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Résumé 

Contexte L’anhédonie, un état caractérisé par une capacité réduite d’éprouver du plaisir. Des 

études cliniques récentes montrent qu’un médicament antipsychotique atypique, la quétiapine, 

est bénéfique pour le traitement de la toxicomanie qui est supposé d’atténuer les symptômes de 

sevrage associés à l’usage abusif des drogues psychotropes. Le but de la présente étude était 

d’étudier les effets de l'administration aiguë de quétiapine sur la récompense chez des animaux 

en état de sevrage après un traitement chronique avec l’amphétamine. Notre hypothese est que la 

quetiapine va diminuer l’anhedonie causer par le sevrage.  

Méthodes Les expériences ont été effectuées avec des rats mâles de la souche Sprague-Dawley 

entraînés à produire une réponse opérante pour obtenir une courte stimulation électrique au 

niveau de l'hypothalamus latéral. Des mesures du seuil de récompense ont été déterminées chez 

différents groupes de rats avant et pendant quatre jours après le traitement avec des doses 

croissantes (1 à 10 mg/kg, ip toutes les 8 heures) de d-amphétamine sulfate, ou de son véhicule, 

au moyen de la méthode du déplacement de la courbe. L’effet de deux doses de quétiapine a été 

testé 24 h après le sevrage chez des animaux traités avec l’amphétamine ou le véhicule. 

Résultats Les animaux traités avec l’amphétamine ont montré une augmentation de 25% du 

seuil de récompense 24 h après la dernière injection, un effet qui a diminué progressivement 

entre le jour 1 et le jour 4, mais qui est resté significativement plus élevé en comparaison de celui 

du groupe contrôle. La quétiapine administrée à 2 et 10 mg/kg pendant la phase de sevrage (à 24 

h) a produit une augmentation respective de 10 % et 25 % du seuil de recompense; le meme 

augmentation du seuil a été observe chez les animaux traitées avec le véhicule. Un augmentation 

de 25 % du seuil de recompense a aussi été observés  chez les animaux en état de sevrage à 

l'amphétamine. Un test avec une faible dose d’amphétamine (1 mg/kg) avant et après le sevrage a 
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révélé une légère tolérance à l’effet amplificateur de cette drogue sur la récompense, un 

phénomène qui pourrait expliquer l’effet différent de la quétiapine chez les animaux traités avec 

le véhicule et ceux traités avec l’amphétamine. 

Conclusions Ces résultats reproduisent ceux des études précédentes montrant que la quétiapine 

produit une légère atténuation de la récompense. Ils montrent également que le sevrage à 

l’amphétamine engendre un  léger état d'anhédonie et que dans cet état, une dose élevée de 

quetiapine et non pas une dose faible accentue l’état émotionnel négatif. Ils suggèrent qu’un 

traitement à faibles doses de quétiapine des symptômes de sevrage chez le toxicomane devrait ni 

aggraver ni améliorer son état émotionnel. 

 

Mots clefs: Anhédonie, Amphétamine, Dopamine, Dysphorie, Quétiapine, Récompense, 

Tolérance 
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Résumé en anglais  

Background Anhedonia, a condition in which the capacity of experiencing pleasure is reduced, 

is observed in patients that are under withdrawal from drugs of abuse. Recent clinical studies 

show that quetiapine may be beneficial in the treatment of substance abuse by alleviating the 

withdrawal-negative affect stage of addiction. This study investigated the effects of acute 

quetiapine on reward in animals under withdrawal from d-amphetamine. 

Methods Experiments were performed on male Sprague-Dawley rats trained for intracranial 

self-stimulation. Measures of reward threshold were determined with the curve-shift method in 

different groups of rats before, and during four days after treatment with escalating doses (1 to 

10 mg/kg, i.p) of d-amphetamine sulphate or its vehicle. At 24h after withdrawal, the effects of 

two doses of quetiapine (2 and 10 mg/kg ip) were tested in all the animals.  

Results Animals treated with d-amphetamine showed 25% reward attenuation at 24h of 

withdrawal, an effect that decreased over the next three days. Quetiapine administered acutely at 

2mg/kg and 10mg/kg on the first day of withdrawal produced 10% and 25% reward attenuation, 

respectively, in the vehicle-control animals, an effect also observed in the animals under 

withdrawal from d-amphetamine but only at the high dose.   

Conclusions These results show that quetiapine produced a mild attenuation of reward in 

normohedonic and in anhedonic animals. They suggest that quetiapine should be used at low 

doses for the treatment of substance abusers under withdrawal from psychostimulant drugs to 

avoid enhancement of the anhedonic state.  

Key words:  Anhedonia, Amphetamine, Dopamine, Quetiapine, Reward, Tolerance 
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1.1 Drug addiction: a brief history 

Although alcohol and drug addiction have no doubt been with us for millennia, the 

modern medical conceptualization of addiction can be traced back to Benjamin Rush, an 

American physician who lived during the 19th century in the period known as the enlightenment, 

a time when disease began to be conceptualized as an imbalance in the nervous system (Meyer, 

1996). Rush postulated that since distilled spirits were considered to be strong nervous system 

stimulants and could cause an imbalance in the nervous system, then alcoholism could be 

considered as a disease, the cure to which could only come from total abstinence. As a result of 

this rationale, public education campaigns were mounted and succeeded in reducing public 

drunkenness between 1810 and 1830 (Meyer, 1996).  

 The next step in the evolution of the concept of addiction came at the end of the 19th 

century when notions of disease became increasingly rooted in findings from pathology and 

biology (Meyer, 1996). It was during this period that Emile Kraepelin, considered as the founder 

of contemporary scientific psychiatry, published the first psychometric data on the influence of 

common recreational (tea, coffee, alcohol) and medical drugs (amyl nitrite, chloral hydrate, 

chloroform, ethyl ether, morphine, paraldehyde) (Muller et al. 2006; Crocq, 2007). Using himself 

as the first (and sometimes only) research subject, Kraepelin concluded that alcohol, ether, 

chloroform, chloral hydrate, paraldehyde and morphine produce “initial excitation of sensory and 

intellectual domains accompanied by simultaneous central motor impairment…This is a common 

trait of all toxins that induce a personality change after chronic abuse…[These drugs] if in 

different strength, [induce] this persistent weakness of will in addition to acute central motor 

paralysis” (as quoted in Muller et al. 2006). Moreover, he was one of the first to scientifically 

demonstrate the dangers of alcoholism. He noted that chronic alcoholism provoked cortical brain 
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lesions that led to a permanent cognitive decline and became a fervent proponent of abstinence 

as a result (Crocq, 2007). Although Kraepelin championed the psychopharmacological approach 

to addiction, it was Sigmund Freud who laid the foundation for the psychological approach to 

addiction whereby addiction would come to be viewed as a disease of the mind, in addition to 

being a neuropharmacological phenomenon. In a letter to his friend and confidant Wilhelm Fleiss 

(1897), Freud wrote: “…it has dawned on me that masturbation is the one major habit, the 

“primal” addiction and that it is only as a substitute and replacement for it that the other 

addictions—for alcohol, morphine, tobacco, etc—come into existence” (as quoted in Crocq, 

2007). It was a result of the psychological approach that addiction became to be defined not only 

by dependence on drugs of abuse, but also by any persistent self-destructive behaviors such as 

gambling (Crocq, 2007).   

In the latter half of the 20th century as science became increasingly systematic, 

researchers built upon the initial observations of pioneers such as Kraepelin and Freud to come 

up with more objective conceptualizations of addiction. One such conceptualization was the 

opponent process theory, originally proposed by Leo Hurvich and Dorothea Jameson (1955) as a 

model of color vision and expanded by Richard Solomon (1974) through his research on 

motivation and addiction. Solomon posited that the central nervous system automatically 

modulated hedonic states, once they were initiated, by way of counteradaptive mechanisms that 

reduced their intensity and brought the system back to hedonic neutrality (Solomon & Corbit, 

1974). Solomon termed this process the standard pattern of affective dynamics, a five stage 

pattern that was said to underlie all addiction and indeed all hedonic or pleasure-seeking 

behavior. The stages of this pattern are as follows: (a) the peak of the primary hedonic state, 

brought on by onset of the stimulus; (b) a period of adaptation during which the intensity of the 
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hedonic state decreases, despite the intensity of the stimulus remaining the same; (c) a stable 

level of the now reduced hedonic state which continues as long as stimulus intensity is 

maintained; (d) a peak of affective after-reaction or withdrawal state, which quickly follows 

discontinuation of the stimulus; and finally, (e) the decay and disappearance of the withdrawal 

state. These stages were then further grouped into two states: State “A” and State “B”, whereby 

State A is the primary reaction to the stimulus and State B is the after-reaction (Solomon & 

Corbit, 1974).  

A more concrete example that was given by the authors is that of opiate addiction. 

Initially the opiate user experiences an intense “rush” directly after the injection of the drug 

followed by a period of less intense euphoria. Next, as the drug wears off, anhedonia (a term 

coined in 1897 by the French psychologist Théodule-Armand Ribot to denote a diminished 

ability to experience pleasure), irritability, physical discomfort and intense craving set in 

(Solomon & Corbit, 1974; Willner, 1995). This baseline -> State A -> State B -> baseline 

sequence shifts as a result of prolonged opiate use. With repeated doses over several weeks, the 

strength of State A declines, while the strength of State B increases and takes longer to return to 

baseline. Furthermore, as both states are pushed lower and lower on the hedonic scale and 

modify the ‘hedonic set point’, State A become “normal” and State B ushers in extremely 

unpleasant and enduring agony that may last for days on end.  

The opponent process theory of motivation has provided one of the most influential 

explanations of addiction to drugs of abuse to date. The model not only gave testable hypotheses 

concerning addiction, but also testable hypotheses on any process of acquired motivation such as 

love, social attachment and risk-taking behavior. The difference between drug addiction and 

other forms of acquired motivation, however, is that in the case of the latter, the B process fades 
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to baseline very quickly and consequently, the downward spiral of repeated lowering of the 

hedonic state does not occur (Solomon & Corbit, 1974).  

1.2 Drug addiction as a cycle of spiraling distress  

More recently, Koob & Le Moal (1997) have expanded the opponent process theory to 

encompass the neurobiology and neurocircuitry of addiction. In this model, drug addiction is 

conceptualized as a cycle of spiraling distress and dysregulation of brain reward/anti-reward 

systems, whereby drugs of abuse progressively alter the normal homeostatic state thereby 

causing the reward-relevant system to become imbalanced and form an allostatic state (Koob & 

Le Moal, 2008). The normally homeostatic counteradaptive opponent processes that fall into 

disequilibrium can be subdivided into two categories: within-system neuroadaptations and 

between-system neuroadaptations. In a within-systems opposing process, the first-order elements 

on which the drug exerts its effects adapt to neutralize these effects and produce tolerance to the 

reinforcing effects of further administration of the drug. Within system adaptations include 

decreases in function of the same neurotransmitter systems that are responsible for the 

reinforcing effects of drugs of abuse as well as molecular changes such as cell down-regulation 

and cell desensitization. In this case, the affective after-reaction or withdrawal state would be 

caused by persistence of the opposing effects after the drug begins to leave the body (Koob & 

Bloom, 1988). Indeed, compensatory changes in reward-relevant circuits leading to reward 

deficits in the form of depression and anhedonia have been evidenced in withdrawal from all of 

the major drugs of abuse including cocaine, nicotine, amphetamines, phencyclidine (PCP), 

opiates, and alcohol (Melinchar et al. 2001; Spielewoy & Markou, 2003; Volkow et al. 2009). In 

a between-systems opposing process, a drug’s effect on primary drug response neurons leads to 

overactivation of neurons of a different circuit involved in the restoration of homeostasis of 
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bodily and brain function (Koob & Bloom, 1988). Between-system opposing processes may 

include long lasting increases in craving, anxiety, irritability and stress during withdrawal, and 

protracted abstinence. This form of adaptations has been witnessed in alcohol, nicotine, cannabis, 

cocaine, amphetamine and opiate dependence and is an important factor in relapse to drug taking 

(Bruijnzeel & Gold, 2005; Koob, 2009). One criticism of the opponent-process model, however, 

is that it does not provide a satisfactory explanation of drug craving by addicts and does not deal 

with the earliest stages of drug taking behavior (Meyer & Quenzer, 2005).  

Figure A: The cycle of drug addiction 

 

In an effort to bring the various theoretical interpretations of drug addiction under the 

same roof, the model of spiraling distress proposes characteristics of the addiction cycle on 

which different theoretical perspectives such as that of psychiatry, behavioral psychology and 

neuroscience can be superimposed. Here, drug addiction is characterized as a disorder that 

progresses from impulsion to compulsion and consists of three stages: preoccupation-anticipation 

(craving), binge-intoxication, and withdrawal-negative affect (Figure A). Individuals with 

impulse control disorders such as kleptomania feel a sense of tension and arousal before carrying 

out an impulsive action as well as pleasure and gratification at the time of the action. On the 

other hand, individuals with compulsive disorders such as obsessive compulsive disorder feel 
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stress and anxiety before carrying out a compulsive action and relief from the stress after 

performing the compulsive behavior (Koob & Le Moal, 2008). As an individual’s addiction 

progresses from being motivated by impulsions to being motivated by compulsions, there is a 

shift from pleasure and gratification driving their behavior to relief from anxiety and dysphoria. 

Thus, using behavioral psychology as a framework, Koob & Le Moal (1997) have proposed that 

different types of reinforcement correspond to different components of the addiction cycle. 

Specifically, the binge-intoxication phase is said to be associated with positive reinforcement 

(i.e. an increase in the future frequency of a behavior due to the addition of a stimulus 

immediately following a response), whereas the withdrawal-negative affect phase is said to be 

associated with negative reinforcement (i.e. an increase in the future frequency of a behavior 

when the consequence is the removal of an aversive stimulus). The preoccupation-anticipation 

phase is said to be associated with conditioned positive and negative reinforcement (i.e. a 

stimulus that has acquired its function as a reinforcer after pairing with a stimulus which 

functions as a primary reinforcer).  

