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Résumé 

Chaque année, environ 1 à 1,25 million d’individus subiront une chirurgie 

cardiaque. [1] Environ 36 000 chirurgies cardiaques sont effectuées au Canada et 8000 

procédures au Québec (http://www.ccs.ca). Le vieillissement de la population aura pour 

conséquence que la chirurgie cardiaque sera offerte à des patients de plus en plus à risque 

de complications, principalement en raison d’une co-morbidité plus importante, d’un risque 

de maladie coronarienne plus élevée, [2] d’une réserve physiologique réduite et par 

conséquent un risque plus élevé de mortalité à la suite d’une chirurgie cardiaque. L’une des 

complications significatives à la suite d’une chirurgie cardiaque est le sevrage difficile de la 

circulation extracorporelle. Ce dernier inclut la période au début du sevrage de la 

circulation extracorporelle et s’étend jusqu’au départ du patient de la salle d’opération. 

Lorsque le sevrage de la circulation extracorporelle est associé à une défaillance 

ventriculaire droite, la mortalité sera de 44 % à 86 %. [3-7] Par conséquent le diagnostic, 

l’identification des facteurs de risque, la compréhension du mécanisme, la prévention et le 

traitement du sevrage difficile de la circulation extracorporelle seront d’une importance 

majeure dans la sélection et la prise en charge des patients devant subir une chirurgie 

cardiaque. Les hypothèses de cette thèse sont les suivantes : 1) le sevrage difficile de la 

circulation extracorporelle est un facteur indépendant de mortalité et de morbidité, 2) le 

mécanisme du sevrage difficile de la circulation extracorporelle peut être approché d’une 

façon systématique, 3) la milrinone administrée par inhalation représente une alternative 

préventive et thérapeutique chez le patient à risque d’un sevrage difficile de la circulation 

extracorporelle après la chirurgie cardiaque. 

 

Mots-clés : ventricule droit, circulation extracorporelle, chirurgie cardiaque, instabilité 

hémodynamique, échocardiographie transoesophagienne, hypertension pulmonaire 

http://www.ccs.ca/�
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Abstract 

Every year, 1 million to 1.25 million patients worldwide undergo cardiac 

surgery. [1] Up to 36,000 cardiac surgeries are performed each year in Canada and close to 

8000 in Quebec (http://www.ccs.ca). Because of the aging of the population, cardiac 

surgery will increasingly be offered to patients at a higher risk of complications. Indeed, 

elderly patients have increased co-morbidities, and aging is also a significant risk factor in 

the prevalence of coronary artery disease. [2] The consequence is a reduced physiologic 

reserve, hence an increased risk of mortality. These issues will have a significant impact on 

future healthcare costs, because our population undergoing cardiac surgery will be older 

and more likely to develop postoperative complications. One of the most dreaded 

complications in cardiac surgery is difficult separation from cardiopulmonary bypass 

(CPB). The definition of difficult separation from CPB includes the time period from when 

CPB is initiated and until the patient leaves the operating room. When separation from CPB 

is associated with right ventricular failure, the mortality rate will range from 44% to 

86%. [3-7] Therefore the diagnosis, the preoperative prediction, the mechanism, prevention 

and treatment of difficult separation from CPB will be crucial in order to improve the 

selection and care of patients and to prevent complications for this high-risk patient 

population. The hypotheses of this thesis are the following: 1) difficult separation from 

CPB is an independent factor of morbidity and mortality, 2) the mechanism of difficult 

separation from CPB can be understood through a systematic approach, 3) inhaled 

milrinone is a preventive and therapeutic approach in the patient at risk for difficult 

weaning from CPB after cardiac surgery. 

 

Keywords : Right ventricle; Cardiopulmonary bypass; Cardiac surgery; Hemodynamic 

instability; Transesophageal echocardiography; Pulmonary hypertension. 
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Foreword 

Every year, 1 million to 1.25 million patients worldwide undergo cardiac 

surgery. [1] Up to 36,000 cardiac surgeries are performed each year in Canada and close to 

8000 in Quebec (www.ccs.ca). With the aging of the population, cardiac surgery will 

increasingly be offered to patients at a higher risk of complications. Elderly patients have 

increased co-morbidities and aging is also a significant risk factor in the prevalence of 

coronary artery disease. [2] The consequence is a reduced physiologic reserve. These issues 

will have a significant impact on future healthcare costs, because our population 

undergoing cardiac surgery will be older and more likely to develop postoperative 

complications. The relation between these postoperative complications and the impact of 

cardiac surgery has been the object of intensive research performed by several pioneers at 

the Montreal Heart Institute (MHI) [8] at large, and in the anesthesia department in 

particular by Dr. Raymond Martineau.  

Dr. Raymond Martineau, anesthesiologist at the MHI, played a pivotal role in the 

creation of a database compiling the data of all patients operated in this institution between 

1995 and 1999. Unfortunately, Dr. Martineau was unable to sustain that very important 

activity and the Department of Anesthesia was saddened when he passed away in 2005. I 

had the privilege to work with Dr. Martineau and, in collaboration with the Department of 

Cardiac Surgery, we published several reports using this database. [9-11] When I was 

recruited by the Department of Anesthesiology of the MHI in 1999, my duty was to 

develop the use of transesophageal echocardiography (TEE) in the operating room. To do 

so, Dr. Pierre Couture and I trained our colleagues, developed a database, published in 

collaboration with Drs. Jean Buithieu and Jean-Claude Tardif a textbook on TEE, [12] the 

second edition with the collaboration of Dr. Annette Vegas, [13] and performed several 

research projects regarding the use of TEE in the operating room and in the intensive care 

unit. [10-12;14-50] In 2006, I enrolled in a PhD program at the University of Montreal. My 

objective was to improve my research skills in order to perform clinical studies tackling a 
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problem I felt was important in clinical medicine, namely the issue of hemodynamic 

instability. When this phenomenon occurs in the setting of cardiac surgery, namely between 

the initiation of the weaning process of cardiopulmonary bypass (CPB) and the moment 

when the patient leaves the operating room, we have been calling it difficult separation 

from CPB. Since the beginning of my PhD in 2006, in collaboration with other 

investigators and as the supervisor of residents as well as fellow, master and PhD students, 

we conducted several investigations regarding the issue of difficult weaning from 

CPB. [10;11;38-44;46;47;51-53] The results of four of these investigations will be 

presented in this work. Firstly, we will define difficult weaning from CPB and explore its 

consequences. Secondly, the mechanism of difficult weaning from CPB will be presented 

based on the physiological concept of venous return described by Guyton [54] and our 

experience using TEE since 1992 in more than 15,000 patients. Finally, the rationale and 

the preliminary studies of a novel approach using inhaled milrinone will be presented.  



 

Introduction 

One of the dreaded complications in cardiac surgery is difficult separation from 

CPB. In the setting of cardiac surgery, we define difficult separation from CPB as the 

process that may take place between the beginning of the weaning process of CPB and the 

moment the patient leaves the operating room. When difficult separation from CPB is 

associated with right ventricular (RV) failure, the mortality rate will range from 44% to 

86%. [3-7] For this reason the diagnosis, the preoperative prediction, the mechanism, 

prevention and treatment of difficult separation from CPB will be crucial in order to 

improve the selection and care of patients and to prevent complications for the cardiac 

surgical population.   

The hypotheses of this thesis are the following: 1) difficult separation from CPB is 

independently associated with an increased risk of morbidity and mortality, 2) the 

mechanism of difficult separation from CPB can be understood through a systematic 

approach based on the concept of venous return, 3) inhaled milrinone is a preventive and 

therapeutic approach in the patient at risk of difficult weaning from CPB after cardiac 

surgery.  

The thesis will include four key studies. The first study will demonstrate the 

prognostic importance of difficult weaning from CPB in a multicentered Canadian study in 

2331 patients [55] in which the MHI participated. The second and third studies are part of a 

single-centered randomized controlled trial [56] in which we explore the natural 

hemodynamic and echocardiographic evolution of 120 patients undergoing valvular surgery 

and describe the characteristics of patients randomized to amiodarone and those requiring 

inotropes to be weaned from CPB. Finally, the fourth study is the first randomized 

controlled trial on the intraoperative use of inhaled milrinone for the prevention of difficult 

separation from CPB. 
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Chapter 1 Definition and importance of difficult 

separation from CPB
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In this first chapter, we will define difficult separation from CPB, review the 

predictors, the significance and the consequences of this important complication in cardiac 

surgery. Finally, we will present the research performed by the candidate and his 

collaborators on this issue since the beginning of his PhD program in 2006.  

1.1 Definition of difficult separation from CPB 

The time sequence in a cardiac surgical procedure is illustrated in Figure 1. In the 

preoperative period, the patient will be evaluated by several members of the cardiac team, 

mainly the cardiac surgeon and the cardiac anesthesiologist, to determine the precise 

surgical procedure to be performed and also for risk stratification. This will be discussed in 

more detail in section 1.2. After the preoperative evaluation, the patient is brought in the 

operating room where the surgical procedure is performed. Following the cardiac surgical 

procedure, the patient is then transferred to the intensive care unit for 24 to 48 hours and to 

the postoperative ward for 5 to 10 days before being discharged home or to a recovery 

facility. The operating room time is divided in three periods: before, during and after CPB. 

Cardiopulmonary bypass is the term used to describe an extracorporeal circuit used during 

cardiac surgery. The CPB maintenance is under the supervision of a professional called the 

perfusionist.  
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Figure 1 Time sequence of a cardiac surgical procedure 

A cardiac surgical procedure can be divided into three periods: before, in the 
operating room (OR) and after the procedure. The time after the procedure includes the 
time spent in the intensive care unit (ICU) and in the hospital. In the OR, there are three 
periods, before, during and after cardiopulmonary bypass (CPB). The event at the end of 
CPB, when the extracorporeal circulation is gradually withdrawn, corresponds to the 
weaning from CPB. In this thesis, the expression “difficult separation from CPB” is related 
to both the weaning period and the operative period following CPB. 

 

The role of CPB is to temporarily replace the heart and lungs1

                                                 
1 The term extracorporeal circuit or heart-lung machine is also used as a synonym of CPB. 

 which are not 

functional during the cardiac procedure. The role of CPB is to provide oxygen transport to 

the body and all the vital organs, except the heart and lungs. The majority of cardiac 
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surgeries are performed using CPB.2

 Normally, when CPB is gradually withdrawn, the heart resumes normal mechanical 

and electrical activity. The CPB is then turned off and removed from the patient. However 

in some patients, vasoactive drugs such as intravenous noradrenaline are required to 

maintain an adequate arterial pressure and thus sustain cardiac function and oxygen 

transport. The dosage of this vasoactive medication can vary from one patient to another. If 

one vasoactive agent is not sufficient, typically additional medications such as inotropes 

like intravenous milrinone will be added to wean the patient from CPB. If this 

pharmacological strategy does not produce the desired effect, the weaning process will fail 

and the cardiac surgeon will have to reinstitute full CPB. This is called “return on CPB”. 

As the pharmacological approach is insufficient, mechanical devices used to temporarily 

support ventricular function such as an intra-aortic balloon pump (IABP) or ventricular 

assist device (VAD) will be used. There are several reasons or mechanisms to explain this 

failure to wean from CPB and they will be detailed in Chapter 3. However, the 

anesthesiologist using TEE will have an important role to play if difficult weaning from 

CPB occurs. His role will be to rule out any unexpected surgical complication resulting for 

instance from a dysfunctional prosthesis. In the largest series published so far on the role of 

 The use of CPB can be associated with specific 

complications that will be discussed in more details in section 1.2.5. At the end of CPB, 

when the cardiac surgery is completed, the cardiac team will gradually withdraw the 

extracorporeal support. This process is called weaning or separation from CPB. Weaning 

from CPB begins when the surgeon decides to gradually reduce the venous return from the 

CPB and derives it back to the patient. This will be performed only if the cardiac team 

considers that the patient is stable enough to maintain his oxygen transport. Weaning from 

CPB is considered complete when the cardioplegia, venous and arterial cannulae are 

removed. This is followed by the administration of protamine. In this thesis, the expression 

“difficult separation from CPB” is related to both the weaning period and the operative 

period following CPB. This period ends when the patient leaves the operating room. 

                                                 
2 Some cardiac surgeries, for instance coronary revascularization, can be performed without CPB. This is 
called off-pump cardiac surgery. These procedures and their impact will not be discussed in the thesis. 
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TEE in 12,566 patients undergoing cardiac surgery, Eltzschig et al. [57] observed that TEE 

influenced cardiac surgical decisions in 9% of all cases. This has also been our 

experience. [16] In some of these cases, the surgeon will have to revise his procedure. 

Finally, in rare instances, the CPB weaning process will not be possible and the patient will 

die in the operating room. Therefore, the process of CPB weaning is a critical moment 

during cardiac surgery. It is the earliest period after cardiac surgery where the patient is at 

increased risk of morbidity and mortality. It does not represent a “yes or no” process but a 

complex situation that requires a comprehensive approach and definition. How has difficult 

separation from CPB been defined in the literature? 

The literature confirms that difficult separation from CPB is a life-threatening 

condition because, if unsuccessful, it can lead to intraoperative mortality. [58] Several 

authors have studied and defined difficult separation from CPB. These definitions are 

summarized in Table 1. [10;17;19;51;59-73] 

Butterworth et al. [64] defined difficult weaning from CPB as postoperative 

hemodynamic instability requiring the use of positive inotropic support such as infusions of 

dobutamine, epinephrine, or amrinone. Dopamine was considered a positive inotropic drug 

only if it was infused at rates of 5 µg/kg/min or greater. Patients received inotropic drugs 

based on the observation of reduced cardiac contractility during weaning from CPB, by 

measurement of a reduced cardiac index (< 2.2 liters/min/m2), or both. The right ventricle 

(RV) was directly inspected in the surgical field. The left ventricle (LV) was evaluated 

using TEE. Duration of drug use was not mentioned and TEE-related definition of RV or 

LV dysfunction was not identified. Surgenor et al. [74] defined heart failure after cardiac 

surgery as hypotension or low cardiac index requiring return under CPB, inotropic support 

or requirement for an IABP. Muller et al. [69] defined hemodynamic instability after 

cardiac surgery as ventricular dysfunction requiring the use of vasoactive agents based on 

direct visual inspection of the heart or through TEE examination or a cardiac index < 2 

liters/min/m2. The term post-bypass inotropic support has been used as a synonym of 

difficult separation from CPB and defined as the use of dopamine, dobutamine or 

epinephrine for at least 12 hours in the intensive care unit. [17;58] The use of dopamine 
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from 0.5-3.0 µg/kg/min to increase urine output was not considered in the definition of 

inotropic support. [58] Finally, the term “low cardiac output syndrome” (LCOS) has been 

used in several studies [75-77] to describe the consequence of difficult separation from 

CPB. The term LCOS also covers the period in the intensive care unit. It is defined as a 

postoperative condition: 1) requiring an IABP to be weaned from CPB or in the intensive 

care unit because of hemodynamic compromise, or 2) requiring inotropic medication 

(dopamine, dobutamine, milrinone, or epinephrine) to maintain the systolic blood pressure 

at 90 mmHg and the cardiac output at 2.2 L/min/m² for 30 minutes in the intensive care unit 

after correction of all of the electrolyte and blood gas abnormalities and after adjusting the 

preload to its optimal value. The dosage of vasoactive drugs is not mentioned. The term 

LOF for low output failure has also been used to describe the need for one of the following: 

an IABP, return to CPB after initial separation or ≥ 2 inotropes at 48 hours 

postoperatively. [78] 

To summarize, in several of these studies, investigators have used variables such as 

1) arterial pressure, 2) cardiac index, 3) filling pressures, 4) TEE findings, 5) amount and 

duration of vasoactive drugs, 6) subjective intraoperative assessment of reduced RV and 

LV contractility, 7) the need to return on CPB and 8) the use of mechanical devices to wean 

from CPB in their definition of difficult separation from CPB. There is also some 

overlapping in terms of the timing understood when using the phrase difficult separation 

from CPB. Some consider it to be an intraoperative event only, others a postoperative one, 

while other investigators include both periods in their definition (Table 1). In the setting of 

cardiac surgery and in this thesis, we define difficult separation from CPB as the process 

that may take place between the beginning of the weaning process of CPB and the moment 

the patient leaves the operating room. 

Each of these elements requires consideration and should be carefully analyzed. 
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Table 1 Various definitions of difficult separation from CPB proposed in the literature 

Author and references Year of 
publication 

Number of 
patients 

Type of study Population Difficult separation from 
cardiopulmonary bypass 

(CPB) definitions 
Boldt J, et al. [59] 1990 30 Prospective, open-

labeled study. 
Elective cardiac 
surgery patients. 
CABG only.  
Fractional area 
change (FAC) < 
50%. 

Weaning from CPB not possible 
without pharmacological 
support. 

Hardy JF, et al. [60] 1993 19 Prospective, open-
labeled, phase IV 
study. 

Elective cardiac 
surgery patients.   

Diastolic pulmonary artery 
pressure (DPAP) > 15 mmHg or 
CVP > 15 mmHg. 

Butterworth JF, et al. [62] 1993 39 Prospective, 
randomized, double-
blind study. 

33 elective CABG 
patients, 6 valve 
surgery patients.   

CI < 2.2 L/min/m2. 

De Hert SG, et al. [63]  1995 20 Prospective, 
randomized, double-
blind study. 

Elective cardiac 
surgery patients. 
CABG only.   

CI < 2 L/min/m2. 

Butterworth JF, et al. [64] 1998 149 Ancillary analysis of 
a prospective, 
randomized, double-
blind study. 

Elective cardiac 
valve surgery 
patients.   

Observation of reduced cardiac 
contractility during weaning, 
and/or CI < 2.2 L/min/m2. 

Kikura M, et al. [65] 1998 28 Prospective study, 
non-randomized nor 
blinded.   

CABG and valve 
surgery patients.   

CI < 2.2 L/min/m2 despite NTG 
and inotropes infusions. 

Yamada T, et al. [66] 2000 48 Prospective, 
randomized, double-
blind study. 

Elective cardiac 
surgery patients. 
CABG only. 
 

CI < 2.5 L/min/m2, SAP < 90 
mmHg. 
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Author and references Year of 
publication 

Number of 
patients 

Type of study Population Difficult separation from 
cardiopulmonary bypass 

(CPB) definitions 
Suematsu Y, et al. [67] 2000 167 Retrospective 

analysis. 
Elective cardiac 
surgery patients 
requiring CPB.   

Intraoperative need for 
epinephrine and/or 
norepinephrine exceeding 0.2 
ug/kg/min. 

Bernard F, et al. [17]  2001 66 Prospective 
observational cohort 
study. 

52 elective CABG 
alone, 14 combined 
procedures, valvular 
surgeries and re-
operations.   

SAP < 80 mmHg, DPAP > 15 
mmHg during weaning from 
CPB, reinstitution of CPB or an 
IABP. Presence of significant 
vasopressor and/or inotropic 
support. 

Van der Maaten JM, et 
al. [68] 

2001 34 Prospective, non-
randomized clinical 
study. 

Elective cardiac 
surgery patients. 
CABG only.   

CI < 2.4 L/min/m2 and/or MAP 
< 60 mmHg. 

Muller M, et al. [69] 2002 1471 Retrospective 
analysis. 

Elective cardiac 
surgery patients, 
including CABG, 
valve and combined 
procedures.   

Observation of reduced cardiac 
contractility during or after 
weaning (either by direct 
observation of the right ventricle 
or with TEE) and/or CI < 2.0 
L/min/m2. 

Groban L, et al. [70] 2002 381 Post-hoc analysis of 
a randomized, 
masked clinical trial 
of insulin therapy. 

Elective cardiac 
surgery patients. 
CABG only.   

Inotropic, vasoactive and 
mechanical support (IABP, if 
needed) initiated if CI < 2.2 
L/min/m2, DPAP > 20 mmHg 
and/or SAP < 90 mmHg. 
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Author and references Year of 
publication 

Number of 
patients 

Type of study Population Difficult separation from 
cardiopulmonary bypass 

(CPB) definitions 
Wagner F, et al. [71] 2003 40 Prospective, 

randomized, double-
blind study. 

Elective cardiac 
surgery patients. 
CABG only.  FAC < 
35% preoperatively.   

Moderate to high dose inotropic 
and/or vasopressor therapy, or 
the need of a mechanical support 
(IABP). 

Tsukui H, et al. [72] 2004 151 Retrospective 
analysis. 

Elective cardiac 
surgery patients 
including ischemic 
heart disease, 
valvular and 
congenital 
pathologies, along 
with miscellaneous 
procedures.   

Epinephrine, norepinephrine, 
dopamine, dobutamine and 
milrinone were used if 
hemodynamic instability during 
weaning from CPB. IABP was 
installed if instability persisted 
despite medical treatment. 

McKinlay KH, et al. [73] 2004 1009 Retrospective 
analysis. 

Elective cardiac 
surgery patients. 
CABG and complex 
procedures.   

Inotropic support in the form of 
dopamine (> 5 ug/kg/min) or 
any dose of epinephrine, 
norepinephrine, dobutamine or 
milrinone, along with IABP vs. 
hypotension, low cardiac output 
and inability to separate from 
bypass. 
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Author and references Year of 
publication 

Number of 
patients 

Type of study Population Difficult separation from 
cardiopulmonary bypass 

(CPB) definitions 
Surgenor SD et al. [78] 2006 8004 Prospective analysis CABG Low output failure: the need for 

one of the following: an IABP, 
return to CPB after initial 
separation or ≥ 2 inotropes at 48 
hours postoperatively 
 

Robitaille A, et al. [10] 2006 1498 Retrospective 
analysis. 

Elective cardiac 
surgery patients, all 
types combined 
(CABG, valve, 
complex and 
miscellaneous 
procedures). 

SAP < 80 mmHg, DPAP or 
wedge pressure > 15 mmHg 
during weaning from CPB, 
reinstitution of CPB or an IABP.  
Presence of significant 
vasopressor and/or inotropic 
support. 

CABG, coronary artery bypass graft; CI, cardiac index; CPB, cardiopulmonary bypass; DPAP, diastolic pulmonary artery pressure; FAC, 
fractional area change; IABP, intra-aortic balloon pump; MAP, mean arterial pressure; NTG, nitroglycerin; SAP, systolic arterial pressure; 
TEE, transesophageal echocardiography. 
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The first element of the definition is the systolic arterial pressure. Systolic pressure 

is routinely used and monitored in the operating room and the intensive care unit. It is used 

as an index of organ perfusion pressure and, therefore, tissue perfusion pressure. However 

the site of measurement of this parameter is very important. Systolic arterial pressure, when 

reduced in the hemodynamically unstable patient, has to be confirmed by central 

measurement, aortic or femoral. [79;80] This is a very important point and illustrated in 

Figure 2. 

 

Figure 2 Radial to femoral artery pressure gradient during cardiac surgery 

(A) Before cardiopulmonary bypass (CPB) a normal gradient between the radial (Rad) and 
femoral (Fem) artery was observed. (B) During the early part of CPB, no abnormality in 
gradient was observed. (C) The gradient appears during the later part of CPB. (D) After 
CPB, the systolic and mean femoral artery pressures were 118 mmHg and 81 mmHg, 
respectively. The systolic and mean radial artery pressures were 90 mmHg and 69 mmHg, 
respectively.  (HR, heart rate; AP, arterial pressure; PAP, pulmonary artery pressure; CVP, 
central venous pressure) (With permission of Denault et al. [80]). 

 

The appearance of a pressure gradient between the radial and femoral arteries can be 

commonly observed both in the cardiac operating room and in the intensive care unit in 
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patients who are thought to be hemodynamically unstable. Despite previous descriptions of 

this observation [79;81] in the literature, the mechanisms responsible for this gradient 

remain poorly understood [82] and its presence is not routinely recognized. The pressure 

gradient is normally < 20 mmHg between the aortic root and radial artery, being higher in 

the distal arteries. [83] In our clinical experience involving a large series of patients 

undergoing cardiac surgery, radial artery-aortic root systolic pressure gradients > 25 mmHg 

(the radial being lower than the aortic) occur in approximately 30-50% of cardiac 

procedures (Section 1.4.1). Maximum gradients are usually observed just after separation 

from CPB. In some patients, these gradients resolve towards the end of the procedure, but 

there is limited predictability regarding their dynamic variations. Transesophageal 

echocardiography and transthoracic echocardiography can also be used to detect an 

abnormal arterial gradient when clinically significant mitral regurgitation is present. [80] 

Early recognition of an abnormally wide aortic-radial arterial pressure gradient is therefore 

the first and most important step in excluding intraoperative hemodynamic instability as a 

cause of persistent hypotension in cardiac surgery. 

The second element of the definition is cardiac filling pressure such as central 

venous pressure, diastolic pulmonary artery pressure and pulmonary capillary wedge 

pressure. As difficult separation from CPB represents cardiac dysfunction (either systolic, 

diastolic or both), filling pressures will be elevated in the presence of reduced systemic 

pressure. Elevated filling pressures are usually defined as either diastolic pulmonary artery 

pressure or pulmonary capillary wedge pressure >15 mmHg [60] or 20 mmHg. [70] This 

value is somehow arbitrary because it can depend on several factors, the most common 

being diastolic function or ventricular compliance. Ventricular compliance is unique to 

each surgical patient and is almost invariably altered after cardiac surgery. [39] Alteration 

in ventricular compliance after cardiac surgery has been described using echocardiography 

since the early 1990s. [84-92] If ventricular compliance is reduced after cardiac surgery, 

ventricular filling pressures will increase in order to maintain an appropriate preload and 

cardiac output. This observation explains why Reichert et al. [93] defined post-cardiac 

surgery hypovolemia as a pulmonary capillary wedge pressure value less than the 
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preoperative wedge pressure +10 mmHg. The “+ 10 mmHg” is a correcting factor based on 

the experience and observations of the authors, who noted that higher filling pressures were 

required after CPB in order to maintain an adequate preload and consequently an adequate 

cardiac output. Several of the studies pertaining to filling abnormalities or diastolic 

dysfunction after CPB examined a single echocardiographic parameter often limited to the 

left ventricle, [68;88;90;92;94-98] as opposed to biventricular systolic and diastolic 

evaluation. [40;43] This limitation could result in a misinterpretation of the actual change in 

cardiac function. This will be discussed in section 1.4.2. 

The third element in the definition of difficult separation from CPB is the 

pharmacological intervention. The dosage and amount of vasoactive agents required for 

weaning from CPB needs to be quantified. The pharmacological approach on the use of 

vasoactive medication differs significantly from center to center, even in the same 

country. [99] At the MHI, significant vasopressive and/or inotropic support is defined by 

the use of norepinephrine > 0.06 µg/kg/min, epinephrine > 0.06 µg//kg/min, dobutamine 

> 2 µg/kg/min or the use of milrinone. [52] Returning on CPB can be secondary to 

hemodynamic or mechanical complications and is a severity criterion. The use of an IABP 

and VAD to wean from CPB implies a severe mechanical problem most likely related to 

the patient’s underlying condition. Finally, in order to standardize the vasoactive 

management during CPB (Appendix 2) and the weaning process, (Appendix 3) we 

developed algorithms to be applied in studies dealing with separation from CPB. [50;52;56] 

In summary, the definition used to describe difficult separation from CPB varies 

significantly among investigators. Cleary defined hemodynamic variables, particularly the 

site of measurement of the arterial pressure, seem essential in detecting the true presence of 

difficult separation from CPB. Filling pressure indices have to be evaluated in relation with 

baseline measurements, as each patient can serve as his own control. A systematic 

echocardiographic approach would be useful to identify the mechanism at work in difficult 

separation from CPB. The use of vasoactive agents should follow a logical algorithm based 

on hemodynamic and echocardiographic information. Finally, a classification could be used 

as it appears that different grades of severity in separation from CPB can be present. The 
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worst form of difficult separation from CPB would be the one associated with the 

requirement for mechanical devices.  

1.2 Predictors of difficult separation from CPB 

Patients at risk of complications and death after cardiac surgery can be identified 

through the use of scores developed in several large-scale studies in which multivariate 

analysis identified variables associated with an increased risk of morbidity and mortality. 

Some of these scores include for instance the MHI score, [8] the Parsonnet score, [100] the 

EuroSCORE, [101] the Cardiac Anesthesia Risk Evaluation (CARE) score [102] and the 

Society of Thoracic Surgeons (STS) score. [103] These scores are useful because they can 

provide an estimation of mortality and morbidity. There is so far no score that enables the 

identification of patients at risk of difficult separation from CPB. It is likely that similar 

variables associated with an increased risk of morbidity and mortality will be associated 

with difficult separation from CPB. These variables can be classified as demographic, 

surgical, biochemical, hemodynamic and echocardiographic.  

1.2.1 Demographic and surgical variables 

Several demographic variables in relation with the type of surgery have been 

identified as important predictors of difficult weaning from CPB.  

1.2.1.1 Coronary revascularization 

In patients undergoing coronary revascularization, Surgenor et al. [74] identified 

reoperation, urgent surgery, peripheral vascular disease, diabetes and renal failure requiring 

dialysis as demographic and surgical variables associated with an increased mortality from 

heart failure. Other predictors of difficult separation from CPB in coronary bypass surgery 

are older age and female gender, [58] previous myocardial infarction and chronic 

pulmonary obstructive disease. [69] Rao et al. [75] retrospectively analyzed the risk of 

LCOS from a database of 4558 patients operated for coronary revascularization in Toronto 

between 1990 and 1993. The independent predictors of LCOS were determined by stepwise 
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logistic regression analysis. The prevalence of LCOS was 9.1%. The independent 

predictors were (odds ratio in parenthesis) left ventricular ejection fraction < 20% (5.7), 

repeat operation (4.4), emergency operation (3.7), female gender (2.5), diabetes (1.6), age > 

70 year-old (1.5), left main coronary artery stenosis (1.4), recent myocardial infarction (1.4) 

and triple-vessel disease (1.3).   

1.2.1.2 Valvular surgery 

Valvular surgery is typically longer and more complex than coronary 

revascularization. It is not surprising that it is associated with an increased risk of 

postoperative inotropic requirement. In a study involving 1009 patients undergoing cardiac 

surgery, McKinlay et al. [73] identified coronary revascularization in association with 

mitral valve repair or replacement as an independent risk factor for postoperative inotropic 

support. Maganti et al.  [77] retrospectively analyzed the risk of LCOS from a database of 

2255 patients operated for isolated aortic valve replacement in Toronto between 1990 and 

2003. The independent predictors were determined by stepwise logistic regression analysis. 

The prevalence of LCOS was 3.9%. The independent predictors were (odds ratio in 

parenthesis): renal failure (5.0), earlier year of operation (4.4), left ventricular ejection 

fraction < 40% (3.6), shock (3.2), female gender (2.8), and increasing age (1.02). Overall 

operative mortality was 2.9%. An additional factor associated with the requirement for 

inotropic drugs after valvular surgery is the anesthesiologist’s preference for the use of 

vasoactive medications. [64] In a study involving aortic valve replacement in combination 

with revascularization, Ahmed et al. [104] identified preoperative renal disease, elevated 

left ventricular end-diastolic pressure (≥ 20 mmHg), reduced left ventricular ejection 

fraction (≤ 40%) and low cardiac index (≤ 2.5 L/m/m? as predictors of postoperative 

inotropic requirements.  

1.2.1.3 Duration and utilization of cardiopulmonary bypass 

Both the duration of CPB and cross-clamping are surgical variables that predict 

hemodynamic complications in several studies. [10;17;58;69;70;72;73;105;106] We have 

also documented that hemodynamic complications in patients undergoing coronary 
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revascularization were observed in 53% of patients in whom CPB was used, as opposed to 

14% of patients undergoing surgery with off-pump bypass. [10] The use of CPB was 

indeed an independent predictor of hemodynamic complications (p < 0.0001), and this 

finding was also observed by other authors. [58;72;107] As suggested by Butterworth et 

al., [64] a longer CPB time can be associated with technical or mechanical difficulties or 

associated procedures, including valvular surgery and coronary revascularization. As the 

CPB is longer, the patient and the myocardium are exposed to the effect of the 

inflammatory response with a potentially greater need for blood products. The latter is not 

only associated with LOF but also with increased mortality. [72;78]  

1.2.2 Biochemical variables 

Among the biochemical variables, our group observed that an elevated veno-arterial 

PCO2 gradient before the cardiac surgical procedure was an independant variable 

associated with an increased risk of difficult separation from CPB. [105] Elevated veno-

arterial PCO2 gradient is a marker of ischemia, [108] in the same manner as lactate. Not 

surprisingly, the intraoperative lactate level obtained during CPB has also been shown to 

correlate with difficult separation from CPB and mortality (Figure 3). [9] 
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Figure 3 Mortality and morbidity in relation with lactate level during CPB 

Positive correlation in 1376 cardiac surgical patients between peak blood lactate levels 
during cardiopulmonary bypass (CPB) and the rate of postoperative morbidity and 
mortality (p < 0.001). (With permission of Demers et al. [9]) 

 

These two studies, conducted at the MHI, tend to support that measures of reduced 

oxygen transport or hypoperfusion before or during CPB could either be markers or 

determinants of hemodynamic instability and mortality after cardiac surgery. In that regard, 

Rao et al. [76] documented that, in 623 patients undergoing coronary revascularization, the 

only predictor of LCOS was the myocardial lactate release after 5 minutes of cross-

clamping. Age and reduced left ventricular ejection fraction were the only two predictors of 

this metabolic abnormality after CPB. The rise in creatinine kinase (CK) was not a 

predictor of LCOS. Other authors have also confirmed that reduced myocardial pH [109] 

(Figure 4) or increased myocardial lactate measured during CPB [110] have been shown to 

be predictors of increased postoperative inotropic support and mortality. This abnormal 

lactate release could imply delayed recovery of normal aerobic myocardial metabolism. As 
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the myocardial metabolism is altered, myocardial function will be abnormal. Therefore, the 

risk of difficult separation from CPB is likely to correlate with indices of global or regional 

myocardial tissue hypoperfusion. In that regard, a recent paper by Turer et al. [111] 

explored the new field of metabolomics in cardiac surgery. The measurements of several 

metabolites produced from ischemia/reperfusion during retrograde cardioplegia were 

analyzed. An association between the duration of inotropic support and myocardial lactate 

was observed. This study suggests that patients with left ventricular dysfunction have 

limited myocardial metabolic reserve and flexibility after global ischemia/reperfusion 

stress. 

 

Figure 4 Intramyocardial acidosis and inotropic requirement 

Comparison of myocardial tissue pH37C between patients who needed inotropic support 
versus those who did not at 5 time points during surgery: Before aortic occlusion (AC), 
mean during AC, at 5 minutes of reperfusion, at 10 minutes of reperfusion, and at the end 
of reperfusion. (IABP, intra-aortic balloon pump).(Adapted from Kumbhani et al. [109]) 
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1.2.3 Hemodynamic and echocardiographic variables 

Among the hemodynamic data predicting post-CPB inotropic support and mortality 

after cardiac surgery, left ventricular systolic dysfunction is frequently found as the most 

important and frequently reported variable. [58;64;69;70;73;75;77;78;104;106;109] Left 

ventricular dysfunction is either defined by a history of congestive heart failure, by a 

cardiac variable such as reduced left ventricular ejection fraction (LVEF) or ventricular 

enlargement, or as its consequence on daily living, such as the New York Heart Association 

(NYHA) classification. All these definitions have been associated with postoperative 

inotropic requirement. [10;58;64;69;78] Left ventricular dysfunction will be associated with 

echocardiographic evidence of abnormal regional or global wall motion and can also be 

associated with an elevated left ventricular end-diastolic pressure (LVEDP). This parameter 

has also been reported as an independent predictor of inotropic requirement [58;104] and 

mortality. [11] 

Right ventricular systolic and diastolic dysfunction may also be a predictor of 

mortality and morbidity. Maslow et al. [112] studied patients with reduced left ventricular 

systolic function (LVEF ≤ 25%) before coronary revascularization. Those without right 

ventricular dysfunction prior to surgery had less inotropic requirement after 

revascularization and a mortality rate of 9.7%. In contrast, patients with reduced LVEF 

associated with reduced right ventricular dysfunction experienced more frequent difficult 

separation from CPB and a mortality rate of 100% within 18 months. This study supports 

the hypothesis that preoperative right ventricular systolic dysfunction is a predictor of 

difficult weaning from CPB and mortality before cardiac surgery. However, right 

ventricular diastolic dysfunction may also be an important criterion to be evaluated. In a 

pilot study of 121 patients undergoing cardiac surgery, Carricart et al. [34] observed that 

preoperative abnormal hepatic venous flow, as a marker of right ventricular diastolic 

dysfunction, [113;114] was associated with difficult weaning from CPB. In a subset of 

patients undergoing valvular surgery only, abnormal hepatic venous flow before surgery 

was associated with a higher Parsonnet score, more atrial fibrillation, pacemaker 
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requirement, mitral valve replacement, reoperation, a lower systemic mean arterial (MAP) 

to mean pulmonary artery pressure (MPAP) ratio, a higher wall motion score index, a 

higher incidence of abnormal right ventricular systolic function and more frequent use of 

intravenous milrinone. However, abnormal hepatic venous flow before cardiac surgery was 

not found to be an independent predictor of difficult separation from CPB and worse 

outcome. In that study, pulmonary hypertension defined using the MAP/MPAP ratio was 

the best predictor of hemodynamic complications.  

Pulmonary hypertension is another hemodynamic variable associated with an 

increased risk of difficult weaning from CPB, morbidity and mortality in cardiac 

surgery. [8;100;115-117] However, few studies have reported an association between 

pulmonary hypertension and difficult weaning from CPB. [10;34;46] This will be discussed 

in more detail in Chapter 6.  

1.2.4 Patient-prosthesis mismatch 

Aortic patient-prosthesis mismatch (PPM) is the result of a prosthesis too small for 

the patient’s body surface area (BSA). [118-125] The selection of the type and size of 

prosthetic valve is also very important, because it has been shown that, if the effective 

orifice area (EOA) of the valve is too small in relation to body size, then occurs a so-called 

PPM, which increases intraoperative and long-term mortality (Figure 5). [118-125]   
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Figure 5 Patient–prosthesis mismatch 

A 71-year-old man with a body surface area of 1.89 m² was re-operated for 
symptoms of severe aortic valve stenosis (severe dyspnea, NYHA class IV and pulmonary 
hypertension of 60/15 mmHg). He had aortic valve replacement (AVR) 4 years ago with a 
Carbomedics #19 mechanical bileaflet prosthesis (effective orifice area (EOA) = 1.06 cm²). 
The preoperative mean gradient was 41 mmHg. The intraoperative aspect of the prosthetic 
valve was completely normal. (B) Example of an aortic root enlargement procedure in a 69-
year-old patient with a reduced aortic diameter requiring AVR. (Courtesy of Dr. Michel 
Carrier with permission of Denault et al. [12]) 

  

From various studies, PPM can be found in 19-70% of patients undergoing aortic 

valve replacement (AVR). [119-122] In a study including 1266 patients who underwent 

AVR at the Quebec Heart and Lung Institute (QHLI), the prevalence of moderate PPM 

defined as an index EOA (iEOA) ≤  0.85 cm2/m2 was 38%, and that of severe PPM 

(iEOA ≤ 0.65 cm2/m2) was 2%. After adjusting for other risk factors, moderate and severe 

PPM were associated with a 2.0-fold (95% confidence interval: 1.1-3.7) and 12.6-fold (95% 

confidence interval: 4.3-37.0) increase in mortality, respectively. It is possible that the 

increased LVEDP and left ventricular afterload with associated reduced coronary flow 

reserve [126] with PPM may predispose to difficult separation from CPB. In a study of 156 

patients undergoing AVR and followed-up for a median period of 3.5 years, Brown et al. 

[127] observed that postoperative events and survival after AVR were more related to the 

severity of LV diastolic function than PPM. Finally, the link between aortic PPM and 

difficult separation from CPB has not been described.  
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PPM of the mitral valve has recently been described [128] and defined as an iEOA 

≤ 1.2 cm²/m². In a study which included 929 consecutive patients undergoing mitral valve 

replacement, severe PPM was associated with a 3-fold increase in postoperative mortality 

after adjustment for other risk factors. As mitral PPM will be associated with postoperative 

pulmonary hypertension, right ventricular failure and consequently difficult separation from 

CPB could result from this condition. The relation between mitral PPM and difficult 

separation from CPB has not been described. 

1.2.5 Other factors involved in the risk of difficult separation from CPB 

Other factors could predispose to difficult separation from CPB in cardiac surgery. 

For instance, aberrant positioning of the cardioplegia cannula could be associated with 

inadequate myocardial protection (Figure 6). 

 

Figure 6 Retrograde cardioplegia cannula 

(A, B) Bicaval view showing the retrograde cardioplegia cannula positioned toward the 
atrial septum through the patent foramen ovale. (IVC, inferior vena cava; LA, left atrium; 
RA, right atrium; SVC, superior vena cava). (Photo courtesy of Dr. Baqir Qizilbash with 
permission of Denault et al. [13]).  

 

Coronary embolization from air or residual debris that can occur after CPB (Figure 

7) could also be associated with difficult weaning from CPB.  
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Figure 7 Calcium emboli in valvular surgery 

A 70-year-old man who underwent coronary revascularization and combined aortic and 
mitral valve replacement. (A,B) As weaning from cardiopulmonary bypass (CPB) 
proceeded, floating material was detected in the left atrium (LA) from this mid-esophageal 
two-chamber view. The attending surgeon went back immediately to full CPB. (C) This 
material was a 4 x 1 mm floating calcium plaque which was removed. The patient had no 
postoperative neurological complications (LAA, left atrial appendage; LUPV, left upper 
pulmonary vein; PMV, prosthetic mitral valve) (With permission of Denault et al. [13]). 

 

Additionally, technical problems such as a residual paravalvular leak or 

dysfunctional prosthesis (Figure 8) could also contribute to difficult weaning from CPB.  
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Figure 8 Dysfunctional AoV bioprosthesis after AVR 

A 60-year-old man was reoperated after valve replacement (AVR) for periprosthetic aortic 
regurgitation (AR). (A–D) After the procedure, abnormal significant AR is still visible on 
the mid-esophageal long-axis and deep transgastric views. The new bioprosthesis was 
removed and replaced by another one. (E) Upon examination of the defective bioprosthesis, 
abnormal motion of one of the leaflets was noted (Ao, aorta; AoV, aortic valve; LA, left 
atrium; LV, left ventricle; RV, right ventricle). (Photo E courtesy of Dr. Tack Ki Leung, 
with permission of Denault et al. [13]).  
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All these conditions can be diagnosed and prevented with TEE. Finally, the 

reperfusion syndrome could also be associated with unexpected pulmonary hypertension 

upon weaning from CPB. This will be discussed in Chapter 6.  

To summarize, there are several demographic, surgical, biochemical, hemodynamic 

and echocardiographic preoperative variables that can be associated with hemodynamic 

instability and difficult weaning from CPB after cardiac surgery. They are important to 

document if a new therapy is introduced, so that similar groups can be compared. Few of 

the demographic and surgical variables can be modified before planning cardiac surgery. 

The inclusion of left and right ventricular systolic and diastolic dysfunction, PPM and 

pulmonary hypertension as predictors of difficult separation from CPB is new and 

interesting because these variables could possibly be modified before and during cardiac 

surgery. Furthermore, the role of TEE is to monitor and to diagnose conditions that could 

result in difficult separation from CPB and could be modified through a medical or surgical 

approach. Table 2 and Table 3 summarize studies in which the primary endpoint was 

hemodynamic instability or difficult weaning from CPB after cardiac surgery. 
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Table 2 Studies on difficult separation from CPB and postoperative inotropes  
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Royster et al. [58] 1991 128 5 (3.9) CABG S OR & ICU Retrospective Inotropic support 58 (45%) 
Davila-Roman et al. [4] 1995 75 34 (44%) LCOS S > 48 hours after OR Retrospective LCOS NA 
Rao et al. [75] 1996 4558 109 (2.4) All S  ICU Retrospective LCOS 412 (9.1%) 
Butterworth et al. [64] 1998 149 9 (6%) Valve S OR & ICU RCT post hoc Inotropic support 78 (52%) 
Groban et al. [70] 2002 381 7 (1.8%) CABG S OR & ICU RCT post hoc Inotropic support 142 (37.2%) 
Muller et al. [69] 2002 1471 33 (2.2%) All S OR & ICU Retrospective Inotropic support 476 (32,4%) 
McKinlay et al. [73] 2004 1009 NA All S OR Retrospective Inotropic support 50 (52%) 
Tsukui et al. [72] 2004 151 3 (1.9) All S OR & ICU Prospective Inotropic support 71 (47%) 

Kumbhani et al. [109]  2005 247 9 (3.6) All S OR Retrospective Inotropic support 50 (20.2%) 
Heringlake et al. [110] 2005 20 NA CABG S OR Microdialysis Inotropic support 6 (30%) 
Maganti et al. [77] 2005 2255 66 (2.9%) AVR S OR & ICU Retrospective LCOS 87 (3.9%) 
Robitaille et al. [10] 2006 1439 50 (3.5%) All S OR & ICU Retrospective Inotropic support 876 (61%) 
Surgenor et al. [78] 2006 8004 NA CABG M OR & ICU Prospective LOF 644 (8.1%) 
Weis et al. [106] 2006 1558 34 (2.2%) All S ICU Prospective Vasopressor dependence 425 (27%) 
Ahmed et al. [104] 2009 97 10 (10.3) CABG-AVR S OR Retrospective Inotropic support 50 (52%) 

AVR, aortic valve replacement; CABG, coronary revascularization; ICU, intensive care unit; LCOS, low cardiac output state; LOF, low output failure; M, multicenter 
study; N, number; NA, not available; OR, operating room; RCT, randomized controlled trial; S. single center study;  
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Table 3 Risk factor for difficult separation from CPB and postoperative inotropes 
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Royster et al. [58] X X Cardiac enlargment     X X X   
Davila-Roman et al. [4]     Recent MI        

Rao et al. [75] X X   Previous MI, left main X X  X   
Left main CAD and triple Vx, 
diabetes 

Butterworth et al. [64] X  CHF      X   Anesthesiologist 
Groban et al. [70] X X   Hx angina    X X   
Muller et al. [69] X  CHF and NYHA > 2  No of MI     X  COPD, CABG 

McKinlay et al. [73]      X   X X  
WMSI by TEE, CABG + MVR, 
MR 3-4/4 

Tsukui et al. [72]          X X Use of IABP 

Kumbhani et al. [109]          X   pH37c at 5 or 10 min of reperfusion 
Heringlake et al. [110]            Myocardial lactate 
Maganti et al. [77] X X  X     X   Year of operation, pre-op shock 

Robitaille et al. [10] X X CHF       X  
Pre-op neurological disease, IABP, 
MAP/MPAP 

Surgenor et al. [78]  X CHF X  Prior CABG X  X  X Reduced hematocrit, WBC ≥ 12 
Weis et al. [106]         X X  Interleukin 6 concentration 
Ahmed et al. [104]    X    X X   Cardiac index 
CABG, coronary artery bypass graft; CAD, coronary artery disease; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; CPB, 
cardiopulmonary bypass; CX, cross-clamping; Hx, history; IABP; intra-aortic balloon pump; LVEDP, left ventricular end-diastolic pressure; LVEF, left ventricular 
ejection fraction; MAP, mean arterial pressure; MI, myocardial infarction; MPAP, mean pulmonary artery pressure; MR, mitral regurgitation; MVR, mitral valve 
replacement or repair; No, number; NYHA, New York Heart Association; TEE, transesophageal echocardiography; Vx, vessels; WBC, white blood cell; WMSI, wall 
motion score index  



55 

1.3 The significance and consequence of difficult separation 

from CPB 

Why is difficult separation from CPB a potentially significant complication in 

cardiac surgery? If the CPB weaning process requires the presence of significant vasoactive 

support, this may lead to insufficient oxygen transport and hypoperfusion. In fact, 

hemodynamic instability after cardiac surgery is associated with an increased risk of 

morbidity and mortality. In the study of Surgenor et al. [74] in 8641 patients undergoing 

coronary revascularization, 64.8% of deaths were attributed to post-CPB heart failure. The 

mortality is significantly higher if the hemodynamic instability is secondary to severe right 

ventricular systolic dysfunction, a known factor for negative outcome after cardiac 

surgery, [3;4;112] with mortality ranging from 44% to 86%. [3;4] Mortality is also 

associated with an increase in the use of vasoactive drugs. Muller et al. [69] studied 1471 

patients undergoing various types of cardiac surgery and found that 81.2% of the non-

survivors received inotropes compared to 18.2% of survivors (p < 0.01). In the 2 studies 

from Toronto that included 4558 patients undergoing coronary revascularization and 2255 

isolated AVR patients, [75;77] the operative mortality for coronary revascularization was 

19 times higher (16.9% vs. 0.9%; p = 0.001) in patients undergoing coronary 

revascularization and 25 times higher in patients with AVR (38% vs. 1.5%; p < 0.001) who 

experienced LCOS. Therefore, if difficult separation from CPB results from an imbalance 

between circulatory reserve and demand, continuous monitoring of this imbalance could be 

used to detect and potentially evaluate the effect of any intervention. This tissue perfusion 

monitoring can be obtained using near-infrared spectroscopy (NIRS) and has been shown to 

be of prognostic value in septic shock. [129] 

Near-infrared spectroscopy (NIRS) can be used to monitor local tissue perfusion 

during cardiac surgery [130] but has also been used as a monitor of tissue perfusion in 

various types of shock states. [129;131;132] Monitoring with NIRS provides a non-

invasive measure of local tissue perfusion. It is particularly useful during non-pulsatile flow 

conditions such as CPB or cardiac arrest. In two recent randomized trials, cerebral oximetry 

monitoring has been associated with shorter recovery room and hospital stays following 
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non-cardiac surgery, [133] and with a decrease in major organ dysfunction and in intensive 

care unit length of stay after cardiac surgery, [134] thus providing the rationale for its use. 

Significant brain desaturation (Figure 9) can be observed in hemodynamically unstable 

patients or those experiencing difficult separation from CPB. Brain desaturation is a marker 

of the imbalance between oxygen transport and oxygen supply that occurs during 

hemodynamic instability or difficult separation from CPB. [135] Transient hypoperfusion 

following low flow state may cause injury to the gut mucosa, allowing bacterial 

translocation and endotoxemia. [136] In some patients, if this condition persists, it can 

further develop into shock and multiorgan failure. [137] This mechanism could explain the 

observed association between brain desaturation and multiorgan dysfunction. [134] 

 

Figure 9 Hemodynamic instability and brain desaturation 

(A,B) Mid-esophageal view showing an aortic hematoma compressing the left atrium (LA), 
creating an acute localized tamponade. (C) The onset of the hematoma was associated with 
hemodynamic instability and an abrupt reduction in the brain oximetry signal (arrow). (D) 
Intraoperative aspect of the aortic dissection (Ao, aorta; AoV, aortic valve; LV, left 
ventricle, RV, right ventricle)(With permission of Denault et al. [13]). 



57 

 

1.4 Research and development since the beginning of the PhD in 

2006 at the MHI  

Since 2006, several studies have been performed at the MHI regarding the 

definition, the predictors and the outcome of difficult separation from CPB. These are 

summarized below.  

1.4.1 Studies on arterial pressure and separation from CPB 

Su et al. performed a retrospective analysis of the MHI TEE database that included 

129 consecutive patients undergoing cardiac surgery and monitored with both radial and 

femoral artery catheters. The maximal difference between the MAP from the femoral and 

the radial catheter was recorded. The authors identified the presence of a MAP gradient of 

10 mmHg or more in 54% of these patients (presented at the CAS 2008 Meeting in 

Halifax). A small BSA was found to be the strongest independent predictor of this gradient 

(OR: 0.06; 95% CI: 0.01-0.37, p = 0.003). In order to confirm these findings, Fuda et al. 

performed a prospective study using the same definition; the authors observed a significant 

arterial gradient in 45% of 73 consecutive cardiac surgical patients (presented at the 2009 

Cardiac Team Meeting in Tremblant). The same risk factor was found in addition to a small 

diameter of the radial artery (OR: 0.695; 95% CI: 0.57-0.847, p < 0.0001). These two 

studies highlight the importance of the site of measurement of the arterial pressure. Such 

pressure gradients typically manifest during CPB (Figure 2).  

1.4.2 Studies on diastolic function and separation from CPB 

In 49 patients undergoing coronary revascularization, Shi et al. [40] performed 

transthoracic echocardiography the day before surgery and repeated the examination 48 

hours and 6 months later. The examination included the evaluation of both the left and right 

ventricular systolic and diastolic function. The results are summarized in Figure 10.  
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Figure 10 Biventricular cardiac dimensions and Doppler during CABG 

 

Changes observed in biventricular cardiac dimensions and in Doppler profiles before coronary revascularization (A), at 48 hours (B) and 6 
months (C) after coronary revascularization. At 48 hours, an increase in both the left and right atrial size is observed. This is associated with 
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deterioration in both the left and right ventricular diastolic parameters. At 6 months, no significant difference is seen compared to the 
preoperative echocardiographic parameters. (CABG, coronary artery bypass grafting; HVF: hepatic venous flow, MAV: mitral annular 
velocities, PVF: pulmonary venous flow, TMF: transmitral flow, TTF: transtricuspid flow, Vp: velocity of propagation) (With permission of 
Shi et al. [40]). 
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The prevalence of moderate and severe left ventricular diastolic dysfunction 

increased from the preoperative period to 48 hours after coronary revascularization from 

8.2% to 53.7%, and from 2.0% to 9.7%, respectively (p < 0.0001, 48 hours vs. pre- for 

both). The patterns at 6 months were similar to those observed preoperatively. A similar 

evolution over time was found for right ventricular diastolic dysfunction. The same 

evaluation was done using TEE by Couture et al. [50] in 50 patients undergoing coronary 

revascularization (Table 4). Similar observations were made. In patients undergoing 

coronary revascularization, deterioration of left and right diastolic function was observed 

after CPB regardless of the use of intravenous milrinone. These observations have not been 

made in patients undergoing valvular surgery.  
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Table 4 Left and right ventricular diastolic function 

Time Score Milrinone 
(n (%)) 

Placebo 
(n (%)) 

Group x time  
interaction 

p value 

Group 
p value 

Time 
p value 

LVDD    0.2029 0.1989* 0.2834* 

Pre-bolus 

 

1 

2 

3 

4 

5 

0 (0) 

14 (58) 

7 (29) 

3 (13) 

0 (0) 

0 (0) 

6 (25) 

15 (63) 

2 (8) 

1 (4) 

   

Post-bolus 

 

1 

2 

3 

4 

5 

0 (0) 

7 (33) 

14 (67) 

0 (0) 

0 (0) 

0 (0) 

11 (46) 

9 (37) 

4 (17) 

0 (0) 

Post-CPB 1 

2 

3 

4 

5 

0 (0) 

8 (33) 

14 (58) 

2 (8) 

0 (0) 

2 (9.5) 

4 (19) 

9 (43) 

4 (19) 

2 (9.5) 

RVDD       

Pre-bolus 

 

1 

2 

3 

4 

5 

1 (5) 

18 (95) 

0 (0) 

0 (0) 

0 (0) 

0 (0) 

17 (90) 

2 (10) 

0 (0) 

0 (0) 

 

 

- 0.0407** - 
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Post-bolus 

 

1 

2 

3 

4 

5 

0 (0) 

19 (91) 

2 (9) 

0 (0) 

0 (0) 

0 (0) 

15 (75) 

5 (25) 

0 (0) 

0 (0) 

- 0.1827** - 

Post-CPB 1 

2 

3 

4 

5 

0 (0) 

6 (32) 

10 (52) 

3 (16) 

0 (0) 

0 (0) 

10 (43.5) 

10 (43.5) 

3 (13) 

0 (0) 

- 0.4664** - 

* Overall p value in case of a non-significant group x time interaction; 
** Generalized estimating equation (GEE) model including group as independent 
variable was performed at each time point because patients were not evenly distributed 
among the five-scale score, and the model including time, group and group*time did not 
converge. LVDD score: left ventricular diastolic dysfunction score; RVDD score: right 
ventricular diastolic dysfunction score (With permission of Couture et al. [50]) 
 

1.4.3 Studies on predictors of difficult separation from CPB 

Hemodynamic instability after CPB will vary according to the type of procedure. In 

a study by Robitaille et al., [10] hemodynamic complications after cardiac surgery were 

more common in patients undergoing valvular (p < 0.0001), complex surgeries (p < 0.0001) 

and repeat surgery (p = 0.0005).  

1.4.4 Studies on the outcome of difficult separation from CPB 

A study by Robitaille et al. [10] was performed to explore the role of the 

hemodynamic profile as a predictor of hemodynamic complications after cardiac surgery. A 

total of 1439 consecutive adult patients having undergone a cardiac surgical procedure in 

1999 were included (96% of the population operated in 1999). Hemodynamic parameters 

were collected before the beginning of the procedure but after the induction of general 

anesthesia and were then analyzed to assess their ability to predict mortality and 
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hemodynamic complications, defined as a composite index including death, unexpected 

cardiac arrest, presence of vasoactive drugs for more than 24 hours postoperatively or the 

use of an IABP that was not inserted preoperatively. There were 50 deaths, 33 (66%) of 

which were secondary to hemodynamic complications. Patients with postoperative 

hemodynamic complications had more frequent difficult separation from CPB (84% vs. 

55%, p < 0.001). Stepwise multiple logistic regression analysis showed that the 

preoperative use of an IABP (OR: 2.2, CI 1.2-3.9, p = 0.101) and difficult separation from 

CPB (OR, 3.5, CI 2.5-5.1, p < 0.0001) were independent predictors of hemodynamic 

complications. In the second study by Chagnon et al. [35] that included 243 patients 

operated between 2001 and 2004, we were able to reconfirm our findings: difficult 

separation from CPB was the most important factor related to the composite index of 

hemodynamic instability as previously defined (OR: 3.5, CI 2.5-5.1, p < 0.0001)(Table 5). 

