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Département d’informatique et de recherche opérationelle
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Faculté des arts et des sciences
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Résumé

Depuis l’introduction de la mécanique quantique, plusieurs mystères de la nature

ont trouvé leurs explications. De plus en plus, les concepts de la mécanique

quantique se sont entremêlés avec d’autres de la théorie de la complexité du

calcul. De nouvelles idées et solutions ont été découvertes et élaborées dans

le but de résoudre ces problèmes informatiques. En particulier, la mécanique

quantique a secoué plusieurs preuves de sécurité de protocoles classiques.

Dans ce mémoire, nous faisons un étalage de résultats récents de

l’implication de la mécanique quantique sur la complexité du calcul, et cela

plus précisément dans le cas de classes avec interaction. Nous présentons ces

travaux de recherches avec la nomenclature des jeux à information imparfaite

avec coopération. Nous exposons les différences entre les théories classiques,

quantiques et non-signalantes et les démontrons par l’exemple du jeu à cycle

impair. Nous centralisons notre attention autour de deux grands thèmes : l’effet

sur un jeu de l’ajout de joueurs et de la répétition parallèle. Nous observons

que l’effet de ces modifications a des conséquences très différentes en fonction

de la théorie physique considérée.

Mots clés: preuves intéractives à plusieurs prouveurs, jeux du cycle

impair, nonlocalité, complexité du calcul quantique, intrication.
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Abstract

Since the introduction of quantum mechanics, many mysteries of nature have

found explanations. Many quantum-mechanical concepts have merged with the

field of computational complexity theory. New ideas and solutions have been

put forward to solve computational problems. In particular, quantum mechanics

has struck down many security proofs of classical protocols.

In this thesis, we survey recent results regarding the implication of quantum

mechanics to computational complexity and more precisely to classes with inter-

action. We present the work done in the framework of cooperative games with

imperfect information. We give some differences between classical, quantum

and no-signaling theories and apply them to the specific example of Odd Cycle

Games. We center our attention on two different themes: the effect on a game

of adding more players and of parallel repetition. We observe that depending

of the physical theory considered, the consequences of these changes is very

different.

Keywords: multi-prover interactive proofs, Odd Cycle Games, non-

locality, quantum computational complexity, entanglement.
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Chapter 1

Introduction

Nowadays, information is a fundamental concept in computer science as well

as in pure physics. Physicists and other scientists try to uncover the mys-

teries behind nature using physical phenomena that can be explained, or at

least approximated, to certain degrees with mathematical equations. At the

same time, computer scientists work on a more abstract level to understand

the amount of computational resources necessary to solve a problem. The

two fields meet each other because any information system is implemented

by physical means and is governed by a physical model. The link between

physics and computer science is becoming even more important as computer

components decrease in size. Indeed, at the limits of the nanometer scale,

the choice of the physical model has a deep impact on the analysis of the

computational resources. The most successful physical theory, quantum

mechanics, has grown in popularity and has successfully explained many

phenomena of nature.

1.1 Incompleteness of Classical Theory

It was proven in 1964 that a purely classical explanation of physical

phenomena was incompatible with the predictions of quantum mechanics

[Bel64]. At that time, some physicists thought that it was impossible

for an event to have an effect instantaneously on another one. A local

hidden theory is a theory that follows these lines of ideas. Another theory,

quantum mechanics, allows in certain situation instantaneous correlations.

It was proven in [Bel64] that predictions from quantum mechanics could

1



2 CHAPTER 1. INTRODUCTION

not be explained by local hidden theories.

This had many implications in the field of computational complexity

theory since classification was made only with classical resources. When

quantum mechanical concepts are taken into account, many classes of re-

sources have to be redefined and new consequences emerge.

In this thesis, we present recent results about the differences of already

established computational classes when non-classical physical resources are

considered. We center our attention on classes with interaction and only to

those with classical communication between the parties. To demonstrate

the results, we use the framework of games, which are well suited for this

type of classes. In particular, we survey how the addition of more players

affects the outcome of a game and what consequences parallel repetition

has on games.

1.2 Related Works

We are mainly interested in how quantum mechanics changes the setting of

computational complexity classes with interaction, classical messages and

cooperative provers. Other classes are described with different properties

than the one we are interested. We give a brief summary of the related

work.

There exist complexity classes for which interaction is done through a

quantum channel: the class QIP (Quantum Interactive Proofs) [Wat03,

KW00] and its multi-prover analogue, the class QMIP (Quantum Multi-

prover Interactive Proofs)[KM02]. It has recently been shown [JJUW09]

that QIP = PSPACE.

Other interactive complexity classes related to the subject include the

classes RG (Referee Games) in the classical setting [Pap85, KM90] and QRG

(Quantum Referee Games) in the quantum setting [Gut05, GW04, GW07].

In both of these classes, the provers are in competition with each other.

Some have studied zero-knowledge interactive classes in the classical set-

ting [GMW91, GMR89] and in the quantum setting [Wat02, Wat06, Kob07].

Finally, there are interesting results related to the hardness of approxi-

mation of the value of games in [IKP+07, KRT07, KKM+08].
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1.3 Contribution

The thesis describes many results and presents them in an organized manner

to help the reader understand how the physical theory considered affects

computational classification. It is not meant to be a comprehensive survey

since this topic is still very active. However, results are chosen to indicate

possible future lines of work, to the best of our knowledge. The contribution

of the author is to group the research papers in a concise and organized

manner through a unified notation for clear understanding.

1.4 Structure of the Thesis

The remainder of this thesis is divided into five chapters. Chapter 2 intro-

duces the notions of quantum mechanics needed for this thesis. Chapter

3 introduces the notions of computational complexity theory and serves as

a motivation for the study of games. Chapter 4 gives a description of the

game framework. Chapters 5 and 6 are selections of results from recent

papers. Chapter 5 presents results for multi-prover games and chapter 6,

results on parallel repetition. Each of these chapters is divided into three

sections: classical theory, non-classical theory and a section with a specific

example.





Chapter 2

Quantum Information

The purpose of the present chapter is to introduce the reader to the notions

of quantum information. This chapter is not intended to be a comprehensive

introduction to the topic but rather presents essential tools of quantum

information needed to understand this thesis. For more information on the

topic, the reader is encouraged to consult [NC00]. Note that we assume

that the reader is familiar with basic notions of linear algebra.

2.1 The Qubits

Like the classical bits, quantum bits, or qubits for short, are parts of a

mathematical representation of a physical system. This abstraction is sim-

ilar to the concept of states on and off in electronics for the underlying

voltage measures they represent. There are many ways to construct the

physical implementation to produce qubits but these techniques are beyond

the scope of this thesis.

Analogously to the values 0 and 1 of a classical bit, a qubit can take

values |0⟩ and |1⟩. Although classical bits are uniquely restricted to values

0 and 1, qubits can be in superposition of states |0⟩ and |1⟩ as in

|ψ⟩ = α|0⟩+ β|1⟩, (2.1)

where |ψ⟩ is used to describe the state and α and β are complex numbers

with the restriction |α|2 + |β|2 = 1. Qubits can, therefore, be represented

in a two-dimensional complex vector space with orthonormal basis |0⟩ and
|1⟩.

5



6 CHAPTER 2. QUANTUM INFORMATION

By the nature of quantum mechanics, it is not possible to measure di-

rectly the values α and β to get a complete description of the state |ψ⟩.
Rather, when a qubit is measured with respect to the orthonormal basis,

the observation is 0 with probability |α|2 or 1 with probability |β|2.

2.2 Systems of Qubits and their Evolution

In general, the state of an n-qubit system can be represented in a 2n-

dimensional vector space with complex inner product over C .

The standard notation in quantum mechanics is called the Dirac nota-

tion. This notation represents a vector by |ψ⟩ where ψ is a label for the

vector. In this formalism, the object |ψ⟩ is called a ket and the object ⟨ψ| is
called a bra. The ket being a vector from a vector space, the bra is defined

to be the conjugate transpose of the ket

⟨ψ| = ¯|ψ⟩T = |ψ⟩†

where the dagger sign † indicates the conjugate transpose. We denote the

inner and outer product between vector |φ⟩ and |ψ⟩ by ⟨φ|ψ⟩ and |φ⟩⟨ψ|,
respectively. The name bra and ket have been taken from the definition of

the inner product ⟨φ|ψ⟩ that is the bracket.

We describe a method to enlarge vector spaces. This is often erroneously

called the tensor product but it should be really called the Kronecker prod-

uct. The Kronecker product U ⊗ V of two matrices U and V of dimension

M ×M and N ×N is calculated as follows. First, we write
u11V u12V . . . u1MV

u21V u22V . . . u2MV
...

...
. . .

...

uM1V uM2V . . . uMMV

 (2.2)

where uij is the element in the ith row and jth column of the matrix U .

Matrix (2.2) is a M ×M matrix of N × N matrices. The final Kronecker

product U ⊗ V is given by removing the parentheses for the matrices V in

(2.2) producing an MN ×MN matrix [Bra].

For notational convenience, when using the ket representation of vectors

in Kronecker products, the symbol ⊗ can be dropped. For example, we can

write the Kronecker product of |0⟩ and |0⟩ by |0⟩ ⊗ |0⟩ = |0⟩|0⟩ = |00⟩.
It would be useless to describe the state of a physical system at a par-

ticular time without being able to observe its evolution through time. In
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fact, the evolution of a closed system can be described by transformations

(unitary).

A transformation on a state can be represented either with matrix no-

tation or by a set of linear transformations on the basis of this state. For

example, transformations on qubits are represented by

U =

[
u00 u01
u10 u11

]
or equivalently by the set of transformations

|0⟩ U7−→ u00|0⟩+ u10|1⟩

|1⟩ U7−→ u01|0⟩+ u11|1⟩

where uij ∈ C with the condition that U is unitary.

Definition 2.2.1. [Unitary Transformations] A transformation U is said

unitary if

UU † = I

where I is the identity matrix with the same dimensions as matrix U .

Definition 2.2.1 is correct for finite Hilbert spaces. For infinite Hilbert

spaces, we would also require U †U = I. Unitary transformations play an

essential role in quantum mechanics. If the state of the system is |ψ⟩ at

time t1 and |ψ′⟩ at time t2, then there exists a unitary transformation U

that relates the two closed states by

|ψ′⟩ = U |ψ⟩.

Note that quantum mechanics only indicate that the unitary transformation

U exists; it does not indicate which unitary operator U it is.

It is worth mentioning at this point a very useful unitary transformation,

the Hadamard transformation, defined by

H =
1√
2

[
1 1

1 −1

]
and whose uses will be seen later.

In some cases, unitary transformations are not applied to the whole sys-

tem. Take, for example, the case when the two qubits of a two-qubit system

|ψ⟩ are physically separated. If a unitary transformation U is applied on
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the second qubit only, the effect on the system is given by unitary trans-

formation (I ⊗ U). In general for a two-qubit system, applying a unitary

operation U1 on the first part of the system and U2 on the second part of

the system is equivalent to applying the unitary transformation U1 ⊗U2 on

the whole system.

2.3 The Trace Function

A useful tool from linear algebra that will be used in this thesis is the trace

function.

Definition 2.3.1 (Trace). The trace of a matrix A is defined to be the sum

of its diagonal elements:

tr(A) =
∑
i

Aii.

The trace has two important properties. For two matrices A and B

whose products AB and BA exist, and a complex number z, the trace is

linear

tr(zA+B) = ztr(A) + tr(B),

and it satisfies

tr(AB) = tr(BA). (2.3)

For an operator A and a state |ψ⟩, it can be shown that property (2.3)

of the trace implies

tr(A|ψ⟩⟨ψ|) = ⟨ψ|A|ψ⟩. (2.4)

For multi-qubit systems or systems of states, the trace can be taken only

with respect to a certain qubit or state, this is called the partial trace. In

this case, the qubit or the state in question is indicated as a subscript.

Definition 2.3.2 (Partial Trace). Consider two states A and B with two

vectors |a1⟩, |a2⟩ ∈ A and |b1⟩, |b2⟩ ∈ B from their appropriate state space

and a state described by ρ = |a1⟩⟨a2| ⊗ |b1⟩⟨b2|. Then the partial trace of ρ

with respect to B is given by

ρA = trB (ρ)

= |a1⟩⟨a2|tr (|b1⟩⟨b2|)
= |a1⟩⟨a2|⟨b1|b2⟩

where ρA is the reduced state of ρ on system A. The definition of the partial

trace can be generalized with linearity on its input.
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2.4 Measurements

Now that we know that the state of a physical system can be represented

by |ψ⟩ and its evolution in time by a unitary transformation U , we need

to describe a mechanism to get information from a state. We obtain it

by measuring the state but the information gained is dependent on the

measurement made. Measurements are described by a collection {Mm} of

measurement operators living in the space of the state to be measured where

the index m refers to the outcome of the measurement. The measurement

operators are subject to the completeness equation∑
m

M †
mMm = I. (2.5)

If the system is in state |ψ⟩ immediately before measurement, then the

probability that outcome m occurs after measurement is given by

Pr|ψ⟩[m] = ⟨ψ|M †
mMm|ψ⟩ = tr(M †

mMm|ψ⟩⟨ψ|). (2.6)

The measurement changes the state of the system to

|ψ′⟩ = Mm|ψ⟩√
⟨ψ|M †

mMm|ψ⟩

Before giving an example of a measurement on a state, we define two

important properties that an operator can have.

Definition 2.4.1 (Hermitian Operator). We say that an operator P is

Hermitian if

P = P †. (2.7)

Definition 2.4.2 (Orthogonal Operator). We say that two operator Pm
and Pm′ are orthogonal if

PmPm′ = δm,m′Pm (2.8)

where δm,m′ is the Kronecker delta function defined by

δm,m′ =

{
1 if m = m′

0 if m ̸= m′.
(2.9)

To illustrate the effect of a measurement on a state, the example of the

measurement of a qubit in the computational basis follows.
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Recall that the state of the qubit can be given by equation |ψ⟩ = α|0⟩+
β|1⟩ (equation (2.1)) subject to |α|2 + |β|2 = 1. In the computational

basis {|0⟩, |1⟩}, the outcomes m ∈ {0, 1} are obtained with measurement

operators {M0,M1} defined by

M0 = |0⟩⟨0|,

and

M1 = |1⟩⟨1|.

Since M0 and M1 are Hermitian and M = M2, the probability of getting

measurement outcome 0 and 1 is given by

Pr|ψ⟩[m = 0] = ⟨ψ|M †
0M0|ψ⟩ = ⟨ψ|M0|ψ⟩ = |α|2,

and

Pr|ψ⟩[m = 1] = ⟨ψ|M †
1M1|ψ⟩ = ⟨ψ|M1|ψ⟩ = |β|2.

The state after outcomes 0 and 1 are obtained will be:

|ψ′⟩ = M0|ψ⟩
|α|

=
α|0⟩
|α|

,

and

|ψ′⟩ = M1|ψ⟩
|β|

=
β|1⟩
|β|

,

respectively. Since the statistics of the measurement of states α
|α| |0⟩ and

|0⟩ and of states β
|β| |1⟩ and |1⟩ are the same, the global phase factor can

effectively be ignored. After normalization, measuring a qubit in the state

given by equation (2.1) with the computational basis {|0⟩, |1⟩} will lead to

the final state

|ψ′⟩ = |0⟩ with probability Pr|ψ⟩[m = 0] = |α|2,

and

|ψ′⟩ = |1⟩ with probability Pr|ψ⟩[m = 1] = |β|2.

There are two cases of quantum measurements that are often seen in lit-

erature: projective measurements and POVM (Positive Operator-Valued

Measures). In some case, the use of these special cases simplifies the anal-

ysis of a problem. Projective measurements with unitary transformations

and auxiliary systems are POVM and POVM are equivalent to general mea-

surements.
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A projective measurement is described by an observable M that is a

Hermitian operator with spectral decomposition

M =
∑
m

mPm

where Pm is the projector onto the eigenspace of M with eigenvalue m.

The set of eigenvalues represents the set of possible outcomes. Similarly to

general measurements, the outcome m occurs with probability

Pr|ψ⟩[m] = ⟨ψ|Pm|ψ⟩

and after measurement, the state evolves to

|ψ′⟩ = Pm|ψ⟩√
Pr|ψ⟩[m]

Being a special case of general measurements, projective measurements have

an important property: the operators {Pm}M are orthogonal projectors.

This means that {Pm}M are Hermitian and orthogonal.

In order to describe an observable M , a complete set of orthogonal

projectors {Pm}m is often given satisfying equations
∑

m Pm = I as well as

equations (2.7) and (2.8). Moreover, when it is said to “measure in a basis

{|m⟩}m”, this means to make the projective measurement with projectors

Pm = |m⟩⟨m|, where M =
∑

mmPm.

POVM are a particularly useful formalism. Let Mm be a measurement

operator such that
∑

mM
†
mMm = I describes a measurement on quantum

state |ψ⟩ and define

Em
def
= M †

mMm.

