of several primary target genes 

common to MCF-7 and SK-BR-3 cells with opposite regulation by E2 in MCF-7 cells on 

progression through the cell cycle (SOX9, ELF3, SMAD3, BTG2, PLA2G10, TMPRSS2, 

TP53INP1). In addition, we also investigated the effect of modulated expression of GATA3 

and FOXO3A (specific to SK-BR-3 cells) and of FOXA1 (primary in MCF-7 cells and 

regulated at later time points in SK-BR-3 cells) due to their reported roles in the control of 

ER expression and/or luminal differentiation (76-79). The pro-apoptotic transcription factor 

HOXA5 was also included to verify its lack of anti-proliferative effects. To this end, we 

transiently transfected SK-BR-3 cells by electroporation and analyzed cell cycle 

distribution 72 hours later (Figure 6A). Suppl. Figure 4A shows the levels of 

overexpression of the various genes, which are always at least at the same level as the 

induction by RA. Transfection of Cyclin D1 (CCND1) decreased the proportion of cells in 

G0/G1 significantly. On the other hand, no significant effects were observed with most of 
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the genes tested, except for 3 genes that increased the proportion of cells in the G0/G1 

phase of cell cycle, mimicking the effect of RA (Figure 1B). These three genes include the 

known RA target and inhibitor of proliferation SOX9 (36), the Ets domain transcription 

factor ELF3, which has mixed anti-tumoral and tumor promoting activities (80-82), and the 

pioneer transcription factor FOXA1 (76, 78, 79). On the other hand, no significant effect of 

transfection of GATA3 was observed (data not shown). Unexpectedly, BTG2, another 

previously identified RA target with demonstrated anti-proliferative effects in MCF-7 cells, 

also had no significant effect under our experimental conditions. 

To verify whether the SOX9, ELF3 and FOXA1 transcription factors participate in the 

antiproliferative effects of RA, we transiently transfected siRNAs against SOX9, ELF3 and 

FOXA1 in SkBR3 cells treated or not with RA. SiRNA against SOX9 and FOXA1 reduced 

the effect of RA on the distribution of cells in the different phases of the cell cycle. 

Combining siRNAs against SOX9 and FOXA1 almost fully abolished the effect of RA. No 

significant effects were observed with siRNAs against ELF3, possibly due to insufficient 

depletion (Figure 6B). Efficiency of the knockdowns is shown in Suppl. Figure 4B. 

In conclusion, our results indicate that, in addition to SOX9, FOXA1 is a target gene of 

RA that mediates part of the antiproliferative action of RA in SkBR3 cells.   

 

Secondary networks contributing to RA signaling. 

To identify the respective target genes of SOX9 and FOXA1 in SkBR3 cells, these 

transcription factors were transiently overexpressed in SK-BR-3 cells. Microarray analysis 
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was conducted on the Illumina platform after 24h expression, and RA treatment was also 

performed for 24 h.  

SOX9 over-expression led to modulated expression of 180 genes. 52 of these putative 

SOX9 target genes were also targets of RA in SK-BR-3 cells at 8 and/or 24 h, 41 being 

regulated in the same direction and 11 in opposite directions (Suppl. Table IV). The RA 

target genes whose expression is modulated by SOX9 include repressed secondary target 

genes E2F2 and MCM6 and transforming growth factor-beta superfamily member TGFB3. 

TGF! family members BMP7 (repressed primary RA target) and GDF15 (up-regulated 

primary target) were also regulated by SOX9 over-expression, suggesting its role in 

amplifying RA effects on these genes. NFKB cofactor NFKBIZ was also found to be 

induced by SOX9 expression and by RA in SK-BR-3 cells and in MCF-7 cells.  

FOXA1 overexpression resulted in modulated expression of 548 (394 up-regulated and 

154 down-regulated) genes. 116 genes were common with RA target genes identified 8 hr 

or 24h after RA treatment (Suppl. Table IV). Out of these, most (81) were regulated in the 

same direction by RA and FOXA1 (35 in opposite direction). 25 of the 116 FOXA1 and 

RA target genes were also regulated by SOX9. Although some of these genes may 

represent artefacts of transient gene expression,  several (15) were not observed regulated 

by overexpression of GATA3 (Suppl. Table IV), which does not have antiproliferative 

properties in SK-BR3 cells (data not shown). Genes common to FOXA1 and SOX9, but not 

GATA3 included E2F2, MCM6 and TGFB3. These results suggest that FOXA1 and SOX9 

relay the antiproliferative activity of RA in SK-BR3 cells through activation of partially 

overlapping transcriptional programs.  
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Primary RA target genes discriminate between luminal and basal tumors.  

Primary target genes of RA include two known modulators of luminal cell 

differentiation and ER! gene expression, GATA3 (up-regulated in SK-BR-3 only) and 

FOXA1 (up-regulated in both cell lines with different kinetics). In addition, we observed a 

modest up-regulation of ESR1 at the mRNA level, but not at the protein level, in SK-BR-3 

cells (Figure 4). These results suggest that RA signaling contributes to luminal 

differentiation. To investigate this hypothesis further, we used the primary up-regulated RA 

target genes identified in ER-negative SK-BR-3 cells for non-supervised partitioning of 

breast tumors based on expression levels of these genes. This indicated a statistically 

significant association with tumor type (association with luminal vs basal tumors) and with 

ER-positive status in several datasets of breast tumor gene expression profiles (Figure 7 and 

data not shown). In addition, there was also a less robust association with grade (Figure 7 

and data not shown). Several of the genes most strongly with the luminal status included 

up-regulated ER target genes such as NRIP1, CA12, SERPINA3 (46) (see also Table III) 

(83). However other genes strongly associated with the luminal status and ER positivity 

were down-regulated E2 target genes (SMAD3, GDF15, SCNN1A, PLA2G10, CYP26A1) 

and/or functioned in the repression of ER signaling (NRIP1, SMAD3, COUP-TFB), 

indicating that association with the luminal phenotype is not due only to an overlap 

between RAR and ER primary up-regulated target genes. Finally, several of these genes 

have antiproliferative activity in cancer cell lines and/or are putative tumor suppressors, 

including calcium/calmodulin-dependent protein kinase II inhibitor 1 CAMK2N1 (84), 
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TFPI2 (61) and SEMA3B (85). In addition, SCNN1A is subject to silencing by methylation 

in breast (86) and neuroblastoma tumor cells (87). These results are consistent with a role 

of several RA primary target genes in luminal cell differentiation rather than ER signaling 

itself.  

Contrary to the above-described RA primary target genes that are positively associated 

with ER status, a few RA up-regulated primary target genes were negatively associated 

with ER status and presented higher mRNA levels in basal tumors, including TRPV6, 

GABBR2, TMPRSS2, KLHL24 and SOX9. Further experiments will be required to 

determine whether this reflects partially conserved RA signaling or constitutively high 

expression of the corresponding mRNAs in basal tumors. 
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DISCUSSION 
In the present study we have sought to better understand the mechanisms leading to the 

anti-proliferative effects of RA in breast cancer cell lines by comparing target gene 

regulation in ER-positive MCF-7 cells and ER-negative SK-BR-3 cells. SK-BR-3 cells are 

classified as luminal cells although they express much reduced levels of ER! mRNAs 

compared to MCF-7 cells, and undetectable protein levels (88). SK-BR-3 also carry an 

amplification of the ERBB2 gene, and ERBB2 signaling has been suggested to inhibit the 

antiproliferative activity of RA (89, 90). However, SK-BR-3 cells are extremely sensitive 

to RA or to RAR!-selective ligand AM580 (Figure 1A-B). Our results indicate that 

expression levels of RAR! are determinant for the antiproliferative response to RA, as 

shRNA-mediated suppression inhibited growth-suppression by RA (Suppl. Figure 1). The 

high levels of RAR! in SK-BR-3 cells in spite of lack of estrogen-induced RARA 

transcription (20, 22, 23), may result from co-amplification of the RARA gene with 

ERBB2; indeed, RARA is located in the 17q12-q21 long amplicon characterized in about 

half of ERBB2-amplified tumors (91-93). This amplification may be responsible for 

increased RAR! levels and the resulting sensitivity to RA. Indeed, sensitivity to the 

antiproliferative effects of RA was restored in ER-negative MDA-MB-231 cells by 

expression of RAR! (49). We observed that resistance to RA in MDA-MB-231 resulted 

from absence of gene regulation, likely reflecting the very low levels of RA receptors 

(Table I; Figure 1D). Expression of RAR", detectable at the protein level in these cells, is 
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apparently insufficient for robust signaling, but may be responsible for the induction of 

NRIP1 and DHRS3, which are also primary RA targets in MCF-7 and/or SK-BR-3 cells.  

Recent genome-wide characterization of chromatin binding regions of RARs in MCF-7 

cells have uncovered colocalization of RAR and ER in about 50% of these regions, leading 

to the suggestion that RA signaling interferes with that of E2 for transcriptional regulation. 

Both antagonistic action of RA and E2 on target genes and a role of RAR! as a cofactor for 

ER! have been proposed (24, 25). The observation that RA is antiproliferative in an ER-

negative cell line and that there is a large overlap in RA target genes in ER-positive and 

ER-negative cell lines indicates that regulation of common target genes is independent of 

estrogenic signaling pathway. Thus it is likely that RAR binds to regulatory regions in these 

genes and modulates their transcription through processes that do not involve ER!. 

Accordingly, we observed an enrichment of RAREs (DR5 and DR2 types) in the flanking 

regions of up-regulated primary RA target genes in MCF-7 and SK-BR-3 cells (Figure 5B-

C). Of interest, several primary RA target genes identified in this study, including FOXA1, 

SOX9 and BTG2, contained overlapping RAR! and ER! chromatin binding sites in 

MCF-7 cells (data not shown). Potential RAREs were identified in the FOXA1, SOX9 and 

BTG2 RAR ChIP regions (data not shown), consistent with primary binding by RARs. 

Further, down-regulation of BTG2 by E2 was cycloheximide-sensitive, like that of most 

RA target genes down-regulated by E2 (Table III), suggesting that a simple mechanism of 

competition for binding sites is unlikely to explain the antagonism between ER!- and 

RAR!-mediated signaling. In addition, the enrichment of several TF binding sites in the 

flanking regions of primary up- or down-regulated target genes as well as in ChIP regions 
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suggests a role in the mediation of transcriptional regulation through mechanisms of 

tethering or cooperativity with RAREs. Whether some of these factors could recruit both 

ER! and RAR! remains to be investigated. Finally, we note that our array conditions are 

optimized for the identification of estrogen-independent effects, as MCF-7 cells were 

maintained in low estrogen concentrations (charcoal-stripped medium in the presence of the 

weak estrogen phenol red) for these experiments. Therefore, it is possible that a larger 

fraction of genes regulated in MCF-7 cells may be specific to ER-positive cells when 

patterns of gene expression are examined in the presence of high concentrations of 

estrogens. However, our results demonstrate that RA has antiproliferative effects through 

transcriptional regulation of genes in an ER-independent manner.  

While about half of RAR primary target genes are common to both cell lines, other 

genes are regulated differentially (Figure 2). This can result from differences in kinetics of 

regulation, as observed for FOXA1 (Figure 4). Also, elevated expression in a cell line may 

mask regulation by RA through action of a stronger constitutive activator, as is likely the 

case for GATA3. Conversely, it is possible that absence of regulation in a given cell line 

may result from incorporation into heterochromatin. Finally, differences between the two 

cell lines in expression patterns of RARs (MCF-7 express higher levels of RAR"; Figure 

1D) and in other cell signaling pathways, such as increased PI3K and MAP kinase activity 

in ERBB2 cells (94), could contribute to differential gene regulation in the two cell lines.  

Primary target genes of RA mediate its antiproliferative effects via both regulation of 

cell cycle progression and control of apoptosis. Several primary and secondary target genes 

in SK-BR-3 cells are known inducers or effectors of apoptosis, including APAF, BID, 
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CASP 3, 8, and 9. RA also modulated expression of components of apoptosis-regulating 

pathways, such as the TGF! pathway. Induction of several pro-apoptotic genes (APAF, 

BID) was cycloheximide-sensitive, this indirect regulation being consistent with the late 

induction of apoptosis after RA stimulation.  

Contrary to induction of apoptosis, cell cycle arrest by RA can be observed at early time 

points after RA treatment (48h; Figure 1B). We examined the effects of several primary 

target genes of RA on cell distribution in the different phases of the cell cycle and observed 

that FOXA1 and ELF3 in addition to SOX9 increased the proportion of cells in the G0/G1 

phase. Lack of effect of other expression vectors may be due to insufficient protein 

expression or expression of inappropriate isoforms. In addition, lack of effect of FOXO3A 

could be due to inactivation via ERBB2 signaling-induced inactivating phosphorylation. On 

the other hand, as RA appears to downregulate ERBB2 downstream signaling in SK-BR-3 

cells through upregulation of the negative PI3K regulator PIK3IP1 (95, 96) and through 

secondary downregulation of AKT1, these effects could synergize with transcriptional 

induction of FOXO3A.  

The antiproliferative effects of FOXA1 and SOX9 are supported by the inhibition of  

RA-induced accumulation of cells in G0/G1 via siRNA-mediated suppression of 

expression. Notably, combined inhibition of FOXA1 and SOX9 led to a more complete 

inhibition of accumulation of cells in G0/G1 than either siRNA separately, suggesting that 

both proteins contribute to the antiproliferative effects of RA (Figure 6B). Overexpression 

of FOXA1 and SOX9 both led to regulation of RA target genes, with a larger number of 

genes regulated in the same manner as by RA, consistent with a role of these genes in 
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propagating the RA-induced reprogramming of gene expression. Regulation of genes that 

were not identified as RA targets may be due to artificially high expression levels achieved 

in the transient transfection experiments, but also to modulation of the action of these 

transcription factors by coregulated RA targets. Of interest, several secondary RA targets 

regulated at 24h but not at 8h (with or without CHX) were co-regulated by FOXA1 and 

SOX9, including cell cycle control genes E2F2 and MCM6, consistent with induction of 

partially overlapping antiproliferative gene expression programs by the two transcription 

factors.  

FOXA1 has been characterized as a pioneer factor important for luminal cell 

differentiation, ER! gene expression and transcriptional regulation by ER!  (78, 79, 97-

100). Our results indicating regulation of FOXA1 by RA in MCF-7 and, with delayed 

kinetics, in SK-BR-3 cells, suggest that RA controls the luminal differentiation program. 

This is consistent with the reported observation that the RA synthetic enzyme ALDH1A3 

(observed here to be an RA-induced target gene) is expressed in luminal-committed 

precursors, suggesting that RA is synthesized during luminal differentiation (101). 

Significantly, GATA3, another important modulator of luminal cell differentiation and ER 

synthesis (77, 102-104), was also found in our microarrays as a primary target gene of RA 

in SK-BR-3 cells, while its levels were constitutively high in ER-positive MCF-7 cells. In 

this respect, it is important to stress that ERBB2-amplified breast cancer cells such as 

SK-BR-3 cells are thought to represented cell population blocked at an intermediate level in 

the differentiation process leading to luminal cell differentiation, and that SK-BR-3 cells 

have been classified as luminal in spite of their lack of expression of ER! and low 
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expression of GATA3. We suggest that this is due to their high levels of RAR! expression, 

likely resulting from co-amplification of the RARA gene with ERBB2. Consistent with this 

interpretation, non-supervised classification of tumors based on expression levels of 

primary RA-upregulated target genes resulted in statistically significant sorting of tumors 

according to luminal or ER+ status (Figure 7). The identity of the genes most strongly 

associated with a luminal status indicates that while some of these genes are also up-

regulated by E2, others are associated with limiting E2 signaling or action as tumor 

suppressors. Finally, we note that while the RA target gene SOX9 has antiproliferative 

action in SK-BR-3 luminal breast cancer cells (this study) as well as in T47D cells (36), its 

mRNA levels are more strongly associated with basal cells than with luminal cells. Further 

studies will be necessary to determine whether SOX9 protein levels are also higher in these 

tumors, and whether SOX9 intra-cellular localization is different in luminal and basal cells, 

as localization in the cytoplasm was found to correlate with a worse prognosis (105, 106).   

In conclusion, our results indicate that RA activates gene expression programs with 

antiproliferative components that contribute to initiation/maintenance of luminal 

differentiation at least in part independently from ER! expression. Future studies will be 

needed to determine whether RAR!, which mediates the effects of RA on induction of 

FOXA1 and GATA3 transcription and cross-talks with ER genomic signaling through still 

imperfectly understood mechanisms, qualifies as a pioneer transcription factor in luminal 

breast epithelial cells.  
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FIGURE LEGENDS 

Figure 1: Importance of RAR!  for the anti-proliferative effects of RA in breast 

cancer cells. 

(A) Cells were treated every 2 days with vehicle (DMSO, 0.1%), RA or AM580 at 

indicated concentrations. After 9 days protein concentrations were measured to assess 

effects on cell growth. (B) Cell cycle analysis of SK-BR-3 cells treated with vehicle or 

retinoids for 48h. (C) RAR! mRNA levels in cells treated for 8 hours with vehicle or 100 

nM RA. Primers used detect both RAR! isoforms. (D) Western blot analysis comparing 

levels of RAR!, " and # as well as ER! levels in breast cancer cell lines. Where indicated 

cells were treated with 100 nM RA for 24 hours. All results shown are representative 

examples of at least two separately performed experiments. 

 

Figure 2: Sensitivity to the antiproliferative effects of RA correlates with 

transcriptional regulation.  

Microarray analysis was performed with three biological replicates for each condition 

(see Material and Methods section) from MCF-7 and SK-BR-3 cells after 8 h treatment 

with vehicle or RA (100 nM). Numbers of genes significantly regulated (fold change 

between vehicle and RA treatments ≥1.4, amplitude of array signals across all conditions 

≥5 and P-value based on moderated t-statistics ≤0.01) are indicated for each category. 
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Figure 3: Cycloheximide-sensitive and resistant RA target genes in SK-BR-3 and 

MCF-7 cells.  

Microarray analysis was performed as in Figure 2, except that cells were pre-treated for 

one hour before RA treatment with cycloheximide (CHX, 10 !g/ml). Regulated genes are 

listed in Table II. 

 

Figure 4: Kinetics of RA target gene induction. 

MCF-7 and SK-BR-3 cells were treated with 100 nM of RA in the absence or presence 

of CHX (10 !g/ml) for indicated time periods. Regulation of selected genes was analyzed 

by Q-PCR. Represented are mean values from one experiment using three technical 

replicates. Error bars represent standard deviations. 

 

Figure 5: Mechanisms of gene regulation by retinoic acid in MCF-7 and SK-BR-3 

cells. 

(A) Position weight matrix used for identification of putative RAREs in the vicinity of 

target genes. The DR5 element is shown as example. (B-C) Enrichment of DR5 (B) and 

DR2 (C) RAREs in a 10 kb window around the TSS of upregulated genes (±5 kb). *, 

enrichment significant in two statistical tests (Z-score > 10 and p-value < 0.01), °, 

enrichment significant for one of the two statistical tests. 
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!
Figure 6: Selected RA target genes play a role in growth inhibition in SK-BR-3 cells. 

(A) SK-BR-3 cells were transfected with indicated RA target genes and cell cycle 

distribution was analyzed by FACS 72h later. Bars represent the average of at least 3 

independent experiments. Error bars represent standard error of the means (S.E.M.). (B) 

SK-BR-3 cells were transfected with siRNAs against the indicated RA target genes. 24 

hours after transfection cells were treated with 100 nM RA or vehicle and cell cycle 

distribution was analyzed by FACS 72h later. Bars represent the average of 3 independent 

experiments. Error bars represent standard error of the means (S.E.M.) 

 

Figure 7: Primary RA target gene expression correlates with ER expression and 

tumor subtype. 

Hierarchical clustering (euclidian distance, ward linkage) of 230 stage I-III breast 

cancers (MAQC-II dataset) (107) based on the expression of primary RA-induced genes. 

Histo-pathological variables of each tumor sample are presented in the boxes below each 

sample (shaded boxes indicate positive status). Intrinsic subtypes in the PAM50 classifier 

are as follows: green, normal-like; dark blue, luminal A; light blue, luminal B; pink, HER2; 

red, basal. Significant associations of each cluster with clinical characteristics assessed by a 

one-way Fisher exact test are presented below the relevant cluster. 
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Table I: Gene regulation by RA in SK-BR-3, MCF-7 and MDA-MB-231 cells. 

Microarray analysis was performed with three biological replicates for each condition 

from SK-BR-3, MCF-7 and MDA-MB-231 cells after 8 h treatment with vehicle or RA 

(100 nM) (four replicates for SK-BR-3 #2). SK-BR-3 and MCF-7 cells were treated with 

10 !g/ml of CHX where indicated. Numbers of genes significantly regulated (fold change 

between vehicle and RA treatments ≥1.4, amplitude of array signals across all conditions 

≥5 and P-value based on moderated t-statistics ≤0.01) are indicated for each category. 

 

Table II: Primary RA target genes in both MCF-7 and SK-BR-3 cells. 

List of RA targets that were regulated in both RA-sensitive cell lines and that were 

CHX-insensitive in at least one cell line. 

 

Table III: Comparison of RA and estrogen target genes. 

Common RA regulated genes (MCF-7 and SK-BR-3) from the present study were 

compared to genes regulated by E2 in MCF-7 cells (46). 
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SUPPLEMENTARY DATA 

Suppl. Figure 1: Knockdown of RARA reduces the response of breast cancer cell lines 

to RA. 

MCF-7 and SK-BR-3 cells were infected with pLKO1-shRARA or non targeting 

(shNT) vectors at MOI 2. After selection, 9 day growth assays were performed in the 

presence of indicated concentrations of RA. Western blots confirm significant but 

incomplete knockdown of RAR! protein with the two RARA targeting hairpins. The 

experiment was performed twice with comparable results and one experiment is shown. 

Error bars represent standard deviations of three technical replicates. 

 

Suppl. Figure 2: Reproducibility of microarray analysis in SK-BR-3 cells. 

 

Suppl. Figure 3: Numbers of RA target genes in SK-BR-3, MCF-7 and MDA-MB-231 

cells.  

Non-adjusted p-values were used for analyses.  

 

Suppl. Figure 4: Modulation of RA target gene levels. 

(A) Q-PCR analysis of the overexpression of RA target genes by electroporation. One 

out of two experiments with similar results is shown. Error bars represent standard 
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deviations of three technical replicates. (B) Western blot analysis of siRNA knockdown of 

selected RA targets. Experiment was performed twice with comparable results. NT, not 

transfected. 

 

Suppl. Table I: Top 100 ranked genes regulated in SK-BR-3 cells without and with 

CHX. 

Genes were ranked based on a combination of three parameters, fold-change between 

RA and vehicle treatments, amplitude of array signals across all conditions and P-value 

based on moderated t-statistics. Genes in bold are those found significantly regulated both 

in the absence and presence of cycloheximide (CHX). 

 

Suppl. Table II: Top 100 ranked genes regulated in MCF-7 cells without and with 

CHX. 

Genes were ranked based on a combination of three parameters, fold-change between 

RA and vehicle treatments, amplitude of array signals across all conditions and P-value 

based on moderated t-statistics. Genes in bold are those found significantly regulated both 

in the absence and presence of cycloheximide (CHX). 
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Suppl. Table III: Enriched transcription factor binding sites in ChIP-chip and ChIP-

seq regions, as well as in promoters of RA regulated genes. 

 

Suppl. Table IV: Gene regulation by overexpression of FOXA1, SOX9 or GATA-3 in 

SK-BR-3 cells and comparison with primary or secondary RA target genes. 
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 SkBr-3 #1 SkBr3 #2 MCF-7 MDA-MB-231 
 RA-CHX RA-CHX RA+CHX RA-CHX RA+CHX RA-CHX 

UP 121 476 217 260 84 2 
DOWN 75 402 47 81 18 0 

ROZENDAAL ET AL, TABLE I
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+CHX SK-BR-3; 
+CHX MCF-7

+CHX SK-BR-3; 
-CHX MCF-7

-CHX SK-BR-3; 
+CHX MCF-7

+CHX SK-BR-3; 
+CHX MCF-7

+CHX SK-BR-3; 
-CHX MCF-7

-CHX SK-BR-3; 
+CHX MCF-7

AHRR AHRR CLDN1
AP1G1 AP1G1 AP1G1 CPEB2

BAMBI DKK1
BCL3 EDG3

BDKRB2 BDKRB2 BDKRB2 EFEMP1
BHLHB2 BHLHB2 BHLHB2 ELF5

BTG2 PCDH7
C10orf58 PTGER4
C15orf39 SSBP2

CA12 CA12 CA12
CNP CNP CNP

CORO2A
CYP26A1 CYP26A1 CYP26A1

CYP26B1
DHRS3 DHRS3 DHRS3
DUSP4 DUSP4

DYRK2
ELF3 ELF3 ELF3

EPAS1
EPB41L4A EPB41L4A EPB41L4A
FAM43A FAM43A FAM43A
FBXO34 FBXO34 FBXO34

FGD3
FOXO3
GABBR2

Gcom1 Gcom1 Gcom1
GDF15

GPR160 GPR160 GPR160
GPRC5A GPRC5A GPRC5A

HIVEP3
IDH1

JAG2
KLHDC2

MID1IP1
MYADM MYADM MYADM

NANS
NCOR2 NCOR2 NCOR2
NRIP1 NRIP1 NRIP1
PARP9 PARP9 PARP9
PCTP PCTP

PBX1
PFKFB3

PHLDA1
PHF8

PLA2G10 PLA2G10 PLA2G10
RAP1GAP RAP1GAP

RHOU
RNF207 RNF207
SCNN1A SCNN1A SCNN1A
SERPINA3 SERPINA3
SLC22A5 SLC22A5 SLC22A5

SMAD3
SOX9 SOX9 SOX9
STRA6 STRA6 STRA6
SYNJ2 SYNJ2
TFPI2 TFPI2 TFPI2
TGFBI TGFBI TGFBI

TIAF1
TMPRSS2 TMPRSS2 TMPRSS2

TMPRSS4
TNFAIP2
TP53INP1 TP53INP1 TP53INP1
TRAF4 TRAF4

TSC22D3
UBD UBD

VPS13D VPS13D
XYLT1

ZEB1
ZNRF1

Upregulated genes Downregulated genes

ROZENDAAL ET AL, TABLE II
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RA regulation Fold RA SkBr-3 Fold RA MCF-7 Fold E2 MCF-7 Probeset 

  

mRNA  

  

Symbol 

  
SkBr-3 MCF-7 -CHX +CHX -CHX +CHX -CHX +CHX 

Opposite regulation RA/E2 (UP/DOWN) 
229354_at NM_020731 AHRR primary primary 1.05 1.46 2.12 1.77 -3.98 -1.28 
201170_s_at NM_003670 BHLHB2 primary primary 2.12 1.48 1.49 1.52 -1.60 1.07 
206424_at NM_000783 CYP26A1 primary primary 27.06 33.02 25.35 44.86 -1.54 -1.81 
238032_at NM_004753 DHRS3 primary primary 4.03 2.55 3.11 2.60 -1.50 -1.08 
202481_at NM_004753 DHRS3 primary primary 3.79 2.17 11.47 4.71 -2.37 -1.22 
204014_at NM_001394 DUSP4 primary primary 1.53 2.41 1.45 1.73 -1.70 1.03 
210827_s_at NM_004433 ELF3 primary primary 1.93 1.75 2.92 1.95 -1.86 -1.01 
228256_s_at NM_022140 EPB41L4A primary primary 1.62 1.67 1.97 1.96 -1.54 -1.02 
228568_at NM_001018100 Gcom1 primary primary 1.62 1.61 1.86 2.18 -1.37 1.52 
223423_at NM_014373 GPR160 primary primary 3.32 1.58 2.36 1.59 -1.51 -1.55 
32137_at NM_002226 JAG2 primary primary 1.14 2.30 -1.08 1.65 -1.17 -1.59 
209784_s_at NM_145159 JAG2 primary primary 1.09 2.28 -1.13 1.63 -1.22 -1.65 
223220_s_at NM_031458 PARP9 primary primary 2.18 1.50 1.67 1.51 -1.70 -1.14 
218676_s_at NM_021213 PCTP primary primary 1.86 2.52 1.28 1.70 -1.44 -1.11 
207222_at NM_003561 PLA2G10 primary primary 1.87 2.79 2.25 1.90 -1.73 -1.09 
1555870_at NM_207396 RNF207 primary primary 1.31 1.81 2.03 1.89 -2.16 -1.31 
203453_at NM_001038 SCNN1A primary primary 1.92 1.42 3.79 2.92 -2.51 -1.46 
202935_s_at NM_000346 SOX9 primary primary 6.08 3.65 9.50 2.56 -1.42 2.47 
202936_s_at NM_000346 SOX9 primary primary 5.21 3.34 7.62 1.89 -1.54 2.05 
201506_at NM_000358 TGFBI primary primary 2.26 1.69 4.76 2.16 -2.24 -1.27 
211689_s_at NM_005656 TMPRSS2 primary primary 5.18 2.41 3.66 2.33 -2.70 -1.35 
225912_at NM_033285 TP53INP1 primary primary 4.10 4.08 1.82 2.06 -2.74 -1.40 
204908_s_at NM_005178 BCL3 primary secondary 1.12 1.51 1.68 1.42 -1.30 1.53 
209990_s_at NM_005458 GABBR2 primary secondary 3.35 1.64 2.08 1.66 -5.42 -1.57 
221577_x_at NM_004864 GDF15 primary secondary 2.63 1.89 3.12 1.55 -1.72 -1.02 
205397_x_at NM_005902 SMAD3 primary secondary 3.08 1.72 1.59 1.56 -1.60 -1.04 
218284_at NM_005902 SMAD3 primary secondary 2.65 1.71 1.83 1.42 -1.90 -1.07 
205398_s_at NM_005902 SMAD3 primary secondary 2.58 1.79 1.71 1.34 -1.56 -1.09 
202039_at NM_004740 TIAF1 primary secondary 2.38 1.48 1.93 1.55 -1.47 1.01 
201236_s_at NM_006763 BTG2 secondary primary 2.73 1.38 2.65 1.67 -2.43 1.02 
200878_at NM_001430 EPAS1 secondary primary 1.48 1.19 3.59 1.77 -2.68 -1.12 
227811_at NM_001083536 FGD3 secondary primary 1.56 1.36 1.29 1.53 -2.21 -1.40 
1555037_a_at NM_005896 IDH1 secondary primary 1.94 1.35 2.57 2.04 -1.44 -2.04 
201193_at NM_005896 IDH1 secondary primary 1.77 1.35 2.47 1.99 -1.45 -2.00 
217906_at NM_014315 KLHDC2 secondary primary 2.13 1.36 2.40 2.27 -1.46 -1.38 
202464_s_at NM_004566 PFKFB3 secondary primary 2.15 1.15 3.09 1.97 -1.60 1.33 
207001_x_at NM_001015881 TSC22D3 secondary primary 1.51 1.21 1.16 2.17 -1.76 -1.32 
Same regulation (UP) 
215867_x_at NM_001128 AP1G1 primary primary 2.63 1.79 2.40 2.22 1.80 2.92 
214164_x_at NM_206925 CA12 primary primary 2.53 1.75 2.32 2.18 1.73 2.66 
203963_at NM_001218 CA12 primary primary 2.46 1.88 2.89 2.72 2.00 3.43 
207760_s_at NM_006312 NCOR2 primary primary 1.57 1.66 1.91 1.69 1.19 1.61 
202376_at NM_001085 SERPINA3 primary primary 1.60 1.47 1.74 2.83 1.77 1.55 
233388_at NM_001218 CA12 primary secondary 1.67 2.76 1.75 1.23 1.77 3.06 
219825_at NM_019885 CYP26B1 primary secondary 2.37 2.63 4.79 1.76 3.85 7.46 
225842_at NM_007350 PHLDA1 primary secondary 2.60 3.98 2.44 1.06 1.20 1.41 
223168_at NM_021205 RHOU primary secondary 2.11 1.69 2.08 1.20 1.17 1.54 
Same regulation (DOWN) 
204897_at NM_000958 PTGER4 primary primary -1.51 -1.98 -1.31 -2.11 -2.37 -1.40 
203787_at NM_012446 SSBP2 primary secondary -1.57 -1.40 -1.67 -1.22 -1.18 -1.46 
228176_at NM_005226 EDG3 secondary primary -1.42 -1.08 -2.12 -1.88 -2.66 -1.22 
201842_s_at NM_001039348 EFEMP1 secondary primary -1.41 -1.31 -1.96 -1.77 -1.34 -1.92 

!