In a third study exploring the role of LVEDP as a predictor of mortality in 3024 adult 

patients from 1996 to 2000, hemodynamic instability after cardiac surgery was found in 

57% of patients who did not survive. [11] The two most common complications were 

difficult separation from CPB in 45% of patients and postoperative hemodynamic 

complications in 13% of patients. These three studies imply that difficult separation from 

CPB leading to postoperative hemodynamic instability is a significant contributing factor 

involved in 57-66% of patients who die after cardiac surgery. In addition, morbidity and 

mortality will increase if difficult separation from CPB is present, even if the duration of 

CPB is short.  
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Table 5 Univariate and multivariate analysis for hemodynamic complications 

Variables Odd 
 

95% CI P value 
Univariate Analysis    

Age 1.00 0.97-1.03 0.8481 
Female vs. Male 1.35 0.70-2.59 0.3713 
CPB time 1.02 1.01-1.02 <0.0001 
Aortic cross-clamp time 1.01 1.01-1.02 0.0008 
Vasopressor preoperatively 0.92 0.10-8.38 0.9373 
IABP preoperatively 0.91 0.19-4.45 0.9103 
DSB 5.86 2.60-13.25 <0.0001 
CI 0.94 0.44-2.00 0.8657 
MAP/MPAP 0.75 0.56-1.01 0.0615 
LVEF <35% vs. ≥50% 2.05 0.82-5.13 0.1274 
LVEF 35-50% vs. ≥50% 0.56 0.17-1.78 0.3223 
LVWMSI 2.00 1.02-3.90 0.0453 
LV diastolic function profile    
PN or RE vs. N or RA 1.81 0.81-4.03 0.1467 
RV diastolic function profile    
PN or RE vs. N or RA 0.75 0.24-2.33 0.6130 

Multiple Stepwise logistic Regression    
CPB time * 1.01 1.01-1.02 0.0003 
Difficult separation from CPB 4.73 2.04-10.97 0.0003 

Univariate and multivariate analysis for hemodynamic complications in 243 patients 
operated at the Montreal Heart Institute (MHI) from 2001-2004 

CPB, cardiopulmonary bypass; DSB, difficult separation from bypass; IABP, intra-
aortic balloon pump; CI, cardiac index; CI, confidence interval; LVEF, left ventricular 
ejection fraction; MAP, mean arterial pressure; MPAP, mean pulmonary arterial pressure; 
LVWMSI,  left ventricular wall motion score index; N, normal; RA, relaxation 
abnormality; PN, pseudo-normal; RE, restrictive.  * CPB time and aortic cross-clamp time 
are correlated, therefore only CPB time is included in the multivariate model.  

 

The next step after these three preliminary studies was to retrospectively confirm 

our hypothesis in a larger population and in another institution. In a combined database 

(1994-2004) from both the Montreal Heart Institute (MHI) (n = 4993) and the Quebec 



65 

 

Heart and Lung Institute (QHLI) (n = 4920), we observed that difficult separation from 

CPB was associated with an increased mortality (MHI: OR 3.1, CI, 1.9-5.2, p < 0.0001 and 

QHLI: OR 2.1, CI, 1.4-3.2, p = 0.0001). [51] The overall hospital mortality in both groups 

was 3.9%. A doubling of the mortality rate (316 deaths/4039 patients = 7.8%) was observed 

in patients with difficult separation from CPB.  

Finally, to explore the relation between difficult separation from CPB, mortality and 

morbidity, we analyzed 6120 consecutive patients from 1995-1999 operated at the MHI. 

Separation from CPB was defined as difficult if there was a requirement for significant 

vasoactive support according to a previous definition [10;52] and very difficult if return to 

CPB was necessary or if a new IABP or any mechanical device was required to wean the 

patient from CPB. Hospital mortality and life-threatening or serious adverse clinical events, 

including pulmonary, infectious, renal, hemodynamic, gastrointestinal and neurological 

complications and myocardial infarction during the 30-day study period, were noted. 

Neurological complications were defined as postoperative coma, seizures or a 

transient or permanent focal neurologic deficit. The diagnosis of myocardial infarction was 

based on the presence of an increase in CK-MB of more than 100 units, new Q waves in 

two contiguous electrocardiogram leads or confirmed graft occlusion within the first 30 

days after surgery. Hemodynamic complications were defined as the requirement of a new 

IABP, postoperative cardiac arrest or vasoactive requirements for more than 24 hours. 

Respiratory failure was defined as duration of intubation of more than 48 hours or 

reintubation for a pulmonary cause. Renal complications were defined as the requirement 

for dialysis. Gastrointestinal complications were defined as upper or lower gastrointestinal 

bleeding, hepatic dysfunction, requirement for laparotomy, acute cholecystitis, pancreatitis 

or mesenteric ischemia. Infectious complications were defined as one or more infections 

except urinary tract or lower extremity wound infection. Duration of stay in the intensive 

care unit and the hospital was noted. 

Using these definitions, 3253 (53.1%), 2466 (40.3%) and 401 (6.6%) patients were 

classified as easy, difficult and very difficult separation from CPB. Their mortality was 



66 

 

0.7%, 4.5% and 22.4% (p < 0.001), respectively. The neurological, cardiac, hemodynamic 

respiratory, renal, gastrointestinal and infectious complications were all significantly 

increased as well as the duration of stay in the intensive care unit and the hospital in 

patients with difficult and very difficult separation from CPB (p < 0.0001) (Table 6). 

The next step of this study is to confirm these findings in a multicentered trial and to 

determine the extent through which difficult separation from CPB is or not an independent 

predictor of mortality. 
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Table 6 Outcome and degree of separation from CPB at the Montreal Heart Institute 

Variable 

Easy 
(n=3253) 

n (%) or mean ± SD 

Difficult 
(n=2466)  

n (%) or mean ± SD 

Very difficult 
(n=401)  

n (%) or mean ± SD P 
Age (years) 61 ± 10 64 ± 11 65 ± 11 < 0.0001 
Gender    < 0.0001 

Male 2505 (58) 1554 (36) 236 (5)  
Female 748 (41) 912 (50) 165 (9)  

Weight (kg) 77 ± 14.4 72.9 ± 15.2 70.3 ± 14.3 < 0.0001 
Height (cm) 166.1 ± 8.8 163.9 ± 9.7 162.3 1 ± 9.3 < 0.0001 
Body surface area(cm²/m²) 1.88 ± 0.21 1.82 ± 0.22 1.77 ± 0.22 < 0.0001 
     
Cardiovascular risk factors     

Hypertension 1495 (46) 1173 (48) 196 (49) 0.33220 
Severe obesity 901 (57) 585 (37) 89 (6) 0.0007 

Smoking 741 (28) 501 (26) 85 (6)  
History of smoking 896 (33) 613 (32) 104 (6) 0.21180 

Ischemic heart disease risk factors     
Angina 1807 (56) 1159 (36) 218 (7) < 0.0001 

Previous myocardial infarction  
< 6 months  448 (49) 399 (44) 67 (7) 0.02390 

Previous cardiac surgery 197 (25) 462 (60) 114 (15) < 0.0001 
Poor left ventricular function 64 (25) 161 (62) 34 (13) < 0.0001 

History of congestive heart failure 537 (30) 1066 (59) 197 (11) < 0.0001 
Coexisting illness     

Disabling stroke 69 (45) 72 (47) 12 (8) 0.12850 
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Severe lung disease 245 (42) 273 (47) 61 (11) < 0.0001 
Diabetes mellitus 614 (53) 480 (41) 68 (6) 0.49060 

Preoperative drug therapy     
ACE inhibitor 738 (41) 939 (52) 134 (7) < 0.0001 

Nitrates 1901 (58) 1167 (35) 218 (7) < 0.0001 
Beta-blockers 2014 (57) 1304 (37) 205 (6) < 0.0001 

Digitalis 250 (30) 489 (59) 92 (11) < 0.0001 
Calcium-channel blockers 1519 (57.3) 965 (36.4) 168 (6.3) < 0.0001 

Diuretics 642 (35) 1044 (56) 176 (9) < 0.0001 
Other antiarrhythmic agents 131 (32) 233 (57) 44 (11) < 0.0001 

Anticoagulants     
Heparin 1245 (51) 994 (41) 198 (8) < 0.0001 
Aspirin 649 (56) 439 (38) 77 (6)  

Laboratory parameters     
Hemoglobin(g/L) 138 ± 16 132 ± 18 131 ± 17 < 0.0001 

Creatinine (umol/L) 102 ± 37 107 ± 48 113 ± 62 < 0.0001 
Intraoperative     

Duration of surgery (min) 257 (53) 287 (69) 336 (102) < 0.0001 
Duration of CPB (min) 74 (27) 97 (40) 127 (67) < 0.0001 

Type of surgery    < 0.0001 
Elective 35 (24) 93 (64) 17 (12)  
Urgent 925 (60) 554 (36) 68 (4)  

Emergency 1739 (53) 1310 (40) 246 (7)  
Type of procedure    < 0.0001 

Complex valves 73 (2) 226 (9) 42 (11)  
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Combined + CABG 119 (4) 380 (15) 77 (19)  
Isolated CABG 2669 (82) 1288 (52) 209 (52)  
Isolated valves 392 (12) 572 (23) 73 (18)  

Antifibrinolytics    0.4509 
Aprotinin 300 (9.2) 789 (32) 140 (34.9) < 0.0001 

Tranexamic acid 38 (1.2) 38 (1.5) 6 (1.5)  
Aminocaproic acid 1396 (42.9) 799 (32.4) 151 (37.6)  

Postoperative outcome     
Mortality 21 (1) 110 (4) 90 (22) < 0.0001 

Neurological complications 65 (2) 98 (4) 31 (8) < 0.0001 
Myocardial infarction 166 (5) 355 (15) 127 (34) < 0.0001 

Hemodynamic complications 160 (5) 472 (19) 276 (71) < 0.0001 
Respiratory failure 78 (2) 202 (8) 68 (18) < 0.0001 

Renal complications 23 (1) 53 (2) 27 (7) < 0.0001 
Gastrointestinal complications 85 (2) 165 (4) 77 (8) < 0.0001 

Infectious complications 78 (2) 182 (7) 59 (16) < 0.0001 
ICU length of stay (days) 3.3 ± 3.6 4.3 ± 5.3 7.1 ± 8.1 < 0.0001 

Hospital length of stay (days) 6.8 ± 4.8 9.4 ± 8.8 12.2 ± 12.1 < 0.0001 
CABG, coronary artery bypass graft; CPB, cardiopulmonary bypass; ICU, intensive care unit; SD, standard deviation 



 

 

Chapter 2 Manuscript #1 
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Foreword to Manuscript #1 

The first manuscript is part of a Canadian national multicentered randomized 

controlled trial on the use of antifibrinolytics during cardiac surgery. The results were 

published in the New England Journal of Medicine in 2008. [55] The study was also 

designed to explore several issues in this particular population of 2331 high-risk cardiac 

surgical patients. As a co-investigator, my interest and responsibility were to explore the 

significance of difficult separation from CPB in this population. Therefore, in collaboration 

with the other investigators, we analyzed the data from this cohort and are presenting the 

results in the current manuscript. The results of this study will be submitted to 

Anesthesiology.   
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Abstract 

Background: Prediction of mortality in cardiac surgery is commonly based on 

preoperative variables. However, intraoperative variables may play a significant role in 

postoperative outcome. Among these variables, the pharmacological and mechanical 

support required during separation from cardiopulmonary bypass (CPB) could represent the 

earliest manifestation of a reduced capacity to sustain cardiac surgery and could 

significantly impact survival after cardiac surgery. Our hypothesis is that the stratification 

of separation from CPB into 3 categories (easy, difficult and very difficult) will be 

independently associated with life-threatening complications and survival after cardiac 

surgery.  

Objectives: To document the prevalence of difficult and very difficult separation from 

CPB and their impact on postoperative outcome.  

Methods: Prospective study in 19 Canadian tertiary care hospitals of high-risk cardiac 

surgical patients involved in the Blood Conservation Using Antifibrinolytics in a 

Randomized Trial (BART) study. Separation from CPB was stratified as easy when only 

vasoactive agents or inotropes were required, difficult when both drugs were used and very 

difficult when the first weaning process failed or the patient required  mechanical devices to 

be weaned from CPB. Backward logistic regression was performed to determine predictors 

of difficult or very difficult separation from CPB, life-threatening complications and 

mortality.  

Results: There were a total of 2331 patients in the BART study with a mean age of 66±11 

and 71.8% were male. There were 1158 (49.7%), 835 (35.8%) and 338 (14.5%) patients in 

the easy, difficult and very difficult categories, respectively. A total of 108 patients died 

(4.6%), from which 84 (77.8%) experienced difficulty in weaning from CPB. Very difficult 

separation from CPB was found to be an independent predictor of mortality (odds ratio 

3.091; 95% confidence interval 1.706-5.601). Predictors of very difficult separation from 

CPB were age (10 units) (OR, 1.222; 95% CI, 1.071-1.4201), reduced left ventricular 

function (OR 1.718; 95% CI, 1.098-2.689), previous myocardial infarction (OR, 1.491; 

95% CI, 1.106-2.011), mitral valve regurgitation (OR, 1.535; 95% CI, 1.154-2.041), 
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previous cardiac surgery (OR, 1.527; 95% CI, 1.108-2.105), higher preoperative 

prothrombin time (10 units) (OR, 1.090; 95% CI, 1.027-1.170) and longer CPB duration 

(60 units)(OR, 2.150; 95% CI, 1.870-2.490). Both difficult and very difficult separation 

from CPB were independent predictors of myocardial infarction within 30 days (OR, 2.191, 

95% CI, 1.244-3.857 and OR, 4.151, 95% CI, 2.210-7.795), cardiogenic shock (OR, 2.152, 

95% CI, 1.599-2.895 and OR, 3.677, 95% CI, 2.587-5.226), respiratory failure (OR, 1.697, 

95% CI, 1.246-2.313 and OR, 2.911, 95% CI, 2.026-4.181), new onset renal failure (OR, 

1.691, 95% CI, 1.240-2.304 and OR, 2.946, 95% CI, 2.051-4.231) and massive bleeding 

(OR, 1.381, 95% CI, 1.018-1.873 and OR, 1.727, 95% CI, 1.190-2.507).  

 Conclusion: Difficulty in the process of separation from CPB is an independent predictor 

of mortality and adverse outcome after cardiac surgery. As a surrogate endpoint, strategies 

to facilitate separation from CPB could represent new approaches in improving outcome in 

cardiac surgery. (Current Controlled Trials number, ISRCTN15166455). 

 

Keywords: Cardiac surgery; Mortality; Morbidity; Cardiopulmonary bypass; Outcome.   
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Introduction 

Several risk factors have been proposed to predict mortality in cardiac surgery. The 

evaluated risk factors are typically those present before the cardiac surgical 

procedure. [100;101] Predicting models are however insufficient to explain all the mortality 

observed in cardiac surgery. [138] This limitation in the prediction models may be 

secondary to other intraoperative factors that could play a significant role in the 

postoperative outcome of a patient undergoing cardiac surgery. However, these 

intraoperative factors are not routinely considered in risk stratification but their inclusion 

has shown potential to improve outcome prediction. [139] Among these risk factors, the 

amount of pharmacological and mechanical support during cardiopulmonary bypass (CPB) 

has been shown to play a key role in survival after cardiac surgery in several 

centers. [69;73;75;77] At the end of a cardiac surgical procedure using CPB, the period 

during which the extra-corporeal circulation is gradually removed corresponds to the 

weaning period. During that critical period, if significant vasoactive or inotropic support is 

necessary or if the introduction of new onset mechanical assistance or return on CPB prove 

necessary, then the term difficult separation from CPB is used. [61] This represents a 

significant complication that can persist until transfer to the intensive care unit (ICU) with 

an increased risk of morbidity and mortality. [10;58;69;73-75;77;78] However, in several 

studies on CPB weaning, the inotropic requirement has been the main focus; [69;73] 

several of these studies were single-centered, [69;73;75;77;139;140] and in those 

investigations, the differentiation between pharmacological and mechanical support and 

therefore the severity of separation from CPB, has not been stratified. Our hypothesis is that 

the weaning process from CPB is a critical intraoperative factor with an incremental value 

independently associated with increased morbidity and mortality in high-risk cardiac 

surgery. 

 

Study Design 



76 

 

The data from this study were obtained from the Blood Conservation Using 

Antifibrinolytics in Randomized Trial (BART) study which a multicenter, blinded, 

randomized, controlled study was comparing three antifibrinolytic agents commonly used 

in high-risk cardiac surgery. [55] Enrolled patients from Canadian cardiac surgical centers 

underwent high-risk cardiac surgery. This was defined as a surgical intervention with an 

average mortality of at least twice the norm for isolated primary CABG and a risk of repeat 

surgery exceeding 5%. The study was approved by the Research Ethics Committee of each 

participating center and the central coordinating center. Written informed consent was 

obtained from all patients. The study was designed, conducted, and reported by the 

executive committee. From 2002 to 2007, patients who were at least 19 years of age from 

19 Canadian cardiac surgical units were recruited. All the patients were undergoing one of 

the following high-risk cardiac surgical procedures for which CPB bypass was required. 

These included repeat cardiac surgery, isolated mitral valve replacement, combined valve 

and coronary artery bypass graft (CABG) surgery, multiple valve replacement or repair, 

and surgery of the ascending aorta or aortic arch. Patients who required either urgent or 

elective procedures were considered eligible. Patients were excluded when undergoing 

lower risk operations, such as isolated primary CABG with or without CPB, isolated mitral 

valve repair or aortic valve replacement, and infrequent procedures such as heart 

transplantation, implantation of a left ventricular assist device, and surgery to repair 

congenital heart defects. The research pharmacist at each center randomly assigned patients 

to receive one of the three antifibrinolytic medications, which included aprotinin, 

aminocaproic acid and tranexamic acid, as previously published. [55] 

 

Definition of pre- and intraoperative data 

Preoperative data were collected for the following variables: patient age, gender, 

weight, height, body surface area, cardiovascular risk factors (hypertension, dyslipidemia, 

severe obesity, smoking), ischemic heart disease risk factors (angina, previous myocardial 

infarction and cardiac surgery), valvular heart disease, congestive heart failure, reduced left 
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ventricular function, New York Heart Association classification, coexisting illness 

(disabling stroke, previous thromboembolism, severe lung disease, chronic renal 

dysfunction, diabetes mellitus), medical treatment and cardiac medications and laboratory 

parameters (hemoglobin, platelets, white blood cells, creatinine, coagulogram). The 

intraoperative data included the American Society of Anesthesia classification, duration of 

surgery and CPB, elective, urgent or emergency surgery, type of procedure and 

antifibrinolytics, heparin dosages, as well as blood losses in the CPB circuit or through the 

chest tube. (See Appendix 1 for definitions of variables) 

 

Study Outcomes 

Our primary study outcome was to assess the relationship between the severity of 

weaning from CPB and mortality defined as death from any cause within 30 days. Two 

definitions were used to stratify the severity in weaning from CPB and were exclusive. 

Difficult separation from CPB was defined as the requirement for both vasoactive and 

inotropic agents from the end of CPB until the end of the operation. Very difficult 

separation from CPB was defined as one or more failures of the first weaning attempt or the 

requirement for intra-aortic balloon pump (IABP) or a ventricular assist device to leave the 

operating room. Secondary outcomes included life-threatening or serious adverse clinical 

events such as stroke, myocardial infarction, cardiogenic shock, respiratory failure, new 

onset renal failure and massive bleeding during the 30-day study period. (See definitions in 

Appendix 1) 

The length of ICU and hospital stay was noted. Patients who were not admitted to 

an ICU were assigned an ICU length of stay of 0. We defined the length of hospital stay as 

the discharge date minus the surgery date plus 1 day. All the variables entered in the BART 

study were verified by at least two investigators. Built-in logic and range checks were used 

and chart audits by the data entry coordinator were performed at each site.  

 

Statistical analysis 
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Baseline characteristics of patients in the 3 groups (easy, difficult and very difficult 

separation from CPB) and those who died were described with the use of frequency 

distributions and univariable descriptive statistics, including measures of central tendency 

and dispersion. We used multiple logistic regression models to further elucidate the 

relationship between severity of separation from CPB classes and intraoperative parameters 

while adjusting for preoperative parameters considered as potentially confounding 

variables. The same approach was used for mortality and secondary outcomes. We 

calculated odds ratios (OR) with 95% confidence intervals (CI) for each of the three 

comparisons. P < 0.05 was considered significant. 

 

Results 

A total of 2331 patients were recruited from 2002 to 2007 and included in the 

analysis. There were 1674 males (71.8%) and 657 females (28.2%) with a mean age of 

66 ± 11.0 years. The characteristics of the studied population are shown in Table 7. A total 

of 1158 (49.7%), 835 (35.8%) and 338 (14.5%) patients were included in the easy, difficult 

and very difficult separation from CPB category, respectively. A total of 108 patients 

(4.6%) died. As the difficulty in separation from CPB increased, there was a proportional 

increase in mortality (easy, n = 24 (2.1%); difficult, n = 39 (4.7%); very difficult, n = 45 

(13.4%)).  

Independent risk factors for difficult and very difficult separation from CPB are 

shown in Table 8. The risk factors for difficult versus easy separation from CPB were: 

reduced left ventricular function (OR 1.859; 95% CI, 1.324-2.634), regurgitation of the 

mitral valve (OR, 1.388; 95% CI, 1.104-1.744), the aortic valve (OR, 1.322; 95% CI, 

1.075-1.626), and the tricuspid valve (OR, 1.5558; 95% CI, 1.245-1.949), urgent or 

emergency versus elective surgery (OR, 1.755; 95% CI, 1.366-2.253) and longer CPB 

duration (60 units) (OR, 1.380; 95% CI, 1.209-1.578). Aortic stenosis (OR, 0.720; 95% CI, 

0.588-0.884) and CPB blood losses (100 units) (OR, 0.971; 95% CI, 0.950-0.992) reduced 

the risk for difficult separation from CPB.  
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Similar risk factors for very difficult versus easy separation from CPB included left 

ventricular function (OR 1.718; 95% CI, 1.098-2.689), mitral valve regurgitation (OR, 

1.535; 95% CI, 1.154-2.041) and longer CPB duration (60 units)(OR, 2.150; 95% CI, 

1.870-2.490). Age (10 units) (OR, 1.222; 95% CI, 1.071-1.4201), previous myocardial 

infarction (OR, 1.491; 95% CI, 1.106-2.011), previous cardiac surgery (OR, 1.527; 95% CI, 

1.108-2.105), and higher preoperative prothrombin time (10 units) (OR, 1.090; 95% CI, 

1.027-1.170) were preoperative factors associated with very difficult separation from CPB. 

Among patients with very difficult separation from CPB, 223 (65.9%) required both 

vasopressors and inotropes, 38 of which died. Therefore 84.4% of the mortality in this 

group was associated with criteria for both difficult and very difficult separation from CPB.  

Some of the predictors of mortality (Table 9) were the same as those predicting 

difficult and very difficult separation from CPB. These include age (10 units) (OR, 1.557; 

95% CI, 1.213-2.028), prothrombin time (10 units) (OR, 1.096; 95% CI, 1.024-1.164) and 

CPB duration (60 units) (OR, 1.788; 95% CI, 1.529-2.103). Renal disease (OR, 1.921; 95% 

CI, 1.029-3.585), the use of diuretics (OR, 1.758; 95% CI, 1.108-2.790) and reduced 

hemoglobin (1 unit) (OR, 0.985; 95% CI, 0.972-0.999) were associated with increased 

mortality. Very difficult separation from CPB (OR 3.091, 95% CI, 1.706-5.601) was found 

to be an independent predictor of mortality. Figure 11 summarizes the risk factors 

associated with the severity of CPB weaning and mortality. 

Secondary outcomes and the severity of CPB weaning are shown in Table 10. Both 

difficult and very difficult separation from CPB were independent predictors of myocardial 

infarction within 30 days (OR, 2.191, 95% CI, 1.244-3.857 and OR, 4.151, 95% CI, 2.210-

7.795, respectively), cardiogenic shock (OR, 2.152, 95% CI, 1.599-2.895 and OR, 3.677, 

95% CI, 2.587-5.226), respiratory failure (OR, 1.697, 95% CI, 1.246-2.313 and OR, 2.911, 

95% CI, 2.026-4.181), new onset renal failure (OR, 1.691, 95% CI, 1.240-2.304 and OR, 

2.946, 95% CI, 2.051-4.231) and massive bleeding (OR, 1.381, 95% CI, 1.018-1.873 and 

OR, 1.727, 95% CI, 1.190-2.507). 
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Discussion 

In this multicentered study conducted in 19 centers across Canada, we observed an 

association between the amount of pharmacological and mechanical support during 

separation from CPB, life-threatening or serious adverse clinical events, length of ICU and 

hospital stay, and mortality. A total of 108 patients died and 77.8% experienced difficulty 

in the process of separation from CPB. Furthermore, those failing to be weaned on the first 

attempt and requiring additional surgical intervention or mechanical devices experienced an 

increased mortality, independently of their underlying condition. Both difficult and very 

difficult separation from CPB were also related. In patients with very difficult separation 

from CPB, 84.4% also presented pharmacological criteria for difficult separation from 

CPB. In addition, we observed that predictors of difficult and very difficult separation from 

CPB were different. These variables were also different from those predicting mortality 

(Figure 11). This could explain why preoperative risk factors alone do not completely 

predict mortality and morbidity. [141] As the patient is admitted to the ICU, the inclusion 

of intraoperative factors would allow to reset risk stratification in terms of predicting 

morbidity and mortality. Furthermore, as the process of weaning from CPB can influence 

postoperative outcome, the potential identification and correction of factors associated with 

difficult separation from CPB could represent a new field of research or a surrogate 

endpoint in cardiac surgery.  

 

Predictors and mechanism of difficult separation from CPB 

Several variables were identified as independent predictors of difficult and very 

difficult separation from CPB. The mechanism of difficult separation from CPB can be 

explained by an imbalance between circulatory reserve and demand (Figure 12). This 

imbalance can occur at a systemic or at a specific organ level. Such supply and demand 

mismatch will result in ischemic tissue injury and consequently lactic acidosis. Global 

lactate level during CPB [9] and reduced myocardial pH [109] or increased myocardial 

lactate measured during CPB [76;110] have been shown to be predictors of increased 
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postoperative inotropic support and mortality. Therefore the risk of difficult separation 

from CPB is likely to correlate with indices of global or regional myocardial tissue 

hypoperfusion.  

Hypoperfusion will occur if the circulatory reserve is reduced in relation to 

circulatory demand. Circulatory reserve is defined as the ability to deliver oxygen to the 

periphery. This ability is a function of arterial oxygen content and cardiac output. Arterial 

oxygen content depends on oxygen saturation and hemoglobin. In this study, we observed 

that reduced hemoglobin and elevated prothrombin time (PTT) were associated with an 

increased mortality. Both conditions are likely to be associated with an increased risk of 

transfusion, which has been shown to be an independent predictor of postoperative low 

output failure. [78]  

The mechanism of reduced cardiac output after CPB can be approached using the 

concept of venous return [54] because several of the determinants of venous return can be 

measured or estimated at the bedside using both hemodynamic monitoring and 

transesophageal echocardiography (TEE). Venous return and consequently cardiac output 

are determined by three variables, which are the mean systemic pressure, the right atrial 

pressure and the resistance to venous return (Figure 2). Difficult separation from CPB will 

be present when one or more of these factors is altered before or during the weaning 

process.  

First venous return will be reduced if there is a reduction in the mean systemic 

pressure secondary to a loss of blood volume or an increase in venous compliance. Factors 

associated with an increased risk of bleeding such as reoperation, [73;75;100] higher 

preoperative PTT and reduced hemoglobin will predispose to a reduction in mean systemic 

pressure. These factors were associated with very difficult separation from CPB and 

mortality. The increase in venous compliance can be linked to the duration of CPB. Longer 

CPB duration will be associated with increased inflammatory reaction, [142] 

vasoplegia [106] and, consequently, an increased requirement for vasopressors. [69;73] We 

observed lower CPB blood losses in patients with difficult separation from CPB. This could 
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be related to the reduced level of retransfusion of CPB blood in the systemic circulation and 

the deleterious effect of transfusion. [143] The amount was not clinically significant and the 

processing of blood uncontrolled. Unprocessed retransfused blood is a source of 

inflammatory mediators [144] and could offset the benefits of increased hemoglobin.  

An increase in right atrial pressure is another mechanism predisposing to difficult 

separation from CPB. Factors associated with elevation in right atrial pressure such as 

previous myocardial infarction and reduced left ventricular systolic function were 

associated with an increased risk of difficult weaning from CPB. These factors have been 

shown to be associated with increased inotropic requirements [58;64;69;70;73;75;77;104] 

and mortality in cardiac surgery. [141] Both valvular regurgitation and advanced age are 

commonly associated with elevated filling pressure, [11] diastolic dysfunction [145] and 

pulmonary hypertension. Pulmonary hypertension is associated with an increased risk of 

vasoactive support requirement after CPB [10;46] and mortality. [10;100;101;115] 

Pulmonary hypertension is typically secondary to left heart disease but can be exacerbated 

after CPB because of the reperfusion syndrome, [146] dysfunctional prosthesis or 

inadequate revascularization and, in some cases, in patients with aortic or mitral patient-

prosthesis mismatch. [120;128] However, preoperative right ventricular dysfunction seems 

to be an even more important risk factor in cardiac surgery [46;112] than the severity of 

pulmonary hypertension. The observed increased difficulty of weaning from CPB in 

patients with tricuspid regurgitation could be related to this factor. When difficult 

separation from CPB is associated with postoperative right ventricular failure, the mortality 

can be as high as 86%. [3] Renal disease is a known factor associated with increased 

mortality in cardiac surgery, [115;147] and the use of diuretics could be related to worse 

cardiac conditions. Any factor increasing right atrial pressure can result in increased 

requirements for inotropic and vasoactive agents. We observed that aortic stenosis reduced 

the risk of difficult separation from CPB. In these high-risk patients compared with valvular 

regurgitation, aortic stenosis is the most benign valvular disease and has little or no 

incremental prognostic value. [100]  
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Finally, the third mechanism is an increase in resistance to venous return resulting 

from an external or internal extracardiac flow obstruction such as tamponade, 

pneumothoraces, and thoracic or abdominal compartment syndrome. [148] This third 

mechanism is uncommon and poorly documented in the period immediately following CPB 

during open chest surgery, except in cases where the inferior vena cava flow is accidentally 

interrupted. [149] The treatment of this condition relies on the recognition and correction of 

the underlying mechanical cause. Finally, multiple determinants of venous return can often 

be altered. Blais et al. [121] observed that the combination of aortic valve patient-prosthesis 

mismatch and reduced left ventricular ejection increased perioperative mortality up to 67%. 

Recognition and correction of these factors when possible could play a significant role in 

reducing the prevalence of difficult separation from CPB. 

 

The association between mortality and difficult weaning from CPB  

Several preoperative variables have been associated with increased mortality in 

cardiac surgery and are used in risk stratification. [74;100-102] These studies differ 

regarding the type of procedure (CABG, valvular or not), the specific population and age 

group, the inclusion of a single or multiple centers, the duration of follow-up and the 

inclusion of mortality and postoperative morbidities as primary and secondary endpoints. 

Nilsson et al. [141] applied 19 preoperative risk stratification models to 6222 patients 

undergoing open heart surgery. The highest discriminatory power using a receiver 

operating curve (ROC) was 0.84 in predicting 30-day mortality. The absence of a higher 

discriminatory score could be explained by other factors that can influence postoperative 

survival such as intraoperative and postoperative variables. In a study of 1157 elderly 

patients from a single institution, Rady et al. [139] combined the use of preoperative, 

intraoperative and postoperative factors to predict postoperative mortality. The mortality 

ROC area increased to 0.90 by the inclusion of all these criteria. In that study, the use of 

inotropic agents upon admission to the ICU was significantly related to mortality. 

However, the extent to which difficult separation from CPB can be seen as an independent 
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predictor of mortality had not been demonstrated before the conducting of a prospective 

multicentered study. 

Several definitions of post-CPB hemodynamic instability have been used and 

studied as postoperative outcome. Difficult separation from CPB, [10;11;60] postoperative 

inotropic dependency, [58;64;69] low cardiac output state [4;75;77] and low output 

failure [78] are some of the terms used. This association between difficult separation from 

CPB and mortality is much more established [69;75;77;109] than the independent value of 

difficult separation from CPB in predicting mortality. Only two single-center studies have 

demonstrated that the use of inotropes after cardiac surgery was an independent predictor of 

increased mortality. [139;140] 

Difficult separation from CPB is the earliest period after cardiac surgery when 

inappropriate oxygen supply can be observed. It occurs in the operating room while the 

chest is still open. When difficult separation from CPB is present, it requires not only rapid 

pharmacological and mechanical interventions but also a careful search for potential 

reversible factors and therefore a quest for the underlying mechanism. The understanding 

of this condition has been greatly improved since the introduction of intraoperative 

transesophageal echocardiography (TEE), which can lead to medical and surgical 

interventions before chest closure. [16;57;150-153] In the setting of difficult separation 

from CPB resulting in hemodynamic instability, TEE is considered a type I 

indication. [154]  

 

Limitations 

In predicting mortality, the difficulty in separating from CPB is unknown when the 

patient is seen before a cardiac surgical operation. This predictor will only be made 

manifest later in the operating room. Preoperative risk stratification models are still useful. 

Knowing the difficulty in separation from CPB is an advantage in the postoperative period 

only. For the critical care physician, resources allocation and outcome will be influenced by 

how well separation from CPB went. The goal of this study was to document the 
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importance of difficult separation from CPB in a multicentered national study. However the 

precise mechanism leading to this condition was not identified for each patient. 

Intraoperative echocardiography was used in 2075 (89.1%) patients but the exam was not 

standardized and the final report not collected. There are also other variables associated 

with difficult separation from CPB such as pulmonary artery pressure, [10;100;101;115] 

left ventricular end-diastolic pressure, [11] diastolic function parameters, [155] right 

ventricular function indices, [46;112] and myocardial pH and lactate [76;109;110] which 

were not routinely used and consequently unavailable. Further studies using a systematic 

approach for the diagnosis of conditions resulting in difficult separation from CPB are 

needed to gain more insight on the mechanism of this critical condition. 

 

Conclusion 

In summary, in patients undergoing high-risk cardiac surgery, significant 

pharmacological and mechanical support during weaning from CPB is independently 

associated with increased morbidity and mortality. Difficult separation from CPB could be 

viewed as a surrogate endpoint in cardiac surgery. Strategies to identify and understand the 

mechanism using TEE [48] or metabolic markers [111] could reduce the prevalence of this 

complication and could lead to the introduction of new pharmacological strategies or 

mechanical devices that would greatly improve the care provided to the cardiac surgical 

patient. 
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Table 7 Outcome and degree of separation from CPB in the BART study 

Variable 

Population 
(n = 2331) 
n (%) or  

mean ?SD 

Easy 
(n=1158) 
n (%) or  

mean ?SD 

Difficult 
(n=835) 
n (%) or  

mean ?SD 

Very difficult 
(n=338) 
n (%) or  

mean ?SD 

Mortality  
(n=108) 
n (%) or  

mean ?SD 
Age 66 ?11.0 66.2 ?11.3 67.2 ?10.9 68.1 ?9.9 71 ?10.1 
Gender      

Male 1674 (71.8) 845 (73.0) 594 (71.1) 235 (69,5) 67 (62.0) 
Female 657 (28.2) 313 (27.0) 241 (28.9) 103 (30,5) 41 (38.0) 

Weight (kg) 81.4 ?17.3 81.9 ?17.3 81.1 ?17.4  80 ?17.4 78.1 ?18.1 
Height (cm) 167.9 ?15.4 168.7 ?14.7 167.4 ?15.8 166.8 ?16.3 166 ?14.4 
Body surface area (cm?m? 1.94 ?0.26 1.95 ?0.26 1.93 ?0.26 1.91 ?0.26 1.88 ?0.22 
Cardiovascular risk factors      

Hypertension 1456 (62.5) 731 (63.1) 503 (60.2) 222 (65.7) 82 (75.9) 
Dyslipidemia 1468 (63.0) 722 (62.3) 516 (61.8) 230 (68.0) 75 (69.4) 

Severe obesity 687 (29.5) 342 (29.5) 241 (28.9) 104 (30.8) 27 (25.0) 
Smoking 343 (14.7) 163 (14.1) 136 (16.3) 44 (13.0) 11 (10.2) 

History of smoking 1587 (68.1) 790 (68.2) 571 (68.4) 226 (66.9) 70 (64.8) 
Ischemic heart disease risk factors      

Angina 1195 (51.3) 602 (52.0) 387 (46.3) 206 (60.9) 64 (59.8) 
Canadian Cardiovascular Society Class      

0 1055 (50.7) 503 (43.4) 431 (51.6) 121 (35.8) 42 (42.4) 
I 66 (3.2) 36 (3.1) 20 (2.4) 10 (3.0) 1 (1.0) 

III 314 (15.1) 174 (15.0) 96 (11.5) 44 (13.0) 9 (9.1) 
III 485 (23.3) 254 (21.9) 157 (18.8) 74 (21.9) 28 (28.3) 
IV 163 (7.8) 70 (6.0) 53 (6.3) 40 (11.8) 19 (19.2) 

Previous myocardial infarction < 6 months  203 (8.8) 78 (6.7) 85 (10.2) 40 (11.8) 16 (14.8) 
Previous myocardial infarction 659 (28.3) 277 (23.9) 258 (30.9) 124 (36.7) 40 (37.0) 

Previous cardiac surgery 572 (24.5) 254 (21.9) 216 (25.9) 102 (30.2) 35 (32.4) 
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Variable 

Population 
(n = 2331) 
n (%) or  

mean ?SD 

Easy 
(n=1158) 
n (%) or  

mean ?SD 

Difficult 
(n=835) 
n (%) or  

mean ?SD 

Very difficult 
(n=338) 
n (%) or  

mean ?SD 

Mortality  
(n=108) 
n (%) or  

mean ?SD 
Valvular heart disease      

Tricuspid regurgitation 967 (45.7) 401 (34.6) 426 (51.0) 140 (41.4) 54 (55.1) 
Aortic regurgitation 1136 (53.1) 515 (44.5) 454 (54.4) 167 (49.4) 58 (59.8) 

Aortic stenosis 1282 (59.0) 682 (58.9) 427 (51.1) 173 (51.2) 55 (56.7) 
Mitral regurgitation 1403 (65.4) 616 (53.2) 570 (68.3) 217 (64.2) 79 (80.6) 

Mitral stenosis 256 (12.1) 122 (10.5) 104 (12.5) 30 (8.9) 15 (15.5) 
Congestive heart failure 913 (39.2) 410 (35.4) 364 (43.6) 139 (41.1) 53 (49.1) 

Admission for congestive heart failure 261 (11.8) 100 (8.6) 120 (14.4) 41 (12.1) 18 (18.0) 
New York Heart Association class      

None 1411 (64.0) 669 (57.8) 445 (53.3) 185 (54.7) 55 (57.9) 
1 49 (2.2) 21 (1.8) 20 (2.4) 8 (2.4) 1 (1.1) 
2 202 (9.2) 104 (9.0) 72 (8.6) 26 (7.7) 5 (5.3) 
3 456 (20.7) 212 (18.3) 178 (21.3) 66 (19.5) 25 (26.3) 
4 85 (3.9) 35 (3.0) 27 (3.2) 23 (6.8) 9 (9.5) 

Poor left ventricular function 230 (9.9) 75 (6.5) 109 (13.1) 46 (13.6) 15 (13.9) 
Coexisting illness      

Disabling stroke 53 (2.3) 20 (1.7) 23 (2.8) 10 (3.0) 4 (3.7) 
Previous thromboembolism 93 (4.0) 43 (3.7) 38 (4.6) 12 (3.6) 1 (0.9) 

Severe lung disease 142 (6.1) 55 (4.7) 63 (7.5) 24 (7.1) 11 (10.2) 
Chronic renal dysfunction 142 (6.1) 54 (4.7) 58 (6.9) 30 (8.9) 19 (17.6) 

Diabetes mellitus 559 (24.0) 262 (22.6) 203 (24.3) 94 (27.8) 33 (30.6) 
Preoperative drug therapy      

ACE inhibitor 1092 (47.0) 503 (43.4) 420 (50.3) 169 (50.0) 55 (51.0) 
Nitrates 592 (25.7) 271 (23.4) 216 (25.9) 105 (31.1) 40 (37.4) 
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Variable 

Population 
(n = 2331) 
n (%) or  

mean ?SD 

Easy 
(n=1158) 
n (%) or  

mean ?SD 

Difficult 
(n=835) 
n (%) or  

mean ?SD 

Very difficult 
(n=338) 
n (%) or  

mean ?SD 

Mortality  
(n=108) 
n (%) or  

mean ?SD 
Beta-blocker 1246 (53.6) 594 (51.3) 460 (55.1) 192 (56.8) 69 (63.9) 

Digoxin/Digitalis 253 (10.9) 104 (9.0) 110 (13.2) 39 (11.5) 21 (19.4) 
Calcium-channel blocker 631 (27.2) 340 (29.4) 208 (24.9) 83 (24.6) 37 (34.3) 

Diuretic 1009 (43.4) 445 (38.4) 401 (48.0) 163 (48.2) 67 (62.0) 
Other antiarrhythmic agents 217 (9.4) 107 (9.2) 70 (8.4) 40 (11.8) 16 (14.8) 

Anticoagulants      
Heparin-U/day      

≤ 10,000 yes 65 (2.8) 19 (1.6) 28 (3.4) 18 (5.3) 10 (9.3) 
> 10,000 yes 223 (9.6) 83 (7.2) 108 (12.9) 32 (9.5) 16 (14.8) 

Low-molecular weight 121 (5.2) 56 (4.8) 43 (5.1) 22 (6.5) 8 (7.4) 
Warfarin 292 (12.6) 128 (11.1) 119 (14.3) 45 (13.3) 20 (18.7) 

Antiplatelet agent      
Aspirin      

None 1205 (52.4) 628 (54.2) 427 (51.1) 150 (44.4) 48 (44.9) 
≤ 325 1054 (45.7) 500 (43.2) 382 (45.7) 172 (50.9) 56 (52.3) 
>325 43 (1.9) 18 (1.6) 15 (1.8) 10 (3.0) 3 (2.8) 

Other agents 102 (4.4) 44 (3.8) 39 (4.7) 19 (5.6) 5 (4.9) 
      
      
      
      

Laboratory parameters      
Hemoglobin (g/L) 136.3 ?16.3 137.5 ?15.6 135.1 ?16.9 135.3 ?16.8 127.4 ?17.6 
Platelets (x 109/L) 230.8 ?66.5 233.5 ?66.8 229 ?66.1 226.2 ?66.2 234.5 ?76.3 
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Variable 

Population 
(n = 2331) 
n (%) or  

mean ?SD 

Easy 
(n=1158) 
n (%) or  

mean ?SD 

Difficult 
(n=835) 
n (%) or  

mean ?SD 

Very difficult 
(n=338) 
n (%) or  

mean ?SD 

Mortality  
(n=108) 
n (%) or  

mean ?SD 
White Blood Cells (x 109/L) 7.9 ?6.6 8.2 ?8.3 7.6 ?4.3 7.6 ?4.8 7.3 ?2.2 

International Normalized Ratio  1.06 ?0.1 1.04 ?0.1 1.07 ?0.1 1.07 ?0.2 1.1 ?0.2 
Prothrombin Time (sec) 34.2 ?19.2 32.6 ?16.1 35.2 ?17.0 37.6 ?30.1 42.7 ?41.3 

Fibrinogen (g/L)  4.5 ?2.5 4.2 ?1.5 4.7 ?2.5 5.2 ?4.8 4.5 ?1.8 
Creatinine (umol/L)  96.1 ?41.9 94.7 ?49.4 96.9 ?32.8 98.7 ?32.8 107.7 ?45.5 

Intraoperative      
American Society of Anesthesiologist Class      

1 1 (0.1) 1 (0.1) 0 (0) 0 (0) 0 
2 35 (1.6) 21 (1.8) 10 (1.2) 4 (1.2) 1 (0.9) 
3 971 (44.4) 478 (41.3) 352 (42.2) 141 (41.7) 34 (33.3) 
4 1177 (53.8) 580 (50.1) 426 (51.0) 171 (50.6) 66 (64.7) 
5 5 (0.2) 3 (0.3) 1 (0.1) 1 (0.3) 1 (0.9) 

Duration of surgery (hours)  4.3 ?1.6 4.1 ?1.3 4.2 ?1.6 5.3 ?2.2 5.9 ?2.8 
Duration of CPB (minutes)  139.1 ?60.7 128.5 ?47.6 135.3 ?53.7 184.8 ?91.1 203.8 ?116.2 

Type of surgery      
Elective 1882 (80.8) 997 (86.1) 619 (74.1) 266 (78.7) 76 (70.4) 
Urgent 446 (19.1) 160 (13.8) 215 (25.7) 71 (21) 32 (29.6) 

Emergency 2 (0.1) 1 (0.1) 0 (0) 1 (0.3) 0 (0.0) 
      
      
      

Type of procedure      
Complex 235 (10.1) 106 (9.2) 104 (12.5) 25 (7.4) 7 (6.5) 

Combined + CABG 1282 (55.0) 636 (54.9) 448 (53.7) 198 (58.6) 64 (59.3) 
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Variable 

Population 
(n = 2331) 
n (%) or  

mean ?SD 

Easy 
(n=1158) 
n (%) or  

mean ?SD 

Difficult 
(n=835) 
n (%) or  

mean ?SD 

Very difficult 
(n=338) 
n (%) or  

mean ?SD 

Mortality  
(n=108) 
n (%) or  

mean ?SD 
Isolated aorta 59 (2.5) 37 (3.2) 13 (1.6) 9 (2.7) 0 (0.0) 

Isolated CABG 259 (11.1) 139 (12) 76 (9.1) 44 (13.0) 16 (14.8) 
Isolated valves 495 (21.2) 239 (20.6) 194 (23.2) 62 (18.3) 21 (19.4) 

      
Antifibrinolytics      

Aprotinin 781 (33.5) 388 (33.5) 276 (33.1) 117 (34.6) 47 (43.5) 
Tranexamic acid 770 (33.0) 365 (31.5) 287 (34.4) 118 (34.9) 30 (27.8) 

Aminocaproic acid 780 (33.5) 405 (35.0) 272 (32.6) 103 (30.5) 31 (28.7) 
Total heparine dosage (IU) 48559 ?40552 47369 ?42524 47811 ?41422 54497 ?29529 54861 ?30640 
CPB blood losses (ml)  467 ?489.8 483.6 ?469.8 425.9 ?487.7 515.5 ?552.8 522.7 ?743.2 
      
Postoperative outcome      

Mortality 108 (4.6) 24 (2.1) 39 (4.7) 45 (13.3)  
Stroke within 30 days 72 (3.1) 29 (2.5) 25 (3) 18 (5.3) 15 (13.9) 

Myocardial infarction within 30 days 83 (3.8) 21 (1.8) 34 (4.1) 28 (8.3) 16 (14.8) 
Cardiogenic shock 332 (14.2) 85 (7.3) 143 (17.1) 104 (30.8) 45 (41.7) 
Respiratory failure 294 (12.7) 87 (7.5) 113 (13.5) 94 (27.8) 54 (50.0) 

New onset renal failure 299 (12.9) 102 (8.8) 126 (15.1) 71 (21.0) 47 (43.5.) 
Massive bleeding 261 (11.2) 94 (8.1) 102 (12.2) 65 (19.2) 45 (41.7) 

Intensive care unit length of stay (days) 3.2 ?6.9 2.3 ?4.4 3.5 ?6.9 5.7 ?11.9 4.5 ?6.1 
Hospital length of stay (days) 11.9 ?12.6 10.2 ?8.7 12.6 ?12.2 15.9 ?21.3 7.9 ?7.6 

ACE, angiotensin converting enzyme; BART, Blood Conservation Using Antifibrinolytics in a Randomized Trial; CABG, coronary artery 
bypass graft; CPB, cardiopulmonary bypass; IU, international unit; RBC, red blood cell; SD, standard deviation; sec, seconds 
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Table 8 Predictors of the degree of separation from CPB in the BART study 

Variables B ± SE Odds ratio 95% CI P value 
Easy compared to difficult separation from CPB     
Reduced left ventricular function 0.6247 ± 0.1754 1.868 1.324-2.634 0.0004 
Mitral valve regurgitation 0.3278 ± 0.1166 1.388 1.104-1.744 0.0049 
Aortic valve regurgitation 0.2795 ± 0.1054 1.322 1.075-1.626 0.0080 
Tricuspid valve regurgitation 0.4376 ± 0.1145 1.558 1.245-1.949 0.0001 
Urgent/emergency vs. elective  0.5623 ± 0.1276 1.755 1.366-2.253 <0.0001 
Aortic valve stenosis -0.3267 ± 0.1039 0.721 0.588-0.884 0.0017 
CPB blood losses (100 units) -0.0003 ± 0.0001 0.971 0.950-0.992 0.0083 
CPB duration (60 units) 0.0054 ± 0.0011 1.380 1.209-1.578 < 0.0001 
Easy compared to very difficult separation from CPB     
Age (10 units) 0.0201 ± 0.00685 1.222 1.071-1.401 0.0034 
Reduced left ventricular function 0.5411 ± 0.2286 1.718 1.098-2.689 0.0179 
Previous myocardial infarction 0.3995 ± 0.1525 1.491 1.106-2.011 0.0088 
Mitral valve regurgitation 0.4284 ± 0.1454 1.535 1.154-2.041 0.0032 
Previous cardiac surgery 0.4236 ± 0.1637 1.527 1.108-2.105 0.0097 
Prothrombin time (10 units) 0.0086 ± 0.0032 1.090 1.027-1.170 0.0076 
CPB duration (60 units) 0.0128 ± 0.00122 2.150 1.870-2.490 < 0.0001 
B, estimate; BART, Blood Conservation Using Antifibrinolytics in a Randomized Trial; CI, confidence interval; CPB, cardiopulmonary 
bypass; SE, standard error 
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Table 9 Predictors of mortality in the BART study 

Variables B ± SE Odds Ratio 95% CI P value 
Age (10 units) 0.0443 ± 0.0131 1.557 1.213-2.028 0.0007 
Renal disease  0.6526 ± 0.3184 1.921 1.029-3.585 0.0404 
Use of diuretics 0.5644 ± 0.2355 1.758 1.108-2.790 0.0165 
Hemoglobin (1 unit) -0.0147 ± 0.00692 0.985 0.972-0.999 0.0342 
Prothrombin time (10 units) 0.0091 ± 0.00316 1.096 1.024-1.164 0.0039 
Easy vs. difficult separation from CPB  0.5155 ± 0.2875 1.674 0.953-2.942 0.0730 
Easy vs. very difficult separation from CPB 1.1285 ± 0.3033 3.091 1.706-5.601 0.0002 
CPB duration (60 units) 0.0097 ± 0.0013 1.788 1.529-2.103 < 0.0001 
B, estimate; BART, Blood Conservation Using Antifibrinolytics in a Randomized Trial; CI, confidence interval; CPB, cardiopulmonary 
bypass; SE, standard error 
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Table 10 Postoperative outcome in the BART study 

Variables B ± SE Odds Ratio 95% CI P value 
Myocardial infarction within 30 days     
Easy vs. difficult separation from CPB  0.7843 ± 0.2886 2.191 1.244-3.857 0.0066 
Easy vs. very difficult separation from CPB 1.4234 ± 0.3215 4.151 2.210-7.795 < 0.0001 
Cardiogenic shock     
Easy vs. difficult separation from CPB  0.7662 ± 0.1513 2.152 1.599-2.895  < 0.0001 
Easy vs. very difficult separation from CPB 1.3021 ± 0.1794 3.677 2.587-5.226 < 0.0001 
Respiratory failure     
Easy vs. difficult separation from CPB  0.5291 ± 0.1579 1.697 1.246-2.313  0.0008 
Easy vs. very difficult separation from CPB 1.0683 ± 0.1848 2.911 2.026-4.181 < 0.0001 
New onset renal failure     
Easy vs. difficult separation from CPB  0.5251 ± 0.1580 1.691 1.240-2.304 0.0009 
Easy vs. very difficult separation from CPB 1.0805 ± 0.1847 2.946 2.051-4.231 < 0.0001 
Massive bleeding     
Easy vs. difficult separation from CPB  0.3227 ± 0.1556 1.381 1.018-1.873 0.0381 
Easy vs. very difficult separation from CPB 0.5464 ± 0.1902 1.727 1.190-2.507 0.0041 
B, estimate; BART, Blood Conservation Using Antifibrinolytics in a Randomized Trial; CI, confidence interval; CPB, cardiopulmonary 
bypass; SE, standard error 
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Figure 11 Interactions between risk factors 
Summary of the multivariate analysis for difficult separation from cardiopulmonary bypass 
(CPB), very difficult separation from CPB and mortality. (AR, aortic regurgitation; AS, 
aortic stenosis; Hb, haemoglobin; LVEF, left ventricular ejection fraction; MI, myocardial 
infarction; MR, mitral regurgitation; PTT, prothrombin time; TR, tricuspid regurgitation) 
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Figure 12 Mechanism of difficult separation from CPB 

(A) Similarly to a shock state, difficult separation from bypass (DSB) results from an 
imbalance between circulatory demand and circulatory reserve. The risk of DSB will 
increase as global and myocardial oxygen transport (DO2) is reduced in relation to oxygen 
consumption (VO2). Determinants of circulatory reserve are the arterial oxygen content 
(CaO2) and cardiac output or venous return. (B-D) The venous return and cardiac output (y 
axis) and its relation to right atrial pressure (x axis) are shown (solid line). The intersection 
of both curves will correspond to the right atrial pressure at which, in a steady state, an 
individual will have a unique venous return and cardiac output. The mean systemic pressure 
corresponds to the point where the venous return = 0 L/min. The slope of the venous return 
curve is linked to the resistance to venous return. Venous return will be reduced if the mean 
systemic pressure is reduced, if the right atrial pressure is increased or if resistance to 
venous return is increased. [54]  

(B) Reduction in mean systemic pressure (dotted line) will result in a medial shift of the 
venous return curve. In such a situation, filling pressure, venous return and cardiac output 
will be reduced. There are two basic mechanisms: a reduction in the stressed volume and an 
increase in venous compliance. (C) An increase in right atrial pressure (dotted line) will 
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result in a reduction in venous return and consequently cardiac output. (D) Finally, in 
situations of increased resistance to venous return, (such as tamponade or pneumothorax), 
venous return and cardiac output are reduced. Right atrial pressure is increased. This is 
secondary to the rise in external cardiac pressure. Venous return will now be limited not by 
subatmospheric pressure but by the external pressure. As a result, venous return is now 
equal to the difference between mean systemic pressure and the external pressure divided 
by the resistance to venous return. The slope of the venous return curve is reduced from an 
increase in the resistance to venous return. A normal compensatory increase in mean 
systemic pressure will also be observed secondary to the activation of the autonomic 
nervous system. (CPB; cardiopulmonary bypass) 



 

Chapter 3 Mechanisms of difficult separation from 

cardiopulmonary bypass 
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As we have previously observed, difficult separation from CPB is an important and 

independent cause of morbidity and mortality. Therefore, it is of crucial importance to 

understand that mechanism precisely in order to initiate appropriate treatment. Difficult 

separation from CPB will result in a reduction in cardiac output, which will in turn result in 

hemodynamic instability. In order to describe this mechanism, the use of the concept of 

venous return as described by Guyton, [54] combined with that of biventricular pressure-

volume relationship, can help us understand this critical condition. The use of TEE has 

allowed us to document the various causes of hemodynamic instability, and examples from 

the MHI TEE database (n = 15,000 exams) will be used to illustrate this concept.  

3.1 Mechanism of hemodynamic instability 

The various components of hemodynamic instability can be explained using the 

classical concept of venous return as described by Guyton. [54] In simple terms, venous 

return (VR) is determined by a pressure gradient. This gradient corresponds to the 

difference between the mean systemic venous pressure (Pms) in the periphery and the right 

atrial pressure (Pra). This pressure gradient difference is divided by the resistance to venous 

return (Rvr).  

 

  (Equation 1) 

Therefore venous return and, consequently, cardiac output, will be reduced if: 1) the 

right atrial pressure is elevated, 2) the mean systemic pressure is low, and/or 3) the 

resistance to venous return is increased. There are several ways to illustrate this 

relationship. The classical approach to describe venous return and cardiac output is 

illustrated in Figure 13. [156] 
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Figure 13 Venous return and cardiac output 

The venous return and cardiac output (y axis) and its relation with right atrial pressure (x 
axis) is shown. The intersection of both curves will correspond to the right atrial pressure 
(Pra) at which, in a steady state, an individual will have an unique venous return and 
cardiac output. The mean systemic pressure (Pms) corresponds to the point where the 
venous return = 0. The venous return curve is linked to the resistance to venous return (Rvr) 
(dotted lines) (Adapted from Jacobsohn [156]).  

 

The pressure-volume relationship is used to describe a single cardiac cycle (Figure 

14).  
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Figure 14 Pressure and volume during a cardiac cycle 

(A) Changes in aortic, atrial, ventricular pressure, and ventricular volume in relation to the 
electrocardiogram. Left ventricular (LV) pressure and volume over time during a cardiac 
cycle is characterized by seven time-related events. Isovolumic contraction [1] is followed 
by early [2] and late [3] ejection. Diastole starts with isovolumic relaxation, [4] followed by 
the early filling phase after the opening of the mitral valve, [5] diastasis, [6] and atrial 
contraction. [7] (B) Corresponding LV pressure-volume relationship during one cardiac 
cycle (With permission of Denault et al. [12]).  

 

The pressure-volume relationship is typically described for the left ventricle but has 

also been used to evaluate right ventricular function. [157] The major difference between 

both ventricles is the reduced pressure in the right compared to the left ventricle. [48] In 

order to integrate the pressure-volume relationship to the venous return concept, we used a 

simplified alternative approach illustrated in Figure 15. 
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Figure 15 Venous return and pressure-volume loop concept 
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The circulatory system can be divided into an intrathoracic and an extrathoracic compartment. Illustrated in red is the arterial system and in 
blue, the venous system. Most of the blood volume (~70%) lies in the venous system. The mean systemic pressure (Pms) is determined by 
the stressed volume (~30% of blood volume). The cardiac pump has two components, the right and the left ventricles, defined by their 
respective pressure-volume loops (simplified). Both ventricles are connected together through the pericardium and the interventricular 
septum. The function and interaction between both ventricles will determine right atrial pressure (Pra). Blood returning back to the heart, i.e. 
venous return, will be dependent on the pressure gradient between the peripheral pressure, or Pms, and the central pressure, or Pra. 
Furthermore, any conditions increasing the resistance to venous return (Rvr), for instance compression of the inferior vena cava, will reduce 
venous return and consequently cardiac output. (Pa, systemic arterial pressure; Ra, arterial resistance) (With permission of Deslauriers et al. 
[158]) 
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The combination of conventional hemodynamic monitoring and TEE allows the 

determination of the causes of hemodynamic instability. [44] However, so far, a systematic 

approach in the diagnosis of difficult separation from CPB using conventional 

hemodynamic and TEE has not been performed in cardiac surgery. This combined 

approach can be used to determine the causes of difficult separation from CPB. The causes 

of hemodynamic instability resulting in reduced venous return or cardiac output and leading 

to difficult separation from CPB are a reduction in Pms, an increase in Pra and an increase 

in Rvr (Table 11).  