Then similarly to general measurements, {Em}m satisfies the completeness

relation (2.5). Each operator Em, also called POVM element, is sufficient to

determine the measurement outcomes and the set {Em}m is called POVM.

The practicality of the POVM formalism can be illustrated with a sim-

ple example. Suppose we are given one of two quantum states, |ψ1⟩ = |0⟩ or
|ψ2⟩ = (|0⟩+|1⟩)√

2
, which are indistinguishable with perfect reliability but we

do not know which of the states it is. Although it is impossible to distin-

guish the two states with perfect reliability, we can nonetheless devise an

experiment that will distinguish the states some of the time and never make

an error of mis-identification. Consider the POVM {E1, E2, E3} defined by

E1 =

√
2

1 +
√
2
|1⟩⟨1|, (2.10)
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E2 =

√
2

1 +
√
2

(|0⟩ − |1⟩)(⟨0| − ⟨1|)
2

, (2.11)

E3 = I − E1 − E2. (2.12)

These are clearly POVM since each operator is positive and satisfies the

completeness relation (2.5). When we measure the state, we have that

⟨ψ1|E1|ψ1⟩ = 0, (2.13)

⟨ψ2|E2|ψ2⟩ = 0. (2.14)

By equation (2.6), equations (2.13) and (2.14) mean that the probability

of measuring E1 and E2 from the state |ψ1⟩ and |ψ2⟩ respectively is 0.

Therefore, if the unknown state |ψ⟩ was indeed |ψ1⟩ there is zero probability
that E1 will be observed and if the state was |ψ2⟩ there is zero probability

that E2 will be observed. In other words, if the result of the experiment is

E2, the state was |ψ1⟩ and if the results is E1, the state was |ψ2⟩. When the

result is E3, it is impossible to know which state it was. In both cases, when

|ψ⟩ is |ψ1⟩ or |ψ2⟩, the probability of correctly identifying the unknown state

|ψ⟩ calculated from equation (2.6) is 1√
2+2

≈ 0.29. What is very interesting

from the standpoint of POVM is that this probability is higher than it

would be possible with projective measurements. This example concludes

the demonstration of how useful the POVM formalism is.

2.5 Entanglement

So far, we have explained how to represent the evolution of the state of a

system, how to measure it and what information can be extracted as well

as how the measure changes the state of the system. This section presents

one of the most puzzling concepts in quantum mechanics: entanglement.

Consider a composite system of m + n qubits described by the state

|ψ⟩. If |ψ⟩ can be written as |ψ⟩ = |ψ1⟩|ψ2⟩ with two separate states |ψ1⟩
and |ψ2⟩ of m and n qubits respectively, then it is called a product state.

If the state cannot be separated in this manner, we say the state |ψ⟩ is

entangled. Entangled states play a crucial role in quantum information and

it is probably the most astonishing phenomenon in quantum mechanics.

Well-known examples of entangled states in the literature are the two-

qubit Bell states:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩),
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|Φ−⟩ = 1√
2
(|00⟩ − |11⟩),

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩),

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩),

where the last state is also called the Einstein-Podolsky-Rosen (EPR) pair,

introduced in [EPR35].

To get a better understanding of the power of entanglement, an example

will be used. Suppose Alice and Bob are separated and share an EPR pair

where Alice keeps the first qubit and Bob keeps the second qubit. Suppose

now that Alice measures her qubit. With probability 1
2
, she will get the

outcome 0 and with probability 1
2
, she will get the outcome 1. By the

nature of the EPR pair, Alice then knows that Bob will get measurement

outcome 1 or 0 with perfect probability before he measures. However, from

the perspective of Bob, who does not know if Alice has measured yet or not,

his state is still the EPR pair. Only if Alice tells him the result she got, will

he know that his state is in fact |0⟩ (if Alice got outcome 1) or |1⟩ (of Alice
got outcome 0). The troubling effect is that no matter who measured first,

they will still get opposite outcomes.

You might think that when Alice measures her state a signal is sent to

the state of Bob. But experiments indicate that if this is the case, it would

be supraluminal and would violate special relativity. In [Bra], a paradoxical

scenario is described that indicates how signalling theory is problematic:

[...]if the two particles are moving away from one another, rela-

tivity allows for a paradoxical situation in which each particle is

measured after the other in its own space-time frame, and there-

fore it does not even make sense to say that the first-measured

particle “decides” the outcome for both particles: neither par-

ticle is measured first! This whole concept revolted Einstein to

such an extent that he called it “spooky action at a distance”.

Another explanation of the strange phenomenon might be that quantum

mechanics is wrong and that each particle is already determined to be in

the state |01⟩ or |10⟩ before Bob and Alice receive it. That is, randomness

occurs before separation. Again in [Bra], an experiment that was made is

described in which each participant Bob and Alice apply the Hadamard

transformation upon receiving their state. For details of the experiment,
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consult [Bra]. It is shown that the resulting statistical outcomes would be

different in the case that the state would be already |01⟩ or |10⟩ and the

case that the state is changed at measurement. Experiments have shown

that the state is in fact changed after measurement and not at the separa-

tion[FC72,ADR82,AGR82,TBG+98,TBZ+98].

All these results do not prove that quantum mechanics is correct but

rather that a näıve classical interpretation is not sufficient. Can there be

another classical explanation? This question puzzled Einstein, Podolsky

and Rosen but it was not until 1964, that Bell’s theorem ruled out any

classical theory [Bel64].



Chapter 3

Computational Complexity

Theory

This chapter gives motivations for the study of games in chapter 4. The

notion of games that will be presented in this thesis is linked to the notion

of multi-prover interactive proofs in computational complexity. This is the

reason we devote an entire chapter to this topic.

A short reminder of relevant complexity classes will be presented. We

assume the reader is familiar with basic notions of complexity theory. For

more details on the topic, consult [Sip06] for an introduction to complexity

theory and [Wat] for more information on complexity theory classes with

quantum information.

3.1 Definitions and Non-Interactive Classes

Computational complexity theory is the science that studies the amount

of resources required by an algorithm to solve a given computational prob-

lem. Common resources include time and space with respect to the size of

the input, but also randomness, alternations, interaction and many more.

The theory of computational complexity characterizes quantified amount of

resources into computational classes.

Central elements in computational complexity theory are languages.

A language is a set of strings (e.g.:{000110,1010}) over an alphabet Σ

(e.g.:Σ1 = {0, 1}). In this setting, we can study the problem of decid-

ing whether of not a given string is in a language. An important set of

15
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problems are decision problems: problems for which the solution is either

yes or no. A particular set of decision problems, promise problems, are well

suited for the game setting of the next chapter. A promise problem is a

decision problem for which the input is a subset of all possible string Σ∗.

We formalize the notion of promise problems with the following definition

from [Wat].

Definition 3.1.1 (Promise Problems). A promise problem is a pair A =

(Ayes, Ano) where Ayes, Ano ⊆ Σ∗ are sets of strings satisfying Ayes∩Ano = ∅.
The sets Ayes and Ano are sets of yes-instances and no-instances having

answers yes and no respectively.

Adding the condition Ayes ∪Ano = Σ∗ to the definition of promise prob-

lems gives the definition of a language. We can group any problems, and

in particular promise problems, of related complexity into classes. In the

remaining of this section we will give the description of different complexity

classes with respect to promise problems rather than just languages. The

motivation for this transition will be clear in the next chapter.

In complexity theory, we are also interested by relations between differ-

ent classes. If there exists a function f so that for all x ∈ Ayes, f(x) ∈ Byes

and for all x ∈ Ano, f(x) ∈ Bno then we say there is a reduction from the

class A to B, A ≤ B. If there is as well a reduction from class B to A, B ≤ A,

we say that the two classes are equivalent. There are some restrictions for

the type of functions for this to be true, but for the results presented you

can assume the function f is a classical polynomial-time function on inputs

in Ayes ∪ Ano.
In the literature, classes of problems are described in terms of languages

and not on promise problems. In this thesis however, we will follow non-

standard definitions based on the promises problems. We give the definition

of some classes with which the reader should be familiar.

Two of the most discussed classes are the class P and NP. Their defini-

tion with respect to promise problems is given [Wat].

Definition 3.1.2 (Class P). A promise problem A = (Ayes, Ano) is in

P if and only if there exists a deterministic Turing machine M in time

polynomial in the length of the input |x| that accepts every string x ∈ Ayes
and rejects every string x ∈ Ano.

Definition 3.1.3 (Class NP ). A promise problem A = (Ayes, Ano) is in

NP if and only if there exists a polynomially bounded function p(|x|) and
a deterministic Turing machine M in time polynomial in the length of the
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input |x| with the following properties. For every string x ∈ Ayes,M accepts

(x, y) for some y ∈ Σp(|x|), and for every string x ∈ Ano, M rejects (x, y) for

all strings y ∈ Σp(|x|).

Nowadays, the list of classes is very large. Many results in complexity

theory put in relation one class to another or prove the equivalence of two

classes. We give the definition of three more fundamental classes: PSPACE,

EXP and NEXP.

Definition 3.1.4 (Class SPACE ). A promise problem A = (Ayes, Ano) is

in PSPACE if and only if there exists a deterministic Turing machine M

running in space polynomial in |x| that accepts every string x ∈ Ayes and

rejects every string x ∈ Ano.

Definition 3.1.5 (Class EXP). A promise problem A = (Ayes, Ano) is in

EXP if and only if there exists an deterministic Turing machine M in time

exponential in the length of the input |x| (meaning time bounded by 2p(|x|),

for some polynomial-bounded function p(|x|)), that accepts every string

x ∈ Ayes and rejects every string x ∈ Ano.

Definition 3.1.6 (Class NEXP). A promise problem A = (Ayes, Ano) is in

NEXP if and only if there exists a polynomially bounded function p(|x|)
and a deterministic Turing machine M in exponential time in the length of

the input |x| with the following properties. For every string x ∈ Ayes, M

accepts (x, y) for some y ∈ Σ2p(|x|) , and for every string x ∈ Ano, M rejects

(x, y) for all strings y ∈ Σ2p(|x|) .

Note that we do not introduce the class NPSPACE for nondetermin-

istic polynomial space since it was shown that PSPACE = NPSPACE in

[Sav70]. Therefore, nondeterminism does not add more power to the class

PSPACE. Figure (3.1) puts in relation the complexity classes described so

far by drawing the more powerful complexity classes higher. Lines indi-

cate containments; for example, NP contains P. Note that none of these

containments are known to be strict.

Next, we give a brief overview of other classes along with some results

that are going to be relevant to the rest of the thesis.

3.2 Interaction with a Single Prover

Introduced in [GMR85], an interactive proof system is a model of compu-

tation in which a polynomial number of messages are exchanged between
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EXP

NP

PSPACE

P

NEXP

Figure 3.1: Hierarchy of Complexity Classes.

two parties: a prover and a verifier. We let the prover have unbounded

computational power and the verifier be polynomial time but allowed to

use randomness. The goal of the prover is to convince the verifier about the

truth of a statement that might be beyond the reach of the verifier. The

verifier wants to challenge the prover in order to verify his assertion. To do

so, the verifier sends a question q ∈ Q to the prover for which the prover

answers a ∈ A where Q and A are sets of possible questions and answers

of polynomial size. A round of interaction is defined as a question from the

verifier and an answer from the prover. After a certain number of rounds,

based on the answers he received, the verifier either accepts or rejects the

statement of the prover. If the answer is a member of the yes-instances

Ayes, the verifier should accept it and if the answer is from the no-instances

Ano, the verifier should reject it.

Sometimes, the verifier cannot be convinced without doubt of the truth

of the statement using a polynomial number of messages. This is why we

introduce the completeness and soundness probabilities. In the formalism

of promise problems, if x ∈ Ayes, the completeness probability is the prob-

ability that the verifier accepts it, that it does not reject a true statement.

If a x ∈ Ano, the soundness probability is the probability that the verifier

accepts it, that he accepts a false statement. Formally, we define these

two notions for interactive proofs with promise problems in the following
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definitions.

Definition 3.2.1 (Completeness). Given a promise problem A =

(Ayes, Ano), the completeness probability c is the minimum probability for

which the verifier V accepts any x ∈ Ayes

Pr[V accepts x] ≥ c. (3.1)

Definition 3.2.2 (Soundness). Given a promise problem A = (Ayes, Ano),

the soundness probability s is the maximum probability for which the veri-

fier V accepts x ∈ Ano
Pr[V accepts x] ≤ s. (3.2)

We define the class BPP again with the non-standard promise problems

formalism.

Definition 3.2.3 (Class BPP). A promise problem A = (Ayes, Ano) is in

BPP (Bounded-error, Probabilistic, Polynomial time) if and only if there

exists a probabilistic Turing machine M in time polynomial in the length of

the input |x| with completeness probability 2
3
and soundness probability 1

3
.

The interactive proof system described above with the verifier given the

power of the class BPP characterizes the class IP.

Definition 3.2.4 (Class IP). A promise problem A = (Ayes, Ano) is in IP

(Interactive Proofs) if and only if there exists an interactive proof system for

A given that the verifier has the power of the class BPP and the prover has

unbounded computational power. The communication between the verifier

and the prover remains classical.

Historically, some complexity theorists wanted to increase the power of

the class NP by introducing interaction. It turns out that if the verifier is

bounded by the class P only (without randomness), the resulting interactive

class would be equal to the class NP [AB]. Therefore, having the power of

NP with interaction does not add more power to the class. On the other

hands, by letting the verifier be probabilistic as in the class BPP, it was

shown that the class IP=PSPACE in [Sha92], which might increase the

power of the class beyond NP and BPP if NP ̸= PSPACE. It was also

shown by non trivial arguments that restricting the completeness probability

to be 1 does not change the power of the class. However, restricting the

soundness probability to be 0 reduces the power of the class IP to the class

NP because the verifier becomes deterministic [AB].
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To illustrate the concept of the class IP, an illustrative scenario borrowed

and adapted from [AB] is presented. Suppose that Alice has a friend Bob

who claims that he can distinguish the taste of two similar soda drink Cole

and Petsi. To verify that assertion, Alice is going to prepare one cup of each

drink labelled 1 and 2 in the absence of Bob and then present them to him.

If after tasting them, Bob can correctly identify each one, Alice is more

convinced that Bob is telling the truth. The promise in this case is that

exactly one of the bottle of Alice contains Cole and exactly one contains

Petsi. The query (two cups) from Alice and the answer of Bob constitute

one round of interaction. However, Bob could give a random answer and

with probability 1
2
give the right result. This is why Alice is encouraged to

redo the test n times to increase her confidence level. At the end, Bob could

have been lucky with probability only (1
2
)n. Alice can choose the number n

of repetitions until she is satisfied and thus can detect a cheating Bob with

probability 1 − (1
2
)n. Since Alice knows which cup has which soda drink,

the completeness probability is 1 (i.e.: she will accept every good answer

given by Bob). The probability that Bob will cheat successfully Alice, the

soundness probability, is (1
2
)n.

3.3 Interaction with Many Provers

Interactive proofs were generalized to more than one prover, resulting in the

class MIP (Multiprover Interactive Proofs) in [BOGKW88]. Cryptographic

purposes were originally the motivation behind this class. With this gen-

eralization, all communication between any provers is forbidden as soon as

interaction between provers and the verifier has started. However, since

the provers are cooperative, they can initially agree on a shared strategy

to convince the verifier. In the new paradigm, the verifier sends a question

to each prover and makes his decision based on their answers. A round

in multi-prover interactive proofs is a questions/answers tuple between the

verifier and all provers.

Definition 3.3.1 (Class MIP). A promise problem A = (Ayes, Ano) is in

MIP (Multi-prover Interactive Proofs) if and only if there exists a k-prover

interactive proof system with k ≥ 2 for A, given that the verifier has the

power of the class BPP and the provers have unbounded power. The com-

munication between the verifier and the provers is classical and the provers

cannot communicate once the interactive part of the protocol has started

with the verifier.
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For notational convention, MIPc,s[k, r] will be used to represent the class

of interactive proof systems with k-provers (k ≥ 2) and r-round (r ≥ 1) with

completeness probability c and soundness probability s. We write simply

MIP[k, r] when the specific values of c and s are not important and similarly.

Similarly, we write MIP[k] when the value of r ≥ 2 is not important.

The original paper [BOGKW88] already demonstrated that increasing

the number of provers to more than two does not change the power of

the class, thus for any value k ≥ 2, MIP[k] = MIP[2]. It was further

shown that NEXP = MIP[2, 1] [BFL90] and consequently that having more

than one prover might increase the power of the class IP = PSPACE to

MIP = NEXP (if PSPACE ̸= NEXP). After an increasing interest in

two-prover one-round interactive proofs, several refinements [CCL90, Fei91,

LS91] lead to the proof that every language in NEXP has a two-prover

one-round interactive proof with perfect completeness and exponentially

small soundness error [FL92]. Thus, the restriction of MIP1,s[2, 1] with

exponentially small soundness error s is as powerful as the more general

MIP[k]. Later, the parallel repetition theorem for two-prover one-round

interactive proofs appeared [Raz98].

