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Résumé 

La dérégulation de l’expression génétique est une base pathophysiologique de 

plusieurs maladies. On a utilisé le locus du gène β-globine humain comme modèle pour 

élucider le mécanisme de régulation de la transcription génétique et évaluer son expression 

génétique durant l’érythropoïèse. La famille des protéines ‘E’ est composée de facteurs de 

transcription qui possèdent plusieurs sites de liaison au sein de locus du gène β-globine, 

suggérant leur rôle potentiel dans la régulation de l’expression de ces gènes. Nous avons 

montré que les facteurs HEB, E2A et ETO2 interagissent d’une manière significative avec 

la région contrôle du Locus (LCR) et avec les promoteurs des gènes de la famille β-globine. 

Le recrutement de ces facteurs au locus est modifié lors de l’érythropoïèse dans les cellules 

souches hematopoitiques et les cellules erythroides de souris transgéniques pour le locus de 

la β-globine humain, ainsi que dans les cellules progénitrices hématopoïétiques humaines. 

De plus par cette étude, nous démontrons pour la première fois que le gène β-globine 

humain est dans une chromatine active et qu’il interagit avec des facteurs de transcriptions 

de type suppresseurs dans les cellules progénitrices lymphoïdes (voie de différentiation 

alternative). Cette étude a aussi été faite dans des souris ayant une génétique mutante 

caractérisée par l’absence des facteurs de transcription E2A ou HEB. 

Mots-clés: Expression, Facteur de Transcription, Génétique, Gène, Hématopoïèse, Lignée 

Spécification 
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Abstract 

Aberrant gene expression is an underlying pathophysiology in many disease 

conditions. Lineage-specification and -commitment is tightly dependent on lineage-specific 

transcription factors to regulate the expression of target genes. Using human β-globin locus 

as a model, we investigated how the transcriptional machinery is set and regulated during 

erythropoiesis and how it impacts globally on gene expression. Class I bHLH proteins are 

important transcription factors whose binding sites are frequently clustered throughout the 

β-globin gene locus, suggesting their role in globin gene regulation. We showed that, in 

hematopoietic progenitor (HPC) and erythroid cells (EryC) of the transgenic mouse for 

human β-globin locus and human HPC cells (CD34
+
); HEB, E2A and ETO-2 significantly 

interact with locus control region (LCR) and promoters of globin genes, and their relative 

ratio is altered during erythropoiesis. For the first time, we found that in other 

hematopoietic lineages, human β-globin locus is in active chromatin and interacts with 

transcription factors involved in repression. Strikingly and consistent with the expression of 

globin genes, we characterized transcription factors involved in open chromatin 

configuration and basal level of globin gene expression in lymphoid progenitor cells. 

Further, with the genetic power of E2A and HEB knockout mice, our findings were 

clarified in mutant backgrounds. 

Keywords: Globin, Gene Expression, Hematopoiesis, Lineage Specification, Transcription 

Factor 

 



 

v 

 

Table des matières 

Résumé…………………………………………………………………………………… iii 

Abstract………………………………………………………………………………….. iv 

Table des matières………………………………………………………………………. v 

Liste des tableaux……………………………………………………………………….. viii 

Liste des figures…………………………………………………………………………. ix 

Liste des sigles et des abréviations……………………………………………………... xi 

Remerciements……………………………………………………................................... xv 

Introduction……………………………………………………....................................... 16 

Hematopoiesis……………………………………………………………………………...17 

Hematopoietic Stem Cell (HSC) …………………………………………………………..18 

Lineage specification of HSCs…………………………………………………………… 19 

Erythropoiesis…………………………………………………………………………….. 20 

Hemoglobin Synthesis……………………………………………………………………. 21 

Hemoglobinopathies………………………………………………………………….……22

Thalassemia. …………………………………………………………………………….....22 

Sickle Cell Disease. ……………………………………………………………………… .23 

Human β-globin locus……………………………………………………………………. 24 

Globin gene expression…………………………………………………………………... 25 

Globin gene expression and LCR………………………………………………………… 26 

Globin gene expression and transcription factors……………………………………….....29 

Transcription factors and  Erythropoiesis………………………………………………… .30 

Helix-Loop-Helix (HLH) proteins……………………………………………………….. 33 

Helix-Loop-Helix (HLH) proteins: Regulators of transcription in eukaryotic organisms...33 

Classification and structure………………………………………………………………. 33 

E proteins and hematopiesis……………………………………………………………… 36 

E proteins in lymphoid-lineage…………………………………………………………... 37 

E proteins and ETO family. ……………………………………………………………… 38 



 

vi 

 

Applications of study……………………………………………………………………... .42 

Molecular application…………………………………………………………………….. .42 

Clinical application……………………………………………………………………...... .42 

Research Proposal…………………………………………………………………….........42 

Rational…………………………………………………………………….........................42 

Hypothesis…………………………………………………………………….....................45 

Objectives…………………………………………………………………........................ .45 

Materials and Methods…………………………………………………………………...47 

Mouse models ……………………………………………………………………………...48 

Line 2 mouse…………………………………………………………………................... 48 

(E2A +/- ln2 +/+) and (HEB +/- ln2 +/+) mice…………………………………………... 48 

Cell Sorting…………………………………………………………………...................... 49 

Murine erythroid cells (Ter-119+) and Murine HPCs (Ly-6C-CD31highc-Kit+)……….. 49 

Murine Lymphoid Progenitors (LPs) (Lin-c-Kit+Sca1+IL-7Rα+)………………………. 50 

Human primitive progenitor cells (CD34+)……………………………………………… 50 

Genotyping………………………………………………………………………………... 51 

Chromatin Immunoprecipitation (ChIP) assay…………………………………………… 52 

Real-time Polymerase Chain Reaction (Q-PCR/qPCR)………………………………….. 53 

Real-time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)……………….. 54 

Western blot………………………………………………………………………………. 54 

in vitro clonogenic assays………………………………………………………………… 55 

Results……………………………………………………………………………………. 56 

Chapter One: Lineage-Specific Transcription Factors in Multipotent Hematopoietic 

Progenitors: A Little Bit Goes a Long Way……………………………………………...  57 

HEMATOPOIESIS AND LINEAGE SPECIFICATION………………………………... 59 

POTENTIATION AND GENE PRIMING IN HPCs……………………………………. 61 

β-GLOBIN GENE POTENTIATION: THE ROLE OF LINEAGE-SPECIFIC TFs……. 63 

β-GLOBIN GENE POTENTIATION: THE ROLE OF LCR-LIKE STRUCTURES…… 67 



 

vii 

 

CONCLUDING REMARKS ………………………………………………………………68 

Chapter One Supplementary section…………………………………………………… 69 

Chapter two: The basic helix-loop-helix transcription factors E2A and HEB are involved in 

globin gene expression…………………………………………………………………..... 71 

Identification of factors bound to the human β-globin locus in erythroid cells and murine 

HPCs…………………………………………………………………................................ 72 

Identification of factors bound to the human β-globin locus in human primitive progenitor 

cells………………………………………………………………….................................. 76 

Identification of factors bound to the human β-globin locus in murine lymphoid progenitor 

(LP: Lin-c-KitlowSca1lowIL-7Rα+) 

cells………………………………………………………………….................................. 80 

Identification of factors bound to the human β-globin locus in fetal erythroid cells with 

E2A and HEB knock-out 

background…………………………………………………………………...................... 85 

Discussion………………………………………………………………………………... 88 

Human β-globin locus in erythroid cells and murine HPCs……………………………… 90 

Human β-globin locus in human primitive progenitor cells……………………………… 91 

Human β-globin locus in murine lymphoid progenitor cells (LPs)……………………… 92 

E2A and HEB are associated with lineage- differentiation and commitment……………. 94 

Human β-globin locus in E2A and HEB knock-out fetal erythroid cells………………… 95 

Conclusion……………………………………………………………………………… 97



 

viii 

 

Liste des tableaux 

 

Table 1- Role of Transcription factors in Erythropoiesis 

Table 2- Classification of bHLH proteins 

Table 3- The ratio of LP (lymphoid progenitor) cells/Total Bone Marrow was calculated by 

limiting dilutions using the LDA program 



 

ix 

 

Liste des figures 

Figure 1- Hematopoiesis in humans 

Figure 2- Hematopoiesis and stromal cell differentiation  

Figure 3- Hemoglobin structure 

Figure 4- Types of normal hemoglobin 

Figure 5- Structure of human β-globin locus 

Figure 6- Structure of a MyoD basic-helix-loop-helix (bHLH) transcription factor 

Figure 7- Model of Ldb1 complexes in uninduced MEL cells 

Figure 8- Genetic regulatory networks (GRNs) programming hematopoietic stem cells and 

erythroid lineage specification 

Figure 9- One representative experiment of genotyping  

Figure 10- Chromatin immunoprecipitation (ChIP) assays on Mac-1+, B220+, and common 

lymphoid progenitor (CLP) cells  

Figure 11- Chromatin immunoprecipitation (ChIP) assays on common myeloidprogenitor 

(CMP), wild type erythroid (EryC), and EKLF knock-out erythroid (EKLF KO) cells 

Figure 12- Model of TFs recruitment at the huβ-globin locus in HPCs and EryCs 

Figure 13- Chromatin immunoprecipitation (ChIP) assays on human CD34+ multipotent 

HPCs cells 

Figure 14- Analysis of hematopoietic cells from ln2 bone marrow mice with Ter119 and 

Ly-6C/CD31/c-Kit expression 

Figure 15- Chromatin immunoprecipitation (ChIP) assays on murine erythroid cells (EryC, 

Ter119+) and murine hematopoietic progenitor cells (HPC, Ly-6C-CD31highc-Kit+) 

Figure 16- Purification of human hematopoietic progenitor cells (CD34+) 

Figure 17- Chromatin immunoprecipitation (ChIP) assays on human CD34+ multipotent 