From a neurochemical perspective, the binge-intoxication stage is reflected by activation 

of dopaminergic and opioid peptide systems. All major drugs of abuse including cocaine, 

amphetamine, alcohol, PCP, opiates, and nicotine increase extracellular dopamine (DA) levels 

(as measured by microdialysis), a neurotransmitter that is associated with reward and motivation 

(Carboni et al. 1988; Di Chiara & Imperato, 1988). Alcohol, opiates, nicotine, and cannabis also 

bind to the body’s endogenous mu- and delta-opioid receptors, which play a crucial role in the 

body’s ability to relieve pain and whose stimulation reverses the tonic inhibition that these 

receptors have on DA neurons, thereby leading to DA release (Lingford-Hughes & Nutt, 2003). 

The withdrawal-negative affect stage is characterized by decreases in dopamine and mu- and 
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delta-opioid function, as well as hyperactivity of brain anxiety and stress systems. Anxiety is 

thought to be mediated by a number of neurotransmitters including norepinephrine (noradrenalin, 

NE), serotonin (5-HT), and corticotrophin-releasing factor (CRF). Noradrenergic neurons 

originate in the locus coeruleus (LC) and serve to generate arousal, orienting, and response to 

fear-evoking stimuli, also known as the ‘fight or flight’ response.  LC neurons are known to 

contain receptor sites for CRF as well as 5-HT, which serve an excitatory and inhibitory function 

on NE release, respectively (Meyer & Quenzer, 2005). Additionally, NE and CRF mediate the 

neuroendocrine response to stress. In response to stress, multiple neurotransmitters (including 

NE) regulate the secretion of CRF from the cells of the hypothalamus. CRF, in turn, acts to 

release adrenocorticotropic hormone (ACTH) form the pituitary gland into the blood. ACTH 

then acts on the adrenal gland to increase the secretion of cortisol and other glucocorticoids. This 

hypothalamic-pituitary-adrenal (HPA) axis activation would normally be shut down by feedback 

from cortisol, resulting in brief and transient increases in cortisol involved in the mobilization of 

energy to deal with a particular stressful event (Offermanns & Rosenthal, 2008). During drug 

withdrawal, however, anxiety/stress systems become dysregulated and normally effective 

feedback mechanisms become overwhelmed and dysfunctional. Indeed, abnormally high and 

persistent increases in levels of CRF, ACTH, cortisol and NE are characteristic of withdrawal 

from all major drugs of abuse (Koob & Le Moal, 2001; Sinha, 2008). Depletion of DA as well as 

dysregulation of the anxiety/stress have also been implicated in the phenomenon of craving (the 

preoccupation-anticipation) stage of drug addiction (Adinoff, 2004; Weiss, 2005).  

The cycle of spiraling distress, of course, is not the same for all drugs of abuse; different 

drugs emphasize different aspects of the addiction cycle (Koob & Le Moal, 2008). Opioid 

addiction is primarily driven by a profoundly pleasurable intoxication as well as relief from 
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dramatically dysphoric withdrawal symptoms and intense craving associated with desire to 

obtain the drug. The intoxication from cigarette smoking, on the other hand, is weak or absent 

and thus, nicotine addiction is primarily driven by the preoccupation-anticipation and 

withdrawal-negative affect aspects of the cycle. Finally, abuse of psychostimulants such as 

cocaine and amphetamine is focused on the binge-intoxication stage in which binges may last for 

days but also features significant withdrawal symptoms that are characterized by extreme 

anxiety, anhedonia, and lethargy (Uslaner et al. 1999; Koob, 2009).  

Different aspects of drug addiction have been modeled in animals. The pre-occupation-

anticipation stage of addiction has been studied using animal models of relapse such as drug-, 

cue-, and stress-induced reinstatement. The binge-intoxication stage has been studied using 

paradigms of rewarding behavior such as drug self-administration, conditioned place preference, 

responding for a sucrose solution, and brain stimulation reward (BSR). Animal models of the 

withdrawal-negative affect stage include measures of stress and anxiety such as elevated plus-

maze, light/dark test, and open field as well as measures of decreased reward function 

(anhedonia) such as conditioned place aversion, reduced responding for a sucrose solution and 

increased reward thresholds (Koob & Le Moal, 2008). With the goal of mimicking the 

complexity of human drug withdrawal syndromes, the aforementioned models of negative affect 

are usually administered in the context of withdrawal from chronic administration of drugs of 

abuse.  

The present dissertation will focus on this last point: drug-induced anhedonia. Anhedonia 

has classically been defined as a reduced capacity to experience pleasure. We will begin by 

investigating the nature of the reward-relevant system and its organization. We will consider 

which animal models are most suited to study anhedonia. We will describe the neurobiology of 
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withdrawal-induced anhedonia and how it may be treated. We will present our own research 

findings and discuss their relevance to the overarching phenomenon of drug addiction.  

1.3 Reward and the anhedonia hypothesis 

In order to study withdrawal-induced anhedonia in animals, we must first understand the 

nature of the hedonic system. The mammalian reward-relevant circuitry was uncovered in the 

early 1950s by James Olds and Peter Milner of McGill University. While investigating the 

effects of electrical stimulation of various brain regions on cognitive function, the researchers 

made the serendipitous discovery that animals evidenced approach behaviors characterized by 

increased locomotor activity when pulses of electricity were administered to a brain region called 

the hypothalamus. Olds and Milner subsequently modified the experiment so that the rats could 

stimulate themselves by pressing a lever located inside the cage (Milner, 1989). Further research 

demonstrated that a variety of limbic, forebrain, and even brain stem sites supported self-

stimulation; some of which were considered to be sensory, others associational, and yet others 

motor (Porter et al. 1959, Wise, 1996). The burning question in everyone’s mind at the time was 

what precise mechanism linked these regions as mediators of self-stimulation?  

Although self-stimulation was powerful evidence for the existence of a central reward-

relevant neurotransmitter system, its exact identity was unknown. From the outset there was a 

fierce debate as to whether it was the neurotransmitter dopamine, norepinephrine (NE), or both 

that mediated these rewarding properties of BSR (Crow, 1972). Wise and Stein (1969) made the 

case for NE by demonstrating that disulfiram, a dopamine-beta-hydroxylase inhibitor (the 

enzyme responsible for the final step of NE biosynthesis) suppressed medial forebrain bundle 

(MFB; a complex bundle of DA-rich axons which run between the ventral tegmental area and the 

lateral hypothalamus) stimulation; an effect that was reversed by l-norepinephrine. This idea, 
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however, was countered by another study which showed that disulfiram induced sedation, hence 

making the case that the decreases in self-stimulation were due to a reduced ability to respond 

and not reward deficits (Roll, 1970). Other researchers made the case for the facilitative effect of 

DA on self-stimulation (Lippa et al. 1973) and this issue remained unresolved until Yokel and 

Wise (1975) decided to test the effects of DA and NE blockers using a different paradigm. The 

researchers hypothesized that although the BSR paradigm could not dissociate nonspecific 

deficits from reward deficits, amphetamine self-administration could. Indeed, rats were known to 

lever press for intravenous injections of d-amphetamine; an effect that was also thought to be 

mediated by catecholamines. Moreover, because the duration of effectiveness of each infusion 

determines the lever pressing rate for self-administration of amphetamine and varies inversely 

with the dose (i.e. the lower the dose the higher the lever-rate since more is needed for satiation), 

a decrease in responding signals the presence of nonspecific rather than reward deficits. Thus, 

whereas noradrenergic blocking agents decreased responding, pimozide, a dopaminergic 

antagonist, increased lever pressing for intravenous infusions of amphetamine, an effect 

indicative of a decrease in the rewarding property of amphetamine (Yokel & Wise, 1975). Wise 

et al. (1978) further demonstrated that pimozide attenuated lever-pressing and running for food 

in hungry rats at doses that did not cause motor side-effects. The decline in responding under DA 

blockade was progressive and paralleled that of extinction (non-reinforcement), suggesting that 

due to the memory of devalued reinforcement from previous days, the expectancy of the animal 

became progressively weaker (Wise, 2004). These findings prompted for a universal theory of 

reward that encompassed both natural stimuli and drugs of abuse. Consequently, the ‘anhedonia 

hypothesis’ proposed a central role for DA based on evidence that dopaminergic antagonists 

“appear to take the pleasure out of normally rewarding brain stimulation, take the euphoria out of 
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normally rewarding  amphetamine, and take the "goodness" out of normally rewarding food” 

(Wise et al. 1978).  

Even though the original anhedonia hypothesis was a major breakthrough, it has since 

proven to be too simplistic to encompass all facets of the phenomenon of reward. In particular, 

certain effects of neuroleptics have been difficult to explain by a simple devaluation of the 

hedonic properties of rewards (Di Chiara & Bassareo, 2007). For example, pimozide pre-

treatment impaired lever pressing for food in rats trained on a variable interval schedule even 

during the first few minutes of the test session before they had received any reinforcement (Gray 

& Wise, 1980). Indeed, there is much support for the notion that when the DA system is blocked 

in animals that have already learned a task, reward predictors that were once established become 

associated with devalued rewards and are no longer effective motivators (Wise, 2004). There is 

also evidence that pimozide pre-treatment produced a dose-dependent attenuation of learning to 

lever press for food in hungry rats (Wise & Schwartz, 1981) and a growing number of studies 

have confirmed the finding that when the DA system is blocked in animals that are about to learn 

a task, rewards that would normally confer motivational value on predictive stimuli fail to do so 

(Wise, 2004). Taken together, this evidence suggests that in addition to devaluating the 

rewarding properties of primary reinforcers, neuroleptics also impair the creation and 

maintenance of normal stimulus-reward associations and the motivational arousal that 

accompanies such associations. Consequently, we may say that anhedonia is not merely a 

reduction or absence of pleasure but also a deterioration of the normal incentive-motivational 

processes that are inexorably linked to pleasure (see Wise, 2004 for detailed review). Although, 

these distinctions lead one to conclude that the term reward could be an umbrella term for both 

reinforcement (motivation) and pleasure, this paper will use reward and reinforcement 
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interchangeably as this is what is commonly done in the literature.   

1.4 Characteristics of the reward-relevant system 

The catecolaminergic system was first mapped in the 1960s by Swedish researchers who 

developed a classification system in which the catecholamine cell groups were designated with 

the letter A; noradrenergic cell groups were designated A1 to A7 and dopaminergic cell groups 

(Figure B) were designated A8 to A16. The A9 cell group is associated with a structure called 

the substantia nigra, from which dopaminergic axons ascend to a forebrain structure termed the 

striatum and form the mesostriatal tract (Dahlstrom & Fuxe, 1964). This pathway plays a crucial 

role in the control of movement and is damaged in Parkinson’s disease, a disorder that is 

characterized by deficits in motor function such as tremors, postural disturbances, and difficulty 

in initiating voluntary movement (Winograd-Gurvich et al., 2006). More important to our 

discussion on anhedonia is the A10 cell group which originates in the VTA and projects 

dopaminergic axons to various structures of the limbic system such as the nucleus accumbens 

(NAS), olfactory tubercle, amygdala, septum, and hippocampus. This group of axons forms the 

mesolimbic dopamine pathway. Other DA-containing fibers travel from the VTA to the 

prefrontal (PFC), cingulate, and perirhinal cortex and constitute the mesocortical dopamine 

pathway. There is considerable overlap between the VTA cells that project to these various 

regions, and therefore, the two systems are often collectively referred to as the 

mesocorticolimbic system (Chinta & Andersen, 2005). These systems have been implicated in 

the rewarding effects of drugs of abuse as well as in affective dysfunction in drug withdrawal, 

schizophrenia, bipolar disorder, and Parkinson’s disease (Winograd-Gurvich et al. 2006; Kato, 

2008).  
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Figure B: Mesocorticolimbic dopamine system 

 

Image modified from (http://pubs.niaaa.nih.gov/publications/arh26-2/26_2images/brain.gif) 

Dopamine synthesis is a two step process whereby the enzyme tyrosine hydroxylase (TH) 

turns the amino acid tyrosine into L-DOPA (L-3,4-dihydroxyphenylalanine), which is 

subsequently turned into DA by the enzyme aromatic amino acid decarboxylase (AADC). 

Dopamine, in turn, serves as the precursor to NE which is synthesized from DA by the enzyme 

dopamine beta-hydroxylase. TH is the rate-limiting enzyme in this biochemical pathway due to 

the fact that the conversion of tyrosine occurs at a slower rate than the ensuing reactions in the 

pathway (Offermanns & Rosenthal, 2008). Drugs which induce the release of catecholamines 

also tend to affect TH because high catecholamine levels serve as a negative feedback 

mechanism to inhibit the enzyme and this may contribute to anhedonic symptoms. Following 

synthesis DA is transported into synaptic vesicles by the vesicular monoamine transporter 

(VMAT) for later release into the synaptic cleft. The importance of VMAT can be deduced from 

actions of the drug reserpine which blocks uptake of catecholamines into vesicles. As a result of 
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this blockade, DA and NE are left vulnerable to breakdown within the nerve terminal and their 

levels drop significantly. The behavioral consequence of this catecholamine depletion is anergia 

and anhedonia (Meyer & Quenzer, 2005).   

Five main DA receptor subtypes, designated D1 to D5, have been identified thus far. 

They are all metabotropic receptors meaning that they interact with G-coupled proteins and 

function through second messengers. The subtypes can be further grouped into two families: D1-

like (D1 and D5) and D2-like (D2, D3, and D4) (Offermanns & Rosenthal, 2008). The most 

common subtypes are D1 and D2, both of which are found in large quantities in the striatum and 

the NAS (the major termination sites of the mesostriatal and mesolimbic DA pathways, 

respectively). D2 receptors, in some cases, also function as pre-synaptic autoreceptors which 

inhibit cell firing and decrease DA release when the cell is firing rapidly and the synaptic cleft is 

overloaded with high amounts of DA (Meyer & Quenzer, 2005). Drugs that stimulate D2 

autoreceptors inhibit DA release whereas drugs that antagonize D2 autoreceptors increase 

dopamine release by blocking the inhibitory action of autoreceptors (Lee & Ellinwood, 1989). 