ROZENDAAL ET AL, TABLE III
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ROZENDAAL ET AL Supplementary Table I Page 1 of 2

Rank Gene Fold A adj. p-value Regulated RA+CHX Rank Gene Fold A adj. p-value

1 CYP26A1 27.06 6.65 1.54E-15 CYP26A1 1 CYP26A1 33.02 6.65 5.66E-16
2 PTGS1 19.89 7.07 1.15E-12 PTGS1 2 PTGS1 5.74 7.07 2.53E-09
3 CDH5 6.95 8.56 7.44E-14 CDH5 3 NRIP1 3.54 9.85 5.63E-11
4 SOX9 6.08 8.54 3.11E-13 SOX9 4 BDKRB2 3.61 9.09 7.86E-09
5 TMPRSS4 5.54 7.77 1.52E-11 TMPRSS4 5 SOX9 3.65 8.54 5.63E-11
6 GPRC5A 4.15 10.03 9.91E-12 GPRC5A 6 TNFSF15 4.42 6.08 5.44E-10
7 TMPRSS2 5.18 7.64 4.49E-11 TMPRSS2 7 CDH5 3.13 8.56 1.83E-10
8 BDKRB2 4.35 9.09 4.00E-10 BDKRB2 8 TP53INP1 4.08 6.51 7.30E-10
9 FAM83A 5.84 6.63 2.53E-12 FAM83A 9 PHLDA1 3.98 6.56 2.52E-10
10 NRIP1 3.62 10.48 4.77E-09 NRIP1 10 UBD 3.81 6.50 9.51E-10
11 PHLDA2 -3.98 9.16 5.42E-12 11 GPRC5A 2.46 10.03 1.02E-08
12 DHRS3 3.79 9.17 7.10E-11 DHRS3 12 GATA3 2.26 10.18 3.83E-09
13 GPR160 3.32 10.36 1.79E-08 GPR160 13 NAV1 2.53 8.98 3.83E-09
14 KRT40 5.22 6.42 6.76E-12 KRT40 14 DUSP4 2.41 9.16 3.11E-08
15 EPDR1 5.09 6.25 3.05E-12 EPDR1 15 C10orf54 2.77 7.98 9.00E-09
16 SLC26A2 3.46 9.02 5.42E-12 SLC26A2 16 MAG 3.71 5.86 7.29E-08
17 CA12 3.05 10.11 1.43E-08 CA12 17 CA12 1.88 11.22 4.71E-06
18 STEAP4 3.95 7.70 4.02E-10 18 EPDR1 3.37 6.25 3.36E-10
19 PHLDA1 4.72 6.44 2.96E-09 PHLDA1 19 ZMIZ1 1.80 11.65 2.04E-04
20 PNKD 2.84 10.53 1.20E-10 PNKD 20 ELF3 1.75 11.80 6.12E-08
21 ID4 -3.41 8.44 2.15E-10 ID4 21 KLHL24 2.34 8.74 7.32E-06
22 LASP1 2.58 10.98 7.03E-11 LASP1 22 TFPI2 2.32 8.75 6.20E-07
23 CNP 2.57 10.92 4.47E-09 CNP 23 C10orf58 1.70 11.90 9.16E-08
24 AP1G1 2.63 10.65 1.53E-10 AP1G1 24 CNP 1.84 10.92 3.02E-06
25 SLC16A5 4.18 6.61 1.16E-09 SLC16A5 25 ARL8A 2.17 9.18 2.47E-07
26 TFPI2 3.14 8.75 4.46E-09 TFPI2 26 DHRS3 2.17 9.17 2.47E-07
27 KLHL24 3.14 8.74 6.59E-08 KLHL24 27 C2orf54 2.38 8.27 9.69E-06
28 VLDLR 4.88 5.52 1.71E-11 VLDLR 28 TRIP10 2.20 8.85 1.42E-07
29 FOXO3 2.82 9.51 1.71E-11 FOXO3 29 CAMK2G 1.75 10.99 9.16E-08
30 TP53INP1 4.10 6.51 2.40E-10 TP53INP1 30 PLA2G10 2.79 6.87 2.51E-06
31 TSPAN14 2.80 9.12 4.35E-11 TSPAN14 31 AP1G1 1.79 10.65 3.25E-07
32 CTGF 3.02 8.38 4.41E-11 CTGF 32 DDIT4 1.94 9.75 2.56E-07
33 NR2F2 3.30 7.62 1.52E-11 NR2F2 33 PCTP 2.52 7.49 3.55E-09
34 KLHDC2 2.13 11.69 6.45E-10 34 KIAA1026 2.20 8.54 2.23E-07
35 LOC26010 2.44 10.06 2.15E-10 35 NXT1 1.83 10.29 1.35E-06
36 SLC22A5 2.72 9.00 6.03E-11 SLC22A5 36 TMPRSS2 2.41 7.64 3.85E-07
37 S100A9 2.22 10.95 1.62E-08 37 FBXO32 1.91 9.50 9.16E-08
38 TNFSF15 3.99 6.08 4.75E-10 TNFSF15 38 LASP1 1.62 10.98 1.14E-06
39 FGD6 3.52 6.88 1.78E-04 FGD6 39 OLAH 2.45 7.23 1.14E-06
40 PTGES 2.55 9.48 3.66E-08 PTGES 40 ST3GAL1 2.23 7.95 9.69E-06
41 RAI14 3.05 7.91 1.02E-10 RAI14 41 FAM83A 2.66 6.63 1.24E-08
42 MID1IP1 2.76 8.70 2.72E-10 MID1IP1 42 NANOS1 2.07 8.53 8.49E-08
43 C10orf58 2.01 11.90 7.59E-10 C10orf58 43 VLDLR 3.19 5.52 3.02E-09
44 FAM46B -2.55 9.37 3.91E-08 44 NCOR2 1.66 10.50 4.41E-06
45 NANS 2.05 11.49 4.07E-08 45 MT1X 1.53 11.15 4.67E-04
46 TIAF1 2.38 9.85 4.85E-07 TIAF1 46 HOXC13 1.65 10.33 5.34E-06
47 TPD52L1 2.34 10.02 6.53E-06 47 MID1IP1 1.95 8.70 1.89E-07
48 XYLT1 3.02 7.63 1.68E-07 XYLT1 48 PSCD3 1.67 10.16 8.74E-08
49 C2orf54 2.77 8.27 4.48E-07 C2orf54 49 RGS10 1.58 10.69 2.14E-06
50 CHN2 3.25 7.06 1.20E-10 CHN2 50 KLF4 -1.82 9.29 5.52E-06
51 PGM2L1 2.92 7.84 1.01E-09 51 TSPAN14 1.83 9.12 1.28E-07
52 ELF3 1.93 11.80 2.15E-09 ELF3 52 SLC16A5 2.51 6.61 8.77E-07
53 TEAD2 3.78 6.00 2.05E-09 TEAD2 53 JAG2 2.30 7.20 7.76E-08
54 MAN1C1 3.38 6.68 8.07E-12 MAN1C1 54 MYADM 1.60 10.33 2.15E-06
55 PSMB9 3.18 7.07 2.25E-08 PSMB9 55 RHOU 1.69 9.75 4.02E-06
56 VIPR1 -2.52 8.86 1.20E-10 56 BAMBI 1.52 10.82 1.39E-06
57 RGS10 2.09 10.69 1.85E-09 RGS10 57 GPR160 1.58 10.36 3.39E-03
58 SMAD3 3.08 7.25 1.23E-08 SMAD3 58 RAI14 2.07 7.91 8.74E-08
59 GABBR2 3.35 6.66 1.17E-09 GABBR2 59 TMC5 2.64 6.16 1.70E-06
60 KLF4 -2.39 9.29 1.80E-08 KLF4 60 SLC22A5 1.81 9.00 1.56E-07
61 SYTL2 2.70 8.23 6.53E-10 SYTL2 61 IER3 1.57 10.29 2.17E-05
62 AJAP1 4.07 5.45 9.49E-11 AJAP1 62 SYTL2 1.96 8.23 2.81E-07
63 ZMIZ1 1.89 11.65 3.13E-05 ZMIZ1 63 CITED4 1.70 9.53 1.80E-03
64 KIAA1026 2.55 8.54 7.80E-09 KIAA1026 64 AUTS2 2.23 7.24 2.01E-07
65 C10orf54 2.70 7.98 3.70E-09 C10orf54 65 SLC26A2 1.75 9.17 1.38E-05
66 DIO2 -2.90 7.41 8.45E-07 DIO2 66 GZF1 1.81 8.86 2.57E-07
67 TRIM31 3.78 5.62 5.28E-08 TRIM31 67 MT1P2 1.54 10.40 3.60E-04
68 SCNN1A 1.92 11.03 1.99E-09 SCNN1A 68 DUSP1 -1.50 10.63 1.30E-05
69 GALM 2.66 7.95 6.12E-08 69 CASP9 2.07 7.67 1.42E-07

Genes -CHX Genes +CHX
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ROZENDAAL ET AL Supplementary Table I Page 2 of 2

Rank Gene Fold A adj. p-value Regulated RA+CHX Rank Gene Fold A adj. p-value
Genes -CHX Genes +CHX
70 TRIB3 -1.91 11.07 3.70E-09 70 MTHFR 2.19 7.20 3.65E-06
71 IRF1 2.63 8.03 2.47E-08 IRF1 71 SCNN1A 1.42 11.03 1.46E-05
72 OLAH 2.96 7.12 5.17E-09 OLAH 72 VASN 1.50 10.48 1.78E-03
73 IDH1 1.94 10.79 4.10E-07 73 SLC40A1 -1.71 9.07 3.58E-06
74 RASA3 -2.50 8.32 1.19E-08 74 KRT40 2.41 6.42 7.15E-08
75 RHOU 2.11 9.75 1.75E-08 RHOU 75 MT1H 1.55 9.99 1.54E-03
76 ACADM 1.91 10.72 3.99E-05 76 DKK1 -2.38 6.46 7.84E-07
77 MTUS1 2.64 7.74 1.56E-03 77 SLC45A3 1.63 9.45 3.23E-05
78 MUC20 2.99 6.83 1.99E-09 78 PNKD 1.46 10.53 1.19E-04
79 ATP8B1 2.12 9.62 6.37E-08 79 NR2C2 1.83 8.37 8.77E-07
80 BTG2 2.73 7.43 5.44E-09 80 ARHGEF10L 2.45 6.20 4.52E-08
81 M-RIP 1.86 10.89 2.16E-08 M-RIP 81 SDC4 1.40 10.92 7.02E-03
82 CYP1A1 -1.98 10.22 6.20E-08 82 C15orf39 1.85 8.20 2.01E-05
83 CLIC3 -2.58 7.83 1.40E-07 83 FAM113B 1.71 8.78 2.37E-06
84 ITGAL 3.92 5.05 1.31E-09 ITGAL 84 ZNRF1 1.55 9.61 2.99E-04
85 SERPINB1 3.13 6.33 6.67E-10 SERPINB1 85 TMEM64 -2.00 7.42 6.33E-04
86 BAMBI 1.83 10.82 4.46E-09 BAMBI 86 FBXO34 1.68 8.83 1.82E-05
87 NAV1 2.06 9.55 1.13E-06 NAV1 87 CAMK2N1 1.47 10.06 4.97E-06
88 DUSP1 -1.85 10.63 2.42E-08 DUSP1 88 DIO2 -2.00 7.41 3.60E-04
89 ENPP4 2.63 7.46 1.72E-07 89 NR2F2 1.73 8.54 3.02E-06
90 TRIM47 -2.03 9.60 4.01E-08 90 SERPINF1 2.67 5.51 2.84E-07
91 GATA3 1.90 10.18 2.65E-08 GATA3 91 ARHGAP8 1.49 9.86 7.49E-04
92 EMP1 2.22 8.70 8.53E-10 EMP1 92 GALNAC4S-6ST 1.65 8.81 5.89E-07
93 RBPMS 2.03 9.46 1.26E-06 93 TRAF4 1.75 8.24 2.60E-07
94 CD24 1.63 11.85 4.50E-03 94 TIAF1 1.48 9.85 8.08E-03
95 SLC31A2 2.07 9.27 3.70E-09 95 CASP3 1.63 8.84 6.15E-07
96 CAMK2G 1.67 11.42 1.86E-07 CAMK2G 96 ALDH3B1 1.57 9.16 4.56E-04
97 ODC1 -1.81 10.54 6.06E-08 97 C20orf175 1.83 7.85 1.90E-05
98 ELF5 -2.80 6.81 6.67E-10 98 BIN1 1.73 8.26 2.34E-05
99 PCDH20 3.09 6.13 1.96E-10 PCDH20 99 MT1G 1.44 9.96 1.33E-03
100 ARHGDIB 1.94 9.79 1.29E-06 100 SMAD3 1.71 8.32 4.16E-07
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Rank Gene Fold A adj. p-value Regulated +CHX Rank Gene Fold A adj. p-value

1 CYP26A1 25.35 7.96 5.88E-13 CYP26A1 1 CYP26A1 44.86 7.96 3.55E-14
2 DHRS3 11.47 7.48 5.88E-13 DHRS3 2 DHRS3 4.71 7.48 3.32E-09
3 SOX9 9.50 8.45 5.88E-13 SOX9 3 BDKRB2 4.09 7.04 5.43E-06
4 HOXA5 8.19 7.31 5.36E-10 HOXA5 4 SCNN1A 2.92 9.25 1.14E-07
5 BDKRB2 6.41 7.04 3.90E-08 BDKRB2 5 CA12 2.72 9.28 2.12E-06
6 TGFBI 4.76 7.47 1.12E-10 TGFBI 6 KLHDC2 2.27 10.22 7.39E-06
7 SCNN1A 3.79 9.25 9.95E-10 SCNN1A 7 NRIP1 2.03 10.90 8.36E-05
8 EPAS1 3.59 9.47 9.13E-09 EPAS1 8 TSC22D3 2.25 9.62 6.82E-06
9 AMIGO2 -2.73 10.12 3.90E-07 9 SOX9 2.56 8.45 8.55E-07
10 PFKFB3 3.09 8.92 9.21E-09 PFKFB3 10 HOXB3 3.42 6.29 3.30E-07
11 MAFB -3.61 7.45 5.35E-08 11 AP1G1 2.22 9.27 6.82E-06
12 CA12 2.89 9.28 2.49E-07 CA12 12 IDH1 1.99 9.90 1.95E-05
13 LXN 2.34 11.25 1.14E-05 13 SERPINA3 2.83 6.88 1.75E-04
14 CYP26B1 4.79 5.49 4.82E-07 14 TFPI2 2.95 6.57 6.61E-07
15 PPM1E 3.56 7.21 2.13E-07 15 TP53INP1 2.06 9.09 1.01E-04
16 ELF3 2.92 8.69 1.73E-07 ELF3 16 GPRC5A 2.07 8.98 2.36E-05
17 BTG2 2.65 9.24 9.48E-08 BTG2 17 MBOAT1 2.84 6.50 4.14E-06
18 KLHDC2 2.40 10.22 1.02E-06 KLHDC2 18 CNP 2.45 7.49 5.43E-06
19 IDH1 2.47 9.90 1.81E-07 IDH1 19 PFKFB3 1.97 8.92 2.36E-05
20 GDF15 3.12 7.77 2.28E-07 20 ELF3 1.95 8.69 1.95E-04
21 SKAP2 2.92 8.14 2.36E-08 SKAP2 21 SOX2 -1.80 9.34 1.16E-03
22 CAPN13 4.58 5.19 1.16E-08 22 ZEB1 2.08 8.07 2.65E-04
23 MYADM 2.49 9.49 5.06E-07 MYADM 23 EPAS1 1.77 9.47 8.09E-04
24 SELL 4.01 5.63 3.58E-07 24 MYADM 1.75 9.49 6.45E-04
25 TSC22D3 2.32 9.62 1.39E-06 TSC22D3 25 MPPED2 2.85 5.71 4.86E-04
26 AP1G1 2.40 9.27 6.50E-07 AP1G1 26 AKAP1 1.73 9.37 1.16E-03
27 GPR160 2.36 9.41 9.21E-07 GPR160 27 TGFBI 2.16 7.47 6.82E-06
28 HK2 3.46 6.40 2.13E-08 28 CRISPLD2 2.14 7.54 1.72E-04
29 HOXB3 3.48 6.29 5.08E-08 HOXB3 29 TNFAIP2 2.72 5.89 2.90E-06
30 STK39 2.66 8.16 2.61E-06 30 SLC35C1 1.87 8.46 1.02E-04
31 MBOAT1 3.22 6.50 2.35E-07 MBOAT1 31 CBFA2T3 1.83 8.65 9.11E-05
32 LITAF 1.98 10.51 3.73E-05 32 FAM3C 2.11 7.43 7.95E-05
33 GPRC5A 2.31 8.98 1.15E-06 GPRC5A 33 NRCAM -1.80 8.75 2.55E-03
34 LIMA1 2.31 8.88 6.42E-06 34 SLC22A5 2.01 7.77 5.02E-05
35 ST8SIA4 -3.54 5.75 2.57E-07 ST8SIA4 35 EFEMP1 -1.77 8.75 7.76E-04
36 SLC22A5 2.62 7.77 2.35E-07 SLC22A5 36 SKAP2 2.11 7.34 1.04E-03
37 LAMC1 2.59 7.80 2.47E-06 37 BTG2 1.67 9.24 8.18E-04
38 AKAP1 2.14 9.37 9.17E-06 AKAP1 38 RAP1GAP 2.24 6.81 1.12E-05
39 DKK1 -1.89 10.51 3.24E-05 39 FBXO34 1.76 8.57 7.89E-04
40 LOC400451 2.58 7.70 2.60E-05 40 GPR160 1.59 9.41 3.94E-03
41 PHLDA1 2.35 8.39 8.04E-07 41 ZNF503 2.10 7.08 1.88E-04
42 NQO1 1.69 11.69 2.58E-04 42 PLA2G10 1.90 7.80 1.01E-03
43 TMPRSS2 3.66 5.32 5.08E-08 TMPRSS2 43 FOXA1 1.65 8.92 1.18E-03
44 NFKBIZ 2.12 9.09 4.03E-05 44 NET1 1.49 9.88 9.58E-03
45 KITLG -2.05 9.34 2.59E-05 45 MBP 2.38 6.03 2.01E-04
46 NANS 2.19 8.70 1.64E-06 NANS 46 SDC2 -2.09 6.84 2.87E-04
47 HIG2 1.99 9.54 4.01E-06 47 ADCY1 -1.80 7.87 3.42E-03
48 ZFP36L1 1.91 9.82 1.43E-04 48 DYRK2 1.84 7.68 1.50E-04
49 FAM43A 2.33 7.96 3.67E-06 FAM43A 49 NCOR2 1.69 8.32 7.19E-03
50 EPHA7 -3.05 6.06 6.10E-06 50 NANS 1.60 8.70 1.98E-03
51 KYNU -1.67 11.03 5.34E-04 51 PCDH10 -1.88 7.31 4.02E-05
52 MLPH 1.66 10.95 4.06E-04 MLPH 52 PCTP 1.70 8.05 1.18E-03
53 SEMA3C -1.78 10.19 5.60E-04 53 HOXA5 1.87 7.31 6.63E-03
54 SOX2 -1.94 9.34 1.14E-04 SOX2 54 APOBEC3B 1.74 7.69 2.87E-04
55 PCDH10 -2.47 7.31 1.10E-07 PCDH10 55 EDG3 -1.88 7.13 6.02E-04
56 TRIM16 1.97 9.14 9.17E-06 56 SULT1A1 1.82 7.37 4.94E-04
57 RNASE4 3.56 5.04 2.18E-07 57 AHRR 1.77 7.53 7.26E-04
58 PLA2G10 2.25 7.80 2.48E-05 PLA2G10 58 INSIG1 1.70 7.82 2.41E-03
59 GALNT7 1.83 9.58 7.43E-05 59 RNF207 1.89 6.93 4.18E-04
60 NTN4 2.48 7.06 9.00E-07 60 FAM43A 1.64 7.96 5.06E-03
61 FBXO34 2.03 8.57 1.95E-05 FBXO34 61 JAG2 1.65 7.84 1.18E-03
62 GPR30 -2.12 8.21 2.43E-06 62 FLJ10081 1.58 8.19 5.76E-03
63 SIX4 1.97 8.81 8.77E-05 63 ST8SIA4 -2.23 5.82 7.84E-03
64 LMCD1 2.04 8.44 1.92E-05 64 CPEB2 -1.59 8.17 9.38E-03
65 EFEMP1 -1.96 8.75 4.15E-05 EFEMP1 65 DUSP4 1.73 7.38 1.25E-03
66 CAV2 -1.83 9.33 1.43E-04 66 Gcom1 2.18 5.77 6.63E-05
67 TFPI2 2.60 6.57 8.04E-07 TFPI2 67 BHLHB2 1.52 8.35 6.30E-03
68 ADCY1 -2.16 7.87 6.88E-05 ADCY1 68 EPB41L4A 1.96 6.41 2.55E-03
69 DOCK8 2.34 7.21 2.44E-04 69 TMPRSS2 2.33 5.32 4.49E-05

Genes -CHX Genes +CHX
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Rank Gene Fold A adj. p-value Regulated +CHX Rank Gene Fold A adj. p-value
Genes -CHX Genes +CHX
70 TRAK1 2.03 8.31 3.34E-05 70 PTGER4 -2.11 5.86 4.86E-04
71 CRISPLD2 2.23 7.54 3.07E-05 CRISPLD2 71 SQSTM1 1.72 7.12 1.21E-03
72 TMTC1 -2.49 6.75 1.75E-04 72 SYNPO2 2.05 5.91 1.46E-04
73 TPD52L1 1.53 10.91 1.64E-03 73 MLPH 1.59 7.55 8.00E-03
74 ZEB1 2.06 8.07 9.63E-05 ZEB1 74 C16orf14 1.53 7.76 3.84E-03
75 CTSH 2.01 8.27 1.54E-05 75 SLITRK6 -1.88 6.24 6.02E-04
76 BZW1 1.60 10.43 1.89E-03 76 HHEX 1.90 6.15 1.41E-03
77 NRIP1 1.53 10.90 5.79E-03 NRIP1 77 PARP9 1.51 7.74 6.91E-03
78 ITPR1 2.41 6.88 4.01E-07 78 RBMS1 -1.56 7.36 7.76E-03
79 TP53INP1 1.82 9.09 3.06E-04 TP53INP1 79 LOC57228 1.61 7.18 8.06E-03
80 BCL6 1.73 9.53 8.96E-05 80 FRMD3 1.51 7.60 7.59E-03
81 TRIM14 2.30 7.17 4.09E-06 81 PHF8 1.78 6.38 6.02E-04
82 CPEB2 -2.02 8.17 3.91E-05 CPEB2 82 FOXC1 2.03 5.48 4.21E-03
83 ANXA9 2.13 7.73 9.32E-05 83 BCAS1 1.61 6.93 7.87E-03
84 DLX2 -1.85 8.88 5.78E-05 84 KLHL28 1.47 7.55 8.53E-03
85 EPB41L4B 1.85 8.88 2.85E-05 85 TNFRSF1A 1.59 6.96 2.41E-03
86 ANXA1 -2.44 6.73 6.10E-06 86 PREP -1.72 6.41 5.43E-03
87 SLITRK6 -2.62 6.24 1.08E-06 SLITRK6 87 TMEM46 1.74 6.21 1.52E-03
88 IRF2BP2 1.58 10.35 1.52E-03 88 CBLB 1.54 7.00 3.45E-03
89 SMAD3 1.83 8.89 6.77E-05 89 FJX1 -1.57 6.81 7.87E-03
90 MYC 2.28 7.13 5.03E-06 90 VPS13D 1.59 6.68 2.96E-03
91 SLC35C1 1.92 8.46 2.42E-05 SLC35C1 91 ELF5 -1.58 6.68 5.43E-03
92 WWP1 1.61 10.08 2.46E-03 92 CLDN1 -1.98 5.25 1.27E-03
93 SAT1 1.84 8.78 4.34E-05 93 TGM2 1.78 5.85 3.11E-03
94 MTHFD2 1.58 10.17 1.42E-03 94 SYNJ2 1.54 6.77 7.02E-03
95 BAMBI 1.72 9.30 4.76E-04 95 UBD 1.84 5.56 6.38E-04
96 AHRR 2.12 7.53 9.94E-06 AHRR 96 PRKCD 1.68 5.94 3.38E-03
97 RBPMS 1.97 8.07 4.42E-05 97 SERPINA5 1.87 5.33 7.49E-03
98 NCOR2 1.91 8.32 2.99E-04 NCOR2 98 TRAF4 1.59 6.11 2.12E-03
99 CAV1 -1.80 8.80 1.04E-04 99 STRA6 1.84 5.14 1.08E-03
100 XBP1 1.61 9.82 1.59E-03 100 FGD3 1.53 6.04 9.47E-03
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ROZENDAAL ET AL Supplementary Table IV Page 1 of 9