To understand why more provers are more powerful than one prover,

let’s revisit the experiment of distinguishing the taste of soda drinks Cole

and Petsi. Let’s introduce another participant, Charlie, to the test. Now

Charlie and Bob claim that they both can distinguish the taste of Cole and

Petsi and want to convince Alice about that statement. Alice wants to make

sure that BOTH participants tell the truth. She could do as before with each

participant separately and detect each cheating participant with probability

1 − (1
2
)n after n repetition of the test. The probability that Alice detects

both participants if they cheat would then be
(
1− (1

2
)n
)2

because the two

events are independent of each other, enforced by the no-communication

condition. In fact with two participants, to get the same probability as

with one participant you just need to do more tests.

By looking at these results, one might think that two provers only affect

the soundness of the experiment and by a right number of sequential rep-

etitions it is possible to get the same results. If Alice does the experiment

as mentioned, this is indeed so. However, with two provers, Alice could

have less information and be as convinced as before. Suppose Alice has two

bottles of unidentified cola. The promise is that one bottle contains Cole

and the other contains Petsi. Now, Alice cannot verify the answers of the

provers since she does not even know the answer herself. However, what

she could do is to send the test to Bob and Charlie. Alice remembers which
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liquid she had put in the two cup and gives one to Bob and the other to

Charlie. If their answers do not contradict each other for a same cola noted

by Alice, she is more convinced that they both tell the truth. If Alice had

sent both cup to Bob, he could have cheated by comparing the first cup

with the second one so that there is no contradiction. It does not prove

that Bob can distinguish both liquids, it only proves that Bob can associate

similar liquids from different queries. For example, Bob could have called

the real Cole, Petsi, and the real Petsi, Cole and Alice would have not been

able to verify the solution. When using Charlie to check the answers of

Bob, we ensure that Bob makes less errors in misidentification by checking

contradictions between the participants. It turns out that after n repeti-

tions of the test, she will detect cheating provers with the same probability(
1− (1

2
)n
)2

as before.

With this example, one could conjecture that the power of the class

MIP is larger than IP since it is possible to prove more results than the

single prover scenario. With a single prover, it would have been impossible

for Alice to verify the answer from Bob which she does not know. In the

literature, the corroboration of the answers from the two provers as in the

above scenario is called oracularization. The second prover serves as an

“oracle” to check the answers provided by the first prover. This is what

gives power to the class MIP.

3.4 Interaction with Entanglement

All the definitions of complexity classes seen so far were made when quan-

tum information concepts were not applied to complexity theory. This has

the consequence that all previous results were assuming classical strategies

whereas in fact, the provers could harness the power of quantum mechanics.

This led to the introduction of new classes including MIP∗ in [CHTW04].

The class MIP∗ is the same as MIP except that in this case the provers are

allowed to share arbitrarily many entangled qubits beforehand.

Definition 3.4.1 (Class MIP∗). A promise problem A = (Ayes, Ano) is in

MIP∗ (Multi-prover Interactive Proofs) if and only if there exists a k-prover

interactive proof system with k ≥ 2 for A given that the verifier has the

power of the class BPP and the provers have unbounded computational

power. The communication between the verifier and the provers is classical

and the provers cannot communicate once the protocol has started. How-

ever, the provers are allowed to share arbitrarily many entangled qubits.
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Note that in MIP∗, the communication between the provers and veri-

fier is purely classical as before. Other variants such as QIP and QMIP

are defined with quantum provers/verifier communication but will not be

discussed further in this thesis.

The interest in the class MIP∗ is strengthened by the fact that although

the verifier can ensure the physical separation of the provers, he has no way

to control the sharing of entanglement between parties before the interaction

begins. Because of this limitation, the power of the class MIP∗ is of utmost

importance to the field of cryptography. For example, entanglement has

invalidated the security proof of previously believed-to-be secure protocols

based on classical strategies [BOGKW88, May96, BCMS98].

Many results proved earlier for the class MIP are unknown to be valid

for MIP∗ such as the relation between MIP∗[k, r], MIP∗[2, r] and NEXP

except the trivial inclusions MIP∗[k, r] ⊆ MIP∗[k + 1, r] and MIP∗[k, r] ⊆
MIP∗[k, r + 1]. Increasing the number of rounds and provers have still to

be studied in order to fully understand the power of MIP∗.

Much effort has been spent in order to establish the power of the class

MIP∗. Two explanations for the difficulty of this problem are that 1) there

is no bound for the amount of entanglement necessary for the player to have

an optimal strategy and 2) the correlations emerging from entanglement are

still not very well understood.

However, it was shown recently that the addition of a third player

for MIP∗ produces interesting results: NP ⊆ MIP∗
1,1/poly[3, 1] [KKM+08,

IKP+07] and NEXP ⊆ MIP∗
1,1−2−poly [3, 1][KKM+08]. It is shown in [IKM08]

that two-prover one-round interactive proof system for PSPACE still

achieves exponential small soundness error with entangled provers (and

more strongly, no-signalling provers). It is also shown that every language

in NEXP has a two-prover one-round interactive proof system of perfect

completeness, albeit with exponentially small gap between completeness

and soundness, in which each prover responds with only two bits.

Along those lines of research, one complexity class derived from MIP∗

has been widely studied and interesting results have been shown about it.

The classical class ⊕MIP[2, 1] with its entangled counterpart ⊕MIP∗[2, 1]

are similar to MIP[2, 1] and MIP∗[2, 1] with some restrictions. The verifier’s

output is a function of only the exclusif-OR (XOR) of the bits of the provers.

Definition 3.4.2 (Class ⊕MIP). A promise problem A = (Ayes, Ano) is in

⊕MIP if and only if there exists a one-round two-prover interactive proof

system for A wherein the provers each send a single bit to the verifier, and
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the verifiers decision to accept or reject is determined by the questions asked

along with the XOR of these bits. The communication between the verifier

and the provers is classical and the provers cannot communicate once the

protocol has started. The verifier and provers remains classical all the time.

Definition 3.4.3 (Class ⊕MIP∗). This class is similar to ⊕MIP, except

that the provers may now share arbitrary entangled states.

It has been proven that classically ⊕MIPc1,s1 [k, r] = NEXP for some

k ≥ 2 and r ≥ 1 and for some choice of probabilities c1 and s1 [BGS98,

H̊as01]. With entanglements, it was shown that ⊕MIP∗
12
16
, 11
16

+ϵ
[2, 1] ⊆

NEXP[CHTW04] for all ϵ ∈ (1, 1
16
), which was further improved to

⊕MIP∗[2] ⊆ EXP[Weh06]. In [CGJ07], it was shown that NP ⊆
⊕MIP1−ϵ, 1

2
+ϵ[2, 1].

Returning to the Cole vs Petsi experiment, we could say that Charlie

and Bob initially share two identical “magic” ice cubes. The cubes seem

“magic” to the eye of Alice but in fact use the power of entanglement in

a special manner. The ice cubes have the property that if they are put in

a cola, they become red or blue with equal local probability. The magic

of the ice cubes comes from the fact that if they are put in the same cola,

they will be of the same colour and if they are put in a different cola, they

will be of different colour. The power of these cubes will help Bob and

Charlie make the difference between the tastes of the colas. Upon receiving

their cup, Bob and Charlie randomly choose a cup and put the “magic”

ice cube in. Charlie identifies a red cup by Cole and a blue cup by Petsi.

Bob does the same procedure. Using this stratagem, they will be able to

successfully answer the queries of Alice every time. If Alice is unaware of the

stratagem, she could be completely misled by Charlie and Bob. Although

the analogy required the use of “magic” ice cubes, it illustrates well the

fact that Bob and Charlie can get extra information for the problem using

quantum correlations. This extra information helps them to cheat Alice.

In this analogy, Alice cannot prevent Bob and Charlie from using their ice

cubes; all she can do is prevent the communication between them. The

power of entanglement as it was explained in the previous chapter does not

emit a signal and is therefore not a communicating tool. We will see in later

sections that this does not necessarily extend to more than two provers.

We summarize the complexity classes discussed so far in figure 3.2.

This chapter concludes the motivation to study quantum mechanics from

the perspective of complexity theory. In the next chapter, we will see that
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EXP

NP

PSPACE

     [Sha92] 

 = IP = QIP

       [JJUW09]

P

NEXP

[BOGKW88, BGS98, Has01] 

= MIP = XOR-MIP  

BPP

XOR-
[Weh06]

MIP*[2]

MIP*
[KKM+08, IKP+07]

 

1,1/poly[3,1]

MIP*
[KKM+08]

1,1-2^-poly[3,1]
MIP*1,1-2^-poly[2,1]

with two-bit answers
[IMK08]

XOR-MIP *
[CGJ07]

1- e,½+e[2,1]

Figure 3.2: Updated Hierarchy of Complexity Classes.

the terminology of games is well adapted for the study of interactive classes

with quantum mechanical concepts.





Chapter 4

Two-prover One-round Games

A better understanding of the effect of entanglement would give insight

for the power of interactive classes extended with quantum mechanics. A

natural framework to study these effects of nonlocality within interaction

is through cooperative games with imperfect information. A cooperative

game is a game in which players gain if they collaborate. The games studied

have imperfect information, that is the players do not know the actions of

the other players perfectly. In other words, no prover has access to the

question that the other prover has received and therefore has to infer his

likely actions. A game with perfect information is not interesting from

the standpoint of information theory since the best actions are known in

advance through the minimax decision rule [RN03]. In this thesis, we will

concentrate on games with one round because of their simplicity. Note that

in the game-theoretic framework, the verifier is in some cases referred to as

the referee and the provers as the players.

In this chapter, we describe the framework of two-prover one-round

games and explain its links with complexity theory, particularly with multi-

prover interactive classes. This will serve as a basis to study the effect

of quantum mechanics on these complexity classes. Following the work of

[CHTW04], we prove the upper bound on the probability of winning in

games for quantum provers in certain conditions. We then conclude the

chapter with the description of a game that will serve as an example case

in the forthcoming chapters.

27
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4.1 Games Parameters

A two-prover one-round game is a game played by a verifier V against two

provers P1 and P2 who cooperate with each other. The following definition

describes a two-prover one-round game.

Definition 4.1.1 (Two-Prover One-Round Game). A two-prover one-round

game G = (X, Y,A,B,R, πXY ) is defined by

• Finite sets of questions X and Y ,

• Finite sets of answers A and B,

• Winning Condition R : X × Y × A×B → {0, 1} and

• Probability distribution πXY on the question set X × Y ,

4.2 Strategies of the Provers

For a two-prover one-round game G = (X,Y,A,B,R, πXY ), the provers

share a joint strategy before interaction begins. Once the verifier is ensured

that the provers cannot communicate (e.g: by physical separation), interac-

tion can occur. The verifier samples questions (x, y) from X × Y according

to the probability distribution πXY . He then sends the questions x and y

to provers P1 and P2, who respond with a ∈ A and b ∈ B, respectively.

The provers win the game against the verifier if R(x, y, a, b) = 1, otherwise,

the verifier wins against the provers; R(x, y, a, b) is either 0 or 1. As a

convention, the winning condition R(x, y, a, b) is rewritten R(a, b | x, y) to
emphasize the fact that the answer (a, b) depends on the question (x, y).

The provers can agree on a joint strategy for the game.

Definition 4.2.1 (Strategy). A strategy for the provers consists in a set S

of probability distributions S(x,y) over A×B indexed by (x, y) ∈ X × Y

S = {S(x,y)}(x,y)∈X×Y. (4.1)

These can be interpreted as the provers giving joint answers (a, b) ∈
A×B to the questions (x, y) ∈ X×Y with probability S(a, b | x, y). Given

that P1 has no access to question y and P2 has not access to question x, not

all probability distributions S(x,y) will be possible; we shall come back on

this issue later. The probabilities are normalized so that for all questions

(x, y):
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∑
(a,b)

S(a, b | x, y) = 1.

We now introduce three classes of strategies based on the type of cor-

related resources that the provers possess. Although, the provers are given

unlimited computational power, they nonetheless cannot communicate in

the interactive part of the process. However, the initial resources they share

give them a certain amount of possible correlation during interaction.

In the weakest class of strategies, the class of classical or unentangled

strategies, the provers are allowed to share any classical random variables

before the game starts as well as any private source of randomness they

wish to use once the game has started. Formally, a classical strategy for the

provers P1 and P2 is described for any question pair (x, y) and answer pair

(a, b) by the following distributions

S(a, b | x, y) =
∑
e

p(e)S(a | x, e)S(b | y, e). (4.2)

where e can be seen as shared randomness. The optimal classical strategy

is in fact deterministic since a probabilistic strategy is just a probability

distribution over a finite set of deterministic strategies. So the provers can

analyse every possible outcome of randomness and fix it so that it maximizes

the winning probabilities of the game. We thus can see the set of classical

strategies of P1 and P2 as a set of deterministic functions a(x) and b(y).

A stronger strategy class, the class of quantum strategies, encompasses

strategies for which the provers are allowed to share a bipartite state

|ψ⟩ ∈ CΣ×Γ. The quantum strategies of each prover consist in perform-

ing a quantum measurement for each question over their share of the state

and by answering by the outcome of the measurement. Using the POVM

formalism, for each x ∈ X prover P1 has a POVM defined by

{Ea
x : a ∈ A} ⊆ CΣ×Σ

and for each y ∈ Y prover P2 has a POVM defined by

{Eb
y : b ∈ B} ⊆ CΓ×Γ

where each POVM satisfies completeness relation (2.5). Upon receiving

the questions (x, y) ∈ X × Y , the provers apply their POVM with respect

to their question on their part of the state |ψ⟩. The outcomes (a, b) ∈
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A×B of the measurements is sent to the verifier. From equation (2.6), the

probability that the provers answers (a, b) ∈ A⊗B is given by

S(a, b | x, y) = ⟨ψ|Ea
x ⊗ Eb

y|ψ⟩. (4.3)

Finally, the class of no-signalling strategies, or behavior, includes any

possible strategies that cannot be used by the provers to communicate. For

example, each prover could have a magical black box that can give them

a kind of correlation that cannot be implemented in the physical world,

provided it cannot be used to communicate. More formally, a no-signalling

strategy imposes on the prover P1 that for any questions x ∈ X, y, y′ ∈ Y

and answers a ∈ A, the marginal distributions∑
b∈B

S(a, b | x, y) =
∑
b∈B

S(a, b | x, y′).

Similarly for the prover P2, for any question y ∈ Y , x, x′ ∈ X and answers

b ∈ B, the marginal distributions∑
a∈A

S(a, b | x, y) =
∑
b∈B

S(a, b | x′, y).

The class of strategies available to the provers directly influences the

winning probability of two-prover one-round games.

Definition 4.2.2 (Winning Probability of a Strategy). In a two-prover one-

round game G = (X, Y,A,B,R, πXY ), the winning probability ω̃(SK)of a

strategy S = {S(x,y)}(x,y)∈X×Y is given by

ω̃(S) =
∑

(x,y)∈X×Y

πXY (x, y) ∑
(a,b)∈A×B

R(a, b | x, y)S(a, b | x, y)

 .

Sometimes we will say that a game is a classical game, quantum game

or no-signalling game to indicate the kind of strategy used by the provers.

4.3 Value of a Game

From the winning probability ω̃(S) of a strategy S, the value ωK(G) of a

two-prover one-round game G follows:
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Definition 4.3.1 (Value of a Two-prover One-round Game). The value of

a two-prover one-round game G = (X,Y,A,B,R, πXY ) with strategy class

K over strategy S is given by

ωK(G) = sup
S∈K

∑
(x,y)∈X×Y

πXY (x, y) ∑
(a,b)∈A×B

R(a, b | x, y)S(a, b | x, y)

 .

In particular, the value of a two-prover one-round game G with classi-

cal strategy is described by ωc(G), with quantum strategies by ωq(G) and

with no-signalling strategies by ωns(G). The trivial relationship among the

different classes of strategies is

0 ≤ ωc(G) ≤ ωq(G) ≤ ωns(G) ≤ 1. (4.4)

We open a parenthesis here to look at the definition of the value ωK(G) of

a game G with respect to the class of strategiesK. We find a solution for the

value by solving a linear program in variables S(a, b | x, y). The definition of

the value constitutes the objective function. The constraints of the problem

include positivity, normalization as well as the constraint imposed directly

from the strategy class C. Positivity imposes that S(a, b | x, y) ≥ 1 and

normalization that for all pairs (x, y):
∑

(a,b) S(a, b | x, y) = 1. The last

constraint comes directly from the definition of the class of strategy C.