Neuroleptics such as pimozide and haloperidol, which are the basis for the anhedonia hypothesis, 

are D2 receptor antagonists, presumed to be preferential for post-synaptic receptors because their 

net effect is a reduction in the activity of DA and alleviate positive symptoms (psychosis) in 

schizophrenia (Wise et al. 1978).   

Like to pre-synaptic autoreceptors, the DA transporter (DAT) is an important mechanism 

that acts to extinguish the synaptic signal induced by each release of the neurotransmitter in 

order for the postsynaptic cell be may activated again (Offermanns & Rosenthal, 2008). In each 

case that the pre-synaptic cell releases dopamine into the synaptic cleft, DAT recycles the 

neurotransmitter by reuptaking it back into the cell. Cocaine is a drug that derives its rewarding 
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effects from blockade of the DAT thereby increasing and prolonging the presence of DA in the 

synaptic cleft and enhancing its effects on the postsynaptic cell (Karoum et al. 1994). 

Amphetamines (e.g. d-amphetamine, methamphetamine) on the other hand, are thought not only 

to reverse the DAT but also to act on VMAT to provoke a massive release of DA from synaptic 

vesicles into the synaptic cleft (Fleckenstein et al. 2007). 

In addition to reuptake, another way in which dopamine’s actions are terminated is 

through metabolic breakdown by enzymes that function to prevent excessive neurotransmitter 

accumulation. These enzymes, termed catechol-O-methyltransferase (COMT) and monoamine 

oxidase (MAO), are responsible for the breakdown of catecholamines. The actions of COMT and 

MAO on dopamine give rise to the DA metabolites 3,4-dihydroxy-phenylacetic acid (DOPAC) 

and homovanillic acid (HVA), the concentrations of which can be an indice of dopaminergic 

activity (Offermanns & Rosenthal, 2008). Drugs which inhibit these enzymes increase 

catecholamine concentrations (and 5-HT in the case of MAO) by preventing their breakdown. 

COMT and MAO inhibitors can be beneficial in the treatment of anhedonia, depression, and 

Parkinson’s (Meyer & Quenzer, 2005).  

1.5 Animal models of anhedonia 

1.5.1 Conditioned place-preference/aversion 

Conditioned place-preference involves the explicit pairing of a distinctive environment 

with drugs that act as positive reinforcers such as cocaine, opiates and amphetamines (Bardo et 

al. 1986; Tzschentke, 1998). These environments may differ in size, shape, color, pattern, and 

smell. Conditioning involves an animal receiving repeated access to the reinforcing stimulus 

(unconditioned stimulus or US) in a particular context (conditioned stimulus or CS) and 

receiving no US in another context. When animals are later presented with equal opportunity to 
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spend time in the compartment paired with the appetitive US or in a compartment not paired with 

the US, they show significantly more preference for the former (Bardo et al. 1986). By contrast, 

animals avoid environments paired with aversive drugs and aversive drug states. For example, 

administration of naloxone (an opiate receptor antagonist used to counter opiate overdose) in 

opiate dependent rats precipitated withdrawal and produced a place-aversion (Schulteis et al. 

1994); an effect that was reversed by administration of clonidine (an alpha 2-adrenoreceptor 

agonist that is used to alleviate withdrawal severity during detoxification from chronic opiate 

use) (Kosten, 1994). Likewise, administration of the nicotine receptor antagonist mecamylamine 

produced a place aversion in nicotine-dependent rats (Suzuki et al. 1996).  

Although the place-conditioning/place-aversion paradigm may be used to study drug 

withdrawal-induced anhedonia, it has a number of important drawbacks. First, it is subject to a 

number of confounds associated with the conditioning itself that can produce inconsistent results 

when used to measure motivation. There are reports of both conditioned place preferences and 

aversions to some drugs such as amphetamine, methamphetamine and apomorphine. Ethanol has 

been mainly found to have aversive effects but has also produced place-preference (Tzschentke, 

1998) and this may be dependent on whether the ethanol is administered just before or just after 

exposure to the conditioned stimulus CS (Cunningham et al. 2002). These discrepancies may 

also be due to differences in a preference towards one of two distinctive environments before 

conditioning occurs. Furthermore, the nature of the conditioned stimuli (visual, tactile, or 

olfactory) can influence the motivational properties of the drug that it is paired with (Tzschentke, 

1998). Another limitation of the paradigm is that while it may shed light on whether a drug state 

is pleasant or aversive it is not particularly useful for defining the qualitative nature of the state 

in question such as increased or decreased anxiety, anhedonia, somatic symptoms etc. Finally, 
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conditioned place preference cannot be used to map a dose-response curve because the same 

group of animals cannot be tested more than once (Bardo & Bevins, 2000). Consequently, it 

seems that the place-conditioning/place-aversion paradigm is better suited to study the effects of 

drugs on stimulus conditioning or on drug-induced positive/negative affect in general rather than 

the anhedonic withdrawal state per se.  

1.5.2 Sucrose preference 

There is an abundance of research that makes a strong case for the ability of sugar, like 

drugs of abuse, to activate the endogenous reward-relevant system. For instance, when rats are 

maintained on a daily diet of intermittent access to sucrose they show behavioral changes similar 

to rats that are dependent on drugs of abuse (Colantuoni et al., 2002). Moreover, they 

demonstrate a pattern of binging in the first hour of daily access and progressively augment their 

daily sugar intake. If they are then food deprived for 24 hours or administered naloxone, they 

demonstrate anxiety-like behavior and somatic signs of withdrawal such as teeth chattering, 

forepaw tremor and head shakes (Colantuoni et al., 2002). Sugar binging has also been shown to 

cause neurochemical changes such as increased DA turnover and up-regulation of D1 and mu-

opioid receptors in the NAS that parallel adaptations to drugs of abuse (Hajnal & Norgen, 2002; 

Rada et al. 2005). Additionally, withdrawal from repeated daily sugar intake was shown to 

induce a DA/acetylcholine imbalance similar to that which is seen in nicotine and morphine 

withdrawal (Colantuoni et al., 2001).  

Due to the striking similarities between sucrose intake and administration of addictive 

drugs, preference for sucrose has been used as a dependant variable when measuring hedonic 

shifts in rats. There is evidence that sucrose increases DA metabolism in the hypothalamus in 

sham fed rats (rats that have a gastric cannula which, when opened, does not allow the sucrose 
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solution to accumulate in the stomach thereby suggesting that this was due to hedonic and not 

postingestive effects), while D2 receptor antagonists sulpiride and raclopride, and the selective 

D1 receptor antagonist, SCH 23390 decrease sucrose intake in a manner that is functionally 

equivalent to that of decreasing sucrose concentration (Smith & Schneider, 1988). Other studies 

have found that intra-VTA application of 6-Hydroxydopamine (6-OHDA; a neurotoxin used by 

neurobiologists to selectively kill dopaminergic neurons), as well as treatment with pimozide and 

morphine withdrawal decreased free sucrose consumption without decreasing water intake and 

without decreasing rats’ discrimination of sucrose from water (Towel et al. 1987; Lieblich et al. 

1991; Shimura et al. 2002).  

Free sucrose consumption, however, may not be the most reliable or valid way to 

measure anhedonia (Barr & Phillips, 1998). There is evidence that doses of the neuroleptic 

flupenthixol, which inhibited place-preference to sucrose, did not alter free sucrose consumption, 

whereas naloxone, at doses which had no effect on place-preference, had deleterious effects on 

free sucrose consumption (Agmo et al. 1995). This phenomenon may underlie the distinction 

between sucrose reinforcement and sucrose reward. Hence the reinforcing (motivational) 

properties of sucrose may be more sensitive to DA antagonism than its rewarding (palatable) 

properties and vice-versa for naloxone (Agmo et al. 1995). Indeed, naloxone has been found to 

be more effective at decreasing intake of a sucrose-rich than cornstarch-rich diet and to have a 

greater effect on drinking palatable solutions than on drinking water suggesting that endogenous 

opioids are involved in mediating the enhancement of feeding through food palatability 

(Yeomans & Gray, 2002). On the other hand, pimozide and 6-OHDA lesions of the nucleus 

accumbens and neostriatum that caused 99% DA depletion did not suppress unconditioned 

hedonic reactions (rhythmic tongue protrusions and paw licks) to sucrose in the taste reactivity 
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paradigm (Pecina et al. 1997; Berridge & Robinson, 1998). Likewise, DA antagonists reduced 

appetitive behaviors (investigatory and exploratory behaviors) for sucrose and food, while 

leaving consummatory behaviors (eating and drinking) intact (Blackburn et al. 1987; Ikemoto & 

Panksepp, 1996). Finally, genetically engineered mice lacking the ability to synthesize DA were 

found to preferentially choose sucrose over water, and also preferred saccharin, a non-caloric 

sweetener (Cannon & Palmitter, 2003). As a whole, these studies suggest that free sucrose 

consumption may be an indice of unconditioned hedonic reactions, which is not mediated by 

DA. 

It is unclear why some studies have found reductions of free consumption of sucrose as a 

result of DA lesions and DA antagonists while others have not. Nevertheless, there is good 

reason be believe that, at least in the case of palatable food such as sucrose, DA plays a greater 

role in reinforcement than in reward (see Di Chiara, 2002 for detailed review). One paradigm 

that has proven to be a reliable indice of motivation to obtain sucrose is the progressive ratio 

(PR) schedule, which requires that the animal emit an increasing number of responses in order to 

obtain each reward. The breakpoint (i.e. the point at which an animal ceases to respond for 

further reward) may reflect the relative motivation to put in work to obtain the reward (Hodos, 

1961). Studies have demonstrated that manipulations which are thought to induce anhedonia 

decrease breakpoint for sucrose reinforcement on a PR schedule whereas manipulations that are 

thought to reduce anhedonia increase it. For example, conventional antipsychotics (neuroleptics) 

haloperidol and chlorpromazine decreased break point for sucrose reinforcement on a PR 

schedule (Reilly, 1999; Mobini et al. 2000). Conversely, acute amphetamine and atypical 

antipsychotics clozapine, quetiapine, olanzapine, and ziprasidone (characterized by low affinity 

for D2 but strong affinity for 5-HT, histaminergic and adrenergic receptors) increased breakpoint 
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(Mobini et al. 2000; Zhang et al. 2005). Moreover, morphine, nicotine, and amphetamine 

withdrawal have also been shown to decrease break point for sucrose responding (Barr & 

Phillips, 1999; Lesage et al. 2006; Zhang et al. 2007). In the Barr and Phillips (1999) study, the 

same treatment that decreased breakpoint for sucrose responding (amphetamine withdrawal) 

produced no effect upon consumption of sucrose when it was freely available. Similarly, clinical 

studies with patients presenting depression and anhedonia have consistently failed to find 

alterations of sucrose taste perception (Potts et al. 1997; Scinska et al. 2004). Taken together, 

these evidences suggest that, in contrast to the motivation to work for sucrose reward, the 

hedonic reaction to the taste of sucrose may not be mediated by the dopaminergic system.    

In addition to free sucrose consumption and PR schedule responding, sucrose has been 

used to measure changes in the reward-relevant system using the consummatory negative 

contrast paradigm. In this procedure, rats are exposed to one reward level (e.g. 32% sucrose) for 

some period of time and unexpectedly shifted to a reward with a lesser hedonic value (e.g. 4% 

sucrose). The shifted animals normally consume less of the reward and run slower on a runway 

with a sucrose ‘goal’ at the end (a measure of reinforcement rather than reward) than a control 

group which had been exposed to only the lower level of reward (Flaherty et al. 1996). The 

explanation for these effects seems to be that of frustration and disappointment as the animal 

finds a reward of a lesser value than one which was expected based on previous experience (Barr 

& Phillips, 2002). Some studies have supported a link between consummatory negative contrast 

and manipulation of the reward-relevant system. For example, rats withdrawn from chronic 

amphetamine administration displayed an exaggerated negative contrast effect, which was 

evident due to their delayed recovery from the downshift in reward as compared with controls 

(Barr & Phillips, 2002). Amisulpride, an atypical antipsychotic with affinity for D2 and D3 
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receptors (Schoemaker et al. 1997), has been shown to be effective in the treatment of anxiety 

and depression as well as anhedonia in schizophrenia and to reduce consummatory negative 

contrast in rats (Pani & Gessa, 2002; Genn et al. 2002). Finally, whereas control rats consuming 

a 4% sucrose solution displayed increased DA efflux in the NAS, rats downshifted form 32% to 

4% sucrose displayed no such increase (Genn et al. 2004) suggesting that the negative contrast 

effect may be DA dependant.  

The relationship between consummatory negative contrast and reward has not been 

unequivocal, however. Lesions of the nucleus accumbens did not attenuate the negative contrast 

effect or reward magnitude discrimination but they did reduce running speed toward the sucrose 

goal (Leszczuk & Flaherty, 2000). Furthermore, classical antipsychotics chlorpromazine and 

haloperidol had no effect on the negative contrast effect, whereas sedative/hypnotics that bind to 

the benzodiazepine site on inhibitory GABAA neurons such as chlordiazepoxide, flurazepam, 

and zolpidem have consistently and significantly reduced the contrast effect (Flaherty et al. 1992; 

Flaherty et al. 1996; Mitchell et al. 2004). In addition, consummatory negative contrast was 

attenuated by morphine and the opioid agonist DPDPE ([D-Pen2,D-Pen5]-Enkephalin) but 

potentiated by naloxone (Pellegrini et al. 2005; Wood et al. 2005). This may not be surprising 

since both benzodiazepines and opioids have been shown to increase sucrose intake in a free 

choice paradigm and are hypothesized to mediate taste ‘liking’ (Berridge & Robinson, 1998; 

Kelley et al. 2002; Yamamoto, 2003). Taken together, these results suggest that the mechanisms 

responsible for consummatory negative contrast and free consumption of sucrose may have more 

substrates in common with each other than with reinforcement for sucrose under a progressive 

ratio schedule. That is, dopamine is necessary for reinforcement but is only loosely related to 

taste hedonia. This conclusion does not negate the role of DA in drug reward and drug-induced 
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anhedonia because, as some have argued, euphoria and not palatability (being a form of 

‘stimulus-bound hedonia’) is an appropriate test of the anhedonia hypothesis (Di Chiara, 2002).   