Ilm GENE ENTREZ 
GENE

fold 
GATA3

fold 
FOXA1

fold 
SOX9

Fold SKBR3 
8h RA+CHX

Fold SKBR3 
8h RA-CHX

Fold MCF7 8h 
RA+CHX

Fold MCF7 8h 
RA-CHX

Fold SKBR3 
24h RA

A2ML1 A2ML1 --- -1.42 --- --- --- --- --- ---
ABCA3 ABCA3 --- 2.59 --- --- --- --- --- ---
ABCB1 ABCB1 --- 1.73 --- --- --- --- --- ---
ABHD11 ABHD11 --- -1.53 --- --- -1.45 --- --- ---
ABHD6 ABHD6 --- 1.53 --- --- --- --- --- ---
ACSL1 ACSL1 --- 1.9 --- --- --- --- --- ---
ADORA2A ADORA2A --- -1.48 --- --- --- --- --- ---
ADPRHL2 ADPRHL2 --- 1.4 --- --- --- --- --- ---
AFG3L2 AFG3L2 --- 1.47 --- --- --- --- --- ---
AFMID AFMID --- -1.6 --- --- --- --- --- ---
AGR2 AGR2 --- 1.42 --- --- -1.65 --- --- ---
AK3 AK3 --- 1.47 --- --- --- --- --- ---
ALG6 ALG6 --- 1.85 --- --- --- --- --- ---
ALS2CR4 ALS2CR4 --- 3.92 --- --- --- --- --- ---
ANG ANG --- 1.5 --- --- --- --- --- ---
ANTXR2 ANTXR2 --- 1.71 --- --- --- --- --- ---
ANXA3 ANXA3 --- 1.69 --- --- --- --- --- ---
AP4B1 AP4B1 --- -1.43 --- --- --- --- --- ---
ARHGAP24 ARHGAP24 --- 1.77 --- --- --- --- --- ---
ARHGEF2 ARHGEF2 --- 1.48 --- 1.43 1.48 --- --- ---
ARID5B ARID5B --- 1.47 1.69 --- -1.99 --- -1.62 ---
ARPM1 ARPM1 --- 3.45 --- --- --- --- --- ---
ASPM ASPM --- -1.59 -1.49 --- --- --- --- ---
ATAD2 ATAD2 --- -1.59 --- --- --- --- --- ---
ATP6V1B1 ATP6V1B1 -1.67 -1.82 --- --- --- --- --- -2.03
ATP7B ATP7B --- 1.64 --- --- --- --- --- ---
B2M B2M --- 1.51 --- --- --- --- --- ---
B4GALT5 B4GALT5 1.43 1.49 --- --- --- --- --- ---
BAMBI BAMBI --- 1.87 --- 1.52 1.83 --- 1.72 1.64
BATF2 BATF2 --- 1.66 1.56 --- --- --- --- ---
BCKDHB BCKDHB --- 1.42 --- --- --- --- --- ---
BCL2L13 BCL2L13 --- 1.45 --- --- --- --- --- ---
BCL6 BCL6 --- 1.83 --- --- --- --- 1.73 ---
BCLAF1 BCLAF1 --- -1.42 --- --- --- --- --- ---
BFSP1 BFSP1 --- -1.52 --- --- -1.56 --- --- ---
BLMH BLMH --- 2.39 --- --- --- --- --- ---
BLOC1S1 BLOC1S1 --- 1.74 --- --- --- --- --- ---
BTG1 BTG1 --- 1.4 --- --- --- --- --- ---
BTN2A1 BTN2A1 --- 1.55 --- --- --- --- --- ---
BTN3A1 BTN3A1 --- 1.44 --- --- --- --- --- ---
BTN3A2 BTN3A2 --- 1.71 1.44 --- 1.49 --- --- ---
BTN3A3 BTN3A3 --- 1.97 1.43 --- 1.72 --- --- ---
C11ORF51 C11orf51 --- 2.05 --- --- --- --- --- ---
C11ORF67 C11orf67 --- 1.54 --- --- --- --- --- ---
C12ORF23 C12orf23 --- 1.54 --- --- --- --- --- ---
C14ORF147 C14orf147 --- -1.44 --- --- --- --- --- ---
C14ORF85 --- --- 1.49 --- --- --- --- --- ---
C17ORF37 C17orf37 --- 1.51 --- --- --- --- --- ---
C17ORF58 C17orf58 --- 1.86 --- --- --- --- --- -1.81
C18ORF55 C18orf55 --- -1.44 -1.41 --- --- --- --- ---
C19ORF43 C19orf43 --- 1.59 --- --- --- --- --- ---
C19ORF66 FLJ11286 --- 1.56 --- --- --- --- --- ---
C2ORF44 C2orf44 --- 1.48 --- --- --- --- --- ---
C3ORF57 C3orf57 --- 1.44 --- --- --- --- --- -3.45
C4ORF34 C4orf34 --- 1.82 --- --- --- --- --- ---
C5ORF39 C5orf39 --- 3.78 --- --- --- --- --- ---
C6ORF115 --- --- 1.95 --- --- --- --- --- ---
C7ORF68 HIG2 --- 1.45 --- --- --- --- 1.99 ---
C8ORF55 C8orf55 --- -1.46 --- --- --- --- --- ---
C9ORF140 C9orf140 --- -1.61 -1.45 --- -1.42 --- --- -1.70
CA12 CA12 --- -1.57 --- 1.88 3.05 2.88 3.80 1.51
CASP4 CASP4 --- 1.43 --- --- --- --- --- ---
CAST CAST --- 1.66 --- --- --- --- 1.58 ---
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ROZENDAAL ET AL Supplementary Table IV Page 2 of 9

Ilm GENE ENTREZ 
GENE

fold 
GATA3

fold 
FOXA1

fold 
SOX9

Fold SKBR3 
8h RA+CHX

Fold SKBR3 
8h RA-CHX

Fold MCF7 8h 
RA+CHX

Fold MCF7 8h 
RA-CHX

Fold SKBR3 
24h RA

CBARA1 CBARA1 --- 2.01 --- --- --- --- --- ---
CBLB CBLB --- 1.48 1.72 --- --- 1.54 1.64 ---
CCDC136 CCDC136 --- 1.71 --- --- --- --- --- ---
CCDC24 CCDC24 --- 1.52 --- --- --- --- --- ---
CCL22 CCL22 2.08 1.76 2.07 --- --- --- --- ---
CCL5 CCL5 2.24 1.71 2.08 --- --- --- --- ---
CCNDBP1 CCNDBP1 --- 1.45 --- --- 1.58 --- --- ---
CD24 --- --- -1.41 --- --- --- --- --- ---
CD55 CD55 --- 6.36 1.52 --- --- --- --- ---
CD9 CD9 --- 1.52 --- --- --- --- --- -1.43
CDC25B CDC25B --- -1.4 --- --- --- --- --- ---
CDC45L CDC45L --- -1.48 -1.54 --- --- --- --- ---
CDC6 CDC6 --- -1.44 --- --- --- --- --- ---
CDKN2AIP CDKN2AIP --- -1.52 --- --- --- --- --- ---
CEACAM1 CEACAM1 1.43 1.64 1.78 --- --- --- --- ---
CENPF CENPF --- -1.74 --- --- --- --- --- ---
CFB CFB 1.83 1.71 2.08 --- --- --- --- ---
CGA CGA --- 1.72 --- --- --- --- --- ---
CHAF1B CHAF1B --- 3.25 --- --- 1.65 --- --- 1.63
CHMP5 CHMP5 --- 1.46 --- --- --- --- --- ---
CHP CHP --- 1.71 --- --- --- --- --- ---
CISH CISH --- -1.44 --- --- --- --- --- ---
CITED4 CITED4 --- -1.48 --- 1.70 --- --- --- ---
CLDND1 CLDND1 --- 1.48 --- --- --- --- --- ---
CLIC3 CLIC3 --- -1.45 --- --- -2.58 --- --- -2.64
CMPK2 LOC129607 --- 1.64 1.50 --- --- --- --- ---
CNN3 CNN3 --- 1.54 --- --- --- --- --- ---
CNO CNO --- 1.62 --- --- --- --- --- ---
COBL COBL --- 1.46 --- --- -1.47 --- --- -1.42
COL3A1 COL3A1 --- 3.21 --- --- --- --- --- ---
COL4A5 COL4A5 --- 1.48 --- --- --- --- --- ---
CORO1A CORO1A --- -1.57 -1.40 --- --- --- --- -1.98
CPA4 CPA4 --- -1.41 --- --- -1.42 --- --- -3.06
CPT1C CPT1C --- 1.42 --- --- --- --- --- ---
CRIP2 CRIP2 --- -1.7 --- --- -1.41 --- --- -1.44
CRLF3 CRLF3 --- 1.46 --- --- --- --- --- ---
CRY1 CRY1 --- 1.48 --- --- --- --- --- ---
CSNK1G1 CSNK1G1 --- 2.04 --- --- --- --- --- ---
CSNK1G2 CSNK1G2 --- 9.38 --- --- --- --- --- ---
CT45A4 CT45-4 --- 1.46 --- --- --- --- --- ---
CWF19L2 CWF19L2 --- 1.7 --- --- --- --- --- ---
CX3CL1 CX3CL1 1.85 2.16 1.57 --- --- --- --- ---
CXADR CXADR --- -1.43 --- --- --- --- --- ---
CXCL1 CXCL1 --- 1.7 --- --- --- --- --- ---
CXCL10 CXCL10 2.59 3.73 3.10 --- --- --- --- ---
CXCL11 CXCL11 1.57 1.8 1.61 --- --- --- --- ---
CXXC5 CXXC5 --- -1.62 --- --- --- --- --- ---
CYP1B1 CYP1B1 --- 1.45 --- --- --- --- --- ---
CYP2J2 CYP2J2 --- 1.55 --- --- --- --- --- ---
DBNDD1 DBNDD1 --- 1.71 --- --- --- --- --- ---
DCAF6 IQWD1 --- 1.46 --- --- --- --- --- ---
DCPS DCPS --- -1.45 --- --- --- --- --- ---
DCTPP1 XTP3TPA --- -1.48 --- --- --- --- --- ---
DDIT4 DDIT4 --- -1.41 --- 1.94 --- --- --- ---
DDIT4L DDIT4L --- 1.64 --- --- 2.67 --- --- 2.34
DDR2 DDR2 --- 1.85 --- --- --- --- --- ---
DDX17 DDX17 --- 1.44 --- --- --- --- --- ---
DECR1 DECR1 --- 1.61 --- --- --- --- --- ---
DHRS2 DHRS2 --- 1.46 --- --- --- --- 1.79 ---
DHX58 LGP2 --- 1.53 --- --- --- --- --- 1.40
DISP1 DISP1 --- 1.66 --- --- --- --- --- ---
DKFZP667M2411 --- --- 1.5 --- --- --- --- --- ---
DKFZP761P0423 --- --- -1.55 --- --- --- --- --- ---
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Ilm GENE ENTREZ 
GENE

fold 
GATA3

fold 
FOXA1

fold 
SOX9

Fold SKBR3 
8h RA+CHX

Fold SKBR3 
8h RA-CHX

Fold MCF7 8h 
RA+CHX

Fold MCF7 8h 
RA-CHX

Fold SKBR3 
24h RA

DKK1 DKK1 --- 1.76 --- -2.38 -2.14 --- -1.89 ---
DNHD2 --- --- 1.77 --- --- --- --- --- ---
E2F2 E2F2 --- -1.52 -1.44 --- --- --- --- -1.67
E2F5 E2F5 --- 1.45 --- --- --- --- --- ---
EDN1 EDN1 --- 1.76 --- --- --- --- -1.52 1.58
EEF2K EEF2K --- -1.61 --- --- --- --- --- -1.58
EFNB2 EFNB2 --- 1.48 --- 1.59 2.12 --- --- 2.29
EHD4 EHD4 --- 1.7 --- --- 1.87 --- --- 1.64
ELF5 ELF5 --- -1.45 --- --- -2.80 -1.58 --- ---
ENDOG ENDOG --- -1.43 --- --- --- --- --- ---
ENOPH1 ENOPH1 --- -1.44 --- --- --- --- --- ---
EPRS EPRS --- -1.49 --- --- --- --- --- ---
ESPNL ESPNL --- 1.97 --- --- --- --- --- ---
EXOG ENDOGL1 --- 2.15 --- --- --- --- --- ---
EXT1 EXT1 1.67 1.42 1.75 --- -1.60 --- --- ---
EYA2 EYA2 --- -1.43 --- --- 2.05 --- --- 1.63
FAM115A KIAA0738 --- 1.45 --- --- --- --- --- ---
FAM177A1 C14orf24 --- 1.44 --- --- --- --- --- ---
FAM188A C10orf97 --- 1.7 --- --- --- --- --- ---
FAM46A FAM46A --- 1.44 1.53 --- --- --- --- ---
FAM46B FAM46B --- -1.79 --- --- -2.55 --- --- -1.80
FAM62B FAM62B --- -1.68 --- --- -1.66 --- --- ---
FBLN1 FBLN1 --- -1.4 --- --- --- --- --- ---
FBP1 FBP1 --- -1.95 --- --- --- --- --- -1.72
FBXO34 FBXO34 --- 2.71 --- 1.68 1.80 1.76 2.03 1.57
FBXO6 FBXO6 --- 1.43 1.51 --- --- --- --- ---
FEN1 FEN1 --- -1.44 --- --- --- --- --- ---
FGB FGB --- 7.33 --- --- --- --- --- ---
FH FH --- 1.41 --- --- --- --- --- ---
FKBP3 FKBP3 --- 1.58 --- --- --- --- --- ---
FLJ13305 FLJ13305 --- 1.45 --- --- --- --- --- ---
FLJ37078 FLJ37078 --- 1.49 --- --- --- --- --- ---
FLJ46309 --- --- 1.48 --- --- --- --- --- ---
FOXA1 FOXA1 --- 3.98 --- --- --- 1.65 1.77 ---
FOXC1 FOXC1 --- 1.62 --- --- --- 2.03 --- ---
FREQ FREQ --- 1.98 --- --- --- --- --- ---
FSTL5 FSTL5 --- 1.52 --- --- --- --- --- ---
FTHL11 --- --- 1.42 --- --- --- --- --- ---
FTHL12 --- --- 1.48 --- --- --- --- --- ---
FTHL2 --- --- 1.48 --- --- --- --- --- ---
FTHL3 --- --- 1.4 --- --- --- --- --- ---
FTHL8 --- --- 1.46 --- --- --- --- --- ---
FUNDC1 FUNDC1 --- 1.45 --- --- --- --- --- ---
GADD45B GADD45B --- 1.56 --- 1.47 1.43 --- --- ---
GALNT10 GALNT10 --- -1.48 --- --- --- --- --- ---
GBP1 GBP1 1.59 1.57 1.53 --- 1.53 --- --- 1.72
GBP4 GBP4 1.79 1.9 1.84 --- --- --- --- ---
GCA GCA --- 1.5 --- --- --- --- --- ---
GCHFR GCHFR -1.42 -1.96 -1.68 --- --- --- --- ---
GDF15 GDF15 --- 1.57 1.62 1.89 2.63 --- 3.12 2.34
GFOD1 GFOD1 --- 4.84 --- --- --- --- --- ---
GK GK --- 4.3 --- --- --- --- --- ---
GKAP1 GKAP1 --- 1.44 --- --- --- --- --- ---
GLRX GLRX 1.52 2.25 --- --- --- --- --- ---
GLYATL2 GLYATL2 -1.51 -2.01 -1.43 --- --- --- --- 1.85
GMPR GMPR 1.64 1.62 1.66 --- --- --- --- ---
GNA15 GNA15 --- 2.41 --- --- --- --- --- ---
GNL3L GNL3L --- -1.4 --- --- --- --- --- ---
GOLSYN FLJ20366 --- -1.56 --- --- --- --- --- ---
GPKOW GPKOW --- 1.6 --- --- --- --- --- ---
GPR37 GPR37 --- 1.41 1.45 -1.62 --- --- --- ---
GPR56 GPR56 --- -1.52 --- --- --- --- --- ---
GPX2 GPX2 --- 1.74 1.52 --- 1.47 --- --- 3.07
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Ilm GENE ENTREZ 
GENE

fold 
GATA3

fold 
FOXA1

fold 
SOX9

Fold SKBR3 
8h RA+CHX

Fold SKBR3 
8h RA-CHX

Fold MCF7 8h 
RA+CHX

Fold MCF7 8h 
RA-CHX

Fold SKBR3 
24h RA

GSDMD GSDMDC1 --- 1.48 --- --- --- --- --- ---
GSTM3 GSTM3 --- -1.42 --- --- --- --- --- -1.76
H19 --- --- -2.13 -1.64 --- --- --- --- ---
H1F0 H1F0 --- 1.53 --- --- --- --- --- ---
HCP5 HCP5 --- 2.75 2.22 --- --- --- --- ---
HERC5 HERC5 1.85 2.58 2.02 --- --- --- --- ---
HES6 HES6 --- 2.49 --- --- --- --- --- -1.46
HIST1H1C HIST1H1C --- 1.61 --- --- --- --- --- ---
HIST1H3D HIST1H3D --- 1.55 --- --- --- --- --- ---
HIST2H2AA3 HIST2H2AA3 --- 1.41 --- --- --- --- --- ---
HIST2H2BE HIST2H2BE --- 1.52 --- --- -1.46 --- --- ---
HIST2H4A HIST2H4A --- 1.51 --- --- --- --- --- ---
HLA-A HLA-A --- 1.66 1.84 --- --- --- --- ---
HLA-A29.1 HLA-A29.1 --- 1.72 1.93 --- --- --- --- ---
HLA-B HLA-B --- 2 2.00 --- --- --- --- ---
HLA-DMB HLA-DMB --- 3.87 --- --- --- --- --- ---
HLA-E HLA-E --- 1.78 --- --- --- --- --- ---
HLA-F HLA-F --- 2.08 1.78 --- --- --- --- ---
HLA-G HLA-G --- 1.53 --- --- --- --- --- ---
HLA-H --- --- 2.03 1.94 --- --- --- --- ---
HMGCL HMGCL --- 1.53 --- --- --- --- --- ---
HNRPC HNRPC --- 1.5 --- --- --- --- --- ---
HNRPLL HNRPLL --- 1.41 --- --- --- --- --- ---
HOOK1 HOOK1 --- -1.44 --- --- --- --- --- ---
HRASLS2 HRASLS2 --- 1.82 --- --- --- --- --- ---
HS.127310 --- --- -1.48 --- --- --- --- --- ---
HS.145049 --- --- -1.45 --- --- --- --- --- ---
HS.193557 --- --- -1.51 --- --- --- --- --- ---
HS.201441 --- --- -1.45 --- --- --- --- --- 2.95
HS.209244 --- --- -1.53 --- --- --- --- --- ---
HS.213061 --- --- -1.51 --- --- --- --- --- ---
HS.294103 --- --- -1.5 --- --- --- --- --- ---
HS.294603 --- --- -1.52 --- --- --- --- --- ---
HS.434957 --- --- -2.12 --- --- --- --- --- ---
HS.489254 --- --- 1.5 --- --- --- --- --- ---
HS.513971 --- --- -1.51 --- --- --- --- --- ---
HS.526550 --- --- -1.49 --- --- --- --- --- ---
HS.545163 --- --- 1.55 --- --- --- --- --- ---
HS.568329 --- --- 1.46 --- --- --- --- --- ---
HS.568690 --- --- -1.65 --- --- --- --- --- ---
HS.568928 --- --- -1.52 --- --- --- --- --- 1.59
HS.579631 --- --- 1.98 1.61 --- --- --- --- ---
HS.59203 --- --- 1.47 --- --- --- --- --- ---
HSH2D HSH2D --- 1.42 --- --- --- --- --- ---
HSPA14 HSPA14 --- -1.47 --- --- --- --- --- ---
ICAM3 ICAM3 --- -1.44 --- --- --- --- --- -1.71
IDH2 IDH2 --- -1.44 --- --- --- --- --- ---
IFI16 IFI16 --- 2.93 1.70 --- --- --- --- ---
IFI27 IFI27 --- 1.48 --- --- --- --- --- ---
IFI35 IFI35 --- 1.41 --- --- --- --- --- ---
IFIH1 IFIH1 --- 1.44 --- --- 1.59 --- --- ---
IFIT2 IFIT2 1.94 1.85 2.25 --- --- --- --- ---
IFIT3 IFIT3 1.43 1.41 1.65 --- --- --- --- ---
IFNB1 IFNB1 1.78 1.56 1.54 --- --- --- --- ---
IFT52 IFT52 --- 1.48 --- --- --- --- --- ---
IGSF5 LOC150084 --- 2.71 --- 1.86 --- --- --- ---
IL29 IL29 2.19 1.68 1.60 --- --- --- --- ---
IL8 IL8 2.91 3.85 3.15 -1.53 --- --- --- 1.57
IMAA --- --- -1.44 --- --- --- --- --- ---
IMPA1 IMPA1 --- 4.66 --- --- 1.54 --- --- ---
IMPA2 IMPA2 --- -1.46 --- --- --- --- --- ---
INDO INDO --- 2.35 --- --- --- --- --- ---
INPPL1 INPPL1 --- 1.41 --- --- --- --- --- ---
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Ilm GENE ENTREZ 
GENE

fold 
GATA3

fold 
FOXA1

fold 
SOX9

Fold SKBR3 
8h RA+CHX

Fold SKBR3 
8h RA-CHX

Fold MCF7 8h 
RA+CHX

Fold MCF7 8h 
RA-CHX

Fold SKBR3 
24h RA

IRF1 IRF1 --- 1.41 --- 1.61 2.63 --- --- 1.98
ISG15 ISG15 --- 1.55 --- --- --- --- --- ---
ISOC1 ISOC1 --- 1.41 --- --- --- --- --- ---
ITGA10 ITGA10 --- 1.47 --- --- --- --- --- ---
ITM2C ITM2C --- 1.41 --- --- --- --- --- ---
KBTBD2 KBTBD2 --- 2.06 --- --- --- --- --- ---
KLF13 KLF13 --- -1.48 --- --- -1.41 --- --- ---
LAMP3 LAMP3 1.5 2.08 1.75 --- --- --- --- ---
LANCL1 LANCL1 --- -1.44 --- --- --- --- --- ---
LAP3 LAP3 --- 1.55 --- --- --- --- --- ---
LBA1 --- --- 1.56 1.69 --- --- --- --- 1.42
LBP LBP 1.51 1.65 --- --- --- --- --- ---
LCN2 LCN2 1.67 1.41 1.83 --- 2.23 --- --- 3.78
LGMN LGMN --- 1.58 1.55 --- --- --- --- ---
LHFP LHFP --- 1.48 --- --- --- --- --- ---
LMO2 LMO2 --- 1.42 --- --- 1.54 --- --- ---
LOC100008589 --- --- 1.52 --- --- --- --- --- ---
LOC158160 --- --- 1.44 --- --- --- --- --- ---
LOC388275 --- --- -1.49 --- --- --- --- --- ---
LOC388588 --- --- 1.45 --- --- --- --- --- -1.99
LOC389816 LOC389816 -1.4 -1.64 -1.41 --- --- --- --- -1.87
LOC400948 --- --- 1.4 --- --- --- --- --- ---
LOC401115 --- --- 1.64 1.68 --- --- --- --- ---
LOC440927 --- --- 1.44 --- --- --- --- --- ---
LOC441019 --- --- 1.55 --- --- --- --- --- ---
LOC642989 --- --- 1.56 --- --- --- --- --- ---
LOC644250 --- --- 1.43 --- --- --- --- --- ---
LOC644615 --- --- 1.4 --- --- --- --- --- ---
LOC646817 --- --- -1.65 --- --- --- --- --- ---
LOC649150 --- --- -1.43 --- --- --- --- --- ---
LOC651202 --- --- 1.67 --- --- --- --- --- ---
LOC653506 --- --- -1.43 --- --- --- --- --- -1.63
LOC653631 --- --- 1.58 --- --- --- --- --- ---
LOC727820 --- --- 1.96 --- --- --- --- --- ---
LOC728216 --- --- 1.55 --- --- --- --- --- ---
LOC728492 --- --- 2.16 --- --- --- --- --- ---
LOC728556 --- --- 1.54 --- --- --- --- --- ---
LOC730256 --- --- 2.11 --- --- --- --- --- ---
LOC731950 --- --- 1.84 --- --- --- --- --- ---
LRP10 LRP10 --- 1.6 --- --- --- --- --- ---
LRPPRC LRPPRC --- -1.55 --- --- -1.73 --- --- ---
LRRC20 LRRC20 --- 1.55 --- --- --- --- --- ---
LRRC26 LOC389816 -1.41 -1.73 --- --- --- --- --- -2.01
LRRC41 LRRC41 --- 1.58 --- --- --- --- --- ---
MAL MAL -1.46 -1.78 --- --- --- --- --- -2.02
MAN2B2 MAN2B2 --- 1.5 --- --- --- --- --- ---
MAP4K2 MAP4K2 --- 1.43 --- --- --- --- --- ---
MAPKAPK3 MAPKAPK3 --- -1.4 --- --- --- --- --- ---
MAT2B MAT2B --- 1.48 --- --- --- --- --- ---
MCM2 MCM2 --- -1.51 --- --- --- --- --- ---
MCM4 MCM4 --- -1.4 --- --- --- --- --- ---
MCM6 MCM6 --- -1.63 -1.43 --- --- --- --- -1.56
MDK MDK --- 1.66 --- --- --- --- --- ---
MED30 THRAP6 --- 1.4 --- --- --- --- --- ---
MEMO1 MEMO1 --- 1.47 --- --- --- --- --- ---
METRNL METRNL --- -1.41 --- --- -1.72 --- --- -1.47
MFSD1 MFSD1 --- 1.47 --- --- --- --- --- 1.42
MGLL MGLL --- -1.44 --- --- --- --- 1.61 ---
MICAL1 MICAL1 --- 1.48 --- --- --- --- --- ---
MKLN1 MKLN1 --- -1.49 --- --- --- --- --- ---
MLLT10 MLLT10 --- 1.41 --- --- -1.74 --- --- ---
MMEL1 MMEL1 --- -1.48 --- --- --- --- 1.55 ---
MMP10 MMP10 --- 1.54 --- --- --- --- --- ---
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Ilm GENE ENTREZ 
GENE

fold 
GATA3

fold 
FOXA1

fold 
SOX9

Fold SKBR3 
8h RA+CHX

Fold SKBR3 
8h RA-CHX

Fold MCF7 8h 
RA+CHX

Fold MCF7 8h 
RA-CHX

Fold SKBR3 
24h RA

MMP7 MMP7 --- 1.51 --- --- --- --- --- ---
MNAT1 MNAT1 --- 2.46 --- --- --- --- --- ---
MOBKL2C MOBKL2C --- 1.51 --- --- --- --- --- ---
MRPL13 MRPL13 --- 1.4 --- --- --- --- --- ---
MRPL16 MRPL16 --- 1.44 --- --- --- --- --- ---
MT1A MT1A --- 2.02 --- --- --- --- --- ---
MT2A MT2A --- 2.08 1.43 --- --- --- --- ---
MTE MTE --- 1.57 --- --- --- --- --- ---
MX2 MX2 1.45 1.89 1.89 --- --- --- --- ---
MXD4 MXD4 --- 1.47 --- --- --- --- --- ---
MYLIP MYLIP --- 1.48 --- --- --- --- --- ---
MYO5C MYO5C --- -1.41 --- --- --- --- --- ---
N4BP3 N4BP3 --- -1.45 --- 1.62 1.76 --- --- ---
NAPRT1 NAPRT1 --- -1.41 --- --- --- --- --- -1.46
NAV1 NAV1 --- -1.48 --- 2.53 2.06 --- --- 1.50
NCOA1 NCOA1 --- 1.42 --- --- --- --- --- ---
NCOA7 NCOA7 1.71 1.64 1.81 --- 1.71 --- --- 1.63
NECAP2 NECAP2 --- 1.5 --- --- --- --- --- ---
NFIL3 NFIL3 --- 1.54 --- --- --- --- --- ---
NFS1 NFS1 1.66 1.66 1.54 --- --- --- --- ---
NMD3 NMD3 --- 1.47 --- --- --- --- --- ---
NUB1 NUB1 --- 1.52 1.50 --- --- --- --- ---
NUMB NUMB --- 1.46 --- --- --- --- --- ---
NUP62CL NUP62CL --- 1.57 --- --- --- --- --- ---
NUPR1 NUPR1 1.47 1.77 1.88 --- --- --- --- ---
NUSAP1 NUSAP1 --- 2.09 --- --- --- --- --- ---
OASL OASL 1.78 2.17 1.65 --- --- --- --- ---
ODC1 ODC1 --- 1.49 --- --- -1.81 --- --- -1.61
OSGIN2 OSGIN2 --- 1.42 --- --- --- --- --- ---
P4HA1 P4HA1 --- 2.44 --- --- --- --- --- ---
P8 NUPR1 1.48 2.09 1.82 --- --- --- --- ---
PAICS PAICS --- -1.43 --- --- --- --- --- ---
PARP10 PARP10 --- 1.6 --- --- --- --- --- ---
PARP12 PARP12 --- 1.47 --- --- 1.58 --- --- 1.40
PBX3 PBX3 --- 1.72 --- --- --- --- --- ---
PCDH17 PCDH17 --- 2.48 1.99 --- --- --- --- ---
PCYOX1 PCYOX1 --- -1.41 --- --- --- --- --- ---
PDE4D PDE4D --- -1.45 --- --- -1.72 --- --- ---
PDE6D PDE6D --- 1.53 --- --- --- --- --- ---
PDE8B PDE8B --- -1.59 --- --- --- --- --- ---
PDGFRL PDGFRL --- 1.85 1.56 --- --- --- --- ---
PDLIM3 PDLIM3 --- 1.47 --- --- --- --- --- ---
PDSS1 PDSS1 --- -1.47 --- --- --- --- --- -1.52
PDXK PDXK --- -1.5 --- --- -1.40 --- --- ---
PEBP1 PEBP1 --- 1.45 --- --- --- --- --- ---
PECI PECI --- 1.44 --- --- --- --- --- ---
PERP PERP --- 2.13 --- --- --- --- --- ---
PEX11A PEX11A --- 1.57 --- --- --- --- --- ---
PFKFB3 PFKFB3 --- -1.45 --- --- 2.15 1.97 3.09 2.04
PHACTR2 PHACTR2 --- -1.48 --- --- --- --- --- ---
PHIP PHIP --- -1.52 --- --- --- --- --- ---
PHTF1 PHTF1 --- 1.45 --- --- --- --- --- ---
PIAS1 PIAS1 --- 1.82 --- --- --- --- --- ---
PIGM PIGM --- 1.43 --- --- --- --- --- ---
PIP PIP --- 1.89 --- --- --- --- --- ---
PITX1 PITX1 --- -1.42 --- --- --- --- --- ---
PLA2G10 PLA2G10 -1.63 1.51 --- 2.79 1.87 1.90 2.25 3.13
PLAC2 PLAC2 --- -1.44 --- --- --- --- --- ---
PLCXD1 PLCXD1 --- 2.26 --- --- --- --- --- -1.40
PLEKHA1 PLEKHA1 --- 1.44 --- --- --- --- --- ---
PLEKHA4 PLEKHA4 --- 1.72 --- --- --- --- --- ---
PLEKHG4 PLEKHG4 --- 1.55 --- --- --- --- --- ---
PMEPA1 TMEPAI -1.41 -1.9 --- --- --- --- --- ---
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Ilm GENE ENTREZ 
GENE