As we said, the value of a game constitutes a linear programming prob-

lem referred to the primal problem. The problem of maximization in the

primal problem with n variables and m constraints can be cast as a min-

imization problem. This is referred as the dual problem. In optimization

theory, duality is the principle according to which the problem can be seen

by either of the two perspectives: the primal or the dual problem. The

dual problem is a linear combination of the m values in the primal problem

that limit the constraints. In the dual problem, there are n dual constraints

that make a lower bound on a linear combination of m dual variables. This

means that even if we cannot solve the linear program, we can obtain an

upper bound on the value of a game by constructing a solution to the dual

program. Appendix A describes the formalism of mathematical optimiza-

tion in more details.

We summarize the process of interactive games in figure (4.1). The three

steps of the protocol are depicted: the non-interactive part, the interaction

and the decision of the verifier.
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Non-Interactive Part 

of the Protocol

Interactive Part 

of the Protocol

V P1 P2

X Y S

x y

V

P1

P2

x

y

a

b

No Communication

Decision

R
0 1

V wins P1 and P2 win

Figure 4.1: Two-Prover Interactive Game Protocol.

4.4 Relationship with Complexity Theory

Besides the classification of games with respect to strategies, games are also

categorized by other parameters. Two of these characterizations are: binary

games and XOR games. Binary games are games for which the answers of

both provers are single bits (i.e.:A = B = {0, 1}). XOR games are binary

games for which the function R is a function of a ⊕ b and not of a and b

independently.

The relation with interactive complexity classes MIP[2, 1], ⊕MIP[2, 1],

MIP∗[2, 1] and ⊕MIP∗[2, 1] should now seem evident. Consider a promise

problem A = (Ayes, Ano) as introduced in definition (3.1.1). Given any

string s and a game G, if s ∈ Ayes, the value ωK(G) with respect to strategy

class K will be close to 1 and if s ∈ Ano, the value ωK(G) will be close to 0.
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Non-signalling strategies are useful since they can sometimes give an

upper bound for quantum strategies in the case this bound is not known.

However, for the game to be a valid proof system, the soundness must not

to be 1. Otherwise, the provers will be able to cheat the verifier every time.

An upper bound on the value of a game will give insight on conditions for

the associated complexity class.

Promise problems represent more generally the formalism of games com-

pared to languages since it is possible that some inputs will never occur and

therefore there is no need for the corresponding output to be defined. Lan-

guages have to be decision problems over all possible inputs.

Next, we prove an interesting result that puts an upper bound on the

value of a XOR game with quantum strategies as a function of the classical

value for that game. This upper bound will serve to prove the quantum

value of the game in section 4.6.

4.5 Upper Bound for XOR Games

In [CHTW04], upper bounds for the value any XOR game with quantum

strategies are proven. Preliminary to those results, it is demonstrated that

the optimal value of two-prover binary games with quantum strategies is

obtained by the provers doing projective measurements on their part of

the shared state. Moreover, the parts of the shared state are of equal di-

mension. Therefore, in the search of an optimal strategy, only projective

measurements have to be considered.

We describe the orthogonal projectionsM0 andM1 of prover P1 subject

to M0 +M1 = I in terms of the observable M = M0 −M1 and similarly

with N = N0 − N1 for prover P2. The observables of the two-outcome

projective measurement form a Hermitian matrix with eigenvalues +1 and

−1 that can be mapped to answers 0 and 1 in that order.

A necessary result has to be stated before proving the bounds. The result

in [Tsi87] relates the problem of finding the probability ⟨ψ|Ma
x ⊗N b

y |ψ⟩ that
the provers answer by (a, b) ∈ A ⊗ B to questions (x, y) ∈ X ⊗ Y to the

classical problem of finding two real unit vectors.

Theorem 4.5.1 ([Tsi87]). Let X and Y be finite sets and let |ψ⟩ be a pure

quantum state with support on a bipartite Hilbert space H = A ⊗ B such

that dim(A ) = dim(B) = n. For each x ∈ X and y ∈ Y , let Mx and Ny be

observables on A and B respectively with eigenvalues ±1. Then there exist
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real unit vectors ux and vy in R2n2
such that

⟨ψ|Mx ⊗Ny|ψ⟩ = ux · vy

for all x ∈ X and y ∈ Y , where “ · ” denotes the scalar product of vectors.

Conversely, suppose that X and Y are finite sets, and ux and vy are unit

vectors in Rt for each x ∈ X and y ∈ Y . Let A and B be Hilbert spaces of

dimension 2⌈t/2⌉, H = A ⊗ B and |ψ⟩ be a maximally entangled state on

H . Then there exist observables Mx on A and Ny on B with eigenvalues

±1 such that

⟨ψ|Mx ⊗Ny|ψ⟩ = ux · vy

for all x ∈ X and y ∈ Y .

Therefore, by this theorem, we can characterize the optimal quantum

strategy of the two provers by the right choice of unit vectors. This choice of

unit vectors can be found using classical methods in time polynomial with

respect to the question set sizes.

Consider a binary two-prover one-round game G = (X, Y,A,B,R, πXY ).

Suppose the provers share an arbitrary entangled state |ψ⟩ on H = A ⊗B

where A and B are Hilbert spaces of dimension 2⌈t/2⌉. Let Mx and Ny be

the observables that describe projective measurements of each prover with

eigenvalues +1 and −1 that can be mapped to outcomes 0 and 1 in that

order. Then by theorem (4.5.1), there exist observables Mx on A and Ny

on B such that

⟨ψ|Mx ⊗Ny|ψ⟩ = ux · vy.

For XOR games, we sometimes write the winning condition R(a, b | x, y)
as R(c | x, y) where c = a⊕ b. By equation (4.3) and by theorem 4.5.1, we

have that the probability that c = 0 is

⟨ψ|(M0
x ⊗N0

y +M1
x ⊗N1

y )|ψ⟩ =
1

2
(1 + ⟨ψ|Mx ⊗Ny|ψ⟩)

=
1

2
(1 + ux · vy)

and similarly, the probability that c = 1 is 1
2
(1− ux · vy).

Therefore, by definition 4.3.1 of the value of a game and by theorem

4.5.1, we have that the quantum value of the two-prover one-round XOR

game G is given by

ωq(G) = sup
ux,vy

1

2

∑
(x,y)∈X×Y

(πXY (x, y) (1 + (R(0 | x, y)−R(1 | x, y))ux · vy)
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where the supremum is over unit vectors

{ux ∈ RN : x ∈ X} ∪ {vy ∈ RN : y ∈ Y }

and N = min(|X|, |Y |).
The necessary tools to prove an upper bound on the value of XOR

games with quantum strategy have now all been described. In [CHTW04],

the authors describe two upper bounds for the value of quantum games as

a function of the classical value: one for weak strategies and one for strong

strategies. By strong strategies, we mean that the optimal strategy produces

a value near one and by weak strategies that the optimal strategy produces

a value near zero. For the rest of this thesis, and in the next section, only

the bounds for strong strategies will be considered. We therefore present

the proof of the upper bound on the value of XOR games with quantum

strategies.

Theorem 4.5.2 ([CHTW04]). Let G be a two-prover one-round XOR game

G = (X,Y,A,B,R, πXY ) with classical value ωc(G). Then the quantum

value ωq(G) is bounded by

ωq(G) ≤
{

γ1ωc(G) if ωc(G) ≤ γ2
sin2(π

2
ωc(G)) if ωc(G) > γ2,

for γ1 ≈ 1.1382 and γ2 ≈ 0.74202.

Proof. The quantum value ωq(G) is obtained when the provers P1 and P2

share an arbitrary pure quantum state as in theorem (4.5.1) and when they

measure with {Mx}x and {Ny}y respectively. We will construct a classical

strategy from this quantum strategy with the use of theorem (4.5.1) to

bound the quantum value as a function of the classical value.

Let the real unit vectors

{ux : x ∈ X}, {vy : y ∈ Y } ⊂ Rt

be unit vectors from theorem (4.5.1) that maximize the difference between

the quantum value ωq(G) and the value of a trivial strategy that outputs

bit a ∈ A and b ∈ B randomly and independently. A problem that seems to

arise is that we do not know the size of t. But in fact, this is not a problem

because the winning probability ω̃q(S) of a strategy S depends only on the

scalar product of the unit vectors. Therefore, the projection is on the span

of {ux : x ∈ X} ∪ {vy : y ∈ Y } which has dimension |X| + |Y |. Since it

is sufficient to project vectors {ux : x ∈ X} onto the span of the vectors
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{vy : y ∈ Y } or vice versa, we have that t = min (|X|, |Y |). Finally, it is

mentioned in [CHTW04], that ux and vy can be found using a semidefi-

nite program (i.e.:a special case of convex optimization problems) in time

polynomial in |X|+ |Y | within an additive error through the maximization.

Consider the classical strategy where ux is given to prover P1 and vy is

given to prover P2 and they share a unit vector λ ∈ Rt chosen uniformly at

random. When they receive their questions x and y, the provers P1 and P2

answer respectively a′ ∈ A and b′ ∈ B according to functions

a′ =
1 + sgn(ux · λ)

2

b′ =
1 + sgn(vy · λ)

2

where the sgn function is defined as usual by sgn(x) = +1 if x ≥ 0 and −1

otherwise.

Next, we calculate the probability that the event a′ ⊕ b′ = 1 occurs by

introducing an azimuthal coordinate ϕ for λ. ϕ lies in the plane spanned

by ux and vy such that ux has coordinate ϕ = 0 and vy has coordinate

ϕ = θxy ≡ cos−1(ux · vy) ∈ [0, π].

By geometry, it follows that

sgn(ux · λ) =
{

+1 if ϕ ∈ [−π
2
, π
2
]

−1 otherwise
,

sgn(vy · λ) =
{

+1 if ϕ ∈ [θxy − π
2
, θxy +

π
2
]

−1 otherwise.

Because λ is chosen uniformly in Rt , the azimuthal coordinate ϕ is uniformly

distributed in [0, 2π). Therefore, the probability that an optimal quantum

strategy outputs a′⊕b′ = 1 is proportional to the measure that sgn(ux ·λ) =
−sgn(vy · λ). The latter holds when ϕ ∈ [−π

2
, θxy − π

2
]∪ [π

2
, θxy +

π
2
], that is

with probability

Pr[a′ ⊕ b′ = 1] =
(θxy − π

2
)− (−π

2
) + (θxy +

π
2
)− (π

2
)

2π
=
θxy
π
. (4.5)

With quantum strategies, the probability that a⊕ b = 1 is given by

Pr[a⊕ b = 1] = ⟨ψ|(M0
xN

1
y +M1

xN
0
y )|ψ⟩ (4.6)

=
1

2
(1− ⟨ψ|Mx ⊗Ny|ψ⟩) (by definition of observables)

=
(1− ux · vy)

2
(by theorem (4.5.1))
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=
(1− cos (θxy))

2
(by definition of θ)

= sin2

(
θxy
2

)
(because cos(2α) = 1− 2 sin2(α))

= sin2
(π
2
Pr[a′ ⊕ b′ = 1]

)
. (by equation (4.5))

Now, we want to place an upper bound on the last equality. We intro-

duce a function g : [0, 1] → [0, 1] that is bounded below by sin2(π
2
x) and that

is concave. The concavity restriction imposes that g(x) must be bounded by

the linear mapping h(x) = γ1x tangent to sin2(π
2
x) at some point 0 < γ2 < 1

for some constants γ1 and γ2. Explicitly, concavity imposes that for some

point 0 < γ2 < 1:

sin2
(π
2
γ2

)
= h(γ2),

d

dx
sin2

(π
2
x
) ∣∣∣∣

x=γ2

=
d

dx
h(x)

∣∣∣∣
x=γ2

.

Solving this system of equations yields values γ1 ≈ 1.1382 and γ2 ≈ 0.74202.

By definition of g being concave on C , given any two points x, y ∈ C ,

we have
g(x) + g(y)

2
≤ g

(
x+ y

2

)
. (4.7)

This condition will be used in the rest of the proof.

From the definition of the function g and equation (4.6), we thus have

the relation between the quantum strategy and the classical strategy

Pr[a⊕ b = 1] ≤ g(Pr[a′ ⊕ b′ = 1]), (4.8)

and in a similar manner

Pr[a⊕ b = 0] ≤ g(Pr[a′ ⊕ b′ = 0]). (4.9)

From these two results, if we denote the probability of any classical strategy

Sc by Sc(a, b|s, t) and the probability of quantum strategies Sq by Sq(a, b|s, t)
on questions x, y ∈ X × Y and answers a, b ∈ A×B,we have that

Sq(a, b | x, y) ≤ g(Sc(a, b | x, y)). (4.10)

It follows that the winning probability of quantum strategies ω(Sq) is

bounded by

ω(Sq) =
∑
(x,y)

πXY (x, y)∑
(a,b)

R(a, b | x, y)Sq(a, b | x, y)


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≤
∑
(x,y)

πXY (x, y)∑
(a,b)

R(a, b | x, y)g
(
Sc(a, b | x, y)

)
(by equation (4.10))

≤ g

∑
(x,y)

πXY (x, y)∑
(a,b)

R(a, b | x, y)Sc(a, b | x, y)


(by equation (4.7))

= g(ω(Sc))

and therefore by definition (4.3.1) of the value of a game G with quantum

strategies, ωq(G) is bounded by

ωq(G) = sup
Sq

(ω(Sq))

≤ sup
Sc

(g(ω(Sc)))

≤ g

(
sup
Sc

(ω(Sc))

)
= g(ωc(G)).

4.6 Example: The Odd Cycle Game

In this section, we present a game that will serve as a representative example

for the topics of this thesis. The game is called the Odd Cycle Game (OC

game)[CHTW04], which is a variation of a game in [BC90] also discussed

in [Vai01]. This game is a two-prover one-round game in which provers P1

and P2 want to convince a verifier that an odd cycle of length m ≥ 3 is

2-colourable. In general, we say that a graph is c-coloured if each of its

vertices can be assigned one of the c colours such that no adjacent vertices

are of the same colour. It is obvious that an odd cycle of length m ≥ 3 is

not 2-colourable since n is odd, and therefore classical provers should not be

able to win with probability 1. Figure (4.2) shows an example of odd cycle

of length 5. As any odd cycle, the odd cycle depicted is not 2-colourable.

This game is a binary XOR games because the set of answers of the

provers is binary and the winning condition is a XOR function of the answers

of the provers.
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Condition not met

Figure 4.2: Impossibility of 2-Colourability of an Odd Cycle of Length 5.

In this game, the verifier sends a vertex of the cycle to each of the two

provers, who are isolated from each other. The provers are then asked to

give one of two colours to the verifier. The verifier wants to check that if

the same vertex has been sent to the provers, the colours match and if the

two vertices are adjacent, they are of different colours. If both conditions

hold, it is an indication that the provers might be telling the truth.

In the formalism of games, an Odd Cycle Game GOC of length m =

2l + 1 with l ≥ 1 can be described as GOC = (X, Y,A,B,R, πXY ) where

X = Y = Z/mZ and A = B = {0, 1}. The distribution πXY is such that

with probability 1
2
, x = y, and with probability 1

2
, y = x+1 where addition

is in Z/mZ . Note that for this probability distribution πXY ̸= πX × πY .

The winning condition R is defined as

R(a, b | x, y) =


1 if a⊕ b = 0 when x = y

1 if a⊕ b = 1 when y = x+ 1 mod(m)

0 otherwise

. (4.11)

We will now prove the value that can be achieved for this game with

classical and quantum strategies and will present an optimal strategy for

both strategy classes.

Theorem 4.6.1 (Classical value of Odd Cycle Game[CHTW04]). The value

of the two-prover one-round Odd Cycle Game GOC of length m = 2ℓ+1 with

ℓ ≥ 1 when provers are limited to classical strategies is ωc(GOC) ≤ 1− 1
2m

.

Proof. Consider a cycle of length m = 2ℓ+ 1 with ℓ ≥ 1. Obviously, one of

the vertices cannot fulfill all the conditions for 2-colourability sincem is odd.

Therefore, there must exist two adjacent vertices of the same colour. Since
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there arem possible questions to each prover, there are 2m possible different

pairs (x, y) of questions. Because one of these questions cannot be satisfied

and the distribution of questions is uniform over the 2m possible different

unordered pairs (x, y), the provers must fail to answer with probability 1
2m

.

This means that the value of the game is no more than 1− 1
2m

.

The deterministic strategy consists of assigning a colour to each vertex

of the cycle such that no adjacent vertices are of the same colour. As

theorem (4.6.1) has shown, they cannot do better than failing for one of the

questions. The next theorem presents an optimal deterministic strategy for

the provers.

Theorem 4.6.2 (An Optimal Classical Strategy for Odd Cycle

Game[CHTW04]). The strategy in a two-prover one-round Odd Cycle Game

GOC of length m = 2l + 1 with l ≥ 1 where prover P1 answers a ∈ A to the

question x ∈ X as follows

a = x mod (2)

and prover P2 answers b ∈ B to the question y ∈ Y from the function

b = y mod (2)

is an optimal classical strategy.