HPCs cells 

Figure 18- Purification of murine lymphoid progenitor (LP: Lin-c-KitlowSca1lowIL-7Rα+) 

cells 

Figure 19- Whitlock-Witte long-term bone marrow culture 



 

x 

 

Figure 20- ChIP analysis of histone acetylation and interaction of E2A, HEB and ETO-2 

proteins with the human β-globin locus in LP (Lin-c-KitlowSca1lowIL-7Rα+) cells from 

adult ln2 mice 

Figure 21- ChIP assays on fetal liver eythroid cells (13.5 dpc) with wild-type and knock-out 

backgrounds 

 



 

xi 

 

Liste des sigles et des abréviations  

Ab: antibody  

AGM: aorta-gonad-mesonephros region 

AML: acute myeloid leukemia  

APC: allophycocyanin  

BFU-E: burst forming units-erythroid 

bHLH: basic helix-loop-helix 

CD: cluster of differentiation  

CFC: colony-forming cell  

CFU-E: colony-forming units-erythroid 

CFU-G: colony-forming units-granulocyte  

CFU-GEMM: colony forming units-granulocyte-erythroid-macrophage-megakaryocyte 

CFU-GM: colony forming units-granulocyte-macrophage 

ChIP: chromatin immunoprecipitation  

CLP: common lymphoid progenitor 

CMP: common myeloid progenitor  

CO2: carbon dioxide  

CTD: C-terminal domain  

Ct: threshold cycle  

DIVA: DIgitalized VAntage  

dpc: day post coitus 

EDTA: ethylenediaminetetraacetic acid  

EKLF: erythroid kruppel-like factor  

EKLF KO: EKLF knock-out 

EO: eight twenty-one  

EPO: erythropoietin  

EryC: erythroid cell 

ES: embryonic stem  



 

xii 

 

FAB: French-American-British  

FACS: fluorescence-activated cell sorter  

FBS: fetal bovine serum  

FITC: fluorescein isothiocyanate  

FL: fetal liver  

FOG-1: friend of GATA-1  

G-CSF: granulocyte colony-stimulating factor  

GD: gestational day  

GM-CSF: granulocyte monocyte-stimulating factors  

GMP: granulocyte macrophage progenitor  

GRN: genetic regulatory network 

GTF: general transcription factor 

H3Ac : histone H3 acetylation  

Hb: hemoglobin  

HDAC: histone deacetylase  

HEB: Hela E-box binding protein  

HLH: helix-loop-helix  

HPC: hematopoietic progenitor cell 

HS: hypersensitivity sites  

HSC: hematopoietic stem cell  

Huβ: human β  

Id: inhibitor of differentiation 

Igh: immunoglobulin heavy chain  

IFN-α: interferon-α  

K4: lysine 4 

K9: lysine-9 

Kb: kilobase 

LCR: locus control region 



 

xiii 

 

Ln2: line 2 

LP: lymphoid progenitor 

LTBMC: long term bone marrow culture 

mSin3: mammalian Sin3  

MEL: murine erythroleukemic 

MEP: megakaryocyte erythroid progenitor 

MRF: muscle regulatory factor 

MTG16: myeloid transforming gene chromosome 16 

MTGR1: myeloid transforming gene related protein-1 

MW: molecular weight  

NaB: sodium butyrate  

NO: nitric oxide  

NuRD: nucleosome remodeling and deacetylation  

O2: oxygen  

p21: CDKN1A; cyclin-dependent kinase inhibitor 1A  

Pax6: paired box protein 6 

PBS: phosphate-buffered saline  

PCR: polymerase chain reaction  

PE: phycoerythrin  

PEV:  position effect variegation 

PIC: preinitiation complex 

QRT-PCR: quantitative real time polymerase chain reaction 

RBC: red blood cell  

RT-PCR: Reverse Transcriptase Polymerase Chain Reaction 

SCF: stem cell factor  

SCL: stem cell leukemia 

SDS/PAGE: SDS-polyacrylamide gel 

TAL-1: T-cell acute lymphocytic leukemia-1 



 

xiv 

 

TFN: transcription factor network  

THP: kidney-specific Tamm-Horsfall 

TSA: trichostatin A 

W-W: whitlock-white  

 



 

xv 

 

 Remerciements 

I would like to express a deep sense of gratitude to my supervisor, Dr. Eric Milot, for 

constant and generous support, encouragement, guidance and understanding. He is a 

professional in the field and may serve as the beautiful example to follow. 

I would also like to thank Dr. Stefania Bottardi who helped me with getting practical 

experience on my project. Her discussions and corrections have greatly improved the 

quality of my work.  

I would like to extend my deepest gratitude, love and affection to my beloved parents, 

Mahboobeh and Vahid, for loving me, believing in me and wishing the best for me. I owe 

all my achievements to them and it is to them that I dedicate this work. 

Finally, I would also like to thank my beloved wife, Bahareh, for her kindness, care and 

countless sacrifices. She was a real support throughout my thesis writing.  

Last but not least, I would like to share this moment of happiness with my brother, 

Arashk. May this realization encourage him to pursue his education in medicine and 

science. 



 

  

 

 

 

 

 

Introduction 

 

 

 

 

 

 

 

 

 



 

17 

 

Background 

Blood consists of: 

• Red cells 

• White cells 

• Platelets 

• Plasma
I
 

Hematopoiesis 

Hematopoiesis is the formation and development of blood cells. Sites of  

hematopoiesis include the bone marrow, liver, spleen, lymph nodes and thymus. The blood 

cells have the particular ability for persistent production which demands tight regulatory 

system. Pathological processes interfering with normal production can lead to an excess 

(hyperplasia; e.g., leukemia) or an inadequate number of cells (hypoplasia; e.g., anemia, 

thrombocytopenia, or leukopenia).
1
 

Hematopoietic Stem Cell (HSC) 

Hematopoiesis begins at embryonic period when blood islands are formed in the 

yolk sac in the third week of gestation. Blood islands are the source of primitive blood cells 

till these cells migrate to liver and spleen. These organs are the main sites of hematopoiesis 

from six weeks to seven months, when eventually the bone marrow becomes the center of 

hematopoiesis. After birth, the bone marrow is the only source for production of blood cells 

and hematopiesis takes place in the marrow of nearly all bones. Reaching adulthood, 

hematopiesis becomes confined to the bone marrow of central skeleton and the proximal 

                                                 
I
 Plasma is the liquid component of blood where blood cells are suspended. 
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ends of long bones (Figure-1), in which all blood cell types are derived from pluripotent 

stem cells, termed as hematopoietic stem cells (Figure-2).
2
 

 

Figure 1- Hematopoiesis in humans. Anatomical location of hematopoiesis change during human 

development.
3
  

Stem cells have been found in practically every tissue. Like other stem cells, HSCs 

are characterized by two clonal properties: self-renewal, the hallmark property of stem 

cells, is the production of more stem cells with the maintenance of an undifferentiated state, 

and the second is the extensive proliferation and differentiation capacity to generate 

differentiated progeny to commit to one specific cell line (lineage-specification). Excess or 

inadequate production of hematopoietic cells will end in various disease states.
4
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Figure 2- Hematopoiesis and stromal cell differentiation.
5
  

Lineage specification of HSCs. HSCs produce a variety of differentiated cell 

lineages, depending on intrinsic cell programming and the micro-environmental signals.
6
 

The stem cell plasticity and lineage commitment are shown to be regulated by a sequential 

expression of hematopoietic genes and are the result of transcription control in concert with 

chromatin remodeling and epigenetic modifications. Lineage specification and cellular 

maturation begins by alteration in cellular gene expression profile, which commits the cell 

to a specific lineage, and continues by the establishment of lineage-specific gene 
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expression. All these decisions are entirely made by temporal and spatial activation of 

certain lineage-specific genes and repression of the others. Commitment to a given lineage 

is mediated by many ubiquitous and lineage-specific transcriptional regulatory proteins that 

activate lineage-specific gene expression programs and extinguish expression of lineage-

inappropriate genes.
7,8

  

Erythropoiesis 

Erythropoiesis is the process of red blood cell (RBC) formation and development. 

Red cell precursors pass through several stages in the bone marrow to produce mature red 

cells (erythrocytes). As development progresses, at each stage, cells contain less RNA and 

more hemoglobin (Hb) in the cytoplasm. The cell becomes smaller, and the nucleus 

becomes more condensed and eventually is lost, when the cells are released into circulation 

as reticulocytes. After 1-2 days, reticulocytes lose their RNA and shape into non-nucleated 

biconcave discs, namely mature red cell (erythrocyte).
9
 

Hemoglobin Synthesis 

 The characteristic red color of blood is from hemoglobin (Hb). Hemoglobin is the 

main protein in the red blood cells that carries oxygen (O2) from lungs to the rest of the 

body and returns carbon dioxide (CO2) from the tissues to the lungs. This critical 

performance is governed by the biconcave shape of RBCs, providing a large surface area 

for oxygen and carbon dioxide exchange, and by high affinity of Hb for oxygen and carbon 

dioxide in lungs and body tissues, respectively.
10

 Hemoglobin is also involved in 

transportation of a third gas, Nitric oxide (NO), which is important in  regulation of blood 

pressure by vasodilation and increasing blood flow.
11

 

Different types of hemoglobin are produced during development from embryonic 

period to adult life. Each hemoglobin molecule consists of two α-like (141 amino acids) 

and two β-like (146 amino acids) chains forming a tetramer. Each globin chain tightly 

enfolds a non-protein heme moiety in a “pocket”, consisting of a single iron atom (Fe
2+

) at 
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the center held in a heterocyclic protoporphyrin IX ring with an optimal position for 

reversible oxygen binding. Four molecules of oxygen can therefore bind to and be 

transported by one hemoglobin molecule.
12

  

The “blueprint” for hemoglobin synthesis exists in two tightly linked loci, α-like 

globin genes clustered on chromosome 16
II
 and the β-like globin genes clustered on 

chromosome 11, with four genes encoding each polypeptide chain during development 

(Figure-3).
13

  

 

Figure 3- Hemoglobin structure. hemoglobin is a hetero-oligomeric protein contains two α and two 

β subunits arranged with a quaternary structure.
14

  

At least six different types of hemoglobin molecules are formed, in steps, following 

the sequential expression of α- and β-globin gene clusters in process of human development 

(Figure-4). Hb A (α2β2) is the major hemoglobin in adults with about 97% while two other 

types, Hb A2 (α2δ2) and Hb F (α2γ2), are found only in small amounts, 1.5-3.2% and <1%, 

respectively. HbF (α2γ2) predominates during most of gestation period.
15

 

                                                 
II
 The α-like cluster consists of two α-globin genes and a single copy of the ζ gene. These genes are similarly 

arrayed in the order that they are expressed during ontogeny. 
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Figure 4- Types of normal hemoglobin. Different normal hemoglobin variants involve genes both 

from the alpha and beta gene clusters. Hemoglobin A (α2β2) is the normal hemoglobin that exists after birth. 