fold 
GATA3

fold 
FOXA1

fold 
SOX9

Fold SKBR3 
8h RA+CHX

Fold SKBR3 
8h RA-CHX

Fold MCF7 8h 
RA+CHX

Fold MCF7 8h 
RA-CHX

Fold SKBR3 
24h RA

PMS2L2 --- --- 1.46 --- --- --- --- --- ---
PMS2L5 PMS2L5 --- 1.52 --- --- --- --- --- ---
PNO1 PNO1 --- 1.81 --- --- --- --- --- ---
PPAP2A PPAP2A --- 1.45 --- --- --- --- --- ---
PPAPDC1B PPAPDC1B --- 1.41 --- --- --- --- --- ---
PPARBP PPARBP --- 1.48 --- --- --- --- --- ---
PPM1H --- --- -1.45 --- --- --- --- --- ---
PPP1R14C PPP1R14C --- -1.41 --- --- --- --- --- ---
PPP3CB PPP3CB --- 1.4 --- --- --- --- --- ---
PPP3CC PPP3CC --- 1.46 --- --- --- --- --- ---
PRIC285 PRIC285 --- 1.51 1.53 --- --- --- --- ---
PRICKLE1 PRICKLE1 --- 1.44 --- --- --- --- --- ---
PRKD2 PRKD2 --- 1.51 --- --- --- --- --- ---
PRKDC PRKDC --- -1.43 --- --- --- --- --- ---
PSMB9 PSMB9 --- 1.8 1.45 1.83 3.18 --- --- 1.98
PSMC5 PSMC5 --- 1.46 --- --- --- --- --- ---
PSPC1 PSPC1 --- 1.53 --- --- --- --- --- ---
PTMA PTMA --- 1.49 --- --- --- --- --- ---
PTPN21 PTPN21 --- 1.54 --- --- --- --- --- ---
PVR PVR --- 2.15 --- --- --- --- --- ---
PWWP2B PWWP2 --- -1.48 --- --- -1.80 --- --- -1.60
PXMP4 PXMP4 --- -1.42 --- --- --- --- --- ---
QPCT QPCT --- 1.79 --- --- --- --- --- ---
QSOX1 QSOX1 --- 1.8 --- --- --- --- --- ---
RAB13 RAB13 --- 1.44 --- --- --- --- --- ---
RAB22A RAB22A --- -1.64 --- --- --- --- --- ---
RAB2B RAB2B --- 1.43 --- --- --- --- --- ---
RAB32 RAB32 --- 1.65 --- --- --- --- --- ---
RAI14 RAI14 --- 1.83 --- 2.07 3.05 --- --- 2.96
RALB RALB --- -1.47 --- --- --- --- --- ---
RAP1GAP RAP1GAP -1.42 -1.41 --- 1.44 1.72 2.24 --- ---
RASD1 RASD1 --- 1.45 1.43 --- --- --- --- ---
RASGRP3 RASGRP3 1.45 1.84 1.79 --- --- --- --- ---
RDH11 RDH11 --- 2.07 --- --- --- --- --- ---
REEP5 REEP5 --- -1.43 --- --- --- --- --- ---
RFX5 RFX5 --- 1.45 --- --- --- --- --- ---
RGN RGN --- 2.5 --- --- --- --- --- ---
RGS2 RGS2 --- 3.34 --- --- --- --- --- 1.92
RINL FLJ45909 --- 1.8 --- --- --- --- --- ---
RIPK2 RIPK2 1.48 1.52 --- --- --- --- --- ---
RN7SK --- --- 2.06 1.53 --- --- --- --- ---
RND1 RND1 --- 1.43 --- --- --- --- --- ---
RNF114 ZNF313 --- 1.43 --- --- --- --- --- ---
RNF144 RNF144 --- 1.45 --- --- --- --- --- ---
RPL22 RPL22 --- -1.57 --- --- --- --- --- ---
RPL23 RPL23 --- 1.64 --- --- --- --- --- ---
RPL7A RPL7A --- 1.71 --- --- --- --- --- ---
RPLP0 RPLP0 --- -1.42 --- --- --- --- --- ---
RPP40 RPP40 --- -1.41 --- --- --- --- --- ---
RPS23 RPS23 --- -1.6 --- --- --- --- --- ---
RPS28 RPS28 --- 1.53 --- --- --- --- --- ---
RPS6KA5 RPS6KA5 --- 1.49 --- --- --- --- --- -1.45
RSAD2 RSAD2 1.68 2.43 1.80 --- --- --- --- ---
RTP4 RTP4 --- 1.91 1.93 --- --- --- --- ---
S100A16 S100A16 --- -1.44 --- --- --- --- --- -2.20
S100A4 S100A4 --- -1.5 --- --- --- --- --- ---
S100A7 S100A7 1.52 1.43 --- --- --- --- --- ---
SAP30L SAP30L --- 1.74 --- --- --- --- --- ---
SAR1A SAR1A --- 1.81 --- --- --- --- --- ---
SASH1 SASH1 --- 1.47 --- --- --- --- --- ---
SAT1 SAT1 --- 1.62 --- --- --- --- 1.84 1.50
SCAP SCAP --- 1.73 --- --- --- --- --- ---
SCARB1 SCARB1 --- -1.48 --- --- 1.40 --- --- 1.71
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Ilm GENE ENTREZ 
GENE

fold 
GATA3

fold 
FOXA1

fold 
SOX9

Fold SKBR3 
8h RA+CHX

Fold SKBR3 
8h RA-CHX

Fold MCF7 8h 
RA+CHX

Fold MCF7 8h 
RA-CHX

Fold SKBR3 
24h RA

SCD SCD --- -1.46 --- --- --- --- --- ---
SCIN SCIN --- -1.56 --- --- --- --- --- ---
SCNN1G SCNN1G --- 3.46 --- 2.58 2.06 --- --- 1.44
SDCBP SDCBP --- 1.83 --- --- --- --- --- 1.62
SEC11C SEC11C --- 1.42 --- --- --- --- --- ---
SEMA3F SEMA3F --- -1.52 --- --- 1.60 --- --- ---
SERBP1 SERBP1 --- -1.69 --- --- --- --- --- ---
SERF1B --- --- 1.53 --- --- --- --- --- ---
SERPINA3 SERPINA3 1.59 1.69 2.25 1.47 1.60 2.83 --- 7.66
SERTAD2 SERTAD2 --- 1.73 --- --- --- --- --- ---
SGK SGK 1.78 2.88 2.00 --- --- --- --- ---
SGMS2 SGMS2 --- 1.42 --- --- --- --- --- ---
SLC2A5 SLC2A5 --- 4.86 --- --- --- --- --- ---
SLC31A1 SLC31A1 --- -1.41 --- --- --- --- --- ---
SLC36A1 SLC36A1 --- 1.43 --- --- --- --- --- ---
SLC37A1 SLC37A1 --- 1.46 --- --- --- --- --- ---
SLC38A1 SLC38A1 --- -1.68 --- --- -1.51 --- --- ---
SLITRK5 SLITRK5 --- 1.47 --- --- --- --- --- ---
SLK SLK --- -1.42 --- --- --- --- --- ---
SMC4 SMC4 --- -1.41 --- --- --- --- --- ---
SNCA SNCA --- 1.62 1.50 --- --- --- --- ---
SNRNP35 U1SNRNPBP --- 1.44 --- --- --- --- --- ---
SNX25 SNX25 --- 1.43 --- --- --- --- --- ---
SOD1 SOD1 --- 1.41 --- --- --- --- --- ---
SOD2 SOD2 1.52 1.56 1.68 --- --- --- --- ---
SOX4 SOX4 --- 1.46 --- --- 1.47 --- --- 2.08
SPRY2 SPRY2 --- 1.81 --- --- 1.50 --- --- ---
SPTLC2 SPTLC2 --- -1.44 --- --- --- --- --- ---
SQRDL SQRDL --- 1.65 1.46 --- --- --- --- ---
SQSTM1 SQSTM1 --- 1.43 --- --- --- 1.72 --- ---
SRM SRM --- -1.52 --- --- --- --- --- ---
SSH2 SSH2 --- 1.74 --- --- --- --- --- ---
STAT2 STAT2 --- 1.47 1.41 --- 1.45 --- --- 1.63
STRADA LYK5 --- 1.62 --- --- --- --- --- ---
STX10 STX10 --- -1.47 --- --- --- --- --- ---
SYT11 SYT11 --- 1.93 --- --- --- --- --- ---
SYT15 SYT15 --- -1.45 --- --- -1.52 --- --- -1.65
TACSTD2 TACSTD2 --- 1.45 --- --- 1.50 --- --- ---
TARP TARP --- 3.63 --- --- --- --- --- -1.46
TBC1D22B TBC1D22B --- 1.71 --- --- --- --- --- ---
TCEA3 TCEA3 --- 1.45 --- --- --- --- --- ---
TDRD7 TDRD7 --- 1.49 --- --- --- --- --- ---
TEX2 TEX2 --- -1.49 --- --- --- --- --- ---
TFPI TFPI --- 2.11 --- --- --- --- --- ---
TGFB3 TGFB3 --- -1.52 -1.46 --- --- --- --- -1.92
TGIF2 TGIF2 --- 1.62 --- --- --- --- --- ---
TH TH -1.44 -1.66 -1.40 --- 1.58 --- --- 1.55
THADA THADA --- 1.51 --- --- --- --- --- ---
THBS1 THBS1 --- -1.4 --- --- -1.97 --- --- ---
TK1 TK1 --- -1.5 --- --- --- --- --- ---
TKT TKT --- -1.45 --- --- --- --- --- ---
TLE1 TLE1 --- 1.62 --- --- -1.40 --- --- ---
TM2D1 TM2D1 --- 1.47 --- --- --- --- --- ---
TMED1 TMED1 --- 1.53 --- --- --- --- --- ---
TMEM140 TMEM140 --- 2.18 1.76 --- --- --- --- ---
TMEM144 TMEM144 --- 1.57 --- --- --- --- --- ---
TMEM199 C17orf32 --- 1.44 --- --- --- --- --- ---
TMPRSS2 TMPRSS2 --- 1.71 --- 2.41 5.18 2.33 3.66 3.31
TNFAIP3 TNFAIP3 1.64 1.61 1.65 --- --- --- --- ---
TNFSF10 TNFSF10 2.04 1.85 2.74 --- --- --- --- ---
TNFSF13B TNFSF13B 1.61 1.68 1.59 --- --- --- --- ---
TNFSF9 TNFSF9 --- 2.22 --- --- --- --- --- ---
TOMM20 TOMM20 --- -1.44 --- --- --- --- --- ---
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Ilm GENE ENTREZ 
GENE

fold 
GATA3

fold 
FOXA1

fold 
SOX9

Fold SKBR3 
8h RA+CHX

Fold SKBR3 
8h RA-CHX

Fold MCF7 8h 
RA+CHX

Fold MCF7 8h 
RA-CHX

Fold SKBR3 
24h RA

TOP2A TOP2A --- -1.69 -1.49 --- --- --- --- ---
TOP2B TOP2B --- -1.5 --- --- --- --- --- ---
TP53I13 TP53I13 --- 1.51 --- --- --- --- --- ---
TPST1 TPST1 --- 1.56 --- --- --- --- --- ---
TRAFD1 TRAFD1 --- 1.72 --- --- --- --- --- ---
TRIB1 TRIB1 --- 1.52 1.50 --- 1.50 --- 1.51 1.41
TRIL KIAA0644 --- -1.47 --- --- -1.65 --- --- -1.53
TRIM21 TRIM21 --- 1.45 1.49 --- --- --- --- ---
TRIM5 TRIM5 --- 1.52 1.45 --- --- --- --- ---
TRIM56 TRIM56 --- 1.55 --- --- --- --- --- ---
TRMT12 TRMT12 --- 1.56 --- --- --- --- --- ---
TRPC4AP TRPC4AP --- 1.82 --- --- --- --- --- ---
TRPM4 TRPM4 --- 1.44 --- --- --- --- --- 1.46
TSEN54 TSEN54 --- -1.42 --- --- --- --- --- ---
TSPAN5 TSPAN5 --- -1.46 --- -1.56 -1.41 --- --- ---
TTC25 TTC25 --- 1.42 --- --- --- --- --- ---
TTC32 TTC32 --- 1.54 --- --- --- --- --- ---
TTC5 TTC5 --- 2.31 --- --- --- --- --- ---
TUBB2A TUBB2A --- 1.41 --- --- -1.47 --- --- ---
TXNDC12 TXNDC12 --- -1.53 --- --- --- --- --- ---
TXNIP TXNIP --- 1.78 --- --- --- --- --- 1.50
UAP1 UAP1 --- 1.79 --- --- --- --- --- ---
UAP1L1 UAP1L1 --- -1.48 --- --- -2.09 --- --- -1.68
UBD UBD 1.54 3.14 3.01 3.81 1.93 1.84 --- 3.08
UBQLNL UBQLNL --- 2.02 --- --- --- --- --- ---
UCP2 UCP2 --- -1.4 --- --- --- --- --- ---
UGDH UGDH --- 1.53 --- --- --- --- --- ---
UHRF1 UHRF1 --- -1.53 -1.47 --- --- --- --- ---
UPP1 UPP1 --- 1.52 --- --- --- --- --- ---
UTRN UTRN --- 1.56 --- --- -1.43 --- --- ---
VNN3 VNN3 --- 1.47 --- --- --- --- --- ---
VPS37D VPS37D --- 1.54 --- --- --- --- --- ---
WDR34 WDR34 --- -1.63 -1.42 --- --- --- --- ---
WDR64 WDR64 --- 1.6 --- --- --- --- --- ---
WDR67 WDR67 --- 1.66 --- --- --- --- --- ---
WNT7B WNT7B --- -1.44 --- --- --- --- --- ---
XPNPEP3 XPNPEP3 --- 1.44 --- --- --- --- --- ---
ZC3HC1 ZC3HC1 --- 1.4 --- --- --- --- --- ---
ZCCHC11 ZCCHC11 --- 2.3 --- --- --- --- --- ---
ZFYVE1 ZFYVE1 --- 1.46 --- --- --- --- --- ---
ZMIZ1 ZMIZ1 --- -1.49 --- 1.80 1.89 --- --- ---
ZNF148 ZNF148 --- -1.42 --- --- --- --- --- ---
ZNF428 ZNF428 --- 1.47 --- --- --- --- --- ---
ZSWIM5 --- --- 1.7 --- --- --- --- --- ---
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RUNNING TITLE: 

Synergy of RA and Herceptin in HER2/RARA-amplified breast cancer 

ABSTRACT 

Success of retinoid treatments for breast malignancies has so far been limited. This is 

likely due to the high level of heterogeneity of the disease and the lack of good markers to 

predict response to retinoids. In breast cancer cell lines, antiproliferative response to 

retinoic acid (RA) is correlated with the expression of the estrogen receptor, ER!, and 

inversely correlated with the overexpression of the human epidermal growth factor receptor 

2 (HER2). Herceptin™ (trastuzumab), a humanized monoclonal antibody that inhibits the 

tumorigenic effects of HER2, is currently used for treatment of HER2 positive breast 

cancer. Despite a clear positive impact of adjuvant treatment with Herceptin™ on 

prognosis, a majority of patients that originally respond will develop resistance within a 

year. Association of Herceptin™ with other cancer therapeutic drugs may alleviate 

development of resistance. Here we show that the ER-negative and HER2-amplified 

SK-BR-3 cells  carry a co-amplification of the HER2 and RARA genes and that RA and 

Herceptin™ synergize to suppress proliferation and viability of these cells, but not of 

HER2-amplified/RARA-unamplified cells. Thus, lower doses of both drugs suffice to 

obtain similar anti-tumor activity. Herceptin enhances transcriptional regulation by RA, 

leading to synergistic regulation of cell cycle regulated genes. At the same time we also 

observed that RA regulates several genes implicated in resistance to Herceptin, suggesting 

that RA could be beneficial for preventing the development of resistance. Since the co-
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amplification of RARA with HER2 also takes place in human breast cancer samples, we 

propose that this subgroup of HER2 positive tumors could benefit from co-treatment with 

RA and Herceptin™. 

KEYWORDS:  

Retinoic acid, Herceptin, breast cancer, gene amplification, microarray.  
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INTRODUCTION 

Natural retinoids include vitamin A or retinol and its derivatives retinal and retinoic 

acid (RA). RA functions through binding to retinoic acid receptors (RARs) belonging to the 

nuclear receptor superfamily of ligand-dependent transcription factors (1; 2). The 

regulation of RA target genes is mediated by heterodimers between RARs and members of 

another family of nuclear receptors, retinoid X receptors (RXRs) (3). Three isotypes, !, " 

and #, exist for both RARs and RXRs and several N-terminal variants are expressed for 

each gene (3). Retinoic acid signaling plays important roles in the regulation of cell growth 

and differentiation and as such is essential for embryonic development and normal tissue 

homeostasis (4; 5) . In addition, retinoids have been shown to inhibit growth and survival in 

various tumor models (6). RA can efficiently inhibit the growth of breast cancer cells in 

vitro as well as in animal models, a process involves cell cycle inhibition and apoptosis (7-

10). Sensitivity of breast cancer cell lines to the antiproliferative effects of RA largely 

correlates with expression of the estrogen receptor ER!. Estrogen-mediated activation of 

ER! was shown to induce the expression of RAR!, the RAR isotype that appears to be 

mainly responsible for RA signaling in mammary carcinoma cells (11; 12). However, ER! 

negative cell lines were also shown to respond to the effects of RA treatment (13; 14). 

HER2 (ERBB-2, neu), a member of the epidermal growth factor (EGF) receptor 

family, is overexpressed in 25-30% of breast cancers. This overexpression leads to the 

constitutive activation of the PI3K/Akt signaling pathway, resulting in growth stimulation 

and survival advantage for such HER2-overexpressing tumors. HER2 overexpression also 
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correlates with prognosis in breast tumors. In the vast majority of cases, the overexpression 

is due to the amplification of the HER2-gene located on the long arm of chromosome 17 

(17q12) (15; 16). A small amplicon was characterized of 280-750 kb and containing up to 

little over 20 genes (17; 18) ; in addition,  a longer amplicon can contain up to 40 genes 

(19) and extend as far as the TOP2A gene on 17q21 (20). Variability in co-amplified genes 

has suggested the existence of biologically diverse subgroups of HER2+ tumors (17; 20). 

Indeed, overexpression of TOP2A resulting from its co-amplification was correlated with 

tumor response to anthracycline-based chemotherapy (21-23). The RARA gene, encoding 

the RAR! protein, is located close to the TOP2A gene on the side proximal to the HER2 

locus on chromosome 17q21; its amplification was  confirmed in some cases of HER2 

amplified breast tumors (20) and is likely to be occuring with similar frequencies as that of 

the TOP2A gene. 

HER2 has become an important target in the treatment of breast cancer because of its 

causative role in breast tumorigenesis and its frequent and strong overexpression. 

Following demontration that antibodies against the HER2 protein could inhibit tumor cell 

proliferation in vitro (24), the humanized monoclonal antibody Herceptin™ (trastuzumab), 

targeting the extracellular domain of HER2, has been used as a single agent or in the 

adjuvant setting in combination with chemotherapy. The mechanisms of action of 

Herceptin appear to be multiple, involving down regulation of HER2 (25), increased 

p27Kip1 levels (26), decreased Akt phosphorylation and activity (27), inhibition of 

angiogenesis through down regulation of VEGF (28) and activation of antibody dependent 

cellular cytotoxicity (29-31). Primary resistance to Herceptin™ mono-therapy varies 
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between 66% and 88% of cases and response rates can be significantly improved by 

combining the treatment with chemotherapeutic drugs. However, virtually all patients 

showing initial response will develop resistance within the first year of treatment (32). 

Combination therapies associating retinoids and ERBB- targeting treatments were 

previously suggested based on the impact of HER2 signaling on RAR! expression (13). 

Here we demonstrate that retinoic acid, as well as the RAR! selective ligand Am580, work 

in a synergistic manner with Herceptin™ in SK-BR-3 breast cancer cells, which carry a co-

amplification of RARA with the HER2 gene. This synergy could not be observed in BT-

474 cells, which are HER2 amplified and express RAR!, but do not carry the co-

amplification of the RARA gene. Herceptin™ enhanced the transcriptional response to RA 

in SK-BR-3 cells. We propose a role for FOXO family transcription factors in mediating 

the observed synergy. Finally, we show that transcriptional targets of Herceptin™-RA co-

treatment can accurately predict overall and distant metastasis free survival in HER2 

positive tumor samples. We propose that the subset of HER2 positive breast tumors 

carrying an RARA co-amplification could benefit from combined treatment regimes with 

Herceptin™ and RAR!-selective retinoids. 
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MATERIALS AND METHODS 

Cell culture 

SkBr-3, MCF-7 and BT-474 cells were maintained in Dulbecco’s Modified Eagle 

Medium (DMEM; Wisent, St-Bruno, QC, Canada) supplemented with 10% fetal bovine 

serum (FBS; Sigma-Aldrich, Oakville, ON, Canada) at 37°C in humidified air containing 

5% CO2. MDA-MB-361 cells were cultured in L15 medium (Wisent) supplemented with 

20% FBS. All-trans-retinoic acid (RA; Sigma) stocks and working solutions were prepared 

in DMSO. Herceptin™ was obtained through the pharmacy of the Maisonneuve-Rosemont 

Hospital (Montreal, QC, Canada) and stocks were prepared in 1.1% benzyl alcohol. All 

treatments for proliferation assays were performed in DMEM containing 5% FBS. For gene 

regulation assays, cells were maintained and treated in DMEM with 10% FBS. 

Proliferation and MTS essays 

Cells were seeded in 6-well plates at a density of 30,000 cells per well and treated 

every 2-3 days with vehicle (0), retinoic acid (1!M; RA) or Herceptin™ (10!g/ml; Herc.) 

or Herceptin+RA in DMEM containing 5% FBS. After 9 days, cells were collected and 

protein concentrations were measured as described previously (33). For MTS assays, cells 

were seeded at a density of 6,000 cells per well in 96-well plates. The next day, medium 

was changes for DMEM with 5% FBS containing retinoids and/or Herceptin at indicated 

concentrations. Medium and treatments were changed 2 days later and another 3 days later 

cell viability was measured using CellTiter 96® AQueous Non-Radioactive Cell 
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Proliferation Assay (Promega, Madison, WI, USA). Briefly, medium was replaced by 

medium containing 5% FBS and 5% MTS reagent and cells were incubated at 37°C for 2-3 

hours. O.D. values were then read at 490nm on a SpectraMax plate reader with SoftMax 

Pro software and cell viability was expressed as relative values (treatment/vehicle).  

Analysis of synergy 

The cytotoxic effect obtained with retinoic acid (RA) and Herceptin combinations was 

analyzed according to the Chou and Talalay method (34). Combination index (CI) values 

above 1.1 indicate antagonistic, 0.9 to 1.1 additive, 0.7 to 0.9 moderately synergistic, 0.3 to 

0.7 synergistic, and < 0.3 strongly synergistic effects. The Chou and Talalay method was 

implemented in the R language (source code available on request). 

Microarray analysis 

For microarray of RA and Herceptin regulated genes, SK-BR-3 cells were plated at 1M 

cells per 10-mm dish. Cells were allowed to adhere to the dishes overnight and were then 

treated with vehicle, 30 nM RA, 1 !g/ml Herceptin or a combination of the two. 24 hours 

later, the cells were harvested in 1 ml of Trizol (Invitrogen, Burlington, ON) and total RNA 

was extracted according to the manufacturers recommendations. Total RNA was then 

purified using the RNeasy MinElute Cleanup Kit (QIAgen, Mississauga, ON). For analysis 

of FOXO3A target genes, SK-BR-3 cells were electroporated (5 million cells, 240 V, 950 

!F) with 6 !g of pCMV-XL4-FOXO3 (OriGene, Rockville, MD, USA) or empty vector 

and RNA was extracted 48 hours after transfection as mentioned above. cRNA synthesis 

from total RNA, labeling and hybridization to Illumina WG-6 v3.0 BeadChips were 
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performed at the Genome Quebec and McGill University Innovation Center (Montreal, 

QC). 

Un-normalized summary probe profiles were output from BeadStudio and analyzed 

using the lumi (35) and limma (36) packages of the Bioconductor open-source software 

project (http://www.bioconductor.org). The raw intensities were transformed using the vst 

method and normalized with the robust spline normalization scheme. 

Genes deemed significantly regulated were those with !1.4-fold change, average log2-

expression levels greater than 5 across all samples and a BH-corrected p-value (for a 

moderated t-statistics) smaller than 0.01. 

Gene Set Enrichment Analysis 

Gene Set Enrichment Analysis (GSEA) was performed using the GSEA java 

application version 2.0.5 developed by Subramanian A. et al. (37). For this analysis we 

compared the two phenotypes being compared (e.g. SKBR3_24h_HERCEPTIN versus 

SKBR3_24h_DMSO) and looked for enrichment of the C2 curated catalogue of functional 

genes sets. We also curated from the literature gene sets representing ERBB2/growth factor 

activation (38), FOXO3 downstream targets genes (this study) RAS, MYC SRC, E2F3 and 

"-Catenin (39) oncogenic pathway dysregulation. 1000 permutations were used to test 

significance of enrichment. 

FISH 

Exponentially growing cells were sent to the cytogenetics platform of the 

Maisonneuve-Rosemont Hospital for FISH analysis. Used probes were: RARA dual color 
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(Abbott #30-191 011) and TOP2A/ HER2 /CEP17 (Abbott #30 191 095). Results were 

analyzed by visual inspection of at least 12 mitoses and 60 interphase nuclei per probe per 

cell line. 

Screening for transcription factor binding sites 

Human Genomic sequences +/- 10 Kbp around the transcription start sites (TSS) were 

extracted for all annotated gene in the RefSeq track (40) from the UCSC Genome Browser 

Database (hg17, May 2004) (41). Matrices from TRANSFAC 2010.2 (42) were used to 

screen these sequences for transcription factor binding sites using a base score cut-off of 

65% and 5% increments as described previously (43). Z-scores and P-values from a Fisher 

exact test were used to evaluate the significance of the observed enrichment in promoters of 

different sets of regulated genes versus those of all annotated genes.  The Z-scores and P-

values were calculated with programs adapted from oPOSSUM perl application 

programming interface (API) using the cut-off (Z-scores > 10, P-value < 0.01) 

recommended by the authors (44). 

Boxplots 

Microarray data from Li et al. (45) were MAS5.0 normalized to a scale of 500. 