Table 11 Mechanism of hemodynamic instability in cardiac surgery 

1) Reduction in mean systemic pressure: 
Reduction in stressed volume:  

Hemorrhagic shock:  
External hemorrhage 
Internal: hemothorax, peritoneal hemorrhage, retroperitoneal 
hemorrrhage, gastrointestinal hemorrhage 

Increased in compliance 
Sepsis and overwhelming shock [137] 
Drug-induced vasodilation 
Anaphylaxis 
Vasoplegic syndrome 
Adrenal insufficiency 

2) Increased right atrial pressure 
Left and right ventricular systolic dysfunction 
Left and right ventricular diastolic dysfunction 
Left and right outflow tract obstruction 
Left and right embolism 
Aortic and mitral patient-prosthesis mismatch  
Hypoxemia and hypercapnia 
Pulmonary reperfusion syndrome  

 3) Increased resistance to venous return 
Compartment syndrome 

Pericardial tamponade 
Mediastinal: post cardiopulmonary bypass  
Pleural: hemothorax and pneumothorax  
Abdominal: intrinsic, extrinsic or parietal  

Vena cava syndrome   
Inferior 
Superior  
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3.1.1 Reduction in mean systemic pressure 

The mean systemic pressure, or Pms, will depend on the amount of blood 

contributing to maintain a specific venous pressure. [156] This can be expressed by the 

following equation: 

  (Equation 2) 

 

where V is the total volume of the venous reservoir and  the unstressed volume. The 

difference between V and V0 is equal to the stressed volume. Consequently, a reduction in 

Pms will be caused by a loss of stressed volume, such as hemorrhagic shock, or an increase 

in compliance of the venous reservoir, such as can be the case following drug-induced 

vasodilation. Reduction of Pms results in a reduction in venous return and cardiac output 

from a parallel medial shift of the venous return curve. Pressure and volume of both 

ventricles will be reduced (Figure 16).  
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Figure 16 Reduction in mean systemic venous pressure 

Reduction in mean systemic venous pressure will result in a medial shift of the venous 
return curve. In such a situation, pressure and volume of the right and left ventricles will be 
reduced. This diagnosis can be made with conventional hemodynamic monitoring alone. In 
such a situation, filling pressure, venous return and cardiac output will be reduced. There 
are two basic mechanisms: a reduction in the stressed volume and an increase in venous 
compliance. Both conditions will be associated with a reduction in both left- and right-sided 
cardiac dimensions; however, some specific echocardiographic findings can suggest rather 
one mechanism or the other. 
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3.1.1.1 Reduction in stressed volume 

During cardiac surgery, hemorrhagic shock is a common mechanism of reduced 

Pms that occurs because of a loss of blood volume and, consequently, hemoglobin. 

Hemorrhagic shock can be defined as internal or external. The latter is easy to diagnose; the 

former can however prove more difficult to recognize. There are two conditions of internal 

blood losses that can be diagnosed during cardiac surgery. The first is massive pleural 

effusion secondary to a hemothorax. We have encountered this condition following 

traumatic perforation of the superior vena cava during the insertion of a central venous 

catheter. The diagnosis can easily be made using TEE, as both right and left pleural cavity 

can be seen using TEE). The mechanism of hemodynamic instability of a hemothorax can 

also result from an increase in the resistance to venous return, as will be discussed later. In 

such a situation, right atrial pressure might not be reduced, as the hemothorax can 

externally compress the right atrium. 

 

Figure 17 Bilateral pleural effusions 
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(A, B) The left pleural effusion is typically posterior to the descending aorta (Ao) and seen 
on the right side of the screen. (C,D) The right pleural effusion is on the left side of the 
screen where part of the liver can be seen. A total of 2500 mL of pleural fluid was removed 
from the right (900 mL) and left pleural (1400 mL) cavities (With permission of Denault et 
al. [13]).  

 

Another cause of hemodynamic instability easily diagnosed in the operating room is 

peritoneal hemorrhage. This can result from abdominal aortic or iliac rupture, which can 

occur during manipulation of these structures. This situation has been encountered during 

the emergency insertion of an IABP. The diagnosis is based on the new onset of fluid 

collection in the abdomen. The echocardiographic image is similar to that of ascitis (Figure 

18). 

 

 

Figure 18 Abdominal examination using transesophageal echocardiography 

(A,B) Presence of ascitis in a 58-year-old woman. (IVC, inferior vena cava, LHV, left 
hepatic vein) (Courtesy of Denault et al. [13]). 

 

Other sites of bleeding include the gastrointestinal tract and the retroperitoneal 

space. Such a diagnosis would require other modalities, such as gastrointestinal endoscopy 

and computed tomography.  
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3.1.1.2 Increase in venous compliance 

The second mechanism involved in a reduction in Pms is an increased compliance 

of the vascular system. This diagnosis can also be suggested by some specific 

echocardiographic signs evocative of an infectious process, for instance. Increased venous 

compliance can develop following the use of several drugs during cardiac surgery, during 

the vasoplegic syndrome and, in some cases, sepsis. [137]  

The use of preoperative angiotensin-converting enzyme inhibitors has been 

associated with vasodilatory shock in cardiac surgery. [159] In such a case, vasopressin has 

been proposed as a drug of choice. [160;161] Drug-induced vasodilation can occur shortly 

following the induction of anesthesia and is often rapidly reversible. Anaphylactic reaction 

can also occur, particularly during the administration of blood products, aprotinin and 

protamine, and in patients previously exposed to these agents. Adrenaline or even 

vasopressin can be used in such a situation. [162] Similarly, the administration of 

protamine can be associated with acute pulmonary hypertension combined with right 

ventricular failure. [163] In these situations heparine, methylene blue [163] or inhaled 

prostacyclin [164] have been used to manage unstable patients. Patients exposed to or under 

corticosteroids can also present a predisposition to adrenal insufficiency, another cause of 

increased venous compliance. [165]  

The term “vasoplegic syndrome” has been used to describe a severe systemic 

inflammatory response syndrome occurring after CPB [166] and, in rare instances, in 

patients without CPB. [136] Vasoplegic syndrome is defined as a mean arterial pressure 

< 60 mmHg, a cardiac output greater than 4.0 L/min, and low systemic vascular resistance 

(600 dyne/s/cm5) under an intravenous norepinephrine infusion (0.5 μg/kg/min)1

                                                 
1 This is equivalent to 130 mL/hr of norepinephrine (4 mg/250 mL) for a 70 kg patient. 

. [167] 

This condition can occur in up to 5% of patients undergoing cardiac surgery and is 

associated with an increased morbidity and mortality going up to 5.6%. Treatment with 

methylene blue has been shown to be effective in 94% of cases. [167] The mechanism of 

the vasoplegic syndrome is thought to be related to surgical trauma, contact of blood 
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components with the artificial CPB circuit and lung reperfusion injury. [168] This effect 

will trigger a cytokine-mediated activation of platelets and leukocytes. Both tumor necrosis 

factor α (TNF-α) and interleukin-6 levels are related to the degree of surgical stress. [169] 

A high level of TNF-α will promote the secretion of nitric oxide (NO) and platelet-

activating factor (PAF). The release of NO will reduce systemic vascular resistance and 

increase compliance; PAF is partially responsible for the increased permeability in sepsis 

and shock. [170] 

Finally, emergency operation in patients already hemodynamically unstable on 

vasoactive medication is a well-known risk factor for LCOS [75;78] and mortality. [141] 

These patients may already show an increase in venous compliance from sepsis. Active 

endocarditis for instance, with the associated sepsis, is an important predictor of outcome in 

the Parsonnet score [100] and EuroSCORE. [101;141] In such conditions, the requirement 

for vasoactive medication can be the result not only of an increased venous compliance but 

is also often associated with other mechanisms.  

 

3.1.2 Increased right atrial pressure 

Increased right atrial pressure can result from left and right systolic dysfunction, 

diastolic dysfunction, outflow tract obstruction and embolism. In addition, certain 

biochemical conditions can increase pulmonary vascular resistance, such as hypoxemia, 

hypercapnia and the pulmonary reperfusion syndrome (see Chapter 6). Aortic and mitral 

patient-prosthesis mismatch are other factors that can contribute to an increase in right 

atrial pressure. These conditions, along with their definitions, mechanisms and 

echocardiographic signs, will be reviewed. 

3.1.2.1 Left ventricular systolic dysfunction 

One of the most common causes of elevated right atrial pressure is left ventricular 

systolic dysfunction. During cardiac surgery, left ventricular systolic dysfunction can result 

from ischemia, poor protection during CPB and air embolism. In a situation where systolic 
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dysfunction appears either to the left or the right, a right-sided (or lateral) shift of the 

pressure-volume relationship will be observed. Biventricular volumes will be increased, 

while ventricular pressure is typically normal or high (Figure 19).  

 

 

Figure 19 Biventricular systolic dysfunction 
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Biventricular systolic dysfunction will be associated with a reduction in venous return and 
cardiac output. The right atrial pressure will increase. In that situation, the pressure and 
volume of the right and left ventricles will shift laterally.  

 

Echocardiographically, signs of left ventricular dysfunction include a reduced left 

ventricular ejection fraction measured either using a mid-esophageal view (Figure 20) or 

transgastric view (Figure 21).  

 

Figure 20 Simpson’s method of discs 

Measurement of left ventricular volumes by modified Simpson’s biplane method using 
mid-esophageal four- (A,B) and two-chamber (C,D) views. The calculated 
echocardiographic stroke volume (SV) was slightly different from the SV measured with 
thermodilution (TD) (EDV, end diastolic volume; EF, ejection fraction; ESV, end systolic 
volume). (With permission of Denault et al. [13]) 
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Figure 21 Left ventricular fractional area change 

Measurement of fractional area change (FAC) in a 75-year-old man with unstable angina 
undergoing emergency revascularization. A transgastric mid-papillary view of the left 
ventricle (LV) in diastole (A,B) and in systole (C,D) provides the measurements to 
calculate the FAC, which was 26%. Note the exclusion of the papillary muscles during 
tracing of the areas. (EDA, end diastolic area; ESA, end systolic area). (With permission of 
Denault et al. [12]) 

 

Left ventricular systolic dysfunction originating from either coronary artery disease, 

cardiomyopathy, or associated with valvular heart disease, will be associated with an 

elevated left ventricular filling pressure and, consequently, post-capillary pulmonary 

hypertension. In cardiac surgery, left ventricular systolic dysfunction can be present before 

or after the procedure. 

When present before the procedure, left ventricular systolic dysfunction, defined as 

reduced LVEF or associated with regional wall motion abnormalities (RWMA), is a known 

predictor of perioperative mortality in cardiac surgery. [73] This observation was well 

described in the Coronary Artery Surgery Study (CASS) in 1983. [171] This study 
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analyzed 7658 patients who underwent isolated coronary revascularization, irrespective of 

age, and examined whether an age of 65 years or older was an independent predictor of 

perioperative mortality. The variables selected, in order of significance, were: congestive 

cardiac failure score; left main coronary artery stenosis and a left-dominant circulation; age 

of 65 years or older; left ventricular wall motion score; gender; and history of unstable 

angina pectoris. [171] When left ventricular dysfunction before cardiac surgery is 

associated with mortality, the mechanism involved is most likely hemodynamic instability. 

Indeed, in a smaller study of 128 patients undergoing coronary revascularization, Royster et 

al., [58] using logistic regression analysis, observed that LVEF was significantly lower and 

the most significant factor (p = 0.0022) associated with the requirements for inotropes after 

cardiac surgery. 

Left ventricular dysfunction can occur after cardiac surgery and will be associated 

with a worse outcome. Leung et al. [172] found that postoperative RWMA, as 

demonstrated by TEE, was the most reliable predictor of operative outcome. Six of 18 

patients with postoperative RWMA had an adverse outcome, defined as myocardial 

infarction, severe left ventricular dysfunction requiring inotropic therapy, or cardiac death, 

whereas none of the 32 patients without postoperative RWMA showed any adverse 

outcome. 

In summary, reduced left ventricular dysfunction is associated with worse outcome 

after cardiac surgery when it is present before or after the procedure. Post-capillary 

pulmonary hypertension is the consequence of left ventricular dysfunction; however, an 

elevation of LVEDP will appear before elevated left atrial pressures reach the pulmonary 

circulation. In addition, elevated LVEDP can be present without reduced left ventricular 

systolic function. This condition is named left ventricular diastolic dysfunction.  

3.1.2.2 Left ventricular diastolic dysfunction 

Diastolic dysfunction is evaluated and diagnosed by an accepted classification and 

recommended guidelines (Figure 22). [173;174] These guidelines are based on Doppler 

signals obtained at the mitral valve leaflet, namely the transmitral flow (TMF) early (E) and 
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atrial (A) velocities, the pulmonary venous flow (PVF) systolic (S) and diastolic (D) 

velocities and the myocardial wall velocities measured at the mitral annulus, so-called the 

mitral annular velocities (MAV). The latter are composed of Em (early component of the 

MAV) and Am (late or atrial component of the MAV). In patients undergoing cardiac 

surgery, we have used the following criteria to define diastolic function: normal (TMF E/A 

>1, PVF S/D >1, MAV Em/Am >1), mild diastolic dysfunction (E/A < 1, S/D >1, MAV 

Em/Am <1), moderate diastolic dysfunction (E/A ≥ 1, S/D <1, MAV Em/Am <1), and 

severe diastolic dysfunction (E/A >2, S/D <1, MAV Em/Am < or >1).  

 

Figure 22 Echocardiographic classification of diastolic dysfunction 
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(A, peak late diastolic transmitral flow velocity; A dur, duration of mitral inflow A-wave; 
AR dur, peak pulmonary venous atrial reversal flow velocity duration; D, peak diastolic 
pulmonary venous flow velocity; DT, deceleration time; E, peak early diastolic transmitral 
flow velocity; Em, peak early diastolic myocardial velocity; LV, left ventricular; S, peak 
systolic pulmonary venous flow velocity; Vp, flow propagation velocity). (With permission 
of Denault et al. [12]). 

 

Diastolic dysfunction of both the left and right ventricles will be associated with a 

normal or reduced volume requiring an increased filling pressure (Figure 23).  
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Figure 23 Biventricular diastolic dysfunction 

Biventricular diastolic dysfunction will be associated with a maintained venous return and 
cardiac output. However, the right atrial pressure will increase from a parallel rightward 
shift of the venous return curve. In that situation, the filling pressure will increase and 
ventricular volume can be normal or reduced.  

 



117 

 

The recognition that left ventricular diastolic dysfunction plays a central role in the 

pathophysiology of cardiac disease has been compared to the discovery of the Rosetta 

Stone, which played a key role in understanding 1000 years of Egyptian history. [175] This 

new understanding was triggered by developments in echocardiography that allowed for a 

simple, rapid and non-invasive assessment of cardiac function. However, before 

echocardiography was routinely used in cardiology, several clinicians observed that 

elevated LVEDP per se was associated with mortality. In 1983, in the CASS study, Gersh 

et al. [171] reported their results on 1086 patients of 65 years of age or older who 

underwent isolated coronary artery bypass grafting. Using a stepwise linear discriminant 

analysis, the authors identified five variables predictive of perioperative mortality. The first 

was the presence of 70% or more stenosis of the left main coronary artery and a left-

dominant circulation, and the second most important factor was LVEDP.  

There is a growing interest in the evaluation of diastolic dysfunction. Diastolic 

dysfunction is associated with reduced survival in patients with congestive heart 

failure, [176;177;177-179] sepsis [180] and following acute myocardial 

infarction. [181;182] This is consistent with the observation that preoperative elevated 

LVEDP increases the incidence of postoperative inotropic support [58;104] and 

mortality. [8;11;183] It also supports the hypothesis that diastolic dysfunction before 

cardiac surgery could have an impact on survival and postoperative 

complications. [17;39;155;184;185]  

The hypothesis that patients with diastolic dysfunction are at higher risk of 

hemodynamic instability after cardiac surgery is supported by a study by Bernard et al. [17] 

that included 66 patients, of whom 52 underwent coronary revascularization alone. The 

factors associated with an increased need for vasoactive support after CPB were: female 

gender, diastolic dysfunction and prolonged duration of CPB. Diastolic dysfunction was 

more significant than systolic dysfunction in predicting difficult separation from CPB and 

vasoactive requirement after surgery. The importance of preoperative diastolic dysfunction 

as an independent predictor of hemodynamic complications and survival in cardiac surgery 

was reconfirmed by four other investigations. [39;155;184;185] 
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In summary, diastolic dysfunction will predispose to hemodynamic instability 

because the impairment of the left ventricle to accommodate volume and the consequent 

elevated LVEDP can predispose to pulmonary edema, pulmonary hypertension and right 

ventricular dysfunction. Finally, when hemodynamic instability occurs after cardiac 

surgery, it is almost invariably associated with filling abnormalities. [19] 

3.1.2.3 Right ventricular systolic dysfunction 

There are several ways to evaluate right ventricular function, and these methods 

were reviewed by Haddad et al. [48] Right ventricular function is commonly measured with 

2D or Doppler echocardiography following published guidelines. [186] Right ventricular 

fractional area change (normal > 35%) (Figure 24), right ventricular myocardial 

performance index (Figure 25) and tricuspid annular plane systolic excursion (Figure 

26) [44] can be obtained to evaluate right ventricular function. The right ventricular 

myocardial performance index is stratified as < or ≥  50%, as previously 

described. [187;188]  
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Figure 24 Right ventricular systolic and diastolic function 

A 65-year-old man with previous inferior myocardial infarction scheduled for coronary 
revascularization. (A–C) Before cardiopulmonary bypass (CPB) the ejection fraction of the 
left ventricle (LV) is 20% with a low cardiac index of 1.5 L/min per m². (A) Pulsed wave 
Doppler hepatic venous flow (HVF) shows systolic flow (S) predominance. (B) Tricuspid 
annular velocities (TAV) by tissue Doppler shows a Et/At ratio < 1 (Et = 5.7 and At = 11.5 
cm/sec). Both suggest mild diastolic dysfunction of the RV. (C) The fractional area change 
(FAC) of the RV is 34%. (D–F) Post-CPB. (D) The HVF showed new blunting of the 
systolic flow. (E) The TAV are increased with a similar ratio (Et = 7.1 and At = 12.1 
cm/sec). This suggests decreased RV compliance. (F) Right ventricular FAC increased to 
48% consistent with the surgeon’s visual appreciation of improved right ventricular 
function. Upon arrival to the intensive care unit, the cardiac index was 3.0 L/min per m² 
(AR, atrial reversal; EDA, end-diastolic area; ESA, end-systolic area; LA, left atrium; RA, 
right atrium). (With permission of Denault et al. [12]) 
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Figure 25 Myocardial performance index (MPI) 

Measurement of MPI or Tei index. (1) For the MPI of the left ventricle (LV), the 
transmitral inflow is used for measurement of the duration “a” from the end of atrial 
contraction (A-wave) to the beginning of LV filling (E-wave). (2) The ejection time (ET) or 
“b” is measured from a deep transgastric long-axis view Doppler interrogation of the left 
ventricular outflow tract. The MPI of the right ventricle (RV) is similarly obtained using 
the transtricuspid flow and the mid-esophageal ascending aorta short-axis view for the right 
ventricular outflow tract (IVCT, isovolumic contraction time; IVRT, isovolumic relaxation 
time). (With permission of Denault et al. [12]) 
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Figure 26 Tricuspid annular plane systolic excursion (TAPSE) 

Steps in the measurement of the TAPSE measured using anatomic M-mode. First a four-
chamber view is obtained (A-B). Then the M-mode cursor is positioned along the plane of 
the TAPSE motion (C). An M-mode figure of this excursion or displacement is obtained 
(D). The lower point corresponds to the maximal systolic excursion and the upper point is 
the atrial contraction. The TAPSE is equal to the total systolic excursion of the tricuspid 
annulus (E). Normal TAPSE should be 20-25 mm. (With permission of Denault et al. [12])  
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Right ventricular systolic dysfunction can be associated or not with left ventricular 

systolic dysfunction. The mechanism of biventricular systolic dysfunction was illustrated in 

Figure 27 However, isolated right ventricular systolic dysfunction can lead to left 

ventricular diastolic dysfunction and left ventricular outflow tract obstruction (Figure 27). 

In severe cases, this can lead to the opening of a patent foramen ovale and worsening 

hypoxemia. Hypoxemia will further increase pulmonary hypertension and thus lead to a 

deterioration of the right ventricular function if the cycle is uninterrupted. 

There is growing evidence that morbidity and mortality associated with pulmonary 

hypertension (discussed in more detail in Chapter 6) are dependent on right ventricular 

adaptation to disease rather than on the absolute value of pulmonary arterial 

pressure. [46;189-191] Survival and outcome in idiopathic pulmonary arterial hypertension 

are more related to elevated mean right atrial pressure and reduced cardiac output than to 

pulmonary arterial pressure values alone. [189;192]  
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Figure 27 Isolated right ventricular systolic dysfunction 

Isolated right ventricular systolic dysfunction (A) can alter the geometry of the left 
ventricle via the common pericardium and the interventricular septum through 2 
mechanisms. The most frequent is a filling abnormality (B). This is associated with a 
reduction in left ventricular volume and an increase in left ventricular pressure. The second 
mechanism can appear in very severe right ventricular dysfunction. This will also be 
associated with a reduction in left ventricular volume, an increase in left ventricular 
pressure but also left ventricular outflow tract obstruction (C). In the latter situation, the use 
of inotropes could exacerbate the left ventricular outflow tract obstruction.  

 

The importance of right ventricular function in cardiac surgery has been 

demonstrated in a variety of clinical settings such as high risk coronary or valvular heart 

disease, congenital heart disease, heart transplantation, in patients requiring mechanical 

assist devices and in the unstable postoperative patient (Table 12).  
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Table 12 Prognostic value of right ventricular function in cardiac surgery 

Study Population Study Design RV dysfunction Results 

Reitchert et al. [3] Unstable postoperative 
patients 
 

Prospective 
n = 60  

RVFAC < 35% RV dysfunction associated with high 
mortality rates 

Pinzani et al. [193] Mitral and combined 
mitro-aortic surgery  

Retrospective  
n = 382 
 

Clinical definition 
 

Postoperative RV failure is the 
strongest predictor of postoperative 
mortality  

Cullen et al. [194] 
 

Tetralogy of Fallot  Prospective 
n = 35  
 

Restrictive RV 
physiology 

Restrictive physiology predicts longer 
intensive care unit stay post repair and 
lower cardiac output  

Gatzoulis et al. [195] Tetralogy of Fallot 
 

Prospective  
n = 41  

Restrictive RV 
physiology 

Restrictive physiology predicts smaller 
RV and better exercise tolerance  
 

Kromos et al. [196] LVAD and RV failure  
 

Retrospective  
n = 31 

Clinical mean RVEF 
= 11.8% 

Preoperative clinical factors such as 
fever, pulmonary edema, and 
intraoperative blood transfusions were 
associated with RVAD need 
 

Hosenpud et al. [197] Heart Transplantation  
 

Retrospective 
International 
Society for Heart 
& Lung 
transplantation  
n = 69,205 

RV failure 
associated with 
circulatory failure 
 

RV failure accounts for up to 20% of 
early deaths 
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Study Population Study Design RV dysfunction Results 

Oehiai et al. [6] LVAD  
 

Retrospective  
n = 245 

RV failure requiring 
RVAD 

23 patients (9%) required RVAD. The 
need for circulatory support, female 
gender, and non-ischemic etiology were 
predictors of RVAD need.  

Maslow et al. [112] 
 

CAD undergoing coronary 
bypass surgery with LVEF 
< 25% 

Retrospective  
n = 41 

RVFAC < 35% RV dysfunction is associated with 
decreased long term survival  
 

Therrien et al. [198] Tetralogy of Fallot  Prospective   
n = 17  
 

RV remodeling Severe RV dilatation (RVEDV >170 
mL/m² or RVESV > 85 mL/m²) 
associated with incomplete RV 
remodeling  

Webb et al. [199] Atrial septal defect  
 

Retrospective 
series  

RV remodeling Older age at repair and abnormal RV 
myocardial relaxation were associated 
with incomplete RV remodeling  

Denault et al. [38] Patients undergoing bypass 
surgery  
 
 

Retrospective and 
prospective 
n = 800 

Dynamic obstruction 
of RVOT 
(Gd > 25 mmHg) 

Incidence: 4%, dynamic obstruction of 
RVOT was associated with a higher 
incidence of difficult weaning from 
bypass 
 

Haddad et al. [46] High-risk valvular surgery  Prospective  
n = 50 

RVFAC < 32% or  
RVMPI > 0.50  

Preoperative RV dysfunction was 
associated with a higher incidence of 
postoperative circulatory failure  
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CAD: coronary artery disease, Gd: gradient, LV: left ventricular, LVAD: left ventricular assist device, RV: right ventricular, RVAD: right 
ventricular assist device, RVES: right ventricular end-systolic volume, RVED: right ventricular end-diastolic volume, RVEF: right 
ventricular ejection fraction, RVFAC: right ventricular fractional area change, RVMPI: right ventricular myocardial performance index, 
RVOT: right ventricular outflow tract obstruction (From Haddad et al. [49]) 
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However, most of the evidence that supports the importance of right ventricular 

function is based on retrospective or small prospective studies. To date, parameters of right 

ventricular function have not been included in large-scale risk stratification models and 

therefore their incremental value to the Parsonnet score or the EuroSCORE have not been 

well established. [100;103;200;201] A recent panel from the National Institutes of Health 

has stressed the importance of research in the understanding of right ventricular 

failure. [191] Right ventricular dysfunction can be present before or after the surgical 

procedure.  

In patients presenting with severe aortic stenosis, Boldt et al. [202] have 

demonstrated that preoperative right ventricular dysfunction was associated with a greater 

requirement of postoperative inotropic support. In a retrospective study including patients 

undergoing mitral and mitral-aortic valvular surgery, Pinzani et al. [193] demonstrated that 

preoperative right ventricular failure was associated with perioperative mortality. In this 

same study, postoperative right ventricular failure was the most important independent 

predictor of late survival. In a small prospective study of 14 patients with severe non-

ischemic mitral regurgitation and high-risk descriptors (LVEF ≤ 45% or RV ejection 

fraction (RVEF) ≤ 20%), Wencker et al. [203] found that preoperative RVEF ≤ 20% 

predicted late postoperative death. In patients undergoing coronary revascularization, 

Maslow et al. [112] showed that right ventricular dysfunction defined by a right ventricular 

fractional area change (RVFAC) of less than 35% in the context of severe left ventricular 

systolic dysfunction (LVEF ≤ 25%) and non -emergent coronary revascularization was 

associated with an increased risk of postoperative morbidity and mortality. In this 

retrospective study (n = 41), patients with right ventricular dysfunction had a higher 

prevalence of diabetes mellitus and renal disease, as well as a higher incidence of 

postoperative inotropic or mechanical support, longer intensive care unit and hospital stay 

and a decreased short-term and long-term survival.  

The presence of right ventricular failure after CPB is associated with a mortality rate 

ranging from 44% to 86%. [4] The incidence of post-cardiotomy acute refractory right 

ventricular failure ranges from 0.04 to 0.1%. Acute refractory right ventricular failure has 

also been reported in 2-3% patients after a heart transplant and in almost 20-30% patients 
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who received a left ventricular assist device support, with a reported initial salvage rate of 

only 25-30%. [5]  

3.1.2.4 Right ventricular diastolic dysfunction 

The mechanism of right ventricular diastolic function was illustrated in Figure 23. 

Normal right ventricular diastolic function [204] is defined using normal values reported 

for Doppler transtricuspid flow early (E) and atrial (A) velocities, [205] hepatic venous 

flow (HVF) systolic (S), diastolic (D) and atrial reversal (AR) velocities [113;114;206] and 

tissue Doppler imaging (TDI) of the tricuspid annulus. [207;208] The latter are composed 

of the Et (early component of the TDI) and At (late or atrial component of the TDI). Right 

ventricular diastolic function is classified as normal (TTF E/A >1, HVF S/D >1, Et/At >1), 

mild diastolic dysfunction (E/A <1, or reversed AR >50% of S wave measured on HVF, or 

Et < At when both E/A and S/D >1), moderate diastolic dysfunction (E/A ≥ 1, S/D <1, 

Et/At <1), and severe diastolic dysfunction (S wave reversal on HVF, irrespective of the 

E/A and S/D ratio). 

Right ventricular diastolic dysfunction could constitute an additional marker to 

identify populations at higher risk of requiring vasoactive support, and potentially other 

clinical outcomes. We have previously documented that in hemodynamically unstable 

patients in the intensive care unit, abnormal right ventricular filling abnormalities were the 

most common echocardiographic observation. [19] We also noted, in a pilot study, that 

abnormal hepatic venous flow, when present before cardiac surgery, was associated with an 

increased need for vasoactive support after cardiac surgery. [34] In these two previous 

studies, patients were also not graded according to the severity of right ventricular diastolic 

dysfunction; however, in a recent study, [39] we were able to confirm that moderate to 

severe right ventricular diastolic dysfunction is associated with lower cardiac index and an 

increased risk of difficult separation from CPB. 
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3.1.2.5 Left ventricular outflow tract obstruction 

With the increasing use of echocardiography, both in the operating room and in 

critically ill patients, left ventricular outflow tract obstruction (LVOTO) is being diagnosed 

more frequently. Left ventricular outflow tract obstruction can be defined as an obstruction 

to blood flow, either fixed or dynamic, usually located below the aortic valve but 

sometimes involving regions up to the ventricular apex. The term mid-cavitary or apical 

obstruction is then used. [209;210] 

The diagnosis of LVOTO is critical because although the clinical manifestations are 

similar to those of left ventricular systolic dysfunction, the treatment and management are 

based on a completely different rationale. [211] Indeed, inotropic support, pharmacological 

or mechanical afterload reduction, and volume restriction used in heart failure would 

significantly deteriorate the hemodynamics of a patient presenting with a low output state 

resulting from LVOTO. Despite known risk factors for LVOTO, such as ventricular septal 

thickness > 13 mm, long posterior mitral leaflet, anteriorly displaced coaption point and 

mitro-aortic angle > 90 degrees, [212] we have seen this condition in numerous scenarios 

and believe that it has the potential to occur in almost every type of hemodynamically 

unstable patient presenting with a significantly reduced left ventricular preload. In LVOTO, 

elevated left ventricular filling pressure will be present with flow turbulence in the left 

ventricular outflow tract. In some patients, this turbulence can lead to a suctioning (Venturi 

effect) or drag effect [213] of the anterior leaflet of the mitral valve into the left ventricular 

outflow tract, the so-called SAM: systolic anterior motion. This will lead to mitral 

regurgitation, which is typically excentric (Figure 28).  

 



130 

 

 

Figure 28 Dynamic left ventricular outflow tract (LVOT) obstruction 

Mid-esophageal long-axis view in a 38-year-old man with hemodynamic instability. (A, B) 
Part of the anterior mitral valve leaflet is obstructing the LVOT. (C, D) This was associated 
with mitral regurgitation (MR). His hemodynamic condition improved with fluid and ß-
blockade (Ao, aorta; AoV, aortic valve; LA, left atrium; LV, left ventricle; SAM, systolic 
anterior motion). (With permission of Denault et al. [12]) 

 

The consequence of a left or right ventricular outflow tract obstruction will be a 

reduction in stroke volume and cardiac output with an elevated filling pressure (Figure 29).  
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Figure 29 Ventricular outflow tract obstruction 

Ventricular outflow tract obstruction of the right or left ventricle will be associated 
with a reduced venous return and cardiac output. The right atrial pressure will increase 
along the axis of the venous return curve. In that situation, the filling pressure will increase 
significantly and the ventricular stroke volume will be reduced.  

 

Two types of LVOTO can be clinically present: one is dynamic and the other will 

have underlying structural anatomical abnormalities such as those observed in hypertrophic 

obstructive cardiomyopathy or extrinsic mechanical compression. In the dynamic form, 
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tachycardia and preload reduction will predispose to LVOTO. The dynamic form has been 

observed in aortic valve replacement, in mitral valve repair and in the critically ill patient 

(Figure 28).  

In aortic stenosis, abnormal systolic intraventricular flow velocities can be observed 

reaching 14% and are aggravated with inotropes and vasodilators. [214] Aortic valve 

replacement for aortic stenosis in a patient with pre-existing left ventricular hypertrophy 

can cause significant SAM in the postoperative period. This results from the acute 

reduction in afterload, which allows increased left ventricular ejection in a small left 

ventricular outflow tract, thereby producing subvalvular stenosis or mid-ventricular 

obstruction. [12] This is usually transient and responds well to volume loading and 

cessation of inotropic drugs. However, in certain cases, surgical correction may be required 

(Figure 30). [215]  

 

Figure 30 Left ventricular outflow tract obstruction (LVOTO). 

A 53-year-old man with LVOTO after aortic valve replacement. (A,B) The mid-esophageal 
long-axis view showed the LVOTO secondary to left ventricular septal hypertrophy. (C) 
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Systemic hypotension was associated with the appearance of a giant “V” wave on the 
wedged pulmonary artery pressure (Ppa); tracing occurred as the patient was weaned from 
cardiopulmonary bypass. The “V” wave was secondary to mitral regurgitation from 
abnormal systolic anterior motion (SAM). This patient did not respond to medical therapy 
and underwent mitral valve replacement (Ao, aorta; LA, left atrium; LV, left ventricle; Pa, 
arterial pressure). (With permission of Denault et al. [12])   

 

Systolic anterior motion can also occur after MV repair for prolapse. This 

complication must be specifically looked for while in the operating room after surgery. The 

incidence of LVOTO after mitral valve repair varies from 2% to 14% [216] and is more 

frequent with myxomatous changes involving both leaflets. The underlying mechanisms 

include the anterior displacement of the coaptation point, as well as a longer and redundant 

posterior leaflet (with or without a more acute mitro-aortic angle), causing the mitral valve 

apparatus to be displaced toward the LVOT and be dragged by the outflow, provoking a 

typical SAM and subsequent subvalvular obstruction. Preoperatively, a longer posterior 

leaflet compared to the anterior leaflet (anterior/posterior length ratio ≤ 1.3) and a shorter 

distance (≤ 2.5 cm) between the coaptation point and the septum are predictors of SAM 

development post-repair (Figure 31). [212] For some patients, the problem can be alleviated 

by increasing LV filling or reducing inotropic support. However, other patients require 

mitral valve replacement or subsequent repair. The sliding technique has been developed to 

decrease the incidence of this complication by reducing the posterior leaflet 

redundancy. [217]  
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Figure 31 Risk factors of systolic anterior motion (SAM) 

(A,B) Measurements to assess the risk for postoperative systolic anterior motion (SAM) 
after septal resection from a mid-esophageal four-chamber view  (AML, anterior leaflet 
length; Ao, aorta; LA, left atrium; LV, left ventricle; PML, posterior leaflet length; RA, 
right atrium; RV, right ventricle; SAM, systolic anterior motion; SLCL, septal to leaflet 
coaptation length). (Adapted with permission of Denault et al. [12])  

 

Finally, when using TEE in a series of 61 adults with unexplained hypotension for 

more than one hour in the intensive care unit, Heidenreich et al. [218] observed that 

LVOTO was present in 3% of patients. 

Among the mechanical or extrinsic etiology of LVOTO, in some patients, right 

ventricular failure can predispose to LVOTO, as previously discussed (Figure 27). In this 

situation, right ventricular dilatation will reduce the filling of the left ventricle, thus leading 
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to LVOTO. This is a very difficult situation to manage, as right ventricular dysfunction is 

associated with poor outcome in numerous scenarios. Inotropic therapy to improve right 

ventricular function may worsen LVOTO. In such a situation, to improve right ventricular 

function, we have been using inhaled pulmonary vasodilators, such as prostacyclin or nitric 

oxide, with good results. [18] Finally, we have also observed extrinsic cardiac obstruction 

leading to LVOTO in cases such as regional tamponade after cardiac surgery. [12] In these 

situations, LVOTO will resolve as soon as the underlying cause is removed.  

3.1.2.6 Right ventricular outflow tract obstruction 

Right ventricular outflow tract obstruction (RVOTO), which can also be due to 

extrinsic [219-221] or intrinsic causes, [222-224] can also result in hemodynamic 

instability. According to time-honoured hemodynamic criteria, RVOTO is defined as 

"significant" when the peak right ventricular to pulmonary artery systolic gradient exceeds 

25 mmHg. [225-227]  Furthermore, when observed via TEE, significant RVOTO is defined 

as "fixed" if there is no change in RV outflow tract (RVOT) dimensions during the cardiac 

cycle with an anatomic substrate for obstruction, and as "dynamic" if RVOT dimensions 

increase appreciably in diastole. Dynamic RVOTO has been observed in hypertrophic 

cardiomyopathy [228] and after lung transplantation, [229;230] but it has rarely been 

described during cardiac surgery. [231]  

3.1.2.7 Patient-prosthesis mismatch (PPM) 

The indexed effective orifice area for each prosthesis is derived from normal 

reference values of effective orifice area published in the literature divided by the patient’s 

BSA, as previously described and validated. [120;123;232] Aortic PPM is defined as not 

clinically significant if the indexed effective orifice area is > 0.85 cm2/m2, as moderate if it is 

> 0.65 cm2/m2 and ≤ 0.85 cm2/m2, and as severe if it is ≤ 0.65 cm2/m2. Mitral PPM is defined 

as not clinically significant (i.e. mild or no PPM) if the indexed effective orifice area is 

> 1.2 cm2/m2, as moderate if it is > 0.9 cm2/m2 and ≤ 1.2 cm2/m2, and as severe if it is ≤ 0.9 

cm2/m2. [128] Moderate to severe aortic or mitral PPM can lead to increased LVEDP, filling 
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abnormalities (Figure 23), reduced coronary flow reserve, [126] pulmonary hypertension 

and right ventricular failure (Figure 27). This might explain why patients with PPM show 

an increase in mortality; however, the link between difficult separation from CPB and PPM 

has not yet been described. 

3.1.2.8 Embolism 

Embolism can be directed in the right or the left-sided cardiac chambers. It can be 

caused by thrombus, air, carbon dioxide or other materials (Figure 7). Right-sided 

embolism rarely occurs during cardiac surgery but can lead to acute right ventricular failure 

(Figure 27). Pulmonary embolism secondary to venous thrombus originating from the 

lower extremity is unusual during cardiac surgery because of the use of heparin. However, 

after heparin reversal using protamine and with mobilization, patients with predisposing 

conditions could develop this complication. The presence of mobile thrombus in the right 

atrium, right ventricle or pulmonary artery is pathognomonic of this condition (Figure 32).   
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Figure 32 Pulmonary embolism immediately after coronary revascularization 

This patient was hospitalized and waiting for more than a week before the procedure could 
take place. At the end of the procedure, while she was transferred in her bed, she became 
hemodynamically unstable. A transesophageal echocardiographic exam was immediately 
performed and showed the appearance of a clot in the right pulmonary artery (A-B). She 
was brought back to the operating room for urgent embolectomy and the clot was removed 
(C). She was discharged from the hospital in good condition. (Ao: aorta, RPA: right 
pulmonary artery, SCV: subclavian vein, SVC: superior vena cava) (Courtesy of Dr. David 
Bracco and Dr. Nicolas Noiseux).  

 

Air embolism is frequently observed during cardiac surgery and usually has 

minimal or no consequence when present on the right-sided chambers, unless massive. In 

such a situation, the diagnosis is based on the appearance of an hyperechoic mobile signal 

in the right-sided chambers and pulmonary artery. Air will tend to accumulate in the most 

anterior portion of the right ventricle, i.e. the anterior leaflet of the pulmonic valve (Figure 

33).  
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Figure 33 Air embolism 

Air embolism in a 46-year-old woman hemodynamically unstable during spinal surgery in a 
ventral position. (A,B) She was turned back to a supine position and a mid-esophageal right 
ventricular outflow view revealed the residual presence of air bubbles on the most anterior 
aspect of the right ventricle (RV), pulmonary artery (PA) and on both sides of the anterior 
pulmonic valve (Ao, aorta; LA, left atrium). (Adapted with permission of Denault et 
al. [12]) 

 

The presence of air in the left-sided chambers is also common during valvular or 

open heart surgery. When present, it can lead to right ventricular dysfunction through air 

embolisation of the right coronary artery. This explains why the de-airing process of the 

left-sided chambers is of significant importance in valvular surgery (Figure 34).  
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Figure 34 Air embolism 

A 61-year-old woman underwent aortic valve replacement. She was easily weaned from 
cardiopulmonary bypass (CPB). As she was transferred onto the transportation bed, she 
developed acute pulmonary hypertension (A) followed by ventricular fibrillation. (B–E) 
She was resuscitated and a transesophageal echocardiographic exam was performed. A 
mid-esophageal aortic valve long-axis and short-axis view revealed strong echogenic 
material close to the prosthetic valve, consistent with air emboli dislodged during 
mobilization of the patient (Ao, aorta; EKG, electrocardiogram; LA, left atrium; LV, left 
ventricle; Pa, arterial pressure; PA, pulmonary artery; Ppa, pulmonary artery pressure; Pra, 
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right atrial pressure; RV, right ventricle; SVC, superior vena cava). (Adapted with 
permission of Denault et al. [12]) 

 

Carbon dioxide used during saphenectomy can also inadvertently be directed into 

the systemic circulation. Carbon dioxide embolism should be suspected when an increase in 

end-tidal carbon dioxide is followed by a decrease in cardiac output and hypotension. TEE 

is the most sensitive method to detect gas embolism [233] (Figure 35). We have observed 

such cases on two occasions. [28;234] Acute right ventricular failure requiring emergency 

CPB was the consequence of the first case. However, in the second case, the use of inhaled 

prostacyclin prevented us from using CPB. [28] 

 

Figure 35 Carbon dioxide (CO2) embolism 

Mid-esophageal four-chamber view showing CO2 embolism in a 69-year-old man 
undergoing laparoscopic saphenectomy who suddenly became hemodynamically unstable. 
(A, B) A mid-esophageal four-chamber view showed the appearance of bubbles in the right 
atrium (RA) and right ventricle (RV) originating from the inferior vena cava. This was 
associated with right cardiac chamber dilatation. (C) The hemodynamic instability 
coincided with an abrupt rise in end-tidal CO2 (LA, left atrium; LV, left ventricle). 
(Adapted from Martineau et al. [28])  
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3.1.2.9 Hypoxemia and hypercapnia 

Both hypoxemia and hypercapnia will lead to pulmonary vasoconstriction, 

pulmonary hypertension and increased right atrial pressure. This is consistent with the 

rationale for the Airway-Breathing-Circulation (ABC) method in resuscitation. Airway 

management and breathing remain the two initial and essential steps in the management of 

any hemodynamically unstable patient. The effect of hypoxemia is illustrated in Figure 36.  

 

Figure 36 Hemodynamic effect of hypoxemia 

Severe hypoxemia in a 48-year-old man observed after coronary revascularization. (A) 
During the hypoxic episode, the pulmonary artery pressure increased to 61/33 mmHg. (B) 
Using positive end-expiratory pressure, the hypoxic episode was corrected and the 
pulmonary artery pressure decreased to 35/25 mmHg. (C) Using near-infrared 
spectroscopy, the hypoxemia was associated with a reversible reduction in the brain 
oximetry signal.  
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Hemodynamic instability through hypoxemia will lead to right ventricular failure 

and its consequences on left ventricular function (Figure 27). During cardiac surgery, 

hypoxemia can result from a ventilation-perfusion mismatch or through a right to left shunt. 

In the latter case, the shunt is typically through a patent foramen ovale. (PFO or “Trou de 

Botal”) present in 20% of the adult population (Figure 37).  

 

Figure 37 Patent foramen ovale (PFO) 

(A,B) A PFO demonstrated by color flow Doppler in a mid-esophageal bicaval view. (C,D) 
Opacification of the right-sided cardiac chambers by intravenous injection of agitated 
normal saline. During the release phase of the Valsalva maneuver, microbubbles are seen 
crossing to the left atrium (LA) through a PFO. (With permission of Denault et al. [12]) 

 

A PFO has a normal amount of tissue when the septum primum is complete, but it 

does not fuse with the septum secundum to obliterate the foramen ovale. A right to left 

shunt can be elicited with a Valsalva maneuver. Patency of the foramen ovale can be 
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anatomically demonstrated with a probe. It usually has no consequences unless it is 

responsible for a cerebrovascular accident through paradoxical emboli (Figure 38). Some 

authors, however, suggest that it should be closed if found in a patient in whom a cardiac 

surgical procedure is performed, [235] but recent evidence suggest no survival 

benefit. [236] The presence of a PFO may alter the method of venous cannulation in the 

case of left-sided valve surgery or the need for cardioplegia in right-sided valve surgery. In 

cases where the patient is at a high risk of hypoxemia post-bypass, such as LVAD insertion 

and heart transplant, closure of the PFO is warranted. 

 

Figure 38 Paradoxical pulmonary embolism 

Paradoxical pulmonary embolism in a 48-year-old man who presented with acute 
hypotension. (A,B) Mid-esophageal view at 55° showing a thrombus across the patent 
foramen ovale. (C) Intraoperative aspect of the pulmonary emboli. (D) Autopsy finding of a 
patent foramen ovale in a patient who died of refractory hypoxemia. (Courtesy of Dr. 
Michel Pellerin and Dr. Tack Ki Leung) (With permission of Denault et al. [12]) 
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Hypercapnia also results in pulmonary vasoconstriction and pulmonary 

hypertension. The hemodynamic and echocardiographic consequences are the same as 

those of hypoxemia. [237;238] The effect of hypercapnia can easily be demonstrated during 

organ donation. In the determination of cardiac death, it is essential to demonstrate the 

absence of any spontaneous breathing during 10 minutes of apnea. In such a situation, the 

hemodynamic and echocardiographic effects of hypercapnia can be appreciated (Figure 

39). Interestingly, changes in the dimension of the right atrium precede the increase in right 

atrial pressure (Figure 40). This is most likely secondary to the normal reduced compliance 

of the right atrial cavity. 

 

Figure 39 Hypercapnia and cardiac function 

(A) Tricuspid regurgitation continuous-wave Doppler signal before the apnea testing. The 
peak presssure gradient is 35.2 mmHg. The pulmonary artery pressure and right atrial 
pressure were 27/11 and 6 mmHg. (B) After 10 minutes of apnea, the peak pressure 
gradient increased up to 81.7 mmHg. The pulmonary artery pressure and right atrial 
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pressure were 82/43 and 12 mmHg. (C) At about the same time, right ventricular and atrial 
dilatation were present. (D) The right-sided dilatation were reversed once mechanical 
ventilation was resumed.  

 

 
Figure 40 Hypercapnia and right atrial dimension and pressure 

Relation between the right atrial area and the right atrial pressure (Pra) during apnea testing 
in organ donation. Initially, the right atrial area increases in size, but at 7 minutes only, the 
Pra starts to rise, reaching maximal value at 10 minutes. A reduction in right atrial area and 
Pra was observed when mechanical ventilation was resumed.  

 

In summary, several conditions will contribute to the increase in right atrial 

pressure. The use of TEE is essential in the diagnosis and treatment of these various 

conditions. If there is no evidence of altered Pms or Pra, then the next step is to rule out any 

increase in resistance to venous return. 
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3.1.3 Increased resistance to venous return 

There are two mechanisms of increased resistance to venous return: the first is the 

extrinsic compression of the circulatory system, or compartment syndrome, and the second 

is the intrinsic partial or complete occlusion of the extracardiac large vessels, or vena cava 

syndrome. 

The resistance to venous return will be significantly impeded in situations in which 

pericardial, mediastinal, thoracic or abdominal pressure will increase, such as during an 

abdominal compartment syndrome. [148;239] In these situations, an upward shift of the 

pressure-volume curve will be observed. The right and left ventricular pressure will be high 

(from the outside compression) and volume normal or low (Figure 41). 
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Figure 41 Mechanism of increased resistance to venous return during tamponade 

In tamponade, venous return and cardiac output are reduced. Right atrial pressure is 
increased. This is secondary to the rise in pericardial pressure. In addition, venous return 
will now be limited not by subatmospheric pressure but by the pericardial pressure. As a 
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result, venous return is now equal to the difference between Pms and the pericardial 
pressure divided by the resistance to venous return. The venous return slope is reduced 
from an increase in the resistance to venous return. A normal compensatory increase in 
mean systemic pressure (Pms) will also be observed secondary to the activation of the 
autonomic nervous system. (B) Biventricular pressure-volume relationships in pericardial 
tamponade. The increase in pericardial pressure will be transmitted to both ventricles. As a 
consequence, an upward shift of the horizontal part of the pressure-volume relationship will 
be observed. This is typically associated with the equalization of end-diastolic pressures. As 
pericardial pressure increases and tamponade develops, biventricular volumes will be 
further reduced. Consequently, left ventricular pressure and systemic pressure will be 
reduced. (With permission of Durand et al. [240])  

 

These conditions are difficult to diagnose without echocardiography and 

extracardiac pressure or intra-abdominal monitoring. [27] However, as the chest and 

pericardium are opened at the end of cardiac surgery, their contribution to hemodynamic 

instability is minimal and can be neglected. However, their contribution will appear as soon 

as the chest is closed. The causes of increased Rvr are pericardial (cardiac tamponade), 

mediastinal (after CPB), pleural (hemothorax and pneumothorax) and abdominal 

compartment syndromes. 

In the classical presentation of cardiac tamponade, fluid accumulates across the 

pericardium. The right atrium, having the lowest pressure, will be the first cardiac chamber 

to collapse in diastole, followed by the right ventricle and left atrium in diastole. This can 

be easily diagnosed using transthoracic or transesophageal echocardiography (Figure 42). 
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Figure 42 Classical tamponade. 

Classical tamponade diagnosed using transesophageal echocardiography in a patient, 
developing after surgical coronary revascularization from a deep transgastric view. (A) The 
arterial pressure (Pa) waveform shows the typical respiratory variation of pulsus paradoxus. 
The patient was on significant high doses of noradrenaline. (B) The intermittent 
compression of the right atrium (RA) can be visualized (CABG, coronary artery bypass 
graft; LV, left ventricle; PE, pericardial effusion). (With permission of Durand et al. [240])  

 

After cardiac surgery, however, localized tamponade can occur with the regional 

compression of any of the cardiac chambers. In such a situation, transesophageal 

echocardiography is mandatory to rule out regional tamponade (Figure 43). As tamponade 

progresses and shock worsens, coronary perfusion pressure is compromised, leading to 

additional myocardial dysfunction. [241]  
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Figure 43 Regional tamponade. 

Transesophageal echocardiography from a mid-esophageal view showing a large 
clot compressing the right atrium (RA) and right ventricle (RV) before (A,B) and after 
(C,D) removal . (LA: left atrium, LV: left ventricle) (With permission of Durand et 
al. [240]) 

 

The other mechanism of increased Rvr is any pleural pathology that would increase 

the extrinsic cardiac pressure. This can be a hemothorax or a pneumothorax. The former 

can be diagnosed using echocardiography (Erreur ! Source du renvoi introuvable.); 

however, the latter is more difficult to diagnose, as ultrasound does not penetrate air. 

Nevertheless, specific echocardiography signs of pneumothorax have been described using 

chest ultrasound [242] and could perhaps be used together with transthoracic 

echocardiography at the bedside. Just as with tamponade, the consequence of the 

pneumothorax is the compression of the cardiac cavity with the lowest pressure. If the 
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pneumothorax is anterior to the left side, the RVOT will be compressed specifically during 

diastole (Figure 44) We observed and reported this condition after lung 

transplantation. [27] 

 

 

Figure 44 Hemodynamic consequence of a pneumothorax 

A 19-year-old hemodynamically unstable man with chest contusion was admitted for organ 
donation. Using a mid-esophageal view of the right ventricular outflow tract (RVOT), a 
diastolic obstruction of the RVOT was observed using M-mode. The obstruction was 
secondary to an anterior left pneumothorax compressing the RVOT.  

 

In complex and long procedures, it has been noted in some patients that the closure 

of the sternum produces hemodynamic instability that is reversible when the chest is 

reopened. The mechanism is secondary to extrinsic compression of the cardiac structures 

(Figure 45). 
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Figure 45 Mediastinal tamponade 

A 62-year-old woman was admitted for urgent revascularization after failure of coronary 
angioplasty. She was intubated and on vasoactive agents before the surgery. (A) Her 
hemodynamic waveforms are shown before. As the chest was closed, she became more 
hemodynamically unstable with increased vasoactive requirements. This was associated 
with equalization of the right ventricular and diastolic pulmonary artery pressures (B). In 
addition, profound bilateral brain desaturation was observed using near-infrared 
spectroscopy (NIRS) (C). It was then decided to reopen the chest (D) and to transfer the 
patient to the intensive care unit with a sterile dressing on the mediastinum. The reopening 
of the chest was associated with an improved hemodynamic condition and improved NIRS 
values (E). 

  

The last mechanism of extrinsic compression is the abdominal compartment 

syndrome (ACS) and, unfortunately, it is still poorly recognized and diagnosed in cardiac 

surgery. Abdominal compartment syndrome is defined as a sustained abdominal pressure > 

20 mmHg with evidence of organ dysfunction relieved by abdominal decompression. [239] 

The term intra-abdominal hypertension (IAH) is used to describe abdominal pressures 

ranging from 12 to 20 mmHg. An increased pressure in a non-expendable compartment 

reduces capillary bed perfusion and promotes bacterial translocation, which is then 

followed by the activation of inflammatory cytokines. [136] The latter causes leakage 

through vascular walls and edema, which further contributes to the rise in intra-abdominal 
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pressure. The reduction in the abdominal perfusion pressure (APP) defined as the 

difference between mean arterial pressure (MAP) and intra-abdominal pressure (IAP) leads 

to organ ischemia. The associated rise in abdominal pressure increases the resistance to 

venous return (Figure 41). This will reduce venous return and lead to low cardiac output 

and shock. [243] Furthermore, as the IAP increases, the diaphragm is pushed cephalad 

which reduces thoracic or the extrapulmonary compliance. The consequences of this 

condition include a reduced glomerular filtration, an oligoanuric state, hepatic dysfunction 

and intestinal ischemia. The acute compartment syndrome has been shown to be an 

independent risk factor for mortality in the intensive care unit. [244] The risk factors of 

ACS are summarized in Table 13 and can be divided in three categories: diminished wall 

compliance, increased intra-abdominal content and capillary leak. [244;245]  

From Table 13, it appears that several of these risk factors can be present during 

cardiac surgery. Clinical manifestations are non-specific and include decreased urine 

output, high ventilatory pressures and a tense abdomen. Monitoring the intravesical 

pressure is essential to establishing the diagnosis. In patients with intra-abdominal 

hypertension and acute compartment syndrome, the abdominal perfusion pressure should 

be maintained above 50-60 mmHg. [148] Treatment should be directed towards the 

management of the underlying cause. Specific goals should be to improve abdominal wall 

compliance, reduce abdominal fluid and/or air and to correct the positive fluid balance. The 

most definitive intervention is decompression laparotomy with temporary abdominal 

closure. [246] However, this approach is not without risks and is not always curative. [247] 

The use of diuretics, paracentesis, nasogastric tubes (Figure 46) and dialysis can be very 

effective.  
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Table 13 Abdominal compartment syndrome  

1) Diminished wall compliance 
 Abdominal surgery 
 Acute respiratory distress syndrome 
 Major burns/trauma 
 Mechanical ventilation 
 Prone position 
 Obesity (body mass index > 30 kg/m²) 
 
2) Intra-abdominal content 
 Liver dysfunction (ascitis) 
 Hemo-/pneumoperitoineum 
 Increasing intraluminal fluid content (Ex. contrast enema) 

Ileus/gastroparesis 
Acute colonic pseudo-obstruction; colonic dilatation (Ogilvie syndrome) 

 Tumor 
 
3) Capillary leak/resuscitation 
 Massive resuscitation 
 Polytransfusion (> 10 blood units/24 h) 
 Acidosis (pH < 7.2) 
 Sepsis 
 Hypothermia (< 33o C) 
 Hypotension 
 Coagulopathy 
 Major burns/trauma 
 Emergency laparotomy 
 
(With permission of Deslauriers et al. [158]) 
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Figure 46 Acute abdominal compartment syndrome after induction of anesthesia. 

A 65-year-old woman difficult to intubate and ventilate was hemodynamically unstable 
after the induction of general anesthesia. A chest radiograph demonstrates a distended 
stomach. A nasogastric tube was inserted and the vasoactive support stopped.  

 

The second mechanism of increased resistance to venous return is the vena cava 

syndrome, which results in the intrinsic obstruction of the large vessels. In such a situation, 

a significant hemodynamic instability will be present with a normal or reduced cardiac 

volume similar to a reduction in Pms. This has been observed following the removal of the 

inferior vena cava cannula and accidental partial closure of the inferior vena cava (Figure 

47). We have seen it also during a Fontan procedure during which the anastomosis to the 

inferior vena cava was partially obstructed (Figure 48). 
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Figure 47 Partially occluded inferior vena cava (IVC) 

(A,B) Mid-esophageal right ventricular view in a patient after aortic valve replacement. A 
turbulent flow was observed at the entrance of the IVC. It was secondary to a partial 
obstruction of the IVC at the site of cannulation. (C) Significantly reduced hepatic venous 
flow (HVF) with systolic reversal was present.  
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Figure 48 Inferior vena cava (IVC) occlusion during Fontan procedure 

(A,B) Transgastric view showing a dilated IVC following a Fontan procedure. The 
occlusion was secondary to a partial occlusion at the level of the graft anastolosis to the 
IVC. (C,D) Hepatic venous flow (HVF) before and after cardiopulmonary bypass (CPB). 
The HVF is almost absent after CPB. 

A misplaced intra-aortic balloon catheter in the inferior vena cava will also 

contribute to hemodynamic instability, particularly during diastole when it is inflated 

(Figure 49). All these conditions can be suspected or diagnosed with the use of TEE. 
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Figure 49 Intra-aortic balloon pump (IABP) catheter in the inferior vena cava (IVC). 

(A,B) Emergency positioning of the IABP in the operating room after cardiopulmonary 
bypass. The IABP was not in the aorta but in the IVC. (With permission of Denault et 
al. [13])  

 

The superior vena cava can also be obstructed during cardiac surgery. Typically, it 

is caused by a misplaced or obstructing superior vena cava venous cannula. Although this is 

not typically associated with hemodynamic instability, it can lead to brain hypoperfusion by 

reducing the cerebral perfusion pressure. Pressure monitoring of the internal jugular 

pressure and infrared spectroscopy are modalities useful in such diagnoses (Figure 50). 

In summary, the resistance to venous return, either through the extrinsic 

compression of the cardiac chambers or great vessels (compartment syndrome) or through a 

partial or complete vascular occlusion (vena cava syndrome), is an important factor that 

needs to be diagnosed during cardiac surgery as a potential mechanism of hemodynamic 

instability and difficult separation from CPB. 
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Figure 50 Brain desaturation during cardiac transplantation. 