1.5.3 Brain stimulation reward 

Electrical stimulation of the brain can be used to activate cells at the tip of the electrode 

while recording the behavior that occurs as a result of that activation. This is possible because 

very tiny amounts of electric current alter the membrane potential of proximate cells and 

generate action potentials which cause the release of neurotransmitters into synaptic terminals, 

thereby imitating normal synaptic transmission. As a result, BSR can mimic the neurobiological 

and behavioral effects that are produced by natural and drug rewards. There are a number of 

advantages to using BSR over natural and drug reinforcement, however. Whereas drugs and 

natural rewards such as food are not anatomically specific and can depend on a host of 

pharmacokinetic factors such as absorption and metabolism, electrical stimulation activates 

discreet brain regions and the degree of activation can be controlled with extreme precision 

(Meyer & Quenzer, 2005). The degree of activation of a specific brain area can be varied 

according to the duration of individual pulses, the number of pulses per stimulation train as well 

as the intensity and frequency of stimulation. Pulse duration affects the size of the stimulation 

field. Longer pulse durations tend to be more rewarding but this value is typically kept at 100 

microseconds so that pulses depolarize axons only once thereby simplifying theoretical 

interpretation. Longer train durations also tend to be more rewarding but can cause animals to 

respond for additional stimulation before the last train ceases. Hence train duration is typically 

fixed at 200 to 500 milliseconds. Intensity is most frequently varied when anatomical 

localization is the goal. Like pulse duration, the higher the stimulation the larger the size of the 

stimulation field, and consequently, manipulation of intensity is useful in attempts to localize the 
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boundaries of reward sites (Wise, 1996). Stimulation frequency determines the number of times 

per stimulation that action potentials are triggered in a set quantity of neurons (Wise et al. 1992). 

Manipulation of frequency is most useful in pharmacological studies where the area of 

stimulation should be held constant so that the effect of drugs on sensitivity of reward sites can 

be measured (Wise, 1996). While increasing any of the aforementioned stimulation parameters 

has been established to be more rewarding (higher stimulation parameters are consistently 

chosen over lower ones in double-lever tests), this motivational variation cannot be seen in 

single-lever tests because responding is constrained by motor capacity. Thus, a higher asymptotic 

response rate in single lever tests cannot be interpreted as being more rewarding since different 

stimulation sites produce different response rates depending on their proximity to motor fibers 

(Wise & Rompre, 1989).  

Unfortunately, in the early history of BSR there was no method to separate response rate 

from reward (and consequently, these studies should be interpreted with caution). Researchers 

were largely concerned with identifying the brain regions which mediated reward. For these 

studies, response rate was the dependant variable since it signified that the animal was willing to 

work for stimulation, and thus, it must have been rewarding (Wise, 1996). In the case of 

pharmacological studies with BSR, however, it became obvious that simple response rate was 

often a contaminated variable. We may recall that in the Wise and Stein (1969) study disulfiram-

induced sedation reduced response rate and made theoretical interpretation about the role of 

norepinephrine in reward extremely difficult. Such confusion between motor disturbance and 

reward were remedied by the curve-shift paradigm, originally proposed by Edmonds and 

Gallistel (1974). This method involves the creation of dose-response curves by manipulation of a 

single parameter in BSR (Figure C). In the case of pharmacological studies, this means varying 
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frequency while keeping pulse duration, train duration, and intensity constant. Then by taking an 

arbitrary point on the resulting rate-frequency curves (e.g. 50% of maximal response rate) 

parallel shifts can be quantified to represent changes in reward threshold. If a drug treatment 

induces a rightward shift of the rate-frequency curve then the treatment increased reward 

threshold (decreased reward). Conversely, if a drug treatment induces a leftward shift then the 

treatment decreased reward threshold (increased reward). If, however, administration of a drug 

leads to a downward shift in the dose-response curve (decrease in maximal response rate), then 

this indicates that the treatment interfered with the animal’s capability to perform the task and 

not the rewarding properties of the stimulation (Miliaressis et al. 1986). The ability of the curve-

shift paradigm to distinguish between reward alterations and motor impairment has been 

validated using different response criteria such as a minimal absolute rate of responding (e.g., 10 

or 20 responses per minute) or minimal relative rate (e.g., 10% or 50% of asymptotic rate). In 

each case, it was shown that the effectiveness of reward altering drugs was the same regardless 

of what response criterion was used (Wise et al. 1992).   

Figure C: Rate-frequency curve for one rat 
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There is considerable evidence that BSR shares the ability of drugs of abuse to activate 

the mesocorticolimbic DA system. For instance, electrical stimulation of the VTA produced 

significant increases in primary DA metabolites, namely, DOPAC and HVA in NAS, striatum 

and olfactory tubercle whereas 6-OHDA lesions that depleted 95% of DA in these regions 

produced large increases in reward thresholds. The ratios of DOPAC and HVA to DA are 

considered to be indices of DA utilization (Fibiger et al. 1987). Moreover, MFB self-stimulation 

at different stimulation frequencies and pulse widths increased levels of dopamine, HVA and 

DOPAC in the NAS and VTA and local perfusion with the dopamine uptake inhibitor 

nomifensine (a drug that works in a similar fashion to cocaine) increased DA levels in the NAS 

and potentiated the increase of DA induced by self-stimulation (You et al. 2001).  

Recently, it has been suggested that the ability of BSR to induce DA release is true only 

when the electrical stimulus is unpredictable, and hence, that DA is a mediator of the novelty of 

reward rather than the hedonistic properties of reward. Garris et al. (1999) used in vivo 

voltammetric microsensors to measure DA release in the NAS in animals that received electrical 

stimulation for the first time and in those that had received stimulation continuously. They found 

that extracellular DA levels were augmented during the first experimenter-delivered electrical 

stimulation but decreased to unmeasurable levels once the animal learned to self-stimulate – so 

that although responding was vigorous, increases in DA were not observed (Garris et al. 1999). 

The problem with the hypothesis that BSR is capable of inducing only transient rather than 

continuous DA release is the fact that dopaminergic antagonists attenuate self-stimulation even 

after the animal has learned the task and has been at it for long periods of time (Benaliouad et al. 

2007). Indeed, a number of subsequent studies have seriously put in doubt the role of 

predictability in BSR-induced DA release (Hernandez et al. 2006; Hernandez et al. 2008). These 
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studies have found that delivery of MFB stimulation at a low rate produced sustained DA 

elevation regardless of whether the stimulation was predictable. On the other hand, when the rate 

of stimulation was high, DA levels increased initially and then decreased toward the baseline 

range. Such a decrease was shown not to be contingent upon predictability but was hypothesized 

to reflect attenuated release capability of DA neurons as a result of a bombardment of 

stimulation (Hernandez et al. 2006; Hernandez et al. 2008). Consequently, it can be said that 

BSR-induced DA release, and more specifically DA itself, is not merely a mediator of novelty.  

Amphetamine derives its rewarding effects from preferentially blocking DA reuptake in 

the NAS (preventing removal of DA from its sites of action and prolonging neurotransmission) 

and facilitating DA release in the NAS (Di Chiara & Imperato, 1988; Karoum et al. 1994). 

Amphetamine injections into the NAS are readily self-administered (Wise & Hoffman, 1992) 

and systemic and intra-accumbens injections of amphetamine have been shown to cause shifts to 

the left of the rate-frequency function, thereby reducing the amount of stimulation required to 

sustain responding (Broekkamp et al. 1975; Colle & Wise, 1988). While there is evidence that 

cocaine also elevates extracellular DA levels in the NAS (Di Chiara & Imperato, 1988) and D1 

and D2 antagonists attenuate cocaine self-administration (Robeldo et al. 1992), cocaine is not 

readily self-administered directly into the NAS (Goeders & Smith, 1983; Wise & Hoffman, 

1992). Rather, the cocaine seems to preferentially affect the mesocortical dopamine system as it 

blocks DA reuptake in the PFC (Karoum et al. 1994), rats will work for cocaine injections into 

the PFC (Goeders & Smith, 1983) and systemic cocaine injections reduce PFC as well as MFB 

reward thresholds (McGregor et al. 1992; Bauco & Wise, 1997). These and a myriad of other 

evidence had made strong case that drugs which activate the mesocorticolimbic DA pathway 

also cause leftward shifts in the self-stimulation dose-effect curve (decreased reward thresholds) 
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(Wise & Rompre, 1989).  

Opiates such as morphine and heroin also activate the mesolimbic dopamine system but 

by a different mechanism. They bind to endogenous opioid receptors which inhibit GABA-

inhibitory cells found in the VTA, thereby facilitating DA release (Kelley et al. 1980). Studies 

using microdialysis, a technique that allows the measurement of extracellular fluid from deep 

within the brain in freely moving animals, have consistently demonstrated that both systemic and 

intra-VTA administration of opiates or opioid receptor agonists increases DA cell firing, which 

subsequently increases the release of DA and its metabolites in the NAS (Spanagel et al. 1990; 

Leone et al 1991). In addition, opiates and opioid receptor agonists are self-administered into the 

VTA (Devine & Wise, 1994; Wise & Hoffman, 1992) and reduce thresholds for BSR when 

administered both systemically and directly into the NAS (Duvauchelle et al. 1996; Jha et al. 

2004). By contrast, there is evidence that 6-OHDA lesions of the VTA blocked morphine-

induced reductions in reward thresholds (Hand & Franklin, 1985) and the opioid receptor 

antagonist naloxone increased reward thresholds when administered alone as well as blocked 

intra-VTA morphine and opioid agonist-induced facilitation of BSR (Jenck et al. 1987). As is the 

case with amphetamine, cocaine, and opiates, the mesolimbic DA pathway from the VTA to the 

nucleus accumbens plays at least a key role in the reinforcing effects of additional drugs of abuse 

such as nicotine, alcohol and cannabis. All three of the latter drugs increase the firing rate of DA 

neurons in the VTA, enhance DA release in the NAS (Di Chiara & Imperato, 1988; Wise, 1998; 

Meyer and Quenzer, 2005) and induce leftward shifts in the self-stimulation dose-effect curve 

(Wise & Rompre, 1989; Lepore et al. 1996).  

As with any other operant task, the principle limitation of BSR is that it cannot 

differentiate reward from reinforcement However, despite this the aforementioned research 
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suggests is that BSR is a unique, anatomically specific paradigm that is sensitive to 

pharmacologically-induced changes in reward and whose effects have been extensively validated 

using other paradigms (i.e. good external validity). In addition, unlike other paradigms used to 

measure reward deficits (e.g. sucrose intake), the number of reward-relevant neurons that are 

activated during stimulation can be precisely controlled and easily quantified. These properties 

make BSR probably the best behavioral paradigm to study withdrawal-induced anhedonia.  

1.6 Neurobiology of anhedonia induced by psychostimulant withdrawal 

Microdialysis and BSR studies have repeatedly demonstrated that withdrawal from 

virtually all drugs of abuse including cocaine, amphetamine, alcohol, nicotine, and opiates 

decreases mesolimbic dopamine levels and increases reward thresholds (Rossetti et al. 1992; 

Paterson & Markou, 2007). Apart from psychostimulants, however, abstinence from other 

classes of drugs is associated with a considerable amount of somatic symptoms that may act as a 

confounding factor (Barr & Markou, 2005). Consequently, the forthcoming discussion will focus 

on withdrawal from psychostimulants since these drugs induce an anhedonic state that is 

minimally obfuscated by physical symptoms. 

Numerous studies have shown that withdrawal from cocaine and amphetamines produce 

significant ‘within system’ adaptations that lead to hypofunctioning of the mesocorticolimbic 

dopamine pathway. Some of these adaptations are characterized by a decrease in TH, the rate-

limiting enzyme in dopamine synthesis, as well as a reduction in extracellular levels of DA and 

its metabolites. One study using the method of immunohistochemistry (the process of localizing 

proteins in cells of a tissue section by introducing antibodies that bind to specific proteins such as 

neuropeptides, receptors, or enzymes, that researchers want to locate in the brain), has delineated 

that abstinence from chronic cocaine self-administration reduced TH immunoreactivity in the 
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NAS by 17% and 71% by day one and day seven of withdrawal, respectively (Schmidt et al. 

2001; Meyer & Quenzer, 2005). Another study using a different method to ascertain levels of 

TH, termed in situ hybridization, has revealed that mRNA (messenger ribonucleic acid) levels of 

the enzyme were reduced by 25% in the substantia nigra (SNc) after 5 hours of abstinence from 

intraperitoneal methamphetamine injections (Zhang & Angulo, 1996). Since the rate of synthesis 

of the specific protein is signified by the amount of mRNA, an increase in TH mRNA means that 

there is more of that protein being synthesized (Meyer & Quenzer, 2005). Indeed, 

methamphetamine-induced deficits of mesostriatal TH are well established and have been 

observed in a number of different studies (Hotchkiss & Gibb, 1980; Schmidt et al. 1985). 

Analogously, there is evidence for decreased TH activity in the caudate-putamen (CPu) 

following withdrawal from chronic amphetamine administration (Ellison et al. 1978). The CPu is 

a region within the dorsal striatum which is highly innervated by dopaminergic neurons that 

originate from the VTA and SNc (Chinta & Andersen, 2005). Since high catecholamine levels 

act as a negative feedback mechanism to inhibit TH, which in turn, inhibits further DA synthesis, 

low levels of TH during withdrawal may be an opponent process adaptation that counters the 

acute rewarding effects of psychostimulants.  

Microdialysis studies have revealed that withdrawal from chronic cocaine administration 

leads to reductions in basal extracellular DA levels in the NAS (Parsons et al. 1991; Weiss et al. 