Expression levels are presented as log2 mean-centered ratio. One way anova test was used 

to test for significant (p ! 0.05) differences of mean expression between classes (HER2+/- 

TOP2A+/-). Tukey HSD and Scheffe a posteriori tests were used to identified between 

which class difference of expression was significant (p  !  0.05). 
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Hierarchical clustering 

Expression of mRNA transcripts showing significant up- or down-regulation 

(|FC| ! 1.4 and adj. p.value " 0.01) in at least one of the three SK-BR-3 treatments (relative 

to vehicle) was examined in HER2+ primary tumors (46). Hierarchical clustering 

(Euclidean distance, Ward linkage) of 55 HER2+ tumors according to the expression of 

regulated transcripts was performed and tumors were partitioned in the two major classes 

identified. For each class of target transcripts (RA, Herceptin-RA up- or down-regulated 

transcripts), only the 25 transcripts exhibiting the highest differential expression between 

the two classes of tumors were used for the heatmap representation. Kaplan-Meier analysis 

was used to assess the differential distant-metastasis and overall survival rates in the two 

classes of tumors. 
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RESULTS 

RARA and RALDH3 mRNA levels correlate with HER2-amplicon size in HER2-

positive tumor samples. 

The large HER2 amplicon encompasses several genes that are of potential interest for 

therapeutic goals, such as TOP2A, GRB7, STARD3 and RARA (16). We investigated 

whether RARA mRNA levels correlate with amplicon size in HER2+ tumors. While HER2 

mRNA levels were as expected high in tumors with both the small amplicon (HER2-

amplification only) and the large amplicon (HER2- and TOP2A-amplification), TOP2A 

levels were significantly higher in HER2-positive tumors with the large amplicon than in 

those with the small amplicon or in HER2-negative tumors (p = 1.43 x 10-5, Figure 1A-B). 

Comparing Figure 1B with Figure 1C and E, it is clear that RARA mRNA levels are a 

better indicator for amplicon size (p = 1.43 x 10-5 vs. p = 3.97 x 10-8 or p = 3.57 x 10-9, 

respectively). Our group recently observed that suppression of the RA synthesizing enzyme 

RALDH3 appears to be a prerequisite for proliferation of RAR!-expressing luminal cells, 

due to the antiproliferative effects of endogenous RA production (Parisotto et al., 

manuscript in preparation). We therefore assessed whether the higher RARA mRNA levels 

found in HER2+ tumors with large amplicons, are associated with decreased  RALDH3 

mRNA levels. Indeed, tumors with the large amplicon have lower RALDH3 levels than 

HER2-negative or small amplicon tumors (Figure 1D-F). Therefore loss of RA production 

appears to be required for tumor progression of RAR!-overexpressing cells, which 

suggests that these tumors could be sensitive to treatment with exogenous retinoids. 



  

 

 

148 

Differential response of HER2-amplified cell lines to the anti-proliferative effects of 

retinoic acid: role of RARA co-amplification with HER2. 

Although HER2-positivity of breast tumors and cell lines is generally considered to be 

negatively correlated with their response to retinoic acid, we and others have observed that 

the proliferation of the ER!-negative, HER2-positive cell line SK-BR-3 is strongly 

inhibited by RA. Observations of others (17; 20) show that the large HER2-amplicon can 

extend as far as the RARA and TOP2A genes. We previously showed that these cells have 

levels of RARA mRNA and protein that are much higher than those of ER!-negative 

MDA-MB-231 cells and compare favorably even with ER!-positive MCF7 cells. To test 

whether the high RAR! levels in SK-BR-3 cells result from gene amplification,  we 

performed FISH analysis using probes for HER2, TOP2A and RARA on SK-BR-3 cells 

and several other HER2-overexpressing cell lines. We also included MCF-7 cells as a 

control  for non-amplified cells. Amplification of HER2 was detected in SK-BR-3, MDA-

MB-361 and BT-474 cells as expected (Figure 2A). TOP2A is amplified in  BT-474 cells 

only. In contrast, RARA was found to be amplified in SK-BR-3, in concordance with 

previously published results (17). BT-474 cells, although expressing RAR! at the protein 

level, do not carry an amplification of the gene. The MDA-MB-361 cell line, which 

expresses low levels of the RAR! protein, has on the other hand lost one copy of the gene. 

Figure 2B summarizes the FISH results. Corresponding protein levels of HER2 and RAR! 

were analyzed by western blot using specific antibodies (Figure 2C). In concordance with 

the FISH results, HER2 protein levels were undetectable in MCF-7 cells, moderate in 



  

 

 

149 

MDA-MB-361 cells and high in BT-474 and SK-BR-3 cells. RAR! protein could be 

detected in all cell lines except MDA-MB-361. Levels were moderate in BT-474 cells, but 

high in RARA amplified SK-BR-3 and ER!-positive MCF-7 cells. 

To test whether amplification of the RARA gene leads to a good response of cell lines 

to RA, we performed growth essays with these cell lines, testing their response to the 

HER2-targeting antibody Herceptin and RA over 9 days. Response to RA correlated with 

RARA amplification (Figure 2D), as RARA-amplified SK-BR-3 were the only tested 

HER2-amplified cells that responds to RA, with even greater sensitivity than the ER!+ 

MCF-7 cells. As expected, all HER2-positive cell lines respond to some extend to 

Herceptin. Thus, we propose that HER2-RARA co-amplified tumors represent a class of 

breast tumors that could benefit from treatment with retinoids, potentially in combination 

with Herceptin. 

Herceptin™ and RA synergize in SK-BR-3 cells to reduce cell growth and viability 

Since SK-BR-3 cells carry a HER2/RARA co-amplification and are sensitive to the 

antiproliferative effects of RA, we hypothesized that treatment of these cells with a 

combination of Herceptin and RA could have synergistic effects. We used an MTS assay to 

determine cell viability after a 5-day treatment with Herceptin and/or RA. When combining 

the two drugs together at either a 1:30 or a 1:100 ratio, the effect of the combined 

treatments exceeded the combined effects of the two individual treatments at the same 

concentration, suggesting a synergy (Figure 3A). Using the Chou and Talalay method (34), 

combination index values were determined to be lower than 1 (Figure 3B) for affected 
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fractions of !20%, indicating a synergy between RA and Herceptin at both ratios. A similar 

synergy was not observed in BT474 cells, which are not RARA-amplified (Suppl. Figure 

1). To test whether the observed synergy is due to the specific activation of RAR!, we also 

performed the MTS assays using the RAR! selective ligand Am580 and the RAR"/# 

selective ligand TTNN (Suppl. Figure 2). A synergy was observed with the Am580 but not 

with TTNN, indicating the importance of RAR! in the synergy between RA and Herceptin. 

Herceptin™ enhances transcriptional regulation by RA 

Since the anti-proliferative effects of RA are mediated by some of its target genes 

(Rozendaal et al., in prepararation), we hypothesized that part of the observed synergy in 

antiproliferative effects could be due to an enhancement of RA-mediated transcriptional 

regulation by Herceptin. We performed gene expression microarray analysis of SK-BR-3 

cells treated for 24 hours with either 30 nM RA, 1"g/ml Herceptin or a combination of the 

two. Using principal components analysis of all 48803 probes, a pair of coordinates was 

determined for each mRNA profile to construct a two-dimensional view that reflects the 

relative global similarity or dissimilarity of the profiles to each other. On this two-

dimensional view, individual profiles within each experimental group formed distinct 

clusters from the other groups (Figure 4A), which is a good indication both of 

reproducibility for replicate profiles within each treatment and widespread differences in 

gene expression between treatments. Principal component analysis also indicates that the 

effect of the combined treatment is not solely due to either one of the individual treatments 

(Herceptin+RA samples fall in a separate quadrant, Figure 4A).  
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Treatment with Herceptin™ alone does not lead to a big change in gene expression 

(Figure 4B). Only 82 genes were found to be regulated in a significant way (54 up-

regulated and 28 down-regulated genes). In comparison, RA treatment resulted in  621 

regulated genes (396 up-regulated and 225 down-regulated genes). Combining the two 

treatments greatly increases the number of regulated genes in a manner that was more than 

additive, with a total of 1569 genes regulated (793 up-regulated and  776 down-regulated 

genes). Strikingly, Herceptin not only increased the number of regulated genes, but also the 

overall amplitude of the transcriptional regulation (see heatmap in Figure 4C).  

Herceptin and RA synergistically regulate genes implicated in cell cycle and cell death 

Genes regulated by RA, Herceptin, or the RA and Hercepting combination were 

analyzed using Ingenuity Pathway Analysis (IPA). As expected, all three groups of genes 

were strongly enriched in genes regulating cell cycle and cell death related processes 

(Figure 5A), and this enrichment was much stronger in the co-treatment than in either one 

of the individual treatments. Next, we performed Q-PCR analysis to validate the regulation 

of selected genes, as well as the apparent synergistic regulation of some of these genes in a 

time-course experiment (Figure 5B). The cell cycle regulators E2F2, E2F7, MCM6 and 

MCM10 are clearly downregulated in a synergistic manner by RA and Herceptin. This 

synergy is observed at 8 hours of treatment, whereas cell cycle arrest cannot be observed 

before 24 to 48 hours (data not shown). PIK3R2, the p85 regulatory subunit of the 

phosphoinositide-3-kinase, important in the HER2 downstream signaling cascade, is also 

downregulated in a synergistic manner. On the other hand, FOXO3A, a well-know inhibitor 
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of cell cycle progression and regulator of apoptosis, is upregulated in a synergistic manner 

by the two treatments at later timepoints. 

A possible role for FOXO transcription factors in mediating the synergy between RA 

and Herceptin 

In our search for potential mediators of the synergy between Herceptin and RA, we 

became particularly interested in the transcription factor FOXO3A. As mentioned above, 

this gene is a potent regulator of both cell cycle and apoptosis and regulated by both RA 

and Herceptin. Recently, the FOXO member FOXO1 was shown to be important in the 

response of SK-BR-3 cells to Herceptin (47). Also, FOXO3A has already been implicated 

in the response of breast cancer cells to the EGFR-inhibitor Iressa™ (48). Here we find that 

FOXO3A is synergistically upregulated by Herceptin and RA (Figure 5B). Since FOXO3A 

is a transcription factor, it could play a role in amplifying the transcriptional synergy of 

Herceptin and RA. To determine whether RA-Herceptin target genes are potential targets of 

FOXO3A, we performed a search for FOXO transcription factor binding sites in the 

promoter regions of regulated genes using the TRANSFAC database. FOXO binding sites 

(motif presented in Figure 6A) were enriched at ±2.5 kb and ±5 kb around the 

transcriptional start sites of RA-Herceptin target genes (Figure 6B and C). To more directly 

identify FOXO3A target genes in SK-BR-3 cells, we transiently overexpressed FOXO3A 

and performed a gene expression microarray analysis. Next, we used gene set enrichment 

analysis (GSEA) to investigate the enrichment of these targets with in the RA-Herceptin 

target genes. The enrichment plot in Figure 6D shows a strong enrichment of FOXO3A 
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targets in RA-Herceptin regulated genes, substantiating the importance of FOXO3A as a 

mediator of RA-Herceptin synergy in breast cancer cells. 

 

Genes regulated by Herceptin and RA predict overall- and distant metastasis-free 

survival.  

To investigate whether Herceptin and RA co-treatment may have beneficial effects not 

only on HER2-RARA co-amplified SK-BR-3 cells, but also on tumors carrying a similar 

co-ammplification, we investigated whether genes regulated by the co-treatment have a 

prognostic value in HER2+ tumors. We used the largest publicly available dataset of 

HER2-positive tumors from Staaf et al. (46), including 58 HER2+ tumors. Tumors were 

collected form Lund University and the Reykjavik University but were all processed 

together. Adjuvant treatment of these tumors consisted of endorcine therapy, chemotherapy 

or a combination of those. Information on neo-adjuvant treatment is not available, however 

communication with one of the authors confirmed that none of the patients had received 

Herceptin treatment. Tumors were separated into two different classes based on their 

expression of RA-Herceptin regulated genes (Figure 7A). These two classes differed in a 

statistically significant manner in distant metastasis-free and overall survival, as illustrated 

by Kaplan-Meier curves (Figure 7B and C). Higher expression levels of RA-Herceptin 

upregulated genes and lower expression of downregulated genes correlated with fewer 

metastases and higher overall survival. Reproducibility of these results was confirmed 
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using smaller datasets (data not shown). Thus, RA-Herceptin target genes predict outcome 

in HER2+ tumors and some of them may directly contribute to limiting tumor progression.  

 !
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DISCUSSION 

Anti-proliferative effects of retinoic acid in solid tumors such as breast cancer have 

been studied for well over a decade, but despite promising results in cell line models, 

responses in tumors have been less successful. This is possibly due to the fact that only 

subsets of mammary tumors are responsive to retinoids. Here we have investigated whether 

gene amplification of the RARA gene in breast tumors defines a class of breast tumors that 

might benefit from treatments with retinoids.  

In most cases HER2 overexpression in breast cancer results from gene amplification, 

which has been shown to include several other genes, one of which can be the RARA gene, 

encoding the retinoic acid receptor alpha (19). It was shown that the activation of RAR! 

alone is sufficient for mediating the antiproliferative effects of RA in the SK-BR-3 and 

T47-D breast cancer cells (7). Regulation of RAR! by estrogens also appears to explain the 

greater sensitivity of ER! positive cell lines to the effects of RA. Thus, amplification of 

RARA, leading to higher expression of RAR!, may characterize a class of mammary 

tumors that could benefit from treatment with retinoids. We therefore first investigated 

whether large amplicon size in HER2 amplified tumors correlates with higher RAR! 

mRNA levels. Figure 1C and E show that this is indeed the case. We also observed a 

negative correlation between large amplicon size and RALDH3 mRNA levels (Figure 1D 

and F), suggesting that absence of RA production in these cells allows for proliferation 

even in the presence of high levels of RAR!. Those observations are similar to our recent 

observations that RAR!-expressing luminal breast cells require suppression of RALDH3 
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expression for proliferation (Parisotto et al, in preparation). The co-amplification of the 

RARA and HER2 genes has been described in tumor samples , possibly defining a subclass 

of RA-sensitive breast tumors. 

It has been suggested by Arriola et al. that the SK-BR-3 cell lines carries a co-

amplification of HER2 and RARA (17). The high RARA (Rozendaal et al., in preparation; 

present study Figure 2C)  and low RALDH3 (Parisotto et al., in preparation) mRNA and 

protein levels in these cells are consistent with the high RARA and low RALDH3 mRNA 

levels in tumors with the large amplicon (Figure 1). We used FISH to confirm amplification 

of the RARA gene (Figure 2A-B) and then investigated the potential of targeting both 

HER2 and RARA to inhibit tumor cell growth. RA and Herceptin, at a 1:30 or 1:100 ratio 

(M:g/ml), were strongly synergistic in reducing cell viability (Figure 3) and proliferation 

(Suppl. Figure 3) in SK-BR-3 cells, but not in BT-474 cells (Suppl. Figure 1). The latter 

express RAR! (Figure 2B), but do not carry a co-amplification of RARA and HER2 

(Figure 2A-B), suggesting the large amplicon is a requirement for the synergy.  

Recently, Koay and colleagues observed a synergy between Herceptin/RA and 

Herceptin/RA/Tamoxifen in reducing proliferation in BT474 cells but not in SK-BR-3 cells 

(49). This might in part be explained by differences in culture conditions. In the present 

study, all proliferation assay were performed in 5% FBS, whereas in their assays Koay et 

al. used 10 or 15% FBS, respectively. This means that different concentrations of growth 

factors were available, especially for SK-BR-3 cells, a factor that is likely to impact the 

response to growth inhibitory signals. It will be important to further investigate impact of 

the local availability of growth factors on the synergy. It is possible that elevated levels of 
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for example EGF or other ligands for EGFR or IGFR family members could bypass 

inhibitory effects of Herceptin. In that respect, it could also be of interest to investigate the 

possible synergy between RA and other HER2 inhibitors, particularly lapatinib, which 

targets both HER2 and EGFR (50).  

The work of several groups, including ours, has described the importance of 

transcriptionally active RARs, particularly RAR!, for the antiproliferative response of 

breast cancer cells to RA ((7; 11; 51-54); Rozendaal et al. in preparation). We report here 

that Herceptin enhances the transcriptional regulation by RA (Figure 4B, C). This might in 

part be because of reduced activity of Akt, a key downstream molecule in HER2 signaling. 

Treatment of SK-BR-3 and BT-474 cells, but not of Herceptin-resistant cell lines, resulted 

in lower levels of active Akt (27). Akt phosphorylation of RAR! was shown to be 

inactivating it in non-small cell lung carcinoma (NSCLC) cells, thus the inhibition of Akt 

signaling by Herceptin could lead to more active RAR! in the cells (55). Impact of 

Herceptin on transcriptional regulation by RA has previously been suggested in MDA-MB-

453 cells, where pretreatment with Herceptin increased binding of RAR to an RARE in 

vitro (56).  

Forkhead O (FOXO) transcription factors are important mediators of cell cycle arrest, 

DNA repair and apoptosis. They are major targets of Akt and SGK kinases, which 

inactivate them. Loss of FOXO function can lead to uncontrolled proliferation (reviewed in 

(57)). FOXO3A has been identified as a critical signaling molecule in the response of 

breast cancer cells to the EGFR inhibitor Iressa (48). Similarly, FOXO1A was shown to be 

a target for Herceptin treatment in SK-BR-3 cells (47). Constitutively active FOXO4 was 
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shown to reduce HER2-mediated tumorigenicity through modulation of Akt activity and 

p27Kip1 stabilization (57). We have looked at the possible implication of FOXO3A in the 

synergy between RA and Herceptin, because this gene is regulated by both RA and 

Herceptin and its regulation is enhanced by the cotreatment (Figure 5B). Both FOXO 

binding sites and FOXO3A targets are enriched in Herceptin-RA target genes (Figure 6B-

D). Target genes that are common between Herceptin-RA and FOXO3A play roles in 

tumorigenesis and proliferation (Suppl. Table I). Together, these observations strongly 

suggest a role for FOXO3A in mediating at least part of the synergy between RA and 

Herceptin. Other FOXOs may share a subset of FOXO3A target genes, due to similarity in 

the DNA binding domain (58). FOXO1 is regulated 1.46 fold by RA in our arrays and this 

regulation is comparable (1.51 fold) in the Herceptin-RA condition. Herceptin alone does 

not significantly increase FOXO1 expression (Suppl. Table II). FOXO4 regulation is not 

significant for either one of the individual treatments, but this gene is increased by 1.42 fold 

after cotreatment. Thus, other FOXOs might also be implicated in the synergy. More 

studies will be needed to better understand the individual roles of FOXO factors in the 

observed synergy. 

A major problem of Herceptin-based treatments is the intrinsic or acquired resistance 

of tumors that eventually occurs in virtually all patients. Several molecular mechanisms for 

this resistance have been proposed. Interestingly, RA and RA-Herceptin treatments regulate 

some of the genes that have been implicated in this resistance, including multiple 

components of the IGF signaling pathway, which can be hyperactivated in Herceptin 

resistance. The best example is IGFBP3, an inhibitor of IGF1 mediated activation of 
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IGF1R. Addition of IGFBP3 to the culture medium of IGF1R overexpressing SK-BR-3 

cells can overcome Herceptin resistance (59). Thus, it is possible that upregulation of this 

gene by RA will counteract Herceptin resistance in breast cancer cells due to increased 

IGF1R signaling. On the other hand, IGFL1, belonging to the IGF family (60), is down 

regulated, which could diminish IGF1R signaling. Although it has not previously been 

implicated in Herceptin resistance, another gene of interest in this context could be 

IGFBP5. This gene has been shown to be associated with metastasis and aggressive tumor 

phenotype in breast cancer (61; 62) and is downregulated by RA, an effect that is enhanced 

by the co-treatment with Herceptin. In MCF-7 cells, IGFBP5 appears to contribute to the 

survival effects of IGF (63). On the other hand, IGFBP5 was also shown to have 

antiproliferative roles in some cell lines (64). Therefore, its role in breast cancer and 

potentially in the resistance to Herceptin is likely to depend on the cellular context. The 

downstream effect of increased IGF1R signaling leading to Herceptin resistance is 

increased levels of the p27Kip1 ubiquitin ligase SKP2, and the latter is also downregulated 

by RA treatment. Decreasing levels of p27Kip1 due to the overexpression of SKP2 depend 

on PI3K/Akt signaling, which is also affected by RA treatment. The p85 regulatory subunit 

of PI3K is downregulated by RA (PIK3R2; Figure 5B), as well as AKT. On the other hand, 

PIK3IP1, a negative regulator of PI3K (65; 66) is upregulated by RA. Thus, RA is affecting 

multiple facets of pathways implicated in HER2 signaling and Herceptin resistance and 

could be of interest in battling the problem of Herceptin resistance. 

Because of the beneficial effects of RA-Herceptin treatment in HER2/RARA SK-BR-3 

amplified cells, we hypothesized that expression of its target genes could be correlated with 
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outcome in HER2 positive tumors. Indeed, as can be seen in Figure 7A, two clusters of 

HER2 positive tumors can be distinguished according to expression levels of RA-Herceptin 

target genes, and correlated with lymph node status, metastasis and death. This clustering 

accurately predicts tumor outcome based on distance metastasis free survival (Figure 7B) 

and overall survival (Figure 7C). These results suggest that genes targeted by simultaneous 

activation of RA signaling and suppression of HER2 activity correlate with and may 

contribute to better prognosis. In the original paper describing the dataset used to produce 

these results a 158 gene signature was proposed that predicts outcome of HER2+ breast 

cancer (HER2-derived prognostic predictor: HDPP). Comparing our HRA gene set to this 

158 gene HDPP signature shows an overlap of only 15 genes. The Staaf et al. study 

identified 3 clusters, and described cluster 3 as follows: “Tumors in cluster 3 showed better 

OS and DMFS and had, to some extent, smaller size and less LN involvement but were also 

highly proliferative (S phase fraction, CSR activated), high-grade tumors with an active 

PI3K signaling signature." (46). These contradicting observations within the cluster suggest 

a suboptimal separation of the tumors. Using our HRA profile on cluster 3 of the Staaf 

study places 10 tumors into the poor outcome group, 6 out of 8 of those relapsed (2 data not 

available). Out of the 11 tumors that our profile put into the good outcome group only 2 

relapsed. Although it is hard to do statistical analyses on these results due to low patient 

numbers, this suggests that our HRA profile could be used to improve results obtained with 

the HDPP signature. 

Altogether the results presented in this paper suggest that HER2/RARA co-

amplification defines a subclass of breast tumors sensitive to RA induced growth arrest. 
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The synergy observed between Herceptin and RA in a cell lines carrying such a co-

amplification suggests the therapeutic benefit of combining HER2-targeting therapies with 

retinoids to improve response rates and reduce resistance. In vivo models for this subtype of 

HER2-amplified breast tumors will need to be developed to further verify the predicted 

therapeutic benefit of combined treatment with Herceptin and retinoids, in particular 

RAR!-selective retinoids. 

 !
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FIGURE LEGENDS 

Figure 1: Boxplot representation of HER2, TOP2A, RARA and ALDH1A3 expression 

in pretreatment biopsies from 120 patients with ER negative breast cancer treated 

with Epirubicin monotherapy as neoadjuvant chemotherapy (45). (A-B) High HER2 

and TOP2A mRNA levels were observed in HER2+ amplified and TOP2A amplified 

tumors, respectively. (C-F). Low RALDH3 mRNA levels and high RARA mRNA levels 

were observed in the HER2/TOP2A co-amplified tumors. (A-D) HER2 status 

(amplification) and TOP2 status (deletion/amplification) was tested by FISH. TOP2A status 

was recoded as not amplified (ratio < 2) and amplified (ratio ! 2). (E-F) Cutoffs were 

derived from fitting a mixture of two normal distributions to the observed distribution of 

HER2 and TOP2A mRNA levels by maximum likelihood optimization. HER2 positivity 

and TOP2A positivity were defined as an mRNA expression above those specifics cutoffs. 

Figure 2: RARA can be coamplified with the HER2 gene. (A) FISH analysis of four 

breast cancer cell lines, showing SK-BR-3 cells carry an amplification of HER2 (left panel, 

green), as well as TOP2A (left panel, red) and RARA (right panel, red/green). MCF-7 cells, 

known not to have an amplification of the HER2 gene, were used as a control. (B) 

Summary table of performed FISH analysis. -, no amplification; +, amplification detected 

at this locus; --, deletion detected at this locus. CEP17, chromosome 17 centromere marker 

used as a control of ploïdy. (C) Western blot showing HER2 and RAR! protein levels in 

the analyzed cell lines. (D) 9 day growth essay showing the response of cells to 1"M RA, 
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10!g/ml Herceptin or the combination of the two treatments. (C, D) Representative results 

of two individually performed experiments are shown. 

Figure 3: Herceptin and RA synergize to reduce cell growth and viability in SkBr-3 

cells. (A) Cells were grown in the presence of RA and/or Herceptin at indicated 

concentrations. After 5 days medium was replaced by medium containing MTS reagent and 

incubated for 2-3 hours before colorimetric analysis. Bars represent relative viability 

compared to vehicle control. Ratios are given as nM RA for ng/ml Herceptin. (B) 

Combination index plot for the analysis of cooperativity between the RA and Herceptin at 

1:30 and 1:100 ratios. CI < 1 indicates synergy. Fa, affected fraction (34). A representative 

result of 3 separately performed experiments is shown. 

Figure 4: Co-treatment with Herceptin and retinoic acid enhances gene expression 

regulation compared to individual treatments. SkBr-3 cells were treated with RA (30 

nM), Herceptin (1 µg/ml), Herceptin and RA or vehicle for 24h. Cells were then harvested 

and total RNA was extracted for analysis on Illumina WG-6 chips. (A) Principal 

components analysis plot of global mRNA expression profiles of RA, Herceptin and the co-

treatment in SkBr-3 breast cancer cells. Principal components (the first two being shown) 

were extracted using all 48,803 Illumina WG-6 probes. (B) Venn diagram of genes 

showing regulation in each treatment relative to vehicle. (C) Supervised clustering of 

expression values for mRNA transcripts showing significant up- or down-regulation (|FC| " 

1.4 and adj. p.value # 0.01) in at least one of the three SkBr-3 treatments, relative to 
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vehicle. Genes significantly expressed were ordered by their RA fold induction in SkBr-3 

cells. 

Figure 5: Synergy of regulation of cell cycle and cell death processes. (A) Top 4 

enriched Molecular Functions in target genes of 24h RA and/or Herceptin treatment. 

Enrichment studies were performed using Ingenuity Pathway Analysis software. (B) Q-

PCR kinetics of regulation by RA and Herceptin of selected cell cycle related target genes. 

Regulation is strongly enhanced with combined treatment compared to the individual 

treatments. A representative result of 2 separately performed experiments is shown. Error 

bars represent standard deviations on three replicats within the same experiment. 

Figure 6: Regulator of growth arrest and apoptosis FOXO3A as a potential mediator 

of the Herceptin-RA synergy. (A) Position weight matrix used for identification of 

putative FOXO sites in the vicinity of target genes. (B) Enrichment of FOXO sites in a 

window of 2.5 kb from the TSS of upregulated genes. (C) Enrichment of FOXO sites in a 

window of 5 kb from the TSS of upregulated genes. (D) Enrichment of FOXO3A regulated 

genes in Herceptin+RA regulated genes. The top portion of the enrichment plot shows the 

running enrichment score for the FOXO3A-induced genes. The bottom portion of the plot 

shows the value of the ranking metric. 

Figure 7: Herceptin-RA target genes expression in HER2+ human primary breast 

cancers. (A) Shown are the subsets HER2+ of breast cancer samples (46) with the 

strongest coordinate induction of the Herceptin-RA targets genes after accounting for 

multiple hypothesis testing (FDR <0.05). Heatmap colors represent fold change induction 
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in log-space. Clinical characteristics of each tumor sample are presented in boxes below 

each sample. (B-C) Induction of Herceptin-RA upregulated genes in HER2+ breast primary 

tumors predicts reduced probability of distant metastasis (B) and death (C). Kaplan-Meier 

curves are shown for the complete dataset of 55 HER2+ tumors (46). 
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SUPPLEMENTARY DATA 

 

Suppl. Figure 1: Herceptin and RA do not synergize in BT474 cells. MTS essays were 

performed as in Figure 3A. A representative result of three individually performed 

experiments is shown. 

Suppl. Figure 2: Am580, but not TTNN, synergizes with Herceptin. MTS essays with 

Am580 (A) and TTNN (B) and CI calculations were performed as in Figure 3A. A 

representative result of three individually performed experiments is shown. 

Suppl. Figure 3: Herceptin enhances RA mediated growth arrest. SkBr-3 cells were 

treated every 2 days with vehicle or RA and/or Herceptin at indicated concentrations. After 

9 days protein concentrations were analyzed as an indirect measure for cell growth. A 

representative result of three individually performed experiments is shown. 

Suppl. Table I: IPA analysis of genes in common between Herceptin-RA treatment 

and FOXO3A overexpression. 