(A) A reduction down to 43% in brain saturation was observed during cardiac 
transplantation. (B) Despite adequate mean arterial pressure (from radial and femoral 
transducers) during cardiopulmonary bypass, the desaturation was associated with an 
increase in the left internal jugular vein (LIJV) pressure of 65 mmHg. At that point, the 
cardiothoracic surgeon decided to reposition the superior vena cava (SVC) cannula that was 
occluding cerebral venous return. The brain oximetry value increased. (C) The LIJV 
pressure decreased to 12 mmHg. (With permission of Denault et al. [130]) 

 

3.1.4 Combined mechanism 

Finally, combinations of causes of difficult separation from CPB are the rule rather 

than the exception. [19] For instance, RV systolic failure will lead to LV diastolic 

dysfunction through septal interaction (Figure 27). In these conditions, the hemodynamic 

values will be the result of two different conditions, and only echocardiography can enable 

the diagnosis of these two separate entities, as previously shown. [19] Severe shock state 

independently of their cause, when persisting, can lead to vasodilatory shock. [137] 
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In our experience, the majority of these diagnoses can be made via the combination 

of both hemodynamic and echocardiographic modalities. These conditions require a 

specific treatment. [44] For instance, inotropes are indicated in the presence of left or right 

ventricular systolic dysfunction, but contra-indicated in the presence of outflow tract 

obstruction. [38] In both conditions, the hemodynamic characteristics will be the same: 

reduced venous return and elevated filling pressure. However, the treatment is completely 

the opposite: inotropic therapy is indicated with systolic dysfunction, but inotropic 

withdrawal is the therapy for any outflow tract obstruction. 

Conditions associated with increased right atrial pressure are particularly important 

to differentiate using TEE. Each condition has a different therapeutic implication, as shown 

in Table 14. This is one of the reasons why the use of TEE is considered a type 1 indication 

in the presence of hemodynamic instability. [248] Echocardiography is therefore an 

essential tool in any research dealing with complex hemodynamic conditions. A systematic 

approach in the diagnosis and treatment of hemodynamic instability should be proposed in 

cardiac surgery. This approach should be based on the concept of venous return and uses 

combined and simultaneous TEE and hemodynamic monitoring to estimate biventricular 

pressure volume relationships.  

Figure 51 summarizes the mechanisms of hemodynamic instability resulting from 

reduced Pms, increased Pra and Rvr. Relevant hemodynamic and echocardiographic 

measurements performed during cardiac surgery are summarized in Table 15.  
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Table 14 Mechanisms of hemodynamic instability and therapeutic implication 

Etiology Timing Possible 
mechanism 

Therapeutic implication Pharmacological treatment of hemodynamic instability after 
CPB 

     Surgical consideration Fluid 
therapy 

Inotro
pes1 

Vasodil
ators² 

Vasopre
ssors³ 

Other 

LV systolic 
dysfunction 

Before 
CPB 

Coronary artery disease Coronary revascularization      

    Natural evolution of U/L 
disease 

No indication for revascularization      

  During 
CPB 

Poor myocardial protection? Retrograde cardioplegia position adequate?      

 After 
CPB 

Air embolism LV de-airing       

   Coronary ostium obstruction 
from the prosthesis 

Coronary revascularization and LVAD if severe + ++ + +  

LV diastolic 
dysfunction 

Before 
CPB 

Coronary artery disease or 
natural evolution 

Coronary revascularization      

  After 
CPB 

Poor myocardial protection? If associated with new systolic dysfunction, 
revascularization might be considered 

+ - +/- +/- Some benefit from beta-
blockade 

LV outflow 
tract 
obstruction 

Before 
CPB 

LV hypertrophy LV outflow tract enlargement      

  After 
CPB 

LV hypertrophy, edema and 
inotropes 

May lead to return on CPB and MVR if 
associated with SAM 

+ - - + Some benefit from beta-
blockade 

Pulmonary 
hypertension 

Before 
CPB 

Post-capillary from increased 
LVEDP 

Rule out absence of correctable mitral 
regurgitation 

     

  After 
CPB 

Valve dysfunction of 
pulmonary reperfusion 
syndrome 
 

Return of CPB if dysfunctional prosthesis + + + + Inhaled agents may be 
considered 

RV systolic 
dysfunction 

Before 
CPB 

Coronary artery disease or 
consequence of PHT 

      Preemptive inhaled agents 
may be considered 

  After 
CPB 

Poor myocardial protection or 
consequence of PH 

Coronary revascularization and RVAD if severe + + + + Inhaled agents may be 
considered 

  Associated with  
septal shift 

 - + ++ ++  

RV diastolic 
dysfunction 

Before 
CPB 

Consequence of PH        
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Etiology Timing Possible 
mechanism 

Therapeutic implication Pharmacological treatment of hemodynamic instability after 
CPB 

     Surgical consideration Fluid 
therapy 

Inotro
pes1 

Vasodil
ators² 

Vasopre
ssors³ 

Other 

  After 
CPB 

Poor myocardial protection or 
consequence of PH 

  +/-  
 

- +/- +/- Treatment of PH may 
improve 

RV outflow 
tract 
obstruction 

Before 
CPB 

LV septal hypertrophy        

  After 
CPB 

LV hypertrophy, edema and 
inotropes 

  + - - + Some benefit from beta-
blockade 

Patient-
prosthesis 
mismatch 

Before 
CPB 

Small aortic root Aortic root enlargement, homograft      

  After 
CPB 

Small prosthetic area in 
relation with body surface area 

  + - - +/- Some benefit from beta-
blockade 

CPB: cardiopulmonary bypass, LV: left ventricle, LVAD: left ventricular assist device, LVEDP: left ventricular end-diastolic pressure, 
MVR: mitral valve replacement, PH: pulmonary hypertension, RV: right ventricle, RVAD: right ventricular assist device, SAM: 
systolic anterior motion, U/L: underlying 
1 Inotropes: adrenaline, milrinone, isoproterenol, ephedrine 
2 Vasodilators: nitroglycerin, nitroprusside, milrinone 
3 Vasopressors: phenylephrine, noradrenaline, vasopressin, methylene blue 
Inhaled agents specific to pulmonary vessels (inhaled prostacyclin, inhaled milrinone, nitric oxide) 
+ Indicated; - Counter-indicated; +/- Benefit is unclear 
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Figure 51 Mechanism of hemodynamic instability in cardiac surgery 

(PPM, patient-prosthesis mismatch) 
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Table 15 Summary of the hemodynamic and echocardiographic measurements 

Etiology Measurement Timing Echocardiographic assessment 
  Before 

CPB 
During 

CPB 
After  
CPB 

 

LV systolic 
dysfunction 

LV hypertrophy X   LVH based on LV mass 

  LV dilatation X  X 45 mm systole and 55 mm diastole 
  LA dilatation X  X Maximum transverse diameter 
  Regional wall motion abnormalities X  X 1 = normal,  

2 = hypokinetic,  
3 = akinetic,  
4 = dyskinetic 

  Regional wall motion score index X  X Total score divided by the number of 
segments 

  Left ventricular ejection fraction X  X Simson's rule using a 2- and 4-
chamber view 

  Left ventricular fractional area 
change 

X  X Transgastric view in diastole and 
systole 

  Other: air embolism, floating 
plaques 

X  X Continuous 2D monitoring 

LV diastolic 
dysfunction 

     Classified according to an algorithm 
using: 

  Transmitral flow X  X Pulsed-wave Doppler at the tip of 
mitral valve 

  Pulmonary venous flow X  X Pulsed-wave Doppler 1 cm within 
pulmonary vein 

  Mitral annular velocities X  X Tissue Doppler on lateral wall  
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Etiology Measurement Timing Echocardiographic assessment 
  Before 

CPB 
During 

CPB 
After  
CPB 

 

  Propagation velocities X  X Color M-Mode mid-esophageal 120º 
LV outflow tract 
obstruction 

LV outflow tract measurements X   Measured in the ME 5 chamber 

  Color Doppler in the LVOT X  X Color Doppler mid-esophageal 120º 
  LV septal wall measurement X   Mid-esophageal 120º 
  Pressure gradient measurement 

across the LVOT 
   Mid-esophageal 120º:  normally less 

than 4 mmHg 
 Brockenborough Braunwald 

phenomenon 
X  X A reduced arterial pressure after a 

premature ventricular  
complex is almost pathognomonic 
 

Pulmonary 
hypertension 

Using the pulmonary artery catheter X  X Mild PHT: PAPS > 30 mmHg, 
MPAP > 25 mmHg  
and MAP/MPAP 33-50% 

       Severe PHT: SPAP > 50 mmHg, 
MPAP > 30 mmHg  
and MAP/MPAP > 50% 

RV systolic 
dysfunction 

2D Measurement of the RA and RV X  X Mid-esophageal 4-chamber view 

  Fractional area change X  X Mid-esophageal 4-chamber view 
  RV myocardial performance index X   Using CW across TV valve and deep 

TG view for ET 
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Etiology Measurement Timing Echocardiographic assessment 
  Before 

CPB 
During 

CPB 
After  
CPB 

 

  Septal shift X  X Eccentricity index will be used 
  Tricuspid annular plane systolic 

excursion 
X  X Measured using anatomic M-mode 

RV diastolic 
dysfunction 

     Classified according to an algorithm 
using: 

  Transtricuspid flow X  X Pulsed-wave Doppler at the tip of 
tricuspid valve 

  Hepatic venous flow X  X Pulsed-wave Doppler 1 cm within 
hepatic vein 

  Tricuspid annular velocities X  X Tissue Doppler on inferior wall  
RV outflow tract 
obstruction 

Using the paceport of the 
pulmonary artery catheter 

X  X Dedicated transducer for RV 
measurement 

  2D view of the RV inflow-outflow X  X Mid-esophageal 40º to 70º view 
  Deep transgastric view of the RV 

inflow-outflow 
X  X Deep transgastric view 

  Measurement of the pressure 
gradient across the TV 

X  X A pressure gradient superior to the 
systolic pulmonary  
artery pressure will be observed 

Patient-prosthesis 
mismatch 

Measurement of the aortic annulus X   Mid-esophageal 120º 

  Table consultation of the EOA of 
the inserted prosthesis 

X   Table used to obtain values for each 
type of valve 

  Pressure-gradient across the LVOT X  X Deep transgastric view 
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Etiology Measurement Timing Echocardiographic assessment 
  Before 

CPB 
During 

CPB 
After  
CPB 

 

  Measurement of the aortic valve 
area 

X  X Using the continuity equation 

Other measurements 
and observations: 

Confirmation of the absence of any 
paravalvular leaks 

  X Mid-esophageal 120º 

  Confirmation of the position of the 
retrograde cardioplegia 

 X  Confirm presence in the coronary 
sinus 

  Confirmation of the position of the 
inferior vena cava cannula 

 X  Confirm presence in the inferior vena 
cava 

  Confirmation of the position of the 
aortic cannula 

X X  Confirm adequate position and good 
flow 

  Confirmation of the position of any 
LVAD, RVAD or IABP  

 X X Confirm adequate position and good 
flow 

  Severity of aortic atheromatosis X   Classified using grade 1 to 5 
  Ruling out aortic dissection X X X Confirm adequate position and good 

flow 
 Ruling out inferior vena cava 

obstruction 
  X Low-esophageal view 0° 

 Ruling out free pleural or peritoneal 
fluid 

  X Mid-esophageal, low-esophageal and 
transgastric views 

Legends: AVR: aortic valve replacement, 2D: two-dimensional, CPB: cardiopulmonary bypass, IABP: intra-aortic balloon pump, LV: 
left ventricle, LVAD: left ventricular assist device, LVEDP: left ventricular end-diastolic pressure, LVOT: left ventricular outflow tract, 
ME: mid-esophageal, PHT: pulmonary hypertension, RA: right atrium, RV: right ventricle, RVAD: right ventricular assist device. 
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3.2 Research and development since the beginning of the PhD in 

2006 at the MHI  

Several of the determinants of venous return were studied over the last four years. 

They will be discussed in this section. 

3.2.1 Studies on alternative measurement of venous return and cardiac 

output 

Venous return and cardiac output can be measured using several techniques. In the 

operating room, we commonly use the pulmonary artery catheter to obtain thermodilution-

derived cardiac output. In addition, the use of Doppler echocardiography allows us to 

calculate cardiac output. [12] The limitation of these two methods is that they are invasive 

and provide intermittent measurements only. An alternative to this technique would be 

near-infrared spectroscopy (NIRS). 

Near-infrared spectroscopy (NIRS) is a technique that was first developed in the 

70s [249;250] and that can be used as a non-invasive and continuous monitor of the balance 

between cerebral oxygen delivery and consumption. [135] Several different specialties such 

as neurology, [251] neurosurgery, [252] traumatology, [253] vascular surgery, [254] and 

adult [135] and pediatric cardiac surgery [255] have been using this monitor to measure 

brain and tissue perfusion. [129] In fact, some randomized controlled trials have recently 

shown the usefulness of this monitor to predict negative outcomes in non-cardiac [133] and 

cardiac surgery. [134] Several factors can affect oxygen delivery to the brain such as 

cardiac output, hemoglobin concentration, arterial oxygen saturation and partial pressure of 

oxygen. However, in an awake patient, the major determinants of baseline brain oximetric 

signals are not clearly described. Few studies have reported the relationship between 

cerebral oximetry values (ScO2) and cardiac function. [249;250] As cardiac performance is 

reduced, increased brain oxygen extraction and lower ScO2 values can be observed. [249] 

In addition, ScO2 has been shown to correlate with the presence of left ventricular 

dysfunction in patients with valvular disease during exercice testing. [250] However, ScO2 

has never been compared with both hemodynamic and echocardiographic assessments of 
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the cardiac function in patients undergoing cardiac surgery. Our hypothesis was that the 

baseline mean ScO2 value measured before surgery is determined by cardiac function and 

correlates with hemodynamic and echocardiographic parameters. 

In order to test our hypothesis, we performed a retrospective analysis of patients 

undergoing cardiac surgery with bilateral recording of their baseline cerebral brain oxygen 

saturation (ScO2) using the INVOS 4100 (Somanetics, Troy, MI, USA). [47] A pulmonary 

artery catheter was used to obtain their hemodynamic profile. Left ventricular systolic and 

diastolic function were evaluated by TEE, after induction of anesthesia, using standard 

criteria. A model was developed to predict ScO2. A total of 99 patients met the inclusion 

criteria. There were significant correlations between mean ScO2 values and central venous 

pressure (CVP) (r = -0.31, p = 0.0022), pulmonary capillary wedge pressure (PCWP) (r = -

0.25, p = 0.0129), mean pulmonary artery pressure (MPAP) (r = -0.24, p = 0.0186), mean 

arterial pressure/mean pulmonary artery pressure ratio (MAP/MPAP) (r = 0.33, p =  

0.0011), LV fractional area change (< 35, 35-50, ≥  50, p = 0.0002), regional wall motion 

score index (r = -0.27, p = 0.0062) and diastolic function (p = 0.0060). Mean ScO2 

presented the highest area under the receiver operating curve (ROC) (0.74; CI 0.64-0.84) to 

identify LV systolic dysfunction. A model predicting baseline ScO2 was created based on 

LV systolic echocardiographic variables, CVP, gender, mitral valve surgery and the use of 

beta-blocker (r² = 0.42, p < .001). Baseline ScO2 values were related to cardiac function 

and superior to hemodynamic parameters at predicting left ventricular dysfunction. Our 

observations are summarized in Figure 52. 
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Figure 52 Brain-heart interaction 

Relationship between reduced cerebral oxygen saturation (ScO2) and cardiac 
systolic/diastolic function. As systolic cardiac function is reduced through a reduction in 
the left ventricular fractional area change (FAC) or an increase in the regional wall motion 
score index (RWMSI), the mean arterial pressure (MAP) will be reduced. Cardiac 
performance can also result from left ventricular diastolic dysfunction (LVDD), which can 
be present with or without systolic dysfunction. In this case, the left atrial pressure (LAP), 
pulmonary capillary wedge pressure (PCWP) and consequently the mean pulmonary 
arterial pressure (MPAP) will increase, the MAP/MPAP ratio decrease and this may lead to 
an increase of the central venous pressure (CVP). As the CVP is used to estimate the intra-
cranial pressure, the cerebral perfusion pressure (MAP-CVP) will be reduced. The result 
will be a reduction in cerebral blood flow (CBF). This will lead to an increase in the oxygen 
extraction of the brain. This explains why a reduced cardiac function is associated with 
reduced ScO2. (LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle). 
(With permission of Paquet et al. [47]) 
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3.2.2 Studies on causes of increased Pra 

Over the last 4 years we performed studies on systolic and diastolic dysfunction and 

documented the prevalence of RVOTO. 

3.2.2.1 Left ventricular systolic and diastolic function 

To support our hypothesis on the role of left ventricular systolic dysfunction as a 

predictor of outcome in cardiac surgery, we performed an observational study that included 

3024 adult patients who underwent cardiac operations at the Montreal Heart Institute (MHI) 

from 1996 to 2000 (61% of the population operated in that period) and in whom left 

ventricular ejection fraction and other variables were measured prior to the cardiac 

surgery. [11] Left ventricular ejection fraction was the last measured value reported prior to 

surgery by left ventriculography, [256] echocardiography [257] or nuclear medicine. [258] 

The lowest value was selected. Surgical procedures were categorized as coronary 

revascularization, valvular, complex valve, re-operations and various. The complex 

operations were either multivalvular or valvular with or without coronary revascularization. 

Include also were ascending thoracic aorta operation and surgery for complications of 

myocardial infarction. Off-pump cardiac surgery and surgery of the descending aorta or 

patent ductus arteriosus were excluded. The primary outcome in this study was hospital 

mortality. Patients undergoing coronary revascularization were further stratified according 

to abnormal LV. Those left ventricular ejection fraction values were based on previous 

studies which identified them as cut-offs associated with increased mortality and 

morbidity. [8;100;259] Only variables with p values < 0.25 in univariate analysis were 

considered potential predictors of the primary outcome for multivariate analysis. Variable 

clustering was employed to further reduce the number of redundant variables before 

building a multivariate model. Then, stepwise multiple logistic regression analysis was 

undertaken to determine the independent predictors of death. P values < 0.05 were 

considered to be statistically significant. A total of 3024 patients were taken into account in 

the study. There were 99 deaths (3.3%). Of the 35 variables subjected to univariate 

analysis, 23 demonstrated a significant association with the occurrence of death. Stepwise 
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multiple logistic regressions identified eight variables to be independent predictors of death 

after cardiac surgery. These included age, weight, hypertension, treated diabetes, 

reoperation, left ventricular end-diastolic pressure, left ventricular ejection fraction and 

duration of CPB. Therefore, for a relative reduction of 10% of left ventricular ejection 

fraction, the risk of death increases by 32% (14-53%). A total 57% of deaths were 

attributed to hemodynamic instability. Postoperatively, 6% of those who died required 

vasopressors and 17% required an intra-aortic balloon pump (IABP) to be weaned, 

compared with 1% and 4% in the survivors group, respectively (p < 0.0001).  

As mentioned previously, Salem et al. conducted an observational study to 

determine the relationship between preoperative left ventricular end-diastolic pressure and 

mortality following cardiac surgery. [11] The hypothesis was that an elevated left 

ventricular end-diastolic pressure, with or without preserved left ventricular systolic 

function, is associated with a poor outcome after cardiac surgery. As shown in Table 16, 

left ventricular end-diastolic pressure was found to be an independent predictor of 

mortality. For a relative increase in 5 mmHg of left ventricular end-diastolic pressure, the 

risk of mortality increases by 19% (5-35%).  



173 

 

Table 16 Multivariate analysis for mortality 

Predictors P Units Odds ratio 95% CI 

Age < 0.0001 20 4.255 2.461, 7.355 

Weight, kg 0.0403 -10 1.190 1.008, 1.404 

LVEDP  0.0062 5 1.195 1.052, 1.357 

LVEF 0.0002 -10 1.326 1.145, 1.535 

CPB length, min < 0.0001 30 1.813 1.608, 2.044 

Reoperation < 0.0001 -- 2.669 1.636, 4.354 

Hypertension 0.0211 -- 1.687 1.082, 2.632 

Treated diabetes 0.0277 -- 1.759 1.064, 2.906 

CI indicates confidence interval; LVEDP, left ventricular end-diastolic pressure; LVEF, left 
ventricular ejection fraction; CPB, cardiopulmonary bypass. (From Salem et al. [11]) 
 

Furthermore, in patients undergoing coronary revascularization (n = 2445), the 

mortality in patients with left ventricular ejection fraction < 30% was higher in those with 

elevated left ventricular end-diastolic pressure > 19 mmHg (12%) compared to those with 

left ventricular end-diastolic pressure ≤ 19 mmHg (0%) (Table 17).  

 

Table 17 Mortality in patients undergoing coronary artery bypass grafting 

 LVEDP > 19mmHg 

LVEF < 30% 

LVEDP 

> 19mmHg 

LVEF ≥ 30% 

LVEDP 

≤ 19mmHg 

LVEF < 30% 

LVEDP 

≤ 19mmHg 

LVEF ≥ 30% 
No 75 (88%) 1244 (97%) 30 (100%) 1033 (98%) 
Yes  10 (12%)* 35 (3%) 0 (0%) 18 (2%) 
Total 85 1279 30 1051 

LVEDP, left ventricular end-diastolic pressure; LVEF, left ventricular ejection 
fraction * P < 0.0001 compared with patients with LVEDP ≤ 19 and LVEF < 30 
(From Salem et al. [11]) 
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A similar trend was observed in non-coronary revascularization patients (n = 895), 

but it was not statistically significant (Table 18). The definition of diastolic dysfunction can 

be applied to patients with or without LV systolic dysfunction who have filling 

abnormalities. In summary, these observations support the link between mortality and both 

left ventricular systolic and diastolic dysfunction. 

 

Table 18 Mortality in patients undergoing non-coronary artery bypass grafting 

 LVEDP > 19mmHg 

LVEF < 30% 

LVEDP 

> 19mmHg 

LVEF ≥ 30% 

LVEDP 

≤ 19mmHg 

LVEF < 30% 

LVEDP 

≤ 19mmHg 

LVEF ≥ 30% 
No 41 (89%) 292 (94%) 26 (93%) 480 (96%) 
Yes  5 (11%) 19 (6%) 2 (7%) 20 (4%) 
Total 46 311 28 500 

LVEDP, left ventricular end-diastolic pressure; LVEF, left ventricular ejection 
fraction. (From Salem et al. [11]) 

 

3.2.2.2 Right ventricular systolic and diastolic function 

To further assess the value of right ventricular function in relation to other validated 

risk factors in open valvular heart surgery, we published our experience with 50 

consecutive patients undergoing valvular surgery. [46] In our study we confirmed that, in 

patients with a right ventricular myocardial performance index (RVMPI) above 50% 

(n = 20), the number of patients with difficult separation from CPB (16/20 (80%) vs. 6/30 

(20%), p < 0.0001) and the endpoint of mortality of postoperative heart failure (14/20 

(74%) vs. 3/30 (10%), p < 0.0001) were significantly higher. On a multivariate analysis, 

among all other demographic, hemodynamic and echocardiographic variables, the RVMPI 

was the only independent predictor of heart failure and mortality (OR: 25.20, 95% CI 5.24-

121.15, p < 0.0001).  
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3.2.2.3 Right ventricular outflow tract obstruction 

The prevalence of RVOTO was retrospectively studied in 670 consecutive patients 

undergoing cardiac surgery. [38] Significant RVOTO was diagnosed if the right ventricular 

systolic to pulmonary artery peak gradient was over 25 mmHg. The diagnosis was based on 

the measurement of the right ventricular and pulmonary artery systolic pressures through 

the paceport and distal opening of the pulmonary artery catheter. To further validate the 

prevalence and the importance of RVOTO, 130 patients were prospectively studied over a 

12-month period. In the retrospective cohort, 6 patients (1%) undergoing various types of 

cardiac surgical procedures were found to have significant dynamic obstruction with a 

mean gradient of 31 ± 4 mmHg (26 to 35 mmHg).  In the prospective study, significant 

dynamic obstruction was identified in 5 patients (4%) (average peak: 37 ± 15 mmHg; 

range: 27 to 60 mmHg). The typical transesophageal echocardiography finding was end-

systolic obliteration of the RVOT (Figure 53).  

 

Figure 53 Dynamic right ventricular outflow tract (RVOT) obstruction 
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Septal myomectomy and aortic surgery in a 68-year-old man complicated by dynamic 
RVOT obstruction appearing during weaning from cardiopulmonary bypass. (A) The 
systolic gradient between the right ventricle and the pulmonary artery was 28 mmHg.  
(B,C,D) M-mode view from a mid-oesophageal right ventricular inflow-outflow view at 
63º. Note the dynamic obstruction of the right ventricular outflow in systole in this (LA, 
left atrium; Pa, arterial pressure; Ppa, pulmonary artery pressure; Prv, right ventricular 
pressure; RA, right atrium; RV, right ventricle). (With permission of Denault et al. [38]) 

 

In patients with significant dynamic RVOTO, hemodynamic instability was present 

in 10/11 patients (91%). Therefore, RVOTO is easily diagnosed using the paceport of the 

pulmonary artery catheter (Figure 54) and should be considered a potential cause of 

hemodynamic instability, especially when TEE shows systolic right ventricular cavity 

obliteration. 

 

 

Figure 54 Hemodynamic and Doppler findings in dynamic RVOT obstruction 

A 68-year-old man underwent aortic valve replacement. He became hemodynamically 
unstable with right ventricular dysfunction and was put back on cardiopulmonary bypass.  
Inotropes were initiated. On the second weaning attempt, he developed severe right 
ventricular outflow tract (RVOT) obstruction confirmed with the paceport of the pulmonary 
artery catheter and through continuous-wave Doppler interrogation of the tricuspid 
regurgitant flow in a mid-oesophageal ventricular inflow-outflow view at 61º. The 
measured pressure gradient of the tricuspid regurgitant flow was 75 mmHg (with a right 
ventricular systolic pressure of 80 mmHg) and the pulmonary artery pressure (Ppa) was 
30/16 mmHg during the echocardiographic measurement. (EKG, electrocardiogram; Pa, 
arterial pressure; Prv, right ventricular pressure). (With permission of Denault et al. [38]) 
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In summary, the mechanism of hemodynamic instability is complex but can be 

understood through a specific approach based on hemodynamic and echocardiographic 

variables. Therefore, such measures are essential to the evaluation of hemodynamic 

instability in cardiac surgery. So far, no studies have measured hemodynamic and 

echocardiographic variables in consecutive patients undergoing valvular surgery and 

determined the mechanism of difficult separation from CPB. The mechanism of difficult 

separation from CPB is important to understand if the next step is to prevent it. 

 



 

Chapitre 4 Manuscript #2 



179 

Foreword to Manuscript #2 

The second manuscript is part of a study conducted in collaboration with Dr. Yanick 

Beaulieu, a cardiology fellow under my supervision. It was a randomized controlled trial on 

the use of intravenous amiodarone in the prevention of postoperative atrial fibrillation in 

120 patients undergoing valvular surgery. The postoperative part of the study will be 

published in Anesthesiology in January 2010.[56] Our objective in this study was to 

document, for the first time, the natural evolution of the systolic and diastolic function of 

both ventricles using combined hemodynamic and echocardiographic monitoring. This 

article also represents the first description of the acute effect of intravenous amiodarone on 

biventricular systolic and diastolic function. The intraoperative part of this study will also 

be submitted to Anesthesiology.
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Short Title: Amiodarone in Cardiac Surgery 

 

Brief Summary Statement 

One hundred and twenty patients undergoing valvular surgery were randomized to receive 

either intravenous amiodarone for 48 hours starting intraoperatively or a placebo to prevent 

postoperative atrial fibrillation. The hemodynamic, biventricular echocardiographic and 

biochemical effects of amiodarone were compared to a placebo group. 
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ABSTRACT 
Background: Atrial fibrillation is a common complication after cardiac surgery. 

Postoperative atrial fibrillation is associated with increased risks of morbidity and 

mortality, and preventive strategies using amiodarone are commonly used during cardiac 

surgery. However the effect of intravenous amiodarone administered intraoperatively on 

hemodynamic and biventricular echocardiographic parameters assessed by transesophageal 

echocardiography (TEE) have not been described in patients undergoing valvular or 

complex surgery.  

Methods: Single-center double-blind, double-dummy, randomized controlled trial in 

patients undergoing valvular surgery. Patients received an intravenous (IV) loading dose of 

300 mg of either amiodarone or placebo in the operating room, followed by a perfusion of 

15 mg/kg per 24 hours for 2 days. A hemodynamic profile and biventricular comprehensive 

TEE exam were performed and described before, after bolus and after cardiopulmonary 

bypass (CPB). Postoperative complications and mortality at 6 years were also documented. 

Results: One hundred and twenty patients (mean age 65 ± 11 years) were randomized to 

receive either amiodarone or placebo. The placebo group included more patients with 

diabetes (p = 0.0244) and showed a longer duration of CPB (p = 0.0426), while the patients 

in the amiodarone group had more frequent isolated valvular procedures (p = 0.0497). 

There was no difference in the use of inotropic agents after CPB between the two groups 

but the amiodarone group required temporary pacing for bradyarrhythmia for up to 24 

hours (p = 0.0075) more frequently. After the bolus, the amiodarone group showed and 

increase mean pulmonary artery pressure (p = 0.0450) with an associated reduction in S/D 

ratio of the hepatic venous velocity (p = 0.0457). A lower heart rate (p < 0.0001) and lower 

cardiac index (p = 0.0157) were observed after CPB in the amiodarone group with higher 

diastolic pulmonary venous flow velocities (p = 0.0052). There were no differences 

between groups in postoperative complications and survival at 6 years. 

Conclusion: In patients undergoing cardiac valvular surgery, intravenous amiodarone is 

well tolerated hemodynamically and not associated after CPB with significant changes in 

systolic and diastolic function and does not increase inotropic requirement when compared 
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to placebo despite a reduction in heart rate, cardiac index and increased pacemaker 

requirement for 24 hours.  

 

Keywords: Cardiac surgery; Amiodarone; Transesophageal echocardiography; 

Cardiopulmonary bypass; Outcome.   
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Introduction 

Atrial fibrillation is an important and frequent complication following cardiac 

surgery that occurs in almost one third of patients undergoing coronary artery bypass 

grafting [260] and in up to 44% of patients undergoing a valvular procedure. [261] Heart 

failure, hypotension, increased risk of stroke, the need for anticoagulation, increased length 

of stay in the hospital and long-term mortality are some of the various potential 

consequences of postoperative atrial fibrillation. [262-264] For these reasons, the 

prevention of atrial fibrillation has been proposed using several strategies including the use 

of intraoperative amiodarone. [261;265-269] In several of the amiodarone protocols, the 

preoperative loading regimen was administered orally days before the 

procedure. [261;265;267-269] The administration of amiodarone through intravenous 

loading could represent a more practical alternative approach in the prevention of atrial 

fibrillation because patients are often admitted the day before surgery. In a previous 

study, [56] we evaluated the safety and efficacy of intravenous amiodarone on the 

occurrence of perioperative atrial fibrillation. However, no studies have so far looked at the 

hemodynamic safety and associated biventricular echocardiographic systolic and diastolic 

changes induced when using intravenous amiodarone loading and infusion after anesthesia 

induction in patients undergoing a valvular surgical procedure. The primary aim of this 

study was to evaluate the hemodynamic effects, biventricular echocardiographic changes 

and safety of intravenous amiodarone in anesthetized patients compared to placebo.  

 

Methods 
Patient Population   

This study is part of a single-center double-blind, double-dummy, randomized 

controlled trial to demonstrate the efficacy and safety of a 48-hour intravenous infusion of 

amiodarone in reducing atrial fibrillation prevalence in patients undergoing valvular 

surgery. [56] After approval of the research and ethic committee, patients of more than 18 

years of age undergoing an isolated cardiac valvular surgery or a valvular surgery 
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combined with a coronary revascularization procedure were screened from November 2001 

to May 2003 to be included in the study. To be eligible, they also had to be in sinus rhythm 

and have a left ventricular ejection fraction (LVEF) above 20% at the time of screening. 

Patients were excluded from the study if they met one of the following criteria: amiodarone 

intake in the previous 6 months, a history of anaphylactic reaction to iodine, a past history 

of severe reaction or toxicity to amiodarone, intake of class I or III anti-arrhythmic agents 

within the 48 hours before surgery, significant hypotension (systolic blood pressure <80 

mmHg) necessitating sustained treatment with vasoactive agents for more than 1 hour 

preoperatively, urgent surgery and participation in other investigational trials. 

  

Clinical Variables 

Age, gender, body mass index (BMI) and body surface area (BSA) were determined 

for each patient, along with their relevant medications. Also documented were the presence 

of hypertension, diabetes, chronic renal failure, smoking history, recent myocardial 

infarction (MI, before or after 6 months), signs and symptoms of congestive heart failure 

(CHF), chronic obstructive pulmonary disease (COPD), previous cerebrovascular disease 

(CVD), thyroid disorders, and LVEF measured through angiographic ventriculography or 

echocardiography. The different types of surgical procedures were classified as isolated 

valvular or valvular and coronary artery bypass grafting (CABG). The number of bypass 

grafts and the use of a mammary artery were noted in addition to the CPB time and aortic 

cross-clamping time. Length of cardiothoracic intensive care unit (CTICU) and hospital 

stay, postoperative complications and mortality rates were noted.  

 

Study Protocol 

Induction of anesthesia was performed using a combination of fentanyl (5–10 μg/kg) 

or sufentanil (0.7–1 μg/kg), midazolam (up to 0.1 mg/kg), and pancuronium (0.1 mg/kg). 

Isoflurane was used to control blood pressure during maintenance of anesthesia. After the 

induction of anesthesia, an intravenous loading dose of 300 mg of amiodarone (or placebo) 

was given over 10 minutes, followed by an infusion of amiodarone (15 mg/kg/24 hours, 
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max 1500 mg/24 hours) or placebo for 48 hours. A complete hemodynamic assessment 

using the pulmonary artery catheter (PAC) (7.5F 931HF75, Baxter Healthcare, Irvine, 

California) was performed before and after bolus infusion and after CPB. Baseline 

hemodynamic profiles were obtained from a radial artery catheter and a pulmonary artery 

catheter. TEE examination was performed at the following interval: 1) after the induction of 

anesthesia prior to median sternotomy and to the administration of the study drug or 

placebo, 2) following the bolus, and 3) after CPB during sternal closure. The following 

hemodynamic variables were recorded and calculated: heart rate (HR), systolic, diastolic 

and mean arterial pressures, systolic, diastolic and mean pulmonary artery pressures 

(MPAP), central venous pressure (CVP), pulmonary capillary wedge pressure (PCWP), 

cardiac index (CI), stroke volume (SV) and indexed systemic and pulmonary vascular 

resistance.  

Complete laboratory data including arterial and venous blood gases were obtained just 

before administration of the amiodarone bolus and after weaning from CPB. The surgical 

valvular procedure was performed according to established guidelines. [270] Blood 

cardioplegia was used in all patients. Induction and maintenance of cardioplegia were cold 

to tepid (15-29ºC). The blood to crystalloid ratio was 4:1. The pump flow was adjusted to 

obtain an output of 2.2 l/min/m² of body surface area and was reduced to 0.5 l/min/m2 for 

aortic clamping and unclamping. SIII (Stockert, Munich, Germany) roller pumps were used 

in all patients. The oxygenator was Sorin Monolyth (Mirandola, Italy). Valve and complex 

procedures were done with temperatures of 32-34ºC. Weaning from CPB was attempted 

after systemic temperature (central and vesical) was > 36ºC and using a specific vasoactive 

treatment protocol as previously described. [52] All patients in the study had epicardial 

pacemaker wires (atrial and/or ventricular) placed at the end of surgery. The use of 

vasoactive drugs during CPB (Appendix 2) and the process of weaning from CPB 

(Appendix 3) were done according to a vasoactive protocol. [52] Temporary pacing was 

subsequently initiated if judged necessary by the anesthesiologist and the surgeon. 
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Echocardiographic examination 

Intraoperative TEE examinations were performed by anesthesiologists with National 

Board Certification in perioperative echocardiography or more than 15 years of experience 

in TEE. The TEE examination included two-dimensional (2D) examination in the mid-

esophageal and long-axis views and transgastric short-axis view at the mid-papillary level, 

with additional color flow imaging of the mitral, aortic and tricuspid valves in order to 

detect any significant valvular abnormality.  

To assess left ventricular (LV) and right ventricular (RV) systolic function and 

dimensions, LV end-diastolic area (LVEDA), LV end-systolic area (LVESA) and LV 

fractional area change (LVFAC) were measured from the four-chamber and the transgastric 

mid-papillary view. From the mid-esophageal four-chamber view, the transverse diameter, 

the area and the volume of the left atrium (LA) and the right atrium (RA) were measured. 

From the same view, the area of the right ventricle (RV) at end-diastole (RVEDA), end-

systole (RVESA), the fractional area change (RVFAC) and the tricuspid annular plane 

systolic excursion (TAPSE) were measured. All these measurements were obtained using 

published guidelines on 2D quantification [186] and right ventricular function 

evaluation. [48]  

To assess LV and RV diastolic function, pulsed wave (PW) Doppler was used to 

evaluate transmitral flow (TMF) and transtricuspid inflow (TTF).  Peak early (E) and late 

atrial (A) diastolic flow velocities were measured. Pulmonary venous flow (PVF) and 

hepatic venous flow (HVF) were also evaluated using PW Doppler, and peak systolic (S), 

diastolic (D) and atrial reversal (AR) flow velocities were measured.  

Using tissue Doppler imaging (TDI), mitral annulus velocities (MAV) including the 

systolic (Sm) early diastolic (Em) and late atrial (Am) velocities were measured at the 

lateral or anterior annulus (the signal with the best definition and with the higher Em was 

chosen). Tricuspid annulus velocities (TAV) including the systolic (St), early (Et) and late 

atrial (At) velocities were also derived by TDI using a deep transgastric RV long axis view 

with right side rotation, as previously described. [39] 
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The classification of LV and RV diastolic function was based on a modification of 

the algorithm described by Khouri et al. [173] that we previously validated and used 

(Figure 55 and Figure 56). [12;39;43;50] All the echocardiographic data were recorded on a 

magnetic optical disk for off-line viewing. The measurements were done by an independent 

cardiologist (YS) blinded to the drug allocation, as previously described. [40] The 

echocardiographic images used in the classification of diastolic function were reviewed off-

line by two independent observers blinded to the patient’s data. Two-dimensional areas 

were not measured if less than 80% of the endocardial contour could be seen. [271]  

In order to validate our measurements, we subjected 10 echocardiograms to 3 

repeated measurements in a blinded fashion, with 3 consecutive cardiac cycles analyzed for 

each recording. The coefficient of variation (SD ÷ mean X 100%) between 3 consecutive 

cardiac cycles of the 10 echocardiograms was 2.7% ± 1.6% and 4.5% ± 1.8% for the left 

and right atrial areas in cardiac systole, and 3.4% ± 1.4% and 4.4% ± 1.9% for the left and 

right ventricular end-diastolic areas, respectively. For PW velocity and TDI velocity the 

coefficients of variation were 5.4% ± 2.6% and 2.6% ± 1.3%, respectively. The coefficient 

of variation between the 3 results based on the average of 3 cycles of these 10 

echocardiograms was 1.4% ± 0.8% and 2.7% ± 1.8% for the left and right atrial areas in 

cardiac systole and 2.9% ± 1.1% and 2.9% ± 1.1% for the left and right ventricular end-

diastolic areas, respectively. For PW velocity and TDI velocity, the coefficients of variation 

were 1.1% ± 0.4% and 1.0% ± 1.0% respectively. [40]  

Left ventricular diastolic function was not evaluated in patients with mitral stenosis 

and moderate to severe mitral or aortic regurgitation. Right ventricular diastolic function 

was not evaluated in patients with moderate to severe tricuspid regurgitation. Patients with 

atrial fibrillation or a pacemaker, and contraindication to transesophageal echocardiography 

(TEE) were excluded from the diastolic function classification. Twenty-nine measurements 

for left ventricular diastolic function were excluded because the Doppler signals could not 

be obtained. The left ventricular diastolic function algorithm was used to evaluate 190 

measurements (73, 50 and 67 patients for the three evaluation time points: before studied 

drug bolus, after drug bolus and after CPB, respectively). The inter-observer kappa values 
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were 0.82, 0.57 and 0.77 between 2 observers. Fifty measurements for right ventricular 

diastolic function were excluded for the reasons mentioned above. The right ventricular 

diastolic function algorithm was used to evaluate 178 measurements (69, 52 and 57 patients 

for the three evaluation time points). The inter-observer kappa values were 0.69, 0.82 and 

0.91. When the three evaluation time points were pooled, the LVDD and RVDD algorithm 

interobserver kappa values were 0.77 and 0.82. In the evaluation of LVDD, 26/193 (13%) 

and 3/193 (1.6%) time points were respectively excluded by reviewers #1 and #2. In the 

evaluation of RVDD 23/182 (13%) and 4/182 (2%) time points were excluded by reviewer 

#1 and #2. 

 

Statistical Analysis 

In our previous study, [56] we estimated that 50% of patients undergoing cardiac 

valvular surgery would develop atrial fibrillation. In order to detect the expected reduction 

in AF from 50% to at least 25% in the amiodarone group, 58 patients per group would be 

needed to reach a power of 80% with a two-sided chi-square test at an alpha of 5%. 

Assuming a 3% loss, we recruited 60 patients per group. The results are presented as mean 

± SD or median (minimum-maximum) according to the distribution for continuous 

variables and as numbers (percentage) for categorical variables. Chi-square tests were used 

to compare categorical variables between groups (with or without amiodarone). For 

continuous variables, the Student t-test or Wilcoxon test were used to compare groups. To 

analyze the evolution of the variables, mixed-model repeated-measures analyses of 

covariance controlling for the baseline value [272] were used to extract the group X time 

interaction and the time and group main effects. When the group X time interaction was 

significant, i.e. that there was a significant difference in evolution between groups, slice 

effect (also known as simple effect) [273] analyses were performed to evaluate differences 

among groups at each time level and to test the evolution of each group. The generalized 

estimating equation (GEE) approach was performed using the multinomial distribution to 

study the LV and RV diastolic function because of the distribution of patients among the 

diastolic scores. These analyses were performed with the mixed procedure of SAS 8.02 
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(SAS Institute Inc., Cary, North Carolina) to handle missing data. The Wilcoxon test was 

used to compare the distribution of frequencies of both left and right ventricular diastolic 

function patterns. A p value of less than .05 was considered statistically significant. 

 

Results 
Baseline pre- and intraoperative characteristics of patients are shown in Table 19. A 

total of 120 patients were randomized and 1 patient in the amiodarone group died 

intraoperatively of right ventricular failure. The mean age was 65 ± 11  years and 67 (56%) 

patients were men. Baseline demographic characteristics were similar among groups except 

for a higher proportion of patients with diabetes (23% vs. 8%; p = 0.0244) in the placebo 

group. Two-thirds of the total population (68.3%) underwent an isolated valvular surgery 

and one-third (31.7%) underwent combined valvular and CABG surgery. Patients in the 

amiodarone group underwent more isolated valvular surgeries compared to the placebo 

group (76.7% vs. 60%; p = 0.0497) There were no significant differences in the proportion 

of patients undergoing mitral and /or aortic valve procedures between the two groups. The 

total CPB time (97 ± 32 vs. 110 ± 37 min; p = 0.0426) and aortic cross-clamp time (73 ± 28 

vs. 85 ± 30 min; p = 0.0271) were shorter in the amiodarone group.  

The significant (p < 0.05) biochemical, hemodynamic, echocardiographic and 

Doppler variables are shown in Table 20. (Detailed tables can be found in Appendix 2 to 

Appendix 8). Higher levels of urea (5.7 ± 1.7 vs.5.4 ± 1.5 mmol/L, p = 0.0052), creatinine 

(86 ± 29 vs. 78 ± 27 mmol/L, p = 0.0013) and lower CK (436 ± 219 vs. 743 ± 751 ug/L, 

p = 0.0117), PaCO2 (43.8 ± 4.4 vs. 45.7 ± 4.4 mmHg, p = 0.0192) and HCO3 (25.7 ± 2.2 vs. 

27.2 ± 2.4 mmol/L, p = 0.0002) were observed in the amiodarone group after CPB. After 

the bolus of amiodarone, an increase in MPAP from 21.8 ± 8.1 to 25.6 ± 8.6 mmHg 

(p = 0.0450) with associated reduction in HVF S/D ratio (p = 0.0457) in the amiodarone 

group. After CPB, the amiodarone group had lower heart rate (p < 0.0001), cardiac index 

(p = 0.0157), increased PVF D velocity (p = 0.0052) and reduced PVF S/D ratio 

(p = 0.0112). There were no differences in the evolution of LV and RV diastolic function 
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between the two groups. Figure 57 summarizes the acute effect of the bolus of amiodarone 

or placebo on the hemodynamic variables and biventricular function. 

No difference in the number of patients receiving vasoactive support was observed 

during and after CPB between groups, but requirement for a pacemaker was more frequent 

in the amiodarone group in the first 24 hours (p = 0.0075) (Table 3). There were no 

differences in terms of duration of stay in the intensive care unit and hospital. No 

differences in short and long term mortality between the groups were observed.  

 

Discussion 
Our main findings are that the administration of intravenous amiodarone in 

anesthethized patients undergoing valvular or combined valvular and CABG surgery results 

in a transient increase in MPAP with an associated alteration in right ventricular diastolic 

parameters. In addition, amiodarone lowers heart rate and consequently cardiac index after 

CPB compared to a placebo. However this bradycardia was not associated with lower 

stroke volume in the amiodarone group. Furthermore, these differences in hemodynamic 

parameters between groups were not accompanied by significant differences in 2D 

echocardiographic parameters. The changes in HVF S/D velocities observed in the 

amiodarone group may be partly related to the effect of an increase in MPAP on systolic 

and diastolic RV function. Such increases in MPAP will lead to higher TTF and HVF atrial 

velocities consistent with an increase in right ventricular afterload. [207] However, atrial 

velocities did not differ between the two groups. We also observed higher PVF D velocities 

after CPB in patients receiving amiodarone. Changes in PVF diastolic velocities are 

associated with increased filling pressures and an alteration in both systolic and diastolic 

function. [274] After CPB, we observed significant increases in the filling pressure and 

changes in both biventricular systolic and diastolic function. However, these alterations did 

not differ between groups. The significance of changes in diastolic PVF velocities with 

amiodarone remains of unknown clinical significance.  

Overall, the administration of intravenous amiodarone was well tolerated. This 

observation is further supported by the fact that the number of patients in the amiodarone 
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group necessitating inotropic agents did not differ from the placebo group. The duration of 

stay in the intensive care unit, the hospital stay and the mortality were also similar. The 

biochemical changes in the amiodarone group were minor and not clinically relevant. The 

lower CK could be related to the shorter CPB duration in the amiodarone group. 

 

Effect of amiodarone on systolic biventricular cardiac function in other studies 

The chronic use of amiodarone has not been associated with an alteration in left or 

right ventricular function in 21 patients with ventricular tachycardia. [275] However, an 

intravenous infusion of amiodarone has been associated with a reduction in left ventricular 

ejection fraction, stroke index and systolic blood pressure. [276] Therefore, in the acute 

state, it is possible that intravenous as opposed to oral amiodarone may be associated with a 

mild negative and transient inotropic effect. The changes in MPAP that we observed are 

consistent with these observations. The prolongation of the atrioventricular nodal 

conduction and refractoriness of amiodarone [277;278] could explain the observed 

reduction in heart rate and cardiac index without changes in stroke volume after CPB and 

the higher use of temporary pacing. As a negative inotropic agent, amiodarone could be 

detrimental after CPB. Despite these hemodynamic effects, amiodarone was well tolerated 

in this patient population, as suggested by the absence of difference in vasoactive 

requirements, as well as in systolic right and left ventricular function between the 

amiodarone and the placebo groups.  

 

Effect of amiodarone on diastolic biventricular cardiac function  

Our study also provides data for the evolution over time of diastolic function in 

patients undergoing valvular surgery. Changes in left ventricular diastolic function during 

cardiac surgery have been mostly described after CABG. [68;88;90;92;94-98] Variations in 

the parameters used in the evaluation of left ventricular diastolic function can explain some 

of the observed discrepancies among the different studies. Shi et al., [40] using newer 

echocardiographic modalities and the recommended classification of the American Society 
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of Echocardiography [173], studied the short- and long-term evolution of biventricular 

diastolic performance in patients with LV diastolic dysfunction undergoing CABG.  The 

prevalence of moderate and severe LV diastolic dysfunction increased from 2.0% 

preoperatively to 9.7% at 48 hours respectively. The diastolic patterns at 6 months were 

similar to those observed preoperatively. A similar evolution over time was found for RV 

diastolic function. We also observed significant abnormalities in right-sided diastolic 

function as reported by Shi et al. [40] and Couture et al. [43] in patients undergoing CABG. 

Similar changes in RV diastolic function have also been described by Diller et al. [92] 

using tricuspid annular velocities in patients undergoing CABG. These changes could be 

explained by many factors including inflammatory changes induced by CPB, [279] a 

pulmonary reperfusion syndrome, [280] ischemic cardiac arrest, poor myocardial protection 

or the effect of pericardectomy. [281] Despite changes over time in several of the 

parameters used to evaluate biventricular diastolic function, when using a comprehensive 

algorithm that integrates several of these parameters, we did not observe that amiodarone 

had any significant effect on the evolution of biventricular diastolic function in valvular 

surgery.  

 

Limitations 

Firstly, at baseline, there were more patients with diabetes and more complex 

surgeries with longer CPB duration in the placebo group. There were no clinically 

significant hemodynamic, echocardiographic and biochemical differences between the 

groups and their evolution was similar. However, it is possible that the negative inotropic 

effect of amiodarone was overlooked because amiodarone was administered to patients 

with less complex procedures and shorter CPB times. Secondly, the gold standard for 

evaluating diastolic dysfunction are the time constant of relaxation (Tau) and pressure-

volume curves obtained by direct invasive measurements to assess chamber compliance.  

However, these measures are invasive and are not feasible in usual practice. We used a 

Doppler assessment of mitral and tricuspid inflow, as well as pulmonary and hepatic flow 

variables to assess diastolic function. Tissue Doppler imaging, which is a relatively 
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volume-insensitive modality, provided supportive information to better stratify the degree 

of diastolic dysfunction. [173] Changes in mitral flow velocity have been noted when 

changes occurred in loading conditions, differing heart rates, and the left ventricular 

contractile state. [282] Hemodynamic variables were relatively similar in both groups 

except in the amiodarone group which has a lower heart rate and cardiac index after CPB. 

Accordingly, we cannot totally exclude the effect of the change of cardiac output and heart 

rate on diastolic filling patterns in our patients nor that amiodarone may have a certain 

effect on diastolic function that we did not identified, even when using load-independent 

modalities. [173] Criteria for right ventricular diastolic dysfunction have been previously 

described [204] but are not yet as widely accepted as those used for LV diastolic 

dysfunction. So far however, no study has documented a deterioration of intraoperative 

biventricular diastolic function in patients undergoing valvular surgery, independently of 

the use of intravenous amiodarone 

 

Conclusion 

In patients undergoing cardiac valvular surgery, the intraoperative use of 

intravenous amiodarone compared to placebo does not alter biventricular systolic and 

diastolic function after CPB and is not associated with increased need for vasoactive agents 

despite a reduction in heart rate, cardiac index and increased pacemaker requirements for 

24 hours.  
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Table 19 Characteristics of the amiodarone versus placebo group 

Characteristics Amiodarone 

(n=60) 

Placebo 

(n=60) 

P Value 

Age, yrs 65±11 65±11 0.8599 

Gender 

    Men 

    Women 

 

32 (53.3) 

28 (46.7) 

 

35 (58.3) 

25 (41.7) 

0.5813 

 

 

Body mass index 27.2±4.3 27.2±4.9 0.9381 

Hypertension 29 (48.3) 28 (46.7) 0.8550 

History of stroke 2 (3.3) 1 (1.7) 0.5587 

Coronary artery disease 9 (15) 13 (21.7) 0.3453 

Myocardial infarction 

    <6 months 

    >6 months 

 

1 (1.7) 

3 (5.0) 

 

3 (5) 

6 (10.0) 

 

0.6186 

0.4906 

Congestive heart failure 12 (20.0) 21 (35.0) 0.0658 

Left ventricular ejection fraction ( %) 58±9 61±12 0.1365 

Smoking history 10 (16.7) 15 (25.0) 0.2611 

Chronic obstructive pulmonary disease 6 (10.0) 14 (23.3) 0.0500 

Diabetes mellitus 5 (8.3) 14 (23.3) 0.0244 

Chronic renal failure 1 (1.7) 4 (6.7) 0.3644 

Thyroid disorder 8 (13.3) 5 (8.3) 0.3782 

Preoperative medication 

    Beta-blockers 

    Calcium antagonists 

    Angiotensin converting enzyme inhibitor 

    Angiotensin receptor blocker 

    Diuretics 

    Digitalis 

 

19 (31.7) 

9 (15.0) 

17 (28.3) 

4 (6.7) 

15 (25.0) 

1 (1.7) 

 

15 (25.0) 

17 (28.3) 

21 (35.0) 

8 (13.3) 

24 (40.0) 

1 (1.7) 

 

0.4178 

0.0763 

0.4325 

0.2235 

0.0794 

1.0000 
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Characteristics Amiodarone 

(n=60) 

Placebo 

(n=60) 

P Value 

Type of surgery 

    Isolated valvular 

    Valvular + coronary artery bypass graft 

 

46 (76.7) 

14 (23.3) 

 

36 (60.0) 

24 (40.0) 

 

0.0497 

Type of valvular surgery 

    Aortic 

    Mitral 

 

44 (73.3) 

16 (26.7) 

 

39 (65.0) 

23 (38.3) 

 

0.3230 

0.1725 

Number of bypass grafts 

    1 

    2 

    3 

    5 

 

6 (42.9) 

5 (35.7) 

3 (21.4) 

0 

 

9 (37.5) 

6 (25.0) 

8 (33.3) 

1 (4.2) 

 

0.4464 

Use of mammary artery 9 (64.3) 14 (58.3) 0.7173 

Total cardiopulmonary bypass time, min 97±32 110±37 0.0426 

Aortic cross-clamp time 73±28 85±30 0.0271 

Data are presented as n (%) for proportions and as mean ± standard deviation for  

continuous variables. CPB, cardiopulmonary bypass  
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Table 20 Biochemical, hemodynamic and Doppler variables

Variable Group Baseline 
(Mean ± SD) 

After bolus  
(Mean ± SD) 

After CPB  
(Mean ± SD) 

P value 
(group) 

P value  
(time) 

P value  
(group*time) 

Urea (mmol/L) Amiodarone 6.0 ± 1.7  5.7 ± 1.7 0.8623 < 0.001 0.00523 
 Placebo 6.4 ± 1.9  5.4 ± 1.5    
Creatinine (umol/L) Amiodarone 81 ± 22  86 ± 29 0.4268 0.5917 0.00134 
 Placebo 84 ± 23  78 ± 27    
CK total (ug/L) Amiodarone 70 ± 46  436 ± 219 0.0973 < 0.0001 0.0117 5 
 Placebo 68 ± 44  743 ± 751    
HCO3 (mmol/L) Amiodarone 26.9 ± 2.1  25.7 ± 2.2 0.0496 0.1257 0.00026 
 Placebo 26.7 ± 1.7  27.2 ± 2.4    
PaCO2 (mmHg) Amiodarone 37.2 ± 4.8  43.8 ± 4.4 0.3051 < 0.0001 0.01927 
 Placebo 36.6 ± 4.0  45.7 ± 4.4    
HR (beats per minutes) Amiodarone 58.1 ± 9.5 63.2 ± 10.5 66.9 ± 11.9 0.0006 <.0001 <.00018 
 Placebo 58.1 ± 10 67.9 ± 17.1 78.7 ± 10.8    
MPAP (mmHg)  Amiodarone 21.8 ± 8.1 25.6 ± 8.6 24.1 ± 5.9 0.2531 0.0001 0.04509 
 Placebo 21.8 ± 7.8 22.7 ± 8.4 23.7 ± 4.9    
CI (L/m/m²) Amiodarone 2.01 ± 0.45 2.14 ± 0.61 2.48 ± 0.52 0.0193 0.0001 0.01574 10 
 Placebo 2.03 ± 0.49 2.26 ± 0.79 2.9 ± 0.67    
PVF D wave Amiodarone 34.1 ± 12.5 37.7 ± 15.7 61 ± 22.2 0.8846 <0.00012 0.005211 

                                                 
3 P < 0.05 baseline versus after CPB in both groups 
4 P = 0.0071 baseline versus after CPB in the placebo group 
5 P = 0.0097 after CPB in the amiodarone compared to the placebo group 
6 P = 0.0002 baseline versus after CPB in the amiodarone group and p = 0.0008 after CPB in the amiodarone compared to the placebo group 
7 P = 0.0237 after CPB in the amiodarone compared to the placebo group 
8 P < 0.001 baseline versus after bolus in the placebo group and p < 0.001 after CPB in the amiodarone compared to the placebo group 
9 P = 0.0445 after bolus in the amiodarone compared to the placebo group, p < 0.05 baseline versus after bolus and baseline versus after CPB 
in the amiodarone group  
10 P = 0.0079 baseline versus after bolus in the placebo group and p < 0.001 after CPB in the amiodarone compared to the placebo group 
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Variable Group Baseline 
(Mean ± SD) 

After bolus  
(Mean ± SD) 

After CPB  
(Mean ± SD) 

P value 
(group) 

P value  
(time) 

P value  
(group*time) 

 Placebo 39.7 ± 12.5 35.6 ± 16.8 50.3 ± 15.2    
PVF S/D ratio Amiodarone 1.5 ± 0.6 1.3 ± 0.4 0.9 ± 0.4 0.4232 0.00033 0.011212 
 Placebo 1.2 ± 0.5 1.4 ± 0.5 1.0 ± 0.5    
HVF S/D ratio Amiodarone 1.3 ± 0.8 1.1 ± 0.7 -0.3 ± 0.6 0.3795 <0.00012 0.045713 
 Placebo 1.4 ± 0.4 1.5 ± 0.7 -0.3 ± 0.8    
CI, cardiac index; CK, creatine kinase; D, diastolic; HR, heart rate, HVF, hepatic venous flow; L, liter; MPAP, mean pulmonary artery 
pressure; PVF, pulmonary venous flow; S, systolic  

 

                                                                                                                                                                                                                                    
11 P = 0.0227 after CPB in the amiodarone compared to the placebo group 
12 P < 0.05 baseline versus after bolus in the placebo group, baseline versus after CPB in the amiodarone group and p =0.0136 baseline 
versus after CPB in amiodarone versus the placebo group 
13 P = 0.0154 after bolus in the amiodarone compared to the placebo group 
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Table 21 Outcome data 
Characteristics Amiodarone* Placebo P Value 

Vasoactive support during and after CPB 
Noradrenaline 
Neosynephrine 
Vasopressine 
Nitroglycerine 
Adrenaline 
Milrinone 

 
56 (93.3) 
53 (88.3) 
13 (21.7) 
45 (75.0) 
3 (5.0) 

26 (43.3) 

 
54 (90.0) 
53 (88.3) 
10 (16.7) 
33 (55.0) 
3 (5.0) 

26 (43.3) 

 
0.5089 
1.0000 
0.4585 
0.0216 
1.0000 
1.0000 

Pacemaker requirement up to 24 hours 24 (40.7) 11 (18.3) 0.0075 
CTICU duration (hours) 64±81 51±39 0.4898 
Hospitalization duration (hours) 311±270 253±146 0.1996 
Hospital mortality 1 (1.7) 1 (1.7) 0.9904 
Number of deaths at 6 years 5(8.5) 8 (13.3) 0.4307# 

CPB, cardiopulmonary bypass; CTICU, cardiothoracic intensive care unit. 
Data are presented as n (%) for proportions and as mean ± standard deviation for continuous variables. 
* One patient died intraoperatively of right ventricular failure. 
# Obtained from log rank test 
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Figure 55 Left ventricular diastolic dysfunction (DD) algorithm 

Left ventricular diastolic function is classified using pulsed wave Doppler of the transmitral 
flow (TMF), pulmonary venous flow (PVF) and tissue Doppler examination of mitral 
annular velocity (MAV). Patients with a pacemaker, atrial fibrillation, non-sinus rhythm, 
mitral stenosis, severe mitral and aortic regurgitation are excluded from analysis  Left 
ventricular diastolic function is classified as normal (TMF E/A >1, PVF S/D >1, Em/Am 
>1), mild DD (E/A < 1, S/D >1, Em/Am <1), moderate DD (E/A ≥ 1, S/D <1, Em/Am <1), 
and severe DD (E/A >2, S/D <1, Em/Am < or >1). (A, atrial component TMF; Am, atrial 
MAV; D, diastolic component PVF; E, early filling TMF; Em, early MAV; S, systolic 
component PVF.*Normal Em is within an 8–12.5 cm/sec interval) (With permission of 
Denault et al. [39]).  
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Figure 56 Right ventricular diastolic dysfunction (DD) algorithm 

Diastolic function is classified by pulsed wave Doppler of the transtricuspid flow (TTF), 
hepatic venous flow (HVF) and tissue Doppler imaging of the tricuspid annular velocity 
(TAV). Patients with a pacemaker, atrial fibrillation, non-sinus rhythm, moderate to severe 
tricuspid regurgitation and tricuspid annuloplasty are excluded from analysis. Right 
ventricular diastolic function is classified as normal (TTF E/A >1, HVF S/D >1, Et/At >1), 
mild DD (E/A <1, or reversed AR >50% of S wave measured on HVF, or Et < At when 
both E/A and S/D >1), moderate DD (E/A ≥ 1, S/D <1, Et/At <1), and severe DD (S wave 
reversal on HVF, irrespective of the E/A and S/D ratio). (A, atrial component TTF; AR, 
atrial reversal HVF; At, atrial TAV; D, diastolic HVF; E, early filling TTF; Et, early TAV; 
S, systolic HVF) (Adapted from Denault et al. [39]). 
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Figure 57 Hemodynamic and echocardiographic summary 

Hemodynamic, biventricular echocardiographic and Doppler changes in patients undergoing valvular surgery after bolus of amiodarone or 
placebo (A, atrial component; Am, atrial MAV; AR, atrial reversal; At, atrial TAV; CVP, central venous pressure; D, diastolic; E, early 
filling; Em, early MAV; Et, early TAV; HR, heart rate; HVF, hepatic venous flow; MAV, mitral annular velocity; MPAP, mean pulmonary 
artery pressure; PCWP, pulmonary capillary wedge pressure; PVF, pulmonary venous flow; S, systolic HVF, SAP, systolic artery pressure; 
Sm, systolic MAV; St, systolic TAV; TAV, tricuspid annular velocity; TMF, transmitral flow; TTF, transtricuspid flow; * p < 0.05 in the 
amiodarone group only) 
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Foreword to Manuscript #3 

The third manuscript is part of a study conducted in collaboration with Dr. Yanick 

Beaulieu, a cardiology fellow under my supervision. It was a randomized controlled trial on 

the use of intravenous amiodarone in the prevention of postoperative atrial fibrillation in 

120 patients undergoing valvular surgery. The postoperative part of the study will be 

published in Anesthesiology in January 2010.[56]  

This paper focused on patients experiencing difficult separation from CPB. Our 

objective was to explore the pre- and intraoperative demographic, hemodynamic and 

echocardiographic characteristics and their evolution in patients requiring inotropic support 

after valvular surgery. This study predates our use of inhaled milrinone. Are there any 

factors predisposing to inotropes? What will happen six years later to patients requiring 

inotropes intraoperatively? These are the questions that are addressed.  