1992) and the basolateral amygdala (Tran-Nguyen et al. 1998). Furthermore, regional cerebral 

glucose (energy) metabolism was reduced in DA rich areas including the NAS, olfactory 

tubercle, basolateral and central amygdaloid nuclei and the lateral hypothalamus following 

abstinence from cocaine self-administration (Hammer et al. 1993). For their part, amphetamines 

have also been shown to induce a marked reduction in extracellular DA concentration in the 
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NAS, CPu, PFC, and amygdala during abstinence (Rossetti et al. 1992; Persico et al. 1995; 

Paulson & Robinson, 1996; Weiss et al. 1997; Broom & Yamamoto, 2005; Peleg-Raibstein et al. 

2006).  

Another adaptation that has been observed during psychostimulant withdrawal is a 

decrease in dopaminergic metabolites. Abstinence from chronic cocaine administration 

decreased DA turnover as indicated by decreased DOPAC concentration in the NAS, septum, 

striatum, hypothalamus and frontal cortex and attenuated HVA concentrations in the frontal 

cortex (Karoum et al. 1990). Analogously, there is evidence that methamphetamine withdrawal 

reduced DOPAC and HVA concentrations in the striatum (Schmidt et al. 1985) and abstinence 

from chronic amphetamine treatment reduced DOPAC concentration in the CPu of rats 

(Swerdlow et al. 1991).  

In addition to decreased DA neurotransmission, abstinence from cocaine and 

amphetamines has been found to produce molecular adaptations within dopaminergic neurons 

themselves. For example, three days after discontinuation of repeated cocaine injections, NAS 

neurons recorded in brain slices evidenced decreased excitability by being less responsive to 

depolarizing current injections and having higher action potential thresholds and lower spike 

amplitudes. These changes seem to indicate that cocaine-induced augmentation of DA levels 

lead to compensatory changes in the neuronal signaling mechanisms that moderate the 

excitability of NAS neurons, which in turn, caused the NAS to be significantly less receptive to 

excitatory input (Zhang et al. 1998). Psychostimulant withdrawal has not only been demonstrated 

to render NAS neurons less responsive to current injections but to drug challenge as well. In 

particular, whereas challenge with amphetamine in saline-treated rats produced a 10-fold 

increase in DA levels in the NAS, the same injections in rats undergoing 7 days of amphetamine 
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withdrawal only produced a 50% increase in DA (Imperato et al. 1996; Di Ciano et al. 2002). 

This result suggests not only a tolerance to amphetamine itself but perhaps a tolerance to the 

ability of natural reinforcers to increase DA efflux as well, since they too have been 

hypothesized to be primarily DA dependant (Wise et al. 1978). On the other hand, there is 

evidence that repeated drug exposure induces sensitization of drug-induced stimulation of DA 

neurotransmission (Di Chiara, 2002); however, this process is more likely to predominate during 

the period of protracted rather than acute withdrawal.  

D2 autoreceptor supersensitivity and upregulation is another adaptation that has been 

witnessed in rats withdrawn from psychostimulants. This effect may be an opponent process that 

serves to normalize DA neurotransmission following psychostimulant-induced DA release and 

could be related to anhedonia that is often observed following high-dose, long-term 

psychostimulant addiction (Davidson et al. 2000). For instance, it was demonstrated that 

quinpirole, a D2-like agonist that preferentially activates D2 autoreceptors at low doses, was 

significantly more effective at inhibiting electrically evoked DA release in slice preparations of 

the NAS and SNc of rats abstinent from cocaine self-administration as compared to controls 

(Gao et al. 1998; Davidson et al. 2000). Similarly, slice preparations of SNc cells of rats 

undergoing withdrawal from chronic amphetamine treatment evidenced supersensitivity to 

apomorphine, another D2-like receptor agonist with autoreceptor affinity at low doses (Lee & 

Ellinwood, 1989). 

The last major within system adaptation that may be associated with psychostimulant 

withdrawal-induced anhedonia is a hyperfunctioning of the DA transporter. DAT-mediated DA 

uptake induced by nomifensine was augmented by as much as 31% in the CPu and 86% NAS in 

rats withdrawn from cocaine self-administration as compared with saline treated controls 
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(Samuvel et al. 2008). Moreover, increased levels of the DAT protein were also found in the 

PFC of cocaine abstinent rats (Grimm et al. 2002). Because cocaine blocks the DAT during 

intoxication which, in turn, floods synapses with dopamine, a hyperfunctioning of the DAT 

during withdrawal lowers the amount of DA in the synaptic cleft and may contribute to post-

cocaine anhedonia (Meyer & Quenzer, 2005). There is also evidence that amphetamines – which 

function by reversing and/or blocking the DAT, increase – DAT levels in various regions of the 

mesocorticolimbic DA pathway. Specifically, DAT mRNA was significantly elevated in the SNc 

and VTA of rats abstinent from repeated amphetamine treatment (Lu & Wolf, 1997; Shilling et 

al. 1997) and repeated intraperitoneal injections of methamphetamine increased DAT 

immunoreactivity by over 50% in the NAS of rats during abstinence (Broom & Yamamoto, 

2005). Taken together, the aforementioned research suggests that a number of within system 

changes occur in the dopaminergic pathways in response to psychostimulants which may result 

in anhedonic symptoms. These include reduced levels of TH and DA, subsensitivity of DA 

neurons and supersensitivity of D2 autoreceptors and DA transporters.  

1.7 Treatment of anhedonia  

1.7.1 Full and partial dopamine receptor agonists 

There is no doubt that any drug which induces pleasure can also reverse anhedonia and 

ease the withdrawal process. This is why dopamine receptor agonists, drugs which are rewarding 

but not always to the same degree as psychostimulants, have been proposed as potential 

treatments of drug addiction (Markou & Koob, 1992; Markou et al. 1992). The mechanism of 

action of these drugs differs from cocaine and amphetamines because they produce their 

rewarding effects by directly stimulating DA receptors instead of inducing DA release indirectly 

through action at transporters. Studies have shown that while direct DA agonists such as 
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bromocriptine, apomorphine, pergolide and quinpirole were able to be partially substituted for 

cocaine and amphetamine in a two lever choice procedure whereby animals were trained to 

discriminate psychostimulant from vehicle infusions, the maximally effective doses of these 

agents produced markedly lower response rates on the psychostimulant associated lever (Kamien 

& Woolverton, 1989; Spealman et al. 1991; Witkin et al. 1991).  

Further adding to their potential for the treatment of drug addiction DA agonists were 

found to relieve withdrawal-induced anhedonia. For instance, bromocriptine was demonstrated to 

reverse post-cocaine reward thresholds in a dose dependant manner (Markou & Koob, 1992). In 

the progressive-ratio schedule responding for sucrose paradigm, the DA agonist ropinirole 

ameliorated post-methamphetamine anhedonia by increasing breakpoints to near control levels 

(Hoefer et al. 2006). Unfortunately, however, the method of substituting indirect DA agonists 

with direct DA agonists in order to treat drug addiction has had limited success in clinical trials. 

This may be because these compounds induce similar side-effects to the drugs that they are 

supposed to substitute, including increased autonomic activation and tendency to commit 

impulsive behaviors such as gambling and further drug taking. They have also failed to reduce 

the acute subjective effects of cocaine and have shown to increase dangerous side-effects such as 

increased heart rate and blood pressure when used in combination with cocaine (Preston et al. 

1992; Bergman, 2008).   

There is some promising preliminary data on the utility of partial DA agonists to treat 

drug addiction. Partial DA agonists bind to the dopamine receptor with high affinity but produce 

only a low level of activation. The activity of these compounds is believed to be dependent on 

the dopaminergic tone of the brain. In normal animals and animals under the influence of acute 

psychostimulant treatment these agents act as functional antagonists because they compete for 
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binding sites with endogenous dopamine. Conversely, during conditions of low dopaminergic 

activity such as after 6-OHDA lesions or reserpine administration, partial agonists activate DA 

neurons that would otherwise not be activated (Carlsson, 1983; Clark et al. 1991). These drugs 

may be particularly useful in the treatment of drug addiction because they do not have abuse 

potential themselves (e.g. they are not self-administered in rats) and have shown some 

preliminary positive results in the treatment of anhedonia induced by withdrawal from 

amphetamines. In particular, treatment with the partial D2 agonist terguride after chronic 

amphetamine and methamphetamine administration increased breakpoint for sucrose responding 

on a progressive-ratio schedule (Orsini et al. 2001; Hoefer et al. 2006). Further research needs to 

be done to corroborate these evidences using other paradigms of withdrawal-induced anhedonia 

before firm conclusions can be made regarding the utility of partial DA agonists in the treatment 

of drug addiction.  

1.7.2 Antidepressants 

Dopaminergic activation is not the only modus operandi whereby drugs can achieve anti-

anhedonic effects. Some evidence exists for the ability of serotonergic and noradrenergic 

manipulations to treat anhedonia, potentially by indirectly augmenting DA concentration. 

Administration of tricyclic antidepressants (TCAs), which inhibit the reuptake of NE and 5-HT, 

and selective serotonin reuptake inhibitors (SSRIs), which selectively inhibit the reuptake of 5-

HT, are some of the more conventional treatments that have evidenced anti-anhedonic properties 

in the self-stimulation paradigm in cocaine and amphetamine abstinent rats. When administered 

during two days prior to the cessation of chronic amphetamine treatment, the TCAs imipramine 

and amitriptyline reversed depressed response rates that were a result of withdrawal (Kokkinidis 

et al. 1980). In addition, chronic administration of imipramine shortened the duration of deficits 



36 

 

in reward thresholds elicited by cocaine withdrawal (Markou et al. 1992). Analogously, the 

SSRIs paroxetine and fluoxetine when combined with p-MPPI (4-(Methoxyphenyl)-1-[2′-(n-2″-

pyridinyl)-p-iodobenzamido]-ethyl-piperazine ([125I), a 5-HT1A antagonist, shortened the 

number of days that rats exhibited elevations in reward thresholds following amphetamine 

abstinence (Harrison et al. 2001; Markou et al. 2005). The 5-HT1A receptor is the autoreceptor 

for serotonin and counterbalances the increased synaptic 5-HT during the early stages of 

reuptake blockade by antidepressants; an effect that is believed to be responsible for the delayed 

onset of action of many antidepressant drugs. Thus, the administration of 5-HT1A antagonists in 

the aforementioned experiments served to block autoreceptors that would otherwise take weeks 

to downregulate thereby allowing the antidepressant drugs to increase levels of 5-HT (Meyer & 

Quenzer, 2005).  

The effects of serotonergic and noradrenergic manipulations on reward thresholds can be 

partly explained by the fact that 5-HT and NE receptors are thought to localize on DA cells as 

well as on glutamatergic and GABAergic neurons which excite and inhibit DA neurons, 

respectively (Adell & Artigas, 2004; Roth et al. 2004). Serotonergic neurons, most of which 

originate from the median and dorsal raphe nuclei found along the midline of the brainstem send 

projections to nearly all forebrain areas including the neocortex, striatum, VTA, NAS, amygdala 

and hypothalamus (Mylecharane, 1996; Meyer & Quenzer, 2005) and local application of 5-HT 

to VTA brain slices has been shown to augment DA efflux in that area (Beart & Mcdonald, 

1982). Similarly, the NE-containing neurons within the brain are located in an area within the 

brainstem called the locus coeruleus, and likewise, project to virtually all areas of the forebrain 

(Meyer & Quenzer, 2005). Moreover, intra-VTA injection of fluoxetine and the NE reuptake 

blocker nisoxetine was evidenced to increase DA levels in that region (Chen & Reith, 1994).  
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Behavioral studies have suggested that the role of 5-HT and NE on brain reward function 

may be more modulatory than facilitatory, however. Both acute paroxetine and p-MPPI and 

acute fluoxetine and p-MPPI significantly elevated reward thresholds in control animals. Some 

researchers have hypothesized that the putative anti-anhedonic consequences of enhanced 

serotonergic and noradrenergic neurotransmission may depend on the original “hedonic” state 

whereby antidepressants elevate mood in anhedonic subjects but have no effect or depress mood 

in individuals free of mental illness (Harrison et al. 2001; Markou et al. 2005).  

1.7.3 Atypical antipsychotics 

By far the most research that has been done thus far on treatment of anhedonia in animals 

has been with atypical antipsychotics. The first atypical or second-generation antipsychotic 

medication, clozapine, was discovered in 1958 and subsequently introduced into clinical practice 

for the treatment of schizophrenia. The drug was hailed for its decreased propensity to induce 

extrapyramidal side effects (motor impairment) and sustained prolactin elevation; both 

dangerous side effects of typical or first-generation antipsychotic drugs (also known as 

neuroleptics; Healy, 2002). Aside from a lower side-effect profile, clozapine was found to be 

more effective than any other antipsychotic drug in treating negative symptoms of schizophrenia 

such anhedonia, apathy, avolition and affective flattening (Sirota et al. 2006; Roth et al. 2004). 

Unfortunately, clozapine itself was found to cause agranulocytosis, an acute condition involving 

a severe and dangerous decrease in white blood cell count. This has led pharmaceutical 

companies to develop a number of analogues such as olanzapine, risperidone, and quetiapine; 

drugs that share crucial pharmacological properties with clozapine but do not induce the deadly 

disease. Recent research has made a strong case that these agents are not only useful in the 

treatment of schizophrenia, but also in the treatment of drug addiction (Green et al. 2008). One 
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of the possibilities that has been explored in animal models is that atypical antipsychotics may 

treat substance dependence by alleviating anhedonia associated with drug withdrawal. One 

model that has been used to demonstrate the anti-anhedonic effect of atypical antipsychotics is 

the chronic mild stress (CMS) protocol. This model involves presenting a series of unpredictable 

innocuous stressors such as tilting of the cage, crowding up to 8 animals in a single cage, food 

deprivation for up to 24 hours, and intermittent overnight lighting. Animals exposed to this 

protocol for 2-3 weeks begin to exhibit depressed voluntary sucrose intake and this effect is 

reliably reversed by antidepressants (Willner et al. 1987; Ferretti et al. 1995). Studies with 

quetiapine and olanzapine have demonstrated that chronic administration of these agents 

alleviated CMS-induced anhedonia; an effect not witnessed with chronic haloperidol 

administration (Orsetti et al. 2006, 2007). These results have to be interpreted with caution, 

however, because CMS failed to induce anhedonia in the progressive-ratio schedule for sucrose 

reinforcement. That is, animals that underwent CMS treatment did not evidence lower 

breakpoints for responding for a sucrose solution (Phillips & Barr, 1997; Barr & Phillips, 1998). 