Proof. Consider an odd cycle of length m = 2l + 1 with l ≥ 1. From the

provers’ strategy, we have a+ b = x+ y mod (2).

First, suppose x = y. Then we have a + b = x + y mod (2) = 2x

mod (2). Because for any choice of x ∈ Z/mZ the product 2x is even,

we have that a + b = 0 mod (2). This is equivalent to the mathematical

formulation a ⊕ b = 0 by the definition of the XOR function. By the

definition (4.11) for the winning condition for the Odd Cycle Game, the

verifier will accept the answers.

Second, suppose y = x+1 mod (m). Without loss of generality, suppose

that we index each vertex from 0 to m − 1. We show that for any x ∈
{0, ...,m− 2}, the verifier accepts and for x = m− 1, the verifier rejects.

For any x ∈ {0, ...,m − 2}, we have y = x + 1 < m. The parity of y is

different from that of x. We thus have a+ b = x+ y mod (2) = x+(x+1)

mod (2) = 2x + 1 mod (2). For any choice of x, the quantity 2x + 1 is

odd and therefore a+ b = 1 mod (2), which is equivalent to a⊕ b = 1 and

makes the verifier accept.
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For x = m− 1, we have y = x+ 1 mod (m) = m mod (m) = 0. Since

m is odd and x = m − 1, we have that x is even; y = 0 is also even. We

thus have a + b = x + y mod (2) = x mod (2) = 0 mod (2), which is

equivalent to a⊕ b = 0 and makes the verifier rejects.

We have shown there is only one pair of questions (x, y) = (m − 1, 0)

from the distribution πXY for which the verifier rejects. Since there is 2m

possible questions, the verifier accepts with probability 1− 1
2m

, which is the

optimal classical probability according to (4.6.1). Therefore, this strategy

is optimal.

The classical value of two-prover one-round Odd Cycle Game GOD fol-

lows directly from theorem (4.6.1) and theorem (4.6.2). We expose it in the

following corollary.

Theorem 4.6.3 (The value of Odd Cycle Game[CHTW04]). The value of

the two-prover one-round Odd Cycle Game GOC of length m = 2l + 1 with

l ≥ 1 when provers are limited to classical strategies is ωc(GOC) = 1− 1
2m

.

Now, we move on to the class of quantum strategies. We will present a

quantum strategy for the provers and prove that this strategy is an optimal

quantum strategy with the use of theorem (4.5.2) that puts an upper bound

on the quantum value of XOR games as a function of the classical value.

Theorem 4.6.4 (An Optimal Quantum Strategy for Odd Cycle Games

[CHTW04]). There exists a family of quantum strategies Sq for provers in a

two-prover one-round Odd Cycle Game GOC of length m ≥ 3 that achieves

winning probability ω(Sq) = cos2
(
π
4m

)
by sharing a single EPR pair.

Proof. The quantum strategy presented is taken from [CHTW04]. It con-

sists in sharing a single EPR pair

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩).

Define the states |ϕ0⟩ and |ϕ1⟩ by

|ϕ0(θ)⟩ = cos(θ)|0⟩+ sin(θ)|1⟩,

and

|ϕ1(θ)⟩ = − sin(θ)|0⟩+ cos(θ)|1⟩.

Let the projective measurements M and N of prover P1 and P2 for a, b ∈
{0, 1} be

Ma
x = |ϕa(αx)⟩⟨ϕa(αx)|,
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N b
y = |ϕb(βy)⟩⟨ϕb(βy)|,

respectively where the parameters αx and βy are defined by

αx =
(π
2
− π

2m

)
x+

π

4m
,

and

βy =
(π
2
− π

2m

)
y.

The probability that the provers answer the same bit is

Pr[a = b] = ⟨Φ+|Ma
x ⊗N b

y |Φ+⟩ (by equation (2.6))

= tr
(
Ma

xN
b
y |Φ+⟩⟨Φ+|

)
(by equation (2.4))

=
1

2
tr
(
Ma

xN
b
y

)
= cos2(αx − βy)

and the probability that they answer differently is 1 − cos2(αx − βy) =

sin2(αx − βy). If x = y, then the provers answer correctly with probability

cos2(αx − βy) = cos2
( π

4m

)
.

If y = x+ 1 mod (m), they answer correctly with probability

sin2(αx − βy) = sin2
( π

4m
−
(π
2
− π

2m

))
= sin2

((π
2
− π

2m

)
− π

4m

)
(because sin(−x) = − sin(x))

= sin2
(π
2
− π

4m

)
= cos2

( π

4m

)
. (because sin

(
π
2
− x
)
= cos(x))

Therefore, the provers will be able to achieve the two conditions of the Odd

Cycle Game for any question pair (x, y) ∈ X ×Y with probability cos2( π
4m

)

using this strategy.

In the next theorem, we prove that the strategy used in theorem (4.6.4)

is optimal and at the same time prove that the quantum value is ωq(GOC) =

cos2( π
4m

).

Theorem 4.6.5 (Quantum Value of Odd Cycle Games [Ton09]). The value

of the two-prover one-round Odd Cycle Game GOC of length m = 2l + 1

with l ≥ 1 and quantum strategies is

ωq(GOC) = cos2
( π

4m

)
.
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Proof. The Odd Cycle Game is a binary XOR game and the upper bound

of theorem (4.5.2) applies. For any m ≥ 3, we have ωc(GOC) > γ2 where γ2
is defined in theorem (4.5.2). It follows that

ωq(GOC) ≤ sin2
(π
2
ωc (GOC)

)
= sin2

(π
2
− π

4m

)
= cos2

( π

4m

)
. (using sin

(
π
2
− θ
)
= cos (θ))

By theorem (4.6.4), the upper bound can be achieved with a quantum strat-

egy. Therefore, we have

ωq (GOC) = cos2
( π

4m

)
.

In the remainder of the thesis, Odd cycle Games will be used as a par-

ticular example in the results demonstrated therein.





Chapter 5

The Power of Many Provers

In this section, the effect of adding more than two provers on the power of

interactive proof systems with different classes of strategies is studied. A

natural way to study these effects is through the game framework of last

chapter. Using the game notation, it will be possible to investigate relation

for the different classes with respect to the strategies in place.

It may seem natural to consider arbitrary k-prover games in which

each provver would be given his own input and be expected some out-

put. However, we are interested here in extending a given two-prover

game to the multi-prover scenario. For this, we will follow the method-

ology described in [Ton09]. The method transforms a two-prover one-

round game G2 = (X, Y,A,B,R, πXY ) into a k-prover one-round game

Gk = (X, Y,A,B,R′, πXY ) with k ≥ 2 where the subscript indicates the

number of provers. Note that only the definition of the winning condition

is modified when extending a two-prover game to a k-prover game and the

probability distribution πXY is the same. The idea in the game Gk is to

sample (x, y) ∈ X×Y from πXY and send x ∈ X to prover P1 and y ∈ Y to

prover P2 as in G2. The verifier also sends y to the k−2 remaining provers.

The winning condition of the new game Gk imposes on provers P1 and P2

that they satisfy the winning condition R and that the answers bi of all

the other provers are equal to the answer b1 of P2. Formally, the winning

condition of game Gk is

R′(a, b1, ..., bk−1|x, y) = R(a, b1|x, y) ∩ [b1 = ... = bk−1].

The protocol is illustrated in Figure (5.1).

45
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Non-Interactive Part

of the Protocol

Interactive Part 

of the Protocol

V P1 P2

X Y S

x y

V

P1

P2

x

y

a

b1

No Communication

Decision

R
0 1

V wins P1,P2,...,Pk win

Pk
...

Pk

...

No Communication

No Communication

y

bk

Figure 5.1: Multi-Prover Interactive Game Protocol.

5.1 Many-Prover Classical Games

In this section, we investigate multi-prover games with classical strategies

for k > 2. We already mentioned the effective power of interactive proof

systems with one prover. A result in 1992 stated that IP = PSPACE

[Sha92]. When the number of provers is increased to two, it has been

shown that NEXP = MIP[2, 1] [BFL90]. Two provers might therefore be
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more powerful than one prover if PSPACE ̸= NEXP. This stems from the

fact that the provers have a much limited way of cheating since they have

to answer according to a shared strategy and are separated. Basically, the

verifier takes one prover as an “oracle” to check the answer of the other.

In fact, the power increases with the number of provers if the value of the

game decreases as the number of provers increases. We will see what power

is achievable with classical strategies in the following theorem:

Theorem 5.1.1 ([Ton09]). The classical value ωc(G2) of a two-prover one-

round game G2 = (X,Y,A,B,R, πXY ) is equal to the classical value ωc(Gk)

of the game Gk = (X, Y,A,B,R′, πXY ) with k ≥ 2 provers.

Proof. We want to prove that ωc(G2) = ωc(Gk) for k ≥ 2 . Consider an

optimal classical strategy Sopt for G2. This strategy is deterministic since

any probabilistic strategy is a probability distribution over deterministic

strategies. The strategy of each prover is a deterministic function of the

question they receive. This gives deterministic functions to the other k − 2

provers which use the same function as prover P2.

Application of the deterministic function of prover P2 by the other

provers constitute a strategy for Gk. Since the other k − 2 provers behave

as P2, the winning condition, for any questions x, y ∈ X × Y and answers

a, b1, ..., bk−1 ∈ A×Bk−1 , we have S(a, b1, b2, ..., bk−1|x, y) = Sopt(a, b1|x, y)
and R′ = 1 only and only if R = 1. This is true because the equalities

b1 = ... = bk−1 are enforced by the condition that the other k − 2 provers

action are the same as P2. By the definition (4.3.1) of the value of a game,

we have that

ωc(G2) =
∑

(x,y)∈X×Y

πXY (x, y)
∑

(a,b)∈A×B

R(a, b|x, y)Sopt(a, b|x, y)

= ωc(Gk)

The result of theorem (5.1.1) shows that with classical strategies, adding

more than two provers does not change the value of a two-prover one-round

game and therefore does not improve the power of the associated proof

system. Consequently, with classical strategies, adding more provers does

not change the power of the class MIP[2]. In our illustrative example of the

Cole vs Petsi experiment, adding more than two provers, therefore, yields

the same value for classical provers. There is, therefore, no need to add

more provers to the game to restrict how the provers behave.
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We will now study the same conditions but with quantum and no-

signalling strategies. We will see that results are different than those with

classical strategies.

5.2 Many-Prover Non-Classical Games

We have seen that when the provers have quantum strategies, it can increase

the value of games like the Odd Cycle Game [CHTW04]. However, does

adding more than two provers in a game change the power of the class

MIP∗[2, 1]? Does it affect the value of a game? These are fundamental

questions in complexity theory of interactive proofs for which there is no

complete answers.

In presence of two provers with quantum strategies, oracularization, de-

scribed in section 3.3, has not the same effectively as in the classical case.

The Odd Cycle Game is a a clear example that oracularization, checking

the corroboration of answers of the provers, is less efficient for the verifier

in the quantum case. This is explained by the quantum value of this game

which is greater than the classical value. However, this phenomenon is less

trivial with more provers. The problem of having more provers is linked

to how many entanglements the provers share and also to the size of the

question and answer sets. As there is no standard on how to measure the

amount of entanglements between more than two parties, the extrapolation

to more than two provers is not known. Because of this, it is also extremely

hard to infer bounds on the limit of the value these games can achieve.

As we will see, the efficiency of oracularization with quantum strategies

will be restored as the classical case in presence of more than two provers.

This can be explained by the fact that entanglements can be maximal in

the case of two provers, something that is impossible to do with more than

two provers. This is referred as monogamy of entanglement [Ton09]. With

projective measurements, each prover wants to apply a projector to their

part of the state as a function of the question and measure their state so as

to obtain the right answer and without disturbing the reduced state of the

other provers. For example, if provers A, B and C share a state |ψ⟩, then
when one prover has measured, the resulting state of the two other provers

cannot be maximally entangled. If A and B are maximally entangled, then

the qubits of C cannot be correlated maximally with both A and B; C

will therefore be classically correlated with A and B. In other words, the

more there are parties, the less they are entangled. This phenomenon is
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particularly important for cryptographic purposes since it puts bounds on

how much an eavesdropper C could learn about the communication between

provers A and B using a quantum channel.

A dependency between the number of extra prover k− 2 with the num-

ber of possible questions m to the second prover is made explicit with no-

signalling strategies in [MAG06]. Preliminary results were made in [TDS03]

based on the work of [Wer89] that proved similar result with quantum cor-

relations. The next theorem states the results for no-signalling strategies

which are even stronger than the case of quantum strategies and serves as a

stronger upper bound. This is the reason it is presented with no-signalling

strategies rather that quantum strategies.

Theorem 5.2.1 ([MAG06, Ton09]). Let G2 = (X, Y,A,B,R, πXY ) be a

two-prover game with m = |Y | and Gm+1 = (X,Y,A,B,R′, πXY ) be a (m+

1)-prover game. Then the value with no-signalling strategies ωns(Gm+1) is

a nonincreasing sequence in m and

ωns(Gm+1) = ωc(G2).

Proof. First of all, the no-signalling values ωns(Gm+1) are non-increasing

sequences in m since a strategy for m+ 1 provers would give a strategy for

2 ≤ m′ + 1 < m+ 1 provers by simply ignoring m−m′ provers.

Secondly, consider a no-signalling strategy forGm+1, that is a set of prob-

abilities S(a, b1, b2, ..., bm|x, y1, y2, ..., ym). Here, we distinguish the ques-

tions yi for each prover because the proof holds for any question yi for

. We now show that a two-prover classical strategy S(a, b|x, y) can be

built with the same probability distribution over the answers for each

prover. We have that the distribution S(a, b1, b2, ..., bm|x, y1, y2, ..., ym),
can be constructed as well as the distributions S(b1, b2, ..., bm|y1, y2, ..., ym)
and S(a|x, b1, b2, ..., bm, y1, y2, ..., ym). Let the provers share string e =

b1, b2, ..., bm from the distribution p(e) = S(b1, b2, ..., bm|y1, y2, ..., ym) when
the corresponding inputs y1, y2, ..., ym are fixed. By the definition of con-

ditional probability, we can construct a local model for S(a, b|x, y). The

two-prover classical strategy can be written as

S(a, b|x, y) =
∑

b1,b2,...,bm

[
S(b1, b2, ..., bm|y1, y2, ..., ym)

· S(a|x, b1, b2, ..., bm, y1, y2, ..., ym)

· S(b1|x, b1, b2, ..., bm, y1, y2, ..., ym)

]
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=
∑
e

p(e)S(a|x, e)δb1,y1δb2,y2 ...δbm,ym

(δm,m′ defined in equation (2.9))

=
∑
e

p(e)S(a|x, e)S(b|y, e) (equation (4.2))

=
∑
e

p(e)S(a|x, e)S(b1|y1, e)S(b2|y2, e)...S(bm|ym, e)

(where S(b|y, e) = S(bi|yi, e))
= S(a, b1, b2, ..., bm|x, y1, y2, ..., ym)

where the last equation is the no-signalling probability distribution on m+

1 provers. This is true because the probability distribution p(e) is no-

signalling and therefore all S(bi|yi, e) are no-signalling as well. Because the

theorem holds for any yi, it holds for the special case where y1 = y2 = ... =

ym.

For example, for any game two-prover gameG2 where |A| = |B| = 2, the-

orem (5.2.1) tell us that the no-signalling value with three provers ωns(G3)

is equal to a the classical value with two provers ωc(G2). By equation (4.4),

we have that the quantum value ωq(G3) is also equal to ωc(G2).

However, as you can observe, theorem (5.2.1) does not cover all arbitrary

cases of sizes of question sets. In general, the difference between the classical

and no-signalling value for an arbitrary number of questions with three

provers is not known.

This theorem has implication on the complexity of the class MIP∗ and

⊕MIP∗. We know that ⊕MIPc,s[2, 1] = NEXP for some choice of probabil-

ities c and s [BGS98, H̊as01]. However, the results that ⊕MIP∗[2] ⊆ EXP

[Weh06] cannot be generalized to any number of provers. This comes from

the fact that for a particular number of questions and provers, quantum

provers cannot cheat more than classical provers. In some situation, we

have ⊕MIP∗[2] = NEXP. Theorem (5.2.1) gives also indications that the

number of provers is not an independent parameter. To better understand

the complexity of the class MIP∗ and particularly ⊕MIP∗, we probably

have to separate these classes into subclasses as a function of the number

of questions as well as the number of provers.

In the section that follows, we will try to check how the addition of

players affects the value of the game in the particular case of the Odd Cycle

Game.
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5.3 Many-Prover Odd Cycle Games

In this section, we apply the result of the last two sections to the Odd

Cycle Game. We will see that for this specific game, we can improve earlier

results.