Hemoglobin A2 (α2δ2) is a minor component (< 3%) of the hemoglobin found in red cells after birth. 

Hemoglobin F (α2γ2) is the main hemoglobin during fetal development.
16

  

Hemoglobinopathies  

Hemoglobinopathies, hemoglobin disorders, are genetic defects that results in 

qualitative (sickle cell disease) or quantitative (thalassemias) change in the hemoglobin 

molecule.
17

 

Thalassemia. Thalassemia is a hereditary underproduction of either the alpha or 

beta globin chains of the hemoglobin molecule resulting in a hypochromic, microcytic 

anemia. Gene deletion results in variable levels of disease. There are four genes coding for 
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the alpha chain of hemoglobin. There can be deletions of one, two, three or all four genes. 

Beta thalassemia can be mutated in either one or two genes.
18

  

The clinical presentation of these disorders is dependent on the number of abnormal 

genes. In alpha thalassemia one gene deleted yields a normal patient. Individuals with two 

genes deleted have a mild anemia while those with three genes deleted have more profound 

anemia where beta chains form tetrads, namely hemoglobin H. Four-gene-deleted alpha 

thalassemia patients die in utero secondary to gamma chain tetrads called hemoglobin 

Barts. In one-gene-deleted beta thalassemia (thalassemia minor, thalassemia trait), there is a 

mild anemia with marked microcytosis. Patients with thalassemia major are homozygous 

for mutations of both genes coding for the beta hemoglobin gene. These patients with beta 

thalassemia major, also known as Cooley anemia, become severely symptomatic starting at 

six month of age when the body would normally switch from fetal hemoglobin to adult 

hemoglobin. They show severe symptoms of growth failure, hepatosplenomagaly, jaundice, 

and bony deformities secondary to extramedullary hematopoiesis. Later in life, they are 

symptomatic from hemochromatosis, cirrhosis, and congestive heart failure from chronic 

anemia and transfusion dependence. In beta thalassemia, there is an increased level of 

hemoglobin F and A2. Those with alpha thalassemia will have normal amounts of 

hemoglobin F and A2. 

Thalassemia trait of both the alpha and beta types do not require specific treatment. 

Beta thalassemia patients require blood transfusions once or twice a month accompanying 

with iron chelating therapies with Deferasirox as the standard of care.
19

 A small number of 

patients can be treated with hematopoietic cell transplantation.
20

 

Sickle Cell Disease. Sickle cell disease is an autosomal recessive hereditary disease. 

Hemoglobin S is due to a substitution of a valine for glutamic acid as the sixth amino acid 

of the beta globin chain. Almost all of those with the trait are asymptomatic. Those with 

sickle cell disease (SS) typically have mild to moderate anemia with irreversibly sickled 

cells and recurrent painful crises. Elaborate therapeutic modalities are beyond the scope of 
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what is neither necessary nor relevant to know for this thesis. Bone marrow transplantation 

can be curative but still be considered experimental at this time.
21

 

Human β-globin locus 

The human β-globin locus consists of five functional genes; ε, Gγ, Aγ, δ and β, 

organized in the order of their developmentally timed expression
III

 (Figure-5). These genes 

reside within ≈ 50 kilobases (kb) of chromosomal DNA in the transcriptional activation 

during ontogeny and are expressed in cells of erythroid cells.
22

 Important regulatory 

sequences flank each gene: promoter elements at immediate upstream, and enhancers as 

well as silencers located in vicinity or at distance in the locus.
23

 Transcription of the β-

globin locus undergoes two sequentially programmed switching during development from ε 

to γ at six weeks of gestation and from γ to δ/β shortly after birth.
24

 

A powerful set of enhancer elements, namely β-locus control region (β-LCR), exists 

at 5' upstream of ε gene. Human β-globin LCR consists of five developmentally stable, 

DNase I hypersensitivity sites (HSs) and is located 6-30 kb upstream of the ε gene
IV

.
25

 

Susceptibility to digestion with DNase I indicates that these regions are, in fact, accessible 

to transcription and chromatin remodeling factors at the time of gene expression.
26

 The 

enhancer activities of 5'HS2, 3 and 4 resides in core elements (200-300 bp) of individual 

HS sites composed of a wide array of binding sites for ubiquitous and lineage-specific 

transcription factors. 5'HS1-4 are erythroid-specific and 5`HS5 is ubiquitous.
27

 Another HS 

site (3'HS1) is located downstream of the β-gene. Two additional HSs (5'HS6-7) have also 

been discovered at the 5' end of the β-globin domain (Figure-5).
28

  

                                                 
III

 A non-expressed pseudogene (ψη) is also located on human β-globin locus.  

IV
 The LCR was first identified in the human β-globin locus, being important in the control of eukaryotic gene 

expression in many other mammalian gene systems. 
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Figure 5- Structure of human β-globin locus. 

The spatial arrangement of β-globin genes with respect to LCR is essential for their 

proper regulation throughout development; i.e. the genes expressed early in embryonic 

stage are closest to the LCR and those expressed in adult life are farthest.
29

 LCR enhances 

the expression of β-like genes to physiological levels in a tissue-specific and copy number-

dependent manner.
30

  

Globin gene expression. It is well known that globin gene expression is restricted 

to specific tissues. Recently, the thought that globin gene expression is solely confined to 

erythroid cells is questioned by findings of adult hemoglobin protein in activated 

macrophages and alveolar epithelial cells. However, these cells have shown lower amounts 

of globin polypeptides, comparing to erythroid cells, and different gene regulation 

mechanisms.
31

 Further studies are yet required to elucidate the patterns and mechanisms of 

hemoglobin expression in these cells during cellular differentiation and under various 

environmental conditions. Moreover, mechanisms required to preclude globin gene 

silencing in alternative hematopoietic lineage are poorly described.  

Considering the hematopoiesis tree, the transcription of the β-globin locus is 

exclusively displayed by erythroid cells, and more importantly, results in erythroid-lineage 

specification. Normal red blood cell differentiation requires the coordinated expression of 

erythroid-specific genes, such as the globin genes and the genes responsible for heme and 

iron metabolism. These processes are under the control of and involve the complex 

interplay of a number of specific growth factors and cytokines such as interleukins, 

granulocytemonocyte-stimulating factors (GM-CSF), stem cell factor (SCF) and 
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erythropoietin (EPO).
32

 For instance, erythropoietin, a glycoprotein hormone produced by 

the kidney, promotes red blood cell survival through protecting these cells from 

apoptosis.
33,34

 Also, in the hematopoietic system, stem cell generation, cell fate decisions 

and maintenance (lineage-specification and commitment) and differentiation depends on 

the coordinate activity of multiple transcription factors through transcription factor 

networks interacting with crucial regulatory regions of lineage-specific genes.
35,36

 That is 

the promise of differentiation towards the production of erythroid-lineage versus non-

erythroid cells. 

Globin gene expression and LCR  

Temporal and spatial control of gene expression are mediated by binding of trans-

acting factors to cis-acting DNA sequence(s) such as promoters, enhancers, and silencers as 

well as long-range cis regulatory LCR elements.
37

 The LCR was first identified in the 

human β-globin locus over 20 years ago.
38

 While different in composition and location, 

mammalian β-globin loci of different species, including humans, mice, rats, rabbits, and 

goats contain LCR in part of their genome.
39,40

  

In human β-globin locus, the regulation of gene expression is achieved by the 

dynamic interactions between cis-acting sequences and trans-acting factors. Proximal and 

distal cis-acting sequences, the LCR and downstream globin gene sequences, establish and 

maintain specific chromatin conformations. trans-acting factors, transcription factors, 

coregulators and chromatin remodeling factors, initiate, regulate and determine the final 

level of gene expression control.
41

 Modulation of chromatin structure can have opposite 

effects on gene regulation as activation versus repression.
42

 Dynamic chromatin 

configuration as open, resulted from histone modification (histone acetylation), or closed 

chromatin, due to DNA methylation and histone deacetylation, is quite central to tissue-

specific developmental control of β-globin gene expression.
43

 In general term, the open 

chromatin is defined as DNase I-sensitive and hyperacetylated state of histone composing 

the chromatin, whereas closed chromatin is DNase I-insensitive and underacetylated. Such 
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chromatin structure fluctuation between “open” and “closed” conformations is mediated by 

chromatin-remodeling complexes that are concomitantly associated with both LCR and β-

like globin promoters to facilitate interactions between transacting factors and DNA. 

Chromatin remodeling complexes modulate chromatin structure to promote binding of 

erythroid-specific and ubiquitous transcription factors at both LCR and the gene promoters. 