This article also represents the first description of the natural evolution on 

biventricular systolic and diastolic function after valvular surgery. It is a similar study to 

the one we conducted in patients undergoing coronary revascularization, which was 

published in the Canadian Journal of Anesthesia [43] and the Journal of Thoracic and 

Vascular Surgery.[40] This study will be submitted to the Journal of Thoracic and 

Cardiovascular Surgery. 
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Short Title:  Inotropic Support in Cardiac Valvular Surgery 

 

Brief Summary Statement 

The use of perioperative inotropic support was studied in one hundred and twenty patients 

undergoing valvular surgery as part of a randomized controlled trial on the use of 

intravenous amiodarone for 48 hours starting intraoperatively in the prevention of 

postoperative atrial fibrillation. The biochemical, hemodynamic and biventricular 

echocardiographic evolution was studied and the impact of inotropic support analyzed. 

Patients were followed-up for 6 years. 
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ABSTRACT 
Background: Inotropic agents are often needed to wean patients from cardiopulmonary 

bypass (CPB) in valvular or complex surgery, but their effects on systolic and diastolic 

function has not been well reported. The aim of this study was to evaluate the effect of 

inotropic support on biventricular systolic and diastolic function, as well as outcome, 

compared to a control group without inotropes, in patients undergoing valvular surgery. 

The secondary objectives were to assess factors which can predict the need for inotropic 

support after cardiopulmonary bypass, and also to document the change in systolic and 

diastolic function over time in valvular surgery. 

Methods: Single-center double-blind, double-dummy, randomized controlled trial in 

patients undergoing valvular surgery and randomized to receive intravenous amiodarone or 

placebo intraoperatively. Patients were divided in those requiring or not postoperative 

inotropic agents. Demographic and biochemical data were obtained. Hemodynamic profile 

and biventricular comprehensive transesophageal echocardiographic (TEE) exam were 

performed and described before, after bolus and after cardiopulmonary bypass (CPB). 

Patients were followed-up for 6 years. 

 Results: One hundred and twenty patients (mean age 65 ± 11 years) were randomized to 

receive amiodarone or placebo. There was no difference in the use of inotropic agents after 

CPB in patients randomized to amiodarone or placebo. There were no significant baseline 

biochemical or hemodynamic differences among patients receiving inotropes after CPB. 

The use of inotropes was associated with increased left atrial dimensions (p = 0.0196), 

increased E/e ratio (p = 0.0104), reduced tissue Doppler mitral systolic velocities 

(p = 0.0086), increased end-systolic right ventricular area dimension (p = 0.0197) with 

associated reduced hepatic venous flow systolic velocities (p = 0.0093) before CPB. 

Inotropic agents after CPB were associated with increased tissue Doppler mitral annular 

atrial velocities (p = 0.0252), pulmonary (p = 0.0459) and hepatic venous flow (p = 0.003) 

atrial reversal velocities. There were no difference in postoperative complications and in 

survival in both group however the number of death at 6 years was increased in patients 

who received intraoperative inotropes (p = 0.0247). 
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Conclusion In patients undergoing cardiac valvular surgery, significant hemodynamic and 

biventricular systolic and diastolic echocardiographic changes do occur after CPB. 

Inotropic medications were not associated with a difference in hemodynamic and 

echocardiographic parameters after CPB when compared to a control group. However 

inotropic medications were associated with increased bi-atrial activity after CPB. At 6 

years, despite similar baseline demographic characteristics, an increased number of deaths 

was observed in patients requiring inotropic medication.  

 

Keywords: Cardiac surgery; Amiodarone; Inotropic agents; Transesophageal 

echocardiography; Cardiopulmonary bypass; Outcome.  
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Introduction 

Deterioration in systolic ventricular function following coronary revascularization 

has been commonly observed and was described several years ago by Breisblat et al. [283] 

A reversible ischemic injury or hibernating myocardium are thought to be potential 

mechanisms inducing that deterioration. [284] Changes in left ventricular diastolic function 

have also been described following coronary revascularization [84;86;88;95-97;285] 

however, changes in both left ventricular systolic and diastolic function have not been 

described in patients undergoing valvular surgery. Furthermore right ventricular systolic 

and diastolic function have been documented after coronary revascularization [40;92] but 

not reported in valvular surgery. In addition, inotropic support is often necessary for 

cardiopulmonary bypass (CPB) weaning and is likely to alter cardiac function. The impact 

of inotropic support on biventricular systolic and diastolic function and on postoperative 

outcome is not well studied in patients undergoing valvular surgery.   

Accordingly, the aim of the study was to evaluate the effect of inotropic support on 

biventricular systolic and diastolic function, as well as outcome, compared to a control 

group without inotropes, in patients undergoing valvular surgery. The secondary objectives 

were to assess factors which can predict the need for inotropic support after CPB, and also 

to document the change in systolic and diastolic function over time in valvular surgery. 

 

Methods 
Patient Population  

This study is part of a single-center double-blind, double-dummy, randomized 

controlled trial to demonstrate the efficacy and safety of a 48-hour intravenous infusion of 

amiodarone in reducing atrial fibrillation prevalence in patients undergoing valvular 

surgery. [56] After approval of the Research and Ethic Committee patients of more than 18 

years of age undergoing an isolated cardiac valvular surgery or a valvular surgery 

combined with a coronary revascularization procedure between November 2001 and May 

2003 were screened to be included in the study. To be eligible, they also had to be in sinus 
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rhythm and have a left ventricular ejection fraction (LVEF) above 20% at the time of 

screening. Patients were excluded from the study if they met one of the following criteria: 

amiodarone intake in the previous 6 months, a history of anaphylactic reaction to iodine, a 

past history of severe reaction or toxicity to amiodarone, intake of class I or III anti-

arrhythmic agents within the 48 hours before surgery, significant hypotension (systolic 

blood pressure < 80 mmHg) necessitating sustained treatment with vasoactive agents for 

more than 1 hour preoperatively, urgent surgery and participation in other investigational 

trials.  

 

Clinical Variables and Endpoints 

Age, gender, body mass index (BMI) and body surface area (BSA) were determined 

for each patient, along with their relevant medications. Also documented were the presence 

of hypertension, diabetes, chronic renal failure, smoking history, recent myocardial 

infarction (MI, before or after 6 months), signs and symptoms of congestive heart failure 

(CHF), chronic obstructive pulmonary disease (COPD), previous cerebrovascular disease 

(CVD), thyroid disorders, and LVEF measured through angiographic ventriculography or 

echocardiography. The different types of surgical procedures were classified as isolated 

valvular or valvular and coronary artery bypass grafting (CABG). The number of bypass 

grafts and the use of a mammary artery were noted in addition to the CPB time and aortic 

cross-clamping time. Patients were dichotomized whether they required or not inotropic 

agents (milrinone or epinephrine). The use of other vasopressors (noradrenaline, 

phenylephrine and vasopressine), length of cardiothoracic intensive care unit (CTICU) and 

hospital stay, postoperative complications and mortality rates were noted.  

 

Study Protocol 

Induction of anesthesia was performed using a combination of fentanyl (5–10 μg/kg) 

or sufentanil (0.7–1 μg/kg), midazolam (up to 0.1 mg/kg), and pancuronium (0.1 mg/kg). 

Isoflurane was used to control blood pressure during maintenance of anesthesia. After the 
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induction of anesthesia, an intravenous loading dose of 300 mg of amiodarone (or placebo) 

was given over 10 minutes followed by an infusion of amiodarone (15 mg/kg/24 hours, 

max 1500 mg/24 hours) or placebo for 48 hours. A complete hemodynamic assessment 

using the pulmonary artery catheter (PAC) (7.5F 931HF75, Baxter Healthcare, Irvine, 

California) was performed before and after bolus infusion and after CPB upon arrival in the 

CTICU and the following day. Baseline hemodynamic profiles were obtained from a radial 

artery catheter and a pulmonary artery catheter. The transesophageal echocardiography 

(TEE) examination was performed following induction of anesthesia prior to median 

sternotomy, following the bolus and after CPB during sternal closure. The following 

hemodynamic variables were recorded and calculated: heart rate (HR), systolic, diastolic 

and mean arterial pressures (MAP), systolic, diastolic and mean pulmonary artery pressures 

(MPAP), central venous pressure (CVP), pulmonary capillary wedge pressure (PCWP), 

cardiac index (CI), stroke volume (SV) and indexed systemic and pulmonary vascular 

resistance.  

Complete laboratory data including arterial and venous blood gases were obtained just 

before administration of the amiodarone and after weaning from CPB. The surgical 

valvular procedure was performed according to established guidelines. [270] Blood 

cardioplegia was used in all patients. Induction and maintenance of cardioplegia were cold 

to tepid (15-29ºC). The blood to crystalloid ratio was 4:1. The pump flow was adjusted to 

obtain an output of 2.2 l/min/m2 of body surface area and which was reduced to 0.5 

l/min/m2 for aortic clamping and unclamping. SIII (Stockert, Munich, Germany) roller 

pumps were used in all patients. The oxygenator was Sorin Monolyth (Mirandola, Italy). 

Valve and complex procedures were done with temperatures of 32-34ºC. Weaning from 

CPB was attempted after their systemic temperature (central and vesical) was >36ºC. All 

patients in the study had epicardial pacemaker wires (atrial and/or ventricular) placed at the 

end of surgery. The use vasoactive drugs during CPB (Appendix 2) and the process of 

weaning from CPB (Appendix 3) were done using established protocols as previously 

described. [52] Temporary pacing was subsequently initiated if judged necessary by the 

anesthesiologist and the surgeon. 
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Echocardiographic examination 

Intraoperative TEE examinations were performed by anesthesiologists with 

National Board Certification in perioperative echocardiography with more than 15 years of 

experience in TEE. The TEE examination included 2D examination in the mid-esophageal 

and long-axis views and transgastric short-axis view at the mid-papillary level, with 

additional color flow imaging of the mitral, aortic and tricuspid valves in order to detect 

any significant valvular abnormality.  

To assess left ventricular (LV) and right ventricular (RV) systolic function and 

dimensions, LV end-diastolic area (LVEDA), LV end-systolic area (LVESA) and LV 

fractional area change (LVFAC) were measured from the four-chamber and the transgastric 

mid-papillary view. From the mid-esophageal four-chamber view, the transverse diameter, 

the area and the volume of the left atrium (LA), the right atrium (RA), the area of the right 

ventricle (RV) at end-diastole (RVEDA), end-systole (RVESA), the fractional area change 

(RVFAC) and the tricuspid annular plane systolic excursion (TAPSE) were measured. All 

these measurements were obtained using published guidelines on two-dimensional 

quantification [186] and right ventricular function assessment. [48]  

To assess LV and RV diastolic function, pulsed wave (PW) Doppler was used to 

evaluate transmitral flow (TMF) and transtricuspid inflow (TTF).  Peak early (E) and peak 

late (A) diastolic flow velocities were measured. Pulmonary venous flow (PVF) and hepatic 

venous flow (HVF) were also evaluated using PW Doppler. In adition, peak systolic (S), 

diastolic (D) and atrial reversal (AR) flow velocities were also measured. Using tissue 

Doppler imaging (TDI), mitral annulus velocities (MAV) including the systolic (Sm), early 

diastolic (Em) and late atrial (Am) velocities were measured at the lateral or anterior 

annulus (the signal with the best definition and with the higher Em was chosen). Tricuspid 

annulus velocities (TAV) including the systolic (St), early (Et) and late atrial (At) velocities 

were also derived by TDI using a deep transgastric RV long axis view with right side 

rotation, as previously described. [39] The TMF E/e ratio was calculated.  
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The classification of LV (Figure 55) and RV (Figure 56) diastolic function was 

based on a modification of the algorithm described by Khouri et al., [173] that we 

previously validated. [12;39;43;50] All the echocardiographic data were recorded on a 

magnetic optical disk for off-line viewing. The measurements were done by an independent 

cardiologist (YS) blinded to the drug allocation. [40] The echocardiographic images used in 

the classification of diastolic function were reviewed off-line by two independent observers 

blinded to the patient’s data. Two-dimensional areas were not measured if less than 80% of 

the endocardial contour could be seen. [271]  

In order to validate our measurements, we subjected 10 echocardiograms to 3 

repeated measurements in a blinded fashion, with 3 consecutive cardiac cycles analyzed for 

each recording. The coefficient of variation (SD ÷ mean X 100%) between 3 consecutive 

cardiac cycles of the 10 echocardiograms was 2.7% ± 1.6% and 4.5% ± 1.8% for the left 

and right atrial areas in cardiac systole, and 3.4% ± 1.4% and 4.4% ± 1.9% for the left and 

right ventricular end-diastolic areas, respectively. For PW velocity and TDI velocity the 

coefficients of variation were 5.4% ± 2.6% and 2.6% ± 1.3%, respectively. The coefficient 

of variation between the 3 results based on the average of 3 cycles of these 10 

echocardiograms was 1.4% ± 0.8% and 2.7% ± 1.8% for the left and right atrial areas in 

cardiac systole and 2.9% ± 1.1% and 2.9% ± 1.1% for the left and right ventricular end-

diastolic areas, respectively. For PW velocity and TDI velocity, the coefficients of variation 

were 1.1% ± 0.4% and 1.0% ± 1.0% respectively. [40]  

Left ventricular diastolic function was not evaluated in patients with mitral stenosis 

and moderate to severe mitral or aortic regurgitation. Right ventricular diastolic function 

was not evaluated in patients with moderate to severe tricuspid regurgitation. Patients with 

atrial fibrillation or a pacemaker, and contraindication to transesophageal echocardiography 

(TEE) were excluded from the diastolic function classification. Twenty-nine measurements 

for left ventricular diastolic function were excluded because the Doppler signals could not 

be obtained. The left ventricular diastolic function algorithm was used to evaluate 190 

measurements (73, 50 and 67 patients for the three evaluation time points: before studied 

drug bolus, after drug bolus and after CPB, respectively). The inter-observer kappa values 
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were 0.82, 0.57 and 0.77 between 2 observers. Fifty measurements for right ventricular 

diastolic function were excluded for the reasons mentioned above. The right ventricular 

diastolic function algorithm was used to evaluate 178 measurements (69, 52 and 57 patients 

for the three evaluation time points). The inter-observer kappa values were 0.69, 0.82 and 

0.91. When the three evaluation time points were pooled, the LVDD and RVDD algorithm 

interobserver kappa values were 0.77 and 0.82. In the evaluation of LVDD, 26/193 (13%) 

and 3/193 (1.6%) time points were respectively excluded by reviewers #1 and #2. In the 

evaluation of RVDD 23/182 (13%) and 4/182 (2%) time points were excluded by reviewer 

#1 and #2. 

Upon arrival in the CTICU, a Holter monitor (Marquette Electronics Series 8500, 

Boston, Massachusetts) was installed on each patient. Three-lead continuous Holter 

monitoring was performed for the first 4 postoperative days. The recorded data were stored 

for 24 hours and reviewed by an independent electrophysiologist on a daily basis. Three-

lead continuous telemetric monitoring (Fukuda DF 3310 and LW 3100, Fukuda, Japan) was 

concomitantly performed from the time of admission to the CTICU until hospital discharge. 

Daily 12-lead electrocardiogram recordings were also performed on all patients. 

Postoperative AF was treated by the CTICU and surgical teams at their discretion, in 

accordance with the American College of Cardiology and American Heart Association 

(ACC/AHA) guidelines. [286] Atrial fibrillation was defined as an uncoordinated atrial 

activation with consequent deterioration of atrial mechanical function. [286]  

 

Statistical Analysis 

Based on our previous study, [56] we estimated that 50% of patients undergoing 

cardiac valvular surgery would develop AF. In order to detect the expected reduction in AF 

from 50% to at least 25% in the amiodarone group, 58 patients per group would be needed 

to reach a power of 80% with a two-sided chi-square test at an alpha of 5%. Assuming a 

3% loss, we recruited 60 patients per group.  
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Categorical variables are described as frequencies and percentages; the chi-square 

test was used to assess group differences. Continuous variables are expressed as the mean 

value ± SD; their differences were tested by the unpaired t-test due to the normality 

assumption. Repeated measures ANOVA models were used to study the hemodynamic, 

echocardiographic, arterial blood gases and biochemistry parameters across time and 

between groups. Models included time, group and group X time interaction as independent 

variables. If the interaction term was significant at the 0.05 level, then comparisons 

between groups at each time point and between time points within each group were done. 

The generalized estimating equation (GEE) model was performed to study left and right 

ventricular diastolic function using the multinomial distribution due to the nature of the 

diastolic scores (normal, mild, moderate, severe). 

Multivariate logistic regression was used to identify the independent predictors of 

the use of inotropes. Three separate regression models were performed for this outcome 

using the following potential predictor variables: (1) Preoperative baseline & surgical 

characteristics (listed in Table 22 with the exception of the use of mammary graft) and the 

use of amiodarone; (2) Baseline arterial blood gases and biochemistry parameters and the 

use of amiodarone; (3) Baseline hemodynamic and echocardiographic variables and the use 

of amiodarone. The models were constructed with the use of backward stepwise variable 

selection, and a probability value of 0.05 was used as the criterion for variable selection. 

The c index and the Hosmer-Lemeshow test are also reported for the appropriateness of the 

model. To evaluate the long-term effect of inotropes treatment on mortality, a log-rank test 

was performed. Statistical analyses were performed using SAS version 8.02 (SAS Institute 

Inc., Cary, North Carolina). A p value ≤ 0.05 was considered significant.  

 

Results 

A total of 120 patients were randomized and 1 patient in the amiodarone group died 

intraoperatively (right ventricular failure). The mean age was 65 ± 11 years and 67 (56%) 

patients were men. Two-thirds of the total population (68.3%) underwent an isolated 
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valvular surgery and one-third (31.7%) underwent combined valvular and CABG surgery. 

There were 56 patients (46.6%) requiring inotropic support after CPB. A total of 52 

required milrinone, 4 epinephrine and 2 both agents. Baseline demographic characteristics 

were similar among patients with or without inotropes (Table 22).  

 

Table 23 summarizes the significant findings (Detailed tables can be found in 

Appendix 9 to Appendix 13). The evolution in terms of laboratory and hemodynamic 

variables was similar between groups. Before CPB, patients requiring postoperative 

inotropes developed increased left atrial size (p = 0.0196) and volume (p = 0.0247), 

increased baseline E/e ratio (p = 0.0104), reduced systolic MAV (p = 0.0086), increased 

RVESA (p = 0.0197) and reduced systolic HVF velocities (p = 0.0093). After CPB, the 

atrial MAV (p = 0.0252), the atrial reversal of the PVF velocities (p = 0.0459) and of the 

HVF velocities (p = 0.003) increased in the group requiring inotropes. Ventricular diastolic 

function evaluation of the left and right ventricle changed after CPB with a shift from the 

normal and mild to moderate and severe diastolic dysfunction, but there were no 

differences between the groups. Figure 58 summarizes the biventricular hemodynamic, 

two-dimensional and Doppler changes before and after CPB. 

The use of amiodarone was not associated with increased inotropic requirement 

during and after CPB. Adrenaline was required in 3 patients and milrinone in 26 patients in 

both the amiodarone and the placebo group. There were no differences in postoperative 

complications between the groups (Table 24), except for an increase in the use of 

noradrenaline (p = 0.0152) and higher mortality at 6 years in patients requiring inotropic 

agents (p = 0.0247) (Figure 59). No baseline preoperative factors were found to be 

independently associated with a higher risk of requiring inotropes after valvular surgery.  
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Discussion 

In this study evaluating a population undergoing valvular or complex surgery, we 

found that the administration of inotropic agents after CPB was not associated with 

differences in biventricular systolic or diastolic function when compared to a group without 

inotropic support. However, we also observed that the administration of inotropic agents 

was associated with an increased left and right atrial activity. Increased left atrial activity 

has been described with ketamine through activation of the sympathetic nervous 

system. [287] Increased right atrial function has been also described in an animal model of 

milrinone-induced toxicity. [288] In addition, Couture et al. [43] made similar observations 

on increased bi-atrial activity in a randomized controlled trial using milrinone. This 

increased atrial activity could explain why the administration of milrinone can be 

associated with an increased risk of atrial fibrillation. [289;290] However such a 

postoperative association was not observed in this study. 

We also document that, even if patients requiring inotropes were similar at baseline, 

patients likely to require inotropes showed significant alterations in echocardiographic 

indices of biventricular function before CPB. We observed reduction in left ventricular 

systolic function, elevation of left ventricular filling pressure indices (E/e ratio), [291;292] 

and enlargement of the left atrium before CPB in patients requiring inotropes after CPB. In 

addition, evidence of altered right ventricular function and dilatation was also present 

before CPB. These changes in biventricular function may represent the early manifestation 

of reduced cardiovascular reserve to sternotomy, pericariectomy, and CPB. Some authors 

have observed reduced intramyocardial pH and increased myocardial lactate production 

before CPB in patients requiring inotropic agents postoperatively. [109;110] Despite no 

difference in the duration of CPB, altered biventricular function could have predisposed 

patients to the use of inotropic medication. In patients undergoing valvular disease, Haddad 

et al. [46] observed that echocardiographic intraoperative indices of right ventricular 

dysfunction obtained before CPB were significant predictors of vasoactive requirement 

after CPB. However, none of the baseline hemodynamic and echocardiographic variables 

were independent predictors of post-CPB inotropic requirements. 
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As secondary findings, we also showed that patients undergoing valvular surgery 

will have significant hemodynamic, two-dimensional and Doppler changes during cardiac 

surgery, whether or not they received inotropic agents after CPB. Overall, systemic arterial, 

pulmonary and right atrial pressures will increase with right-sided atrial dilatation and right 

ventricular systolic dilatation after CPB. These changes in right ventricular dimensions will 

be associated with a reciprocal reduction in the left atrial diameter and left ventricular end-

diastolic dimension. We also observed a reduction in left ventricular systolic function after 

CPB in both groups. While the RVFAC did not change, the decrease in TAPSE suggests 

that right ventricular systolic function also decreased after CPB.  

After valvular surgery, significant changes in biventricular diastolic function will 

also occur. The increase in right atrial filling pressure and volume is associated with a 

deterioration of right ventricular diastolic function and right ventricular dilatation. This 

could contribute to the reduced left-sided dimension. These changes are similar to some 

extent to those our group described in patients undergoing CABG [40;43] however the 

alterations in biventricular diastolic function are more pronounced particularly on the right-

sided cavities. 

Studies on diastolic function in cardiac surgery 

Changes in left ventricular diastolic function during cardiac surgery have been 

mostly described after CABG [68;88;90;92;94-98] but not in valvular surgery using both 

hemodynamic and biventricular echocardiographic parameters. The selection and the 

variations in the parameters used in the evaluation of left ventricular diastolic function can 

explain some of the observed discrepancies among the results. In a study involving 49 

CABG patients, using TMF, PVF and TDI modalities and velocity of propagation with 

transthoracic echocardiography, Shi et al. [40] observed a deterioration of left ventricular 

diastolic function at 48 hours with a normalization of the parameters at 6 months and a 

return at their values before CABG. In a similar study but using invasive hemodynamic 

monitoring and TEE, Couture et al. [50] demonstrated that induction of anesthesia will alter 

diastolic function. In addition, he also demonstrated that the changes observed at 48 hours 
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by Shi et al. were already present after CPB. [43] Our observations were similar, however 

baseline left ventricular dimensions were larger in our population than those reported by 

Royse et al. [293] and those of Couture et al. [43] The larger LVEDA observed in our 

study could be secondary to the fact that we studied patients with valvular disease and with 

longer CPB duration compared to CABG patients. 

We also observed significant changes in right-sided diastolic function, as reported 

by Shi et al. [40] and Couture et al. [43] in patients undergoing CABG. Similar changes 

have also been described by Diller et al. [92] using TDI of the tricuspid annulus in patients 

undergoing CABG. These changes could be explained by many factors including 

inflammatory changes induced by CPB, [279] a pulmonary reperfusion  syndrome, [280] 

poor myocardial protection or the effect of pericardictomy. [281]  

In this trial, 46.7% of patients received inotropes. In our practice using vasoactive 

agents, inotropic agents are considered a second and third line treatment (see Appendix 3). 

This use of inotrope is within reported range of 32% to 52% during the weaning from 

CPB. [64;69] However, the persisting use of inotropes after CPB is associated with an 

increased risk of postoperative morbidity and mortality. [10;75;77;106] We observed an 

association between long-term survival and the use of inotropic agents. This association has 

been reported in the use of oral [294] and intravenous milrinone for patients with ischemic 

cardiomyopathy. [295] Our study is not powered enough to demonstrate that inotropic 

agents are independent predictors of postoperative mortality. 

 

Limitations 

The gold standards for evaluating diastolic dysfunction are the time constant of 

relaxation (Tau) and pressure-volume curves obtained by direct invasive measurements to 

assess chamber compliance. However, these measures are invasive and are not feasible in 

everyday practice. We used a Doppler assessment of mitral and tricuspid inflow, as well as 

pulmonary and hepatic flow variables to assess diastolic function. Tissue Doppler imaging 

which is a relatively volume-insensitive modality, provided supportive information to better 
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stratify the degree of diastolic dysfunction. [173] Changes in mitral flow velocity have been 

noted with changes in loading conditions, differing heart rates, and the left ventricular 

contractile state. [282] However, in this study the hemodynamic variables were similar in 

both groups. Criteria for right ventricular diastolic dysfunction have been previously 

described [204] but are not yet as widely accepted as those used for left ventricular diastolic 

dysfunction. So far however, no study has evaluated and reported the changes after CPB in 

biventricular systolic and diastolic function in patients undergoing valvular surgery. Several 

factors can influence the use of inotropic agents and one of them being the 

anaesthesiologist. [64] A vasoactive agent protocol was used to reduce this potential 

confounding factor, however, we cannot completely exclude this factor as a trigger for the 

use of inotropic agent. Finally, the use of amiodarone as a negative inotropic agent may 

have influenced the results. However, amiodarone was not associated with an increase in 

inotropic agents through logistic regression analysis.  

 

Conclusion 

In patients undergoing cardiac valvular surgery, significant hemodynamic and 

biventricular systolic and diastolic echocardiographic changes do occur after CPB. 

Inotropic medications were not associated with differences in hemodynamic and 

echocardiographic parameters when compared to a control group, except for increased bi-

atrial activity after CPB. However at 6 years, despite similar baseline demographic, 

hemodynamic and echocardiographic characteristics, an increased number of deaths was 

observed in patients requiring inotropic agents after valvular surgery.  
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Table 22 Characteristics of patients with and without inotropes  

Characteristics Inotropes 
(n = 56) 

No inotropes 
(n = 64) 

P Value 

Age, yrs 64.8 ± 9.9 65.4 ± 12.3 0.7664 
Gender 
    Men 
    Women 

 
27 (48.2) 
29 (51.8) 

 
40 (62.5) 
24 (37.5) 

0.1159 
 

Body mass index 27.4 ± 5.2 27.0 ± 3.9 0.6601 
Hypertension 29 (51.8) 28 (43.7) 0.3792 
History of stroke 2 (3.6) 1 (1.6) 0.4819 
Coronary artery disease 8 (14.3) 14 (21.9) 0.2838 
Myocardial infarction 
    <6 months 
    >6 months 

 
2 (3.6) 
4 (7.1) 

 
2 (3.1) 
5 (7.8) 

 
0.8919 
0.8895 

Congestive heart failure 13 (23.2) 20 (31.2) 0.3254 
Left ventricular ejection fraction (%)  58.7 ± 10.3 60.3 ± 10.9 0.4465 
Smoking history 11 (19.6) 14 (21.9) 0.7639 
Chronic obstructive pulmonary disease 7 (12.5) 13 (20.3) 0.2519 
Diabetes mellitus 7 (12.5) 12 (18.8) 0.3494 
Chronic renal failure 2 (3.6) 3 (4.7) 0.7602 
Thyroid disorder 6 (10.7) 7 (10.9) 0.9687 
Preoperative medication 
    Beta-blockers 
    Calcium antagonists 
    Angiotensin converting enzyme inhibitor 
    Angiotensin receptor blocker 
    Diuretics 
    Digitalis 

 
20 (35.7) 
11 (19.6) 
17 (30.4) 
 
4 (7.1) 
15 (26.8) 
1 (1.8) 

 
14 (21.9) 
15 (23.4) 
21 (32.8) 
 
8 (12.5) 
24 (37.5) 
1 (1.6) 

 
0.0933 
0.6147 
0.7730 
 
0.3291 
0.2112 
0.9241 

Type of surgery 
    Isolated valvular 
    Valvular + coronary artery bypass graft 

 
37 (66.1) 
19 (33.9) 

 
45 (70.3) 
19 (29.7) 

 
0.6183 
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Characteristics Inotropes 
(n = 56) 

No inotropes 
(n = 64) 

P Value 

Type of valvular surgery 
    Aortic 
    Mitral 

 
38 (67.8) 
20 (35.7) 

 
45 (70.3) 
19 (29.7) 

 
0.7714 
0.4819 

Number of bypass grafts 
    1 
    2 
    3 
    5 

 
8 (42.1) 
3 (15.8) 
7 (36.8) 
1 (5.3) 

 
7 (36.8) 
8 (42.1) 
4 (21.1) 
0 

0.2449 

Use of mammary artery 14 (73.7) 9 (47.4) 0.0970 
Total CPB time (min) 107 ± 43 101 ± 26 0.3152 
Aortic cross-clamp (min) 
Vasoactive  support during and after CPB 
Noradrenaline 
Neosynephrine 
Vasopressine 
Nitroglycerine 

81 ± 34 
 

 
55 (98.2) 
50 (89.3) 
10 (17.9) 
39 (69.6) 

77 ± 25 
 

 
55 (85.9) 
56 (87.5) 
13 (20.6) 
39 (60.9) 

0.4984 
 

 
0.0152 

0.7611 
0.7017 
0.3185 

Data are presented as n (%) for proportions and as mean ± standard deviation for continuous 
variables. CPB, cardiopulmonary bypass 
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Table 23 Biochemical, hemodynamic and Doppler variables 

 
Variable Group Baseline 

(Mean ± SD) 
After bolus  

(Mean ± SD) 
After CPB  

(Mean ± SD) 
P value 
(group) 

P value  
(time) 

P value  
(group*time) 

LA area (cm2) Inotropes 20.2 ± 7.1 22.4 ± 7.5 19.1 ± 4.1 0.0983 0.0243 0.0196,14 
 No inotropes 18.6 ± 5.3 18.0 ± 4.8 18.4 ± 3.8    
LA volume (ml) Inotropes 67.2 ± 34.6 80.0 ± 40.5 57.9 ± 19.3 0.1035 0.0410  0.02470,15 
 No inotropes 58.6 ± 25.9 55.6 ± 22.2 56.3 ± 18.4    
RVESA (cm2) Inotropes 7.3 ± 2.4 8.0 ± 2.5 7.4 ± 2.1 0.3383 0.0265 0.019716 
 No inotropes 6.7 ± 1.9 7.4 ± 2.0 7.9 ± 2.4    
E/e ratio Inotropes 13.9 ± 11.9 13.6 ± 3.7 16.6 ±6.8 0.0104 0.0587 0.5347 
 No inotropes 10.4 ± 2.6 11.7 ± 3.3 12.5 ± 4.3    
MAV a wave Inotropes 8.8 ± 2.5 7.6 ± 1.8 9.1 ± 4.3 0.434 0.8709 0.025217 
 No inotropes 8.2 ± 2.6 8.7 ± 3.1 7.2 ± 2.6    
MAV s wave Inotropes 8.4 ± 2 7.6 ± 1.2 9.8 ± 3.2 0.9906 0.2593 0.008618 
 No inotropes 8 ± 1.8 9.1 ± 2.9 8.2 ± 2    
PVF AR wave Inotropes 19.9 ± 6.7 18.3 ± 5.3 32.9 ± 15.7 0.5166 0.0004 0.045919 
 No inotropes 20.7 ± 7.8 23.2 ± 10.4 25.2 ± 11.8    
TTF A velocity  Inotropes 29.8 ± 11.4 47 ± 18.2 38.1 ± 21.6 0.4135 <.0001 0.003420 
 No inotropes 31.7 ± 13.2 37.8 ± 11.4 38.1 ± 16.2    
HVF S wave Inotropes 21.5 ± 12.4 18.6 ± 7.6 -14.4 ± 23.9 0.3965 <.0001 0.009321 
 No inotropes 16.2 ± 10.1 22.4 ± 16.7 -7.3 ± 20.4    

                                                 
14 P = 0.0135 after bolus in the inotropes versus no inotropes group. 
15 P = 0.0117 after bolus in the inotropes versus no inotropes group. 
16 P < 0.05 baseline versus after CPB in the no inotropes group  and p = 0.0596 after bolus in the inotrope versus no inotropes group  
17 P = 0.0373 after CPB in the inotropes versus no inotropes group. 
18 P = 0.0351 after bolus in  the inotropes versus no inotropes group. 
19 P < 0.05 baseline and after bolus versus after CPB in the inotropes group and p = 0.0510 after CPB in the inotropes versus no inotropes group 
20 P = 0.0001 baseline versus after bolus in the inotropes group and p = 0.0273 after bolus in the inotropes versus no inotropes group 
21 P = 0.0654 baseline in the inotropes versus no inotropes group 
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Variable Group Baseline 
(Mean ± SD) 

After bolus  
(Mean ± SD) 

After CPB  
(Mean ± SD) 

P value 
(group) 

P value  
(time) 

P value  
(group*time) 

HVF AR wave Inotropes 13.8 ± 9.9 13.5 ± 7.7 29.8 ± 17.6 0.0904 0.0004 0.00322 
 No inotropes 10.9 ± 4.8 17.9 ± 9.2 15.3 ± 5.1    
CI, cardiac index; CK, creatine kinase; D, diastolic; HR, heart rate, HVF, hepatic venous flow; L, liter; MPAP, mean pulmonary artery 
pressure; PVF, pulmonary venous flow; S, systolic; TTF, transtricuspid flow  

                                                 
22 P = 0.0102 after CPB in the inotropes versus no inotropes group  and p < 0.05 baseline versus after CPB in the inotrope group and baseline versus after bolus in the 
non-inotropes group 
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Table 24 Outcome data
Characteristics 
 

Inotropic support No inotropic 
support* 

P Value 
 

Atrial fibrillation 26 (46%) 33 (52%) 0.5746 
CTICU duration (hours) 43 (27.5-69.5)1 39.5 (24.5-68.5) 1 0.1795  
Hospitalization duration (hours) 216 (144-288) 1 168 (144-240) 1 0.2805 
Rhythm on discharge   0.1879 

Sinus 49 (89%) 60 (95%)  
Atrial fibrillation 0 (0%) 1 (2%)  

Other 3 (5%) 0 (0%)  
Pacemaker 3 (5%) 2 (3%)  

Non-sustained ventricular tachycardia 6 (11%) 7 (11%) 0.9687 
Acute respiratory distress syndrome 0 0  
Myocardial infarction 1 (2%) 0 (0%) 0.2830 
Stroke 1 (2%) 2 (3%) 0.6392 
Acute renal failure 2 (4%) 2 (3%) 0.8919 
Rehospitalization for atrial fibrillation 1 (2%) 5 (8%) 0.1375 
Hospital mortality 2 (4%) 1 (2%) 0.4819 
Number of death at 6 years 10 (18%) 3 (5%) 0.0247 
CTICU, cardiothoracic intensive care unit. Data are presented as n (%) for proportions and as mean ± standard deviation for continuous 
variables. * One patient died intraoperatively of right ventricular failure. 
1 The median (lower adn upper quartile) are presented. 
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Figure 58 Hemodynamic and echocardiographic summary  
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Hemodynamic, biventricular echocardiographic and Doppler changes in patients undergoing valvular surgery after cardiopulmonary bypass 
(CPB). (A, atrial component; Am, atrial MAV; AR, atrial reversal; At, atrial TAV; CVP, central venous pressure; D, diastolic; E, early 
filling; Em, early MAV; Et, early TAV; HR, heart rate; HVF, hepatic venous flow; MAV, mitral annular velocity; MPAP, mean pulmonary 
artery pressure; PCWP, pulmonary capillary wedge pressure; PVF, pulmonary venous flow; S, systolic HVF, SAP, systolic artery pressure; 
Sm, systolic MAV; St, systolic TAV; TAV, tricuspid annular velocity; TMF, transmitral flow; TTF, transtricuspid flow; * p < 0.05 in the 
inotropic group only) 
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Figure 59 Probability of survival at 6 years.  

Mortality was increased in patients exposed to inotropes after cardiopulmonary bypass (p = 0.0247). 

 



 

Chapter 6 Inhaled milrinone 
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As we have previously seen, difficult separation from CPB is a major cause of 

morbidity and mortality. The mechanism of difficult separation from CPB is complex but 

can be approached based on three variables, Pms, Pra and Rvr. Pulmonary hypertension and 

right ventricular dysfunction were identified as significant predictors of difficult separation 

from CPB. [46] Finally, on the basis of our preliminary data, right ventricular dilatation and 

dysfunction are commonly observed after CPB and their severity is associated with 

inotropic requirement, increased morbidity and mortality. [46] Therefore, pulmonary 

hypertension and its consequences on right ventricular dysfunction could appear as a 

potential target for intervention.  

6.1. Definition of pulmonary hypertension 

There are several hemodynamic parameters that are used to define pulmonary 

hypertension (Table 25). [296] Several of these definitions have been used in various 

studies. In cardiac surgery, we obtain information on pulmonary hypertension before the 

procedure and usually from an awake patient. This preoperative information is either 

acquired through preoperative catheterization or, more frequently, estimated via 

transthoracic echocardiography by using Bernoulli’s equation. In the presence of tricuspid 

regurgitation, as shown in  

Figure 60, [12] the simplified Bernoulli’s equation will give an estimation of the 

pressure gradient across the tricuspid valve. This pressure gradient is equal to the difference 

between the systolic pressure of the right ventricle and the right atrium. Therefore, 

knowledge (or estimation) of the right atrial pressure allows the estimation of the right 

ventricular systolic pressure. In the absence of RVOTO or pulmonic valve stenosis, this 

value will be an estimation of the systolic pulmonary artery pressure. 
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Table 25 Definitions of pulmonary hypertension used in clinical research 

Hemodynamic parameter  Normal value   Abnormal value 
  
Systolic pulmonary artery pressure (SPAP)  15-30 mmHg > 30 or ≥ 40 mmHg 
  
Mean pulmonary artery pressure (MPAP)  9-16 mmHg Moderate: > 18 mmHg  
   Significant: > 25 mmHg 
   Exercise-induced: > 30 mmHg 
  
Pulmonary vascular resistance (PVR) = (MPAP – PCWP) X 80/CO   60-120 dyn·s·cm-5 Moderate > 125 dyn s cm-5 
   Severe >200-300 dyn s cm-5  
     
Indexed pulmonary vascular resistance (PVRI) = (MPAP – PCWP) X 80/CI  250-340 dyn·s·cm-5·m-2 > 340 dyn·s·cm-5·m-2  
 
Pulmonary to systemic vascular resistance index (PVRI/SVRI) X 100%  ≤ 10% > 10% 
 
Transpulmonary gradient (MPAP – PCWP) ≤ 14 mmHg > 14 mmHg  
 
Mean pulmonary to systemic pressure ratio (MPAP/MAP) X 100% < 25% Moderate: 33-50%  
   Severe: > 50% 
 
Mean systemic to pulmonary pressure ratio (MAP/MPAP) X 100%  ≥ 4 < 4 [10] 
 
CO: cardiac output; CI: cardiac index; MAP, mean arterial pressure; MPAP, mean pulmonary artery pressure; PCWP: pulmonary capillary 
wedge pressure; PVR, pulmonary vascular resistance; PVRI, indexed pulmonary vascular resistance; SPAP, systolic pulmonary artery 
pressure; SVRI, indexed systemic vascular resistance. (Adapted from Gomez [296])
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Figure 60 Doppler estimation of the severity of pulmonary hypertension 

(A) Estimation of right ventricular systolic pressure (systolic Prv or RVSP) using the 
pressure gradient (PG) obtained from tricuspid regurgitation (TR) and right atrial pressure 
(Pra or RAP). (B) Note that the RVSP is higher than the systolic pulmonary artery pressure 
(Ppa) due to a small gradient across the pulmonic valve (EKG, electrocardiogram; V, 
velocity). (With permission of  Denault et al. [12]) 

 

Following the induction of general anesthesia, a reduction of both the systemic and 

the pulmonary artery pressures will be observed. Consequently, absolute values of systolic 

pulmonary artery pressure used in defining pulmonary hypertension will tend to 

underestimate its severity. In 2006, we addressed this issue and published a study involving 

1557 patients undergoing cardiac surgery. [10] We first demonstrated that the induction of 

general anesthesia in 32 patients was associated with a significant reduction in mean 
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arterial pressure (MAP) and mean pulmonary artery pressure (MPAP), but the MAP/MPAP 

ratio did not change (Figure 61). Therefore, this ratio (normal value > 4) seems to be a very 

robust estimator of the severity of pulmonary hypertension.  

 

Figure 61 The MAP/MPAP ratio 

Change in mean arterial pressure (MAP), mean pulmonary artery pressure (MPAP), and the 
MAP/MPAP ratio after the induction of anesthesia in 32 patients with preoperative 
pulmonary hypertension. No significant change in the MAP/MPAP ratio was observed. 
(MAP: mean arterial pressure, MPAP: mean pulmonary artery pressure) (With permission 
of Robitaille et al. [10]) 

 

To demonstrate the utility of the MAP/MPAP ratio, we compared it to the other 

hemodynamic parameters (Table 25) in 1439 patients undergoing cardiac surgery after the 

induction of general anesthesia but before CPB. We observed that the MAP/MPAP ratio 

behaved similarly to the other hemodynamic parameters (Figure 62), and had the highest 

receiver operating curve value to predict hemodynamic complications after cardiac surgery. 
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The hemodynamic complications were defined as postoperative death or requirement for an 

intra-aortic balloon pump, cardiac arrest and vasoactive support for more than 24 hours.  

 

Figure 62 Pulmonary hypertension and outcome 
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Relationship between the estimated probability of hemodynamic complications and 
variables used in the evaluation of pulmonary hypertension: (A) systolic pulmonary artery 
pressure (SPAP), (B) mean pulmonary artery pressure (MPAP), (C) indexed pulmonary 
vascular resistance (PVRI), (D) the ratio of indexed systemic vascular resistance (SVRI) to 
PVRI, (E) the mean arterial pressure MAP/MPAP ratio, and (F) the transpulmonary 
gradient defined as MPAP minus wedge or pulmonary capillary wedge pressure (PCWP). 
For easier comparison, the scale of the x axis of the SVRI/PVRI and the MAP/MPAP are 
inverted. (n = number of patients). (With permission of Robitaille et al. [10]) 

 

Finally, using TEE, we can confirm that the presence of an abnormal MAP/MPAP 

ratio is almost invariably associated with abnormal systolic or diastolic cardiac function 

(Figure 63). [10] This concept of using the relative instead of absolute value of pulmonary 

hypertension indices is currently used in congenital cardiology. [225-227]  

 

Figure 63 Doppler and hemodynamic signs of right ventricular dysfunction 

Hemodynamic and transesophageal echocardiographic evaluation of a 46-year-old woman 
scheduled for aortic valve surgery. Despite a normal pulmonary artery pressure of 34/16 
mmHg and indexed pulmonary vascular resistance (PVRI) at 286 dyn·s·cm-5·m-2, this 
patient had an abnormal right ventricular diastolic filling pressure waveform characterized 
by a rapid upstroke (A) and reduced systolic (S) to diastolic (D) pulmonary (B) and hepatic 
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(C) venous flow, consistent with left and right ventricular diastolic dysfunction. In addition, 
a dilated right atrium and ventricle were present without significant tricuspid regurgitation 
in a mid-esophageal right ventricular view (D). The mean arterial pressure (MAP) divided 
by the mean pulmonary artery pressure (MPAP) ratio was 65/23 or 2.8. (CI: cardiac index, 
Pa: arterial pressure, PCWP: pulmonary capillary wedge pressure, Ppa: pulmonary arterial 
pressure, Pra: right atrial pressure, Prv: right ventricular pressure, RA: right atrium, RV: 
right ventricle, SVRI: systemic vascular resistance index) (With permission of Robitaille et 
al. [10]) 

 

Finally, pulmonary hypertension is typically classified as capillary, pre-capillary or 

postcapillary, depending on the site where the cause of pulmonary hypertension is present. 

In cardiac surgery, it is typically postcapillary because the cause of pulmonary hypertension 

is of cardiac origin and, consequently, localized after the pulmonary capillary. This is 

confirmed using pulmonary artery catheterization during which the diastolic pulmonary 

artery pressure is equal to the pulmonary capillary wedge pressure (PCWP). In a situation 

where the diastolic pulmonary artery pressure (DPAP) is significantly higher than the 

PCWP in the absence of tachycardia, a capillary or pre-capillary cause could be 

sought. [296] 

In summary, pulmonary hypertension in cardiac surgery should be carefully 

defined. It is generally postcapillary pulmonary hypertension. In awake patients, the 

absolute values have been used and correlated with outcome. However, in patients under 

general anesthesia, a relative value such as MAP/MPAP seems to be more appropriate as 

long as the measurement of the MAP is accurate (see section 1.4.1).  

6.2. Pulmonary hypertension in cardiac surgery: mechanism 

and etiology 

The mechanism of pulmonary hypertension in cardiac surgery is complex and can 

result from several mechanisms acting alone or in combination to each other. These 

mechanisms can be present before the operation, secondary for instance to valvular heart 

disease. The cause of pulmonary hypertension can appear after CPB from mechanical 

failure or from a pulmonary reperfusion syndrome. Finally, pulmonary hypertension can be 
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present or persist postoperatively secondary for instance to a mitral or aortic patient-

prosthesis mismatch, as discussed previously. Figure 64 focuses on the most important 

mechanism of pulmonary hypertension in cardiac surgery [31] based on current literature, 

our research findings and our experience of this population.  

 

 

Figure 64 Mechanisms that could induce pulmonary hypertension in cardiac surgery 

(PFO: patent foramen ovale) 

6.2.1 Factors involved in pulmonary hypertension in cardiac surgery 

The most important causes of pulmonary hypertension in cardiac surgery are 

illustrated in Figure 64. Some of these factors have been reviewed and explained 

previously.  

1) Pre-existing substrates for pulmonary hypertension such as left ventricular dysfunction. 

Left ventricular dysfunction is indeed a common cause of pulmonary hypertension in 

cardiac surgery. As demonstrated in Figure 64, the severity of pulmonary hypertension 

before CPB is related to postoperative outcome.  



238 

 

2) Postoperative myocardial failure secondary to post-cardiotomy syndrome, postoperative 

myocardial infarction or aortic and mitral prosthetic valvular dysfunction. Myocardial 

stunning can result from suboptimal myocardial protection during aortic cross-clamp. 

Incomplete revascularization can lead to elevated left ventricular end-diastolic pressure  

and, consequently, to post-capillary pulmonary hypertension.  

3) Pulmonary inflammatory or ischemic mechanisms. The extent of the systemic 

inflammatory response, the pulmonary reperfusion syndrome and the need for blood 

transfusions may all exacerbate pulmonary hypertension (Figure 65). [5;297] The 

mechanism of pulmonary damage during extracorporeal circulation is thought to be 

triggered by 1) release of cytokines [298] through endotoxin production, 2) complement 

activation and 3) ischemia-reperfusion injury. [279;299] This leads to the production of free 

radicals, endothelin and arachidonic acid degradation products, with both nitric oxide (NO) 

and prostacyclin inhibition. [279] The systemic inflammatory response to cardiac surgery 

was reviewed by Laffey et al.[300] 
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Figure 65 Pulmonary reperfusion syndrome after cardiopulmonary bypass 

Unexpected pulmonary hypertension upon weaning from cardiopulmonary bypass (CPB) in 
a 76-year-old woman after aortic valve replacement (AVR). The CPB duration was 71 
minutes. A significant increase in pulmonary arterial pressure in relation to the systemic 
arterial pressure was observed as the patient was weaned from CPB. No mechanical causes 
were found. 

  

4) The administration of protamine can induce catastrophic pulmonary vasoconstriction in 

up to 1.8% of patients. [164] Protamine can also activate complement and, when given at 

the end of CPB, can induce pulmonary hypertension associated with adverse hemodynamic 

responses ranging from minor perturbations to cardiovascular collapse. Three types of 

response have been described: systemic hypotension, anaphylactoid reaction and 

catastrophic pulmonary hypertension. [163] The mechanism of pulmonary hypertension 

with protamine is thought to occur through an imbalance of vasoconstrictors and 

vasodilators, which leads to a reduction in the release of NO from the pulmonary 

vasculature. [163]  
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5) Patient-prosthesis mismatches have also been recently described as a cause of 

postoperative pulmonary hypertension. Aortic patient-prosthesis mismatch may cause left 

diastolic heart failure through a reduction in coronary reserve [126] and an increased 

ventricular loading, which could also contribute to postoperative pulmonary hypertension. 

Mitral patient-prosthesis mismatch is another recently described cause of residual 

postoperative pulmonary hypertension. [128] Magne et al. [128] studied 929 patients who 

underwent mitral valve replacement (MVR) and followed them up for 15 years. Mitral 

valve patient-prosthesis mismatch was defined as not clinically significant if > 1.2 cm²/m², 

as moderate if > 0.9 and ≤ 1.2 cm²/m², and as severe if ≤ 0.9 cm²/m². The prevalence of 

moderate mitral patient-prosthesis mismatch was 69% and that of severe patient-prosthesis 

mismatch was 9%. Severe patient-prosthesis mismatch was found to be associated with 

residual pulmonary hypertension and a 3-fold increase in postoperative mortality after 

adjustment for other risk factors. This new and relevant information is currently absent 

from the majority of the studies dealing with predictors of survival in mitral valvular 

surgery.  

6) Hypoxemia, hypercarbia and pulmonary embolism are other causes of pulmonary 

hypertension (see section 3.1.2). They can appear before, during or after CPB. For instance, 

pulmonary hypertension can cause RV dysfunction, which will lead to an increase in right 

atrial pressure. This can lead to the opening of a patent foramen ovale (PFO)(Figure 37), 

which is present in 20-30% of the general population. [301] The increase in right atrial 

pressure can cause opening of a patent foramen ovale leading to a right-to-left shunt. This 

shunt would increase the severity of hypoxemia and lead to an exacerbation of pulmonary 

hypertension. Pulmonary vessels constrict with hypoxemia (Euler-Liljestrand reflex) and 

relax in the presence of hyperoxia. [302] Hypercarbia can occur particularly if acute lung 

injury occurs during or after the procedure. The increase in PCO2 will increase pulmonary 

hypertension through vasoconstriction (Figure 39). Finally, although pulmonary embolisms 

are rare in the immediate postoperative period, they can occur particularly in patients with 

predisposing factors (Figure 32). 
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7) Suboptimal lung volume settings may also contribute to pulmonary hypertension. 

Physiologically, the lung volume has a differential effect on intra- and extra-alveolar 

vessels, which accounts for the unique U-shaped relationship between lung volume and 

pulmonary vascular resistance. Pulmonary vascular resistance is minimal at functional 

residual capacity and increased at large and small lung volumes (Figure 66). Clinically, this 

may be observed as hyperinflation of the lungs greatly increases pulmonary vascular 

resistance. [302] Application of high levels of positive end-expiratory pressure (PEEP) may 

narrow the capillaries in the well-ventilated lung areas and divert flow to less well-

ventilated or non-ventilated areas, potentially leading to hypoxemia. An increase in cardiac 

output distends open vessels and may recruit previously closed vessels, decreasing 

pulmonary vascular resistance. Regional blood flow to lung is also influenced by gravity; 

pulmonary blood flow is greater in the dependant areas of the lung. In addition, increases in 

intrathoracic pressure are transmitted to the surrounding heart and contribute to elevate 

pulmonary artery pressure.  

 

Figure 66 Effect of lung volume on pulmonary vascular resistance  
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The pulmonary vascular resistance (PVR) is minimal at functional residual capacity (FRC). 
The PVR increases with increases in total lung capacity (TLC). It also increases with small 
lung volumes at residual volume. The differential effect on intra- and extra-alveolar vessels 
accounts for the U-shaped relationship of PVR and lung volume. (Adapted from Fisher et 
al. [302] 

 

8) Mechanical compression of pulmonary vessels can also be caused by hematomas, 

hemothoraces, tension pneumothoraces and abdominal compartment syndrome. [148;239] 

This mechanism has been previously discussed (see section 3.1.3). Suboptimal pulmonary 

anastomosis in heart transplantation may also occur postoperatively and cause increased 

right ventricular afterload and right ventricular failure.  

In some of these situations, the treatment of the underlying cause such as the 

correction of hypoxemia will result in a reduction in the severity of pulmonary 

hypertension. However, in recent years, the understanding of basic pathways involved in 

the pathophysiology of pulmonary hypertension has also rapidly evolved. This 

understanding provides the basis for much of the pharmacotherapy used in the treatment or 

prevention of pulmonary hypertension. The most common pathways include the nitric 

oxide, prostacyclin, endothelin-1 and serotonin pathways. [303] Nitric oxide and 

prostacyclin are endogenous vasodilators produced in the pulmonary vascular endothelium. 

Endothelin-1 is an endogenous vasoconstrictor peptide secreted by the vascular 

endothelium and plays a role in pulmonary vasoconstriction and vascular smooth muscle 

proliferation. [304] The neurotransmitter serotonin and the serotonin receptor transporter 

have also been implicated in the regulation of pulmonary vascular tone. An imbalance in 

these pathways may lead to vasoconstriction and vascular remodelling, potentially leading 

to progressive pulmonary vascular disease. [305] 

6.3 Importance and impact of pulmonary hypertension in 

cardiac surgery 

Preoperative pulmonary hypertension has been consistently shown to be an 

important risk factor for increased morbidity and mortality. [8;100;115-117] However, the 
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presence of pulmonary hypertension has not always been not routinely reported to the 

cardiac surgical and anesthesia team. This may account for the fact that only a small 

proportion of preoperative risk stratification models in cardiac surgery include pulmonary 

hypertension. [141] Interestingly, the EuroSCORE model, which had the highest 

discriminatory capacity, is one of the few models in which pulmonary hypertension is 

included. In a study that included 4351 patients undergoing coronary revascularization in 

Sweden, the EuroSCORE model had the best sensitivity (0.86) and specificity (0.75) with 

the highest receiver operating characteristics (ROC) to predict the 30-day and one-year 

mortalities, respectively. There are however several limitations in the few studies in which 

pulmonary hypertension was used in the stratification process. First, the selected thresholds 

differ. A mean pulmonary artery pressure of 30 mmHg and systolic pulmonary artery 

pressure of 60 mmHg are used in the Parsonnet score [100] and the EuroSCORE, [101] 

respectively. Then, absolute values are used in these studies, except for the Tuman score, 

where pulmonary hypertension is defined as MPAP ≥ 25% of mean values.  [115] Finally, 

the impact of pulmonary hypertension on right ventricular function has not been addressed 

in large studies. 