In the case the provers are restricted to classical strategies, we have

shown with theorem (5.1.1) that increasing the number of provers has no

effect on the value of the game. It is easy to verify that the optimal classical

strategy for the Odd Cycle Game in theorem (4.6.2) easily extend to k ≥ 2

provers resulting in the same value ωc(GOC,k) = 1 − 1
2m

where we denote

the Odd Cycle Game with k provers by GOC,k.

With quantum strategies, more than two provers cannot share a maxi-

mally entangled state. This indicates that the value could be different from

the two-prover case. We note that the value of the Odd Cycle Game in-

creases slowly as the number of question m is increased. Therefore, the

verifier has interest to keep the number of cycle m as low as possible to

reduce the value of the game. Theorem (5.2.1) tell us that for an odd cy-

cle of length m, m + 1 provers are required to restrict the no-signalling

and quantum value of the game to a classical one (e.g.: when m = 3, four

provers are needed). For an arbitrary number of question m, however, the

high number of prover required is impractical. An improved result with

only three provers is demonstrated in [Ton09] to have the same effect for

the case of the Odd Cycle Game.

Theorem 5.3.1. The Odd Cycle Game GOC,3 = (X,Y,A,B,R′, πXY Z) of

length m with three provers and no-signalling strategies has the same value

as the Odd Cycle Game GOC = (X, Y,A,B,R, πXY ) of length m with clas-

sical strategies

ωns(GOC,3) = ωc(GOC) = 1− 1

2m
.

Proof. For notational preference, we have denoted the probability distri-

bution πXY Z in GOC,3 to make explicit the three provers. However, the

definition is as usual: for any x,y and z, pXY Z(x, y, z) = pXY (x, y)δyz. De-

note the questions set by Q such that Q = X = Y = {1, ...,m} and answer

set by A such that A = B = {0, 1}. We want to maximize the probability

S(a, b, c|x, y, z) where a, b, c ∈ A and x, y, z ∈ Q where provers (P1, P2, P3)

receive question (x, y, z) and answer by (a, b, c) respectively. The maximiza-

tion over strategy family S can be cast as a linear problem.

First, we introduce a set of symmetries that are going to reduce the

problem. Then, we write the constraints for maximization and finally we
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write the dual problem as in A. An optimal solution to the dual problem

will give the best lower bound of the problem.

The following set of symmetries does not change the value of the game

and help to reduce the problem

1. all parties can flip the binary value of their outputs, and/or

2. all parties can add an integer to their inputs, and/or

3. Provers P2 and P3 can exchange roles.

The value of a XOR game is invariant under these symmetry by the nature

of the function XOR.

Using symmetry 1 and 2, we can restrict our attention to the case

a = 0 and x = 0 without loss of generality. Because it does not change

S(a, b, c|x, y, z), we have that S(a, b, c|x, y, z) = S(0, b, c|0, y, z) which we

denote by r(b, c|y, z) = S(0, b, c|0, y, z). Symmetry 3 is later used to add a

new constraint to the optimization problem.

The case where provers P1 and P2 have the same question which imposes

that their answer is the same is represented by r(0, 0|0, 0). The case where

provers P1 and P2 does not have the same question which means that they

must answer by a different colour by the nature of the odd cycle game is

represented by r(0, 0|0, 0). It is sufficient to consider only these questions

to prover P2 to cover evenly the probability distribution of the Odd Cycle

Game by the symmetry 1 and 2. The method used to add more provers to

a game imposes that the questions and answers of P2 and P3 are the same.

We can therefore write the no-signalling value of GOC,3 as

ωns(GOD,3) = sup
r

(
1

2
[r(0, 0|0, 0) + r(1, 1|1, 1)]

)
.

This defines the objective function of the primal problem to maximize.

The constraints for the objective function of the primal problem are

listed along with the labeling of the constraints for the dual problem as in

[Ton09]:

• Normalization constrain n(y, z):∑
b,c r(b, c|x, y) = 1, for 0 ≤ j and k < m.

• Symmetry constrain s(b, c|y, z):
r(b, c|y, z) = r(c, b|z, y), for b, c ∈ {0, 1} and 0 ≤ j and k < m. This

constraint comes from symmetry 3.
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• No-signalling constraints:

1. P1 to P2 and P3, y(d|y, z):
r(0, d|y, y+ z)+ r(1, 1−d|y, y+ z) = r(0, d|0, z)+ r(1, 1−d|0, z),
for d ∈ {0, 1} and 1 ≤ j < m and 0 ≤ k < m.

2. P2 to P1 and P3, z(d|y, z):
r(0, d|y, z) + r(1, d|y, z) = r(0, d|0, z) + r(1, d|0, z), for d ∈ {0, 1}
and 1 ≤ j < m and 0 ≤ k < m.

The no-signalling conditions P2 and P3 to P1 and P1 and P3 to P2 do

not further constrain the solution of the objective function.

Having defined the primal of the problem with its constraints, we write

the objective function of the dual as the minimization of

1

2m

∑
j,k

n(j, k) (5.1)

Constraints of the dual problem are

1. µ(0, 0|0, 0) ≥ n

2. µ(1, 1|1, 1) ≥ n

3. µ(b, c|y, z) > 0

for all b, c ∈ {0, 1} and for 0 ≤ j, k ≤ n where the function µ(b, c|y, z) is

defined as

µ(b, c|y, z) = n(j, k) + s(b, c|y, z)− s(c, b|z, y)

+ [y = 0]
m−1∑
y′=1

(
y

(
1− bc

2
|y, z

)
+ z(c|y′, z)

)
− [y ̸= 0]

(
y

(
1− bc

2
|y, z − y

)
+ z(c|y, z)

)

A solution of the dual problem is given in B. Although, the non-zero vari-

ables for the solution were found numerically, the solution can be checked

analytically.

By substituting the solution of the dual problem from B, equation (5.1)

gives ωns(GOC,3) ≤ 1− 1
2m

. Since the classical value ωc(GOC) = 1− 1
2m

is a

lower bound, we have that ωns(GOC,3) = ωc(GOC) = 1− 1
2m

.
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Since we know that the value ωq(GOC,3) is bounded above ωc(GOC,3) and

below ωns(GOC,3) by equation (4.4), it follows that

Corollary 5.3.1. The Odd Cycle Game GOC,3 of length m with three

provers and quantum strategies has the same value as with classical strate-

gies:

ωq(GOC,3) = ωc(GOC) = 1− 1

2m
.

Therefore, adding one prover to the two-prover Odd Cycle Game restrict

the set of strategy to classical strategies. This is an improvement over

theorem (5.2.1) since it says that for any m, only three provers are required

for ωq(GOC,3) = ωc(GOC) instead of the previous m+ 1 provers.

In [BHK05], the addition of a third prover has already been used to

limit the information that an eavesdropper (i.e.: the third prover) would

gain from a key distribution. The authors prove that even with a post-

quantum theory, if the first and second provers do no violate a Bell in-

equality, the third prover can get all information between them using post-

quantum states that are deterministic and local. On the other hand, if the

first and second provers violate a Bell inequality, then some of the post-

quantum state of the third prover must be nonlocal. Since determinism

and nonlocality in a state allow signalling, the third prover will not be able

to obtain perfect information.

Finally, in [AGM06], it has been proven that more provers in a Quantum

Key Distribution (QKD) protocol is provably secure against non signalling

provers.



Chapter 6

Parallel Repetition of Two-Prover

One-Round Games

In what follows, we discuss another important modification to two-prover

one-round games: parallel repetition. Sequential repetition was discussed

earlier and we have seen that it increases the soundness probabilities. Infor-

mally, parallel repetition of a two-prover one-round game G is a game Gn

where the provers try to win n ≥ 1 instances of the game G simultaneously.

More formally, the games G1, ..., Gn in parallel is described by ∧nj=1Gj.

The verifier sends x1, ..., xn ∈ X1 × ... × Xn to the first prover and

y1, ..., yn ∈ Y1 × ... × Yn to the second prover where each pair (xi, yi) is

chosen independently from he original distribution πXiYi from each game

Gi. Then prover P1 answers with a1, ..., an ∈ A1 × ... × An and prover P2

with b1, ..., bk ∈ B1 × ... × Bn. They win the game ∧nj=1Gj if and only if

they win each instances of game Gi. This means that they win if for every

0 ≤ i ≤ n, R(ai, bi|xi, yi) = 1.

The protocol for n games in parallel is illustrated in Figure (6.1).

It is obvious that any kind of repetition has an effect on the value of

the repeated game. Sequential repetition of a two-prover one-round game

decrease the probability of winning by the provers exponentially but requires

multiple rounds. The advantage of parallel repetition is that it preserves

the number of rounds of a game. Trivially, for games G1, ..., Gn in parallel,

we have that

ωq(∧nj=1Gj) ≥
n∏
j=1

ω(G)n (6.1)

55
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Non-Interactive Part

of the Protocol

Interactive Part

of the Protocol

V P1 P2

X Y S

x1,...,xn
y1,...,yn

V

P1

P2

No Communication

Decision

Rn0 1

V wins P1 and P2 win

x1,...,xn

y1,...,yn

a1,...,an

b1,...,bn

Figure 6.1: Two-Prover Interactive Game with Parallel Repetition.

because each player could play each instance of each game independently

using an optimal strategy for each instance. In particular, when all the

games are the same, we have use the notation ∧nj=1Gj = Gn and we have

ω(Gn) ≥ ω(G)n.

In the following section, we review the results obtained for parallel rep-

etition with classical, quantum and no-signalling strategies and analyse its

effect on the Odd Cycle Game.

6.1 Parallel Repetition of Classical Games

When computational theorist started to study parallel repetition, it was

falsely believed that it could achieve the same exponential decrease in prob-
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ability of winning for the provers [FRS88, FRS90]. A counterexample of

this was shown in [For89]. Later,a simplified problem was studied where

the probability distribution over the question sets is independent of each

prover (i.e.:πXY = πX × πY ). Games based on these independent distri-

butions are called no-information games. Otherwise, they are called games

of partial-information. It was proved in [CCL90] that in the case of no-

information games, n parallel repetitions would decrease the probability

of error exponentially like sequential repetition. This bound was further

improved in [LS91, Pel90, Fei91, Alo91].

After many years, it was not known whether parallel repetition could

make the probability of error arbitrary small for a general case of unre-

stricted probability distribution. Then, it was proven in the general case

that the probability of error can be made arbitrary small but without giving

constructive bounds for the number of repetitions required to decrease the

probability of error below a given bound [Ver94]. Finally, it was in [Raz98]

that this number of repetition was made clear. It was shown that for a

game G with value ωc(G) = 1 − ϵ, where ϵ is the probability of failing by

the provers, that the game Gn has value ωc(G
n) ≤ (1 − ϵk)Ω(n/s), where

s is the size of an answer (i.e: 1 for binary games) and k is an universal

constant (i.e.: explicitly k = 32 in [Raz98]). This result was further im-

proved and simplified in [Hol07] with a constant of k = 3. Tight results

were shown with k = 2 for XOR games in [FKO07] and for other types

of games, unique and projection games, in [Rao08]. It was also shown in

[FV96] that the dependency on s for this bound is necessary.

The bound of ωc(G
n) ≤ (1 − ϵ)Ω(n/s), with universal constant k = 1

was stated as a open problem in [FKO07] and conjectured in [MS07] with

positive answer for special cases. This bound is usually referred as the

Strong Parallel Repetition Problem.

A recent motivation for the study of parallel repetition is that a pos-

itive answer for the Strong Parallel Repetition Problem would imply the

equivalence of the unique game conjecture [Kho02] with the hardness of ap-

proximation of the Max-Cut problem. The relation between the problems

is explained in [Raz08]. The Strong Parallel Repetition Problem or any

bounds with constant k < 2 would prove the unique game conjecture. But

a counterexample of the Strong Parallel Repetition Problem was presented

in [Raz08] and therefore that the unique game conjecture cannot be proven

by improving the bounds on parallel repetitions alone.

The proof of the classical upper bound obtained in [Raz98] which is im-

proved in [Hol07] is too extensive to include in this thesis. Rather, we will
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present two two-prover one-round games G that satisfy ωc(G
2) > ωc(G)

2.

The strict inequality shows that there are some games with parallel repe-

tition for which there exist a better strategy than playing each game inde-

pendently.

The first game presented is a game of partial-information and was pro-

posed in [Fei91, For89]. The game is described byGF = (X, Y,A,B,R, πXY )

where X = Y = A = B = {0, 1} and πXY is uniform over the pairs

(0, 0),(0, 1) and (1, 0). The winning condition R is

R(a, b|x, y) =
{

1 if x ∨ a ̸= y ∨ b
0 otherwise.

Reminder that for any classical strategies, an optimal strategy is deter-

ministic. For this game, the deterministic function f(q) of the question q of

each prover is either to copy the bit f(q) = q of the questions or to do a bit

flip f(q) = q̄. Because this game is played by two provers, there is a total of

four strategies to analyse. A simple case analysis for the game GF reveals

that its value is ωc(GF ) =
2
3
when the provers answer with the question bit.

Next, we show what effects parallel repetition with two repetitions has

on the classical value of this game of partial-information.

Theorem 6.1.1 ([Fei91]). The classical value of the game G2
F with two

parallel repetitions is

ωc(G
2
F ) > ωc(GF )

2.

Proof. We show a strategy for G2
F that achieve this lower bound. In a

game with two parallel repetitions, each prover receives a question pair and

answer by an answer pair. The first element a pair corresponds to the first

game and the other to the second game. Consider a strategy where each

prover answers by the pair (0, 0) if they receive the question pair (0, 0) and

answers (1, 1) otherwise. A case analysis over all possible question pairs

reveals that the probability of winning by the prover is 2
3
for this strategy.

Therefore,

ωc(G
2
F ) ≥

2

3
= ωc(GF ) > ωc(GF )

2.

which proves that this strategy is strictly better that playing each game

independently with an optimal strategy on GF .

Note that the proof of theorem (6.1.1) uses a strategy that could not be

optimal. Consequently, there could be strategies that achieve better results

from the perspective of the provers. In fact, it is stated as a proposition in

[Fei91] that this strategy is optimal: ωc(G
2
F ) =

2
3
.
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We have just shown an example of game of partial-information for

which ωc(G
2) > ωc(G)

2. Can this result be extended for more general

no-information games? We answer positively with the following example of

no-information game again from [Fei91].

The game is described by GF ′ = (X, Y,A,B,R′, π′
XY ) where X = Y =

A = B = {0, 1} and π′
XY is uniform over the pairs (0, 0),(0, 1),(1, 0) and

(1, 1). The winning condition R′ is

R′(a, b|x, y) =
{

1 if (x ∧ y) ∨ (x ∨ a ̸= y ∨ b),
0 otherwise.

The game GF ′ is a slight modification of the game GF . The probability

distribution is now uniform over the whole set X × Y and the winning

condition R′ = 1 if the question pair (1, 1) is sent to the provers for any

choice of answers by the provers. It is easy to see that the value of the game

GF ′ is ωc(G
′
F ) =

3
4
. An optimal strategy is simply the same as GF . When

the provers are asked questions (1, 1) they win disregarding the answers

they give.

We show what effect parallel repetition with two repetitions has on the

classical value of this no-information game.

Theorem 6.1.2 ([Fei91]). The classical value of the above two-prover one-

round no-information game GF with two parallel repetitions is

ωc(G
2
F ′) > ωc(GF ′)2.

Proof. Consider the following strategy for G2
F ′ . Upon receiving questions

(0, 0), prover P1 answers (0, 1) and player P2 answer (1, 0), otherwise they

both respond by (0, 0). A case analysis reveals for this strategy reveals that

the prover will win with probability = 10
16
. Since the value of ωc(GF ′) = 3

4
,

we have that

ωc(G
2
F ′) ≥

10

16
> ωc(GF ′)2 =

9

16
.

which proves the theorem.

Theorem (6.1.2) shows that even for no-information games it is possible

for the provers to win more often by playing by a different strategy than

the optimal strategy of a single instance of the game. This proves that the

conclusion we have obtained from the previous game are not caused by the

nature of the probability distribution. In [Fei91], it is stated as a proposition

that ωc(G
2
F ′) = ωc(G

′
F )

2.

From what we have observed from the above theorems, the following

corollary is easily deduced:
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Corollary 6.1.1. For the two-prover one-round game GF (and similarly for

GF ′), ωc(G
2
F ) > ωc(GF )

2 implies that ωc(G
n
F ) > ωc(GF )

n for any number n

of parallel repetition.

What we learn from this corollary is that the verifier has therefore no

interest in doing parallel repetition for these two games since it could help

the provers to have a better strategy.

To conclude this section and to establish a link with complexity theory,

note that parallel repetition of a game has an effect on the soundness of

some repeated game with classical strategies. There exists an upper bound

in [Hol07] for unrestricted game as a function of the question size, the

number of repetition and a universal constant. For XOR games, it is shown

in [FKO07] that the universal constant can be made smaller and the upper

bound is more restrictive.