Such modulations assist the assembly of the transcription apparatus required for full level 

of expression in erythroid cells while accompanies inactive chromatin structure in non-

erythroid cells. These complex interactions determine the transcriptional status as well as 

the final level of β-like globin gene expression. 
44,45

 

While located at a considerable distance from the site of transcription initiation, 

LCR controls the overall level of expression of β-globin genes as a key regulator of the 

locus chromatin organization. Chromatin is in "open" state at LCR throughout development 

but its state at β-globin genes is determined by the expression order of target genes during 

ontogeny; that is open at ε-/γ-globin domain during embryonic/fetal period but closed 

during adult erythropoiesis. The reverse state exists for adult δ-/β-globin domain.
46

 LCR 

role in chromatin-opening and in maintaining of an open chromatin state is essential for 

recruitment of additional chromatin remodeling factors, necessary for further opening of 

chromatin, or of other transcription factors, involved in high level of expression.
47

 

Several models have been proposed to elucidate how the LCR exerts its regulation 

on transcription from such a long distance. From four most prevalent models proposed for 

LCR function
V
, looping model is more acceptable to explain the mechanisms underlying 

the LCR interaction with the globin genes. All these models indicate that LCR alters 

chromatin configuration. The looping model implicates that LCR loops back on itself to 

fold into a “holocomplex” without straining the backbone bonds of the DNA double helix. 

More significantly, this allows the locus to form a spatial conformation and take hold of a 

physical close proximity to the desired gene, which facilitates the interaction of 

                                                 
V
 These four models are looping, tracking, facilitated tracking and linking models. 
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transcription factors bind to LCR with those at promoters. This proximity secures the 

interaction of LCR-bound transcription factors and/or coactivators with basal transcription 

factors bound at the promoter. 
48,49

 

Data from studies on some forms of thalassemia
VI

 containing deletion in LCR 

region have supported the indispensable role of LCR in expression of β-globin genes. 

While these forms of thalassemia carry intact β-globin locus, globin genes are not 

expressed. These deletions result in closed chromatin configuration of globin locus, 

normally opened by LCR, and thus the suppression of gene expression occurs. These 

natural occurring deletions of the LCR such as in Hispanic thalassemia, provide the 

evidence that the LCR is critical for the chromatin organization of the locus.
50

 

The presence of LCR for globin gene expression is important since its absence shuts 

down β-globin gene expression to less than 1%. The most prominent property of the LCR is 

strong transcription-enhancing activity. However, not all HS sites have the same 

importance in this respect. The main enhancer activity is conferred by 5'HS2, 5'HS3, and 

5'HS4, and not 5'HS1 or 5'HS5.
51

 The interaction of regulator transcription factors with 

LCR HS sites and with each other is essential for high-level of globin gene expression at 

different developmental stages.
52

 Deletion of the HS core element from 5`HS2, 3, or 4 

abolishes normal LCR function due to disruption of the DNase I-hypersensitivity sites 

holocomplex and preclude proper interaction with promoters but when there is no position 

effect, the disruption of one HS does not impair the other HS site formation.
53

 Even the 

orientation of LCR HS elements is central for proper functioning; that is, a synthetically 

inverted LCR has been associated with low level of globin gene expression throughout 

development. This suggest that The LCR transcription enhancer activity is directional.
54

 At 

any specific stage of hematopoietic cell differentiation, different transcription machinery 

complex is stabilized on LCR, according to transcription factor milieu, whereby an 

enhancement in globin gene expression is achieved. The LCR, similar to globin genes, has 

                                                 
VI

 Hispanic β-thalassemia 
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tissue-specific enhancing activity which more specifically confines the expression of globin 

genes to erythroid cells. In essence, developmental and lineage-specific regulation of gene 

expression results from the complex interaction of gene-proximal elements with distant cis-

regulatory elements on a bed of  chromatin. 

Globin gene expression and transcription factors. Complex genetic programs 

determine survival, proliferation, differentiation and function of hematopoietic cells during 

different steps of hematopoiesis. Gene expression is controlled at various points between 

the translation of DNA to proteins with transcriptional control be the most important point 

of regulation for many genes. Gene transcription is possible only when DNA-binding 

proteins come together, assemble and interact with the promoters, the operators and the 

enhancers. The existence of multiple regulatory regions and varied DNA-binding proteins 

helps a given gene to precisely control its expression at a basal level and/or up- or down-

regulate the expression in response to cellular stimuli for differentiation and/or 

proliferation. In hematopoiesis, many of these protein complexes are lineage restricted and 

act as cell type-specific transcription factors.
55

 

Globin gene expression is regulated by the dynamic interplay between transcription 

factors and epigenetic mechanisms. Many transcription factors have been shown to control 

β-globin gene expression through the formation of intricate transcription factor networks 

(TFNs) and by binding several cis-acting elements on locus, followed by recruitment of 

additional regulatory proteins (cofactors) via direct protein-protein interactions.
56

 General 

transcription factors (GTFs)
VII

 and different lineage-specific transcription factors should 

bind the promoter and LCR of β-genes to mediate the tissue- and stage-specific expression 

of the β-like globin genes. Some of these factors are ubiquitous (e.g., Sp1 and YY1), while 

others are tissue-restricted and more or less limited to erythroid cells (e.g., GATA-1, NF-

                                                 
VII

 GTFs or basal transcription factors are proteins that either bind DNA or take part in the formation of a 

preinitiation complex (PIC), and used by RNA polymerase II to begin and proceed with transcription. The 

most important GTFs are TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH. 
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E2, TAL-1 and EKLF). These transcription factors turn on/off the transcription 

appropriately to fit the gene-expression profile for cell fate determination and cellular 

differentiation. It is becoming increasingly clear that these factors do not operate 

independently but as part of large multi-protein complexes.
57

  

Given the formation of large multiprotein complexes, certain transcription factors 

can engage in functional interactions, via these complexes, while lacking sequence-specific 

activity. Indeed, a single transcription factor can employ numerous mechanisms to control 

transcription and thus, one cannot to consider the function of a particular hematopoietic 

transcription factor independent of complex partners and apart from important functional 

interplays. Herein, it is unfeasible to comprehensively review all transcription factors 

implicated in erythropoiesis, but short recapitulation of some potential lineage-specific 

transcription factors would be relevant for our study. 

Transcription factors and  Erythropoiesis (Table-1)  

GATA-1 is a master regulator gene critical for erythroid cell formation.
58

 It interacts 

with several transcription factors; CBP/p300, PU.1, Sp1 and erythroid Kruppel-like factor 

(EKLF), through different multiprotein complexes to activate adult β-like globin genes.
59

 

The PU.1-GATA-1 interaction
60

 and the balance between GATA-1 and GATA-2 levels are 

required for precise lineage specification.
61

 While GATA-1 expression is observed in 

erythroid, mast cell, and megakaryocyte lineages, GATA-2 is expressed in certain 

hematopoietic precursors and is crucial for the survival and proliferation of HSCs.
62

 During 

erythropoiesis, GATA-1 level increases and displaces GATA-2 on hematopoietic target 

genes so that different genes expressed in accordance with GATA switch.
63

 Such GATA 

switch is facilitated in virtue of friend of GATA-1 (FOG-1) activity. FOG-1 is a protein 

whose expression mimics that of GATA-1 and is essential to stimulate erythropoiesis.
64

 

FOG-1 helps GATA-1-mediated looping by which LCR comes close to adult β-globin 

genes.
65

 In addition, PU.1 antagonizes GATA-1 DNA binding and thus blocks 
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erythropoiesis in favor of granulocyte and monocyte, B and T lymphocyte differentiation. 

The antagonistic interaction of GATA-1 and PU.1 drives hematopoiesis via common 

myeloid progenitor (CMP) cells into granulocyte macrophage progenitor (GMP) cells or 

megakaryocyte erythroid progenitor (MEP). While sufficient levels of PU.1 will produce 

GMP lineage, higher levels of GATA-1 (comparing to PU.1) will moves differentiation to 

MEP. Also, GATA-1 exists in a multiprotein complex called SCL complex with LMO2, 

E47 and Ldb1 in different hematopoietic cells at distinct stages of hematopoiesis.
66

  

Stem cell leukemia (SCL), also known as T-cell acute lymphocytic leukemia-1 

(TAL-1), belongs to class II HLH proteins and has tissue-restricted and lineage-specific 

patterns of expression.
67

 TAL-1 is known to be essential for haematopoiesis. The TAL-1 

gene is normally expressed in haematopoietic progenitors, erythroid lineage cells, mast-cell 

lineage cells, megakaryocytic lineage cells and endothelial cells.
68

 TAL-1 dimerizes with E 

proteins (E47) and functions at multiple stages of hematopoiesis. SCL complex binds a 

composite motif consisting of a GATA motif and an adjacent E-box.
69

 SCL also stimulates 

the generation of hemangioblasts to differentiate into both blood and endothelial cells.
70,71

 

Alteration in TFNs or dysregulation of signaling and transcriptional function leads 

to neoplastic transformation of hematopoietic cells and consequently the progression of 

specific leukemias. In the same way, the genes responsible for heme and iron metabolism 

ought to specifically be expressed during erythropoiesis to conform to RBC 

differentiation.
72
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Transcription Factor Gene Function 

GATA-1 GATA-1 Erythroid and Megakaryocytic development 

Erythroid Krüppel-like 

Factor (EKLF) 

EKLF Maturation of erythroid cells, Chromatin 

remodeling, Modulation of the gamma to beta 

globin switch, Transcriptional activation, 

Binding to the CACC motif of the β globin 

gene promoter 

Nuclear factor erythroid-

derived 2 (NFE2) 

NFE2 Interaction with CREB binding protein 

Stem cell leukemia 

(SCL) or T-cell acute 

lymphocytic leukemia-1 

(TAL-1) 

TAL-1 Generation of HSC  

FOG-1 FOG-1 Cofactor of GATA-1 

p300 and CREB binding 

protein (CBP) 

p300 and 

CREB 

Increase gene expression, histone 

acetyltransferase (HAT) activity, Recruiting the 

basal transcriptional to promoter  

  

Table 1- Role of Transcription factors in Erythropoiesis. 
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Helix-Loop-Helix (HLH) proteins 

There are four basic classes of bHLH proteins classified according to their structural 

motifs. The basic helix-loop-helix (bHLH) proteins are dimeric transcription factors present 

in nearly all organisms from yeast to humans.
73

 Numerous bHLH proteins have been 

identified in animals, plants and fungi. They are first introduced by Murre C, et al about 

twenty years ago.
74

  