It is suspected that the presence of pulmonary hypertension before the operation or 

appearing during or after the intervention will have an impact on survival, mostly through 

its effect on right ventricular function. The most dreadful consequence of pulmonary 

hypertension is the increase in right ventricular afterload and right ventricular dysfunction; 

this issue will be addressed here. 

6.4 Right ventricular dysfunction 

There is growing evidence that morbidity and mortality associated with pulmonary 

hypertension are related to the degree of right ventricular adaptation to disease rather than 

to the absolute values of pulmonary arterial pressure. [46;189-191;306] This hypothesis 

would be consistent with studies in pulmonary hypertension where markers of right 

ventricular function have been shown to be the most important prognostic 

factors. [189;192] Unfortunately, to date, parameters of right ventricular function have not 
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been included in large-scale risk stratification models, and therefore their incremental 

values to the Parsonnet score or the EuroSCORE have not been well 

established. [100;103;200;201] A recent panel from the National Institutes of Health (NIH) 

has stressed the importance of research in the understanding of right ventricular 

failure. [191]  

Right ventricular dysfunction in mitral or mitro-aortic surgery has also been 

strongly associated with worsening outcome. In a retrospective study of patients 

undergoing mitral and mitral-aortic valvular surgery, Pinzani et al. [193] demonstrated that 

preoperative right ventricular failure was associated with an increase in perioperative 

mortality. In this same study, postoperative right ventricular failure was the most important 

independent predictor of late survival at 75 months. In a small prospective study of 14 

patients with severe non-ischemic mitral regurgitation and high-risk descriptors (left 

ventricular ejection (LVEF) ≤ 45% or right ventricular ejection fraction (RVEF) ≤ 20%), 

Wencker et al. [203] found that preoperative RVEF ≤ 20% predicted postoperative death.  

Pulmonary hypertension may also be associated with refractory postoperative right 

ventricular failure, which portends a very poor prognosis. In unstable cardiac surgery 

patients, post-CPB severe right ventricular failure has been associated with a mortality rate 

ranging from 44% to 86% [4] (seeTable 12). The next question deals with how to prevent 

or treat pulmonary hypertension and its consequence, right ventricular failure. 

6.5 Treatment and prevention of pulmonary hypertension in 

cardiac surgery 

The choice of the appropriate therapy should be based on the best available 

evidence. A MEDLINE search was performed using the key words ‘randomized controlled 

trial’ (RCT), ‘humans’, ‘adults’, ‘English’ and ‘pulmonary hypertension’. Articles related 

to cardiac surgery were then selected and classified according to the levels of evidence 

proposed by Sackett [307] for evidence-based medical practice. Using this strategy, a total 

of 11 articles were retrieved. In addition, the Consort statement group has developed 
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guidelines to assess the quality of randomized controlled clinical trials, [308] which we 

used. These studies are summarized in Table 26 and will be discussed in the following 

section. 
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Table 26 RCT in adult cardiac surgery and pulmonary hypertension 
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Hachenberg et al. [309] 1997 Enoximone vs. 
dobutamine + NTG 

RCT Unicenter 20 PH in MVR before and after 
surgery 

Hemodynamic A1b 

Schmid et al. [310] 1999 iNO vs. NTG vs. 
PGE1 

Crossover Unicenter 14 PH after surgery Hemodynamic B 

Solina et al. [311] 2000 iNO vs. milrinone RCT Unicenter 45 PH after surgery Hemodynamic A1b 
Solina et al. [312] 2001 iNO vs. milrinone RCT Unicenter 62 PH after surgery Hemodynamic B 
Feneck et al. [313] 2001 Milrinone vs. 

dobutamine 
RCT Multicenter 120 CO < 2 L/min/m² and PCWP > 10 

mmHg after cardiac surgery 
Hemodynamic A1b 

Hache et al. [26] 2003 iPGI2 vs. placebo RCT Unicenter 20 PH before CPB Hemodynamic A1b 
Fattouch et al. [314] 2005 iPGI2 vs. iNO vs. 

intravenous 
vasodilators 

RCT Unicenter 58 MVR + PH in the intensive care 
unit 

Hemodynamic A1b 

Stafford et al. [315] 2005 Heparinase vs. 
protamine 

Non-inferiority 
clinical trial design 
Multicenter 

167 CABG on + off pump after CPB Bleeding A1b 

Ocal et al. [164] 2005 iPGI2 vs. NTG RCT Multicenter 68 CABG with protamine reaction 
after CPB 

Hemodynamic A1b 
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Fattouch et al. [316] 2006 iPGI2 vs. iNO vs. 
intravenous 
vasodilators 

RCT Unicenter 58 MVR + PH before the end of CPB Hemodynamic A1b 

Rex et al. [317] 2007 iPGI2 vs. NTG RCT Unicenter 20 MV repair + PH before surgery Hemodynamic A1b 
CABG: coronary artery bypass graft, CO: cardiac output, CPB: cardiopulmonary bypass, iNO: inhaled nitric oxide, iPGI2: inhaled 
prostacyclin, MV, mitral valve; MVR: mitral valve replacement, NO: nitric oxide, NTG: nitroglycerin, OR: operating room, PCWP: 
pulmonary capillary wedge pressure, PGE1: prostaglandin E1, PGI2: prostacyclin, PH: pulmonary hypertension, RCT: randomized 
controlled trial. 



248 

6.4.1 Treatment of pulmonary hypertension 

Both pharmacological and non-pharmacological treatment of pulmonary 

hypertension have been reported. 

6.4.1.1 Pharmacological treatment 

The agents studied to vasodilate the pulmonary vasculature were: inhaled 

prostacyclin, epoprostenol or iloprost (PGI2), inhaled nitric oxide (iNO) and intravenous 

vasodilators such as prostaglandin E1 (PGE1), nitroglycerin (NTG), nitroprusside (NTP), 

milrinone, enoximone and dobutamine. A total of 11 trials have been reported (Table 26). 

Hachenberger et al. [309] explored the role of enoximone compared to NTG and 

dobutamine, given after induction of anesthesia and then restarted before the end of CPB. 

Only enoximone was associated with a decrease in mean pulmonary artery pressure and 

pulmonary vascular resistance. 

Schmid et al. [310] compared three approaches (iNO vs. PGE1 vs. NTG) in a 

crossover study. These drugs were used to treat pulmonary hypertension after cardiac 

surgery in 14 patients. Only stable patients were included in the study, limiting the 

application of the results. Inhaled nitric oxide decreased pulmonary vascular resistance 

without reducing systemic vascular resistance, did not change coronary perfusion pressure 

of the right coronary pressure, and increased oxygen transport. 

Solina et al. explored the dose-responsiveness of inhaled nitric oxide given upon 

termination of CPB at 10, 20, 30 and 40 ppm compared to intravenous milrinone. [312] 

Nitric oxide was associated with a reduction in pulmonary vascular resistance with a 

maximum dose of 10 ppm. No significant difference in the reduction of pulmonary vascular 

resistance or inotropic requirement was observed compared to milrinone. The same authors 

compared inhaled nitric oxide 20 ppm and 40 ppm to milrinone in patients with pulmonary 

vascular resistance above 125 dyn·s·cm-5 after cardiac surgery. [311] The drugs were 

initiated after CPB and for 24 hours in the intensive care unit. Higher systemic arterial 

pressures were observed in the 20 ppm group and higher RV ejection fraction were 

obtained in the 40 ppm NO group. The milrinone group required significantly more 
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phenylephrine and tended to have higher heart rates than either of the nitric oxide groups in 

the intensive care unit. 

Feneck et al. compared milrinone to dobutamine in 120 patients with cardiac 

outputs below 2 L/min/m² with pulmonary capillary wedge pressure > 10 mmHg. [313] In a 

subset of patients with pulmonary hypertension defined as (pulmonary vascular resistance 

> 200 dyn·s·cm-5, mean pulmonary artery pressure > 25 mmHg), milrinone had a similar 

effect to dobutamine on the reduction of pulmonary vascular resistance and increase in 

cardiac index. The pulmonary capillary wedge pressure and systemic vascular resistance 

were reduced more significantly by milrinone. 

Hache et al. [26] studied the hemodynamic and biventricular echocardiographic of 

inhaled PGI2 in 20 patients with pulmonary hypertension before CPB. Inhaled epoprostenol 

significantly reduced indexed right ventricular stroke work from 10.7 ± 4.57 g/m/m² to 7.8 

± 3.94 g/m/m² (P=0 .003) and systolic pulmonary artery pressure from 48.4 ± 18 mm Hg to 

38.9 ± 11.9 mm Hg (P=0.002). The effect was correlated with the severity of pulmonary 

hypertension (r = 0.76, P =0.01) and was no longer apparent after 25 minutes. 

In 2006 Fattouch et al. studied patients with pulmonary hypertension (n = 58) 

undergoing mitral valve replacement (MVR) for mitral stenosis. [316] Inhaled PGI2 (iPGI2) 

and iNO were compared to conventional intravenous vasodilators. The inhaled drugs were 

given just before the end of CPB. Inhaled medications were associated with significant 

reductions in pulmonary hypertension indices as well as with an increase in cardiac output 

and in RV ejection fraction compared to the conventional treatment. In addition, in both 

inhaled groups, separation from CPB was easier, the amount of vasoactive drugs 

administered was smaller and the duration of stay in the intensive care unit (ICU) and 

hospital was shorter. The same group also compared the same three strategies in the 

treatment of PH after MVR upon arrival in the ICU. [316] Inhalation of PGI2 was 

associated with a reduction in pulmonary vascular resistance and an increase in stroke 

volume. Inhaled NO reduced pulmonary vascular resistance but did not increase stroke 
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volume, and nitroprusside was associated with a reduction in systemic arterial pressure and 

systemic vascular resistance. 

Finally Rex et al. [317] compared inhaled iloprost in 30 patients with pulmonary 

hypertension undergoing mitral valve repair. Inhaled iloprost improved right ventricular 

ejection fraction, stroke volume index and reduced the transpulmonary gradient. All 

patients receiving iloprost were weaned compared to 3 patients in the control group 

requiring return on CPB and rescue medication. 

Although these studies included only a small number of patients and had various 

timings of administration, it appears that the use of inhaled agents could be superior to that 

of intravenous drugs. Inhaled PGI2 seems as effective as nitric oxide and would represent 

an advantage in terms of simplicity of use and cost. If nitric oxide is to be used, 40 ppm has 

more effect on right ventricular function. Milrinone efficacy is inferior to inhaled agents 

and limited by systemic hypotension, which would reduce coronary perfusion. Larger 

studies in high-risk patients with pulmonary hypertension in which specific pulmonary 

vasodilators would be compared to conventional treatment should be performed. 

6.4.1.2 Non-pharmacological approaches 

The non-pharmacological approach to the treatment of pulmonary hypertension is 

directed to the cause or the consequence of pulmonary hypertension, as illustrated in Figure 

64. In the presence of pulmonary hypertension secondary to left ventricular failure, intra-

aortic balloon counterpulsation may facilitate recovery of left ventricular dysfunction. If 

prosthetic valve dysfunction is present after CPB, re-initiation of CPB and correction of the 

problem will be the treatment of choice. The correction of hypoxemia, hypercapnia and 

surgical thrombo-embolectomy (when surgically indicated) can help reduce pulmonary 

vascular resistance. In patients with elevated intrathoracic pressures or compartment 

syndrome from accumulated air or blood, chest drainage should correct that component of 

elevated pulmonary artery pressure. However, in some patients undergoing long procedures 

and long CPB duration, chest closure can be associated with hemodynamic instability 

(Figure 45). This “thoracic compartment” syndrome can be caused by reduced right 
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ventricular filling through increased resistance to venous return, right ventricular 

compression and increased pulmonary vascular resistances. In these situations, the chest 

can be temporarily left open to reduce the surrounding pressures. The use of a pulmonary 

artery balloon pump, right ventricular assist device (RVAD) or cavopulmonary diversion 

have been described as potential treatments for severe RV dysfunction. [5] The abdominal 

compartment syndrome (see Section 3.1.3) has recently been described as a cause of 

increased intrathoracic pressure; however, its diagnosis and treatment approach are beyond 

the scope of this review. [148] Lastly, increased right ventricular afterload may be due to 

mechanical complications at the site of anastomosis such as the main or secondary 

pulmonary arteries (in heart or lung transplantation or congenital cardiac surgery), [12] or 

more rarely stenosis of pulmonary veins (in lung and heart transplantation) [318] or after 

left atrial venting through a pulmonary vein (Figure 67). [12] 

 

Figure 67 Vent complication 
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(A,B) Color Doppler evaluation shows right upper pulmonary vein (RUPV) stenosis after 
removal of the left atrial vent in a patient who underwent a repeated aortic valve procedure. 
A peak systolic velocity of 120 cm/sec is recorded with flow acceleration and aliasing in 
the RUPV in this modified bicaval view. (C,D) In contrast, a velocity of 80 cm/sec with no 
aliasing is found in the left upper pulmonary vein (LUPV) in this mid-esophageal four-
chamber view (LA, left atrium; LAA, left atrial appendage; LV, left ventricle). (With 
permission of Denault et al. [12]) 

6.4.2 Treatment of right ventricular failure 

The most severe consequence of pulmonary hypertension is right ventricular failure. 

The treatment strategy used at the Montreal Heart Institute for the treatment of right 

ventricular failure is summarized in Figure 68.  
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Figure 68 Proposed approach in the treatment of right ventricular dysfunction 

(RCA, right coronary artery; RV, right ventricular; RVOT, right ventricular outflow tract; TEE, transesophageal echocardiography) 
(Presented by Dr. Y. Lamarche at the 2006 CCS meeting in Vancouver).  
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Right ventricular function is evaluated visually, using the RV pressure waveform 

(Figure 69) and transesophageal echocardiography (TEE). A failing RV is suggested by 

abnormal right ventricular pressure waveform (Figure 70) decreased cardiac output, 

increased central venous pressure, dilated right atrium and right ventricle and decreased 

systolic function. In the presence of a failing right ventricle, RVOTO and severe tricuspid 

regurgitation should be ruled out. Once RVOTO is ruled out, the etiology of right 

ventricular systolic dysfunction is divided in two categories. If ischemia is suspected to 

contribute to right ventricular failure, then both the medical and the surgical treatment are 

oriented toward the promotion of right ventricular perfusion. If a non-ischemic etiology is 

suspected, the medical and surgical treatment will be oriented toward an increase in 

contractility (inotropes) and a reduction in right ventricular afterload through optimization 

of oxygenation, pH and PaCO2, iNO, iPGI2, inhaled and intravenous milrinone (Figure 71). 
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Figure 69 Right ventricular pressure waveform 

Baseline hemodynamic waveforms in a patient before cardiac surgery. Note the relatively 
horizontal right ventricular pressure waveform. (ETCO2, end-tidal carbon dioxide; Paf, 
femoral arterial pressure; Par, radial arterial pressure; Ppa, pulmonary artery pressure; Prv, 
right ventricular pressure; SaO2, oxygen saturation) 

 

Figure 70 Right ventricular pressure waveform with hemodynamic instability 
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Same patient during hemodynamic instability secondary to right ventricular failure 
requiring noradrenaline. Note the change in the diastolic slope of the right ventricular 
pressure waveform. (ETCO2, end-tidal carbon dioxide; Paf, femoral arterial pressure; Par, 
radial arterial pressure; Ppa, pulmonary artery pressure; Prv, right ventricular pressure; 
SaO2, oxygen saturation) 

 

Figure 71 Right ventricular pressure waveform after inhaled milrinone 

Same patient following the administration of inhaled milrinone. Note the change in the 
diastolic slope of the right ventricular pressure waveform back to a more horizontal aspect. 
A mild gradient between the systolic right ventricular pressure (Prv) and pulmonary artery 
pressure (Ppa) appeared. (ETCO2, end-tidal carbon dioxide; Paf, femoral arterial pressure; 
Par, radial arterial pressure; SaO2, oxygen saturation) 

6.4.3 Milrinone 

Milrinone is a cyclic AMP-specific phosphodiesterase inhibitor that can exert both 

positive inotropic effects and vasodilation independently of ß1-adrenergic receptor 

stimulation in the cardiovascular system. [41;319] Studies (n = 36) evaluating the use of 

intravenous milrinone in adult cardiac surgical patients have been performed on a small 

number of patients undergoing coronary revascularization (Table 27). [41]  
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Table 27 Clinical studies on the use of milrinone in cardiac surgery 

Author Reference N Population Dosage Timing Result 
De Hert et al. 1995 [63] 20 Coronary 

revascularization 
Milrinone 20 µg/kg 
Milrinone 40 µg /kg 
(n = 10 per group) 

After CPB Similar CI between group 
The 40 µg /kg group had higher vasoactive 
requirement 

Kikura et al. 1995 [320] 27 Cardiac surgical 
patients 

Milrinone 50-75 µg /kg/min + 
perfusion 0.5-0.75 µg/kg/min  
(n = 17) 
Placebo (n = 10) 

During CPB No change in platelet number or function  

Doolan et al. 1997 [321] 30 LVEF ≤ 35% 
PCWP ≥ 20 mmHg pre-
bypass 

Milrinone bolus 50 µg /kg + 
perfusion 0.5 µg /kg/min  
Placebo (n = 15 per group) 

15 minutes before en   
CPB 

All patients with milrinone weaned from byp  
vs. 5/15 placebo 

Kikura et al. 1997 [322] 37 Post-CPB patients on 
catecholamines  

Placebo (n = 10) 
Milrione bolus 50 µg /kg (n = 8) 
Bolus 50 µg /kg and perfusion of 
0.5 µg /kg/min (n = 10) 
Bolus 75 µg /kg and perfusion 0.75 
µg /kg/min (n = 9) 

After CPB Higher CI and velocity of shortening 
measured by TEE in all 3 milrinone groups 

Rathmell et al. 1998 
 

[323] 44 Elective cardiac surgery Amrinone 0.75 mg/kg  
Milrinone 25 µg/kg  
(n = 22 per group) 

After CPB Amrinone and milrinone produced similar 
hemodynamic effects 

Lobato et al. 1998 [324] 21 Coronary 
revascularization 

Milrinone bolus 50 µg/kg (n = 11) 
Placebo (n = 10) 

After CPB Milrinone increase CI, no change in PAP. 
Less dobutamine required 

Mollhoff et al. 19989 [325] 22 Coronary 
revascularization 

Milrinone 30 µg/kg with 0.5 
µg/kg/min perfusion 
Placebo (n = 11 per group) 

Before CPB Milrinone did not prevent GI acidosis but 
reduced IL-6 

McNicol et al. 1999 [326] 24 Coronary 
revascularization 

Milrinone during CPB 
Dopamine during CPB 
Placebo (n = 8 per group) 

During CPB Neither drug prevented splanchnic and 
systemic endotoxin levels 

Hamada et al. 1999 [327] 30 Open heart surgery Milrinone 50 µg/kg after 
declamping 
Amrinone 1 mg/kg  
Placebo (n = 10 per group) 

During CPB after 
declamping 

Milrinone and amrinone increase cardiac 
index and reduce SVR. No change in PAP 

Hayashida et al. 1999 [328] 24 Coronary Milrinone 0.5 µg/kg/min  After induction of LIMA blood flow greater with milrinone  
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Author Reference N Population Dosage Timing Result 
revascularization Placebo (n = 12 per group) anesthesia X 24 

hours 
Hayashida et al. 1999 [329] 24 Coronary 

revascularization 
Milrinone 0.5 µg/kg/min  
Placebo (n = 12 per group) 

After induction of 
anesthesia X 24 
hours 

Milrinone increase c-AMP and reduces IL-
1b and IL-6 after CPB 

Yamada et al. 2000 [66] 48 Patients with a low pre-
CPB CI < 2.5 
L/min/m2) and in 
patients with a high pre-
CPB CI (> or = 2.5 
L/min/m2) 

(1) low pre-CPB CI/placebo,  
(2) low pre-CPB CI/milrinone,  
(3) high pre-CPB CI/placebo 
(4) high pre-CPB CI/milrinone  
Dose: milrinone 20 µg/kg and 
perfusion 0.2 µg/kg/min (n = 12 
per group) 

15 minutes before 
end of CPB 

Infusion of epinephrine in 5 of the 12 
patients for hemodynamic support in 
placebo vs. norepinephrine in 6 of 12 
patients in the low pre-CPB CI groups 
receiving milrinone 

13-Lobato et al. 2000 [330] 20 Coronary 
revascularization 

Milrinone 50 µg/kg 
Epinephrine  0.03 µg/kg/min 
(n = 10 per group) 

After separation 
from CPB 
 

LIMA blood flow greater with milrinone 

Lobato et al. 2000 [331] 20 Coronary 
revascularization  

Milrinone 50 µg/kg  
Epinephrine  0.03 µg/kg/min 
(n = 10 per group) 

After separation 
from CPB 
 

Milrinone maintained left ventricular 
compliance (measured as LVEDA) 

Solina et al. 2000 [311] 45 Pulmonary hypertension Group 1 milrinone  
Group 2 20 ppm NO   
Group 3 40 ppm NO  
(n = 15 per  group)  

After separation 
from CPB 
 

Group 3 (40 ppm) higher RVEF compared 
to group 1 and 2. The milrinone group 
required significantly more phenylephrine 
in the intensive care unit  

Sha et al. 2001 [332] 46 Valvular cardiac 
surgery 

Amrinone (n = 17) 
Milrinone (n = 15) 
Olprinone (n = 14)  

15 minutes before 
end of CPB 

No difference in the dosage of 
catecholamines used 

Yamaura et al. 2001 [333] 20 Hypothermic CPB Milrinone 0.25 µg/kg/min from 
CPB to 1 hour in the ICU  
Placebo (n = 10 per group) 

Beginning of CPB 
until 1 hour in the 
ICU 

Milrinone prevents gastric intramucosal 
acidosis and elevation in IL-6 

Iwagaki et al. 2001 [334] 24 Coronary 
revascularization 

Milrinone 50 µg/kg  
Placebo prior to separation from 
CPB  
(n = 12 per group) 

Before separation 
from CPB 

Milrinone increased cardiac index but 
reduced mean arterial pressure and SVR 
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Author Reference N Population Dosage Timing Result 
Janelle et al. 2001 [335] 20 Coronary 

revascularization 
Milrinone 50 µg/kg 
Placebo (n = 10 per group) 

10 minutes before 
aortic cross-
clamping 

Milrinone patients had increased myocardial 
c-AMP  

Shibata et al. 2001 [336] 20 Coronary 
revascularization 

Milrinone 5 µg/kg/min 
Placebo (n = 10 per group) 

Infusion in the ICU 
(no bolus) 
 

Cardiac index and HR increase in the 
milrinone group 

Zabeeda et al. 2001 [337] 50 Coronary 
revascularization: 
LIMA and radial artery 
flow 

Group 1: nitroglycerin (n = 10) 
Group 2: nitroprusside (n = 10) 
Group 3: dobutamine (n = 10) 
Group 4: milrinone (n = 10) 
Group 5: placebo (n = 10) 

Before CPB Nitroglycerin use is the only predictor of 
increased flow in the LIMA and radial 
artery 

Solina et al. 2001 [312] 62 Cardiac surgery patients 
with pulmonary 
hypertension  

Group 1 NO 10 ppm (n = 11) 
Group 2 NO 20 ppm (n = 12) 
Group 3 NO 30 ppm (n = 12) 
Group 4 NO 40 ppm (n = 12) 
Group 5 milrinone bolus 50 µg/kg  
(n = 15) 

After CPB No difference in inotropic use in all groups. 
NO 10 ppm is adequate 

Feneck et al. 2001 [313] 120 Low CO after cardiac 
surgery 

Milrinone  50 μg/kg and perfusion 
of 0.5 μg/kg/min  
Dobutamine:  10 to 20 μg/kg/min 
(n = 60 per group) 

Within 2 hours after 
CPB 

Dobutamine elicits greater increases in CI. 
Milrinone evoked greater decreases in mean 
PCWP. Milrinone and dobutamine: both 
appropriate and comparable.  

Lobato et al. 2001 [338] 30 Coronary 
revascularization after 
CPB 

Nitroglycerin 2 µg /kg/min 
Milrinone 50 µg/kg/min 
Nitroglycerin and milrinone  
(n = 10 per group) 

After CPB Greater increase in internal mammary flow 
with milrinone 

Mollhoff et al. 2002 [339] 30 Patients with LVEF < 
40%  

Nifedipine 0.2 µg /kg/min 
Milrinone  0.375 µg /kg/min 
(n = 15 per group) 

Before CPB Myocardial ischemia in 33% with milrinone 
compared to 86.6% with nifedipine 

Kikura et al. 2002 [340] 45 Patients undergoing 
coronary bypass after 
CPB 

Milrinone 50 µg /kg and 0.5 µg 
/kg/min 
Amrinone 1.5 mg/kg and 10 µg 
/kg/min 

At release of aortic 
cross-clamping 

Milrinone and amrinone increased SV and 
TO2 and reduced dopamine requirement 
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Author Reference N Population Dosage Timing Result 
Placebo (n = 15 per group) 

Kikura et al. 2003 [341] 45 Patients undergoing 
coronary bypass after 
CPB 

Milrinone 50 µg /kg and 0.5 µg 
/kg/min 
Amrinone 1.5 mg/kg and 10 µg 
/kg/min 
Placebo (n = 15 per group) 

At release of aortic 
cross-clamping 

No deterioration in platelet function and in 
hemostasis with milrinone and amrinone 

Kim et al. 2003 [342] 30 Off-pump bypass 
surgery patients with 
atenolol 

Milrinone 50 µg /kg and perfusion 
of 0.83 µg/kg/min X 1 hour then 
0.40 
Placebo  (n = 15 per group)  

Before off-pump 
bypass of the obtuse 
marginal (OM) 
artery 

During OM, milrinone increased CI but 
with more phenylephrine 

Hoffman et al. 2003 [343] 238 Congenital heart 
surgery neonates and 
young children 

Low dose: 0.25 µg /kg and 0.25 µg 
/kg/min (n = 79) 
High dose: 0.75 µg /kg and 0.75 
ug/kg/min (n = 73) 
Placebo (n = 75) 

Intensive care unit: 
35 hours infusion 

Reduced incidence of low CO state with 
high dose vs. low dose vs. placebo (11.7% 
vs. 17.5% vs. 25.9%). 2 unrelated deaths 
with milrinone 

Kwak et al. 2004 [344] 82 Off-pump bypass 
surgery patients 

Milrinone 0.5 µg /min/kg 
Placebo (n = 41 per group) 
 

After internal 
mammary harvest 

Milrinone prevents the reduction in cardiac 
index 

Kwak et al. 2004 [345] 52 Off-pump bypass 
surgery patients 

Milrinone (n = 33) 0.5 µg /min/kg 
Placebo (n = 29) 

After internal 
mammary harvest 

Milrinone associated with smaller reduction 
in CO and MVO2 during off-pump bypass 

Maslow et al. 2004 [346] 34 Patients after aortic 
valve replacement 

Epinephrine 30 ng/kg/min (n = 11)  
Milrinone 30 µg /kg and 0.3 µg 
/kg/min (n = 11) 
Placebo (n = 12) 

After removal of 
aortic cross-
clamping 

Milrinone and epinephrine increased LVEF, 
RVEF and CO. 
No change in diastolic function. 

Khazin et al. 2004 [347] 90 Congenital heart 
surgery children with 
pulmonary hypertension 

1-NO  
2-Milrinone infusion 
3-NO and milrinone  
(n = 30 per group) 

After CPB: NO and milrinone produce a more 
pronounced reduction in MPAP than 
milrinone alone 



261 

 

Author Reference N Population Dosage Timing Result 
Omae et al. 2004 [348] 140 Off-pump bypass 

surgery patients with 
mitral regurgitation 1+ 
to 2+ 

Without MR (n = 57) 
With MR (n = 41) 
With MR + milrinone (n = 42)  

After induction of 
anesthesia 

No increase in MR and MPAP in the 
milrinone group during left coronary artery 
anastomosis 

Lobato et al. 2005 [349] 36 Coronary artery bypass 
patients 

Epinephrine 0.03 µg /kg/min (n = 
12) Milrinone 50 µg /kg and 0.5 
µg/kg/min (n = 13) 
Placebo (n = 11)  

During separation 
from CPB 

No change in diastolic function with either 
epinephrine or milrinone 
No change in MPAP with milrinone 

Shi et al. 2006 [40] 50 Coronary artery bypass 
patients with LV 
diastolic dysfunction 

Milrinone 50 µg /kg and 0.5 µg 
/kg/min perfusion 
Placebo (n = 25 per group) 

Before CPB until 
skin closure 

Milrinone increased CI, HR but no change 
in LV and RV diastolic function post-CPB, 
at 48 hours and at 6 months. More 
phenylephrine in the milrinone group. 

AMP, adenosine monophosphate; CI, cardiac index; CO, cardiac output; CPB, cardiopulmonary bypass; ICU, intensive care unit; IL, 
interleukin; LIMA, left internal mammary artery; LV, left ventricular; LVEDA, left ventricular end-diastolic area; LVEF, left ventricular 
ejection fraction; MPAP, mean pulmonary artery pressure; MR, mitral regurgitation; MVO2, mixed venous oxygen; NO, nitric oxide; OM, 
obtuse marginal; PAP, pulmonary artery pressure; PCWP, pulmonary capillary wedge pressure; RV, right ventricular; RVEF, right 
ventricular ejection fraction; SV, stroke volume; TEE, transesophageal echocardiography; TO2, oxygen transport 
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Although intravenous milrinone has been shown to increase cardiac 

index [322;324;334;336;342;343;346] and to facilitate separation from CPB, [321] the 

major problem encountered with intravenous milrinone is the high incidence of systemic 

hypotension resulting in an increased need for vasoactive drugs [66;311;324;342] from 

either vasodilation or from left and right ventricular dynamic outflow tract obstruction. [38] 

Two randomized controlled trials on the use of milrinone in a non-cardiac surgical setting, 

the PROMISE trial in 1991 (on the use of oral milrinone) [294] (n = 1088) and the 

OPTIME-CHF trial in 2002 (on a 48-hour intravenous milrinone perfusion) [289] (n = 949) 

showed no advantage in terms of hospitalization duration. However, patients receiving oral 

or intravenous milrinone had more adverse events and increased mortality in the PROMISE 

trial. Even if these large studies were performed in a non-cardiac surgical setting, they 

could suggest that the indiscriminate use of milrinone in cardiac surgery could be 

detrimental. Therefore, it appears relevant to explore alternative strategies that would 

reduce the severity of pulmonary hypertension without systemic hypotension. So far, only 

two reports outside of the MHI, with a small number of patients, have addressed the role of 

inhaled milrinone in cardiac surgery in humans. [350-353] These studies have shown that 

inhaled milrinone reduces pulmonary artery pressure without causing systemic 

hypotension. 

6.4.4 Inhaled milrinone 

The use of the inhaled route for milrinone has been recently described in 

animal [354-357] and human studies. [53;350-353] As an alternative to inhaled nitric oxide 

and inhaled prostacyclin, inhaled milrinone is also less expensive and does not require a 

complex set-up and monitoring of toxic metabolites. Furthermore, inhaled milrinone is 

readily available in operating rooms and needs no special preparation, as opposed to 

inhaled prostacyclin. In addition, inhaled milrinone before CPB has been shown to be 

superior to an intravenous administration in reducing the pulmonary reperfusion 

syndrome, [354] preventing pulmonary arterial endothelial dysfunction [356;357] and 

improving oxygenation in a porcine model. [354] Only four observational studies 

addressing the role of inhaled milrinone in cardiac surgery have been published so 

far. [53;350;351;353] The effect of inhaled milrinone was first described by Haraldsson et 
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al. [350] in an open-label trial of 20 cardiac surgical patients in the intensive care unit. The 

first part of the trial included 9 patients and showed a dose-response effect of incremental 

concentrations of inhaled milrinone with decreases in MPAP, PVR and PVR/SVR. No 

patient presented systemic hypotension. The hemodynamic parameters of patients treated 

with inhaled milrinone returned to baseline within 20 minutes of the end of the inhalation 

period, similar to our observation. In the second study, [351] inhaled milrinone was given 

to 18 heart transplant candidates in the intensive care unit. The MPAP, transpulmonary 

gradient and PVR decreased only in patients with PH, defined as MPAP above 30 mmHg. 

Improvement in CO was observed, but there was no systemic hypotension. The dosage was 

2 mg based on intravenous milrinone loading doses used in heart transplantation, which 

was almost half of the dose used in our protocol. In these studies, there was no control 

group, and the intraoperative usage and the timing of inhaled milrinone in relation to CPB 

were not recorded. We have previously described the administration of inhaled milrinone 

before CPB in 40 high-risk patients with a Parsonnet score of 30.4 ± 14.2. [53] Compared 

to the administration of inhaled milrinone after CPB, pre-CPB inhaled milrinone was 

associated with a reduction of difficult separation from CPB (18% vs. 82%) defined as the 

use of more than two inotropes, need for introduction of an intra-aortic balloon pump or 

reinitiation of CPB. In the current study, the same ratio was observed; 4 patients in the 

control group compared to 1 in the inhaled milrinone group would have qualified for this 

definition. Significantly lower SPAP and unchanged LV function were also observed after 

CPB in the group who received inhaled milrinone pre-CPB, as observed in the current 

study, but RV function was not analyzed. Finally a recent study compared the use of 

intravenous versus inhaled milrinone in 48 patients with pulmonary hypertension after 

mitral valve surgery. [353] With milrinone administration, mean pulmonary artery pressure 

and pulmonary vascular resistance decreased in both groups. However, the mean arterial 

pressure and systemic vascular resistance in the inhaled group were significantly higher 

than in the intravenous group. In addition, in the inhaled group, there was a reduction in 

intrapulmonary shunt fraction in the inhaled milrinone group.  



264 

 

6.5. Prevention of pulmonary hypertension 

There are three elements in the prevention of pulmonary hypertension:  

pharmacological treatment, non-pharmacological approaches and prevention of pulmonary 

hypertension induced by protamine. 

6.5.1 Pharmacological approach 

The prevention of pulmonary hypertension and its consequences is a promising 

strategy to prevent right ventricular failure. However, very few studies have addressed this 

issue. One of the potential targets could be the prevention of the pulmonary reperfusion 

syndrome. In that regard, our group has demonstrated in animal models that iPGI2 [358] 

and inhaled milrinone [354] prevent pulmonary arterial endothelial dysfunction induced by 

CPB; similarly, ventilation during CPB could also reduce pulmonary arterial endothelial 

dysfunction. [359] Hache et al. [26] conducted a pilot RCT in patients with preoperative 

pulmonary hypertension and demonstrated that iPGI2 given before CPB was superior to 

placebo in reducing post-bypass pulmonary hypertension. Furthermore, in patients who 

received iPGI2, the amount of vasoactive support was reduced.  

6.5.2 Protamine 

The administration of protamine may be associated with severe pulmonary 

hypertension followed by right ventricular failure. This condition requires immediate 

treatment. In a study of coronary revascularization patients (n = 3800), Ocal et al. [164] 

compared two therapeutic approaches in the treatment of the protamine reaction observed 

in 68 patients (1.8%). One group received iPGI2 and the other intravenous nitroglycerin 

(NTG) in addition to standard vasoactive agents. The iPGI2 group showed improved 

hemodynamics and only 14 patients (39%) had to return on CPB compared to all 30 

patients (100%) in the NTG group. A tendency for shorter length of stay in the intensive 

care unit and reduced mortality was observed in the iPGI2 group, but the numbers were too 

small to be statistically significant. To avoid protamine reaction, heparinase, a heparin 

degrading enzyme, was compared in a multicentered randomized controlled trial that 
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included 167 patients. [315] However, the results of the trial were negative and heparinase 

was not associated with any reduction in the intervention to treat pulmonary hypertension 

or any reduction in bleeding.  

6.5.3 Non-pharmacological approach 

The selection of the appropriate type and size of aortic prosthetic valve is key . If 

the effective orifice area (EOA) of the aortic valve is too small compared to body size, 

creating a so-called patient-prosthesis mismatch (PPM), both the intraoperative and long-

term mortality are increased. [118-125] Hence, anticipatory strategies aimed at preventing 

PPM, such as the implantation of a better performing prosthesis (e.g. new generation 

bileaflet mechanical valve, new generation supra-annular stented bioprosthetic valve) or the 

enlargement of the aortic root to accommodate a larger prosthesis, could contribute to the 

reduction of pulmonary hypertension after cardiac surgery and facilitate the separation from 

CPB. However, this issue remains controversial. [360] On the other hand, some of the 

alternative options that can be used to prevent PPM are complex and may increase the risk 

of difficult separation from CPB by prolonging the duration of the surgical procedure, and 

thus CPB time. As a consequence, in some cases, the drawbacks of using alternative 

procedures may overcome the benefits of avoiding PPM. It is therefore essential to 

establish accurate criteria to better assess the risk-benefit ratio with respect to the 

prevention of PPM. In order to avoid mitral valve PPM, one option is to repair rather than 

replace the mitral valve. However, mitral valve repair is not possible or feasible in a 

sizeable proportion of patients. In those patients in whom mitral valve replacement is 

needed, the surgeon has less option than for AVR, since it is not possible to enlarge the 

annulus. Hence, one option, which should be considered, is to select the prosthesis with the 

larger EOA. [128] Mitral valve PPM has also been hypothesized as a potential cause of 

postoperative pulmonary hypertension. [128] The prevention and impact of mitral valve 

PPM on surgical management remain unclear. 
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6.6 Research and development since the beginning of the PhD in 

2006 at the MHI  

Since 2006, we have been interested in determining the importance of pulmonary 

hypertension and right ventricular dysfunction in cardiac surgery. In addition to our 

retrospective analysis, pharmacological studies and randomized controlled trials exploring 

various strategies were performed.  

 

6.6.1 Importance of pulmonary hypertension and right ventricular 

dysfunction 

As shown in Figure 62, pulmonary hypertension measured before CPB and defined 

as the mean arterial to mean pulmonary artery ratio was found to be only independent 

hemodynamic predictor of a composite endpoint of postoperative hemodynamic 

complications defined as death, resuscitated cardiac arrest, new requirement for intra-aortic 

balloon pump and vasoactive support for 24 hours postoperatively in 1439 cardiac surgical 

patients. [10] The odds ratio was 1.3 (CI 1.1-1.5) In this study, the mean preoperative 

systolic pulmonary artery pressure was 31 ± 10 mmHg. Elevated systolic pulmonary artery 

pressure defined as > 30 mmHg was present in combined coronary revascularization and 

valve surgery (n = 126, 36 ± 13 mmHg), followed by mitral valve replacement (n = 80, 

40 ± 14 mmHg), multiple valves surgeries (n = 60, 36 ± 16 mmHg) and heart 

transplantation (n = 6, 36 ± 14 mmHg). Only 16 patients experienced a more severe 

pulmonary hypertension, using a MAP/MPAP ratio < 2, and all experienced difficult 

separation from CPB, 3 of whom died (18.7% mortality) and half required vasoactive 

support for more than 24 hours after the procedure.  

In a subsequent study, we observed however, that alteration of right ventricular 

function before CPB was even a stronger predictor of circulatory failure after CPB than 

pulmonary hypertension.[46] To further assess the value of right ventricular function in 

relation to pulmonary hypertension or other validated risk factors in valvular heart surgery, 
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we published our initial experience with 50 consecutive patients undergoing cardiac 

valvular surgery with pulmonary hypertension. A total of 17 patients (34%) developed 

circulatory failure defined as hypotension (systolic arterial pressure < 90 mm Hg) or low 

cardiac output (cardiac index < 2.0 L/min/m²) with evidence of end-organ dysfunction or 

hypoperfusion, such as lactic acidosis or acute renal failure defined as an increase of 

creatinine of at least 25% or urinary output less than 0.5 mL/kg/h for several hours. In this 

subgroup of patients, preoperative right ventricular dysfunction, measured by an abnormal 

myocardial performance index (RVMPI) (≥ 50%) or a decreased right ventricular fractional 

area change (RVFAC), was strongly associated with postoperative circulatory failure. The 

OR were 25.2 (95% CI 5.24-121.15) for RVMPI and 0.001 (95% CI of 0.001-0.727) for 

every 1% increase in RVFAC. These OR have been so far the highest observed in any 

study dealing with predictors of postoperative cardiac shock state. 

6.6.2 Intravenous therapy 

Several vasodilators can be used in the treatment and prevention of pulmonary 

hypertension. Two randomized controlled trial using nitroglycerine and milrinone will be 

described.  

6.6.2.1 Intravenous nitroglycerin 

The use of intravenous milrinone as a prevention tool against pulmonary 

hypertension has been the topic of Dr. Dominique Piquette for her thesis. [52] To determine 

whether or not intravenous nitroglycerin (IV NTG) can prevent a decrease in near-infrared 

spectroscopy (NIRS) values during CPB, she conducted a randomized, double-blind study 

in a tertiary academic center including 30 patients with a Parsonnet score ≥ 15 and 

scheduled for a high-risk cardiac surgery. The patients were randomized to receive either 

IV NTG (initial dose of 0.05 µg/kg/min, followed by 0.1 µg/kg/min) or placebo after 

induction of anesthesia and until the end of the CPB. The primary outcome was a decrease 

of 10% in NIRS values during CPB. Despite the absence of between-group differences in 

the mean cerebral oxygen saturation during CPB, there was a significant decrease in NIRS 
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values during the CPB in the placebo group, whereas mean NIRS values were maintained 

in the IV NTG group (-16.7% vs. 2.3% in the NTG group, p = 0.019). Major hemodynamic 

variables were similar at corresponding time periods in both groups, while patients in the 

IV NTG group had higher CK-MB values and experienced greater blood loss during the 

first 24 hrs postoperatively. The conclusion of this study was that IV NTG administration 

before and during CPB may prevent a decrease in NIRS values associated with CPB in 

high-risk cardiac surgery. However, further studies are warranted to determine the efficacy 

and risks associated with IV NTG infusion for this indication during CPB in high-risk 

patients. This study was useful in demonstrating the natural hemodynamic evolution in this 

population (Table 28). This study demonstrates that, in high-risk patients, there is an 

increase in right atrial pressure and systolic pulmonary artery pressure after CPB compared 

to the pre-CPB values. 
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BP, blood pressure; NTG, nitroglycerin; RAP, right atrial pressure; PAP, pulmonary artery pressure; PCWP, pulmonary capillary wedge 
pressure; T0, baseline value before nitroglycerin infusion; T1, beginning of cardiopulmonary bypass; T2, end of cardiopulmonary bypass 
times.*  T0 and T1 are statistically different from T2. (With permission of Piquette et al. [52]) 

Table 28 Hemodynamic values during surgery 

Hemodynamic variables  T0 T1 T2 P value  
(group) 

P value  
(time) 

P value  
(group*time) 

Systolic BP (mmHg) Control 109 ± 16 101 ± 15 109 ± 20 0.41 0.053 0.95 

 NTG 105 ± 21 95 ± 17 106 ± 15    

Heart rate (beats/min) Control 53 ± 11 59 ± 11 70 ± 11 0.08 < 0.0001* 0.83 

 NTG 55 ± 9 61 ± 15 78 ± 15    

RAP (mmHg) Control 10 ± 3 10 ± 5 12 ± 5 0.03 0.01* 0.42 

 NTG 13 ± 5 12 ± 6 17 ± 3    

Systolic PAP (mmHg) Control 32 ± 6 32 ± 7 37 ± 8 0.004 0.0006* 0.16 

 NTG 44 ± 18 37 ± 10 48 ± 10    

PCWP (mmHg) Control 15 ± 4 15 ± 4 20 ± 4 0.35 0.06 0.77 

 NTG 18 ± 7 15 ± 9 22 ± 3    

Indexed cardiac output (l/min/m2 ) Control 2.0 ± 0.3 1.9 ± 0.4 2.2 ± 0.4 0.70 0.0003* 0.43 

 NTG 1.9 ± 0.4 1.9 ± 0.4 2.4 ± 0.8    
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6.6.2.2 Intravenous milrinone 

Our group recently published the results of the first randomized controlled trial of 

intravenous milrinone in patients with diastolic dysfunction undergoing coronary artery 

revascularization. [43] To evaluate the effect of milrinone on diastolic function, 50 patients 

undergoing coronary revascularization were randomized to receive a bolus and infusion of 

milrinone or placebo before CPB and until skin closure. Hemodynamic and transesophageal 

echocardiographic measurements of systolic and diastolic function were obtained. Pulsed 

wave Doppler measurements of the early (E wave) and atrial components (A wave) of the 

transmitral (TMF) and transtricuspid (TTF) flow, and systolic (S wave), diastolic (D wave) 

and atrial components (Ar) of the pulmonary (PVF) and hepatic venous blood flow (HVF) 

velocities were performed. Early and atrial components of the mitral (Em and Am waves) 

and tricuspid annulus velocities (Et and At waves) were assessed by tissue Doppler imaging 

(TDI). Assessment of diastolic dysfunction was graded from normal to severe using a scale 

score. The results were the following: cardiac index (CI) (2.8 ± 0.6 vs. 2.1 ± 0.5 L/min/m2) 

(P < 0.0001) and heart rate (67 ± 8 vs. 60 ± 12 bpm) (P < 0.05) were higher in the milrinone 

group compared to placebo. There were no changes in left and right ventricular diastolic 

dysfunction scores between study groups. Higher PVF S wave, HVF S wave, TTF A wave 

and At measured by tissue Doppler imaging in the milrinone group compared with placebo 

suggested an improvement in ventricular systolic and atrial contraction. Thus, milrinone 

administered before CPB was not associated with improved biventricular diastolic function 

in patients undergoing coronary revascularization. Intravenous milrinone did not facilitate 

separation from CPB but was associated with more vasoactive drug requirement. This study 

was also useful in demonstrating the natural hemodynamic evolution in a lower risk 

population in terms of right ventricular echocardiographic changes after CPB (Table 29). 
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Table 29 Right ventricular echocardiographic data 

Variable Time 
Milrinone 

(mean ± sd) 
Placebo 

(mean ± sd) 

Group x time 

interaction  

P value 

Group P 

value*  

Right ventricle      
RVFAC  Pre-bolus 

Post-bolus 

Post-CPB 

0.42 ± 0.15 

0.49 ± 0.13 

0.53 ± 0.11 

0.43 ± 0.12 

0.45 ± 0.11 

0.45 ± 0.12 

0.2102 0.1298 

RVD (cm) Pre-bolus 

Post-bolus 

Post-CPB 

3.50 ± 0.59 

3.54 ± 0.66 

3.68 ± 0.43 

3.73 ± 0.72 

3.82 ± 0.55 

3.83 ± 0.52 

0.1842 0.0825 

RAD (cm) Pre-bolus 

Post-bolus 

Post-CPB 

4.64 ± 0.83 

4.45 ± 0.77 

4.30 ± 0.59 

4.79 ± 0.82 

5.01 ± 1.01 

5.17 ± 0.87 

0.0860 0.0086 

TTF E wave (cm/sec) Pre-bolus 

Post-bolus 

Post-CPB 

35.88 ± 6.44 

43.34 ± 12.78 

37.41 ± 8.68 

35.76 ± 12.31 

35.61 ± 9.36 

35.64 ± 8.89 

0.2590 0.2077 

TTF A wave (cm/sec) Pre-bolus 

Post-bolus 

Post-CPB 

28.34 ± 9.89 

38.56 ±12.24 

42.24 ± 16.33 

31.09 ± 14.33 

30.98 ± 10.02 

32.64 ± 9.17 

0.0184 

0.6444 

0.0314 

0.0358 

TTF E/A  Pre-bolus 

Post-bolus 

Post-CPB 

1.42 ± 0.60 

1.17 ± 0.29 

0.92 ± 0.37 

1.21 ± 0.30 

1.19 ± 0.32 

1.22 ± 0.57 

0.0629 0.7570 

HVF S wave (cm/s) Pre-bolus 

Post-bolus 

Post-CPB 

21.86 ± 7.98 

33.75 ± 16.29 

19.40 ± 23.00 

22.64 ± 9.21 

20.06 ± 7.89 

14.53 ± 17.68 

0.0061 

0.8432 

0.0026 

0.6101 

HVF D wave (cm/s) Pre-bolus 

Post-bolus 

Post-CPB 

13.55 ± 5.74 

20.01 ± 10.62 

25.14 ± 9.38 

16.68 ± 7.78 

19.19 ± 10.80 

22.51 ± 12.42 

0.2946 0.8615 

CPB, cardiopulmonary bypass; HVF, hepatic venous flow; RVD, right ventricular 
dimension; RVFAC, right ventricular fractional area change; TTF, trans-tricuspid flow. 
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*overall group p value in case of a non-significant group x time interaction; group p value at 
given time point in case of a significant group x time interaction (With permission of 
Couture et al. [43]) 
 

In summary, both studies using intravenous agents were not successful in 

facilitating weaning from CPB. However, they confirmed the natural evolution of cardiac 

function in two different populations. In the nitroglycerin study, worsening of pulmonary 

hypertension was observed in both groups, and in the intravenous milrinone study, a 

deterioration in biventricular diastolic function was also observed.  

6.6.3 Inhalation therapy: inhaled milrinone 

In the following sections we will describe our initial work using inhaled milrinone 

through pharmacokinetic and pharmacodynamic studies, animal experiments and 

preliminary clinical observation in humans.  

6.6.3.1 Pharmacokinetic and pharmacodynamic studies 

In order to examine the pharmacokinetics of inhaled milrinone, Nguyen et al.  

developed an analytical assay and validated it for the quantification of milrinone 

concentrations in patients undergoing cardiac surgery. [361] A solid-phase extraction was 

optimized to isolate milrinone from a plasma matrix followed by high performance liquid 

chromatography (HPLC) using UV detection. Plasma samples (1 mL) were extracted using 

a C18 solid-phase cartridge. Milrinone was separated on a strong cation exchange 

analytical column maintained at 23.4°C. The mobile phase consisted of a gradient (10:90 to 

45:55), 0.05 M phosphate buffer (pH 3):acetonitrile. Calibration curves were linear in the 

concentration range of 1.25–320 ng/mL. Mean drug recovery and accuracy were 

respectively ≥ 96% and ≥ 92%. Intra- and inter-day precisions (% coefficient of variation) 

were ≤ 6.7% and ≤ 7.9%, respectively. This method proved to be reliable, specific and 

accurate. Using different types of column for extraction and separation of milrinone proved 

to be a necessary step in order to achieve the sensitivity and specificity required when 
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milrinone is given by inhalation. The blood concentration of inhaled milrinone in a typical 

patient is shown in Figure 72. 

 

 
Figure 72 Milrinone plasma concentration–time profile 

Plasma concentration of milrinone in a cardiac patient after inhalation of a 5 mg dose over 
15 min. No blood samples were drawn during cardiopulmonary bypass (44–159 min). 
(With permission of Nguyen et al. [361])  
 

6.6.3.2 Milrinone plasma concentration and the type of nebulizer 

The first pilot study on the systemic exposure of inhaled milrinone administered 

before CPB in cardiac patients with pulmonary hypertension was performed by Nguyen et 

al. (presented at the 2008 Canadian Anesthesiology Society meeting in Halifax). 

Preliminary results were obtained in 12 patients randomized to receive milrinone either by 

a simple jet nebulizer or an ultrasonic nebulizer. At the end of a 15 min period of 

inhalation, plasma levels of milrinone were below 80 ng/mL. Figure 73 illustrates a 
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maximal milrinone concentration observed at the first sampling time followed by 

decreasing concentrations until weaning from CPB in both groups. For a same sampling 

time, plasma levels were almost twice lower after simple jet compared to ultrasonic 

inhalation.  

 

Figure 73 Milrinone plasma concentration during inhalation 

Milrinone plasma concentration-time profile in 12 cardiac patients after inhalation of a 5 
mg dose over 10 min (simple jet) or 15 min (mesh). Simulations were based on a two-
compartment model using pharmacokinetic parameters reported after IV administration of 
milrinone with zero-order input, k01 = 0.33 ng/min (simple jet) or 0.50 ng/min (mesh), and 
were corrected for mean % of delivered dose including lower and upper bounds. (Courtesy 
of Nguyen et al.(submitted for publication)) 

 

Simulations based on pharmacokinetic parameters observed in cardiac patients after 

intravenous injection of milrinone [362] have been carried out and these levels 

corresponded to a bioavailability of 15 and 40%, respectively. Because in most patients the 

first sample was drawn 5 min after stopping inhalation, peak concentrations may have been 

underestimated. However, these concentrations remain significantly lower than those 
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measured after the intravenous administration of milrinone. In view of the reported low 

incidence of systemic hypotension associated with a 15 min inhalation, this technique may 

result in a better delivery to the lungs without necessarily increasing systemic availability. 

Indeed, pulmonary deposition of inhaled vasodilators (e.g. prostacyclin) has been shown to 

vary depending on the nebulizer’s charge of droplets by less than 5 µm. [363] In addition, 

after dosing milrinone concentrations in the patient samples, we noticed that those who had 

received milrinone by ultrasonic nebulizer showed higher plasma levels than those who 

received milrinone by conventional nebulizer (Figure 73). Concentrations in both groups 

were below 100 ng/mL. Finally in order to determine a dose response after exploratory 

analyses, the maximum relative change in the MAP/MPAP ratios (Emax) was chosen as the 

pharmacodynamic marker. Milrinone plasma concentrations measured or interpolated) at 

the corresponding time were obtained for each patient. These times were 24.4 ± 6.2 min for 

the simple jet nebulizer and 20.7 ± 4.5 for the mesh nebulizer (p=0.276). A sigmoid Emax 

model was directly applied to describe the effect-plasma concentration relationship and 

yielded a correlation coefficient (r=0.6499; p=0.112) (Figure 74). 

 

Figure 74 Pharmacokinetic/pharmacodynamic analysis of inhaled milrinone 
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Exploratory pharmacokinetic and pharmacodynamic analysis of inhaled milrinone in 11 
patients with pulmonary hypertension before cardiopulmonary bypass. Courtesy of Nguyen 
et al.(submitted for publication) 

6.6.3.3 Animal studies 

Inhaled milrinone in an animal model: A porcine model of CPB has shown a 

reduction in pulmonary artery pressure without systemic hypotension in pigs submitted to 

inhaled milrinone before CPB. [354] In addition, prevention of the pulmonary reperfusion 

syndrome was observed.  

6.6.3.4 Human studies 

Preliminary experience in the use of inhaled milrinone involving 70 high-risk 

patients (Parsonnet score of 27 ± 14) was published by Lamarche et al. [53] Compared with 

a control group with similar baseline characteristics, we observed that the administration of 

inhaled milrinone prior to CPB (n = 30) was associated with no systemic hypotension, 

lower systolic pulmonary artery pressure and a lesser rate of difficult separation from CPB 

(9 vs. 1; P = 0.021). Further prospective and randomized studies will be required to 

determine the efficacy of this approach.  

In summary, pulmonary hypertension is a very important variable in cardiac surgery 

due to its effect on right ventricular function, outcome and survival. Future studies on the 

impact, prevention and treatment of pulmonary hypertension on right ventricular function 

will provide definitive strategies to improve the care of cardiac surgical patients. 
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Foreword to Manuscript #4 

This last study is the first randomized controlled trial to be conducted on the use of 

inhaled milrinone before CPB. It follows the description of the use of inhaled milrinone in 

animal models exposed to CPB [354], the publication of the preliminary experience on 

humans [53] and the validation of the pharmacokinetic measurements. [361] It also 

describes for the first time the evolution of biventricular function in patients with 

preoperative pulmonary hypertension and the effect of inhaled milrinone. This article will 

be submitted to the European Journal of Cardiothoracic Surgery. 
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Brief Summary Statement 

Inhaled milrinone administered through a randomized controlled trial in high-risk patients 

before valvular surgery is not associated with systemic hypotension, but with a reduction in 

pulmonary vascular resistance and prevention of the increase in right-sided ventricular 

dimensions.   



280 

 

ABSTRACT  

Background: Pulmonary hypertension is a major cause of mortality and morbidity in 

patients undergoing valvular and complex heart surgery. Inhaled milrinone has been used 

for the treatment of pulmonary hypertension, but its safety and effects compared with a 

placebo on hemodynamics and ventricular function have not been studied in patients 

undergoing high-risk valvular surgery.  

Methods: Twenty-one high-risk cardiac surgical patients with preoperative pulmonary 

hypertension were randomized in a double-blind study to receive inhaled milrinone or 

placebo. The inhalation occurred after the induction of anesthesia and before the surgical 

incision and cardiopulmonary bypass. The effects on ventricular function were evaluated by 

means of pulmonary artery catheterization and transesophageal echocardiography. The 

primary outcome variable was the systemic mean arterial pressure.  

Results: There were 8 men and 13 women (mean age 71 ± 6 years) with a mean Parsonnet 

score of 32 ± 9 who underwent a total of 17 complex procedures and 6 reoperations. There 

were no significant changes in mean arterial pressure throughout the study. A reduction in 

pulmonary vascular resistance (p = 0.0458) was observed in the inhaled milrinone group, 

but the change in mean pulmonary artery pressure was not significant (p = 0.1655). Right 

ventricular end-diastolic area (p = 0.0363) and right atrial transverse diameter (p < 0.0001) 

increased in the control group, but not with inhaled milrinone. No significant side effects 

occurred in the inhaled milrinone group.  

Conclusion: In this high-risk cardiac surgery cohort, the use of inhaled milrinone was not 

associated with systemic hypotension but with a reduced pulmonary vascular resistance and 

prevention of the increase in right-sided cavity dimensions. 

 

Keywords: Cardiac surgery; Milrinone; Transesophageal echocardiography; 

Cardiopulmonary bypass; Outcome; Pulmonary hypertension.   
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Introduction 

Pulmonary hypertension is a major cause of mortality and morbidity in patients 

undergoing cardiac surgery. [100] Several conditions increase the risk of developing 

perioperative pulmonary hypertension, including pre-existing pulmonary hypertension, 

mitral stenosis or regurgitation, left ventricular (LV) dysfunction pulmonary disease and 

cardiopulmonary bypass (CPB). [364] Studies have suggested that milrinone may be 

beneficial in the treatment of pulmonary hypertension in cardiac surgery. [311;313] 

However, intravenous milrinone can be associated with systemic hypotension, [43] 

increased vasoactive drug requirements, [365] morbidity [289] and mortality in ischemic 

cardiomyopathy. [295]  

The use of the inhaled route for milrinone has been recently described in 

animal [354-357] and human studies. [53;350-353] As an alternative to inhaled nitric oxide 

and inhaled prostacyclin, inhaled milrinone (iMil) is also less expensive and does not 

require a complex set-up and monitoring of toxic metabolites. Furthermore, iMil is readily 

available in operating rooms and needs no special preparation, as opposed to inhaled 

prostacyclin. In addition, iMil before CPB has been shown to be superior to an intravenous 

administration in reducing the pulmonary reperfusion syndrome, [354] preventing 

pulmonary arterial endothelial dysfunction [356;357] and improving oxygenation in a 

porcine model. [354] Only two open-label studies described the use of iMil after cardiac 

surgery and in heart transplant candidates undergoing catheterization, [350;351] with no 

significant side effects. 