6.2 Parallel Repetition of Non-Classical Games

This section deals with parallel repetition when quantum and no-signalling

strategies are allowed. It is essential to know if the same bounds can be

achieved with these strategy classes. For general games, this is yet unknown.

In the settings of XOR games with quantum strategies, a proof in

[CSUU07] shows that the Strong Parallel Repetition Theorem holds with

two provers. In [Hol07], an upper bound is indicated for the no-signalling

value of any two-prover games with parallel repetitions. Trivially, this

bound is less restrictive than the classical case as it does not depend on

the size of the question which was mandatory in the classical case. This

latter upper bound is good for any kind of game as opposed to the Strong

Parallel Repetition Theorem for XOR games. We leave the derivation of this

upper bound to another discussion and we present instead the derivation of

the Strong Parallel Repetition Theorem for XOR games.

The proof of the Strong Parallel Repetition for XOR games relies on the

sum of XOR games. For any two XOR games G = (X, Y,A,B,R, πXY ) and

G′ = (X ′, Y ′, A′, B′, R′, π′
X′Y ′), define the sum (mod 2) as the XOR game

G′′ = G⊕G′ = (X ×X ′, Y × Y ′, A′′, B′′, R⊕R′, πXY × π′
XY )

For this game, the verifier sample (x, y), (x′, y′) ∈ (X × Y ) × (X ′ × Y ′)

from the distribution πXY × πX′Y ′ . He then sends (x, x′) to prover P1 and

(y, y′) to prover P2. Prover P1 answers with a′′ ∈ A′′ and prover P2 with

b′′ ∈ B′′ which are a binary functions of the answers a, a′ ∈ A × A′ and
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b, b′ ∈ B × B′ respectively. More precisely, it must satisfies a′′ ⊕ b′′ =

f(a, b|x, y) ⊕ f ′(a′, b′|x′, y′) where the function f and f ′ are defined from

the winning condition of the XOR games such that a ⊕ b = f(x, y) and

a′ ⊕ b′ = f ′(x′, y′). A natural question is whether the outputs a′′ = a ⊕ a′

and b′′ = b ⊕ b′ make an optimal strategy. The probability of winning for

the provers with this strategy S⊕ is

ω̃(S⊕) = ω(G)ω(G′) + (1− ω(G))(1− ω(G′)) (6.2)

The first term in the addition represents the probability of winning both

games for the provers and the second term is the probability of failing both

games for the provers.

It turns out that S⊕ is not optimal for classical strategies. The authors

in [CSUU07] give the example of the CHSH game as a counterexample.

This game is defined by GCHSH = (X, Y,A,B,R, πXY ) where X = Y =

A = B = {1, 2} and the winning condition is

R(a, b|x, y) =
{

1 if a⊕ b = x ∧ y
0 otherwise

It is proven in [CHTW04] that the classical value is ωc(GCHSH) =
3
4
. Ac-

cording to (6.2), the winning probability of strategy S⊕ for this game with

two parallel repetitions would be 10
16
. However, it can be shown that if the

provers answer with a′′ = a ∧ a′ and b′′ = b ∧ b′, the winning probability of

this strategy is 3
4
> 10

16
.

Before continuing with the main proof of this section, we define a useful

quantity: the quantum bias of a XOR game.

Definition 6.2.1 (Quantum Bias [CSUU07]). The quantum bias εq(G) of

a XOR game G is a quantity defined by

εq(G) = 2ωq(G)− 1.

For a XOR game G, we denote the XOR game GT , the transpose of

G, to be the game where prover P1 and P2 exchange roles. Moreover, for

0 ≤ λ ≤ 1, we define the convex combination of two XOR games G and

G′ by λG+ (1− λ)G′. The convex combination of two games is a game in

which with probability λ the game G is played and with probability (1−λ)

the game G′ is played.

We now state some properties of the bias of a game with the following

proposition.
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Proposition 6.2.1 ([CSUU07]). Consider any XOR game G,G′ and G′′.

The quantum bias satisfies

1. εq(G⊕G′) = εq(G
′ ⊕G),

2. εq(G) = εq(G
T ),

3. For all 0 ≤ λ ≤ 1, εq(λG⊕ (1− λ)G′) = λεq(G) + (1− λ)εq(G
′),

4. For all 0 ≤ λ ≤ 1, G⊕(λG′+(1−λ)G′′) = λ(G⊕G′)+(1−λ)(G⊕G′′).

Before showing that the strategy S⊕ for XOR games is optimal with

quantum strategies, we state a lemma from [CSUU07].

Lemma 6.2.1 ([CSUU07]). If G and G′ are two XOR games, then

εq

((
1

2
G+

1

2
GT

)
⊕
(
1

2
G′ +

1

2
G′T
))

≤ εq(G)εq(G
′).

The proof of this lemma is made in [CSUU07] using semidefinite pro-

gramming and will not be presented here. We now proceed to the proof

that S⊕ is optimal with quantum strategies for XOR games.

Theorem 6.2.1 ([CSUU07]). For any XOR games G =

(X,Y,A,B,R, πXY ) and G′ = (X ′, Y ′, A′, B′, R′, π′
X′Y ′), the optimal

quantum strategy for G ⊕ G′ is a strategy family S⊕ where each prover

plays G and G′ independently as follows. They play G and G′, each with

an optimal strategy. They calculate a, b ∈ A × B and a′, b′ ∈ A′ × B′

respectively and output a′′ = a⊕ a′ and b′′ = b⊕ b′ respectively to the game

G⊕G′.

Proof. By definition (6.2.1) of the bias, the proof reduces to showing that

εq(G⊕G′) = εq(G)εq(G
′).

Trivially, we have that εq(G ⊕ G′) ≥ εq(G)εq(G
′) since the provers can

play each game with their optimal strategy and take the parity of the bit

as their answer. The rest of the proof deals with the reverse inequality.

As indicated in chapter 4, the quantum strategy for the provers consists

in sharing a state |ψ⟩ and to apply a set of observable Mx and Ny. Using

the vector characterization from theorem (4.5.1), we can write the equation

for the quantum bias for the XOR game G as

εq(G) =
∑
x,y

πXY (−1)f(x,y)⟨ψ|Mx ⊗Ny|ψ⟩ (6.3)
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= sup
{ux},{vy}

∑
x,y

πXY (−1)f(x,y)ux· vy, (6.4)

for unit vector {ux}x∈X and {vy}y∈Y where f(x, y) is defined in the winning

condition R as a⊕ b = f(x, y). Therefore, it is possible to find an optimal

solution to (6.3) like we do for the value of a game.

Using proposition (6.2.1) and lemma (6.2.1), we have

εq(G⊕G′) ≥ εq(G)ε(G
′)

≥ εq

((
1

2
G+

1

2
GT

)
⊕
(
1

2
G′ +

1

2
G′T
))

= εq

(
1

4
(G⊕G′) +

1

4
(G⊕G′T ) +

1

4
(GT ⊕G′) +

1

4
(GT ⊕G′T )

)
= εq

(
1

2

[
1

2
(G⊕G′) +

1

2
(G⊕G′T )

]

+
1

2

[
1

2
(G⊕G′) +

1

2
(G⊕G′T )

]T )
=

1

2
εq(G⊕G′) +

1

2
εq(G⊕G′T ).

From the last results, we have that εq(G ⊕ G′) ≥ εq(G ⊕ G′T ) and by

proposition (6.2.1), εq(G ⊕ G′T ) ≥ εq(G ⊕ G′). Therefore εq(G ⊕ G′) =

εq(G ⊕ G′T ) and all inequalities above can be replaced by equalities. In

particular, the first two lines state that εq(G ⊕ G′) = εq(G)ε(G
′) which

proves the theorem.

We now have proved that for the optimal strategy for the sum G⊕G′ of

games G and G′ with quantum strategies is to play each game independently

with their optimal strategy. This results is necessary to prove the Strong

Parallel Repetition Theorem for XOR games with quantum strategies. We

now give the proof of two more lemmas before giving the main proof of this

section.

Lemma 6.2.2 ([CSUU07]). For any sequence of binary random variables

X1, X2, ..., Xn,

1

2n

∑
M⊆[n]

E
[
(−1)⊕j∈MXj

]
= Pr[X1...Xn = 0...0].

Proof.

1

2n

∑
M⊆[n]

E
[
(−1)⊕j∈MXj

]
= E

 1

2n

∑
M⊆[n]

(−1)⊕j∈MXj


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= E

[
n∏
j=1

(
1 + (−1)Xj

2

)]
.

Because the quantity
∏n

j=1

(
1 + (−1)Xj

)
is non-zero only when X1...Xn =

0...0, we have

E

[
n∏
j=1

(
1 + (−1)Xj

2

)]
= Pr[X1...Xn = 0...0] (6.5)

We introduce a new terminology for the bias of a strategy S and a game

G. First, we describe the terminology for the winning probability ω̃(S) of a

strategy S for a game G by ω̃(S,G).We indicate the bias of strategy S on

a game G from definition (6.2.1) of the bias by

ε̃(S,G) = 2ω̃q(S,G)− 1. (6.6)

In particular, for an optimal strategy Sopt for game G, we obtain the defi-

nition of the bias ε̃(Sopt, G) = ε(G).

Lemma 6.2.3 ([CSUU07]). For any XOR game Gi, we have

1

2n

∑
M⊆[n]

ε̃(SM ,⊕j∈MGj) = ω̃(S,∧nj=1Gj).

where n is the number of repetitions and SM is the strategy that the provers

answer by the sum of the answer of each game independently using strategy

S.

Proof. For all j ∈ [n], we use the function of the provers aj⊕ bj = fj(xj, yj)

from winning condition Rj of a game Gj = (Aj, Bj, Xj, Yj, Rj, πXjYj) and

define the binary random variables Xj = aj ⊕ bj ⊕ fj(xj, yj). When Xj = 0

the game Gj is won by the provers.

We have that

E[(−1)⊕j∈MXj ] = ε̃(SM ,⊕j∈MGj),

and that

Pr[X1...Xn = 0...0] = ω̃(S,∧nj=1Gj)

and from lemma (6.2.2), the two equations are equal.

From lemma (6.2.3), we deduce the following corollary
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Corollary 6.2.1 ([CSUU07]).

ωq(∧nj=1Gj) ≤
1

2n

∑
M⊆[n]

εq(⊕j∈MGj)

We are now in possession of all the necessary tools to proceed with the

proof of the Strong Parallel Repetition Theorem for XOR games.

Theorem 6.2.2 (Strong Parallel Repetition Theorem for XOR games

[CSUU07]). For any XOR games G1, ..., Gn, we have that the value

ωq(∧nj=1Gj) of all the games in parallel is

ωq(∧nj=1Gj) =
n∏
j=1

ωq(Gj).

Proof. We know from equation (6.1) that the value ωq(∧nj=1Gj) of any games

G1, ..., Gn in parallel is lower bounded by

ωq(∧nj=1Gj) ≥
n∏
j=1

ωq(Gj).

This means that the value of the games in parallel cannot be lower than

playing each game independently with their appropriate optimal strategy.

The rest of the proof deals with the upper bound. We have that

ωq(∧nj=1Gj) ≤
1

2n

∑
M⊆[n]

εq(⊕j∈MGj) (by corollary (6.2.1))

=
1

2n

∑
M⊆[n]

∏
j∈M

εq(Gj) (by theorem (6.2.1))

=
n∏
j=1

(
1 + εq(Gj)

2

)

=
n∏
j=1

ωq(Gj) (by the bias definition)

Since we have
∏n

j=1 ωq(Gj) ≤ ωq(∧nj=1Gj) ≤
∏n

j=1 ωq(Gj), it follows that

ωq(∧nj=1Gj) =
∏n

j=1 ωq(Gj).

The consequence of the above proof is that for XOR games the verifier

has no advantages of doing parallel repetition when the provers use quantum

strategies. By simplicity, he would then do no parallel repetition of the

game.
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For other games than XOR games, unique games or projections games,

there are no known results for parallel repetition in the quantum settings

beside the upper bound in [Hol07] for no-signalling strategies. In those

cases, it could be possible that the provers can win more often using the

quantum or no-signalling strategies.

6.3 Parallel Repetition of Odd Cycle Games

The upper bound in [Hol07] for the value of games with parallel repetition

with classical and no-signalling strategies can be applied to the Odd Cycle

Game. Moreover, since the Odd Cycle Game is a XOR game, the Strong

Parallel Theorem of [CSUU07] for quantum strategies is also valid. However,

those results are not specific to the Odd Cycle Game.

A classical result in [Raz08] puts a lower bound on the value of the two-

prover Odd Cycle Game Gn
OC with n repetitions and with classical strategies

ωc(G
n
OC) ≥ 1− 1

m
O(

√
n).

This results is particularly important since it is a proof that the bound for

the Strong Parallel Theorem for XOR games cannot be achieved classically.

Another important result appeared in [FKO07] and puts an upper bound

on the classical value of the Odd Cycle Game with n repetitions as follows

ωc(G
n
OC) ≤ 1− 1

m
O(

√
n

log(n)
).

An improved result for this bound would require improvements on the

Foam Problem in physics discussed in [FKO07]. Finally, for n repetitions,

the perfect repetition theorem does not work for classical strategies for this

game with cycles of length m [FKO07]. That is

ωc(G
n
OC) > (1− 1

2m
)n.

for some n ≤ m2log(m). However, the proof is not included in the prelimi-

nary version of the paper.

We now proceed with the proof in [Raz08] that the Odd Cycle Game of

length ωc(G
n
OC) with classical strategies and n parallel repetitions is lower

bounded by ωc(G
n
OC) ≥ 1− 1

m
O(

√
n).
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Theorem 6.3.1 ([Raz08]). The value of the Odd Cycle Game GOC of length

m with classical strategies and n parallel repetitions is

ωc(G
n
OC) ≥ 1− 1

m
O(

√
n).

For the upcoming proof, we introduce a special notation. For integers

i ≤ j, we write [i, j] for the set of integer {i, i+1, ..., j}. Let m = 2k+1 be

an odd integer and define the set I = [−k, k] of size m. Let the arithmetics

on those sets will be taken modulo m.

Before going on with the proof itself, the authors prove the following

technical lemma:

Lemma 6.3.1 ([Raz08]). There exists a probability distribution f : I → R ,

such that:

1. For every i ∈ I, f(i) > 0,

2. f(k), f(−k) ≤ O
(

1
m3

)
,

3.
∑

i∈I
f(i)2

f(i+1)
+ f(i)2

f(i−1)
≤ 2 +O

(
1
m2

)
.

Proof. Let the probability distribution be defined by

f(i) = γ · (k + 1− |i|)2,

where γ = Θ
(

1
m3

)
.

The first and second requirements hold by the definition of the normal-

ization factor γ. We now prove the third requirement:

For any j ≥ 2, we have that

j2

(j + 1)2
+

j2

(j − 1)2
≤ 2 +O

(
1

j2

)
.

By defining j = k + 1 − |i| we have three cases that have to be dealt

separately:

1. For i ∈ I\{−k, 0, k},

f(i)2

f(i+ 1)
+

f(i)2

f(i− 1)
= f(i) ·

(
f(i)

f(i+ 1)
+

f(i)

f(i− 1)

)
= 2f(i) +O(γ)
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2. For i = 0,

f(0)2

f(1)
+

f(0)2

f(−1)
= 2f(0) · (k + 1)2

k2

= 2f(0) ·
(
1 +O

(
1

k

))
= 2f(0) +O

(
1

m2

)
3. For i ∈ {−k, k},

f(i)2

f(i+ 1)
+

f(i)2

f(i− 1)
= f(i) ·O(1)

= O(γ)

Therefore, the third requirement is verified over all the domain of the func-

tion f .

Let m = 2k + 1 be an odd integer and define the Odd Cycle Game as

usual by GOC = (X, Y,A,B,R, πXY ). Define the question sets X and Y

by U = [−k, k] of size m to an ordering of the nodes of the cycle. Denote

E = {{i, i + 1} : i ∈ X} to be the set of edges in the cycle. Each edge in

the cycle is named by the node opposite to it (e.g.: the edge {i, i + 1} is

named by i+ (m+1)
2

).

Let x = (x1, x2, ..., xn) ∈ Xn be the questions to prover P1 and y =

(y1, y2, ..., yn) ∈ Y n be the questions to prover P2 where each pair (xi, yi) is

chosen from the distribution πXY .

Consider the probability distribution given by lemma (6.3.1). For every

node u ∈ U , define a probability distribution Pu : E → R over the edges

e ∈ E by

Pu(e) = f(e− u)

where each e and u is from the set [−k, k] and the arithmetic is taken modulo

m. In a similar manner, for each u = (u1, ..., un) ∈ Un, define a probability

distribution Pu : E
n → R over the n edges (e1, ...en) ∈ En by

Pu(e1, ..., en) =
n∏
i=1

Pui(ei) =
n∏
i=1

f(ei − ui).