Helix-Loop-Helix (HLH) proteins: Regulators of transcription in eukaryotic 

organisms. The fundamental roles of these transcription factors are established in a broad 

spectrum of cellular and molecular events involved in the regulation of commitment, cell 

growth and differentiation of various cell lineages during embryonic development, 

particularly neurogenesis, myogenesis, retinogenesis and hemetopoiesis.
75

 The followings 

are a few examples: BETA2 (NeuroD1) is a member of bHLH proteins and studies on 

mouse animal models have shown that it plays an important role in the development of the 

central and peripheral nervous system.
76

 Muscle Regulatory Factors (MRFs) of the bHLH 

proteins; MyoD, Myf5, Myogenin and MRF4 are sequentially expressed during skeletal 

muscle formation and coordinate the expression of muscle-specific genes required for 

skeletal muscle development in embryo. MyoD and myogenin work as dimmers to drive 

appropriate myogenesis.
77

 Any of retinal photoreceptor cell lineages carries an exclusive 

bHLH context during retinal neurogenesis, which highly emphasizes the cell-specific 

property of bHLH transcription factors.
78

 NeuroD acts as important regulator at some point 

in rod and cone photoreceptor genesis.
79

 

Classification and structure. bHLH transcription factors bear sequence homology, 

with overlapping and analogous expression patterns, and highly conserved DNA binding 

specificity. Members of this family contain two highly conserved domains at either end. N-

terminal (AD1 domain) is a basic DNA binding domain that helps the transcription factor to 

bind to DNA at a consensus hexanucleotide sequence of G(orA)CAXXTGG(orA), namely 
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E-box. At the C-terminal (AD2 domain), there is HLH dimerization domain which is 

involved in formation of hetero- and homo-dimers with other members of bHLH family.
80

 

Figure-6 shows the structure of MyoD that stands up for the feature structure of many 

bHLH proteins consisting of two amphipathic long α helices connected by a short loop that 

mediates homo- and heterodimerization. 

 

Figure 6- Structure of a MyoD basic-helix-loop-helix (bHLH) transcription factor.81 

The phylogenetic classification of bHLH proteins as four groups of proteins named 

A, B, C and D is illustrated in Table-2.
82

 The bHLH proteins can show ubiquitous (E47, 

E12, HEB and E2-2) and tissue-restricted (MyoD and neuroD) expression. Class I bHLH 

proteins (E proteins) are comprised of four members encoded by three distinct genes: E2A 

(E12 and E47 known collectively as the E2A proteins)
VIII

 encoded by Tcfe2a gene through 

different splicing, E2-2 and Hela E-box binding protein (HEB). The two former has 

                                                 
VIII

 Synonyms are Immunoglobulin Transcription Factor-1 (ITF1) and Transcription Factor-3 (TCF-3) 
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different DNA binding affinity with higher affinity for E47. HEB and E2-2 show similar 

DNA binding activity.
83

 The variety in tissue distribution, DNA-binding characteristics and 

the capacity for homo/hetero dimerization provide bHLH with high functional diversity and 

specificity. Moreover, the transcriptional activity of the bHLH proteins are modulated by 

Id
IX

 (inhibitor of differentiation) proteins which in turn confers far more functional 

diversity with respect to the formation of inactive heterodimers that inhibit bHLH proteins 

from binding to the E-box sites and activating gene transcription.
84,85

 

 

Table 2- Classification of bHLH proteins. 

                                                 
IX

 Id proteins are helix-loop-helix (HLH) proteins consist of four isoforms (Id1, Id2, Id3, and Id4), with 

homologous HLH domain, that lack the DNA binding basic domain. Id proteins regulate cell type-specific 

gene expression during cell proliferation, differentiation and commitment, cell cycle, and apoptosis. Acting as 

negative regulators of bHLH transcription factors, Id proteins are considered as dominant negative regulators 

of differentiation pathways. 
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E proteins and hematopiesis. Multiple basic helix-loop-helix (bHLH) genes play a 

critical role in regulation of hematopietic cell proliferation and differentiation. The function 

of E proteins in lymphocyte development and differentiation, and their role in lymphoma 

development is addressed on a large scale, but very little is known yet about the 

mechanisms through which E proteins may contribute to myeloid lineage specification, and 

particularly erythropoiesis. Functional heterodimers between the E proteins and other 

tissue-specific bHLH regulators have been observed. E proteins bind to E-box motif 

(NNCANNTGNN) on their target genes as either heterodimers with Class II bHLH proteins 

in non lymphoid cells or homo/hetero dimmers in lymphoid cells.
86

  

E proteins in lymphoid-lineage. Research on E proteins has identified that the E 

proteins contribute to B lineage- and T lineage-specific gene expression programs by which 

they regulate lymphocyte survival and cellular proliferation. The expression of several 

lymphoid lineage-specific genes is regulated through different types of hetero/homodimers, 

of which the presence of E2A is indispensable.
87

 E2A drives HSCs to the establishment and 

generation of early B cells by activating B cell-specific gene expression programs and 

immunoglobulin heavy chain (Igh) gene rearrangement. The function of E2A proteins as 

transcriptional activators is imperative for the completion of immunoglobulin gene 

rearrangement and normal lymphoid cell development.
88

 In E2A knockout mice, B-cell 

development between the pre-B and pro-B-cell stages, at the pro-pre-B stage before 

expression of the IL-7Ralpha, and the rearrangement of the immunoglobulin genes are 

severely disrupted.
89

 Other studies have revealed complete B cell development block in 

E2A-deficient mouse models.
90

 

In B-cells, E proteins mainly exist as E47 homodimers, or as E47/E12 heterodimers 

associated with HEB. HEB and E2-2 are necessary for formation of pro-B cells while 

interacting with E2A. That is to say E2A is necessary for B lymphoid commitment while 

for further proliferation and differentiation HEB, particularly, and E2-2 are required at later 
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stages.
91

 Latest data from generation of double-deficient pre-B cell lines for E2A and HEB 

proteins have confirmed these findings.
92

  

Directly relevant to above enquiries, the role of the E proteins E2A and HEB during 

T lymphocyte development have been well established. Different combinations of bHLH 

proteins; SCL, E2A and HEB, control the regulation of T-lineage, non-T-lineage and cell 

cycle genes at each stage of T-cell development by activating or repressing receptor-

dependent signals.
93

 E proteins are expressed all over the stages of T cell development and 

their effects are counteracted by Id proteins to adjust the stepwise transcriptional control 

required for lymphopiesis.
94,95

 E47 and E12 proteins are important for early thymocyte 

development and similar to the role they perform in B-lineage development, the loss of 

E2A gene activity, in E2A gene-null mice, gives rise to a partial block at the earliest stage 

of T-lineage development and consequently to development of T-cell lymphoma.
96

 

Similarly, any disruption in HEB expression results in partial block in T-cell 

development.
97

  

E proteins and ETO family. Transcriptional repression plays a critical role in 

development and homeostasis likewise. Besides the formation of heterodimers with 

inhibitory Id proteins, E proteins can show repressive effects on gene expression through 

the recruitment of different co-regulatory factors to the AD domains. For instance, in 

mammalian cells, AD1 can either activate transcription through recruitment of the histone 

acetyltransferases CBP and p300 or repress transcription by direct recruitment of ETO 

family.
98,99,100 

E2A activity is inhibited by Id2 through its interaction with E47 DNA 

binding domain and also by repression E47 target gene through the interaction of its N-

terminal domain (AD1 domain) with ETO-2.
101,102

 Id proteins show inhibitory effects on 

both positive and negative regulatory properties of E proteins and consequently end in 

repression or activation respectively, whereas ETO members might only drive 

transcriptional repression. 
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The ETO family is comprised of three highly conserved and ubiquitously expressed 

transcriptional regulatory proteins encoded by three genes in the mammalian genome: eight 

twenty-one (ETO; MTG8), myeloid transforming gene related protein-1 (MTGR1) and 

myeloid transforming gene chromosome 16 (MTG16; ETO-2). Three closely-related 

murine homologues include mETO, cbfa2t3 (murine homologue of MTGR1) and ETO-2. 

ETO-2 is highly identical to MTG16 suggesting ETO-2 as a murine homologue of MTG16. 

Mouse ETO is 75% identical to ETO-2 and 99% identical to human ETO. These proteins 

interact with a number of transcription factors inside the different multiprotein repressor 

complexes and on the promoters of different target genes.
103

 

ETO gene products can interact with both nuclear corepressors N-CoR and Sin3A, 

and histone-modifying (chromatin remodeling) proteins histone deacetylase 1 (HDAC-1) 

and histone deacetylase 3 (HDAC-3).
104

 N-CoR, mammalian Sin3 (mSin3A and B) work in 

concert with HDAC-1 to modify the chromatin structure in favor of transcriptional 

repression.
105

 ETO has received a large attention because the hybrid gene product 

(AML/ETO), resulting from the translocation of AML (CBF2) gene on chromosome 21 and 

the ETO (MTG8/CDR) gene on chromosome 8, forms a fusion oncoprotein which is 

associated with leukomogenesis and is found in French-American-British (FAB) type M2 

acute myeloid leukemia (AML).
106

 The proposed explanation for underlying mechanism is 

directly relevant to ETO function as a compelling transcriptional repressor within and in 

interaction with the N-CoR/mSin3/HDAC-1 complex. AML1/ETO fusion may inhibit 

expression of AML1 target genes by redirecting aforementioned repressors, hence could 

inhibit cellular differentiation and disrupt normal hematopoiesis. This HDAC-dependent 

transcriptional repression ensues in a variety of hematologic lineage-specific gene 

promoters and turns out to be a common pathway in the development of leukemia.
107

 

Data regarding the role of E proteins in erythroid lineage is still limited. Recently, 

Goardon N, et al. has shown that, in erythroid cells, E2A, HEB and E2-2 are within the 

SCL (TAL-1) complex containing ETO-2, HDAC-1 and HDAC-2.
108

 The function of TAL-
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1 complex is seminal to the regulation of hematopoietic specific genes from HSCs to 

differentiated hematopoietic progenitors in both mouse and human and also for 

differentiation to lymphoid or myeloid progenitors.
109

 TAL-1/E2A as well as TAL-1/HEB 

heterodimers play important roles in transformation of T-cell precursors.
110

  

TAL-1 may act as a bifunctional transcriptional regulator (activator and repressor) 

depending on transcriptional coregulators (coactivators or corepressors). TAL-1 is involved 

in a complex transcription network bearing either repression or activation capacity for 

genes whose promoters occupied by TAL-1, E2A, and HEB. E2A, HEB and TAL-1 protein 

levels and their relative ratio as well as their stage-specific transcriptional partners alter 

during hematopoiesis and consequently the expression of their target genes are adjusted and 

lineage-specific gene expression programs are controlled. TAL-1 can either form a 

heterodimers with E2A and HEB proteins, which prevents E2A to form homodimers 

necessary for transcription activation, or recruit other transcriptional repressors. This 

repression effect is proposed as one of the several mechanisms involved in leukomogensis 

(T-ALL
X
).