Judging from these results it seems that the CMS protocol may depress hedonic reactions to 

sucrose but does not produce the motivational deficits that are the hallmark of psychostimulant 

withdrawal, and thus, may not be a valid model of drug addiction.  

In addition to reversing CMS depressions in sucrose responding, there is also evidence 

that atypical antipsychotics may help alleviate anhedonia induced by amphetamine withdrawal. 

Specifically, a study by Semenova & Markou (2003) demonstrated that two week clozapine 

pretreatment reduced the number of days that animals exhibited reward deficits in the BSR 

paradigm whereas acute clozapine treatment elevated reward thresholds in control animals and 

had no effect on reward thresholds in anhedonic animals. These results suggest that a long-term 
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adaptation may take place when clozapine is administered chronically that serves to modulate 

dopaminergic activity according to the prevailing dopaminergic tone. This sort of adaptation 

reminds one of the mitigation of anhedonia that is induced by chronic administration of 5-HT 

and NE reuptake inhibitors. Indeed, clozapine has moderate affinity for serotonergic receptors 

and high affinity for adrenergic receptors and these mechanisms may very well underlie its 

putative benefits in the treatment of anhedonia (Roth et al. 2004). 

Figure D: The effect of chronic clozapine administration on anhedonia induced by amphetamine 

withdrawal 

 

The effects of 14-day clozapine pretreatment (6mg/kg/day through osmotic minipumps) on 
reward thresholds in rats under amphetamine withdrawal. The @ sign denotes statistically 
significant elevations in thresholds during clozapine pretreatment (p < 0.05; data not shown). 
Asterisks denote statistically significant differences between thresholds of amphetamine- and 
saline-exposed rats pretreated with vehicle. Pound signs denote statistically significant 
differences between thresholds of amphetamine- and saline-exposed rats pretreated with 
clozapine. Modified from: Semenova and A. Markou, Clozapine treatment attenuated somatic 
and affective signs of nicotine and amphetamine withdrawal in subsets of rats exhibiting 
hyposensitivity to the initial effects of clozapine, Biol. Psychiatry 54 (2003), pp. 1249–1264. 

 

The present study sought to extend the research on atypical antipsychotic medications 



40 

 

and d-amphetamine withdrawal-induced anhedonia by investigating the effects of acute 

quetiapine on brain stimulation reward (BSR) in rats under withdrawal from d-amphetamine.  

Quetiapine was chosen because it possesses one of the best side-effect profiles of its class 

(Masand & Narasimhan, 2006) and has been effective in treatment abuse of drugs such as 

alcohol, cocaine, amphetamine, methamphetamine, and opioids (Brown et al. 2003; Potvin et al. 

2006; Kennedy et al. 2008; Martinotti et al. 2008).  

1.8 Hypotheses 

1. Acute injection of amphetamine (1mg/kg) will reduce reward thresholds. 

2. The reduction in reward thresholds hypothesized above will be inferior in amphetamine-

treated rats when they are challenged with amphetamine (1mg/kg) at the end of the 

experiment, compared to vehicle-treated controls.  

3. Rats withdrawn from systemic escalating amphetamine treatment will display significantly 

elevated reward thresholds compared with controls.  

4. Acute quetiapine injection will dose-dependently elevate reward thresholds in control rats.  

5. Acute quetiapine injection will dose-dependently reverse elevated reward thresholds 

observed in amphetamine withdrawn rats.   
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Abstract 

Background Anhedonia, a condition in which the capacity of experiencing pleasure is reduced, 

is observed in patients that are under withdrawal from drugs of abuse. Recent clinical studies 

show that quetiapine may be beneficial in the treatment of substance abuse by alleviating the 

withdrawal-negative affect stage of addiction. This study investigated the effects of acute 

quetiapine on reward in animals under withdrawal from d-amphetamine. 

Methods Experiments were performed on male Sprague-Dawley rats trained for intracranial 

self-stimulation. Measures of reward threshold were determined with the curve-shift method in 

different groups of rats before, and during four days after treatment with escalating doses (1 to 

10 mg/kg, i.p) of d-amphetamine sulphate or its vehicle. At 24h after withdrawal, the effects of 

two doses of quetiapine (2 and 10 mg/kg ip) were tested in all the animals.  

Results Animals treated with d-amphetamine showed 25% reward attenuation at 24h of 

withdrawal, an effect that decreased over the next three days. Quetiapine administered acutely at 

2mg/kg and 10mg/kg on the first day of withdrawal produced 10% and 25% reward attenuation, 

respectively, in the vehicle-control animals, an effect also observed in the animals under 

withdrawal from d-amphetamine but only at the high dose.   

Conclusions These results show that quetiapine produced a mild attenuation of reward in 

normohedonic and in anhedonic animals. They suggest that quetiapine should be used at low 

doses for the treatment of substance abusers under withdrawal from psychostimulant drugs to 

avoid enhancement of the anhedonic state.  

Key words:  Anhedonia, Amphetamine, Dopamine, Quetiapine, Reward, Tolerance  
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1. Introduction 

Anhedonia, a condition in which the capacity of experiencing pleasure is reduced, is frequently 

observed in patients that are under withdrawal from chronic, alcohol, opioid or psychostimulant 

abuse (Newton et al. 2004; Janiri et al. 2005).  Anhedonia induced by drugs of abuse is believed 

to occur due to decreased reward system function as a result of depletion of mesolimbic 

dopamine (DA) (Rossetti et al. 1992). This reward deficit, in turn, is hypothesized to act as an 

‘opponent process’ to perpetuate the cycle of drug addiction (Solomon & Corbit, 1974).  As 

abuse of a drug progresses, it is hypothesized to shift from being motivated by the strong positive 

reinforcing property of the drug, to being motivated by a strong negative reinforcing property of 

withdrawal (i.e. the desire to alleviate withdrawal symptoms such as anhedonia, anxiety, 

irritability and dysphoria) and a weaker positive reinforcing property (Koob & Le Moal, 2001).  

Recent clinical studies show that the atypical antipsychotic medication, quetiapine, may 

be beneficial in the treatment of drug abuse, alleviating the negative affective symptoms that are 

thought to predominate and drive the cycle of addiction (Koob & Le Moal, 2001; Potvin et al. 

2006; Martinotti et al. 2008). Unlike typical antipsychotic medications, which bind to DA 

receptors with a high affinity and interfere strongly with DA neurotransmission, atypical 

antipsychotic medications, like quetiapine, are characterized by a higher ratio of serotonergic (5-

HT), and noradrenergic (NE), to DA blockade; this pharmacodynamic profile has been proposed 

to account for their presumed better effectiveness in reducing negative symptoms of 

schizophrenia such as anhedonia, alogia, affective flattening and avolition (Meltzer et al. 1989). 

A number of studies employing different animal models of hedonic behavior have 

testified to the ability of atypical antipsychotic medications to mitigate deficits in reward system 

function. For instance, there is evidence that quetiapine reversed anhedonia-like depression in 
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free consumption of sucrose induced by chronic mild stress (CMS) (Orsetti et al. 2007). 

Moreover, treatment with amisulpride reduced decreases in sucrose consumption in rats that 

were shifted from 32% to 4% sucrose solution, a procedure known as the successive negative 

contrast (SNC) (Genn et al. 2002). Finally, administration of clozapine decreased the number of 

days that rats evidenced elevated thresholds for brain stimulation reward (BSR) as a result of 

withdrawal from chronic infusion with d-amphetamine (Semenova & Markou, 2003).  

Withdrawal from d-amphetamine, which is associated with a significant reward deficit, is 

a validated model of the anhedonia – a component of the opponent process model of motivation 

(Solomon & Corbit, 1974; Koob & Le Moal, 2001; Barr & Markou, 2005). The rewarding action 

of d-amphetamine, like several other drugs that are initially abuse for their positive reinforcing 

property, is highly DA-dependant.  Animal studies have shown that blockade of central DA 

receptors, or selective neurotoxic lesions of mesolimbic DA pathways, reduce d-amphetamine 

reward (Wise and Rompré, 1989).  During d-amphetamine withdrawal extracellular DA 

concentrations have been evidenced to decrease by as much as 50, 35 and 25% on days 1, 3 and 

5 of abstinence, respectively (Rossetti et al. 1992), reductions that are correlated with decreases 

in break-points for sucrose responding on a progressive-ratio (PR) schedule and attenuation of 

reward induced by medial forebrain bundle electrical stimulation (Barr & Phillips, 1999; Cryan 

et al. 2003). In addition, whereas withdrawal from many other drugs of abuse is associated with a 

considerable amount of somatic symptoms that may act as confounding factors, amphetamine 

withdrawal is believed to be minimally obfuscated by physical symptoms (Barr & Markou, 

2005).  

The present study sought to extend the research on atypical antipsychotic medications 

and d-amphetamine withdrawal-induced anhedonia by investigating the effects of acute 
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quetiapine on brain stimulation reward (BSR) in rats under withdrawal from d-amphetamine.  

Brain stimulation reward is a behavioral paradigm that is highly sensitive to changes in central 

DA neurotransmission (Wise & Rompré, 1989). Administration of drugs of abuse such as 

opiates, ethanol, nicotine, amphetamine, and cocaine increases extracellular DA release in the 

mesolimbic dopamine system and decreases BSR threshold (Di Chiara & Imperato, 1988; Wise 

& Rompré, 1989). By contrast, withdrawal from chronic treatment with ethanol, morphine, 

cocaine and amphetamine have been reported to decrease extracellular DA concentrations in the 

mesolimbic dopamine system and to elevate BSR threshold (Wise & Rompré, 1989; Rossetti et 

al. 1992). The use of the curve-shift method with BSR, unlike other paradigms, (e.g. sucrose 

intake), allows one to dissociate reward from performance deficit, hence to obtain a specific 

measure of a change in reward system function (Edmonds and Gallistel, 1974; Miliaressis et al, 

1986). Quetiapine was chosen because it possesses one of the best side-effect profiles of its class 

(Masand & Narasimhan, 2006) and has been effective in treatment abuse of drugs such as 

alcohol, cocaine, amphetamine, methamphetamine, and opioids (Brown et al. 2003; Pinkofsky et 

al. 2005; Potvin et al. 2006; Kennedy et al. 2008; Martinotti et al. 2008).  

2. Materials and Methods 

2.1 Animals and surgery  

Male Sprague–Dawley rats (Charles River, St-Constant, Quebec) weighing between 300 

and 350 g at the surgery time were used. They were initially housed two per cage, and one per 

cage after the surgery, in a temperature and humidity-controlled room (21 ± 1 °C; 53 ± 2%) with 

a 12 h light-dark cycle (lights on at 06:30 am). They were allowed to habituate to the new 

housing environment for 7 days before the surgery and had access to food and water ad libitum.  

Experiments were performed during the light cycle and were carried out in accordance with 
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guidelines of the Canadian Council on Animal Care; all efforts were made to minimize suffering 

and number of animals used.  Rats were anaesthetized with isoflurane (2.5–3.5%, O2 0.6 L/min) 

and mounted on a stereotaxic apparatus. A 0.2 ml solution of the local anaesthetic marcaine 

(0.25%) was injected subcutaneously at the site of incision. Two stainless steel wires of 0.27 mm 

in diameter insulated with Epoxy, except for the round tip, were implanted within each 

hemisphere into the lateral hypothalamus using the following flat skull coordinates: 2.8 mm 

posterior to bregma, 1.7 mm lateral to the saggital suture and 8.6 mm below the surface of the 

skull (Paxinos and Watson, 1986). An uninsulated wire serving as the inactive electrode (anode) 

was wrapped around four stainless steel screws threaded into the cranium and the whole 

assembly was fixed with dental acrylic. A 0.1 ml (im) solution of Duplocillin LA containing 

300,000 I.U. of penicillin was administered to prevent infections. 

2.2 Behavioral Test 

 2.2.1 Apparatus and training procedure 

One week after surgery, rats were placed in a test cage (25 × 25 cm) made from three opaque 

polymer walls and one front Plexiglas wall that allowed observation. Each cage was equipped 

with an infrared photocell located inside a hole (3 cm diameter × 3 cm deep) 2 cm above a wire-

mesh floor. To minimize disturbance due to external noise test cages were encased in ventilated 

wooden boxes insulated with Styrofoam. Rats were trained to produce a nose-poke response to 

trigger a constant-current pulse generator (Mundl, 1980) that delivered a single 500 ms train of 

0.1 ms cathodal rectangular pulses. Each stimulation train was followed by an inter-train interval 

(500 ms) during which the pulse generator could not be triggered; the animal could not self-

administer more than one train per sec (see Boye and Rompré, 1996). The effects of the 

stimulation on the behaviour were initially evaluated on each of the electrodes at different 
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current intensities (200–500 µA); the site at which the stimulation induced exploratory behaviour 

and forward locomotion with no, or minimal, motor effects was selected for the training test. 

Once operant responding was established (see Rompré, 1995 for details), the animals were 

trained to respond during discrete 55-s trials, each trial being followed by an interval of 30-s 

during which stimulation was not available. The beginning of each trial was signaled by five 

trains of non-contingent priming stimulation delivered at a rate of one per second. With the 

current intensity held constant, the frequency was varied from 94 to 20 Hz in approximately 0.05 

log unit steps to obtain a function relating the total number of nose pokes per trial to the 

stimulation frequency (rate/frequency or R/F curve). An index of reward was derived from each 

R/F curve and was defined as the pulse frequency sustaining a half-maximal rate of responding 

(M50, see data analysis). The current intensity was set for each rat to generate a M50 value 

between 30 and 40 Hz. Four R/F curves were determined during daily test session and this until 

the lower and the higher M50 values determined within the session varied by less than 0.1 log 

unit for three consecutive days. 