Returning to the Odd Cycle Game, we have two distributions Px and Py
given by the above. We define the l1 distance between two vectors u =
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u1, ..., un and v = v1, ..., vn is defined by

||u− v||1 =
∑
i

|ui − vi|.

The next lemma bounds the l1 distance of those two distributions.

Lemma 6.3.2 ([Raz08]). Ex,y||Px − Py||1 ≤ 1
m
·O (

√
n)

Proof. First of all, consider only the case where n < αm2 for some constant

α > 0 since otherwise the theorem holds trivially (i.e: 1
m

·
√
n ≥ Ω(1)).

Moreover, by symmetry, Ey||Px − Py||1 is the same for every x. Thus, we

can fix a particular x = 0̄ = (0, ..., 0) without loss of generality. It is thus

enough to bound Ez||P0̄ − Pz||1 for z = (z1, ...zn) ∈ [−1, 1]n where each

zi is chosen independently from the distribution πz such that πz(0) = 1
2
,

πz(1) =
1
4
and πz(−1) = 1

4
. We therefore have

Ex,y||Px − Py||1 = (Ez||P0̄ − Pz||1)2

=

(
Ez
∑
e∈En

|P0̄(e)− Pz(e)|

)2

(by definition of the l1 distance)

=

(
Ez
∑
e∈En

Pz(e)

∣∣∣∣P0̄(e)

Pz(e)
− 1

∣∣∣∣
)2

≤ Ez
∑
e∈En

Pz(e)

(
P0̄(e)

Pz(e)
− 1

)2

(by Jensen’s inequality)

= Ez
∑
e∈En

(
Pz(e)− 2P0̄(e) +

P0̄(e)
2

Pz(e)

)
= 1− 2 + Ez

∑
e∈En

P0̄(e)
2

Pz(e)

(because P0̄ and Pz are probability distributions)

= −1 + Ez1,...,zn
∑

e1,...,en

n∏
i=1

f(ei)
2

f(ei − zi)

= −1 +
n∏
i=1

(
Ezi
∑
ei

f(ei)
2

f(ei − zi)

)

= −1 +
n∏
i=1

(∑
ei

1

2

f(ei)
2

f(ei)
+

1

4

f(ei)
2

f(ei + 1)
+

1

4

f(ei)
2

f(ei − 1)

)
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= −1 +
n∏
i=1

(
1 +O

(
1

m2

))
(because f is a probability distribution and by lemma (6.3.1))

= O

(
1

m2

)
·O(n)

=
1

m2
·O(n)

The proof of theorem (6.3.1) follows from the above lemmas and another

lemma in [Hol07]. We present the last necessary lemma restated in [Raz08].

Lemma 6.3.3 ([Raz08]). Let W be a finite set. Assume that prover P1

knows a distribution PA : W → R and prover P2 knows a distribution

PB : W → R , such that

||PA − PB||1 ≤ δ.

Then, using a shared random string, prover P1 can choose wA ∈ W dis-

tributed according to PA, and prover P2 can choose wB ∈ W distributed

according to PB, such that

wA = wB,

with probability at least 1−O(δ).

The proof of this lemma will not be presented in this paper but the

reader is encouraged to consult [Hol07] for the proof. We give the proof of

theorem (6.3.1) based on the results shown. Theorem (6.3.1) stated that

the value of the Odd Cycle Game GOC of length m with classical strategies

and n parallel repetitions is

ωc(G
n
OC) ≥ 1− 1

m
O(

√
n).

Proof. We show a probabilistic protocol that achieves the desired lower

bound on the value of the Odd Cycle Game with classical strategies. Since

a probabilistic protocol is a convex combination of deterministic protocol,

there exist a deterministic protocol that achieves the same value.

Upon receiving questions x and y from the verifier, prover P1 gets prob-

ability distribution Px and similarly prover P2 gets probability distribution

Py. By lemma (6.3.2) and (6.3.3), P1 can choose e = (e1, ..., en) ∈ En from

Px and P2 can choose e′ = (e′1, ..., e
′
n) ∈ En from Py such that e = e′ with

probability at least 1− 1
m
O(

√
n).
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Now, the prover uses this shared sequence of edges e to win the game

as follows. From lemma (6.3.1), the probability that the edge ei touches

the node xi is at most O
(

1
m

)
which is negligible. They have joint sequence

of edges such that it does not touch the node in the question. Thus if the

each prover colours the cycle with 0 for the two nodes touching edge e and

the rest of the nodes with 1 and 0 alternatively, they will have a share cycle

that will be 2-coloured correctly except at edge e. But we have said that

the probability that the edge e touches x is negligible. Therefore, if the

prover use this probabilistic classical strategy, they will achieve a value of

ωc(G
n
OC) ≥ 1− 1

m
O(

√
k)

For n ≥ Ω(m2), it is explained in [Raz08] that the value of the repeated

Odd Cycle Game is ωc(G
n
OC) = (1−( 1

2m
)2)O(n) which give a negative answer

for the Strong Parallel Theorem Problem in the case of XOR games (as well

as unique and projection games).





Chapter 7

Conclusion

In this thesis, we presented the effects of adding more provers to a multi-

prover one-round game. We analysed the differences when the strategy of

the provers is classical, quantum and no-signalling.

We have shown that with classical strategies, the value of the game is not

changed with the addition of more that two provers. We have seen that in a

situation where the number of provers is k = m+1 for m possible questions

to the second prover, the value of the game is the same for classical, quantum

and no-signalling strategies. In particular, we have shown that in the case of

the Odd Cycle Game only three provers instead of k = m+1 are necessary

to reduce the value of the no-signalling and quantum games to a classical

one.

With parallel repetition, we also noticed differences between strategy

classes. In the classical setting, we noticed that there exist games with

parallel repetition for which there is a better strategy than playing each

instance of the game with an optimal strategy. Classically, this was shown

for partial-information games and no-information games. With quantum

strategies, we have shown that in the case of XOR games, the best strategy

for a game with parallel repetition is to play each instance with an opti-

mal strategy. This is clear demonstration of the difference between classical

and quantum strategies for game with parallel repetition. Finally, we have

presented a lower bound on the value of the Odd Cycle game with paral-

lel repetition, which is a counterexample to strong parallel repetition with

classical strategies.

The contribution of this thesis was to gather recent results on these

topics and organize them in an unified manner. Results were selected to
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emphasize the effect of the choice of the strategy class on the value of games.

This could help to understand the power of the multi-prover interactive

proof system with quantum and no signalling theories.

7.1 Future Work

When adding more provers to a two-prover game with no-signalling strate-

gies, it would be interesting to know if there are relations between the num-

ber of possible questions to the second prover and the number of provers

other than the one presented. For example, if k ̸= m+1, the effect of adding

more prover with quantum strategies is currently unknown for unrestricted

games. Another interesting question is what is the effect on the value of

a multi-prover one-round game with quantum strategies when the provers

are allowed to receive different questions. Understanding the power of the

multi-prover interactive proof system with quantum strategies is essential

to give a correct security proof of many protocols.

The classical and no-signalling upper bounds for generalized games with

parallel repetition might be reduced. For games other that XOR games, it

is an important question to know what effects has parallel repetition. For

example, whether of not, the best strategy is to play each instance with the

optimal strategy of the game or if there is a better strategy. For the Odd

Cycle Game, it would be interesting to have a strong bound on the value

with parallel repetition for a certain number of repetition.

Finally, more differences between classical and quantum strategies could

emerge from the addition of more players to a two-prover one-round game

combined with parallel repetition. This is a very interesting question.
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Appendix A

Mathematical Optimization

In this section, we review the notions of mathematical optimization and

more precisely of convex and linear optimization problems [BV04]. We

also explain the notion of duality, useful for finding a lower bound on an

optimization problem.

A.1 Optimization Problems

In optimization, the goal is to find a solution to a minimization or maximiza-

tion problem. We begin by giving the general description of optimization

problems.

Definition A.1.1 (Optimization problems [BV04]). Optimization prob-

lems have the form

minimize f0(x)

subject to fi(x) ≤ bi i = 1, ...,m

where x = (x1, ..., xn) is the optimization variable, f0 : Rn → R is the

objective function, fi : Rn → R, i = 1, ...,m, are the constraint functions

and b1, ..., bm are bounds for the constraints.

A solution to an optimization problem is a vector x∗ that has the smallest

objective value that satisfies the constraints. In other words, a solution x∗

is defined by f0(z) ≥ f0(x
∗) for any z such that f1(z) ≤ b1, ..., fm(z) ≤ bm.

Note that we can transform a minimization problem into a maximization

problem by changing the objective function f0 by −f0.
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Optimization problems are divided into classes characterized by the form

of the objection function and constraint functions. One of these classes is

the class of linear problems or linear programs.A linear program has the

form

fi(αx+ βy) = αfi(x) + βfi(y)

for all x, y ∈ Rn and all α, β ∈ R. A linear program is special case of convex

optimization problems. Convex optimization problems is another class of

optimization problems. For those problems, the objective and constraint

functions have the special form

fi(αx+ βy) ≤ αfi(x) + βfi(y)

for all x, y ∈ Rn and all α, β ∈ R with α+ β = 1, α ≥ 0, β ≥ 0.

There is no simple analytical formula for the solution of an optimization

problems. On the other hand, there are a variety of methods to solve them

based of the form of the objective and constraints functions [BV04].

In the next section, we focus our attention on convex optimization prob-

lems, and more specifically on linear programs.

A.1.1 Convex Optimization Problems

We describe a convex optimization problem as follows.

Definition A.1.1 (Convex Optimization Problems [BV04]). Convex opti-

mization problems have the form

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, ...,m

hi(x) = 0 i = 1, ..., p

where x ∈ Rn, fi : Rn → R are inequality constraints and hi : Rn → R are

the equality constraints.

If there is no constraints (i.e.: m = p = 0), we say that the problem is

unconstrained.

We define the domain of the optimization problem D as the set of points

where the objective function and the constraint function are defined:

D =
m∩
i=0

dom fi ∩
p∩
i=0

domhi.
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A point x ∈ D is said to feasible if it satisfies all inequality and equality

constraints. We say that the problem is feasible if it has at least one feasible

point.

We define the optimal value p∗ of the problem as

p∗ = inf{f0(x)|fi(x) ≤ 0, i = 0, ...,m hi(x) = 0, i = 1, ..., p}

If a problem is infeasible, we have p∗ = ∞ and if there are feasible points

xk for which f0(xk) → −∞ as k → ∞, we have p∗ = −∞ and we say the

problem is unbounded below.

We say that a point x∗ is optimal if it is feasible and f(x∗) = p∗. The

set of optimal points is denoted by

Xopt = {x|fi(x) ≤ 0, i = 0, ...,m hi(x) = 0, i = 1, ..., p, f0(x) = p∗}.

If there exists an optimal point, we say that the optimal value is attained

or achieved and that the problem is solvable. Otherwise, we say that the

optimal point is not achievable. Note that when we refer to an optimal

point, we mean a global optimal point. The definition of a local optimal

point is given in [BV04].

A.1.2 Linear Optimization Problems

We describe a subclass of convex optimization problem, the class of lin-

ear optimization problems or simply linear programs as follows. A linear

program has affine objective and constraint functions.

Definition A.1.2 (Linear Optimization Problems [BV04]). A general linear

program has the form

minimize aTx+ d

subject to Gx ≼ h

Ax = b

where G ∈ Rm×n,A ∈ Rp×n and the symbol ≼ (and its strict form ≺) denote

the generalized inequality.

The generalized inequality between vectors represents the component-

wise inequality and between symmetric matrices, it represents matrix in-

equality. Note that the value d can be omitted in the definition of the

problem because it does not affect the feasible set. The maximization prob-

lem of the objective function −cTx− d is also a linear program.
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A linear program can be in the standard form or the inequality form.

In the standard form, the only inequalities are the componentwise nonneg-

ativity constraints x ≽ 0:

minimize aTx+ d

subject to Ax = b

x ≽ 0.

In the inequality form, the linear program has no equality constraints:

minimize aTx+ d

subject to Ax ≽ b.

For more details on conversion to the standard form, consult [BV04].

A.2 Duality

A.2.1 The Lagrange Dual Function

Consider an optimization problem (not necessary convex) in the standard

form as follows

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, ...,m

hi(x) = 0 i = 1, ..., p

We define the Lagrangian of associated with the optimization problem.

Definition A.2.1 (The Lagrangian [BV04]). We define the Lagrangian

L : Rn × Rm × Rp → R as

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

where domD × Rm × Rp.

The vectors λ and ν refers to the dual variables or Lagrange multiplier

vectors. The idea behind the Lagrangian is to take the constraints into

account in the objective function in the form of a weighted sum. We define

the dual function from the Lagrangian as follows.
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Definition A.2.2 (The Dual Function[BV04]). We define the dual function

g : Rm × Rp → R as the minimum value of the Lagrangian over x: for

λ ∈ Rm,ν ∈ Rp,

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)

An important property of the dual function is that it is concave even

if the problem is not convex.The dual function is an interesting function

because it yields lower bounds on the optimal value p∗ of the problem. We

state this affirmation in the following theorem.

Definition A.2.1. For any λ ≽ 0 and any ν, we have

g(λ, ν) ≤ p∗

Proof. Suppose x̃ is any feasible point (i.e: fi(x̃) ≤ 0, hi(x̃) = 0 and λ ≽ 0).

The Lagrangian is therefore

L(x̃, λ, ν) = f0(x̃) +
m∑
i=1

λifi(x̃) +

p∑
i=1

νihi(x̃)

≤ f0(x̃)

because
m∑
i=1

λifi(x̃) +

p∑
i=1

νihi(x̃) ≤ 0.

Hence,

g(λ, ν) = inf
x∈D

L(x, λ, ν) ≤ L(x̃, λ, ν) ≤ f0(x̃)

Since the last equation does not depend on the choice of a particular x̃, it

holds for every feasible points and the inequality follows.

A.2.2 Dual Problems

We have proved that for each pair (λ, ν) with λ ≽ 0, the Lagrange dual

function is a lower bound on p∗ of an optimization problem. A natural

question is which dual function achieves the best lower bound? This prob-

lem is refered to the Lagrange dual problem and can be formalized as the

optimization problem

maximize g(λ, ν)
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subject to λ ≽ 0.

We observe that this problem is a convex optimization problem since the

objective function is concave and the constraint is convex.

The definitions of the optimization problems we have seen before are

referred as primal problems. We denote by (λ∗, ν∗) the dual optimal or

optimal Lagrange multipliers if they are optimal for the problem. Note

that even if the primal is not an optimization problem, the dual is.

Let d∗ be the optimal value of the dual problem that is the best lower

bound on p∗. There is two types of duality that we define in the following

two definitions.

Definition A.2.1 (Weak Duality [BV04]). Weak duality is the inequality

d∗ ≤ p∗ (A.1)

where p∗ is the optimal value of the primal and d∗ is the optimal value of

the dual.This inequality holds even if the primal problem is not convex.

Definition A.2.2 (Strong Duality [BV04]). Strong duality is the equality

d∗ = p∗ (A.2)

where p∗ is the optimal value of the primal and d∗ is the optimal value of

the dual.

Strong duality means that the best bound that can be obtained from

the Lagrange dual is tight. This equality is not true in general.
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A Solution to the Dual Problem

Non-zeros variables of the numerical solution of the dual problem for the

Odd Cycle Game GOC,3 with three provers and no-signaling strategies pre-

sented in theorem (5.3.1):

n(0, 0) = 2m− 1

s(0, 1|0, 0) = 3m

2

s(0, 1|1, 0) = −m+ 1

s(0, 0|0, 1) = −m+ 1

s(0, 1|1, 1) = −m
2

s(0, 0|y, y + 1) = (−1)y for y=1,2,...,m-1

s(0, 1|y, y + 1) = −(−1)y for y=1,2,...,m-1

y(0|1, 0) = −2m+ 3

y(0|1, z) = −m+ z +
5

2
+

(−1)z

2
for z=1,2,...,m-1

y(1|1, 0) = 3− 3m

2

y(1|1, 1) = −m+ 4

y(1|y, 1) = −(−1)y for y=2,...,m-1

y(1|1, z) = −m+ z +
5

2
+

(−1)z

2
for z=2,...,m-2

y(1|1,m− 1) = −m+ 3

y(1|j,m− 1) = 1− (−1)y for y=2,3,...,m-1
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z(0|1, 0) = m− 3

z(0|1, 1) = 2m− 3

z(0|1, 2) = m− 4

z(0|y, y − 1) = −1 for y=2,3,...,m-1

z(0|y, y + 1) = (−1)y for y=2,3,...,m-1

z(0|1, z) = m− z − 3

2
+

(−1)z

2
for z=3,4,...,m-1

z(1|y, y − 1) = −1 + (−1)y for y=1,2,...,m-1

z(1|1, z) = m− z − 3

2
+

(−1)z

2
for z=1,2,...,m-1