111
 In hematopoietic progenitor cell lines, TAL-1 interacts with ETO-2 through 

E2A/HEB where ETO-2 is recruited on its target promoters via this complex. SCL complex 

gene expression profile is repressed by ETO-2 at the early stage of erythroid differentiation 

and restores, later in process of cellular maturation, by changing in the ratio of TAL-1. 

During erythroid differentiation, the relative ratio of TAL-1/ETO-2 rises in favor of TAL-1 

that reduces the inhibitory effect of ETO-2 over the expression of TAL-1-dependent 

erythroid-specific genes.
112

 A recent study showed that, upon the induction of murine 

erythroleukemic (MEL) cells and subsequent to detachment of ETO-2 complex from Ldb1 

complex
XI

 the level of ETO-2 decrease which leads to induction of differentiation and 

termination of proliferation (Figure-7).
113

  

                                                 
X
 T cell Acute Lymphoblastic Leukemia 

XI
 Ldb1 forms a protein complex with TAL-1, E2A, HEB and Lmo2. 
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Figure 7- Model of Ldb1 complexes in uninduced MEL cells. The horizontal arrows indicate that 

the balance of interaction is towards the large complex in proliferating noninduced cells. Upon the induction 

of differentiation and termination of proliferation the level of Eto-2 drops whereas the level of Lmo4 rises, 

hence the equilibrium would shift towards the smaller complexes. The presence of several DNA binding 

proteins in a single complex may explain the role of Ldb1 as a facilitator of long-range interactions. 

Taking together, the fluctuation in concentration of transcription factors and/or their 

cofactors as well as their relative ratio can influence the final composition of protein 

complexes recruited to gene regulatory regions and therefore play a cause-and-effect 

relationship in expression of erythroid genes and in making decisions on differentiation 

versus proliferation. 

Further to clear information from prior studies on animal models and considering 

the insurmountable limitations to the direct experimentation one can perform in human 

populations, the mouse modeling is most effectual to understand the mechanisms involved 

in β-globin gene expression. This study is expected to provide insight into epigenetic 

regulation of β-globin locus during erythropoiesis and help to understand how gene 

expression is regulated in the context of chromatin. Once DNA regions subject to 

transcription factor recruitment are identified, changes in transcription factor networks 

within these sites will be examined in reference to globin gene expression. Herein, we 

attempt to define the affect of bHLH transcription factors on potentiation and basal level 

expression of globin gene in hematopoietic progenitor cells and on high level expression in 
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erythroid cells. In an attempt to investigate the whole β-globin locus, the strategy of present 

project is to focus primarily on HS2, HS3 and promoters of γ-and β-globin genes as these 

regulatory regions are highly essential for expression of globin genes. By this, we would 

reemphasize the harmonizing role of LCR and promoter regions in gene expression. Once 

the components of transcription machinery are identified, we visit knock-out studies, using 

HEB-/- and E2A-/- mouse models transgenic for β-globin locus, to validate our findings. 

This study is designed to deliver an answer to address the molecular mechanisms associated 

with epigenetic modification and transcriptional activation of the β-globin locus and is a 

continuation of what we have been doing orientated in alternative lineage. 
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Applications of study 

Molecular application. Understanding the molecular mechanisms that control 

globin gene expression during development provides us with great insights into basis of 

epigenetic states acquired at multiple levels and shows how they impact globally on gene 

expression. This project will enhance our knowledge about the mechanism of globin gene 

expression. Research in this field has an impact on understanding the basic concepts and 

principles of regulatory mechanisms that coordinately ensure a highly specialized, tissue- 

and stage-specific gene transcription pattern in other loci. This study could broaden the 

horizons of eukaryotic gene regulation as new molecular mechanisms will be discovered 

and existing ones better characterized. 

Clinical application. Molecular investigations of spatial and temporal events that 

control β-like globin gene expression during erythropoiesis would define many basic 

mechanisms underlying or relevant to the pathophysiology of hemoglobinopathies, such as 

sickle cell disease and thalassemia, where the expression of globin genes is disrupted, and 

would eventually lead to development of molecular therapies and/or cures. For instance, 

mutations in strategic regions of genes encoding such transcription factors could serve as 

insults responsible for development and clinical outcome of hemoglobinopathies and 

become in a position of novel targets for gene therapy in future. 

Research Proposal 

Rational 

The stepwise establishment of lineage-specific gene expression profiles, during the 

development of mature blood cells of distinct lineages from HSCs, which progressively 

restrict the differentiation potential and escalate the proliferation potential, makes 

hematopiesis an exceptional model system to study TFNs modulating the expression of 

lineage-specific target genes (Figure-8).
114

 The human β-globin locus is a highly 
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characterized locus to study the molecular mechanisms of enhancer-promoter interactions 

and to elucidate cell type-specific and developmental-stage specific regulation of gene 

expression. E-box sequences, which are potential binding sites for the bHLH proteins, are 

scattered throughout the β-globin locus within transcriptional regulatory regions at HS core 

elements of 5’HS2 and 5’HS3 as well as promoters of γ- and β-globin genes.
115

 For this 

reason, these elements are theoretically able to recruit various bHLH proteins and their 

cofactors in the erythroid environment. The animal modeling provides a powerful tool to 

directly test the effects of bHLH proteins recruitment to LCR and promoters of γ- and β-

globin genes on globin gene expression and to determine the mechanisms of these effects. 

Once such mechanisms have been delineated, one can return to human studies to confirm 

key components.  
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Figure 8- Genetic regulatory networks (GRNs) programming hematopoietic stem cells and 

erythroid lineage specification. A control logic model of erythroid development describing known 

interactions important in the development of the erythroid lineage. The genes have been positioned in the 

network so that genes expressed at early developmental stages are positioned towards the top of the figure and 

vice versa. Genes repeated in the network in different positions highlight the different behavior important at 

different stages. 
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Hypothesis 

The prevailing hypothesis is that human β-globin locus potentiation and basal-level 

of globin gene expression in multipotent hematopoietic progenitor cells (HPCs) and high-

level of globin gene expression in erythroid cells are the results of both chromatin 

modifying activities and the recruitment of general and lineage-specific transcription 

factors. Informed by key roles of the bHLH  transcription factors in lymphoid lineage-

specific gene expression, we hypothesized that they could regulate the expression of globin 

genes in HPC and erythroid cells as well. We hypothesized that E proteins are recruited to 

both LCR and promoters of γ- and β-genes during the development from HPC to erythroid 

cells alternating with recruitment of ETO-2 and HDAC-1. We also hypothesize that the 

absence of E2A and HEB can affect the transcription (a) through the changes in involved 

transcription factors and/or (b) through the disruption of gene expression. These hypotheses 

will be tested mainly by performing Chromatin Immunoprecipitation (ChIP) assay on 

different sorted populations of hematopoietic cells harvested from wild-type, transgenic and 

knockout mouse models that carry the entire human β-globin locus in their genome. 

Objectives 

The prime objective is to answer the questions, “Are E2A and HEB are components 

of lineage-specific transcription factors recruited to LCR and promoter of globin genes?" 

and "How these transcription factors  are important in terms of globin gene silencing in 

HPCs, high level of globin gene expression in erythroid cells and in alternative lineages and 

how their recruitment change during erythropoiesis?”, using animal models. The project 

aims to investigate the major regulatory sites within the β-globin locus that are occupied by 

E proteins during erythropoiesis in mouse models of human β-globin. With this study we 

aimed to demonstrate the complex system underlying β-globin gene expression with respect 

to E2A, HEB, ETO-2 and HDAC-1. Our results would stand as an important step towards 

gaining a full understanding of processes involved in gene expression. 
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1. To investigate whether E2A, HEB, ETO-2 and HDAC-1 are recruited to 

LCR and promoters of γ- and β-genes in murine erythroid cells and 

hematopoietic progenitor cells (HPCs) as well as human erythroid cells. 

2. To explore how the arrangement of these factors changes during 

erythropoiesis.  

3. Following the experiments on normal genetic background, we extend our 

range of inquiry in knockout mice for E2A and HEB and transgenic for the 

entire human β-globin locus (E2A-/- β+/+ and HEB-/- β+/+), respectively. A 

key question is whether removal of E proteins (E2A and HEB) activity 

might lead to change in the transcription factor complexes at LCR and 

globin gene promoters, particularly in reference to ETO-2 and HDAC-1, 

and/or be disruptive to expression of globin genes. This will enable us to 

take advantage of mouse genetics to further assess the transcriptional 

changes at the levels of progenitors and mature red cells.  

4. Questions persist as to whether the absence of globin gene expression in 

lymphoid lineage could to some extent be due to different factors engaged at 

LCR and globin gene promoters, in which all or none of E2A, HEB, ETO-2 

and HDAC-1 factors may be present. We extend our findings by similar 

exploration of LCR and promoters of γ- and β- genes in lymphoid progenitor 

cells (LPs) in transgenic mice with wild-type genetic background. 