 2.2.2 Drug testing 

 Different groups of rats were administered escalating doses of d-amphetamine (1-10 mg/kg, i.p), 

or its vehicle, every 8 h (9am, 5pm, 12pm), for three days; this regimen of d-amphetamine 

treatment was reported to induce a decrease sensitivity to reward following withdrawal 

(anhedonia; Barr & Phillips, 1999). The magnitude of anhedonia was measured by determining 

R/F curves on each day for 4 consecutive days, beginning twenty-four hours after the last d-

amphetamine injection.  The effect of an acute low and moderate dose of quetiapine (2 and 10 

mg/kg) on sensitivity to reward was tested on the first day of withdrawal in all the animals.  On 

this day, we first determined three R/F curves, and then we injected quetiapine, or its vehicle, 
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and determined three new R/F curves starting 15 min after the injection. In order to determine 

whether tolerance developed to the enhancing effects of d-amphetamine following exposure to 

escalating doses, we determined R/F curves before and after the first injection of d-amphetamine 

(1 mg/kg, only in those animals that received an escalating doses of d-amphetamine), and we 

repeated this test in the same animals at 96 h of withdrawal. 

2.3 Drugs 

Dextro-amphetamine sulphate (Sigma-Aldrich, United Kingdom) was dissolved in 0.9% 

isotonic saline and quetiapine (a generous gift of Astra Zeneca) was dissolved in 0.9% saline 

solution that contained 2 % glacial acetic acid; pH of quetiapine solution was adjusted to 5.4 

with sodium hydroxide. Both drugs were injected intraperitonealy in a volume of 1 ml/kg and the 

doses are expressed as salt. 

2.4 Data analysis 

Measure of reward (M50 index, referred to as reward threshold later on) was derived 

from each R/F curve obtained before (baseline) and after withdrawal from d-amphetamine or the 

vehicle; M50 values were expressed as the percentage of baseline and group means were 

calculated. Maximum response rate was determined from each R/F curve using a procedure 

previously described (Benaliouad et al., 2007); data were expressed as percentage of baseline 

and group means were calculated. M50 values and maximum rates obtained following injection 

of quetiapine, or its vehicle, on the first day of withdrawal, and following the first and the second 

test acute d-amphetamine (1 mg/kg) were expressed as percentage pre-injection.  Mean changes 

of both reward threshold and maximum rate were analyzed with a two-way (drug and 

vehicle × time) analysis of variance (ANOVA) for repeated measures on time. Homogeneity of 

variances was tested with Bartlett Chi-Square test and square root or log data transformation was 
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performed when necessary. Comparisons among means when justified were made with Duncan's 

test with the level of significance set at 0.05 (Statistica V6.1, Statsoft Inc., Tulsa, OK, USA). 

2.5 Histology 

At the end of the experiment, animals were anaesthetized with urethane (1.4 g/kg i.p.) 

and the stimulation site was lesioned by passing through the electrode a direct anodal current 

(0.15 mA during 15 sec). They were then perfused with a 10% of formalin solution containing 

3% potassium ferrocyanide, 3% potassium ferricyanide and 0.5% trichloroacetic acid (Prussian 

blue technique). Brains were removed, stored in a 30% of sucrose solution until they sank, then 

frozen with 2-methylbutane (99.2%) and kept at − 80 °C. Brains were subsequently sliced in 

40 µm sections that were mounted on gelatine-coated glass slides. Slices were stained using 

Nissl's technique and stimulation sites were localized under light microscopic examination. 

3. Results 

3.1 Histology 

Histological analysis revealed that the stimulation sites were located within the MFB in the 

anterior and posterior part of lateral hypothalamus between 2.30 and 3.14 mm posterior to 

bregma (Fig. 1).  

3.2 Effects of d-amphetamine withdrawal on reward threshold and maximum rate. 

Figure 2 illustrates the R/F curves obtained from four rats 24h after the last d-amphetamine 

(bottom panels) and vehicle (top panels) injections. Withdrawal from d-amphetamine resulted in 

a rightward shift in R/F curves reflecting a reduction in reward sensitivity or anhedonia; such an 

effect was not seen in the animals that were injected repeatedly with the vehicle.  It is noteworthy 

that maximum rate of responding was not altered in animals treated with the vehicle nor in those 

treated with d-amphetamine. Group mean changes in reward threshold and maximum rate 
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measured on each of the four days after withdrawal are shown in Figure 3. An increase in reward 

threshold ranging between 25% (24h) and 15% (96h) was observed on each day in the d-

amphetamine treated rats; on the other hand, reward threshold remained near baseline level on 

each tested day in the vehicle treated rats (top panel).  A two-way ANOVA performed on reward 

threshold data yielded a significant treatment by time interaction (F(3, 123)=7.3, p<0.001). Post-

hoc test showed that reward threshold was significantly elevated in the d-amphetamine 

withdrawal group compared to vehicle on each testing day.  A two-way ANOVA performed on 

maximum rate data (bottom panel) yielded no effect of treatment (F(1, 41)=2.3, p=0.14), time 

(F(3, 123)=2.55, p=0.06), and no treatment by time interaction by time interaction (F(3, 

123)=2.0, p=0.112). 

3.3 Effects of acute 2 mg/kg and 10 mg/kg of quetiapine on reward on the first day of 

withdrawal. 

Figure 4 illustrates changes in reward threshold (top panel) and maximum rate (bottom panel ) 

observed in different groups of rats on the first day of withdrawal before (black bars) and after 

(gray bars) injections of different doses of quetiapine or its vehicle. A two-way ANOVA 

performed on reward threshold data yielded a significant treatment by time interaction (F(5, 37) 

= 11.6, p<0.001). Post-hoc tests confirmed that reward threshold was significantly elevated 

(different than vehicle) in all groups that were under withdrawal from d-amphetamine.  In the 

animals that were under withdrawal from vehicle (V-V, VQ2 and VQ10 groups), quetiapine 

produced a dose-orderly attenuation of reward that translates into a 15 and 25% increase in 

threshold at the low and moderate dose respectively. An attenuation effect of the same 

magnitude was observed at the moderate but not at the low dose of quetiapine the anhedonic 

animals. These changes in reward threshold cannot be attributed to an alteration in performance 
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because maximum rates did not change significantly (Figure 4, bottom panel).  The ANOVA 

yield no effect of treatment (F(5,37) = 0.60 p=0.69), no effect of time  (F1,37=1.45 p=0.25) and 

no treatment by time interaction (F5,37=2.13 p=0.08). 

3.3 Effect of acute low dose of d-amphetamine on reward: evidence for a weak tolerance         

following repeated injections. 

Changes in reward threshold and maximal rate were measured following injection of the first d-

amphetamine injection (1 mg/kg); this test was repeated in all the d-amphetamine-treated 

animals at 96h of withdrawal. Results were then grouped according to the treatment administered 

at 24h of withdrawal (vehicle, 2 mg/kg or 10 mg/kg of quetiapine) and analyzed with a two-way 

ANOVA.  The analysis performed on reward threshold data yielded no significant effect of 

group (F2,18 = 1.7, p=0.21), no group by time interaction (F2,18 = 1.47, p=0.26) but a 

significant effect of time (F1,18 = 5.46, p <0.05), showing that the enhancing effect of d-

amphetamine on BSR differs between the first and the second test independent of the groups. 

Consequently, reward threshold data were averaged across groups and means were compared 

with Student’s T-test for dependent sample (Fig. 5). As can be seen, d-amphetamine produced a 

40% decrease in reward threshold on the first test, an effect that was slightly but significantly 

smaller (near 33%) on second test performed at 96h of withdrawal, suggesting that tolerance 

developed with repeated d-amphetamine injections (t = 2.28, df = 20, p<0.05). A two-way 

ANOVA performed on maximum rate data yield no group effect (F2,18 = 0.30, p=0.75), no time 

effect (F1,18 = 0.003, p=0.95) and no group by time interaction (F1,18 = 1.28, p=0.30), showing 

that tolerance to the reward enhancing effect cannot be attributed to an alteration in performance 

(Fig. 5). 

Discussion 
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 Animals that were under withdrawal from d-amphetamine showed a reward deficit 

(anhedonia) that is reflected by the increase in the amount of electrical stimulation necessary to 

sustain operant responding at threshold level compared to vehicle-control animals. This reward 

deficit was maximal at 24h after withdrawal and remained present for at least 4 days. The fact 

that on each day of withdrawal the increase in reward threshold was not accompanied by a 

change in maximum response rate confirms that it was not due to a performance deficit 

(Miliaressis et al., 1986). This finding is consistent with those reported in previous studies where 

changes in reward sensitivity following withdrawal from d-amphetamine were measured with 

BSR, and with other paradigms such as the breakpoint of a progressive ratio schedule for sucrose 

reinforcement and delayed recovery from SNC (Barr & Phillips, 1999; Barr & Phillips, 2002; 

Barr & Markou, 2005). It is well established that d-amphetamine produces a dose-dependent 

increase in ventral striatal DA release, an effect that is hypothesized to account for its reward 

enhancing effect (Wise, 1996). However, during withdrawal from repeated high doses of d-

amphetamine (such as in the present study), the opposite effect on DA release occurs. Rossetti et 

al (1992) have reported a decrease in ventral striatal extracellular DA ranging from 50 to 25% 

between day 1 and day 5 of d-amphetamine withdrawal. Moreover, several studies have shown 

that BSR is highly sensitive to changes in central DA neurotransmission (Wise and Rompré, 

1989; Wise, 1996), and a reduction in ventral striatal DA most likely explains the increase in 

reward threshold that we measured. This hypothesis is further supported by results that we 

obtained following injection of the first dose (1 mg/kg) of d-amphetamine and at 96h after 

withdrawal. On the first test, this dose of d-amphetamine produced near 40% decrease in reward 

threshold, a magnitude consistent with that reported in previous studies (Colle and Wise, 1988; 

Wise and Munn, 1993) and with an increase in ventral striatal DA release (Di Chiara & 
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Imperato, 1988; Karoum et al. 1994). But on the second test, performed at a time period when 

animals still expressed a reward deficit, the same dose of d-amphetamine produced a slightly, but 

significantly, smaller decrease in reward threshold. This weak tolerance effect can be interpreted 

as reflecting a decrease in the ability of d-amphetamine to increase ventral striatal DA release; it 

may result from within-system adaptations such as down-regulation and/or desensitization of 

postsynaptic DA receptors (see White & Kalivas, 1998). Another hypothesis to account for the 

reward deficit, and for the tolerance to the reward enhancing effect of d-amphetamine, is 

dopaminergic neurotoxicity. Although the bulk of research has focused on methamphetamine-

induced neurotoxicity, there is evidence that repeated treatment with high doses of d-

amphetamine induces a decrease in DA tissue level and in tyrosine hydroxylase 

immunoreactivity in the striatum (Ryan et al. 1990; Segal & Kuczenski, 1997; He et al. 2005, 

2006). Semenova and Markou (2003) also observed that rats under withdrawal from 6-day 

infusion of d-amphetamine evidenced significant reward threshold elevations that lasted at least 

144h.  

The main objective of this study was to determine the effect of an acute quetiapine 

injection on reward during d-amphetamine withdrawal-induced anhedonia. Quetiapine was tested 

at two doses on the first day of withdrawal, a time period at which reward deficit was maximal. It 

produced a dose-orderly attenuation of reward in the vehicle-treated control animals that were 

normohedonic (no change in reward sensitivity). These findings replicate previous results that 

showed an attenuation of reward following acute injection of similar doses of quetiapine 

(Lapointe et al. 2006). On par with this finding is evidence that clozapine, which displays a 

similar receptor binding profile to quetiapine, dose-dependently elevated reward thresholds when 

given acutely in vehicle-treated animals (Semenova & Markou, 2003). Quetiapine displays a low 
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affinity for DA D2 receptors and yet competes with endogenous DA to produce a significant 

striatal D2 receptor occupation which likely accounts for its reward attenuation (Kapur et al., 

2003). When tested in animals that were under withdrawal from d-amphetamine, quetiapine 

produced significant reward attenuation at the moderate dose, an effect that was similar in 

amplitude to that seen in vehicle-control animals. This result predicts that quetiapine 

administered acutely at a clinically-effective dose for schizophrenia (the dose that produces near 

50% striatal D2 receptor occupancy) is likely to accentuate rather than reverse anhedonia (Kapur 

et al., 2003). Most interestingly, the reward threshold elevation elicited by the low dose (2 

mg/kg) of quetiapine was not observed in the anhedonic animals. One explanation for this 

finding is that the neural adaptations such as down-regulation of DA receptors in response to 

systemic escalating d-amphetamine treatment may have blunted the ability of a low dose of 

quetiapine to act effectively at post-synaptic DA receptors (see White & Kalivas, 1998). This 

interpretation is problematic, however, because the effect of the moderate dose of quetiapine 

should have been blunted in these animals as well and this was not what was found. One of the 

primary metabolites of quetiapine, N-desalkylquetiapine, displays strong partial agonist activity 

at the 5-HT1A receptors. N-desalkylquetiapine is 10 times more potent at activating human 5-

HT1A receptor in binding assays than quetiapine (45 vs. 450nM) and the action of this 

metabolite has been proposed to account for the efficacy of quetiapine monotherapy in the 

treatment of major and bipolar depression  (McIntyre et al. 2007; Jensen et al. 2008). The 

presence of significant 5-HT1A action of quetiapine is underlined by findings that quetiapine 

treatment altered 5-HT1A and 5-HT2A but not DA receptor labelling in rat forebrain regions in 

vivo (Tarazi et al. 2001, 2002). In BSR studies, the selective 5-HT1A agonist 8-OH-DPAT 

exhibited a biphasic effect, lowering reward threshold at low doses and elevating it at high doses 
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– effects which are attributed to action at pre- and post-synaptic 5-HT1A receptors, respectively 

(Fletcher et al. 1995; Harrison & Markou, 2001). Furthermore, although d-amphetamine 

withdrawal has been most commonly associated with depleted DA levels, there is also evidence 

for a decrease in 5-HT levels in post-mortem brain tissue of rats treated systemically with the 

psychostimulant (Kitanaka et al. 2008). Additionally, Bonhomme et al. (1995) reported an 

increased in dorsal raphé 5-HT1A receptors following repeated d-amphetamine treatment. 