Suppl. Table II: Regulation of FOXO genes by RA and Herceptin. 
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Category Functions Annotation p-Value Molecules # Molecules

Cancer tumorigenesis 6.24E-05 EXOSC9, FOXO3, IFIT2, NUPR1, PDK4, PIK3IP1, RHOB, 
S100A14, SAT1, TXNIP 10

Cancer cancer 2.41E-04 EXOSC9, FOXO3, IFIT2, PDK4, PIK3IP1, RHOB, S100A14, 
SAT1, TXNIP 9

Cellular Growth and Proliferation proliferation of eukaryotic cells 4.84E-04 FOXO3, NUPR1, PIK3IP1, RHOB, SAT1, TXNIP, YPEL3 7

ROZENDAAL ET AL, SUPPL. TABLE I

Illumina probe ID Gene
Fold p-value Fold p-value Fold p-value

ILMN_1681703 FOXO3 2.22 2.25E-06 1.40 7.31E-03 3.57 1.44E-08
ILMN_1738816 FOXO1 1.46 3.80E-07 1.13 1.15E-02 1.51 8.11E-08
ILMN_1712095 FOXO4 1.12 1.02E-01 1.21 1.33E-02 1.42 2.28E-05

RA HERCEPTIN HERCEPTIN+RA

ROZENDAAL ET AL, SUPPL. TABLE II
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Chapter 4: General discussion 

4.1 ER-dependent and –independent retinoid signaling in 

breast cancer cell lines 

The role for ER in the signaling by RA has been a subject of discussion, but is still not 

entirely clear. In Chapter 2:, we used two luminal breast cancer cell lines, the ER-positive 

MCF-7 cells and the ER-negative SK-BR-3 cells to investigate ER-dependent RA 

signaling. We show that in ER-negative and ER-positive RA-sensitive cells there is a 

significant overlap of RA target genes. Several of these common genes were able to mimic 

RA-induced cell cycle arrest in ER-negative SK-BR-3 cells, indicating that intact ER-

signaling is not required for these responses.  

Specific targets in either cell line could explain cell line specific responses. In addition 

to a cell cycle arrest in G0/G1 phase, RA induces the expression of senescence associated 

!-galactosidase (SA-!-gal) in MCF-7 cells (Figure 8). Increased levels of SA-!-Gal were 

not detected in SK-BR-3 cells (Figure 8), suggesting that senescence is induced specifically 

in ER-positive cells and might depend on ER-signaling. It would be interesting to see 

whether the knockdown of ER in MCF-7 cells results in the loss of several or all of the 

MCF-7 specific target genes, and in particular of SA-!-Gal.  
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Figure 8 RA induces SA-!-gal expression in MCF-7, but not SK-BR-3 cells. 
Cells were treated with 1 !M RA for 72 hours followed by gluteraldehyde fixation and X-gal staining at 
pH=6 for detection of senesence specific !-galactosidase activity. 
 

On the other hand, in SK-BR-3 cells RA induces the formation of lipid droplets, that 

can be deteced by Oil Red O (ORO) staining (Figure 9). Lipid droplet formation has been 

associated with and used as a marker for lactogenic differentiation of mammary cells. In 

AU-565 cells, derived from the same patient as SK-BR-3 cells, lactogenic differentiation 

could be induced using a ligand for HER2, gp30, which at high concentrations inhibits 

proliferation of these cells (431). Although we could not observe the induction of other 

lactogenic markers such as !-casein expression and phosphorylation of Stat5A to be 

induced by RA in SK-BR-3 cells (data not shown), it is possible that these markers are 

induced at later time points of treatment. A differentiation phenotype in these cells 

correlates well with the observation that the expression of direct RA targets in SK-BR-3 

cells is associated with a more luminal phenotype in breast tumor samples (Chapter 2:; 

Figure 7). The lactogenic phenotype in SK-BR-3 cells might depend at least in part on their 
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expression of HER2, which appears to be implicated in lactogenesis. In mice expressing a 

DN form of HER2 in the mammary gland lobuloalveaolar differentiation was disturbed and 

milk production was reduced (432). Since HER2 is not expressed in MCF-7 cells, this 

could account for the phenotypical difference between the two cell lines.  

 

Figure 9 RA induces lipid droplet formation in SK-BR-3, but not MCF-7 cells. 
Cells were treated with 1 !M RA for 72 hours, followed by fixation in 10% formol and staining with an oil 
red O (ORO) solution for the detection of accumulated lipids. 
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4.2 Modulation of proliferation and differentiation signals by 

direct retinoic acid target genes  

4.2.1 Potential contributions of ER- and p53-dependent signaling in 

transcriptional regulation by RA and antiproliferative activity of RA target 

genes. 

In Chapter 2, we used ER-negative SK-BR-3 cells and ER-positive MCF-7 cells, both 

sensitive to the proliferation inhibiting effect of RA, to identify targets genes of RA. 

Several RA target genes that were identified in this study have been described before to 

regulate apoptosis and/or proliferation in breast cancer cell lines. The homebox gene 

HOXA5 was shown to induce apoptosis in breast cancer cell line MCF-7 in a p53 

dependent manner (406) as well as by activation of caspases 2 and 8 in p53-mutant cell line 

Hs578T (408). However, here we have looked only at the effects on G0/G1 phase of cell 

cycle, an event on which HOXA5 overexpression might not have an impact. Since it has 

been suggested that the response to RA in breast cancer is biphasic, that is to say, induction 

of G0/G1 arrest (2 days) followed by induction of apoptosis (5-6 days) (397), the HOXA5 

gene might play an important role only in the second part of the response. It should also be 

noted that the SK-BR-3 cells used in this study carry a mutation in the p53 gene which is 

not the same as the one in Hs578T (433), and it is therefore well possible that 

overexpression of HOXA5 does not affect this cell line in the same way as it does p53-

wildtype cells. BTG2 is a p53 target gene that is regulated in a primary manner by RA only 

in MCF-7 cells. In SK-BR-3 cells its regulation can be seen in the absence of CHX only, 

suggesting that primary regulation of this gene depends on intact ER signaling (Chapter 2; 

Table II, Suppl. Table I and II). BTG2 contains a functional LXXLL motif, through which 

it was shown to modulate transciptional activation by ERα (434). In addition to p53-

dependent cell cycle arrest and apoptosis, part of its actions might therefore also come from 

modulation of ERα function. Since SK-BR-3 cells are ER-negative, this could explain the 
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limited effects observed in overexpression studies. It is worth noting that both HOXA5 and 

BTG2 seemed to have a very marginal effect in a two week colony formation assay 

performed in SK-BR-3 cells (data not shown).  

Thus, it seems that some of the MCF-7 specific RA target genes might function in a 

p53 dependent manner. SK-BR-3 cells are not only ER-negative, but also have a p53 

mutation. This could explain why those genes, even when expressed in an exogenous 

manner in this cell line, do not affect proliferation.  

4.2.2 Networks of antiproliferative responses mediated by RA target genes 

We have been able to identify several ER-independent RA target genes that are 

responsible for at least part of the antiproliferative response (Chapter 2:; Figure 6). Of the 

three genes that we found to induce a cell cycle arrest (SOX9, FOXA1, ELF3), two were 

induced in a synergistic manner by RA+Herceptin (SOX9, ELF3; Chapter 3:).  

Analysis of transcriptional targets of SOX9 and FOXA1 strongly suggests their 

implication in mediating the antiproliferative effects of RA. IPA analysis of their target 

genes showed a significant enrichment of genes implicated in cellular functions such as cell 

cycle regulation, cell death and cellular proliferation. Overexpression of FOXO3A allowed 

to identify several transcriptional targets with roles in cell cycle and apoptosis regulation, 

and these targets were significantly enriched within the set of Herceptin+RA transcriptional 

targets. An effect on cell cycle progression could however not be observed upon 

overexpression of FOXO3A. This might be because in a situation where cells are not 

treated with RA and/or Herceptin too much active Akt is present and the overexpressed 

FOXO3A will be phosphorylated and inactivated. Differences between cell cycle analysis 

and gene expression studies could be explained by the duration of the overexpression : cell 

cycle analysis was performed after 72 hours of overexpression, whereas for gene 

expression studies cells were analyzed after 24 hours of overexpression. Therefore it is 

likely that in the gene expression studies more active FOXO3A was available in the cells. 

Repeating these experiments with a constitutively active form of FOXO3A (non-
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phosphorylatable by Akt : T32A, S253A, and S315A; described in (435)) should allow for 

identification of more transcriptional targets. Also, such a mutant should be able to induce 

the expected cell cycle arrest. 

4.2.3 Feedback mechanisms through regulation of RA metabolism and 

signaling 

RA is known to regulate several genes that are implicated in its metabolism and 

signaling. This is also true in both of the studies presented in this thesis, as we identified 

several of these genes regulated.  

RALDH3 was found to be regulated in both SK-BR-3 and MCF-7 cells in an indirect 

manner (Chapter 2; data not shown). In Chapter 3, RALDH3 was not regulated in a 

significant manner by RA alone in SK-BR-3 cells, but its regulation by Herceptin is 

borderline significant and increased in the RA+Herceptin cotreatment. It should be noted 

that in the Herceptin-RA study we used a three-fold lower concentration of RA, which 

could account for the discrepancy between the two studies. Our lab has previously shown 

that RALDH3 expression is suppressed in RA sensitive luminal breast cancer cells (Annex 

I; Figure 1 and 2), a requirement for proliferation of these cells. The expression of 

RALDH3 in SK-BR-3 or Zr75 cells led to the induction of a cell cycle arrest that was 

comparable to that observed upon treatment with RA (Annex I; Figure 5C and Suppl. Fig. 

10B). Thus, it appears that this modulation of RA metabolism by RA in these cells may 

refelct a feed-forward mechanism in the anti-proliferative response. 

CYP26A1 is the strongest regulated RA target gene in both cell lines and in both 

studies. This enzyme is know to be implicated in the transformation of RA into less active 

catabolites. It has therefore been suggested that this enzyme could be implicated in RA 

resistance. As mentioned before, breast cancer cells often have an increased capacity to 

induce the expression of this gene, thus providing them with an efficient way of decreasing 

local levels of RA that would otherwise inhibit their proliferation. Treatment with retinoic 

acid metabolism blocking agents (RAMBAs) has been suggested as an alternative route for 
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retinoid therapies and proven efficient in the treatment of skin conditions such as psoriasis 

(436). CYP26B1 is also a direct RA target is both cell lines (Chapter 2; Table II).  

DHRS3 is regulated in both SK-BR-3 and MCF-7 cells in a CHX-insensitive manner. 

This gene encodes a short chain dehydrogenase that can mediate the conversion of retinal 

into retinol, but has also been implicated in increased retinyl ester production. Its 

upregulation by RA probably has limiting effects on RA signaling on short term periods, 

but might extend the duration of the signal due to increased retinoid storage. This will 

however depend on the cellular presence of other components of the RA metabolism 

pathway. 

Other common upregulated RA target genes include the retinol receptor STRA6, the 

coactivator NCOA3 and the corepressors NCOR2 and NRIP1 (Chapter 2; Table II). 

As becomes clear from the examples given above, the influence of RA on its own 

metabolism and signaling are multiple and variable. These feedback loops need to be 

investigate in more detail to better understand the mechanisms of RA response and 

resistance in cell lines and tumors.  

4.2.4 The role of downregulated target genes 

Although not further investigated in the present work, several of the RA downregulated 

genes could also be implicated in mediating growth arrest.  

The cell cycle and apoptosis regulator KLF4 (Krüppel-like factor 4) is a transcriptional 

repressor that has previously been described to function as a context dependent oncogene 

and whose function depends on p21 and cyclin D1. When KLF4 was depleted from 

overexpressing breast cancer cells, this led to the induction of p53 dependent apoptosis 

(437). KLF4 has been shown to downregulate RAR! expression by direct binding to the 

promoter and decrease RAR! mediated PI3K and MAPK signaling in vascular smooth 

muscle cells (438). On the other hand, KLF4 was also shown to interact with ER! and 

reduce its transcriptional activity leading to decreased proliferation of breast cancer cells 
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(439). Another KLF family member, KLF5, was shown to interact with RAR! in vascular 

smooth muscle cells, and this interaction was inhibited by treatment with the synthetic 

retinoic Am80 (440). Therefore, KLF4 might also function as a corepressor for RAR! and 

its downregulation such as observed in SK-BR-3 cells in Chapter 2 could lead to enhanced 

RAR! signaling and growth inhibiting effects. 

Another interesting gene that was found to be downregulated in SK-BR-3 cells is 

SATB1. SATB1 is a global chromatin organizer and transcription factor, that is key factor 

integrating higher-order chromatin architecture with gene regulation. Gene expression is 

regulated by SATB1 through recruitment of chromatin remodeling enzymes and 

transcription factors to genomic DNA regions (441). SATB1 expression in breast cancer 

has been shown to promote tumor growth and is correlated with more aggressive tumor 

subtypes. Its overexpression in SK-BR-3 cells leads to the induction of a gene program 

correlated with aggressive tumor phenotypes and metastatic potential. On the other hand, 

the depletion of this gene from MDA-MB-231 cells made them less aggressive (442). 

Both these genes could be implicated in the ER-independent response to RA in 

SK-BR-3. This would need to be confirmed by gene knockdown (mimic RA effect) and 

overexpression (reduced response to RA). Downregulated targets that mediate anti-

proliferative effects could also be of potential interest as drugable target. 

4.2.5 Modulation of TGF"  signaling by RA and its impact on breast cancer 

progression. 

Several RA target genes that are common in SK-BR-3 and MCF-7 cells are part of the 

TGF" signaling pathway, which plays important roles in normal mammary development as 

well as in mammary tumorigenesis. IPA analysis showed a statistically significant 

enrichment of TGF" signaling components in RA-regulated genes, and this enrichment was 

stronger in the Herceptin+RA cotreatment (more genes in the pathway regulated). TGF" 
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plays various roles in normal mammary development as well as in mammary 

tumorigenesis.  

In mammary tumorigenesis, the effects of TGF! as a tumor suppressor or an oncogene 

are variable and depend on the level of progression of the tumor. In normal epithelium, 

TGF! functions as a tumor suppressor, arresting cells in G1 phase of the cell cycle. In early 

carcinomas the TGF! pathway often gets altered leading to insensitivity of cells to TGF!. 

Then as cells become more aggressive, they start producing excessive amounts of TGF!, 

which will act on cells of the surrounding stroma and facilitate invasion and metastasis.  

!"#$%&'%(#&)'$*+'#$%*$!,-!$)&$.+..+/0$'+&'#/$

In recent years the concept of the epithelial to mesenchymal transition (EMT) as a 

mechanism for cancer cells to escape primary tumor sites has become widely accepted. 

This process takes place in various biological settings such as embryogenesis, tissue 

morphogenesis and wound healing. It consists of the downregulation of E-cadherin and 

upregulation of certain integrins by epithelial cells, allowing them to move out of the 

epithelial cell layer (443). In the context of tumor biology this means the process allows 

epithelial tumors cells to dissociate from the primary tumor and metastasize to distant sites. 

Three specialized types of EMT can be distinguished, type 1 occurring during 

embryogenesis, type 2 during tissue remodeling and healing and type 3 during cancer 

progression (444). Cancer associated EMT is marked by loss of apicobasal plarity, 

disintegration of tight junctions and cytoskeletal changes, leading to the acquisition of a 

motile and invasive phenotype that resembles changes taking place in type 1 EMT. Among 

numerous inducers of oncogenic EMT that have been identified are Wnt, Snail/Slug, Twist 

and TGF! (445). TGF! has been identified by several studies as an important regulator of 

EMT in both normal and malignant mammary epithelial cells (446-448). TGF! induced 

oncogenic EMT was shown to lead to the acquisition, selection and expansion of breast 

cancer stem cells (449) and a more metastatic phenotype.  
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In addition to its effects on EMT initiation, TGF! that is produced in the tumor cells 

can act in a paracrine manner on the tumor microenvironment to potentiate tumor 

progression and invasion/metastasis. TGF-! influences stromal–epithelial interactions 

during carcinoma initiation and progression, affecting both fibroblast and immune cells 

present in the stroma. TGF-! enhances the migratory and invasive properties by inducing 

the synthesis of extracellular matrix proteins such as MMP-2 and MMP-9 and 

downregulating the protease inhibitor TIMP in tumor cells. Studies have shown that 

disrupted TGF! signaling in the stromal compartment can lead to tumorigenesis (450, 451).  

!"#$%&'()*+,-#,.#/01!#+-#2$%)3*#4)-4%$#

RA regulates genes implicated at different levels of the TGF! signaling pathway 

(Figure10). This regulation can affect the pathway both positively and negatively, but 

overall appears to be mainly activating, with induction of positive regulators such as 

SMAD3, GDF15, SOX9 and TGFBR3. Thus, RA-mediated modulation of the TGF! 

signaling pathway can have multiple impacts on breast tumor cells. In the context of the 

oncogenic face of TGF! described above, the primarily activating effects of RA on this 

pathway seem contradicting. With respect to the observation that RA seems to induce a 

more luminal phenotype in breast cancer cells, generally less aggressive, activation of the 

TGF! pathway is likely to turn out to be beneficial for tumor inhibition. However, in more 

aggressive tumors, TGF! activation could also provide an explanation for the lack of clear 

benefits of retinoid treatment in breast tumors and observed adverse effects. This will be 

particularly true if the activation of TGF! by RA leads to the activation of EMT, giving rise 

to a more metastatic phenotype and an increase of the cancer stem cell pool. It will be 

important to further investigate the role of TGF! signaling in the response to RA, as it 

might be important to target this pathway in parallel when trying to use RA in breast cancer 

treatment. 



  

 

 

195 

 

Figure 10 TGF!  signaling pathway 
RA regulated components of the pathway are indicated. Figure adapted from 
www.cellsignal.com/pathways/tgf-beta-smad.jsp.  
 

4.3 The role of other nuclear receptors liganded by RA 

It has been described that RA can also function as a ligand for several other nuclear 

receptors and that in some cases this will lead to pro-proliferative effects rather than anti-

proliferative effects, the best known example being PPAR!/" (166). Even the activation of 

RAR# has been proposed to be proliferation-promoting in some contexts (421, 452). 

Stimulation by RA of RAR! expressed in the stroma was recently shown to be tumor 

promoting (453). It appears therefore that a vital point in the success or failure of retinoids 

as breast cancer treatments would be to specifically target the ‘good’ RA responsive 

receptor(s). It has been described in the literature that RAR$ appears to be the most 

important RAR mediating antiproliferative effects of RA in breast cancer cells (370). In 
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Chapter 3: of this thesis we highlight once more this importance when we show that cells 

carrying an amplification of the RARA gene are very sensitive to RA. A synergy between 

RA and Herceptin is observed only in HER2/RARA co-amplified cells and this is specific 

to RAR! activation, since it can be observed also with the RAR! selective ligand Am580, 

but not with the RAR"/# selective ligand TTNN (Chapter 3:; Figure 3, Suppl.Fig.2), the 

latter actually appears to have an effect that is more antagonistic with Herceptin. 

In Chapter 2: we have identified a large number of genes that have known or proposed 

inhibitory effects on cell proliferation. We did however also find induction of some genes 

that have been suggested to be rather pro-proliferative, such as for example 

ENPP2/autotaxin in SK-BR-3 cells. It would be very interesting to perform chromatin 

immunoprecipitation (ChIP) assays to determine if these genes are preferentially bound by 

for example PPAR"/$ rather than RAR!. Also, RAR selective agonists and antagonists as 

well as shRNAs could be used to verify whether the balance between expression of 

different receptors affects the proliferative vs. antiproliferative outcome. 

4.4 RA and luminal differentiation 

In Chapter 2 we have observed that expression of direct RA target genes from ER-

negative cells in tumor samples correlates with a more luminal phenotype and ER-positivity 

(Chapter 2; Figure 7). Interestingly, the used cell line SK-BR-3, although ER-negative, is 

generally classified as luminal and might represent less differentiated luminal cells. We 

find that several genes induced in an ER-independent manner are markers for the luminal 

subtypes of breast tumors and have been described to be involved in ER signaling, such as 

FOXA1, GATA-3 and ESR1 (Chapter 2; Figure 4). GATA3 and FOXA1 have both been 

shown to regulate the expression of ER! (264, 454). Where GATA-3 and ER! are essential 

determinants of luminal cell fate in the developing mammary gland and essential for 

lactation, FOXA1 is necessary for ductal outgrowth during mammary development (264). 

FOXO3A expression is not correlated with luminal tumor types, but does affect ER! 
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signaling in several ways, seemingly in a complex feedback system. FOXO3A mediated 

regulates the expression of ER! through direct binding and activation of the ESR1 promote 

(435). ER! status correlates with FOXO3A hypophosphorylation and nuclear localization. 

Contrarily, FOXO3A colocalizes with ER! and represses its transcriptional activity (455), 

as well as estrogen-dependent breast cancer cell proliferation and tumorigenesis (456). ER! 

in turn also induces FOXO3A (455). 

Taken together these data clearly suggest a role for RA signaling in luminal 

differentiation in the mammary gland. In the developing mammary gland, RA is 

synthesized by locally expressed RALDH1 and RALDH3. Vitamin A deficiency in mice 

and rats was shown to delay mammary gland development, with fewer tubules and lobules 

being formed and overall smaller mammary glands, suggesting that RA is important in 

epithelial cell differentiation (457, 458). RA and Am580 have also been shown to be potent 

inducers (pmolar range) of lumen formation in 3D cultures of J3B1A mouse non-

tumorigenic mammary cells. This was shown to depend on mRNA induction and activation 

of MMP-9 by retinoids (459). In mammary tumors, the expression of RALDH3 is often 

lost, and this correlates with luminal subtype and ER expression (Annex I; Figure 4). The 

loss of this enzyme appears to be essential to permit luminal tumor cell proliferation.  

4.5 Mechanisms of synergy between Herceptin and RA 

In Chapter 3: we have investigated the synergistic antiproliferative effect between 

Herceptin and RA on HER2-positive tumor cells. Since Herceptin affects the transcriptional 

activity of RA in ER-negative, HER2/RARA amplified breast cancer cells, we reasoned 

that mediators of the synergy could be transcriptional regulators that could either interact 

with and modulate the activity of RAR! or function in parallel with it to induce growth 

arrest and cell death. 
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4.5.1 Forkhead factors in the transcriptional response to RA and Herceptin 

We suggest a role for the FOXO family in mediating the synergistic response mainly 

because of its known effects on cell cycle and cell death and the fact that its members are 

synergistically regulated by Herceptin and RA (Chapter 3; Figure 5B and Suppl. Table II) 

and we find an enrichment of FOXO binding sites (Chapter 3; Figure 6B-C). Knockdown 

studies will need to be done to firmly show the role of FOXOs in the synergy. Importantly, 

due to the overlapping target genes of the FOXO family members, it might be necessary to 

knock down more than one member at a time, because other family members might be able 

to compensate for the lack of signaling. 

Several members of the Forkhead family have been shown to be implicated in NR 

signaling. Various FOX proteins were found to interact with and function as corepressors 

of the androgen receptor (460-462). FOXA1 has been described as a pioneer factor for 

activation of AR and ER signaling (463, 464). FOXA1 can also interact with the 

progesterone receptor and modulate its activity (465). It is possible that one or more of the 

FOXOs that are regulated in a synergistic manner by Herceptin and RA could function as 

cofactors for RAR!. In this respect, it would be interesting to see whether our predicted 

FOXO binding sites coincide with RAR! binding sites, particularly ER!-independent sites. 

The ChIP-chip and ChIP-seq studies that we have analyzed in Chapter 2: could be used for 

a first analysis. However, since these studies were both performed in the ER-positive MCF-

7 cells, and RAR! binding is likely to be different in ER-negative SK-BR-3 cells, where 

only ER-independent RA signaling is present. Therefore, large scale ChIP analysis should 

be performed in SK-BR-3 cells in order to compare binding of RAR! and FOXO3A 

(and/or other FOXO family members). If FOXOs are implicated in RAR! mediated 

signaling and this is enhanced by the cotreatment with RA and Herceptin due to its 

synergistic induction and activation, we could expect to see a colocalization of RAR! and 

FOXOs in promoter regions of coregulated genes.  
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4.5.2 Other possible mechanisms for RA-Herceptin synergy 

Modulation of RAR!  activity by Herceptin treatment 

In NSCLC cells it has been shown that Akt can phosphorylate RAR!, leading to its 

inactivation (385). Whether this phosphorylation can also occur in breast cancer is not 

known. This could provide an additional explanation for the reporteded resistance of 

HER2-positive breast cancer cells to RA (331). Herceptin treatment, through inactivation of 

HER2, inactivates the normally constitutively active Akt in these cells. By doing so, it 

might also increase RAR! transcriptional activity. This would be an additional explanation 

for the observed effect of Herceptin on RA mediated transcriptional regulation (Chapter 3; 

Figure 4B-C and Figure 5B).  

ADCC 

One of the mechanisms by with Herceptin suppresses propagation of HER2-positive 

tumors is by the activation of the immune system in a response that is known as antibody 

mediated cellular cytotoxicity. This response is mediated by natural killer cells, such as 

dendritic cells (346). As described in chapter 1.1.2.2, RA has been shown to play important 

roles in the function of the immune system. Of particular interest in the context of ADCC, 

RA has been shown to mobilize DCs (83). Although not relevant in in vitro cell culture 

models, this could provide for an even more efficient synergy between Herceptin and RA in 

an in vivo setting. It would be very interesting to study this possibility in a xenograft model 

of SK-BR-3 cells, quantifying mobilization of NK cells to the tumor site after Herceptin, 

RA or combination treatments. 

4.5.3 Synergy with RAR!  specific ligands and/or other RTK inhibitors 

The work described here has focused specifically on the synergy between RA and 

Herceptin. However, other combinations of retinoids and HER2 inhibitors or inhibitors of 

other RTKs and potentially of downstream signaling molecules such as PI3K could also be 

investigated.  
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In Chapter 3 we have observed a synergy between Herceptin and RAR! ligand 

Am580, whereas the combined effect with RAR"/# ligand TTNN is than additive at best, 

and is even antagonistic in some cases (Suppl. Figure 2). Since RA can activate all three 

RAR isotypes, the effect of co-treatment with Herceptin is likely to be variable according to 

the levels of different receptors expressed in a given cell type. RAR# was shown to have 

pro-tumorigenic effects in hepatocarcinoma cells. Those effects were found to be mediated 

by interaction of RAR# with the p85 subunit of PI3K and subsequent activation of Akt-

dependent survival pathways (452). RAR# also increased the proliferation rate of 

immortalized mammary cell line MCF10A cell when overexpressed, rendering them 

insensitive to pRb and p27 dependent growth arrest (421). The existence of similar 

mechanism in breast cancer cells would explain the effects observed with TTNN. Although 

this retinoid has a higher affinity for RAR", in our experimental setting the levels of RAR" 

are neglectable, whereas substantial levels of RAR# could be detected in SK-BR-3 cells by 

western blot (Chapter 2; Figure 1D). Particularly in an in vivo context, it is important to 

consider unwanted effects coming from stimulation of different RAR isotypes.  

In addition to the effects of RAR# expression and stimulation within the tumor, RA 

stimulation of the surrounding stromal tissue might stimulate tumorigenesis. A recent study 

has shown that expression of RAR" in stromal cells leads to RA-induced mammary tumor 

formation (453). It will be of interest to assess the effect of knock-down of RAR! 

compared to RAR" in stromal cells versus epithelial cells in order to test the hypothesis 

that RAR! specific ligands may be advantageous for the treatment of breast cancer. 

The major problem with Herceptin treatment is the high rate of intrinsic or acquired 

resistance. Although some of the gene programs that are activated by RA suggest that RA 

could prevent or delay resistance in a combination treatment setting, this is a hypothesis 

that remains to be confirmed. In the mean time, it could be worth looking into potential 

synergies with other molecules that target HER2. Pertuzumab, currently in phase II clinical 

trials for breast cancer, is another HER2 inhibitor that inhibits heterodimerization and 
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marks cells for immune attack. Lapatinib is a tyrosine kinase inhibitor that has been 

approved for the treatment of HER2-positive breast cancer (466). Both these molecules 

would be interesting to test in combination with RAR! specific ligands. Because resistance 

to Herceptin often involves altered expression of and signaling by downstream pathways, 

notably PI3K/Akt signaling (360), inhibitors of downstream effectors such as PI3K could 

also be tested in combination with retinoids. 

4.6 Retinoids in the treatment of breast cancer 

4.6.1 HER2 positive RARA amplified breast cancer 

The co-amplification of RARA with HER2 appears to be a fairly rare event. 33-50% of 

the HER2 positive tumors (~25% of total mammary tumors) were found to be RAR 

amplified, making for a total of around 10% of all breast tumors that would carry a 

HER2/RARA coamplification. To our knowledge, the only other cell line that has been 

described to carry this co-amplification is the UACC-812 cell line (318). We confirmed this 

co-amplification by FISH, however since this cell line has an extremely low proliferation 

rate, it is not a good model for in vitro proliferation assays.  

To mimic the HER2/RARA amplification in a mouse mammary tumorigenesis model, 

one could consider creating mice that have mammary-specific overexpression of Her2 and 

Rara, using for example the MMTV promoter. However, it is possible that other genes that 

are present in the long amplicon contribute for the observed synergistic effect, and in such a 

model these genes would be expressed at normal levels. Therefore an in vivo beneficial 

effect of the retinoid treatment might be missed in such a model. SK-BR-3 cells form 

mammary tumors when injected in the fat pad of nude mice. This model could be used to 

study the effect of RA and Herceptin on HER2/RARA amplified tumors in the tumor 

microenvironment. Such in vivo studies are absolutely necessary to investigate the potential 

of retinoid treatment, particularly in HER2+ tumors, because a recent study has suggested 
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that RA could have tumor-promoting effects through activation of RAR! that is expressed 

in the stroma (453).  