 

  

 

 



 

47 

 

 

 

 

 

 

 

 

 

 

Materials and Methods 

 

 

 

 

 

 

 

 



 

48 

 

Mouse models 

Line 2 mouse. The mouse model we used is called line 2 (ln2) which is a transgenic 

mouse for the entire human β-globin locus. This line maintains strong and consistent 

expression of human globin genes and the mice thereof express β-globin genes normally: 

the human transgene is expressed in all murine erythroid cells and each cell that contains 

mouse β-major globin mRNA also contains human β-globin mRNA. This model was 

previously described by Milot E, et al and Strouboulis J, et al.
116,117

 ln2 mice were 

maintained from homozygous breeder line, available in Dr. Eric Milot’s laboratory, born to 

homozygous mothers crossed with homozygous fathers. 

(E2A +/- ln2 +/+) and (HEB +/- ln2 +/+) mice. Most of both E2A knockout and 

HEB knockout mice die within the first two weeks after birth.
XII

 
118

 Homozygous mutant 

mice for E2A and HEB (E2A +/- and HEB +/-) were kindly provided by Dr. Trang Hoang. 

These mice were crossed with male or female of ln2 +/+ background to produce the ln2 

strains heterozygous for the E2A and HEB allele, respectively. After a long process of 

crossing and breeding, E2A +/- ln2 +/+ and HEB +/- ln2 +/+ mice were obtained by mating 

males or females with females or males of same genotype. As discussed above, E2A 

knockout (E2A-/-) and HEB knockout (HEB -/-) genotypes are almost always lethal;
119

 

therefore, E2A-and HEB-null backgrounds would be best investigated as embryos. For this, 

E2A +/- ln2 +/+ and HEB +/- ln2 +/+ mice were mated with mice of opposite sex and same 

genotype, then the embryos were extracted out from the mothers after cervical dislocation 

on gestational day 13.5 (GD13.5, also called 13.5 dpc
XIII

). After that, fetal livers were 

extracted and 13.5 dpc fetal liver-derived hematopoietic cells were harvested by flushing 

the fetal livers. DNA was prepared from a fraction of these cells and used in polymerase 

chain reaction (PCR) for genotyping to identify those having E2A -/- ln2 + or HEB -/- ln2 + 

genotype (see Figure 9). With such a cross, the predicted genotype representation for the 

                                                 
XII

 E2A knockout mice are also born at a lower frequency than wild-type mice. 

XIII
 days post coital 
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embryos is equivalent for wild-type, homozygous mutant and knockout. The fetal liver 

erythroid cells (EryC) with E2A -/- ln2 +/+ or HEB -/- ln2 +/+ genotype were utilized in 

the experiments.  

Cell Sorting  

Staining with antibodies (Abs) was performed on ice for 30 minutes followed by 

one wash in phosphate-buffered saline (PBS) 5% fetal bovine serum (FBS). High-speed 

fluorescence-activated cell sorter (FACS) Vantage Flow Cytometer/Cell Sorter machine 

with DIgitalized VAntage (DIVA) option (Becton Dickinson, San Jose, CA) was used to 

analyze and sort the following desired cell populations. For detection of desired 

hematopoietic surface markers, the commercial antibodies were purchased accordingly. 

Nonspecific staining was controlled by isotype-matched control antibodies. Sorted 

populations were always ≥ 90% pure to perform Chromatin Immunoprecipitation assays.  

Murine erythroid cells (Ter-119
+
) and Murine HPCs (Ly-6C

-
CD31

high
c-Kit

+
) 

Bone marrow cells were harvested from the long bones (tibiae, femora) of adult ln2 

mice. Murine erythroid cells (EryC) were stained with rat anti-mouse Ter119 Abs (TER-

119: sc-19592) followed by goat anti-rat phycoerythrin (PE)-conjugated Abs (Santa Cruz 

Biotechnology, Inc.).  For murine HPCs, cells were stained with rat anti-Ly-6C fluorescein 

isothiocyanate (FITC)-conjugated Abs (ER-MP20: sc-52650) followed by biotinylated rat 

anti-CD31 (BD Pharmingen: 553371), and then goat anti-rat phycoerythrin (PE)-conjugated 

Abs (BD Pharmingen), followed by rat anti-mouse c-Kit (CD117) allophycocyanin (APC)-

conjugated Abs (BioLegend, Catalog # 105812). The populations of ≥ 90% pure HPCs 

were separated by FACS.  
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Murine Lymphoid Progenitors (LPs) (Lin
-
c-Kit

+
Sca1

+
IL-7Rα

+
) 

We sorted lymphoid committed progenitor population (Lin
-
c-Kit

+
Sca1

+
IL-7Rα

+
). 

This population is an highly enriched population of common lymphoid progenitors (CLPs) 

that also contains other lymphoid progenitors and hereafter referred to as Lymphoid 

Progenitor (LP) cells.
120

 LPs were isolated via magnetic Lin
+
 cell depletion using 

EasySep® negative selection mouse hematopoietic progenitor enrichment cocktail 

(StemCell Technologies, Vancouver, BC: EasySep® Catalog # 19756, EasySep® Magnet 

Catalog # 18000), corresponding to primitive Lin
-
c-Kit

+
Sca1

+
 hematopoietic precursors, 

followed by IL-7Rα
+
 selection through staining with CD127 (IL-7Rα) antibody 

(BioLegend, Catalog # 121106) and FACS sorting. 10
8 

fresh
 
mononuclear cells were 

suspended in 1ml PBS containing 2% FBS and 2mM ethylenediaminetetraacetic acid 

(EDTA). Medium was Ca
2+

 and Mg
2+

 free. Lin
+
 cells were isolated inside a standard 12 × 

75 mm polystyrene tube placed directly into the magnet, at three steps, firstly by cocktail of 

biotinylated antibodies, secondly by biotin selection cocktail and then by magnetic 

microparticles. The desired Lin
-
 cells were isolated from magnetically labeled unwanted 

Lin
+
 cells remain bound inside the original tube by pouring off the desired fraction into a 

new polystyrene tube. The purity of these subsets was at least 95%. The lineage restriction 

and the hematopoietic potential of these cells were ascertained by in vitro clonal assays in 

methylcellulose culture for at least one representative sorted population. The appearance 

and distribution of expected colonies and the cellular morphology of this population are 

described earlier.
121

  

Human primitive progenitor cells (CD34
+
) 

Human leukapheresis samples were taken from healthy donors after obtaining an 

informed consent.
122

 Apheresis procedure is designed to mobilize the hematopoietic 

progenitor cells in the patient's blood vessels by treatment with G-CSF (granulocyte 

colony-stimulating factor) cytokine.
123

 Human CD34
+
 cells were isolated using human 

CD34 positive selection cocktail (StemCell Technologies, Vancouver, BC: EasySep® 
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Catalog # 18056, EasySep® Magnet Catalog # 18000). 10
8 

fresh
 
mononuclear cells were 

suspended in 1ml PBS containing 2% FBS and 1mM EDTA. Medium was Ca
2+

 and Mg
2+

 

free. CD34
+
 cells were isolated inside a standard 12 × 75 mm polystyrene tube placed 

directly into the magnet, at two steps, firstly by monoclonal antibodies against CD34 

surface antigen and then by magnetic nanoparticles. A total of five rounds of separation in 

magnet were performed to isolate magnetically labeled (CD34
+
) cells from unlabeled cells, 

by throwing the unwanted population (magnetic nanoparticle-unbound cells) away. To 

verify the purity of enriched population, the magnetically selected CD34
+
 cells were stained 

with mouse anti-CD34 fluorescein isothiocyanate (FITC)-conjugated Abs (ICO115: sc-

7324) (Santa Cruz Biotechnology, Inc.) and analyzed by flow cytometry in FACScan 

(Becton Dickinson, San Jose, CA). The results were analyzed using the software CellQuest 

(BD Biosciences). The isolated population was ≥ 98% pure for CD34
+
 cells. This 

population is described previously.  

 

Genotyping 

Mice were genotyped by polymerase chain reaction (PCR) using DNA extracted 

from tail samples. Mouse tails were cut on postnatal day 21 and digested at 56 °C overnight 

in a solution of 50 mM Tris pH 8.0, 100 mM EDTA, 100 mM NaCl and 1% SDS with 100 

µg/ml proteinase K. Tail genomic DNA was prepared through phenol/chloroform 

extraction. Genotyping was performed using the primers designed to amplify the amplicons 

from β-globin, E2A and HEB genes. For E2A, the common primer 5′- 

TTGTGGACATTTTCTAGGCAG -3′ was used with either 5′- 

CCGAGCTCCTTAAAGGCCTCA -3′ or 5′- CCGAGCTCCTTAAAGGCCTCA -3′ in a 

separate reaction to detect the mutant allele. For HEB, the common primer 5′- 

TCCTGCCTAGTAGGGATTTT -3′ was used with either 5′- 

TCTCACTTGCTGTTCTAGAC -3′ or 5′- TCGCAGCGCATCGCCTTCTA -3′ in a 

separate reaction to detect the mutant allele. For each genotyping run, known genomic 

DNA from E2A-null or HEB-null, E2A heterozygote or HEB heterozygote and wild-type 
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were simultaneously assayed as positive and negative controls. Figure 9 shows one 

representative example of E2A and HEB genotyping that amplified products were loaded 

onto 2% agarose gel, stained with ethidium bromide, and directly visualized under UV 

illumination. 

 

Figure 9- One representative experiment of genotyping (A) E2A and (B) HEB. Ethidium bromide-

stained PCR products were separated on a 2% agarose gel.  