However, in these studies, the timing of administration was constant, the effect on 

ventricular function using combined hemodynamic and echocardiographic monitoring not 

evaluated and the investigators were not blind to the effect of iMil. The primary hypothesis 

of our study was that the administration of milrinone through nebulization before CPB 

would not be associated with significant systemic hypotension. Our secondary hypothesis 

was that iMil administered before CPB is better than placebo in improving pulmonary 

hemodynamics and both LV and right ventricular (RV) function. 
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Methods 

Study Population 

After approval by our local research and ethics committees and with permission 

from Health Canada, informed consent was obtained from 22 patients with pulmonary 

hypertension undergoing cardiac surgery with CPB. Patients were considered to have 

pulmonary hypertension if the systolic pulmonary artery pressure (SPAP) was greater than 

30 mmHg or the mean pulmonary artery pressure (MPAP) above 25 mmHg, as measured 

during the preoperative period or estimated by using Doppler echocardiography. This was 

confirmed after insertion of a pulmonary artery catheter and before induction of general 

anesthesia. Patients with severe LV dysfunction (LV ejection fraction of less than 30%) 

were excluded. Other exclusion criteria were the presence of contraindications to 

transesophageal echocardiography (TEE), including esophageal disease or unstable cervical 

spine.  

 

Treatment Protocol 

Patients were premedicated with 1 to 2 mg of lorazepam administered orally 1 hour 

before the operation, as well as 0.1 mg/kg of morphine administered intramuscularly before 

being taken to the operating room. Additional midazolam was administered (0.01-0.05 

mg/kg intravenously) in the operating room as needed for patient comfort. Usual 

monitoring was installed, including a 5-lead electrocardiogram, pulse oximeter, peripheral 

venous line, radial arterial line, a 15-cm 3-lumen catheter (CS-12703, Arrow International 

Inc., Reading, CA), and thermodilution pulmonary artery catheter (Swan-Ganz catheter 

7.5F; Baxter Healthcare Corporation, Irvine, CA). Anesthesia was induced with 0.04 mg/kg 

midazolam and 1 μg/kg sufentanil, and muscle relaxation was achieved with 0.1 mg/kg 

pancuronium. After tracheal intubation, anesthesia was maintained with 1 μg/kg/hr 

sufentanil and 0.04 mg/kg/hr midazolam. No anesthetic gases were used for the induction. 

Minute ventilation was adjusted to maintain end-tidal carbon dioxide between 30 and 40 

mmHg with an infrared carbon dioxide analyzer. Transesophageal echocardiography (Vivid 

7 imaging system, GE Healthcare, Amersham, Sweden) was performed after induction of 
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general anesthesia. Intravenous fluids (0.9% normal saline) were administered according to 

estimated insensible losses of 7 ml/kg/hr during the surgery and titrated according to blood 

pressure and central venous pressure (CVP). A decrease in mean arterial pressure (MAP) 

below 60 mmHg was treated by fluids administration in the presence of a low CVP or by 

the use of vasopressors according to a predetermined protocol (Appendix 3). [52] In case of 

low cardiac output CO with reduced contractility documented using TEE, the 

anesthesiologist could use intravenous milrinone at his discretion. Postoperative 

management in case of pulmonary hypertension included intravenous nitroglycerin and 

milrinone and, in more severe cases, inhaled nitric oxide or inhaled prostacyclin. During 

CPB, blood cardioplegia was used in all patients. Induction and maintenance of 

cardioplegia were cold to tepid (15 to 29º Celsius). The blood to crystalloid ratio was 4:1. 

The pump flow was adjusted to obtain an output of 2.2 L/min/m2 of body surface area. The 

pump flow was reduced to 0.5 L/min for aortic clamping and unclamping. The pumps used 

for all patients were SIII (Stockert, Munchen, Germany) roller pumps and the oxygenators 

were Sorin Monolyth (Mirandola, MO, Italy). For coronary artery bypass procedures, 

temperature was allowed to drift to 34ºC. Valve and complex procedures were done with 

temperatures of 32-34ºC. Selective antegrade and retrograde cerebral perfusion were used 

on a case by case basis. Weaning from CPB was attempted after systemic temperature 

(central and vesical) was > 36ºC using a predetermined protocol (Appendix 3). [52]  

 

Drug Administration Protocol 

Randomization was done according to a list of computerized random numbers 

generated by the Montreal Heart Institute Coordinating Center and assignment to study 

treatment was directly transmitted to the pharmacist the day before the surgery. The 

investigator had no access to the randomization list. The study drug was prepared by the 

pharmacist and delivered to the operating room wrapped up in an opaque paper to maintain 

blinding. Patients were equally divided into 2 groups to receive either iMil or placebo in a 

double-blind randomized manner. Inhaled milrinone (Primacor, Sanofi-Synthelabo Canada 

Inc., Markham, ON, Canada) or the placebo (0.9% saline) were administered through the 
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endotracheal tube after the induction of anesthesia once baseline hemodynamic profiles and 

TEE exam were completed. [53] Five milligrams (1 mg/mL) were administered, resulting 

in a dose ranging from 50-80 µg/kg, over 5 minutes. The study drug and the placebo were 

administered through a jet nebulizer (Ref 8901; Salter Labs, Arvin, CA) attached to the 

inspiratory limb of the ventilator near the endotracheal tube with a bypass flow of oxygen 

at 10 L/min, as previously described. [53]  

 

Data Collection 

At the time of randomization, demographic, diagnostic (New York Heart 

Association (NYHA) class, Parsonnet score, comorbidities, LV ejection fraction) and 

therapeutic (medication, type of surgery, reoperations) information was obtained for every 

patient. Complex surgery was defined as a combination of valve or aortic surgery and 

coronary procedure or reoperative surgery. Hemodynamic values were indexed for patient 

body surface area and obtained in the awake state before induction of anesthesia to confirm 

the presence of pulmonary hypertension, after induction of anesthesia (baseline or T1), at 

the end of nebulization (T2), 20 minutes after the end of nebulization before CPB (T3) and 

after CPB during chest closure (T4). The measured hemodynamic parameters included 

heart rate (HR), systemic arterial pressure (SAP), MAP, CVP, pulmonary capillary wedge 

pressure (PCWP), SPAP, MPAP and diastolic pulmonary artery pressure (DPAP). Systemic 

vascular resistance (SVR) and pulmonary vascular resistance (PVR) was calculated using 

the standard formula. Cardiac output was assessed by using the thermodilution technique 

with 3 injections of room temperature dextrose 5% (10 mL) at end-expiration. All TEE 

were performed by 2 anesthesiologists with more than 15 years of experience and with 

National Board Certification. All TEE exams were reviewed offline by a cardiologist expert 

in echocardiography who was blinded to the allocation group. The exam was obtained after 

induction (T1), at the end of nebulization (T2), before CPB (T3) and after CPB (T4). The 

TEE examination included a mid-esophageal, 4-chamber view, a short-axis transgastric 

view at the mid-papillary level, and color flow Doppler imaging of all the valves to detect 

any unsuspected significant valvular disease. All 2-dimensional images in which the LV 
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and RV endocardial border could not be traced adequately by using Schnittger 

criteria [271] were excluded. The RV function was evaluated using the 4-chamber view 

according to published guidelines. [186] The following measures were also obtained from 

the 4-chamber view: the maximal transverse dimensions of the right atrium (RADt) and left 

atrium (LADt), the right ventricular end-diastolic area (RVEDA), right ventricular end-

systolic area (RVESA), the RV fractional area change (RVFAC) in % calculated as 

(RVEDA-RVESA)/RVEDA and the tricuspid systolic annular plane excursion (TAPSE). 

The LV function was evaluated using the 4-chamber view and the transgastric short-axis 

view. LV end-diastolic area (LVEDA), LV end-systolic area (LVESA) and the LV 

fractional area change (LVFAC) in % calculated as (LVEDA - LVESA)/LVEDA were 

obtained from both views. Measures were averaged over three consecutive cycles and 

standardized to end-expiration. The inter-observer variability for area measurements was 

2.9 ± 2.0% (absolute difference) with an intra-class correlation coefficient of 0.95.  

 

Outcome Measures 

The primary outcome measure was the change in MAP. Secondary outcomes were 

the changes in MPAP, PVR and PVR/SVR reduction, RV and LV areas. We were also 

interested in exploring the impact of iMil on weaning from CPB support, vasopressors use 

> 24 hours, postoperative atrial fibrillation, intensive care unit and hospital stays and 

mortality. Difficult separation from bypass was defined as SAP < 80 mmHg, confirmed by 

central measurement (femoral or aortic); DPAP or PCWP > 15 mmHg during progressive 

weaning from CPB; and the use of inotropic or vasopressive support (norepinephrine > 4 

µg/min, epinephrine > 2 µg/min, dobutamine > 2 µg/kg/min) for at least 1 hour, intra-aortic 

balloon pump requirement or reinitiation of CPB. [19;53]  

  

Statistical Analysis 

Patient characteristics were expressed as mean ± standard error (SE) or simple 

frequencies and percentages. Comparisons of continuous variables between groups were 

performed with the Student t-test for normally distributed variables (original or after 
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appropriate transformations) or with the Wilcoxon test for non-normally distributed 

variables. Due to very low power, categorical variables were not compared between or 

within groups. One-way analysis of variance (ANOVA) on repeated measurements were 

used to study variations over time within each groups. Two-way analysis of co-variance 

(ANCOVA) adjusted for baseline values (T1) were used to compare groups at T2, T3 and 

T4. Sample size was calculated for a power of 80% and a 1-sided α error value of 0.05. 

Assuming a MAP of 75 mmHg in the placebo group, a common standard deviation of 13 

mmHg, 11 patients per group would be sufficient to detect a 15 mmHg reduction in MAP 

in the iMil group. Statistical analyses were done with the computer software SAS version 

9.1 (SAS Institute Inc., Cary, NC). A P value < 0.05 was considered statistically 

significant.  

 

Results 

A total of 22 patients were recruited. One patient was excluded because the 

pulmonary artery catheter did not confirm the presence of pulmonary hypertension; 

therefore, a total of 10 controls and 11 iMil were studied. Patients’ characteristics for each 

group are listed in Table 30. For all patients, the mean age was 71 ± 6 years and there were 

8 men and 13 women with a mean Parsonnet score of 32 ± 9. A total of 17 complex 

procedures and 6 reoperations were performed. Among the complex procedures there were 

4 multiple valve procedures: 11 were complex surgeries, one was mitral valve replacements 

(MVR) with atrial septal defect (ASD) closure and the other mitral valve repair with ASD 

closure and myomectomy. The ASD were secondary to iatrogenic septal perforation from 

preoperative right-sided catheterization. The pre-induction hemodynamic variables (not 

shown) were similar between the groups for the HR, SAP, MAP, CVP, PCWP and CO. 

Before the induction of anesthesia, the SPAP (66 ± 20 vs. 46 ± 13 mmHg, p = 0.0121) and 

MPAP (45.5 ± 12 vs. 33 ± 8 mmHg, p = 0.0047) were higher in the iMil group compared to 

the control group. 
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Within Groups Comparison  

Hemodynamic Measurements  

Hemodynamic evolutions are shown in 

Table 31 for the control and iMil separately. There were no changes over time for 

MAP in the iMil group (p = 0.3781) and in the control group (p = 0.9478). In patients 

receiving iMil, there were changes over time for HR (p = 0.0174) and SVR (p =0.0465). 

Multiple comparisons (details at the bottom of  

Table 31 showed HR increases at T3 and T4 and SVR decreases at T3 and T4 as 

compared to T1 and/or T2 in the iMil group. Changes over time were observed for SPAP in 

the control group (p = 0.0147) and there was a significant decrease at T3. Changes over 

time were observed for PVR in both groups (iMil: p = 0.0458; control: p = 0.0376); there 

was a decrease at T4 vs. T2 in the iMil group and increase at T2 and T3 vs. T1 in the 

control group. Finally, changes over time were observed in the control group for CVP 

(p = 0.0157) and for CO (p < 0.0001) and according to multiple comparisons, increases 

were observed at T4 vs. T2 for both variables (Figure 75). 

 

Echocardiographic Measurements 

Sequential echocardiographic changes are shown in 

Table 32 for the control and iMil groups separately. A total of 66 (83%) 4-chamber 

views for RV area were analyzed; 58 (73%) 4-chamber views and 49 (61%) transgastric 

views were used for LV area measurements. No changes over time were observed in the 

iMil group. However, changes over time were observed in the control group for RVEDA 

(p = 0.0363), RADt (p < 0.0001) and TAPSE (p = 0.0167). Multiple comparisons showed 

that increases were observed at T3 and T4 vs. T1 and T2 for RVEDA, that an increase was 

observed at T4 vs. T1 and T3 for RADt and that decreases for TAPSE were observed at T2 

and T4 vs. T1 (Figure 75). 
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Between Groups Comparison  

Between group comparisons are depicted in Table 33 where only variables with 

significant differences are presented. 

 

Hemodynamic Measurements 

Groups were similar at T2 for all variables. However at T3, the means of the iMil 

group were higher for PCWP (p = 0.0182) and DPAP (p = 0.0479) and lower for PVR/SVR 

(p = 0.0043) as compared to the placebo group, but all of these differences vanished at T4. 

The only significant result at T4 was for CO, which had a lower mean in the iMil group 

(p = 0.0445). 

 

Echocardiographic Measurements  

As depicted in Table 33, the RVEDA and RVESA were different between groups. 

While the RVEDA mean was lower in the iMil group at T4 (p = 0.0023), the RVESA mean 

was higher in the iMil group at T2 (p = 0.0361). Also at T2, the means of the iMil group 

were higher for RADt (p = 0.0367) and lower for RVFAC (p = 0.0366). Finally, the only 

significant result at T3 was for LVESA with a higher mean in the iMil group (p = 0.0106). 

 

The outcome and safety data are presented in Table 34. Because of the small 

number of patients, no statistical analysis was performed. The iMil group required less 

intravenous milrinone (18% vs. 40%), no adrenaline after CPB and no intra-aortic balloon 

pump. One death occurred in the iMil group and two in the control group. The need for 

vasopressors for more than 24 hours, the prevalence of atrial fibrillation, the ICU and 

hospital stay durations were similar. An example of the effect of milrinone on two patients 

is illustrated in Figure 76. The biventricular hemodynamic and echocardiographic 

observations are summarized in Figure 77. 
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Discussion 

This is the first randomized controlled double-blind trial on the use and safety of 

iMil in cardiac surgery in which both simultaneous hemodynamic and echocardiographic 

measurements were obtained. The administration of iMil in this high-risk population was 

not associated with any significant systemic hypotension compared to the control group. 

Furthermore, compared with a control group, we observed in the iMil group a modest 

reduction in the hemodynamic severity of pulmonary hypertension with unaltered 

ventricular dimensions consistent with a reduction or prevention of the increase in RV 

afterload. These hemodynamic effects of iMil are consistent with previous observations in 

animal [354;355] and human studies. [53;350;351]  

In our patients, before induction and at baseline, the iMil group had much more 

severe pulmonary hypertension with associated increased right-sided dimensions. Despite 

this unfavorable condition, no significant systemic hypotension was observed; only 2 

patients (18%) required inotropes, and none returned on CPB or needed IABP to be weaned 

from CPB. Furthermore, reduction in right-sided chambers with reciprocal increase in LV 

dimensions appeared in the iMil group when compared to the control group. These changes 

could be explained by a reduction in RV afterload by iMil, leading to an increase in 

pulmonary flow. This would explain the maintenance of LV filling pressure (higher PCWP 

and DPAP) at 20 minutes after nebulization.  

Milrinone is a cyclic AMP-specific phosphodiestersase inhibitor that can exert both 

positive inotropic effects and vasodilation independently of ß1-adrenergic receptor 

stimulation in the cardiovascular system. [41;319] Previous studies evaluating the use of 

intravenous milrinone in cardiac surgical patients were underpowered and performed on a 

small number of patients undergoing coronary revascularization. [348] Although milrinone 

has been shown to increase CO [322;324;334] and to facilitate separation from CPB, [321] 

the major problem encountered with intravenous milrinone is the high incidence of 

systemic hypotension resulting in an increased need for vasoactive drugs. [66;311;324;342] 

The hypotension resulting from intravenous milrinone is either caused by vasodilation or 

through dynamic left or right ventricular outflow tract obstruction. [38] Two randomized 
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controlled trials on the use of milrinone in a non-cardiac surgical setting showed no 

advantage in terms of hospitalization duration. [289;294] Furthermore, patients receiving 

milrinone had more adverse events and higher mortality in the PROMISE trial. [294] So 

far, randomized controlled trials in cardiac surgery have not been designed, or sufficiently 

powered, to correlate mortality with intravenous milrinone, but the same issue could be 

encountered. Therefore, it appears relevant to explore alternative strategies such as iMil, 

which could reduce the severity of pulmonary hypertension without causing systemic 

hypotension. However, the first step was to document the absence of significant systemic 

hypotension in patients receiving iMil. 

Only four observational studies addressing the role of iMil in cardiac surgery have 

been published so far. [53;350;351;353] The effect of iMil was first described by 

Haraldsson et al. [350] in an open-label trial of 20 cardiac surgical patients in the intensive 

care unit. The first part of the trial included 9 patients and showed a dose-response effect of 

incremental concentrations of iMil with decreases in MPAP, PVR and PVR/SVR. No 

patient presented systemic hypotension. The hemodynamic parameters of patients treated 

with iMil returned to baseline within 20 minutes of the end of the inhalation period, similar 

to our observation. In the second study, [351] iMil was given to 18 heart transplant 

candidates in the intensive care unit. The MPAP, transpulmonary gradient and PVR 

decreased only in patients with pulmonary hypertension, defined as MPAP above 30 

mmHg. Improvement in CO was observed, but there was no systemic hypotension. The 

dosage was 2 mg based on intravenous milrinone loading doses used in heart 

transplantation, which was almost half of the dose used in our protocol. In these studies, 

there was no control group, and the intraoperative usage and the timing of iMil in relation 

to CPB were not recorded. We have previously described the administration of iMil before 

CPB in 40 high-risk patients with a Parsonnet score of 30.4 ± 14.2. [53] Compared to the 

administration of iMil after CPB, pre-CPB iMil was associated with a reduction of difficult 

separation from CPB (18% vs. 82%) defined as the use of more than two inotropes, need 

for introduction of an intra-aortic balloon pump or reinitiation of CPB. Finally a recent 

study compared the use of intravenous versus inhaled milrinone in 48 patients with 



291 

 

pulmonary hypertension after mitral valve surgery. [353] With milrinone administration, 

mean pulmonary artery pressure and pulmonary vascular resistance decreased in both 

groups. However, the mean arterial pressure and systemic vascular resistance in the inhaled 

group were significantly higher than in the intravenous group. In addition, in the inhaled 

group, there was a reduction in intrapulmonary shunt fraction in the inhaled milrinone 

group.  

In the current study, the same ratio was observed; 4 patients in the control group 

compared to 1 in the iMil group would have qualified for this definition. Significantly 

lower SPAP and unchanged LV function were also observed after CPB in the group who 

received iMil pre-CPB, as observed in the current study, but RV function was not analyzed. 

Finally a recent study compared the use of intravenous versus inhaled milrinone in 48 

patients with pulmonary hypertension after mitral valve surgery. [353] With milrinone 

administration, mean pulmonary artery pressure and pulmonary vascular resistance 

decreased in both groups. However, the mean arterial pressure and systemic vascular 

resistance in the inhaled group were significantly higher than in the intravenous group. In 

addition, in the inhaled group, there was a reduction in intrapulmonary shunt fraction in the 

inhaled milrinone group.  

 

Administration of iMil before CPB could be advantageous for several reasons. First, 

iMil could protect the pulmonary vasculature during weaning from CPB when ischemia-

reperfusion injury occurs through a more uniform distribution and penetration in 

mechanically ventilated lungs free of significant post-CPB atelectasis. [354] This may 

explain why patients receiving iMil before CPB were found to have lower or similar MPAP 

after separation from CPB. [53] These findings were not observed when intravenous 

milrinone [354] was administered or when the administration of the drug occurred after 

CPB. [53] Secondly, the administration of iMil before CPB could prevent the reperfusion 

syndrome. [297]  

 

Limitations 
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There are several study limitations that need to be addressed. There is a small number 

of patients. It was important for us to determine the safety of iMil given intraoperatively in 

patients under general anesthesia because it had not been studied in this context previously. 

Before the induction and at baseline before drug administration, the iMil patients had more 

severe pulmonary hypertension. Therefore, after presenting the observed values and 

performing the same analysis as originally published by Haraldsson and 

Sablotzki, [350;351] we compared both groups using two-way ANCOVA with adjusted 

values. Despite the small number of patients, we observed differences in PVR/SVR and RV 

dimensions between the groups consistent with a RV afterload effect of iMil. The absolute 

effect of iMil on the severity of pulmonary hypertension was modest but similar to that 

described in previous observational studies. [350;351] The number of patients was too 

small to explore other significant outcomes such as length of intensive care unit stay, 

hospitalization duration and mortality. However, this study was the necessary step to 

confirm our animal and preliminary human observations and the safety of this new strategy. 

Finally, systemic exposition to milrinone was not documented in these patients. We have 

previously reported that milrinone concentration obtained in cardiac patients having the 

same characteristics are below 30 ng/mL when milrinone is given by inhalation. [361] 

Milrinone levels below 100 ng/mL are not likely to induce significant systemic hypotension 

in cardiac patients. [366] 

 

Conclusion 

In summary, the administration of iMil before initiation of CPB is not associated with 

any significant systemic hypotension. In patients receiving iMil, we observed a mild 

reduction in the severity of pulmonary hypertension with improved right-sided cavity 

dimensions compared to the control group. Further studies with larger numbers of patients 

are required to document the potential benefit of this approach in the care of cardiac 

surgical patients with pulmonary hypertension. 
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Table 30 Baseline Characteristics of the Study Population 

Characteristics Control 

(n = 10) 

Inhaled Milrinone 

(n = 11) 

Age (yrs) 71 ± 1 70 ± 3 

Sex 

     Male 

     

 

3 (30%) 

 

 

5 (45%) 

 

BMI (kg/m2) 27 ± 2 26 ± 1 

NYHA class 

     1 

     2 

     3 

     4 

 

0  

2 (20%) 

8 (80%) 

0  

 

0  

0  

10 (91%) 

1 (9%) 

Parsonnet score  32 ± 3 32 ± 3 

Current smoking 2 (20%) 0  

Type of surgery 

Isolated valve 

Multiple valves 

Complex  

Other 

Reoperations 

 

4 (40%) 

0  

5 (50%) 

1 (10%) 

2 (20%) 

 

0 

4 (36%) 

6 (54%) 

1 (9%) 

4 (36%) 

Cardiac disease 

     Prior myocardial infarction 

     Congestive heart failure 

 

1 (10%) 

8 (80%) 

 

2 (18%) 

9 (82%) 

Comorbidities 

     Hypertension 

     Diabetes mellitus 

     Peripheral vascular disease 

     Renal failure 

     COPD 

     Coronary artery disease 

 

7 (70%) 

4 (40%) 

5 (50%) 

3 (30%) 

3 (30%) 

6 (60%) 

 

7 (64%) 

5 (45%) 

0  

3 (27%) 

2 (18%) 

4 (36%) 
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Characteristics Control 

(n = 10) 

Inhaled Milrinone 

(n = 11) 

Drug therapy at admission  

     Coumadin 

     Heparin 

     Nitrates 

     Calcium-channel antagonists 

     Beta-blockers 

     ACE inhibitors 

     Digoxin 

     Diuretics 

     Salicylates 

     Statins 

 

4 (40%) 

2 (20%) 

0  

2 (20%) 

7 (70%) 

4 (40%) 

3 (30%) 

6 (60%) 

3 (30%) 

7 (70%) 

 

5 (45%) 

1 (9%) 

1 (9%) 

2 (18%) 

5 (45%) 

4 (36%) 

2 (18%) 

3 (27%) 

4 (36%) 

4 (36%) 

Left ventricular ejection fraction (%) 55 (50-60)* 58 (40-65)* 

Duration of surgery (min) 

     CPB 

     Aorta clamping 

 

119 ± 13 

88 ± 10 

 

123 ± 7 

97 ± 9 

ASD, atrial septal defect; AVR, aortic valve replacement; ACE, angiotensin-converting 
enzyme; BMI, body mass index; CABG, coronary artery bypass graft; CPB, 
cardiopulmonary bypass; COPD, chronic obstructive pulmonary disease; MV, mitral 
valve; MVR, mitral valve replacement; NYHA, New York Heart Association; TV, 
tricuspid valve. *1st and 3rd interquartile range. 
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Table 31 Hemodynamic variables: one-way repeated ANOVA 

Variables* Group T1 

(Baseline) 

T2 

(End Nebulization) 

T3 

(20 minutes) 

T4 

(After CPB) 

P value 

 

HR (beats/min) Control 70.2 ± 4.4 67.5 ± 4.0 64.6 ± 3.1 77.3 ± 3.6 0.1035  

 Inhaled Milrinone 63.9 ± 3.6 59.3 ± 3.6 65.6 ± 4.3 72.1 ± 2.4 0.01741 

SAP (mmHg)  Control 109.1 ± 7.5 109.8 ± 5.7 106.2 ± 2.2 111.3 ± 4.8 0.8375 

 Inhaled Milrinone 114.3 ± 3.7 105.5 ± 9.0 106.2 ± 5.8 105.4 ± 5.6 0.2976 

MAP (mmHg) Control 73.4 ± 4.1 74.2 ± 3.4 71.9 ± 3.4 71.9 ± 2.8 0.9478 

 Inhaled Milrinone 78.7 ± 4.3 75.2 ± 3.9 71.6 ± 4.0 72.4 ± 3.9 0.3781 

CVP (mm Hg) Control 10.1 ± 0.7 11.0 ± 1.2 10.9 ± 1.2 14.2 ± 2.0 0.01572 

 Inhaled Milrinone 12.7 ± 1.4 11.3 ± 1.6 13.0 ± 1.6 14.7 ± 1.6 0.2757 

PCWP (mmHg) Control 21.9 ± 1.6 20.3 ± 1.3 15.8 ± 1.7 21.5 ± 2.0 0.0632 

 Inhaled Milrinone 24.2 ± 3.0 24.1 ± 2.1 23.5 ± 2.2 24.1 ± 2.8 0.8942 

SPAP (mmHg) Control 37.2 ± 3.6 39.4 ± 2.9 36.5 ± 3.0 39.3 ± 4.9 0.01473 

 Inhaled Milrinone 54.6 ± 7.0 49.6 ± 4.8 50.2 ± 7.8 47.0 ± 4.2 0.1338 

DPAP (mmHg) Control 20.7 ± 1.8 21.7 ± 1.6 19.5 ± 1.3 22.0 ± 2.5 0.02074  

 Inhaled Milrinone 26.2 ± 1.9 24.9 ± 1.7 26.0 ± 2.4 28.6 ± 4.7 0.5694 

MPAP (mmHg) Control 27.7 ± 2.5 29.3 ± 2.1 27.8 ± 2.3 29.1 ± 3.4 0.3788 

 Inhaled Milrinone 38.1 ± 3.9 34.7 ± 3.0 36.1 ± 4.5 33.9 ± 2.3 0.1655 
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Variables* Group T1 

(Baseline) 

T2 

(End Nebulization) 

T3 

(20 minutes) 

T4 

(After CPB) 

P value 

 

CO (L/min) Control 3.1 ± 0.3 3.3 ± 0.3 3.0 ± 0.3 4.6 ± 0.3 <0.00015 

 Inhaled Milrinone 3.5 ± 0.3 3.5 ± 0.3 3.7 ± 0.3 3.8 ± 0.1 0.1150 

SVR (dynes.sec.cm-5) Control 1737.7 ± 170.9 1733.1 ± 181.3 1836.3 ± 249.6 1064.1 ± 80.0 0.0542 

 Inhaled Milrinone 1647.5 ± 176.5 1541.4 ± 181.7 1347.8 ± 134.7 1106.4 ± 80.8 0.04656 

PVR (dynes.sec.cm-5) Control 149.4 ± 26.7 216.9 ± 30.7 295.3 ± 41.7 134.0 ± 35.4 0.03767 

 Inhaled Milrinone 326.0 ± 35.0 265.1 ± 30.6 253.6 ± 45.5 164.8 ± 25.9 0.04588 

PVR/SVR (%) Control 9.1 ± 1.3 12.9 ± 2.8 16.7 ± 2.2 11.6 ± 2.7 0.1292  

 Inhaled Milrinone 20.7 ± 1.6 18.9 ± 3.1 20.9 ± 4.2 15.4 ± 2.4 0.2585 

*Variables expressed as adjusted mean ± standard error. T1: baseline after induction of anesthesia, T2: at the end of nebulization,  
T3: 20 minutes after nebulization before cardiopulmonary bypass (CPB), T4: during chest closure after CPB.   
ANOVA, analysis of variance; HR, Heart rate; SAP, systemdic arterial pressure; MAP, mean arterial pressure; CVP, central venous 
pressure; PCWP, pulmonary capillary wedge pressure; SPAP, systolic pulmonary arterial pressure; PAP, diastolic pulmonary arterial 
pressure; MPAP, mean pulmonary arterial pressure; CO, cardiac output; SVR, systemic vascular resistance; PVR, pulmonary vascular 
resistance.  
1HR increase in the milrinone group in T4 compared to T1 and T2 and in T3 compared withT2 
2CVP in the control group became higher at T4 compared to T2 
3SPAP in the control group lower at T3 compared to T2; 4DPAP in the control group lower at T3 compared to T2 
5CO in the control group lower at T3 compared to T2 and higher at T4 compared with T1,T2,T3 
6SVR decrease in the milrinone group at T3 compared to T1 and T4 compared to T1 and T2 
7PVR in the control group increase at T2 and T3 compared with T1 and decrease at T4 compared with T3 
8PVR in the milrinone group became lower at T4 compared to T2 
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Table 32 Echocardiographic variables: one-way repeated ANOVA 

Variables* Group T1 
(Baseline) 

T2 
(End Nebulization) 

T3 
(20 minutes) 

T4 
(After CPB) 

P value 
 

RVEDA (cm2) Control 14.1 ± 1.1 12.7 ± 1.5 17.2 ± 1.6 16.2 ± 1.1 0.03631 

 Inhaled Milrinone 18.3 ± 1.2 17.7± 1.3 16.2 ± 1.4 16.1 ± 1.3 0.1937 

LVEDA_4ch (cm2) Control 30.0 ± 2.9 28.1 ± 3.0 31.6 ± 3.6 32.5 ± 3.1 0.3910 

 Inhaled Milrinone 32.6 ± 2.3 32.1 ± 2.6 27.6 ± 3.2 29.0 ± 2.5 0.3218 

RVESA (cm2) Control 7.8 ± 0.9 6.8 ± 0.9 8.5 ± 1.0 9.5 ± 0.9 0.1720 

 Inhaled Milrinone 10.2 ± 1.1 10.7 ± 1.2 8.5 ± 1.3 9.3 ± 1.2 0.2365 

LVESA_4ch (cm2) Control 19.0 ± 1.8 17.1 ± 1.9 20.0 ± 2.4 20.3 ± 2.0 0.3383 

 Inhaled Milrinone 20.5 ± 2.0 20.1 ± 2.3 17.6 ± 2.9 18.5 ± 2.2 0.7381 

RADt (cm) Control 4.0 ± 0.2 4.2 ± 0.3 3.9 ± 0.2 4.4 ± 0.2 < 0.00012 

 Inhaled Milrinone 4.1 ± 0.3 4.4 ± 0.3 3.5 ± 0.4 4.1 ± 0.2 0.3569 

LADt (cm) Control 4.9 ± 0.3 4.8 ± 0.3 4.6 ± 0.3 4.9 ± 0.3 0.4471 

 Inhaled Milrinone 5.2 ± 0.5 4.8 ± 0.5 5.0 ± 0.6 5.3 ± 0.5 0.6304 

LVEDA_sax (cm2) Control 20.6 ± 2.3 18.5 ± 2.6 17.7 ± 2.7 18.4 ± 2.4 0.3790 

 Inhaled Milrinone 23.8 ± 3.2 23.6 ± 3.2 22.6 ± 3.2 21.8 ± 3.0 0.6409 

LVESA_sax (cm2) Control 11.8 ± 2.0 10.7 ± 2.1 10.6 ± 2.2 12.1 ± 2.0 0.5851 

 Inhaled Milrinone 13.6 ± 2.8 13.0 ± 2.8 13.1 ± 2.8 13.6 ± 2.8 0.8630 
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Variables* Group T1 
(Baseline) 

T2 
(End Nebulization) 

T3 
(20 minutes) 

T4 
(After CPB) 

P value 
 

Calculated values       

RVFAC (%) Control 45.6 ± 2.4 49.5 ± 3.1 50.8 ± 3.6 41.2 ± 4.0 0.2408 

 Inhaled milrinone 45.7 ± 3.1 40.3 ± 3.3  48.2 ± 3.9 43.5 ± 3.3 0.1742 

LVFAC_4ch (%) Control 36.8 ± 2.5 37.4 ± 2.6 35.8 ± 3.7 36.4 ± 2.8 0.9873 

 Inhaled Milrinone 39.1 ± 3.1 37.4 ± 3.6 37.0 ± 4.7 36.9 ± 3.4 0.9379 

TAPSE (cm2) Control 2.0 ± 0.2 1.4 ± 0.2 1.9 ± 0.3 1.4 ± 0.2 0.01673 

 Inhaled Milrinone 1.8 ± 0.2 1.6 ± 0.2 1.7 ± 0.3 1.5 ± 0.2 0.6951 

LVFAC_sax (%) Control 44.5 ± 4.7 45.8 ± 5.6 40.2 ± 6.0 38.4 ± 5.0 0.4371 

 Inhaled Milrinone 45.4 ± 5.6 46.5 ± 5.6 46.5 ± 5.6 42.0 ± 4.9 0.6369 

*Variables expressed as adjusted mean ± standard error. T1: after induction of anesthesia, T2: at the end of nebulization, T3: 20 minutes 
after nebulization before cardiopulmonary bypass (CPB), T4: during chest closure after CPB. ANOVA, analysis of variance; RVEDA, right 
ventricular end-diastolic area; LVEDA_4ch, left ventricular end-diastolic area obtained from a 4-chamber view; RVESA, right ventricular 
end-systolic area; LVESA_4ch, left ventricular end-systolic area obtained from a 4-chamber view; RADt, right atrial transverse diameter; 
LADt, left atrial transverse diameter; LVEDA_sax, left ventricular end-diastolic area obtained from short-axis view; LVESA_sax, left 
ventricular end-systolic area obtained from a short axis view; RVFAC, right ventricular fractional area change; LVFAC_4ch, left ventricular 
fractional area change obtained from a 4-chamber view; TAPSE, tricuspid annular systolic plane excursion.  
1RVEDA in the control group increases at T3 (p = 0.0199) and T4 (p = 0.0355) compared to T1 and RVEDA became larger at T3 
(p = 0.0145) and T4 (p = 0.0257) compared to T2 
2RADt in the control group increases at T4 compared to T1 (p = 0.0362) and T3 (p = 0.0016) 
3TAPSE in the control group was reduced at T2 compared to T1 (p = 0.0072) and T4 compared to T1 (p = 0.0139).  
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Table 33 One-way ANCOVA adjusted for T1 at separate time interval 

Variables* Group T2 
(End Nebulization) 

P value T3 
(20 minutes) 

P value T4 
(After CPB) 

P value 

Hemodynamic        

PCWP (mmHg) Control 20.5 ± 1.5 0.2539 16.6 ± 1.8 0.0182 22.3 ± 1.7 0.6198 

 Inhaled milrinone 22.8 ± 1.3  22.7 ± 1.3  23.5 ± 1.6  

DPAP Control 24 ± 1.0 0.4636 21 ± 0.9 0.04791 26.7 ± 3.0 0.8447 

 Inhaled milrinone 23.0 ± 0.97  23 ± 1.3  25.8 ± 3.0  

CO (L/min) Control 3.5 ± 0.1 0.3198 3.1 ± 0.2 0.1992 4.6 ± 0.2 0.0445 

 Inhaled milrinone 3.3 ± 0.1  3.5 ± 0.2  3.9 ± 0.2  

PVR/SVR (%) Control 21 ± 4.4 0.3543 13.8 ± 5.2 0.0043² 8.3 ± 4.1 0.1953 

 Inhaled milrinone 14.4 ± 3.7  8.3 ± 3.5  17.3 ± 3.7  

Echocardio-graphic        

RVEDA 4ch (cm2) Control 14.0 ± 1.2 0.4759 19.1 ± 1.1 0.061 17.3 ± 0.7 0.0023 

 Inhaled milrinone 15.4 ± 1.3  14.9 ± 1.5  12.7 ± 0.9  

RVESA 4ch (cm2) Control 6.7 ± 0.8 0.0361 9.6 ± 0.9 0.2917 9.8 ± 0.8 0.0535 

 Inhaled milrinone 10.1 ± 1.1  7.9 ± 1.2  7.3 ± 0.9  

RADt (cm) Control 4.2 ± 0.2 0.0367³ 4.1 ± 0.1 0.0905 4.3 ± 0.2 0.2129 

 Inhaled milrinone 4.4 ± 0.2  3.5 ± 0.2  3.8 ± 0.3  

LVESA_sax (cm2) Control 14 ± 0.7 0.5223 11.9 ± 0.29 0.01065 13.3 ± 1.2 0.6105 
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Variables* Group T2 
(End Nebulization) 

P value T3 
(20 minutes) 

P value T4 
(After CPB) 

P value 

 Inhaled milrinone 15 ± 1.2  14.1 ± 0.4  12.1 ± 1.9  

RVFAC (%) Control 50.7 ± 3.1 0.03664 49.5 ± 4 0.9662 41.7 ± 3.9 0.5458 

 Inhaled milrinone 39 ± 2.9  49.2 ± 5.6  45.5 ± 4.7  

*Variables expressed as adjusted mean ± standard error. Only significant variables are presented. T1: baseline after induction of anesthesia, 
T2: at the end of nebulization, T3: 20 minutes after nebulization before cardiopulmonary bypass (CPB), T4: during chest closure after CPB. 
ANCOVA, analysis of covariance; PCWP, pulmonary capillary wedge pressure; DPAP, diastolic pulmonary arterial pressure; CO, cardiac 
output; PVR/SVR, pulmonary to systemic vascular resistance ratio; RVEDA, right ventricular end-diastolic area; RVESA, right ventricular 
end-systolic area; RADt, right atrial transverse diameter; LVESA_sax, left ventricular short axis view from a mid-papillary transgastric 
view; RVFAC, right ventricular fractional area.  
1 DPAP had a tendency to be higher at T3 (p = 0.0639) in the upper quartile group of the inhaled milrinone group 
² PVR/SVR ratio was higher in the control group in the lower quartile (p = 0.0043); 
³ RADt: Control group was smaller at T2 in the lower quartile (p = 0.0437) 
4 RVFAC was higher in the control group in the lower (p = 0.0056) and middle quartile (p = 0.0182) 
5 LVESA_sax was lower in the control group for the middle (p = 0.0373) and higher quartile (p = 0.0130) 
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Table 34 Outcome data 

       Control      Inhaled Milrinone 
       (n = 10)  (n = 11) 
Difficult separation from CPB    7 (70%)  7 (64%) 

Intravenous milrinone post-CPB   4 (40%)  2 (18%) 

Intravenous adrenaline post-CPB   1 (10%)  0 

Intra-aortic balloon pump requirement  1 (10%)  0 

Vasopressors use > 24 hours    4 (40%)  5 (45%) 

Atrial fibrillation     5 (50%)  6 (55%) 

Death       2 (20%)  1 (9%) 

ICU stay (hours)     45 (27-96)  72 (45-120) 

Hospital stay (days)     6 (5-13)  13 (6-23) 

Variables expressed as number (%) or as mean with 1st and 3rd interquartile range.  
CPB, cardiopulmonary bypass; ICU, intensive care unit. 
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Figure 75 Hemodynamic and echocardiographic changes 
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Graphical display of changes in cardiac output (CO), pulmonary vascular resistance (PVR), 
right ventricular end-diastolic area (RVEDA), right ventricular end-systolic area (RVESA) 
and the right atrial transverse diameter (RADt). (* = p < 0.05 for the control group and # 
for the iMil group, see text for details). 
 

 

Figure 76 Inhaled milrinone in two patients 

Hemodynamic evolution of the right ventricular pressure (Prv), systemic arterial pressure 
(Pa) and pulmonary artery pressure (Pap) in two patients after receiving inhaled milrinone 
(iMil) (arrow) before cardiopulmonary bypass. A reduction of the diastolic Prv and Pap 
without any significant changes in systemic arterial pressure (Pa) is observed.  
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Figure 77 Hemodynamic and echocardiographic summary 

Echocardiographic and hemodynamic comparison of the control (A,B) and inhaled 
milrinone (C,D) groups at baseline before and after cardiopulmonary bypass (CPB). (CVP, 
central venous pressure; IABP, intra-aortic balloon pump; LA, left atrium; LV, left 
ventricle; PCWP, pulmonary capillary wedge pressure; RA, right atrium; RV, right 
ventricle; SAP, systemic arterial pressure; SPAP, systolic pulmonary artery pressure).  
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Chapitre 8: Discussion 

Hemodynamic instability present from the beginning of the weaning from CPB to 

the end of surgical procedure is our definition of difficult separation from CPB. It is a 

serious complication in cardiac surgery. In this thesis, we tried to demonstrate that 1) 

difficult separation from CPB is independently associated with an increased risk of 

morbidity and mortality, 2) the mechanism of difficult separation from CPB can be 

understood through a systematic approach based on the venous return concept, 3) inhaled 

milrinone is a preventive and therapeutic approach in the patient at risk for difficult 

weaning from CPB after cardiac surgery.  

8.1 Summary and originality of the thesis 

 In Chapter 1, we explored the various definitions and proposed one based on 

several important elements. The first element that needs to be taken into account is the 

accurate measurement of arterial blood pressure. [80] In hemodynamically unstable 

patients, arterial pressure is more accurately measured with central aortic or femoral 

pressure. The second element is an elevated filling pressure which is the most common 

finding associated with difficult separation from CPB. In an open chest condition, that 

value obtained from a central venous catheter is reliable. However, in closed chest 

conditions, it will be influenced by the surrounding pressures. Finally, the third element 

that needs to be considered when defining difficult separation from CPB will be the 

pharmacological or mechanical support. The amount of support will be proportional to the 

degree of difficulty. Some patients will require only pharmacological support but others 

will need a surgical intervention as well, such as returning on CPB or mechanical devices. 

There is also in the literature overlapping in terms of the timing of difficult separation from 

CPB. Some consider it intraoperatively, others postoperatively and finally in some 

investigators both period are included in the definition. We defined difficult separation 
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from CPB as the period as starting from the beginning of the weaning process to the end of 

the operation. 

Several factors have been identified to predict difficult separation from CPB and 

were discussed in Chapter 1.2. When difficult separation from CPB occurs, there is an 

association with increased risk of post-operative hemodynamic complications [10]. 

Furthermore, this association between difficult separation from CPB, morbidity and 

mortality was observed in 6120 patients from the database of the MHI from 1995 to 1999 

(Table 6).  

In Manuscript #1, we were able to confirm our observations from the MHI in a 

multicentered study performed between 2002 and 2007. The results of a study that included 

2331 high-risk cardiac surgical patients conducted in 19 centers across Canada are reported. 

In this study, we observed an association between the amount of pharmacological and 

mechanical support during separation from CPB, life-threatening or serious adverse clinical 

events, length of ICU and hospital stay, and mortality. A total of 108 patients died and of 

those, 77.8% experienced difficulty in the process of separation from CPB. Furthermore, 

patients failing to be weaned on the first attempt and requiring an additional surgical 

intervention or mechanical devices experienced an increased mortality, independently of 

their underlying condition. Both difficult and very difficult separations from CPB were also 

related. In patients with very difficult separation from CPB, 84.4% of patients also 

presented pharmacological criteria for difficult separation from CPB. In addition, we 

observed that predictors of difficult and very difficult separation from CPB were not the 

same. These variables were also different to those predicting mortality (Figure 11). This 

could explain why preoperative risk factors alone do not completely predict mortality and 

morbidity. [141] As the patient is admitted to the ICU, the inclusion of intraoperative 

factors would allow to reset risk stratification in terms of predicting morbidity and 

mortality. Furthermore as the process of weaning from CPB can influence postoperative 

outcome, the potential identification and correction of factors associated with difficult 

separation from CPB could represent a new field of research. Consequently, prevention of 
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difficult separation from CPB could be seen as a strategy to maintain tissue perfusion. This 

can only be done if the mechanism leading to hypoperfusion is clearly understood.  

In order to understand the mechanism of difficult separation from CPB, we 

proposed in Chapter 2 a systematic approach based on the combination of the venous return 

concept as described by Guyton [54] and biventricular pressure-volume relationships. We 

describe this approach in Chapter 3 and we also use it in Manuscript #1 to explain the 

various risk factors identified with difficult separation from CPB and mortality. Basically, 

difficult separation from CPB will occur when the three determinants of venous return are 

altered (Table 11) In some patients, similarly to septic shock, [367] several factors can be 

present simultaneously. Mean systemic pressure is the first of these factors. It will be 

reduced with the loss of stress volume or an increase in venous compliance. The diagnosis 

can be made using echocardiography. When a reduction in mean systemic pressure is 

observed, respiratory variations of the inferior vena cava will be seen in spontaneously 

breathing patients [368;369] or the superior vena cava in patients under positive-pressure 

ventilation. [370] In such conditions, volume repletion with or without blood products and 

agents that would reduce venous compliance such as noradrenaline or vasopressine should 

be considered. The second mechanism is the increase in right atrial pressure. In such a 

situation, careful identification of the etiology is of paramount importance because the 

treatment of one cause of elevated right atrial pressure can be contra-indicated in another 

one. Echocardiography plays an important role in this situation. For instance, inotropes 

would be appropriate in left ventricular systolic dysfunction but contra-indicated in left 

ventricular outflow tract obstruction. [211] Both conditions could be associated with 

elevated right atrial pressure and reduced cardiac output. Finally, the third mechanism is 

resistance to venous return. It can be secondary to extrinsic obstruction of the inferior or 

superior vena cavae or to an intrinsic reduction in diameter. Resistance to venous return can 

be diagnosed or suspected using echography and abdominal pressure measurement, 

particularly in closed chest conditions. [158] The risk factors of abdominal compartment 

syndrome were summarized in Table 13 and can be divided in three categories: diminished 

wall compliance, increased intra-abdominal content and capillary leak. [244;245] From 
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Table 13, it appears that several of these risk factors can be present during cardiac surgery. 

Increased resistance to venous return secondary to obstruction of the inferior vena cava has 

been observed in cardiac surgery (Figure 47-49) but abdominal compartment syndrome is 

poorly documented in cardiac surgery. It could occur as the chest is closed and would lead 

to hemodynamic instability, as shown in Figure 45. Clinical manifestations are non-specific 

and include decreased urine output, high ventilatory pressures, tense abdomen and reduced 

brain saturation (Figure 45). Monitoring the intravesical pressure is essential to establishing 

the diagnosis. [158] In patients with intra-abdominal hypertension and acute compartment 

syndrome, the abdominal perfusion pressure should be maintained above 50-60 

mmHg. [148] Treatment should be directed towards the management of the underlying 

cause but it is necessary first to make the diagnosis.  

In order to describe the mechanism of hemodynamic instability, it is first important 

to understand the natural evolution of biventricular cardiac function after cardiac surgery. 

These hemodynamic and echocardiographic changes after coronary revascularization 

(Figure 10) have been described by Shi et al. [40;43] However these changes in the 

pressure-volume relationship have not been described after valvular surgery. This was the 

goal of Manuscript #2. The most significant changes that can be observed after cardiac 

surgery are both a deterioration in biventricular diastolic function and a reduction in right 

ventricular systolic function. These changes are more pronounced after valvular surgery. 

This is illustrated in Figure 57.  

Furthermore the intraoperative use of amiodarone, a negative inotropic agent, was 

not associated with any increase in inotropic requirement. [56] This strongly supports the 

hypothesis that the mechanism of hemodynamic instability after cardiac surgery cannot be 

explained only by a post-CPB reduction in systolic function. This finding could also imply 

that the routine use of inotropes after cardiac surgery might even be detrimental. Indeed, as 

shown in Manuscript #3, despite identical preoperative demographic, hemodynamic and 

echocardiographic characteristics, patients undergoing valvular surgery and exposed to 

inotropic agents after CPB showed an increased mortality up to 6 years after surgery 

(Figure 59). In contrast, such an increase in mortality was not observed in patients exposed 
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to amiodarone for the same follow-up period. [56] Consequently, in Manuscript #3, which 

describes a study performed in a single center, the link or association between the use of 

inotropic agents and mortality can be further supported.  

Is the link between difficult separation from CPB and postoperative outcome an 

association or one of causality? Using Hill’s criteria for causality [371] evidences, that 

difficult separation from CPB is responsible for the postoperative outcome, can be found. 

Indeed, predictors of outcome in septic shock and the mechanism of hemodynamic 

instability are, to some extent, similar to what we can observe in difficult separation from 

CPB. [372] Several mechanisms of hemodynamic instability and risk factors are present in 

septic shock. These include vasodilation, [137] myocardial depression, [373] abdominal 

hypertension, [374] predisposing factors such as age, [375] and worse outcome if inotropic 

agents are used. [99] A potential common denominator between both conditions is most 

likely to be tissue hypoperfusion. Such condition has been found to be a predictor of 

outcome in septic shock patients. [129;376-378] In addition, strategies based on 

maintaining optimal oxygen transport have been shown to be efficacious both in septic 

shock, [379] in non-cardiac surgery [380;381] and also in cardiac surgery. [382].  

However the association between inotropes and mortality may not necessarily imply 

causality because other factors unmeasured or unknown could explain this link. In that 

regard a recent paper by Turer et al. [111] explored the new field of metabolomics in 

cardiac surgery. The measurements of several metabolites produced from 

ischemia/reperfusion during retrograde cardioplegia were analyzed. An association between 

the duration of inotropic support and myocardial lactate was observed (Figure 78). This 

study suggests that patients with left ventricular dysfunction have limited myocardial 

metabolic reserve and flexibility after global ischemia/reperfusion stress. These findings are 

consistent with other authors who also confirmed that a reduced myocardial pH [109] 

(Figure 4) or increased myocardial lactate measured during CPB [110] (Figure 3) are 

predictors of increased postoperative inotropic support and mortality. This abnormal lactate 

release could imply delayed recovery of normal aerobic myocardial metabolism. As the 

myocardial metabolism is altered, myocardial function will be abnormal. Therefore the risk 



310 

 

of difficult separation from CPB is likely again to correlate with indices of global or 

regional myocardial tissue hypoperfusion that could have occurred even before CPB. 

Consequently, strategies enhancing the patient’s metabolic myocardial function in 

prevention of difficult separation from CPB could be also be considered. [383-385]. 

 

Figure 78 Inotropic support and lactate. 

Duration of inotropic support after surgery in patients whose myocardium continued to 
extract lactate (black) and in those where the myocardium was a net producer of lactate 
(grey), suggesting predominantly anaerobic metabolism. The median durations of inotrope 
infusions (0 vs. 9 hours) were significantly different (P < 0.02). (Adapted from Turer et 
al. [111]) 
 

In that regard, difficult separation from CPB could also be seen as a surrogate 

endpoint. Four criteria have been proposed to define a surrogate endpoint. [386] First, 

reliability must be present. Our definition of difficult separation from CPB is 

straightforward and reproducible. Second, as mentioned by Ventetuelo et al. [386], “a 

surrogate is ideally integral to the causal pathway of the disease, and the intervention being 

tested should act on the disease pathway that is represented by the surrogate”. This calls 
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back the issue of causality, as previously discussed. Third, there is epidemiologic evidence 

that the surrogate endpoint is linked to survival. The first and the third manuscripts were 

consistent with this definition. Finally, the surrogate marker will change proportionally to 

the probability of reaching the clinical endpoints through therapy. This requires randomized 

controlled trials of sufficient power and duration. Our fourth Manuscript is, to some extent, 

in support of this criterion, but not powered enough nor with a long enough follow-up 

period. 

However, in my opinion, it is unlikely that a strategy based on the modulation of a 

single factor will be the solution to a problem as complex as difficult separation from CPB. 

If difficult separation from CPB is secondary to left ventricular outflow tract obstruction, 

then the benefit of improving systolic myocardial function would not be as useful as if left 

ventricular impairment was the main etiology.  

Among factors predisposing to difficult separation from CPB, pulmonary 

hypertension has been known for several years and is discussed in Chapter 6. [8;100;115-

117] In a study of 1439 patients we observed a logarithmic relationship between the 

severity of pulmonary hypertension and postoperative hemodynamic complications (Figure 

62). This relationship has also been observed also by several investigators and is a 

component of several preoperative risk stratification models. [100;101] Several 

mechanisms can explain the presence of pre and postoperative pulmonary hypertension 

(Figure 64). They include pre and postoperative conditions such as left ventricular 

dysfunction, patient-prosthesis mismatch, reperfusion injury, protamine reaction, hypoxia, 

hypercarbia, pulmonary embolism and positive-pressure ventilation. Morbidity and 

mortality associated with pulmonary hypertension have also been more related to the 

degree of right ventricular adaptation to disease than to the absolute values of pulmonary 

arterial pressure. [46;189-191;306] This hypothesis would be consistent with studies in 

pulmonary hypertension where markers of right ventricular function have been shown to be 

the most important prognostic factors. [189;192]  
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In order to prevent the increase in pulmonary hypertension after cardiac surgery and 

its consequence on right ventricular function, several investigations exploring the use of 

inhaled milrinone were designed. Milrinone is a cyclic AMP-specific phosphodiesterase 

inhibitor that can exert both positive inotropic effects and vasodilation independently of ß1-

adrenergic receptor stimulation in the cardiovascular system. [41;319] Previous studies 

evaluating the use of intravenous milrinone in cardiac surgical patients were underpowered 

and performed on a small number of patients undergoing coronary revascularization. [348] 

Although milrinone has been shown to increase cardiac output [322;324;334] and to 

facilitate separation from CPB, [321] the major problem encountered with intravenous 

milrinone is the high incidence of systemic hypotension resulting in an increased need for 

vasoactive drugs. [66;311;324;342] The hypotension resulting from intravenous milrinone 

is either caused by vasodilation or through dynamic left or right ventricular outflow tract 

obstruction. [38]  

Only four observational studies addressing the role of inhaled milrinone in cardiac 

surgery have been published so far. [53;350;351;353] The effect of inhaled milrinone was 

first described by Haraldsson et al. [350] in an open-label trial of 20 cardiac surgical 

patients in the intensive care unit. The first part of the trial included 9 patients and showed a 

dose-response effect of incremental concentrations of inhaled milrinone with decreases in 

MPAP, PVR and PVR/SVR. No patient presented systemic hypotension. The 

hemodynamic parameters of patients treated with inhaled milrinone returned to baseline 

within 20 minutes after the end of the inhalation period, similar to our observation. In the 

second study, [351] inhaled milrinone was given to 18 heart transplant candidates in the 

intensive care unit. The MPAP, transpulmonary gradient and PVR decreased only in 

patients with pulmonary hypertension, defined as MPAP > 30 mmHg. Improvement in CO 

was observed, but there was no systemic hypotension. The administration of inhaled 

milrinone before CPB in high-risk patients with a Parsonnet score of 30.4 ± 14.2 was 

described. [53] Compared to the administration of inhaled milrinone after CPB, pre-CPB 

administration was associated with a reduction of difficult separation from CPB (18% vs. 

82%) defined as the use of more than two inotropes, the need for introduction of an intra-
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aortic balloon pump or reinitiation of CPB. Finally a recent study compared the use of 

intravenous versus inhaled milrinone in 48 patients with pulmonary hypertension after 

mitral valve surgery. [353] The mean pulmonary artery pressure and pulmonary vascular 

resistance decreased in both groups. However, the mean arterial pressure and systemic 

vascular resistance in the inhaled group were significantly higher than in the intravenous 

group. In addition, in the inhaled group, there was a reduction in intrapulmonary shunt 

fraction. The main finding of these four studies is that a reduction in indices of pulmonary 

hypertension is observed without any systemic hypotension with inhaled milrinone. None 

of them however were both randomized and performed during cardiac surgery.  

The last manuscript in Chapter 7 represents the first randomized controlled trial of 

inhaled milrinone in cardiac surgery administered before CPB. The objective of the study 

was to determine the safety of this strategy. As other investigators, we did not observe any 

hypotension in patients exposed to inhaled milrinone compared to placebo. As secondary 

outcomes, we noted that patients exposed to inhaled milrinone before CPB showed a 

reduced need for vasoactive agents in the same ratio as was described in the retrospective 

study of Lamarche et al. [53] Furthermore, patients exposed to inhaled milrinone had no 

significant changes in biventricular systolic function and compliance compared to the 

control group even if more severe pulmonary hypertension was present in the treatment 

group. The biventricular changes normally observed after CPB and described in 

Manuscript #3 were present in the control group but absent from the inhaled milrinone 

group. These findings do support the hypothesis that, as demonstrated in an animal model 

[354], inhaled milrinone may prevent pulmonary reperfusion syndrome. By preventing 

reperfusion injury, no significant increase in pulmonary artery pressures would be 

observed. This would facilitate right ventricular function and consequently separation from 

CPB. Thus inhaled milrinone could reduce right ventricular afterload and be considered as 

a pharmacologic “intra-aortic balloon pump” for the right ventricle. 
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8.2 Limitations and future projects 

There are several limitations to each of these studies. In the first manuscript, for 

instance, the role of a difficult separation from CPB in predicting mortality is unknown at 

the time the patient is seen before a cardiac surgical operation. This predictor will only be 

made apparent later in the operating room. For this reason, preoperative risk stratification 

models are still useful. Knowing the difficulty in separation from CPB is an advantage in 

the postoperative period only. For the critical care physician, resources allocation and 

outcome will be influenced by how well separation from CPB went. In our first manuscript, 

the precise mechanism leading to this condition was not identified for each patient due to 

the scope of the original study. Intraoperative echocardiography was used in 2075 (89.1%) 

patients, but the exam was not standardized and the final report not collected. Other 

variables are also associated with difficult separation from CPB such as pulmonary artery 

pressure, [10;100;101;115] left ventricular end-diastolic pressure, [11] diastolic function 

parameters, [155] right ventricular function indices, [46;112] and myocardial pH and 

lactate [76;109;110]; these were not routinely used and, consequently, unavailable for 

analysis. For all these reasons, further studies using a systematic approach for the diagnosis 

of conditions resulting in difficult separation from CPB are warranted and will offer more 

insight into the mechanism of this critical condition. 