Consequently, due to the presumed reduction of endogenous 5-HT and the increase in pre-

synaptic 5-HT1A receptors, the 5-HT1A partial agonist action of N-desalkylquetiapine may 

come into play at the low dose and act to reduce the reward attenuating effect of quetiapine. At 

the high dose the action of the primary metabolite at the post-synaptic 5-HT1A receptors may 

counteract its pre-synaptic action, and the D2 antagonism may drown out any further reward 

threshold changes related to 5-HT1A agonism. 

Clinical studies of quetiapine for the treatment of substance abuse seem to be concordant 

with our results. That is, studies which have evidenced a benefit of quetiapine on non-psychotic 

substance abusers have generally treated patients with low doses of the atypical antipsychotic 

medication (50-300mg/day) (Monnelly et al. 2004; Sattar et al. 2004; Pinkofsky et al. 2005); 

with higher doses (300-600mg/kg) being used to manage psychosis in schizophrenia (Kapur et 

al. 2003).  The use of high doses is likely to accentuate anhedonia in substance abusers; an effect 

that is clearly not desirable. The tolerance that we observed to the pro-anhedonic effect of a low 

dose of quetiapine in the animals under d-amphetamine withdrawal may explain why quetiapine 

has thus far not been found to worsen substance abuse outcomes in non-psychotic patients. In 

psychotic patients, however, quetiapine’s weak D2 antagonism and fast dissociation from D2 

receptors may act to normalize hyperactivity of the mesolimbic DA system, which has been 
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hypothesized to be responsible for the increased prevalence of substance abuse in this population 

(Kapur & Seeman, 2001; Chambers & Self, 2002). Typical antipsychotics, on the other hand, 

dissociate slowly from D2 receptors and the dysphoria which results from this continuous 

blockade may pull the individual into a negative affective state, requiring alleviation with drugs 

of abuse (Solomon & Corbit, 1974; Koob & Le Moal, 2001; Kapur & Seeman, 2001). 

Schizophrenia and bipolar studies show that patients’ substance abuse may decrease simply by 

stopping typical therapy; receiving no antipsychotic medication (Brown et al. 2003; Swanson et 

al. 2007). Interestingly, the same studies found that substance abuse decreased even further if the 

patients began atypical therapy.  
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Figure legends 
 
Figure 1. Stimulation electrode tip locations for all the rats that were included in the study.  Sites 

stimulated were all located within the medial forebrain bundle.  Drawings are adapted from 

Paxinos and Watson’s plates of the rat brain atlas (1998).  Numbers on the right of each drawing 

indicate the distance in mm (posterior) from bregma. 

Figure 2. Response-frequency (R/F) curves obtained from four rats before, and 24h after, 

administration of escalating doses of amphetamine or an equivalent regimen of vehicle 

treatment. In the animals that were under withdrawal from d-amphetamine higher stimulation 

frequencies were required to initiate and sustain responding (bottom panels) resulting in a 

rightward shift of the R/F curves. This effect was not observed in the animals under withdrawal 

from repeated vehicle treatment (top panels). See text for details. 

Figure 3.  Group mean changes (±SEM) of reward threshold (top panel) and maximum response 

rate (bottom panel), expressed as percent of baseline, measured daily for four days after 

withdrawal from de-amphetamine (n=21) and vehicle (n=22). Stars indicate a statistically 

significant difference between vehicle and d-amphetamine at the corresponding test day 

(***p<0.001). See text for details 

Figure 4. Group mean changes (±SEM) of reward threshold (top panel) and maximum response 

rate (bottom panel) expressed as percent of baseline measured 24h after withdrawal from vehicle 

nd d-amphetamine (black bars) and after injection of one of two doses of quetiapine (2 and 10 

mg/kg) or its vehicle (grey bars). Groups are divided according to the treatment they received 

before withdrawal and during this test day respectively: vehicle and vehicle (V-V, n=8), vehicle 

and 2 mg/kg quetiapine (V-Q2, n=7), vehicle and 10 mg/kg quetiapine (V-Q10, n=7), d-

amphetamine and vehicle (A-V, n=7), amphetamine and 2 mg/kg quetiapine (A-Q2, n=7), d-
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amphetamine and 10 mg/kg quetiapine (V-Q10, n=7).  Stars indicate statistically significant 

difference between pre- and post-injection (**p0.01; ***p<0.001); crosses indicate statistically 

significant difference with vehicle (V-V) pre-injection (+++p<0.001); pound signs indicate a 

statistically significant difference between V-Q10 and V-Q2, and between A-Q10 and A-Q2 

(###p<0.001). 

Figure 5. Group mean changes (±SEM) of reward threshold (black bars) and maximum response 

rate (grey bars) measured following injection a low dose of d-amphetamine (1 mg/kg).  Two 

BSR tests were performed, a first one on following the first injection of d-amphetamine and a 

second one at the same dose at 96h of withdrawal.  Results are expressed as percent of pre-

injection values determined on each test day (n=21). Stars indicate a statistically significant 

difference with test 1. See text for details. 
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Animals that were under withdrawal from d-amphetamine showed a reward deficit 

(anhedonia) that is reflected by the increase in the amount of electrical stimulation necessary to 

sustain operant responding at threshold level compared to vehicle-control animals. This reward 

deficit was maximal at 24h after withdrawal and remained present for at least 4 days. The fact 

that on each day of withdrawal the increase in reward threshold was not accompanied by a 

change in maximum response rate confirms that it was not due to a performance deficit 

(Miliaressis et al., 1986). This finding is consistent with those reported in previous studies where 

changes in reward sensitivity following withdrawal from d-amphetamine were measured with 

BSR, and with other paradigms such as the breakpoint of a progressive ratio schedule for sucrose 

reinforcement and delayed recovery from SNC (Barr & Phillips, 1999; Barr & Phillips, 2002; 

Barr & Markou, 2005). It is well established that d-amphetamine produces a dose-dependent 

increase in ventral striatal DA release, an effect that is hypothesized to account for its reward 

enhancing effect (Wise, 1996). However, during withdrawal from repeated high doses of d-

amphetamine (such as in the present study), the opposite effect on DA release occurs. Rossetti et 

al (1992) have reported a decrease in ventral striatal extracellular DA ranging from 50 to 25% 

between day 1 and day 5 of d-amphetamine withdrawal. Moreover, several studies have shown 

that BSR is highly sensitive to changes in central DA neurotransmission (Wise and Rompré, 

1989; Wise, 1996), and a reduction in ventral striatal DA most likely explains the increase in 

reward threshold that we measured. This hypothesis is further supported by results that we 

obtained following injection of the first dose (1 mg/kg) of d-amphetamine and at 96h after 

withdrawal. On the first test, this dose of d-amphetamine produced near 40% decrease in reward 

threshold, a magnitude consistent with that reported in previous studies (Colle and Wise, 1988; 

Wise and Munn, 1993) and with an increase in ventral striatal DA release (Di Chiara & 
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Imperato, 1988; Karoum et al. 1994). But on the second test, performed at a time period when 

animals still expressed a reward deficit, the same dose of d-amphetamine produced a slightly, but 

significantly, smaller decrease in reward threshold. This weak tolerance effect can be interpreted 

as reflecting a decrease in the ability of d-amphetamine to increase ventral striatal DA release; it 

may result from within-system adaptations such as down-regulation and/or desensitization of 

postsynaptic DA receptors (see White & Kalivas, 1998). Another hypothesis to account for the 

reward deficit, and for the tolerance to the reward enhancing effect of d-amphetamine, is 

dopaminergic neurotoxicity. Although the bulk of research has focused on methamphetamine-

induced neurotoxicity, there is evidence that repeated treatment with high doses of d-

amphetamine induces a decrease in DA tissue level and in tyrosine hydroxylase 

immunoreactivity in the striatum (Ryan et al. 1990; Segal & Kuczenski, 1997; He et al. 2005, 

2006). Semenova and Markou (2003) also observed that rats under withdrawal from 6-day 

infusion of d-amphetamine evidenced significant reward threshold elevations that lasted at least 

144h.  

The main objective of this study was to determine the effect of an acute quetiapine 

injection on reward during d-amphetamine withdrawal-induced anhedonia. Quetiapine was tested 

at two doses on the first day of withdrawal, a time period at which reward deficit was maximal. It 

produced a dose-orderly attenuation of reward in the vehicle-treated control animals that were 

normohedonic (no change in reward sensitivity). These findings replicate previous results that 

showed an attenuation of reward following acute injection of similar doses of quetiapine 

(Lapointe et al. 2006). On par with this finding is evidence that clozapine, which displays a 

similar receptor binding profile to quetiapine, dose-dependently elevated reward thresholds when 

given acutely in vehicle-treated animals (Semenova & Markou, 2003). Quetiapine displays a low 
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affinity for DA D2 receptors and yet competes with endogenous DA to produce a significant 

striatal D2 receptor occupation which likely accounts for its reward attenuation (Kapur et al., 

2003). When tested in animals that were under withdrawal from d-amphetamine, quetiapine 

produced significant reward attenuation at the moderate dose, an effect that was similar in 

amplitude to that seen in vehicle-control animals. This result predicts that quetiapine 

administered acutely at a clinically-effective dose for schizophrenia (the dose that produces near 

50% striatal D2 receptor occupancy) is likely to accentuate rather than reverse anhedonia (Kapur 

et al., 2003). Most interestingly, the reward threshold elevation elicited by the low dose (2 

mg/kg) of quetiapine was not observed in the anhedonic animals. One explanation for this 

finding is that the neural adaptations such as down-regulation of DA receptors in response to 

systemic escalating d-amphetamine treatment may have blunted the ability of a low dose of 

quetiapine to act effectively at post-synaptic DA receptors (see White & Kalivas, 1998). This 

interpretation is problematic, however, because the effect of the moderate dose of quetiapine 

should have been blunted in these animals as well and this was not what was found. One of the 

primary metabolites of quetiapine, N-desalkylquetiapine, displays strong partial agonist activity 

at the 5-HT1A receptors. N-desalkylquetiapine is 10 times more potent at activating human 5-

HT1A receptor in binding assays than quetiapine (45 vs. 450nM) and the action of this 

metabolite has been proposed to account for the efficacy of quetiapine monotherapy in the 

treatment of major and bipolar depression  (McIntyre et al. 2007; Jensen et al. 2008). The 

presence of significant 5-HT1A action of quetiapine is underlined by findings that quetiapine 

treatment altered 5-HT1A and 5-HT2A but not DA receptor labelling in rat forebrain regions in 

vivo (Tarazi et al. 2001, 2002). In BSR studies, the selective 5-HT1A agonist 8-OH-DPAT 

exhibited a biphasic effect, lowering reward threshold at low doses and elevating it at high doses 
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– effects which are attributed to action at pre- and post-synaptic 5-HT1A receptors, respectively 

(Fletcher et al. 1995; Harrison & Markou, 2001). Furthermore, although d-amphetamine 

withdrawal has been most commonly associated with depleted DA levels, there is also evidence 

for a decrease in 5-HT levels in post-mortem brain tissue of rats treated systemically with the 

psychostimulant (Kitanaka et al. 2008). Additionally, Bonhomme et al. (1995) reported an 

increased in dorsal raphé 5-HT1A receptors following repeated d-amphetamine treatment. 

Consequently, due to the presumed reduction of endogenous 5-HT and the increase in pre-

synaptic 5-HT1A receptors, the 5-HT1A partial agonist action of N-desalkylquetiapine may 

come into play at the low dose and act to reduce the reward attenuating effect of quetiapine. At 

the high dose the action of the primary metabolite at the post-synaptic 5-HT1A receptors may 

counteract its pre-synaptic action, and the D2 antagonism may drown out any further reward 

threshold changes related to 5-HT1A agonism. 

Clinical studies of quetiapine for the treatment of substance abuse seem to be concordant 

with our results. That is, studies which have evidenced a benefit of quetiapine on non-psychotic 

substance abusers have generally treated patients with low doses of the atypical antipsychotic 

medication (50-300mg/day) (Monnelly et al. 2004; Sattar et al. 2004; Pinkofsky et al. 2005); 

with higher doses (300-600mg/kg) being used to manage psychosis in schizophrenia (Kapur et 

al. 2003).  The use of high doses is likely to accentuate anhedonia in substance abusers; an effect 

that is clearly not desirable. The tolerance that we observed to the pro-anhedonic effect of a low 

dose of quetiapine in the animals under d-amphetamine withdrawal may explain why quetiapine 

has thus far not been found to worsen substance abuse outcomes in non-psychotic patients. In 

psychotic patients, however, quetiapine’s weak D2 antagonism and fast dissociation from D2 

receptors may act to normalize hyperactivity of the mesolimbic DA system, which has been 
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hypothesized to be responsible for the increased prevalence of substance abuse in this population 

(Kapur & Seeman, 2001; Chambers & Self, 2002). Typical antipsychotics, on the other hand, 

dissociate slowly from D2 receptors and the dysphoria which results from this continuous 

blockade may pull the individual into a negative affective state, requiring alleviation with drugs 

of abuse (Solomon & Corbit, 1974; Koob & Le Moal, 2001; Kapur & Seeman, 2001). Indeed, 

schizophrenia and bipolar studies show that patients’ substance abuse may decrease simply by 

stopping typical therapy; receiving no antipsychotic medication (Brown et al. 2003; Swanson et 

al. 2007). Interestingly, the same studies found that substance abuse decreased even further if the 

patients began atypical therapy.  
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