4.6.2 ER-positive breast cancer 

ER-positive cells that carry a HER2 amplification are often resistant to anti-estrogen 

treatments. Generally, these cells express low levels of ER". Also, HER2 signaling has 

been shown to play a role in the resistance to AEs. We have shown here that RA induces a 

more luminal phenotype in breast cancer cells. RA induces several components of the ER-

signaling pathway, such as GATA-3, FOXA1, FOXO3A and ESR1 itself. Although the 

induction of the latter in SK-BR-3 cells could only be detected at the levels of the mRNA, 

we have not investigated the effects of sustained RA treatment.  

Low levels of ER in HER2+/ER+ cells have been associated with the inactivity of 

FOXO3A, which was shown to bind the ESR1 promoter and regulate its transcription 

(435). This could explain differences observed in ESR1 regulation in HER2-positive and 

HER2-negative cells (Chapter 2:; Figure 4). Subsequently, it suggests that ESR1 expression 

is likely to be regulated in HER2+/ER+ breast cancer cells. If this is indeed the case, it 

would open ways to combined treatments of retinoids and antiestrogens. The combined 

treatments of RA and tamoxifen or RA and tamoxifen and Herceptin were recently shown 

to have synergistic effects on cell proliferation and apoptosis in HER2+/ER+ in BT474 

cells (467). 

4.6.3 RA targets as predictive markers 

We have shown that expression of ER-independent RA target genes correlates with a 

luminal phenotype and lower grade of breast tumor samples (Chapter 2:; Figure 7). In 

addition to this observation, we further show that expression of Herceptin+RA 

transcriptional targets defines two classes of tumors within HER2+ tumor samples, that 

significantly correlate with tumor outcome (Chapter 3: Figure 7). This indicates the 

importance of RA target genes in inhibiting tumor survival. Thus, a subset of RA target 
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genes could be developed as predictive markers for response to treatment with Herceptin, 

alone or in combination with chemotherapy. Using hierarchical clustering methods 

according to RA target gene expression and subsequent Kaplan-Meier analyses, the 

predictive value of RA targets could be tested on datasets available in the literature 

(although it has to be noted that reports are scarce on Herceptin monotherapy). RA target 

genes could thus be used not only as prognostic markers for overall survival (independent 

of treatment, such as presented in Chapter 3), but potentially also to predict the outcome of 

treatment in patients. 

4.6.4 Clinical application of retinoids for breast cancer treatment 

The work presented in this thesis has focused on understanding the mechanisms of RA 

antiproliferative effects and identifying a sensitive subtype of tumors. However, when 

considering treatment with RA, another problem needs to be considered besides resistance, 

namely the occurrence of side effects. Administration of RA, typically in the case of APL 

treatment, may lead to the development of the retinoic acid syndrome. This syndrome 

occurs in 14-16% of APL patients treated with RA, and 2% will die because of it. Most 

common symptoms are respiratory distress and fever, but a variety of other symptoms, 

including high blood pressure and acute renal failure may also occur (468). 

If subsequent studies based on the work presented here, notably using animal models 

such as discussed in paragraph 4.6.1, confirm the interest of RA for treatment of a subclass 

of breast tumors, it would be important to consider ways to limit possible side effects. One 

way to do this is by targeting a specific receptor subtype with a selective ligand, thereby 

limiting the effects that could be mediated by the other two subtypes. In the case of breast 

cancer RAR! selective ligands seem appealing. Still, there are risks to giving systemic 

retinoid treatment. The best example is the case of RAR", widely accepted as a tumor 

suppressor, that appears to have tumor promoting effects when expressed in the stroma 

(453). This indicates that it is critical not only to target the right receptor, but also to target 

it in the right place. 
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In the case of the HER2/RARA co-amplification, it could be possible to use the 

overexpression of the two proteins to the advantage of the treatment. It has already been 

shown that it is possible to encapsulate RA into liposomes, allowing for better targeting to 

tumor sites. These RA liposomes were shown to prevent relapse in breast cancer due to 

cancer stem cell outgrowth (469). It has also been shown that Herceptin can be conjugated 

to liposomes (470), allowing for targeting of the liposome specifically to HER2 

overexpressing cells. Combining this knowledge suggest that it could be possible to use 

liposomes to target RA or an RAR! selective ligand directly to the HER2/RARA co-

amplified tumor cells. 

4.7 Limitations of used techniques 

4.7.1 Cell lines in cancer research 

In the studies presented in this thesis, we have made extensive use of cell lines as a 

model for tumorigenesis. Tumor cell lines are easy tools for cancer research since they are 

fairly easy to manipulate, and provide with an almost infinite supply of material to study. 

Although an excellent tool to study aspects of tumor cell proliferation, differentiation and 

the influence of drug treatments, it is important to be aware of the limitations of these 

models. Tumors might not be realistically represented by the cell lines due to several 

factors. First, cell lines are most of the times not derived from primary tumors, but rather 

from more aggressive metastases or pleural effusions. Also, cultured cell lines are prone to 

accumulate genotypical and phenotypical changes throughout their time in culture. This 

way tumor cell lines diverge from the original tumors. Various subpopulations of a cell line 

can occur due to longtime culture of a cell line in different laboratories, this phenomenon 

has been described by two separate groups for MCF-7 cells (471, 472). Finally, tumor cell 

lines are generally very homogeneous populations, which makes them easy to work with on 

one hand, but hard to compare to generally very heterogeneous tumor samples on the other. 

In addition to these factors, it is obvious that the environment in which tumor cell lines are 
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being grown cannot be compared to the in vivo situation of a tumor. The tumor 

microenvironment is an important factor for the growth and potential treatment of a tumor, 

and cannot be accurately mimicked in a traditional in vitro culture system.  

For the reasons mentioned above, it is clear that however valuable tumor cell lines are 

for cancer research, it is of importance to be cautious when interpreting results and 

translating them to tumor biology. Reproduction of results in other systems, such as 

primary tumor cultures and animal tumor models is essential for connecting cell line 

research to in vivo tumor situations. 

4.7.2 Genome-wide expresssion profiling techniques 

In order to try to understand the biological relevance of the regulated genes indentified 

in the two studies here presented, we have taken advantage of available datasets of genome-

wide expression profiling of tumor samples. Although this type of profiling data can be 

very valuable to better understand tumor biology and response to treatments, a certain level 

of caution should be used when interpreting such data. Because of the very heterogeneous 

composition of tumors, a biopsy used for analysis on arrays may not accurately represent 

the original tumor. Furthermore, correlations with treatment outcome based on the 

expression of certain genes will be biased towards the most present cell population in the 

sample. Notably, tumors will contain a small proportion of cancer stem cells. This 

population will, if not affected by the treatment, allow for regrowth of the tumor after the 

treament is finished. 

4.8 Conclusion 

In conclusion, we have shown here that, contrary to previous reports in the literature, a 

large part of RA signaling in breast cancer cells is independent of ER signaling. ER-

independent RA targets are at least in part responsible for the RA-induced antiproliferative 

effects.  
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Our results present new insights in both the mechanisms of regulation of the 

antiproliferative response to RA, as well as tumor subclasses that could benefit from 

retinoid treatment. Particularly the observation that retinoids can synergize with 

HER2-targetting molecules will be of interest to find new treatment strategies for some 

otherwise hard to treat subtypes of breast cancer. 

Although preliminary from a drug-development point of view, the data presented in 

this thesis provide substantial information about the mechanisms of action of retinoids in 

both ER-positive and ER-negative breast cancer. These data can be used as a basis for in 

vivo studies to further examine the potential of retinoids, either alone or in combination 

with HER2- and/or ER-targeting molecules, in breast cancer treatment. 
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Annexes 

Annex I : Low RALDH3 Activity in Luminal Breast Tumors is a Prerequisite for 

Proliferation of Retinoic Acid-sensitive Cancer Cells.  



  

 

 

249 

Annex I : Low RALDH3 Activity in Luminal Breast Tumors is a 

Prerequisite for Proliferation of Retinoic Acid-sensitive Cancer 

Cells. 

 

Maxime Parisotto, Marieke Rozendaal, Nader Hussein, Slim Fourati, Carolyn Nessim, 

Martine Bail, Hiba Zahreddine, Andrée-Anne Grosset, André Robidoux, Louis Gaboury, 

Pangala V. Bhat, Sylvie Mader 

 

Manuscript in preparation for submission to Oncogene 

 

 

 

 

As second author, I performed RALDH3 overexpression FACS experiments and did 

several RNA extractions and Q-PCR analyses. I also helped making figures and correcting 

the manuscript. 

  



  

 

 

250 

Low RALDH3 activity in luminal breast tumors is a 

prerequisite for proliferation of retinoic acid-sensitive cancer 

cells 

Maxime Parisotto,1,2 Marieke Rozendaal,1,2 Nader Hussein,1 Slim Fourati,1,2 Carolyn 

Nessim,1 Martine Bail,1 Hiba Zahreddine,1 Andrée-Anne Grosset,3# André Robidoux,4 

Louis Gaboury,1,3,5 Pangala V. Bhat,5,6 Sylvie Mader1,2 
1 Institute for Research in Immunology and Cancer, Université de Montréal, 2 

Department of Biochemistry, Université de Montréal, 3 Department of Pathology and Cell 

Biology, Université de Montréal, 4 Department of Surgery, Université de Montréal, 5 Centre 

de Recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM)-Hotel-Dieu, 
6Department of Medicine, Université de Montréal, Montreal, Quebec, Canada. 

Address correspondance to: 

Sylvie Mader: IRIC, Université de Montréal, C.P. 6128 Succursale Centre Ville, 

Montréal H3C 3J7. Phone : +1 514 343 7166; Fax: +1 514 343 7383; E-mail: 

 

Pangala V. Bhat : Phone: +1 514 890 8000x12927; Fax: +1 514 412 7152; E-mail:. 

 

Additional footnotes: #Current address : INRS-Institut Armand-Frappier, Laval, 

Québec, Canada 

Conflict of interest: the authors have declared that there is no conflict of interest.  

List of non-standard abbreviations: ALDH, aldehyde dehydrogenase; EdU, 5-ethynyl-

2´-deoxyuridine; ER!, estrogen receptor alpha; HMEC, human mammary epithelial cell; 

IHC, immunohistochemistry; ICI, ICI182,780; mAU, milli Absorbance Unit; PR, 

progesterone receptor; RA, retinoic acid; RALDH, retinal dehydrogenase;  RAR, retinoic 



  

 

 

251 

acid receptor; RARE, retinoic acid response element; RXR retinoid X receptor; Tam, 

tamoxifen. 

  



  

 

 

252 

RUNNING TITLE: 

RALDH3 controls RA synthesis in mammary epithelial tumors 

ABSTRACT:  

Although retinoic acid (RA) is antiproliferative in some breast cancer cell lines, its 

synthesis in mammary tissue and role in breast tumorigenesis remain poorly characterized. 

We show that RALDH3 is expressed predominantly in luminal ductal cells in normal 

human and mouse mammary glands and drives RA synthesis in normal and transformed 

breast epithelial cells. However, RALDH3 expression and retinal oxidation are weak in 

RA-sensitive human luminal tumor cells, resulting in a strong negative correlation between 

RALDH3 expression and RA sensitivity in breast cancer cells. Functional but not 

catalytically inactive RALDH3 expressed in luminal breast cancer cells induces RA 

signaling and decreases proliferation, consistent with low RALDH3 levels being a 

prerequisite for proliferation in the presence of retinol. Endogenous RALDH3 expression is 

induced by RA in a positive feed-back regulatory loop that is suppressed by estrogens, in 

agreement with low RALDH3 levels in ER!-positive luminal tumors, but restored by 

estrogen blockade or withdrawal. Accordingly, higher RALDH3 levels correlate with 

enhanced distant metastasis-free survival in ER!-positive tumors, consistent with 

RALDH3 contributing to therapeutic success in estrogenic blockade therapies. 

 

KEYWORDS: retinoic acid/retinal dehydrogenase/breast cancer/luminal tumor 
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INTRODUCTION 

 

Retinoids, the natural or synthetic derivatives of vitamin A, play important roles in 

embryonic development, cell differentiation and cancer prevention (Mark et al 2009, Wald 

et al 1980). Vitamin A is important for the maintenance of the differentiation state of 

epithelial tissues and its deficiency has been linked with a higher incidence of cancer and 

increased susceptibility to chemical carcinogens in the mammary gland (Freemantle et al 

2003). Retinoids can prevent carcinogen-induced tumorigenesis in various tissues including 

breast (Lacroix et al 1990, Lotan 1996), and inhibit proliferation of some breast cancer cell 

lines in vitro (Raffo et al 2000, Seewaldt et al 1997) and in animal xenograft models 

(Appleyard et al 2004, Wetherall et al 1984). Several reports provide evidence for 

morphogenetic roles of RA in the mammary gland. For example, ductal morphogenesis is 

reduced in rats treated with the synthetic retinoid N-(4-hydroxyphenyl)-retinamide (Moon 

et al 1985), and increased branching morphogenesis is observed in mouse models with 

suppressed retinoid signaling (Cohn et al 2010, Wang et al 2005). Retinoids also induce in 

vitro lumen morphogenesis in cultured cell lines (Montesano and Soulie 2002).  

The principal natural forms of retinoids associated with cell differentiation and tumor 

prevention, the all-trans and 9-cis isomers of retinoic acid (RA), are ligands for two 

families of nuclear receptors. The RARs interact with the two RA isomers, while the RXRs 

interact specifically with 9-cis RA (Leid et al 1992, Mangelsdorf et al 1992). RA receptors 

act as transcription factors, binding to specific DNA sequences and exchanging 
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transcriptional corepressors for coactivators upon ligand binding (Napoli 1999). RARs and 

RXRs are expressed in normal and tumorigenic human breast cells, with a reported 

decrease in RAR! expression during tumorigenesis ((Yang et al 1999) and refs therein).  

Although cell-specific receptor expression patterns play an important role in 

determining sets of target genes, expression of RA-synthesizing enzymes is required for 

tissular response to RA (Napoli 1999, Petkovich 2001). All-trans RA is synthesized in 

target tissues by a two-step oxidation of serum retinol. The second step of synthesis is 

controlled by retinal dehydrogenases RALDH1-3, corresponding to ALDH1A1, 

ALDH1A2, ALDH1A3, respectively (Duester et al 2003, Vasiliou et al 1999). Genetic 

deletion of Aldh1A2 or Aldh1A3 in mice results in lethality in the early embryo or at birth, 

respectively, due to developmental defects that can be rescued to some extent by maternal 

RA administration (Dupe et al 2003, Mic et al 2002). Aldh1a1 is dispensable for 

development and viability, but plays a role in RA synthesis in the developing eye and in 

clearance of excess retinol in the liver (Fan et al 2003, Matt et al 2005).  

While suppression of receptor expression represents a mechanism of escape from the 

differentiating effects of RA (Berard et al 1996, Freemantle et al 2003), accumulating 

evidence also points to alterations in RA biosynthesis during tumorigenesis. For instance, 

RA concentrations and RALDH2 expression levels are lower in prostate tumor tissues than 

in corresponding normal tissues, correlating with shorter remissions (Kim et al 2005, Miller 

1998). In an N-methyl-N-nitrosourea induced mammary carcinoma model, retinal oxidase 

activity was reduced compared to normal rat tissues (Bhat and Lacroix 1989). Other studies 
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described a reduction in RA synthesis from retinol in specific human breast cancer cell 

lines compared to normal or immortalized cells (Hayden and Satre 2002, Mira et al 2000, 

Rexer et al 2001). However, it remains unclear whether breast tumorigenesis is 

significantly associated with decreased RALDH expression and whether RALDH 

expression plays a role in the control of breast tumor cell proliferation.  

Here we provide evidence that RALDH3 can drive RA synthesis in normal breast 

epithelial cells, but that its expression is weak in luminal tumors. Transient expression of 

RALDH3 in luminal tumor cells cultured in retinol-containing medium mimics the effects 

of added RA and decreases cell proliferation, consistent with a low expression of RALDH3 

being a prerequisite for optimal growth of luminal tumors. 
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RESULTS 

Retinal oxidation is deficient in tumor cell lines: 

Synthesis of RA from retinol (2 !M) was previously found to be impaired in 5 out of 6 

tested cancer cell lines compared to primary or immortalized cells (Mira et al 2000). 

Defects in RA synthesis may result from loss of enzymes converting either retinol to 

retinal, or retinal to RA. In order to assess whether breast cancer cell lines have a lower 

capacity to synthesize RA from retinal, protein extracts from primary mammary epithelial 

cells (HMEC), from 2 immortalized cell lines and from 9 transformed cell lines were tested 

for all-trans retinal oxidation in vitro as previously described (Sima et al 2009).  RA 

production was detected in HMECs and in immortalized 184B5 and MCF-10F cells (Figure 

1A), but was very low in luminal (MCF-7, T47D, ZR-75, BT-474, SKBR3, MDA-MB-

361) or basal B (MDA-MB-231) breast tumor cell lines (Neve et al 2006). Significant 

activity was only observed in two basal A cell lines, BT-20 and MDA-MB-468 (Figure 

1A). To verify these findings under cell culture conditions, we treated the cell lines of our 

panel with a dose of retinol (2 !M) for 18 h. Production of RA in cells was then monitored 

by reverse-phase HPLC analysis of cell culture media. Identification of the peak of RA was 

performed with a standard of pure RA (Figure 1B), and by UV spectrum analysis of the 

peak (Supplemental Figure 1).  RA formation was observed for MDA-MB-468, BT-20, but 

not for BT-474, MDA-MB-231, SKBR3 or MCF-7 cells (Figure 1B, and data not shown), 

in agreement with results observed in vitro.   
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RALDH3 expression correlates with RA synthesizing activity in breast cancer cell 

lines: 

To identify the specific RALDH(s) responsible for RA production in breast epithelial 

cells, we compared RALDH expression profiles in breast cell lines both at the mRNA and 

protein levels. While expression of RALDH1 and RALDH2 was extremely low in normal 

human mammary epithelial cells (HMECs) and in immortalized cells 184B5 and MCF-10F 

(Figures 2 A, B and D), high-level expression of RALDH3 was observed in these cells 

(Figures 2 C and D).  

In tumor cell lines, RALDH1 expression was high in the basal A MDA-MB-468 and 

lower, but detectable both at the mRNA and protein levels, in HER2-expressing luminal 

BT-474, SKBR3 and MDA-MB-361 cells (Figures 2A and D). RALDH2 was detected at 

the RNA level in MDA-MB-468 cells only (Figure 2B). On the other hand, RALDH3 

expression was high in transformed basal A MDA-MB-468 and BT-20 cells, but very low 

in basal B MDA-MB-231 and in all luminal cells both at the mRNA and protein levels 

(Figures 2C and D), correlating with in vitro and in vivo RALDH activity (Figures 1A, B). 

RALDH1 and/or RALDH2 expression may contribute to RA synthesis in cells such as 

MDA-MB-468, which co-express RALDH3. However, RALDH1 expression in BT-474 

cells is not sufficient to yield significantly higher in vitro or in vivo RA synthesis than in 

other luminal cell lines (Figure 1A and data not shown).  

 

RALDH3 expression is comparatively low in luminal tumors: 
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To assess RALDH3 expression in the human and mouse mammary gland, we stained 

normal tissues with an RALDH3 antibody (see supplemental Figure 3 for isotype control of 

RALDH3 staining in mouse and human mammary gland sections). In mouse, RALDH3 

expression was observed in luminal epithelial cells (supplemental Figure 4A). Co-staining 

with the basal cell-restricted marker SMA revealed that RALDH3 expression occurred 

predominantly in the luminal compartment of mouse mammary epithelium (supplemental 

Figure 4B). In human tissue, RALDH3 expression was observed predominantly in ductal 

cells in samples from two different individuals (Figure 3). In ducts, RALDH3 expression 

was localized to luminal cells, suggesting that its expression patterns in mouse and human 

are similar. Finally, staining of formalin-fixed paraffin-embedded pellets of Hela cells 

transiently expressing RALDH1, 2 or 3 provided no evidence for cross reactivity of the 

anti-RALDH3 antibody with RALDH1 or RALDH2 (Supplemental Figure 5). 

As expression of RALDH3 was observed in luminal cells both in mouse and in 

human mammary glands, but its levels were low in all luminal tumor cell lines compared to 

normal or immortalized breast epithelial cells, we examined its expression in an ER!-

positive tumor. Transformed, ER!-positive cells did not stain detectably for RALDH3 

whereas ER!-negative duct-like structures included in the tumor displayed RALDH3 

expression (supplemental Figures 6A,B), suggesting lower RALDH3 expression in the 

tumor cells (see also Figure 3A for normal adjacent tissue of the same tumor). In contrast, 

expression of RALDH3 was detected in epithelial cells in an ER!-negative tumor 

(supplemental Figure 6C).  
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To examine whether low RALDH3 expression is associated specifically with ER!-

positive (luminal) tumors, we first analyzed RALDH3 mRNA expression in different 

published tumor datasets with associated microarray analyses (Chang et al 2005, Chin et al 

2006, Loi et al 2008, U.N.C). Tumor types were determined using the PAM50 classifier 

(Parker et al 2009). In all four datasets, RALDH3 expression was lower in luminal than in 

HER2-positive (HER2+) or basal tumors (Scheffe test: p<0.0005 in all four graphs, Figure 

4A). We then analyzed a tumor microarray comprising 140 invasive carcinomas classified 

in ER!-positive, HER2-positive and triple-negative types (triplicate cores were arrayed for 

each tumor). Scores were attributed to each core based on intensity of staining (Figure 4B), 

and distribution of average scores of triplicates were analyzed for each tumor type (Figure 

4C). Luminal tumors were associated with lower scores (<2) with a p value of 0.000216 in 

the !2 contingency test. Histogram and pie chart score distributions illustrate the lower 

representation of high scores in luminal tumors (Figures 4D and E), consistent with the low 

expression levels observed above in luminal cell lines. These results, together with those 

described above (Figures 1-4), suggest that RALDH3 is under-expressed in luminal tumors 

versus normal luminal cells. 

 

RA-sensitive tumor cell lines express low levels of RALDH3.  

In agreement with reports that RA has antiproliferative activity mostly in luminal cell 

lines (Raffo et al 2000, van der Burg et al 1993, van der Leede et al 1995), all RA-sensitive 

lines in our panel were luminal breast cancer cell lines (SKBR3, BT-474, ZR-75, MCF-7 
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and T47D, Figure 1C).  Importantly, all RA-sensitive cell lines had low RALDH activity 

and low RALDH3 expression (Figures 1A, and B, and 2C and D). Conversely, lines that 

expressed significant levels of RALDH3 protein and have RALDH activity in vitro were 

not growth-inhibited by incubation with RA (MDA-MB-468 and BT-20, Figure 1C). In 

addition, two cell lines were both RA-insensitive and RALDH3-low (MDA-MB-231 and 

MDA-MB-361, Figure 1C). 

In contrast to cancer cells, normal or immortalized cells, which can synthesize RA 

from retinol, were sensitive to RA. Note however that HMEC cells are routinely cultured in 

serum-free MEGM medium, and that their growth in medium with serum is markedly less 

efficient, consistent with inhibitory effects of intra- or autocrine RA synthesis. In addition, 

sensitivity of immortalized 184B5 cells to RA was observed only in the absence of EGF 

supplementation, consistent with a role of EGF in suppressing RA signaling (Grunt et al 

2005). Together, these results suggest that the capacity of RA-sensitive breast cancer cells 

to proliferate in the presence of retinol (~100-200 nM in medium with 10% serum as 

assessed by HPLC; data not shown) may depend on low RALDH3 expression.  

 

Expression of RALDH3, but not its catalytically inactive mutant, mimics the 

antiproliferative effects of RA on luminal cell lines. 

Since expression of RALDH3 is low in RA-sensitive luminal cells, we transiently 

expressed in these cells an HA-tagged RALDH3 or a mutant carrying a C314A mutation, 

which abrogates in vitro enzymatic activity (data not shown), together with a membrane-
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targeted EGFP expression vector, in order to test the impact on cell cycle distribution. 

Western analysis of transfected ER-negative luminal SKBR3 cells indicated that expression 

levels of RALDH3 and of its mutant were comparable to each other (Figure 5A) and to 

those in RALDH3-expressing 184B5 immortalized cells (Supplemental Figure 8). HPLC 

analysis of the culture media of transfected cells revealed that expression of RALDH3, but 

not of its catalytically inactive mutant, led to synthesis of RA from retinol present in the 

culture medium (Figure 5B). To verify that RA synthesis had a functional impact on gene 

expression, we assessed expression of SOX9, a well-characterized RA target gene with 

antiproliferative properties in breast cancer cell lines (Afonja et al 2002). Expression of 

SOX9 was not altered by expression of the catalytically inactive mutant, but was markedly 

enhanced by expression of RALDH3 (Figure 5A), suggesting that RA signaling takes 

place. Moreover, mRNA levels of several RA target genes were up-regulated as soon as 24 

h after RALDH3 transfection (e.g. see CYP26A1 and RARB2 in Supplemental Figure 9). 

Finally, transfected EGFP-positive cells expressing WT RALDH3 displayed about 10% 

increase in the G0/G1 content (p<0.01 in Student’s t test) in FACS analysis, while no 

change was observed in cells expressing the catalytically inactive mutant (Figure 5C). 

These effects mimic those of RA treatment (1 !M), which led to a 15% increase in G0/G1 

content (or almost a 2.5-fold reduction in cells in any other phase of the cell cycle; Figure 

5C). RA treatment or expression of RALDH3, but not of its catalytically inactive mutant, 

also led to significant decreases in the incorporation of nucleoside analogue 5-ethynyl-2'-

deoxyuridine (EdU) in SKBR3 cells (Figures 5D, E).  
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Similar results were obtained using ER!-positive ZR-75 cells (Supplemental Figure 

10). Furthermore, stable expression of WT, but not of mutant RALDH3 in MCF7 cells 

adapted to culture in serum-free medium led to a reduction in the number and size of 

colonies in a colony formation assay in medium containing 100 nM retinol, indicating that 

RALDH3 also plays an antiproliferative role in MCF7 cells (Supplemental Figure 11). 

Finally, contrary to results obtained in luminal cells, expression of RALDHs in RA-

insensitive basal MDA-MB-231 cells did not affect the cell cycle in a significant manner 

(data not shown). Together, these results indicate that over-expression of RALDH3 in 

RALDH-low luminal cells sensitizes these cells to serum levels of retinol through RA 

synthesis, induction of RA target genes and growth arrest.  

 

RALDH3 expression is inhibited by 17"-estradiol but restored upon suppression 

of estrogen receptor signaling in luminal breast cancer cell lines. 

As RALDH3 expression is low in all RA-sensitive ER!-positive breast cancer cell 

lines, we tested whether it is modulated by RA and/or E2 treatment. Unexpectedly, RA 

treatment of MCF7 cells maintained in estrogen-depleted medium induced RALDH3 

expression 2 to 3-fold in (Figure 6A). Similar results were obtained in T47D (Supplemental 

Figure 13A) and SKBR3 cells (data not shown). These results suggest the existence of a 

positive feed-back loop of RALDH3 expression through RA signaling. Consistent with this 

hypothesis, expression of endogenous RALDH3 and of RA-target gene SOX9 was 

increased by long-term (6 d) treatment of MCF7 cells with retinol in a dose-dependent 
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manner (Supplemental Figure 13B), suggesting that even the low levels of RALDH3 

present in these cells are sufficient for sensitivity to retinol (Supplemental Fig. 13B).  

The above-described results indicate that RALDH3 expression is not permanently 

abolished in luminal cell lines, but is actively repressed. Strikingly, treatment of MCF-7 

cells with 17!-estradiol (E2) suppressed basal RALDH3 mRNA levels 2-3 fold after 8, 24, 

48 or 72 h treatments (Figures 6A and B). In addition, E2 suppressed RALDH3 induction 

by RA in a time-dependent manner (Figure 6A and B). Western analysis after 72 h 

treatment confirmed these observations at the protein level (Figure 6C). E2 also 

significantly suppressed RA-induced levels in T47D cells (Supplemental Figure 13A). 

These results suggest that estrogen signaling protects ER"-positive cells from potential 

auto- or paracrine effects of RA on RALDH3 expression. Thus, estrogenic blockade 

therapies should result in increased intratumoral RALDH3 levels. We compared the effect 

on RALDH3 levels of treatment with the selective estrogen receptor modulator tamoxifen 

or with the full antiestrogen ICI182,780 (fulvestrant) with those of estrogen deprivation, 

mimicking aromatase treatment (Figure 6B). The antiestrogens had little effect by 

themselves in the absence of estrogen, but reversed partially (tamoxifen) or fully 

(ICI182,780) the suppression of RALDH3 expression by estradiol. On the other hand, 

tamoxifen unexpectedly had a partial agonist effect in the presence of RA in MCF7 cells, 

inhibiting RA-induced expression by 2-fold (Figure 6B). As a result, saturating 

concentrations of tamoxifen led to a lower level of RALDH3 expression in the presence of 
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E2 and RA compared to estrogen withdrawal. In contrast, ICI182,780 potentiated the 

effects of RA in the absence or presence of E2 (Figure 6B).  