In our second study, randomization allocated more patients with diabetes and more 

complex surgeries with longer CPB duration in the placebo group, but there were no 

clinically significant hemodynamic, echocardiographic and biochemical differences 

between the groups and their evolution was similar. It is nevertheless possible that the 

negative inotropic effect of amiodarone was overlooked because amiodarone was 

administered to patients with less complex procedures and shorter CPB times. Secondly, 

the gold standards for evaluating diastolic dysfunction are the time constant of relaxation 

(Tau) and pressure-volume curves obtained by direct invasive measurements to assess 

chamber compliance. However, these measures are invasive and are not feasible in 

everyday practice. Instead, we used a Doppler assessment of mitral and tricuspid inflow, as 
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well as pulmonary and hepatic flow variables to assess diastolic function. Tissue Doppler 

imaging, which is a relatively volume-insensitive modality, provided supportive 

information that allowed us to better stratify the degree of diastolic dysfunction. [173] 

Changes in mitral flow velocity have been noted when changes occurred in loading 

conditions, heart rates, and the left ventricular contractile state. [282] Hemodynamic 

variables were relatively similar in both groups except for a lower heart rate and cardiac 

index after CPB in the amiodarone group. Accordingly, we could not totally exclude the 

effect of the change of cardiac output and heart rate on diastolic filling patterns in our 

patients; neither were we able to totally exclude the possibility that amiodarone may have a 

certain effect on diastolic function that we did not identify, even when using load-

independent modalities. [173] Criteria for right ventricular diastolic dysfunction have been 

previously described [204] but are not yet as widely accepted as those used for LV diastolic 

dysfunction. So far however, no study has documented a deterioration of intraoperative 

biventricular diastolic function in patients undergoing valvular surgery, independently of 

the use of intravenous amiodarone.  

In the third manuscript, we observed an association between the use of inotropes 

and mortality. The number of deaths was however too small to perform logistic regression 

and thus determine the strength or weakness of the association. Several factors can 

influence the use of inotropic agents and one of them is the anesthesiologist. [64] A 

vasoactive agent protocol was used to reduce this potentially confounding factor; 

nevertheless, we cannot completely exclude it as a trigger for the use of inotropic agent. 

Finally, in our last study, the most important limitation was the small number of 

patients. We are currently performing a national multicentered randomized controlled trial 

using the same protocol (clinicaltrials.gov NCT00819377). So far 37 patients have been 

recruited. Despite these promising results, the use of inhaled milrinone will only tackle one 

of the three variables that determine venous return, i.e. right atrial pressure. Inhaled 

milrinone would be useless in case of massive hemorrhage (reduction in mean systemic 

pressure) or if there was a partial occlusion of the inferior vena cava (increased resistance 

to venous return) (Figure 47). However in such a critical situation, the ability to maintain a 
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normal venous return by having a reduced or normal atrial pressure and pulmonary vascular 

resistance could facilitate the maintenance of an adequate systemic perfusion. 

For this reason, a global strategy based on the accurate hemodynamic and 

echocardiographic determination of the mechanism of hemodynamic instability with 

appreciation of the normal pressure-volume changes expected after cardiac surgery is the 

first step in managing patients with difficult separation from CPB. Preventive strategies 

such as inhaled milrinone are appealing because of their simplicity, reduced cost compared 

to inhaled nitric oxide, and widespread application. Their benefit has yet to be confirmed 

but only within protocols that incorporate an understanding and recognition of the 

mechanism of hemodynamic instability. Such intraoperative protocols cannot be 

operational without the use of TEE.  

Further studies will have to explore further the mechanism of hemodynamic 

instability in cardiac surgery using new technologies such as strain imaging and three-

dimensional echocardiography. The monitoring of the autonomic nervous system will also 

provide more insight into the mechanism of difficult separation from CPB. Such 

monitoring can be performed at the bedside and will be presented by Dr. Alain Deschamps 

during the Canadian Anesthesia meeting in 2010. [387;388] The inflammatory reaction 

induced by CPB and monitored using tissue ultrasonography is currently analyzed by 

collaborators from Dr. Guy Cloutier’s laboratory. Red-cell aggregation, as a surrogate for 

inflammation, can be monitored continuously and non-invasively. [389;390] Combination 

therapy using inhaled prostacyclin and other agents in animal models and eventually in 

human experiments is currently under study by Maxime Laflamme in Dr. Louis Perrault’s 

laboratory. The pharmacokinetic and pharmacodynamic characterization of inhaled agents 

is under investigation in collaboration with France Varin, PhD and Ann Nguyen. We might 

consider exploring new strategies, for instance the administration of a second dose prior to 

weaning from CPB. Finally, the ultimate goal of cardiac surgery is to maintain cardiac 

function and consequently tissue and brain perfusion. A protocol on the use of brain 

oximetry as an endpoint of resuscitation is currently under investigation. [130] In that 

regard, with the collaboration of the École Polytechnique, as well as the Neurology, 
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Medicine and Anesthesiology departments of the University of Montreal, a portable 

wireless near-infrared non-invasive spectroscopy system combined with 

electroencephalography for bedside monitoring of stroke and cardiac patients is under 

development. (CIHR CIF grant #99516) This monitor will be tested in the operating room.   
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Conclusion 

In summary, we observed in this thesis that the process of separation from CPB 

after a cardiac surgical procedure is a very critical moment of the cardiac surgery. When the 

process is difficult, it will significantly alter postoperative outcome and result in increased 

morbidity and mortality. There are several risk factors for difficult separation from CPB but 

difficult separation from CPB will by itself increase mortality, independently of all other 

risk factors. Consequently, a clear understanding of the mechanism of difficult separation 

from CPB is the first step if any strategies are to be used to reduce this fearful complication. 

The mechanism is best understood using the concept of venous return described by 

Guyton. [54] It allows us to clearly identify one of the three mechanisms that could lead to 

reduced cardiac output or venous return. In addition, as venous return is one of the oxygen 

transport determinants, arterial oxygen content is the fourth variable that needs to be taken 

into account.  

The word “monitor” originates from the Latin “monere”, meaning warning. A 

monitor that can give us a clear reading of the balance between oxygen transport and 

consumption seems to be the ideal warning device in cardiac surgery. Another useful thing 

to do is monitor the adequacy of treatment. Such a monitoring system, now available, 

should inform us on tissue perfusion or microcirculation. The latter has been shown to be 

more sensitive in detecting the adequacy of the imbalance between oxygen transport and 

delivery compared to global hemodynamic and oxygen transport variables. [129] However, 

when this signal indicates an imbalance, every effort should be directed toward identifying 

the mechanism. This is where echocardiography plays an essential role. The treatment 

should be directed toward the corrections of the three determinants of venous return and 

arterial oxygen content. 

We observed significant changes in biventricular cardiac function after CPB in 

patients undergoing cardiac surgery. These changes were mostly evident on the right 
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ventricle. As right ventricular dysfunction is associated with such a poor outcome, the 

prevention of right ventricular dysfunction through modulation of afterload could represent 

a potential strategy in preventing difficult separation from CPB. Our preliminary 

observations using inhaled milrinone are promising. In patients exposed to inhaled 

milrinone before CPB, we observed that the natural right ventricular dilatation was 

prevented possibly through a reduction in right ventricular afterload or the prevention of the 

reperfusion syndrome, as demonstrated in several animal models. Inhaled agents could 

therefore represent a pharmacological “intra-aortic balloon pump” (IABP) of the right 

ventricle. As we know, IABPs do not change the underlying process for which they were 

inserted. However, they may increase cardiac reserve and buy some time until the primary 

cause of failure is removed or has dissipated. 

It is important however to keep in mind that inhaled agents such as milrinone will 

only modulate one of the determinants of venous return, namely the right atrial pressure. If 

for instance severe vasodilatory shock, acute hemorrhage or iatrogenic occlusion of the 

inferior vena cava is the etiology of difficult separation form CPB, the impact of 

preemptive inhaled agents will be significantly reduced. 

In summary, the process of weaning CPB is critical in cardiac surgery and when 

present, it will alter the outcome. A systematic approach to difficult separation from CPB 

should be considered. Clear understanding of the determinants of venous return is essential. 

This can be only gained by using combined hemodynamic, echocardiography and oxygen 

supply-demand monitoring. This approach should be part of modern care in every operating 

room and intensive care unit dealing with cardiac surgical patients. Finally, the alteration of 

some of the determinants of venous return such as right atrial pressure through a 

pharmacological strategy such as inhaled milrinone that does not, at the same time, reduce 

mean systemic pressure, could represent an effective way of reducing the prevalence of 

difficult separation from CPB. Should such a strategy be demonstrated effective in 

improving outcome after cardiac surgery through adequately powered randomized 

controlled trials, then difficult separation from CPB could definitively be considered a 

surrogate endpoint in cardiac surgery.  
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Appendix 1 Definitions of variables in the BART study 

Demographic factors  
Body mass index (kg/cm²) Weight/height 

Body surface area [(Height X weight)/3600]½ 
  
Cardiovascular risk factors  

Hypertension Documented history of treated or untreated 
hypertension 

Dyslipidemia Elevated triglycerides, cholesterol or lipids 
Severe obesity Body mass index > 30 kg/cm² 

Smoking Actively smoking or stop within 6 weeks 
History of smoking Stop smoking > 6 weeks 

  
Ischemic heart disease risk factors  

Angina Angina < 6 weeks before surgery. Patients 
with crescendo angina or main left artery 
stenosis who were in the hospital waiting 
for surgery were included in this category 

Myocardial infarction History of documented myocardial 
infarction 

Poor left ventricular function Left ventricular ejection fraction < 30%. 
Left ventricular ejection fraction was the 
last measured value reported prior to 
surgery by left ventriculography, 
echocardiography or nuclear medicine. 
The lowest value was selected. 

History of congestive heart failure Congestive heart failure was reported 
when present or previously-documented 
episode(s) of pulmonary congestion with 
or without clinical or radiological signs 

  
Coexisting illness  

Disabling stroke Permanent neurological deficit 
Previous thromboembolism Previous deep venous thrombosis, or 

pulmonary embolism 
Severe lung disease Obstructive, asthmatic or restrictive lung 

disease associated with disability 
Chronic renal dysfunction Dialysis requirement 

Diabetes mellitus Diabetes with drug or insulin requirement 
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Intraoperative variables  
American Society of Anesthesiologist 

Class 
The risk score of the American Society of 
Anesthesiologists ranges from 1 (healthy 
and low risk) to 5 (moribund and high 
risk). 

Complex Cardiac surgery involving repair or 
replacement of 2 or more valves without 
CABG 

Combined + CABG Valvular, aortic or complex surgery 
associated with coronary revascularization 

  
Postoperative outcome  

Death Death at 30 days. 
Stroke Focal neurologic deficit lasting more than 

24 hours 
Myocardial infarction Presence of an increase of CK-MB of more 

than 100 units, new Q waves in two 
contiguous electrocardiogram leads or 
confirmed graft occlusion within the first 
30 days after surgery 

Cardiogenic shock Need for vasopressors and inotropic 
agents, an intra-aortic balloon pump, or a 
ventricular-assist device for more than 48 
hours. Patients with a ventricular-assist 
device during surgery were excluded from 
that category 

Respiratory failure Duration of intubation for more than 48 
hours or reintubation for a pulmonary 
cause 

Renal complications One dialysis treatment, a doubling of the 
baseline serum creatinine level, or a serum 
creatinine level of more than 150 μmol per 
liter (1.7 mg per deciliter) 

Massive bleeding Composite outcome of bleeding from chest 
tubes that exceeded 1.5 liters during any 8-
hour period or massive transfusion, which 
was defined as the administration of more 
than 10 units of red cells within 24 hours 
after surgery, death from hemorrhage, re-
operation for bleeding all within 30 days 

CABG, coronary artery bypass graft, BART, Blood Conservation Using Antifibrinolytics in 

a Randomized Trial. 
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Appendix 2 Protocol for vasoactive management during CPB  

(CPB, cardiopulmonary bypass; IV, intravenous; MAP, mean arterial pressure) 
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Appendix 3 Protocol for vasoactive management during weaning from CPB  

(CPB, cardiopulmonary bypass; ECMO, extra-corporeal membrane oxygenator; IABP, 
intra-aortic balloon pump; IV, intravenous; MAP, mean arterial pressure; Rx, therapy; TEE, 
transesophageal echocardiography; VAD, ventricular assist device) 
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Appendix 4 Arterial blood gases and biochemistry variables 

 Group Baseline After CPB 
P value 
(group) 

P value 
(time) 

P value 
(group * time) 

Hemoglobin (g/L) Amiodarone 123  ± 14 95 ±10 0.5790 < .001 0.7594 
 Placebo 124 ±13 96 ±12    
Na (mmol/L) Amiodarone 141 ±3 139 ±3 0.1271 < .001 0.3909 
 Placebo 142 ±3 140 ±3    
K (mmol/L) Amiodarone 4.1 ±0.3 4.5 ±0.4 0.3095 < .001 0.1898 
 Placebo 4.1 ±0.3 4.4 ±0.4    
Urea (mmol/L Amiodarone 6.0 ±1.7 5.7 ±1.7 0.8623 < .001 0.005223 
 Placebo 6.4 ±1.9 5.4 ±1.5    
Creatinine (umol/L) Amiodarone 81 ±22 86 ±29 0.4268 0.5917 0.001324 
 Placebo 84 ±23 78 ±27    
Mg (mmol/L) Amiodarone 0.8 ±0.09 0.95 ±0.15 0.8443 < .001 0.9497 
 Placebo 0.8 ±0.08 0.95 ±0.17    
CK total (ug/L) Amiodarone 70 ±46 436 ±219 0.0973 < .0001 0.011723,25 
 Placebo 68 ±44 743 ±751    
CK-MB (ug/L) Amiodarone 1.9 ±1.0 23 ±12 0.4894 < .0001 0.2769 
 Placebo 1.9 ±1 32 ±50    
pH (arterial) Amiodarone 7.47 ±0.04 7.37 ±0.05 0.3981 < .0001 0.7110 
 Placebo 7.47 ±0.04 7.38 ±0.04    
PaO2 /FiO2 (mmHg) Amiodarone 424 ±88 284 ±123 0.6540 < .0001 0.5599 
 Placebo 438 ±90 283 ±111    
PaCO2 (mmHg) Amiodarone 37.2 ±4.8 43.8 ±4.4 0.3051 < .0001 0.019223,26 
 Placebo 36.6 ±4.0 45.7 ±4.4    

                                                 
23 P < 0.05 baseline versus after CPB in both groups 
24 P = 0.0071 baseline versus after CPB in the placebo group 
25 P = 0.0097 after CPB in the amiodarone compared to the placebo group 
26 P = 0.0237 after CPB in the amiodarone compared to the placebo group 
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 Group Baseline After CPB 
P value 
(group) 

P value 
(time) 

P value 
(group * time) 

HCO3 (mmol/L) Amiodarone 26.9 ±2.1 25.7 ±2.2 0.0496 0.1257 0.000227 
 Placebo 26.7 ±1.7 27.2 ±2.4    
pH (venous) Amiodarone 7.43 ±0.04 7.34 ±0.04 0.4544 < .0001 0.4989 
 Placebo 7.43 ±0.04 7.35 ±0.03    
PvO2 (mmHg) Amiodarone 44.6 ±5.4 37.8 ±4.5 0.3219 < .0001 0.1010 
 Placebo 44.3 ±6.0 39.6 ±4.1    
PvCO2 (mmHg) Amiodarone 43.5 ±4.8 49.3 ±3.9 0.3641 < .0001 0.3393 
 Placebo 43.6 ±4.4 50.4 ±4.9    
HCO3 (venous) (mmol/L) Amiodarone 28.8 ±1.9 27.0 ±2.1 0.1381 < .0001 0.0707 
 Placebo 28.9 ±1.8 28.0 ±2.6    

                                                 
27 P = 0.0002 baseline versus after CPB in the amiodarone group and p = 0.0008 after CPB in the amiodarone compared to the placebo group 
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Appendix 5 Hemodynamic variables 

 
Variable Group Baseline After bolus After CPB P value (group) P value 

(time) 
P value 

(group * time) 
SAP 
(mmHg)  

Amiodarone 109.1 ±16.2  105.8 ±18.9 120.9 ±14.4 0.8710 < .000128,29 0.4104  
Placebo 107.6 ±17.9 103.4 ±18.4 123.8 ±15.4    

DAP 
(mmHg)  

Amiodarone 55.1 ±7.8 57 ±9.6 55.6 ±7.4 0.8712 0.0903 0.2414 
Placebo 55.5 ±9.4 56.3 ±11.4 57.5 ±8.6    

MAP 
(mmHg) 

Amiodarone 73.1 ±9.3 73.3 ±11.7 77.4 ±8.7 0.9792 < .000128,29 0.2492 
Placebo 72.2 ±10.4 72 ±12.6 79.6 ±8.7    

HR  
(beats per minutes) 

Amiodarone 58.1 ±9.5 63.2 ±10.5 66.9 ±11.9 0.0006 < .0001 < .00011,30,31  
Placebo 58.1 ±10 67.9 ±17.1 78.7 ±10.8    

SPAP  
(mmHg) 

Amiodarone 31.9 ±13.4 37.8 ±13.3 36.8 ±8.8 0.2215 < .000128,5 0.0652 
Placebo 31.5 ±11.2 33.2 ±12.9 35.9 ±8.1    

DPAP 
(mmHg) 

Amiodarone 16.8 ±6.1 19.6 ±6.6 17.8 ±5.1 0.3354 0.002832 0.0859  
Placebo 16.8 ±6.7 17.5 ±6.5 17.6 ±3.9    

MPAP 
(mmHg)  

Amiodarone 21.8 ±8.1 25.6 ±8.6 24.1 ±5.9 0.2531 0.0001 0.045033,34 
Placebo 21.8 ±7.8 22.7 ±8.4 23.7 ±4.9    

                                                 
28 P < 0.05 baseline versus after CPB in both groups 
29 P < 0.05 after bolus versus after CPB in both groups 
30 P < 0.001 after CPB in the amiodarone versus placebo group 
31 P < 0.001 baseline versus after bolus in the placebo group 
32 P < 0.05 baseline versus after bolus in both groups 
33 P < 0.05 baseline versus after bolus and baseline versus after CPB in the amiodarone group 
34 P = 0.0445 after bolus in the amiodarone compared to the placebo group  
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Variable Group Baseline After bolus After CPB P value (group) P value 
(time) 

P value 
(group * time) 

CVP 
(mmHg) 

Amiodarone 11 ±3.5 12.8 ±5.1 14.3 ±3.7 0.0700 < .000128,29,32  0.0697 
Placebo 10.9 ±3.7 11.2 ±3.9 12.8 ±3.6    

PCWP 
(mmHg) 

Amiodarone 13.9 ±5.2 16.8 ±5.9 15.7 ±4.6 0.3342 < .000128,5  0.6520 
Placebo 13.6 ±4.7 15.6 ±6.1 15.1 ±3.4    

SV 
(ml) 

Amiodarone 62.4 ±15.2 60.2 ±16.7 67.4 ±16.3 0.6666 0.002228,29 0.8829 
Placebo 64.3 ±19.1 61.4 ±18.4 68 ±20.4    

CI 
(L/m/m²) 

Amiodarone 2.01 ±0.45 2.14 ±0.61 2.48 ±0.52 0.0193 < .000128,29 0.015730,8 
Placebo 2.03 ±0.49 2.26 ±0.79 2.9 ±0.67    

SVRI 
(dynes,sec,cm-5/m²) 

Amiodarone 2584 ±670 2425 ±801 2101.2 ±455.9 0.2760 < .000128,29 0.6054 
Placebo 2534 ±649 2379.9 ±870 1925.1 ±420.1    

PVRI 
(dynes,sec,cm-5/m²) 

Amiodarone 324 ±203 350 ±235 282.7 ±103.8 0.1947 0.2275 0.1715 
Placebo 337 ±217 294 ±260 246.8 ±86.8    

CI, cardiac index; CVP, central venous pressure; CPB, cardiopulmonary bypass; DAP, diastolic arterial pressure; DPAP, diastolic 
pulmonary artery pressure; HR, heart rate; MAP, mean arterial pressure; MPAP, mean pulmonary artery pressure; PCWP, pulmonary 
capillary wedge pressure; PVRI, indexed pulmonary vascular resistance; SAP, systolic arterial pressure; SPAP, systolic pulmonary artery 
pressure; SV, stroke volume; SVRI, indexed systemic vascular resistance. 

                                                 
8 P = 0.0079 baseline versus after bolus in the placebo group 
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Appendix 6 Two-dimensional echocardiographic variables 

Variables Group Baseline After bolus After CPB P value  
(group) 

P value 
(time) 

P value 
(group * time) 

LADt (cm) Amiodarone 4.2 ± 0.78 4.6 ± 0.9 4.1 ± 0.7 0.7945 0.0136 35 36,  0.8321 
 Placebo 4.3 ± 0.8 4.5 ± 0.5 4.2 ± 0.6    
LA area (cm2) Amiodarone 18.5 ± 5.7 20.6 ± 8.2 17.7 ± 3.5 0.2358 0.3043 0.8573 
 Placebo 20.6 ± 6.8 19.8 ± 4.2 19.8 ± 4.1    
LA volume (ml) Amiodarone 59.2 ± 29.3 70.9 ± 44.1 52.4 ± 16.2 0.3811 0.2975 0.8080 
 Placebo 67.5 ± 31.9 64.1 ± 18.7 62.1 ± 20    
LVEDA_4ch (cm2) Amiodarone 18.7 ± 5.3 20.0 ± 7.3 17.9 ± 4.1 0.0733 0.0002 36,37 0.4548  
 Placebo 22.3 ± 6.6 21.1 ± 6.6 19.4 ± 5.2    
LVESA_4ch (cm2) Amiodarone 9.1 ± 3.8 9.9 ± 5.9 9 ± 3.8 0.2130 0.1058 0.7849 
 Placebo 10.6 ± 4.6 10.3 ± 4.9 10.4 ± 4.7    
LVFAC_4ch (%) Amiodarone 39.1 ± 9.1 38.7 ± 8.1 35.1 ± 7.2 0.3701 0.0006 36,37 0.3852 
 Placebo 41.8 ± 8.8 40.5 ± 6.8 33.8 ± 8.1    
LVEDA_sax  (cm2) Amiodarone 29.8 ± 7.3 31.2 ± 8.0 29.6 ± 5.9 0.2839 0.6423 0.5196 
 Placebo 31.9 ± 7.9 32.2 ± 8.5 31.5 ± 8.3    
LVESA_sax  (cm2) Amiodarone 18.4 ± 6.3 19.4 ± 6.5 19.3 ± 4.7 0.6495 0.0701 0.2628 
 Placebo 18.9 ± 6.9 19.1 ± 5.7 21.1 ± 7    
LVFAC_sax (%) Amiodarone 51.8 ± 9.6 52.5 ± 11.4 49.9 ± 12.5 0.9397 0.0049 36,37 0.5000 
 Placebo 53.5 ± 9.6 52.6 ± 9.8 48.3 ± 11.9    
RADt (cm) Amiodarone 4.0 ± 0.6 4.1 ± 0.6 4.1 ± 0.6 0.2719 0.0687 0.5656 
 Placebo 3.9 ± 0.5 4.0 ± 0.7 4.1 ± 0.6    
RA area (cm2) Amiodarone 15.7 ± 3.5 15.4 ± 3.0 17.1 ± 4.2 0.8956 0.0033 36,37 0.5673 
 Placebo 15.6 ± 3.7 15.4 ± 4.4 17.8 ± 4.8    
RA volume (ml) Amiodarone 43.7 ± 16.6 45.2 ± 13.6 50.3 ± 18.6 0.6651 0.0037 37 0.0510 
 Placebo 42.8 ± 15.4 42.8 ± 18.9 53.7 ± 26.1    
                                                 
35 P < 0.05 baseline versus after bolus in both groups  
36 P< 0.05 after bolus versus after CPB in both groups  
37 P < 0.05 baseline versus after CPB in both groups 
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Variables Group Baseline After bolus After CPB P value  
(group) 

P value 
(time) 

P value 
(group * time) 

RV Diameter Amiodarone 3.2 ± 0.5 3.3 ± 0.5 3.3 ± 0.5 0.8119 0.2139 0.6561 
 Placebo 3.3 ± 0.5 3.2 ± 0.7 3.4 ± 0.6    
RVEDA (cm2) Amiodarone 13.7 ± 2.8 14.2 ± 3.9 14.1 ± 3.6 0.2104 0.1514 0.9429 
 Placebo 14.4 ± 4.3 15.5 ± 4.2 15.4 ± 3.7    
RVESA (cm2) Amiodarone 6.9 ± 1.8 7.6 ± 2.5 7.4 ± 2.3 0.4708 0.0022 35,36 0.9902 
 Placebo 7.1 ± 2.4 7.8 ± 2 8 ± 2.2    
RVFAC (%) Amiodarone 49.5 ± 8.9 46.2 ± 10.1 47.0 ± 11 0.4949 0.0555 0.9737 
 Placebo 50.6 ± 8 48.7 ± 7.2 47.6 ± 8.9    
TAPSE (cm2) Amiodarone 25.5 ± 7.3 22.2 ± 6.9 18.8 ± 5.1 0.7816 < .000136,37 0.8442 
 Placebo 25.4 ± 7.6 23.7 ± 7.4 18.8 ± 7.6    
CPB, cardiopulmonary bypass; LA, left atrium; LADt, left atrial transverse diameter; LVEDA, left ventricular end-diastolic area; 
LVESA, left ventricular end-systolic area; LVFAC, left ventricular fractional area change; RA, right atrium; RADt, right atrial 
transverse diameter; RV, right ventricle, RVEDA, right ventricular end-diastolic area, RVESA, right ventricular end-diastolic area, 
RVFAC, right ventricular fractional area change, TAPSE, tricuspid annular plane systolic excursion  
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Appendix 7 Doppler echocardiographic variables 

Variables Group Baseline 
(Mean ± SD) 

After 
bolus 

(Mean ± SD) 

After CPB 
(Mean ± SD) 

P value 
(group) 

P value 
(time) 

P value 
(group*time) 

Mitral Doppler E (cm/s) Amiodarone 80.0 ± 36.4 88.6 ± 23.1 106.9 ± 33.4 0.2613 <0.000138 3

9

,

,40 
0.6826 

 Placebo 79.2 ± 24.7 78 ± 17.6 98.5 ± 23.6    
Mitral Doppler A (cm/s) Amiodarone 72.3 ± 30 73.8 ± 22.3 66.9 ± 27.5 0.0883 0.8450 0.6390 
 Placebo 62.5 ± 22.1 62.8 ± 22.6 62.8 ± 18.8    
Mitral Doppler E/A (cm/s) Amiodarone 1.2 ± 0.7 1.2 ± 0.3 1.7 ± 0.7 0.1640 0.012438,39 0.0512 
 Placebo 1.4 ± 0.7 1.4 ± 0.8 1.6 ± 0.6    
MAV e wave (cm/sec) Amiodarone 6.9 ± 2.6 7.1 ± 1.7 7.4 ± 1.8 0.5873 0.2250 0.2429 
 Placebo 7.8 ± 3.5 7 ± 2.3 7.4 ± 2.0    
MAV a wave Amiodarone 8.7 ± 2.3 8.1 ± 2.7 8.4 ± 3.8 0.5068 0.8530 0.7383 
 Placebo 8.1 ± 2.7 8.4 ± 2.8 7.6 ± 3.3    
MAV e/a wave  Amiodarone 0.8 ± 0.3 0.9 ± 0.3 1.1 ± 0.6 0.3773 0.1735 0.1500 
 Placebo 1.1 ± 0.6 0.9 ± 0.4 1.2 ± 0.7    
MAV s wave Amiodarone 7.9 ± 1.8 8.2 ± 2.9 9.4 ± 3 0.9250 0.0716 0.3480 
 Placebo 8.4 ± 2.0 8.7 ± 1.7 8.3 ± 2.2    
E/e ratio Amiodarone 12.8 ± 10.7 12.6 ± 3.7 15.1 ± 6.9 0.2049 0.003239 0.5783  
 Placebo 11.1 ± 4.1 12.4 ± 3.6 13.4 ± 4.3    
PVF S wave Amiodarone 48.1 ± 21.3 44.5 ± 14.3 57.2 ± 29 0.2714 0.1113 0.3164 
 Placebo 43.3 ± 15.2 45.3 ± 16.1 47.8 ± 21.8    
PVF AR wave Amiodarone 21.1 ± 7.7 22.3 ± 8.7 29 ± 13.7 0.3957 0.0020 39,40 0.9299  
 Placebo 19.4 ± 6.8 19.5 ± 8.8 27.1 ± 14.2    
PVF D wave Amiodarone 34.1 ± 12.5 37.7 ± 15.7 61 ± 22.2 0.8846 <0.000139,4 0.005241 
                                                 
38 P < 0.05 baseline versus after bolus in both groups  
39 P< 0.05 baseline versus after CPB in both groups  
40 P < 0.05 after bolus versus after CPB in both groups 
41 P = 0.0227 after CPB in the amiodarone versus placebo group 
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Variables Group Baseline 
(Mean ± SD) 

After 
bolus 

(Mean ± SD) 

After CPB 
(Mean ± SD) 

P value 
(group) 

P value 
(time) 

P value 
(group*time) 

0 
 Placebo 39.7 ± 12.5 35.6 ± 16.8 50.3 ± 15.2    
PVF S/D ratio Amiodarone 1.5 ± 0.6 1.3 ± 0.4 0.9 ± 0.4 0.4232 0.000340,5 0.0112 6 
 Placebo 1.2 ± 0.5 1.4 ± 0.5 1 ± 0.5    
Tricuspid Doppler E (cm/s) Amiodarone 38.7 ± 11.5 38.5 ± 8.8 47.6 ± 14.2 0.8896 0.0002 39,40 0.4455 
 Placebo 37.9 ± 10.8 36.8 ± 11.5 53.1 ± 15.8    
Tricuspid Doppler A (cm/s) Amiodarone 32.3 ± 14.4 44.3 ± 15.7 35.4 ± 18.1 0.6986 0.0013 38 0.4440 
 Placebo 29.4 ± 10 39.3 ± 15.1 40.5 ± 19.2    
Tricuspid Doppler E/A (cm/s) Amiodarone 1.3 ± 0.3 0.9 ± 0.2 1.5 ± 0.6 0.8412 <0.000138,4

0 
0.3903 

 Placebo 1.4 ± 0.6 1 ± 0.3 1.4 ± 0.6    
TAV e wave (cm/sec) Amiodarone 7.3 ± 2.0 7.1 ± 2 6.9 ± 1.7 0.5660 0.8245 0.2296 
 Placebo 7.3 ± 2.6 6.7 ± 1.4 7.7 ± 2.3    
TAV a wave Amiodarone 11.2 ± 2.7 10.2 ± 3.1 7.8 ± 2.8 0.7881 0.0005 39,40 0.5594 
 Placebo 10.9 ± 3.3 10.5 ± 2.5 8.8 ± 2.5    
TAV e/a wave Amiodarone 0.7 ± 0.2 0.8 ± 0.4 1 ± 0.5 0.9933 0.0428 39,40 0.6237 
 Placebo 0.8 ± 0.8 0.7 ± 0.2 0.9 ± 0.3    
TAV s wave Amiodarone 8.5 ± 2.3 8.4 ± 2.5 6.7 ± 2.0 0.2006 0.1226 0.2915 
 Placebo 8.5 ± 2.1 8.8 ± 3.1 8.2 ± 2.2    
HVF S wave Amiodarone 19.2 ± 14.7 17.4 ± 15.2 -9.3 ± 21.2 0.8338 <0.000139,4

0 
0.1139 

 Placebo 17.8 ± 6.3 24.6 ± 11.7 -11.4 ± 23.3    
HVF D wave Amiodarone 14.8 ± 8.5 17.8 ± 9.6 34.1 ± 15.8 0.2233 <0.0001 

39,40 
0.3519 

 Placebo 13.4 ± 5.9 17.8 ± 8.5 28.8 ± 8.5    
HVF AR wave Amiodarone 12.2 ± 5.7 15.5 ± 8.8 22.3 ± 14.5 0.8067 0.0002 38,39 0.5387 
 Placebo 12.2 ± 9.4 17.3 ± 9.1 19.9 ± 13.1    

                                                 
5 P < 0.05 baseline versus after bolus in the placebo group and baseline versus after CPB in the amiodarone group 
6 P = 0.0136 baseline compared to after CPB in amiodarone versus placebo 
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Variables Group Baseline 
(Mean ± SD) 

After 
bolus 

(Mean ± SD) 

After CPB 
(Mean ± SD) 

P value 
(group) 

P value 
(time) 

P value 
(group*time) 

HVF S/D ratio Amiodarone 1.3 ± 0.8 1.1 ± 0.7 -0.3 ± 0.6 0.3795 <0.000139,4

0 
0.04577 

 Placebo 1.4 ± 0.4 1.5 ± 0.7 -0.3 ± 0.8    
AR: atrial reversal; CPB, cardiopulmonary bypass; E: early velocity; A: atrial filling; DT: deceleration time; HVF: hepatic venous 
flow; MAV: mitral annular velocity, PVF: pulmonary venous flow, SD, standard deviation; TAV: tricuspid annular velocity 

                                                 
7 P = 0.0154 after bolus in the amiodarone compared to the placebo group 
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Appendix 8 Diastolic function evaluation 
Variables Group Baseline After 

bolus 
After CPB P value 

(group) 
P value 
(time) 

P value 
(group*time) 

LV diastolic filling abnormality     0.3564* 0.009842,43 0.0703  
Normal Amiodarone 7 (18%) 8 (30%) 3 (9%)    

 Placebo 2 (6%) 5 (22%) 6 (18%)    
Mild Amiodarone 24 (62%) 12 (44%) 12 (35%)    

 Placebo 17 (50%) 12 (52%) 11 (33%)    
Moderate Amiodarone 6 (15%) 7 (26%) 15 (44%)    

 Placebo 10 (29%) 5 (22%) 13 (40%)    
Severe Amiodarone 2 (5%) 0 (0%) 4 (12%)    

 Placebo 5 (15%) 1 (4%) 3 (9%)    
RV diastolic filling abnormality     0.2332 < .000142,43,

44
0.8065 

 
Normal Amiodarone 3 (8%) 1 (4%) 1 (3%)    

 Placebo 6 (19%) 2 (8%) 1 (4%)    
Mild Amiodarone 28 (76%) 18 (67%) 1 (3%)    

 Placebo 22 (69%) 16 (64%) 1 (4%)    
Moderate Amiodarone 3 (8%) 5 (18%) 8 (27%)    

 Placebo 4 (12%) 7 (28%) 8 (29%)    
Severe Amiodarone 3 (8%) 3 (11%) 20 (67%)    

 Placebo 0 (0%) 0 (0%) 17 (63%)    
CPB, cardiopulmonary bypass; LV, left ventricular; RV, right ventricular 
*Generalized estimating equation (GEE) model including group as independent variable was performed at each time point because patients were 
not evenly distributed among the five-scale score and the model including time, group and groupX time did not converge. 

                                                 
42 P < 0.05 baseline versus after bolus 
43 P < 0.05 after bolus versus after CPB  
44 P < 0.05 baseline versus after CPB 
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Appendix 9 Arterial blood gases and biochemistry variables 

Variables Group Baseline After CPB 
P value 
(group) 

P value 
(time) 

P value 
(group * time) 

Hemoglobin (g/L) Inotropes 123 ± 13 95 ± 10 0.6892 < .0001 0.9791 
 No inotropes 124 ± 14 96 ± 11    
Na (mmol/L) Inotropes 141 ± 2 139 ± 3 0.5840 < .0001 0.4216 
 No inotropes 141 ± 3 139 ± 3    
K (mmol/L) Inotropes 4.2 ± 0.3 4.5 ± 0.4 0.3406 < .0001 0.2778 
 No inotropes 4.1 ± 0.3 4.5 ± 0.4    
Urea (mmol/L Inotropes 6.2 ± 1.5 5.6 ± 1.3 0.8087 < .0001 0.3562 
 No inotropes 6.2 ± 2.0 5.5 ± 1.8    
Creatinine (umol/L) Inotropes 80.1 ± 19.9 81.4 ± 27.3 0.4331 0.5825 0.1464 
 No inotropes 84.5 ± 25.2 82.8 ± 28.4    
Mg (mmol/L) Inotropes 0.80 ± 0.08 0.93 ± 0.16 0.1896 < .0001 0.4159 
 No inotropes 0.81 ± 0.09 0.97 ± 0.16    
CK total (ug/L) Inotropes 71.5 ± 52.5 628.5 ± 710.7 0.5573 < .0001 0.5987 
 No inotropes 67.5 ± 37.1 562.9 ± 443.7    
CK-MB (ug/L) Inotropes 1.9 ± 1.1 31.4 ± 51.1 0.2624 < .0001 0.2611 
 No inotropes 1.9 ± 0.9 23.9 ± 12.8    
pH (arterial) Inotropes 7.47 ± 0.04 7.38 ± 0.03 0.6544 < .0001 0.2220 
 No inotropes 7.47 ± 0.04 7.37 ± 0.05    
PaO2 /FiO2 (mmHg) Inotropes 411.4 ± 93.5 289.5 ± 126.4 0.3984 < .0001 0.0594 
 No inotropes 447.4 ± 82.0 277.3 ± 108.0    
PaCO2 (mmHg) Inotropes 36.9 ± 4.9 43.9 ± 4.4 0.2331 < .0001 0.1223 
 No inotropes 36.8 ± 4.1 45.5 ± 4.5    
HCO3 (mmol/L) Inotropes 26.6 ± 2.1 26.4 ± 2.5 0.5322 0.1625 0.8421 
 No inotropes 26.9 ± 1.7 26.5 ± 2.4    
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Variables Group Baseline After CPB 
P value 
(group) 

P value 
(time) 

P value 
(group * time) 

pH (venous) Inotropes 7.42 ± 0.04 7.35 ± 0.03 0.6245 < .0001 0.2862 
 No inotropes 7.43 ± 0.04 7.34 ± 0.04    
PvO2 (mmHg) Inotropes 43.50 ± 4.56 37.79 ± 4.09 0.0116 < .0001 0.9668 
 No inotropes 45.25 ± 6.43 39.50 ± 4.42    
PvCO2 (mmHg) Inotropes 43.57 ± 4.31 49.52 ± 4.69 0.6740 < .0001 0.5601 
 No inotropes 43.52 ± 4.88 50.09 ± 4.30    
HCO3 (venous) (mmol/L) Inotropes 28.63 ± 1.77 27.43 ± 2.28 0.3865 < .0001 0.6117 
 No inotropes 29.05 ± 1.93 27.53 ± 2.56    
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Appendix 10 Hemodynamic variables 
 

Variable Group Baseline After bolus After CPB P value 
(group) 

P value 
(time) 

P value 
(group * time) 

SAP 
(mmHg)  

Inotropes 106.2 ± 15.7 103.5 ± 16.7 121.3 ± 14.9 0.1599 < .000145,46 0.8672  
No inotropes 110.2 ± 18.1 105.6 ± 20.2 123.3 ± 14.9    

DAP 
(mmHg)  

Inotropes 54.3 ± 8 57.4 ± 10.4 56.3 ± 7.5 0.9684 0.0782 0.432 
No inotropes 55.3 ± 9.1 56.1 ± 10.7 56.8 ± 8.645    

MAP 
(mmHg) 

Inotropes 71.6 ± 8.8 72.8 ± 11.6 78 ± 8.8 0.4769 < .000145,46 0.703 
No inotropes 73.6 ± 10.6 72.6 ± 12.6 78.9 ± 8.7    

HR  
(beats per minutes) Inotropes 58.4 ± 9 65.7 ± 14.5 72.9 ± 12.6 0.8931 

< .000145,46,

47 0.9816  
No inotropes 57.9 ± 10.4 65.5 ± 14.3 72.8 ± 13.1    

SPAP  
(mmHg) Inotropes 33.3 ± 15.7 38.9 ± 15.2 37 ± 8.8 0.0615 

<. 000145,46,

47 0.1442 
No inotropes 30.4 ± 8.3 32.6 ± 10.6 35.8 ± 8.2    

DPAP 
(mmHg) 

Inotropes 17.4 ± 7.8 20.1 ± 7.5 17.9 ± 4.9 0.0987 0.002947 0.1244 
No inotropes 16.3 ± 4.8 17.2 ± 5.5 17.6 ± 4.2    

MPAP 
(mmHg)  

Inotropes 22.7 ± 10.1 26.4 ± 9.8 24.2 ± 5.6 0.0704 0.000245,47 0.1179 
No inotropes 21 ± 5.4 22.4 ± 7 23.7 ± 5.3    

CVP 
(mmHg) Inotropes 11 ± 3.7 12.2 ± 4.8 13.6 ± 3.9 0.7157 

< .000145,46,

47 0.8189 

                                                 
45 P < 0.05 baseline versus after CPB  
46 P < 0.05 after bolus versus after CPB  
47 P < 0.05 baseline versus after bolus  
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Variable Group Baseline After bolus After CPB P value 
(group) 

P value 
(time) 

P value 
(group * time) 

No inotropes 10.9 ± 3.5 11.8 ± 4.5 13.5 ± 3.6    
PCWP 
(mmHg) 

Inotropes 13.9 ± 5.5 17.1 ± 6.4 15.7 ± 4.3 0.2791 < .000146,47 0.3183 
No inotropes 13.6 ± 4.4 15.4 ± 5.5 15.2 ± 3.9    

SV 
(ml) 

Inotropes 61.7 ± 15 60.1 ± 17.9 66.8 ± 18.9 0.4635 0.002445,46 0.7236 
No inotropes 64.8 ± 18.9 61.4 ± 17.4 68.5 ± 18.1    

CI 
(L/m/m²) Inotropes 2 ± 0.4 2.2 ± 0.7 2.7 ± 0.7 0.8752 

< .000145,46,

47 0.8981 
No inotropes 2 ± 0.5 2.2 ± 0.7 2.7 ± 0.645    

SVRI 
(dynes,sec,cm-5/m²) 

Inotropes 2521 ± 553 2439 ± 915 2010 ± 454 0.9284 < .00014545 0.7388 
No inotropes 2592 ± 738 2371 ± 761 2016 ± 440    

PVRI 
(dynes,sec,cm-5/m²) 

Inotropes 358 ± 235 368 ± 238 268 ± 86 0.1187 0.001945,46 0.2905 
No inotropes 307 ± 183 284 ± 251 262 ± 106    

CI, cardiac index; CVP, central venous pressure; CPB, cardiopulmonary bypass; DAP, diastolic arterial pressure; DPAP, dia stolic 
pulmonary artery pressure; HR, heart rate; MAP, mean arterial pressure; MPAP, mean pulmonary artery pressure; PCWP, pulmonary 
capillary wedge pressure; PVRI, indexed pulmonary vascular resistance; SAP, systolic arterial pressure; SPAP, systolic pulmonary artery 
pressure; SV, stroke volume; SVRI, indexed systemic vascular resistance. 
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Appendix 11 Two-dimensional echocardiographic variables 
Variable Group Baseline After bolus After CPB P value 

(group) 
P value 
(time) 

P value 
(group * time) 

LADt (cm) Inotropes 4.3 ± 0.8 4.8 ± 0.9 4.2 ± 0.9 0.3046 0.000648,49 0.0833  
 No inotropes 4.2 ± 0.7 4.4 ± 0.5 4.1 ± 0.5    
LA area (cm2) Inotropes 20.2 ± 7.1 22.4 ± 7.5 19.1 ± 4.1 0.0983 0.024350 0.0196, 51 
 No inotropes 18.6 ± 5.3 18.0 ± 4.8 18.4 ± 3.8    
LA volume (ml) Inotropes 67.2 ± 34.6 80.0 ± 40.5 57.9 ± 19.3 0.1035 0.0410  0.0247,52 
 No inotropes 58.6 ± 25.9 55.6 ± 22.2 56.3 ± 18.4    
LVEDA_4ch (cm2) Inotropes 20.5 ± 5.9 21.1 ± 7.4 18.7 ± 3.8 0.8564 0.000349,53 0.8335  
 No inotropes 20.3 ± 6.4 20.2 ± 6.7 18.5 ± 5.4    
LVESA_4ch (cm2) Inotropes 9.7 ± 4.1 9.9 ± 5.2 9.3 ± 3.3 0.7292 0.0760 0.5879 
 No inotropes 9.9 ± 4.3 10.3 ± 5.6 10.0 ± 5.0    
LVFAC_4ch (%) Inotropes 41.1 ± 7.6 39.9 ± 7.9 35.9 ± 6.6 0.1738 0.001349,53 0.8206 
 No inotropes 39.8 ± 9.9 39.3 ± 7.2 33.2 ± 8.3    
LVEDA_sax (cm2) Inotropes 31.7 ± 6.4 31.9 ± 8.1 30.5 ± 5.3 0.8790 0.7867 0.2383 
 No inotropes 30.1 ± 8.4 31.4 ± 8.4 30.5 ± 8.5    
LVESA_sax (cm2) Inotropes 18.8 ± 5.2 19.4 ± 6.5 19.6 ± 4.3 0.7658 0.0957 0.1956 
 No inotropes 18.5 ± 7.3 19.1 ± 5.7 20.7 ± 7.1    
LVFAC_sax (%) Inotropes 53.5 ± 8.9 54.4 ± 10.0 50.9 ± 10.1 0.2298 0.005849,53 0.6633 
 No inotropes 52.0 ± 10.1 51.1 ± 10.8 47.6 ± 13.7    

                                                 
48 P <0.05 baseline versus after bolus in both groups  
49 P < 0.05 after bolus versus after CPB in both groups 
50 P < 0.05 baseline versus after bolus in the inotropes group 
51 P = 0.0135 after bolus in the inotropes versus no inotropes group. 
52 P = 0.0117 after bolus in the inotropes versus no inotropes group. 
53 P < 0.05 baseline versus after CPB in both groups 
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Variable Group Baseline After bolus After CPB P value 
(group) 

P value 
(time) 

P value 
(group * time) 

RADt (cm) Inotropes 3.9 ± 0.5 4.0 ± 0.7 4.0 ± 0.7 0.3409 0.1738 0.4578 
 No inotropes 4.0 ± 0.5 4.2 ± 0.5 4.3 ± 0.5    
RA area (cm2) Inotropes 15.8 ± 4.2 14.5 ± 3.7 16.5 ± 4.8 0.6457 0.004949,53 0.5822 
 No inotropes 15.6 ± 3.1 16.8 ± 3.7 18.0 ± 4.2    
RA volume (ml) Inotropes 44.2 ± 18.2 39.3 ± 15.1 47.2 ± 20.9 0.4803 0.026849 0.3501 
 No inotropes 42.5 ± 14.1 51.2 ± 16.9 55.3 ± 22.9    
RV Diameter Inotropes 3.3 ± 0.5 3.2 ± 0.5 3.4 ± 0.5 0.9016 0.3020 0.2890 
 No inotropes 3.2 ± 0.5 3.3 ± 0.7 3.3 ± 0.6    
RVEDA (cm2) Inotropes 14.4 ± 3.8 14.8 ± 3.3 14.3 ± 3.5 0.7268 0.1646 0.2699 
 No inotropes 13.7 ± 3.5 14.8 ± 4.7 14.9 ± 3.9    
RVESA (cm2) Inotropes 7.3 ± 2.4 8.0 ± 2.5 7.4 ± 2.1 0.3383 0.026550,54 0.0197, 55 
 No inotropes 6.7 ± 1.9 7.4 ± 2.0 7.9 ± 2.4    
RVFAC (%) Inotropes 49.2 ± 9.4 45.5 ± 10.0 47.9 ± 9.7 0.3611 0.1405 0.1724 
 No inotropes 50.7 ± 7.8 49.1 ± 7.6 46.7 ± 10.5    
TAPSE (cm2) Inotropes 25.2 ± 6.4 23.1 ± 7.7 19.8 ± 7.3 0.7944 < .000148,49,53 0.4321 
 No inotropes 25.7 ± 8.2 22.5 ± 6.6 17.9 ± 5.2    
CPB, cardiopulmonary bypass; LA, left atrium; LAA, feft atrial area; LADt, left atrial transverse diameter; LVEDA, left ventricular end-
diastolic area; LVESA, left ventricular end-systolic area; LVFAC, left ventricular fractional area change; RA, right atrium; RAA, right atrial 
aappendage; RADt, right atrial transverse diameter; RV, right ventricle, RVEDA, right ventricular end-diastolic area, RVESA, right 
ventricular end-diastolic area, RVFAC, right ventricular fractional area change, TAPSE, tricuspid annular plane systolic excursion. 
 

                                                 
54 P < 0.05 baseline versus after CPB in the no inotropes group 
55 P = 0.0596 after bolus in the inotrope versus no inotropes group  
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Appendix 12 Doppler echocardiographic variables 

Variables Group Baseline Afterbolus After CPB P value 

(group) 

P value 

(time) 

P value 

(group * time) 

Mitral Doppler E (cm/s) 

Inotropes 90.8 ± 39.7 93.9 ± 19.8 111 ± 30.8 0.0028 

< .000156,

57 0.8033  

 No inotropes 71.5 ± 20.2 75.5 ± 18.9 96.3 ± 26.7    

Mitral Doppler A (cm/s) Inotropes 74.6 ± 31.4 71.2 ± 25.7 76.1 ± 21.8 0.0076 0.3766 0.4747 

 No inotropes 62.7 ± 22.1 66.6 ± 20.9 53.6 ± 19.4    

Mitral Doppler E/A (cm/s) Inotropes 1.3 ± 0.7 1.5 ± 0.7 1.6 ± 0.7 0.6883 0.004856,58 0.2728  

 No inotropes 1.3 ± 0.7 1.2 ± 0.4 1.8 ± 0.7    

MAV e wave (cm/sec) Inotropes 7.5 ± 3.7 7 ± 1.6 7.2 ± 1.8 0.978 0.2231 0.4579 

 No inotropes 7.2 ± 2.6 7.1 ± 2.3 7.5 ± 2    

MAV a wave Inotropes 8.8 ± 2.5 7.6 ± 1.8 9.1 ± 4.3 0.434 0.8709 0.025259 

 No inotropes 8.2 ± 2.6 8.7 ± 3.1 7.2 ± 2.6    

MAV e/a wave  Inotropes 0.94 ± 0.61 1.01 ± 0.43 1.04 ± 0.62 0.8168 0.2325 0.0789 

                                                 
56 P < 0.05 baseline versus after CPB in both groups 
57 P < 0.05 after bolus versus after CPB in both groups 
58 P < 0.05 baseline versus after bolus in both groups 
59 P = 0.0373 after CPB in the inotropes versus no inotropes group. 
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Variables Group Baseline Afterbolus After CPB P value 

(group) 

P value 

(time) 

P value 

(group * time) 

 No inotropes 0.95 ± 0.39 0.87 ± 0.29 1.2 ± 0.61    

MAV s wave Inotropes 8.4 ± 2 7.6 ± 1.2 9.8 ± 3.2 0.9906 0.2593 0.008660 

 No inotropes 8 ± 1.8 9.1 ± 2.9 8.2 ± 2    

E/e ratio Inotropes 13.9 ± 11.9 13.6 ± 3.7 16.6 ±6.8 0.0104 0.0587 0.5347 

 No inotropes 10.4 ± 2.6 11.7 ± 3.3 12.5 ± 4.3    

PVF S wave Inotropes 46.4 ± 23 42.8 ± 13.4 57.3 ± 34 0.5504 0.0538 0.247 

 No inotropes 45.5 ± 15.4 46.4 ± 16.1 48.9 ± 18    

PVF AR wave Inotropes 19.9 ± 6.7 18.3 ± 5.3 32.9 ± 15.7 0.5166 0.000461 0.0459 62 

 No inotropes 20.7 ± 7.8 23.2 ± 10.4 25.2 ± 11.8    

PVF D wave 

Inotropes 37.1 ± 12.8 38.4 ± 17.2 60.3 ± 20 0.1095 

< .000156,5

7 0.3141 

 No inotropes 36.4 ± 12.9 35.5 ± 15.5 52.2 ± 18.7    

PVF S/D ratio Inotropes 1.37 ± 0.66 1.29 ± 0.51 0.98 ± 0.52 0.5688 0.000563 0.5907  

 No inotropes 1.36 ± 0.55 1.41 ± 0.45 1.03 ± 0.44    

                                                 
60 P = 0.0351 after bolus in the inotropes versus no inotropes group. 
61 P < 0.05 baseline and after bolus versus after CPB in the inotropes group 
62 P = 0.0510 after CPB in the inotropes versus no inotropes group 
63 P = 0.0004 baseline versus after CPB and P = 0.0003 after bolus versus after CPB 
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Variables Group Baseline Afterbolus After CPB P value 

(group) 

P value 

(time) 

P value 

(group * time) 

Tricuspid Doppler E (cm/s) 

Inotropes 40.4 ± 12.9 40.7 ± 11.5 55.4 ± 13.8 0.0188 

< .000156,5

7 0.3733 

 No inotropes 36.5 ± 9 35.2 ± 8.2 45.8 ± 15.2    

Tricuspid Doppler A (cm/s) Inotropes 29.8 ± 11.4 47 ± 18.2 38.1 ± 21.6 0.4135 < .000164 0.0034 65 

 No inotropes 31.7 ± 13.2 37.8 ± 11.4 38.1 ± 16.2    

Tricuspid Doppler E/A (cm/s) 

Inotropes 1.48 ± 0.6 0.92 ± 0.24 1.66 ± 0.57 0.1006 

< .000157,5

8 0.1001 

 No inotropes 1.25 ± 0.36 0.99 ± 0.3 1.35 ± 0.58    

TAV e wave (cm/sec) Inotropes 7.5 ± 2.7 6.3 ± 1.7 6.6 ± 2.4 0.1916 0.6139 0.2062 

 No inotropes 7.2 ± 2 7.4 ± 1.8 7.7 ± 1.6    

TAV a wave Inotropes 11 ± 3 10.7 ± 3 9 ± 2.6 0.3541 0.000756,57 0.5037 

 No inotropes 11 ± 3 10.1 ± 2.7 7.8 ± 2.7    

TAV e/a wave Inotropes 0.83 ± 0.86 0.61 ± 0.17 0.77 ± 0.3 0.1976 0.030657 0.151 

 No inotropes 0.66 ± 0.23 0.81 ± 0.41 1.11 ± 0.45    

TAV s wave Inotropes 8.2 ± 1.7 8.3 ± 3 7.3 ± 2.7 0.4917 0.1067 0.9421 

                                                 
64 P = 0.0001 baseline versus after bolus in the inotropes group 
65 P = 0.0273 after bolus in the inotropes versus no inotropes group 
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Variables Group Baseline Afterbolus After CPB P value 

(group) 

P value 

(time) 

P value 

(group * time) 

 No inotropes 8.6 ± 2.5 8.8 ± 2.6 7.4 ± 1.9    

HVF S wave Inotropes 21.5 ± 12.4 18.6 ± 7.6 -14.4 ± 23.9 0.3965 <.000156,57 0.009366 

 No inotropes 16.2 ± 10.1 22.4 ± 16.7 -7.3 ± 20.4    

HVF D wave 

Inotropes 15.2 ± 8.7 16.5 ± 10.1 31.6 ± 12.7 0.8754 

< .000156,5

7,3 0.3452  

 No inotropes 13.3 ± 6.1 18.7 ± 8.3 31.5 ± 13.3    

HVF AR wave Inotropes 13.8 ± 9.9 13.5 ± 7.7 29.8 ± 17.6 0.0904 0.000457,67 0.003 68 

 No inotropes 10.9 ± 4.8 17.9 ± 9.2 15.3 ± 5.1    

HVF S/D ratio 

Inotropes 1.44 ± 0.38 1.23 ± 0.46 -0.37 ± 0.73 0.946 

< .000156,5

7 0.2721 

 No inotropes 1.29 ± 0.75 1.28 ± 0.85 -0.22 ± 0.64    

E: early velocity, A: atrial filling; AR: atrial reversal; CPB, cardiopulmonary bypass; DT: deceleration time, HVF: hepatic venous flow; 
MAV: mitral annular velocity, PVF: pulmonary venous flow, TAV: tricuspid annular velocity  
 

                                                 
66 P = 0.0654 baseline in the inotropes versus no inotropes group  
67 P < 0.05 baseline versus after CPB in the inotrope group and baseline versus after bolus in the non-inotropes group. 
68 P = 0.0102 after CPB in the inotropes versus no inotropes group 
3 P = 0.0654 baseline in the inotropes versus no inotropes group 
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Appendix 13 Diastolic function evaluation 

Variable Group Baseline After bolus After CPB P value 
(group) 

P value 
(time) 

P value 
(group*time) 

LV diastolic filling abnormality        
Normal Inotropes 5 (16%) 6 (28%) 3 (10%) 0.9045* 0.0120,69 0.6665  

 No inotropes 4 (9%) 7 (24%) 6 (16%)    
Mild Inotropes 17 (55%) 8 (38%) 10 (35%)    

 No inotropes 24 (57%) 16 (55%) 13 (34%)    
Moderate Inotropes 6 (19%) 6 (29%) 14 (48%)    

 No inotropes 10 (24%) 6 (21%) 14 (37%)    
Severe Inotropes 3 (10%) 1 (5%) 2 (7%)    

 No inotropes 4 (10%) 0 (0%) 5 (13%)    
RV diastolic filling abnormality     0.5703 < .000142,70 0.2623   

Normal Inotropes 6 (21%) 1 (4%) 1 (4%)    
 No inotropes 3 (8%) 2 (7%) 1 (3%)    

Mild Inotropes 20 (69%) 14 (64%) 1 (4%)    
 No inotropes 30 (75%) 20 (67%) 1 (3%)    

Moderate Inotropes 3 (10%) 7 (32%) 6 (24%)    
 No inotropes 4 (10%) 5 (17%) 10 (31%)    

Severe Inotropes 0 (0%) 0 (0%) 17 (68%)    
 No inotropes 3 (7%) 3 (10%) 20 (63%)    

CPB, cardiopulmonary bypass; LV, left ventricular; RV, right ventricular 
*Generalized estimating equation (GEE) model including group as independent variable was performed at each time point because patients 
were not evenly distributed among the five-scale score and the model including time, group and groupX time did not converge. 

                                                 
69 P < 0.05 after bolus versus after CPB  
70 P < 0.05 baseline versus after CPB 
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