 

RALDH3 is a predictor of recurrence-free survival in breast cancer patients. 

Low expression of RALDH3 in RA-sensitive breast luminal tumor cells could provide 

a selective advantage in a physiological environment containing retinol, while increased 

RALDH3 expression upon inhibition of estrogen signaling or synthesis could contribute to 

inhibition of tumor growth. To determine if RALDH3 expression levels represent a positive 

prognostic marker in patients with luminal tumors, we classified patients from 3 

independent large-scale clinical studies (Chang et al 2005, Chin et al 2006, Loi et al 2008) 

in two groups according to RALDH3 mRNA levels. In the three studies, patients with 

ER!-positive tumors associated with higher expression of RALDH3 (above the median, 

Figures 7A-C, blue lines) had a lower risk of distant metastasis compared to patients with 

lower expression of RALDH3 (Figures 7A-C, red lines). This correlation did not hold for 

patients with ER!-negative tumors in the same studies (Figures 7A and B), suggesting that 

RALDH3 represents a marker for good prognosis specifically in ER!-positive tumors.  
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DISCUSSION 

Results presented herein indicate that RALDH3 expression correlates with RA 

synthesis capacity in in normal HMECs.  Furthermore, some transformed breast epithelial 

cells (basal A type) maintain both RALDH3 expression and RA synthesis capacity. On the 

other hand, no detectable RA synthesizing activity was observed in cell lines expressing 

RALDH1 but with low RALDH3 activity (BT-474, SKBR3, MDA-MB-361). This may 

result either from RALDH1 protein levels insufficient for detectable RA synthesis and/or 

from a catalytic efficiency with retinal substrates lower than that of RALDH3, as 

previously reported for murine enzymes in in vitro enzymatic assays (Gagnon et al 2002, 

Gagnon et al 2003, Sima et al 2009).  

While RALDH3 is expressed in the luminal epithelium of the adult mammary gland, 

its expression is low in luminal breast tumors. As sensitivity to RA in breast cancer cell 

lines also correlates with the luminal phenotype, this suggests that low RALDH3 

expression is needed for tumor cell proliferation in the presence of retinol. This hypothesis 

is strongly supported by the observation that overexpression of RALDH3 in sensitive 

SKBR3 and ZR-75 cells to levels found in normal and immortalized cells led to a marked 

increase in G0/G1 content and reduced DNA replication in the absence of added retinoids, 

as assessed by FACS analysis and EdU incorporation. These effects coincide with RA 

synthesis and activation of several RA target genes, including SOX9, a gene with 

demonstrated antiproliferative properties in mammary epithelial cells. Conversely, basal A 

tumor cells that express RALDH3 and are capable of RA synthesis are not growth-arrested 
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by RA (BT-20 and MDA-MB-468). These tumor cells may correspond to luminal 

progenitors (Visvader 2009), which have been reported to express RALDH3 (Raouf et al 

2008). The role of RALDH3 expression in basal A tumor cells remains to be investigated, 

but is not expected to lead to growth suppression.  

RALDH3 expression is actively repressed in luminal tumors through estrogen 

signaling. Thus, the overexpression of the aromatase and ER! genes in luminal tumor cells 

is a probable mechanism of escape from the antiproliferative effects of RALDH3 

expression. The combined suppression of RALDH3 and up-regulation of RAR! (Laganiere 

et al 2005, Raffo et al 2000, van der Burg et al 1993, van der Leede et al 1995) by estrogen 

signaling in luminal tumors should lead to the accumulation of unliganded RAR!, and thus 

to active suppression of antiproliferative RA target genes. 

Taken together, our results indicate a role of RALDH3 expression in RA signaling in 

the luminal breast epithelial cell lineage and in the control of ER!-positive cell 

proliferation through autocrine and/or paracrine mechanisms. This proposed role is 

compatible with the observation that the RALDH3 gene is found within a mouse breast 

tumorigenesis modifier locus, its expression levels correlating with lower susceptibility in 

p53 heterozygote mouse strains (Koch et al 2007), and in an overlapping rat modifier of 

sensitivity to DMBA-induced mammary carcinoma, Mcs3 (Shepel et al 1998). Low levels 

of RALDH3 expression and thus of intratumoral RA synthesis may account for luminal 

tumor progression in spite of sensitivity to the antiproliferative effects of RA. Restoring 

RALDH3 expression in tumor cells during therapeutic treatments based on estrogenic 
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blockade may thus contribute to therapeutic success due to RA synthesis from circulating 

retinol. In this respect, we observed that prolonged exposure to low levels of retinol in the 

absence of E2 signaling is sufficient to induce endogenous RALDH3 expression and RA 

signaling in MCF7 cells. Importantly, our observations indicate that RALDH3 expression 

levels predict longer distant metastasis-free survival in breast cancer patients with ER!-

positive, but not ER!-negative tumors.  
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MATERIALS AND METHODS 

 

Recombinant plasmids 

The mouse RALDH3 cDNA was inserted in the pCDNA3.1-neo vector (Invitrogen, 

Carlsbad, CA, USA) and fused with an adaptor encoding an N-terminal hemagglutinin 

(HA) tag sequence. The catalytically dead RALDH3 mutant was generated by site directed 

mutagenesis of the catalytic cysteine (C314A) using a Quickchange site-directed 

mutagenesis kit (Stratagene, La Jolla, CA, USA).  

 

Cell culture 

Primary human mammary epithelial cells (HMECs, Lonza, Basel, Switzerland) were 

maintained in MEGM serum-free medium (Lonza). All cell lines were purchased from 

American Type Culture Collection ATCC (Manassas, VA, USA). Tissue culture conditions 

for all cell lines used are listed in Supplemental Figure 14. 

 

Preparation of protein extracts  

For in vitro enzymatic assays and Western analysis of untreated cells, cells were 

maintained in their respective media until near-confluence and switched to DMEM 

supplemented with 10% FBS and 1% penicillin/streptomycin 24 h before harvest. For 

analysis of hormonal regulation of RALDH3 expression, cells were switched to DMEM 
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supplemented with 10% charcoal-treated FBS 3 days before treatment with E2, RA, Tam or 

ICI182,780 (Sigma-Aldrich). Cells washed twice with ice-cold phosphate buffer saline 

(PBS) were collected in ice-cold lysis buffer (25 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 

mM EDTA pH 8.0, 1% NP-40, 5% glycerol) supplemented with 1 mM dithiothreitol, 1 

mM phenylmethylsulfonyl fluoride and protease inhibitors (Sigma-Aldrich). Cells were 

sonicated 3 min (maximal intensity, three on/off cycles) on a Bioruptor (Diagenode, Sparta, 

USA) followed by centrifugation (16,200 g, 15 min). Protein concentrations in supernatants 

were quantified following the Bradford method (Bio-Rad Laboratories, Hercules, CA). 

 

In vitro enzymatic assays. 

Enzymatic assays were performed with 50 !g of whole cell protein extracts in 250 !l 

reaction buffer (100 mM Tris-HCl pH 8.5, 0.02% Tween 20, 600 !M NAD+, 1 mM 

dithiothreitol) containing all-trans retinal (10 !M, Sigma-Aldrich). All assays were 

performed for 30 min at 37°C in triplicates. The reaction was stopped by freezing in an 

ethanol/dry ice bath. Retinoids were extracted by addition of butanol/acetonitrile (50:50 

mix, 400 !l) to frozen reactions. Tubes were incubated at room temperature until complete 

thawing and centrifuged (3,500 g, 15 min). Supernatants (20 !l) were analyzed by reverse 

phase HPLC for RA quantification as described below. 

 

Western blot analysis 
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Protein extracts were separated on SDS-polyacrylamide gels (10%) and transferred 

onto polyvinylidene difluoride membranes (Millipore Corporate, Billerica, MA, USA). 

Membranes were blotted with antibodies directed against RALDH1 (ALDH, BD 

Biosciences, Mississauga, ON, Canada), RALDH3 (ALDH1A3, C13, Santa Cruz 

Biotechnology, Santa Cruz, CA, USA), SOX9 (AB5535, Millipore, Temecula, CA, USA), 

the HA tag (12CA5, Santa Cruz Biotechnology) or !-Actin (A-5441, Sigma-Aldrich). 

Secondary antibodies (anti mouse-HRP, anti-goat-HRP and anti rabbit-HRP) were 

purchased from Cedarlane (Burlington, ON, Canada). 

 

In vivo metabolism assays 

Cells were plated and maintained in their respective media until near-confluence, and 

then switched 24 h before treatment to DMEM 10% FBS 1% penicillin/streptomycin. Cells 

were treated with 2 !M retinol (Sigma-Aldrich) or vehicle (DMSO, final dilution 1:1000) 

for 18 h. At the end of the incubation period, aliquots (400 !l) of media were collected 

from each treated plate and frozen at -80°C in borosilicate tubes (Fisher Scientific, Ottawa, 

ON, Canada). To extract retinoids, frozen aliquots were incubated with 400 !l of 

butanol/acetonitrile (50:50 mix, Sigma-Aldrich) until totally thawed and quickly vortexed. 

After addition of 40 !l of 10M K2HPO4 and centrifugation (3,500 g, 4°C, 15 min) 

supernatants (100 !l) were analyzed by reverse phase HPLC using a Shimadzu LC10-

ADVP equipped with a SIL-HTC autosampler and cooling system (Man-Tech, Guelph, 

ON, Canada) and a 10-ODS (250x4.5 mm) analytical column (Phenomenex Inc., Torrance, 
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CA, USA). Retinoids were eluted with a mobile phase (acetonitrile 65%/water 35%, 10 

mM ammonium acetate) at a flow rate of 1.2 ml/min. Retinoids were detected with a 

photodiode array detector (Shimadzu model SPD-M10 AVP).  

 

RNA extraction, reverse transcription and quantitative PCR 

Cells plated and treated as described for preparation of protein extracts were harvested 

after removal of the culture medium in 1 ml of TRI-Reagent (Sigma-Aldrich). Total RNAs 

were extracted and 2 !g were reverse-transcribed using the RevertAid H first minus strand 

cDNA synthesis kit (MBI Fermentas, Burlington, ON, Canada). Reverse transcription 

products were diluted 10 times in water prior to real-time quantitative PCR. Gene 

expression levels were determined using primer and probe sets from the Universal Probe 

Library (Roche Diagnostic, Laval, Que, Canada).  

 

Gene expression profiling analysis 

For analysis of Agilent arrays from the UNC microarray database, Loess normalization 

was performed on background-subtracted intensities. Flagged values were removed, and 

data were log2 transformed and median-centered for each gene across samples. For 

Affymetrix arrays (Acc. numbers ArrayExpress E-TABM-157 and GEO database 

GSE16795, (Chin et al 2006, Loi et al 2008)), RMA normalization and median-centering 

for each gene were performed. Breast tumor subtypes (luminal A, luminal B, HER2+, 

basal-like or normal-like) were determined using the nearest centroid method applied to the 
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PAM50 gene set (Parker et al 2009) using Spearman correlation as distance. Luminal A/B 

tumors were grouped and normal-like tumors and metastases excluded for better 

comparison with results from the tissue microarrays. 

 

Tissue staining and immuno-histochemistry 

All cell samples, mouse and human tissue samples (obtained in accordance with ethics 

protocols approved by the Comité de Déontologie de l’Expérimentation sur les Animaux de 

l’Université de Montréal and the Comité d’Ethique de la Recherche du Centre Hospitalier 

de l’Université de Montréal) were formalin-fixed and paraffin-embedded at the IRIC 

histology core facility (IRIC, Montreal, QC, Canada).  Primary antibodies used were 

directed against RALDH3 (C-13, Santa Cruz Technologies), ER! (SP1, Ventana Medical 

Systems). Normal rabbit IgG (Santa Cruz Technologies) were used as isotype control for 

RALDH3 staining. Primary antibody incubation was followed by incubation with 

appropriate biotin conjugated secondary antibodies (Jackson ImmunoResearch 

Laboratories, Inc, West Grove, PA). For staining, streptavidin-horseradish peroxidase, and 

3,3 diaminobenzidine were used (DABmap detection Kit, Ventana Medical Systems). For 

double staining, the first staining was performed using the RALDH3 antibody as for single 

staining but was followed by a denaturation step (90!C, 4 min) before ER! staining with 

the REDmap detection Kit (Ventana Medical Systems). Counterstained sections were 

scanned at X40 magnification using the C9600 NanoZoomer System (Hamamatsu 
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Corporation, Bridgewater, NJ, USA). NDP Scan software (version 2.2.17) was used to 

visualize virtual slides and extract images. 

 

Tissue microarrays 

Tissue samples from 140 patients with invasive breast carcinoma were classified as 

ER!-positive (ER!+), HER2-positive (HER2+) or triple-negative (Triple neg.) according 

to ER/PR and HER2 status. Tissue microarrays prepared from these tumors include three 

samples from each donor tissue block to mitigate tumor heterogeneity. All 

immunohistochemically-stained samples (see above) were scored independently by two 

pathologists. RALDH3 staining was interpreted using a grading scale of 0-4 established by 

initial classification of degrees of expression in different tumors. Scoring was performed on 

each of the triplicate samples and averages were calculated for each tumor and each class of 

tumors.  

 

Growth assays 

Cells were seeded at low density in their respective media supplemented with charcoal-

treated FBS. In addition, EGF supplementation was omitted for 184B5 and MCF-10F cell 

lines. Cells were treated at days 0, 2, 4, 6 with vehicle (DMSO, 1:1000 dilution), retinol 

(100 nM) or all-trans RA (100 nM). After 9 days cells were collected and protein 
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concentrations were quantified by DC protein assay (Life Science, Mississauga, ON, 

Canada). 

 

Cell cycle analysis of RALDH3-expressing cells 

SKBR3, ZR-75 and MDA-MB-231 cells were electroporated (5 million cells, 240 V, 

950 !F for SKBR3, 1000 !F for ZR-75 and 975 !F for MDA-MB-231) with either the 

parental pCDNA3.1-neo vector or vectors expressing RALDH3 or its catalytically inactive 

mutant, together with a ten-fold lower amount of an expression vector for membrane-

targeted EGFP (pEGFP-spectrin, (Kalejta et al 1997)). Cells were seeded in 10 cm plates in 

DMEM supplemented with 10% FBS and 1% penicillin/streptomycin and left untreated or 

treated with retinol or RA at indicated concentrations. After 72 h cells were trypsinized and 

a fraction of transfected cells were collected in lysis buffer for western analysis using a 

monoclonal antibody against the HA tag. The remaining transfected cells were fixed in 

70% ethanol, stained with propidium iodine (Sigma-Aldrich) and analyzed on a Canto flow 

cytometer (BD Biosciences). At least 20,000 GFP-positive cells were used for each 

condition for cell cycle profile analysis with ModFit LT 3.2 software (Verity Software 

House, Topsham, ME, USA).  

 

5-ethynyl-2'-deoxyuridine (EdU) incorporation assays 

SKBR3 cells were transfected by electroporation as described above. Cells were 

seeded in 96-well plates (20,000 cells/well) and treated or not for 48 h with all-trans RA (1 
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µM). Proliferation assays were performed using a Click-iT™ EdU Alexa Fluor High-

Throughput Imaging (HCS) Assay (Invitrogen) according to the supplier’s protocols after 

incubating cells with EdU (10 µM) for 2 h. Images were captured using ImageXpressMicro 

and analyzed with MetaXpress (Molecular Devices, Sunnyvale, CA, USA). 

 

Statistical analysis 

For FACS analysis and EdU assays, a two sample t test was used to assess difference 

in number of cells in G0/G1 phase and EdU-positive cells. For RNA expression profile 

analysis, an ANOVA test was performed to determine whether RALDH3 mRNA 

expression was significantly different between class of tumors (Luminal, HER2+, Basal) 

and a Scheffe test to investigate the statistical significance of individual comparisons. A P-

value < 0.05 was considered significant. For tissue microarray analysis, a !2 contingency 

test with a Yates correction was used to determine the association between tumor types and 

patient IHC scores. A P-value < 0.05 was considered significant. All statistical procedures 

(two-sample t test, !2 test, ANOVA test and Scheffe test) were performed in the open-

source R statistical environment (http://www.r-project.org).  
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FIGURE LEGENDS: 

Figure 1. Sensitivity to the antiproliferative effects of RA correlates with low retinal 

dehydrogenase activity in breast tumor cells. (A) In vitro RA synthesis from retinal directed 

by protein extracts from normal, immortalized and transformed breast cell lines. RA 

concentrations were measured after in vitro incubation of equal amounts of protein extracts 

from the indicated cell lines with all-trans retinal (10 µM) at 37oC. Results of one of two 

experiments are shown. Error bars indicate the standard error of the mean (SEM) of 

triplicate measurements. (B) Synthesis of RA from retinol in cultured cells. RA 

concentrations were measured by HPLC in the culture medium of cells incubated with 

retinol (2 µM) for 18 hours. RA peaks (validated by spectrum analysis) are indicated on the 

HPLC profiles. Results of one of two experiments are shown. (C) Effect of RA treatment 

(100 nM) on proliferation of breast cell lines maintained in their respective media over 9 

days. Protein concentrations in whole cell extracts were measured by Lowry assay. EGF 

supplementation was omitted from the media of immortalized cells to reveal RA sensitivity. 

Results are expressed as percentage of growth in the vehicle-treated cells for each line. 

Error bars indicate the SEM of triplicate measurements. 

 

Figure 2. Expression of RALDH3 correlates with retinal dehydrogenase activity. (A-

C) Quantitative PCR of reverse transcribed mRNAs from normal, immortalized or 

transformed mammary epithelial cells. Primer pairs specific to human RALDH1 (A), 

RALDH2 (B) or RALDH3 (C) were used and signals were normalized to expression of the 
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house-keeping gene !-Actin. Error bars indicate the SEM of triplicate measurements in one 

of two experiments. (D) Western analysis of expression of RALDH1 and 3 using 

monoclonal antibodies directed against human RALDH1 or RALDH3. Equal amounts of 

whole cell extracts (20 µg) were loaded on a 10% polyacrylamide-SDS gel and levels of !-

Actin were monitored as internal reference (HMEC P1 and HMEC P2: HMEC cells at 

passage 1 and at passage 2). Similar results were obtained in two experiments. Full-length 

blots are presented in Supplemental Figure 2. 

 

Figure 3. RALDH3 is expressed predominantly in human ductal luminal breast 

epithelium. (A-B) Expression of RALDH3 in human mammary tissue was determined by 

IHC using an anti-RALDH3 mAb (brown stain, see arrows) in sections of normal tissue 

adjacent to an ER"-positive tumor (A) and of 2 different regions of a breast reduction 

mammoplasty sample (B). Scale bars represent 100 #m (A) and 200 #M (B). 

 

Figure 4. RALDH3 is under-expressed in ER"-positive tumors. (A) RALDH3 

(ALDH1A3) mRNA levels are low in luminal breast tumors. Box-plot representation of 

ALDH1A3 levels in 4 breast tumor transcriptional profiling studies. RALDH3 levels were 

lower in luminal versus HER2+ and/or basal tumors (Scheffe test: p<0.0005 in all graphs). 

(B-E) Paraffin-embedded formalin-fixed sections of breast tissue arrays containing 

triplicate samples from 140 patients were stained with an anti-RALDH3 mAb. Results were 

scored from 0 to 4 according to intensity of staining using a scale established by initial 
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classification of expression in all tumors (B). The average scores in the three types of breast 

tumors are shown (C). The p-value of the Chi-squared test for the association of luminal 

subtype with low RALDH3 (score<2) is 0.000216. Histogram and pie chart representations 

of the distributions of scores by tumor type are also shown (D-E). The rounded values of 

the median scores of the three core biopsies were plotted for each sample. 

 

Figure 5. Active RALDH3 restores RA synthesis and prevents proliferation of SKBR3 

cells more efficiently than active RALDH1. (A) Western analysis of HA-tagged wild type 

or inactive RALDH3 mutant, SOX9 or !-Actin levels in transiently transfected SKBR3 

cells using indicated antibodies. Full-length blots are presented in Supplemental Figure 7. 

(B) HPLC analysis of RA production from retinol in the culture medium of SKBR3 cells 

transiently expressing RALDH or inactive mutants. (C) G0/G1 fraction in transiently 

transfected SKBR3 cells expressing RALDH or inactive mutants with or without RA 

treatment, as determined by FACS analysis. Error bars indicate the SEM of measurements 

in 3 independent experiments. *p<0.01, **p<0.001, two-sample t-test. (D) SKBR3 cells 

were transfected with the parental vector or with the same vector expressing HA-tagged 

RALDH3 or its inactive mutant. Cells were seeded in 96-well plates and treated or not for 

48 h with RA (1 µM), and then with EdU (10 µM) for 2 h. Cells were fixed, permeabilized, 

and incorporated EdU was detected by a fluorescent-azide coupling reaction. Cells were 

counterstained with Hoechst. EdU/Hoechst staining ratios are shown; error bars indicate the 

SEM of measurements in two independent experiments. *p<0.05, two-sample t-test. (E) 
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Representative pictures of the different transfection/treatment conditions. Scale bars 

represent 50 !m. 

 

Figure 6. RALDH3 expression is induced by RA and repressed by estradiol in MCF-7 

cells. (A-B) Quantitative PCR analysis of RALDH3 expression in MCF-7 cells. Cells 

maintained 4 days before treatment in phenol-red free DMEM medium supplemented with 

10% charcoal-treated FBS were treated for indicated time periods (A) or for 72 h (B) with 

estradiol (E2 25 nM in A, 5 nM in B), retinoic acid (RA, 100 nM), antiestrogens tamoxifen 

(Tam) and ICI 182,780 (ICI) or combinations thereof. For cells treated for 48 and 72 h, 

treatments and medium were replaced every day. Error bars represent the SEM of 

triplicates in one of two experiments. (C) Representative immunoblot demonstrating 

regulation of RALDH3 expression by RA and E2 in MCF-7 cells after 72 h treatment with 

(RA 100 nM, E2 25 nM). Three experiments were performed with similar results. Full-

length blots are presented in Supplemental Figure 12. 

 

Figure 7. Expression level of RALDH3 in tumors predicts distant metastasis-free 

survival in breast cancer patients. Patients from 3 independent large-scale clinical studies 

(A, B, C, see text for references) containing a large number of ER"-positive tumors with 

associated transcriptional profiles were divided into 2 groups based on median expression 

of RALDH3. Kaplan-Meier curves for emergence of distant metastases were computed 

based on provided patient history in these two groups (high expression of RALDH3: blue 
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lines; low expression: red lines). One-sided p-values and Cox hazard ratios (HR) between 

the 2 groups are shown. 
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SUPPLEMENTAL FIGURES LEGENDS 

Supplemental Figure 1. Detection of RA in medium of cultured cell lines. The 

retention time and absorbance spectrum in UV of a standard of pure RA was used as a 

reference (A) to identify the RA peak (red line) in medium from cell lines by reverse-phase 

HPLC (B). The peak identified by the red line presents the same retention time and has the 

same absorbance spectrum as the peak of pure RA. 

 

Supplemental Figure 2. Full-length blots of figure 2 

 

Supplemental Figure 3. Isotype controls of the antibody directed against RALDH3. 

Successive sections of the same region of formalin-fixed paraffin-embedded mouse (A) and 

human (B) mammary glands stained either with the antibody directed against RALDH3 or 

with the corresponding isotype (goat IgG). The brown staining (black arrows) is observed 

only with the antibody directed against RALDH3 but not with the isotype control. Scale 

bars represent 100 !m. 

 

Supplemental Figure 4. RALDH3 is expressed in normal mouse luminal breast 

epithelium. (A) Expression of RALDH3 was determined by IHC using an anti-RALDH3 

(as in Fig. 2) in a section mouse mammary tissue (brown stain, see arrows). Scale bars 
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represent 200 !m. (B) Expression of smooth muscle actin (SMA, red stain, see red arrows) 

was detected by co-staining with RALDH3 in the mammary tissue of mice (RALDH3: 

brown stain, see black arrows). Scale bars represent 100 !m.  

 

Supplemental Figure 5. Selectivity of antibodies against RALDH3 under IHC 

conditions. HeLa cells were transfected with plasmids expressing human RALDH1, 

RALDH2, RALDH3 or with the parental vector (0). Formalin-fixed paraffin-embedded 

pellets of transfected cells were stained with the anti-RALDH1 or anti-RALDH3 Ab as in 

figure 3, demonstrating the specificity (stained cells appear in dark brown, see arrows for 

examples). Scale bars represent 100 !m. 

 

Supplemental Figure 6. Absence of RALDH3 expression in an ER"-positive but not 

ER"-negative tumor. (A) RALDH3 and ER" levels were detected by IHC in 2 consecutive 

sections of an ER"-positive tumor sample using an anti-RALDH3 Ab (brown stain, right 

panel, see black arrows for examples) or an anti-ER" mAb (brown stain, left panel, see red 

arrows for regions of RALDH3 expression). Two different regions are shown in a 

synchronized view of the 2 stained sections. (B) Expression of RALDH3 and ER" were 

detected by costaining of a single section of an ER"-positive tumor sample using an anti-

RALDH3 mAb (brown stain, see arrows for examples) or an anti-ER" mAb (red stain). (C) 

Expression of RALDH3 was detected by IHC in an ER"-negative tumor sample using an 
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anti-RALDH3 mAb (brown stain, see arrows for examples). Scale bars represent 100 !m 

(A-B) and 200 !m (C). 

 

 

Supplemental Figure 7. Full-length blots of figure 5 

 

Supplemental figure 8. RALDH3 expression levels in transfected SKBR3 and ZR-75 

cells are comparable to endogenous levels in immortalized non-tumorigenic 184B5 cells. 

SKBR3 and ZR-75 cells were transfected as for FACS analysis. RALDH3 expression in 

transiently transfected SKBR3, ZR-75 and in non-tumorigenic 184B5 cells was compared 

by western blot analysis using the anti-RALDH3 mAb as in Figure 2D. Note the presence 

of a faster migrating band in SKBR3 cells transfected with WT RALDH3, corresponding to 

endogenous RALDH3. 

 

Supplemental Figure 9. RALDH3 expression induces the expression of known RA 

target genes. (A) Q-PCR analysis of 4 known RA target genes (SOX9, CYP26A1, FOXA1 

and RAR"2) in SKBR3 cells transiently expressing similar levels of HA-tagged RALDH3 

or its catalytically-inactive mutant. (B) Western blot analysis of the expression of HA-

tagged RALDHs and of the RA target gene SOX9 in transfected SKBR3 cells. 
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Supplemental Figure 10. RALDH3 restores RA synthesis and increases the G0/G1 

fraction in ZR-75 cells. (A) Western analysis of HA-tagged RALDH3 and SOX9 

expression in transiently transfected ZR-75 cells, in the absence or presence of added RA (1 

µM), Retinol (Rol 100 nM) or vehicle. SOX9 levels are induced by RA or RALDH3 

expression, while the catalytically inactive mutant does not significantly modulate SOX9 

expression. (B) G0/G1 fraction in parental or transiently transfected ZR-75 cells expressing 

RALDH3 or its catalytically inactive mutant in the absence or presence of retinol or RA, as 

determined by FACS analysis. Error bars represent the SEM of measurment on three 

independent experiments. (*p !0.05, **p!0.005, ***p!0.001, two-sample t-test). 

 

Supplemental figure 11. Expression of RALDH3, but not of the catalytically inactive 

RALDH3 mutant C314A, suppresses colony formation in MCF-7. (A) Colony formation 

assay with MCF-7. Cells were infected with a retroviral vector (pMSCV-CMV) expressing 

RALDH3, RALDH3 C314A or the parental vector and were selected with puromycin in 

serum-free medium. Cells were seeded at low density (2,000 cells per well) and colonies 

were grown with Retinol (Rol, 100 nM) or RA (100 nM) and stained with crystal violet 

after 10 days. Treated media were renewed every 2 d. (B) Representative immunoblot 

showing expression levels of WT and mutant RALDH3 in transduced MCF-7 cells. 

 

Supplemental figure 12. Full-length blots of figure 6 
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Supplemental Figure 13. RALDH3 expression is induced by retinoids and repressed 

by E2 in luminal cells. (A) Quantitative PCR analysis of RALDH3 expression in MCF-7 

and T47D luminal cells treated for 72h with retinoic acid (RA, 100 nM), estradiol (E2, 25 

nM), or both. Treatments and medium were replaced every day. (B) Quantitative PCR 

analysis of RALDH3 and SOX9 expression in MCF-7 treated for 6 days with increasing 

concentrations of retinol. Error bars represent the SEM of triplicate measurements. 

 

Supplemental Figure 14. Tissue culture conditions of cell lines used in this study.
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