Chromatin Immunoprecipitation (ChIP) assay 

The sorted cell types described above were subjected to Chromatin 

Immunoprecipitation assay in order to investigate the recruitment of transcription factors of 

interest to human β-globin locus. ChIP kits (Catalog # 17-295) were purchased from 

Upstate Cell Signaling Solutions, Lake Placid, NY. Approximately 1.5 - 3 × 10
5 

(Murine 

HPCs and LPs) and 10
6
 (Murine EryC and Human CD34

+
) cells were used for this 

procedure. To crosslink the factors with the target genomic DNA, cells were incubated at 

37°C for 10 min with 200 µl of PBS containing 1% formaldehyde. Cross-linked chromatin 

was sonicated in order to obtain consistent chromatin fragmentations of ~ 500-bp average 

for 10 seconds on ice and repeated four times. Sonication was optimized prior to real 

experiments. A portion of the sonicated lysate without antibody was separated before 

immunoprecipitation and used as Input chromatin. Following antibodies were raised to 
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isolate the complex by precipitation: anti-E2A (Yae: sc-416)
XIV

, anti-HEB (A-20: sc-357), 

anti-ETO-2 (G-20: sc-9741), anti-HDAC-1 (Catalog # 06-720, Upstate Biotechnology 

(Lake Placid, NY)), and anti-Histone H3 (di methyl K9: ab7312) (Abcam, Inc., Cambridge, 

MA). ChIP assays were carried out according to manufacturer's protocol with minor 

modifications as described previously.
124

 The protein/DNA cross-linked nucleosomal 

chromatin complex was reverse cross-linked with NaCl at 65°C for 4 hours. Samples were 

then treated with proteinase-K. DNA was extracted in phenol/chloroform and precipitated 

and washed in ethanol. On average, 1/30 of each ChIP sample was used in quantitative real 

time polymerase chain reaction (QRT-PCR). At least three independent ChIP experiments 

were performed for each transcription factor and the significance of the data was tested 

according to a student t-test.  

Real-time Polymerase Chain Reaction (Q-PCR/qPCR) 

Real-time quantitative PCR analysis of the immunoprecipitated chromatin was done 

by the MyiQ thermal cycler (Bio-Rad) based on SYBER
®

Green quantification (Qiagen) 

according to the manufacturer's instructions. The primer sequences were designed to 

specifically amplify HS3, HS2, γ- and β-globin promoters using sequence analysis software 

(DNAMAN). Primer sets were tested to assure an amplification efficiency of 90-105% 

using appropriate serial 10-fold dilutions of genomic DNA. Threshold cycles (Ct) were 

determined according to manufacturer software for unbound (input) and for 

immunoprecipitated chromatin. The occupancy of each region by transcription factor of 

interest was calculated relative to input chromatin as described by Geisberg JV, et al.
125

 

Data were presented as fold enrichments over the values obtained for internal control using 

primer sets specific for the regulatory region(s) (promoter) of mouse THP (kidney-specific 

Tamm-Horsfall gene) or human pax6 (pax6, paired box protein 6). Each PCR was done in 

triplicate for each sample, data was calculated using 2
-∆∆Ct

 formula and results were 

presented as mean ± SD considering a value of 1 as no enrichment. The amplicons were 

                                                 
XIV

 Anti-E2A (Yae): sc-416 detects both E47 and E12. 
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confirmed by a specific melting curve and by the presence of expected band size on the 

electrophoresis gel and ethidium bromide staining.  

Real-time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)  

RNA was extracted from aforementioned number of sorted cells using Trizol 

Reagent (Invitrogen Life Technologies). RNA was resuspended in 50µl of H20DEPC and 

quantified by spectrophotometry. The total cDNA was synthesized from 1µg RNA using 

with oligo(dT)15 primers and SuperScript
TM

 Reverse Transcriptase enzyme (Invitrogen Life 

Technologies, Catalog # 18053-017) by incubating for one hour at 37°C, followed by 

incubation of 15 min 70°C to inactivate the enzyme. The RNA has previously been treated 

with 1U DNaseI-RNase free, grade amplification (Invitrogen Life Technologies) for each 

microgram of RNA. cDNA was used in real-time PCR (iCycler iQ
TM

, Bio-Rad) with 

Qiagen QuantiTect probes specific for human β-globin cDNA (5'- 

TCGGTGCCTTTAGTGATG- 3' and 3'-TTGCCCAGGAGCCTGAA -5'; TET-labeled 

QuantiProbe: ACCTTTGCCACACTGA; human βRT) or mouse gapdh cDNA (FAM-

labeled QuantiTect gene expression assay, Qiagen, GapdRT). To avoid genomic DNA 

contamination, human βRT and GapdRT primers were designed to span intron-exon 

junctions. human βRT and GapdRT PCR reactions were independently run at least in 

triplicate. Quantitative real-time RT-PCR analysis was carried out as described in Bottardi 

S, et al.
126

  

Western blot 

Prior to ChIP experiments, the specificity of antibodies mentioned above and used 

against factors of interest were analyzed by Western blotting considering their specific 

Molecular Weight (MW). The total protein extracts were obtained in sample buffer 

(100mM Tris pH 6.8, 200mm DTT, 4% SDS, 0.2% Bromophenol blue and 20% glycerol), 

and then extracts were sonicated twice for 5 sec and boiled for 5 min. The protein extracts 

were then separated by SDS/PAGE (SDS-polyacrylamide gel 15%), followed by a blotting 
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onto Hybond ECL nitrocellulose membranes (Amersham Biosciences). The membrane was 

blocked with skim milk (5% in PBS). The membrane was then incubated for 16 hours at 

4°C with the primary antibodies diluted with skim milk (1% in GER) at a concentration of 

1: 100. The secondary antibody goat anti-mouse IgG conjugated to peroxidase (Sigma) was 

diluted with skim milk (1% in GER) at a concentration of 1: 1000 and incubated for 2 hours 

at room temperature. After each antibody, the membrane was washed three times for 10 

min in 0.05% Tween 20 in the TBS. The secondary antibody was revealed with a kit 

chemiluminescence ECL Plus (Amersham Biosciences), and then hybridized membrane 

was processed with the phosphoimaging system LAS-3000 (Fuji Life Science) using 

ImageQuant software. Mouse β-actin housekeeping gene was used on the same blot as a 

loading control and for comparative estimation of the protein amount applied to the gels. β-

actin-specific monoclonal antibody (I-19: sc-1616) was used.  

in vitro clonogenic assays   

To determine differentiation potential of Murine HPCs, FACS-sorted cells were 

cultured in Methocult
®

 GF M3434 (Stem Cell Technologies, Vancouver, BC, and Catalog # 

03434). Single cultures contained 50, 100, or 200 Ly-6C
-
CD31

high
c-Kit

+
. The cells were 

cultured in a humidified atmosphere containing 5% CO2. Hematopoietic colonies were 

determined and scored by inverted microscope at three days, for CFU-E (colony-forming 

units-erythroid) and at 14 days, for BFU-E (burst forming units-erythroid), CFU-G 

(granulocyte colony-forming units), CFU-GEMM (colony forming units-granulocyte-

erythroid-macrophage-megakaryocyte), after the cultures were initiated. To examine 

lymphocyte colony formation, LPs (Lin
-
c-Kit

+
Sca1

+
IL-7Rα

+
) were cultured on Methocult

®
 

GF M3630 (Stem Cell Technologies, Vancouver, BC, and Catalog # 03630) containing 

rmIL-7 to support growth of pre-B colonies. The colonies were enumerated using an 

inverted microscope after seven days in culture. 
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Erythroid Krüppel-like Factor (EKLF) is an erythroid transcription factor belonging 

to the zinc-finger family of DNA binding proteins.
127

 EKLF is essential for the proper 

maturation of erythroid cells. EKLF knockout mouse are lethal because of anemia resulting 

from cessation of adult β-globin transcription. EKLF role in β-globin gene expression is 

mediated by its role in chromatin remodeling, modulation of the gamma to beta globin 

switch and transcriptional activation of β-globin gene.
128,129

 

This manuscript is the first demonstration that EKLF directly binds the globin locus 

in progenitor cells. Previously, our group proposed this idea according to the genetic 

analysis and in this paper, using ChIP assays, our results directly showed the binding of 

EKLF to crucial regulatory regions on β-globin locus and thus emphasizes its role in β-

globin gene expression.  

Alireza Fotouhi Ghiam provided and analyzed the data of EKLF and participated in 

interpretation of results and drafting the manuscript. Some results that were not included in 

the paper is now provided in supplementary section of this chapter to complete the 

information on this subject. The importance of these findings is also discussed. 
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HEMATOPOIESIS AND LINEAGE SPECIFICATION 

Hematopoiesis consists in a progressive restriction of cell fate capacities from 

hematopoietic stem cells (HSCs) to mature blood cells. Lineage specification and cell 

commitment can be achieved by precise activation and/or repression of specific genes. It is 

now accepted by most that lineage specification does not depend solely on single master 

regulators. Rather, it appears to result from precise combinations of specific transcription 

factors, which cooperate to form the so-called transcription factor network (TFN).
130

 
131

 

TFs that compose the network will act in a concerted way to regulate gene expression, 

thereby providing cellular identity. A good example of TFN complexity and its impact on 

lineage specification and cell commitment is the role of Pax5, E2A, EBF, and Ikaros during 

B lymphopoiesis. 
132

 
133

Although the underlying mechanisms are not yet fully decorticated, 

these TFs are known to influence B lymphopoiesis in a highly coordinated manner. Pax5 is 

expressed at low level in multipotent HPCs
134

 and can activate B lineage specific genes 

while repressing myeloid genes.
135

 
136

 For example, Pax5 induces c-fms gene repression by 

direct interaction and inhibition of PU.1 transcriptional activation.
137

 Another example of 

alternative lineage suppression
138

 due to direct TF interactions is provided by the 

interaction of GATA-1 or -2 with PU.1. GATA factors inhibit PU.1 expression and 

transactivation,
139

 
140

 and PU.1 acts similarly on GATA proteins (transrepression). PU.1 is 

essential for myeloid and lymphoid specification, whereas GATA-1 is required for 

erythroid differentiation. Likewise, PU.1 and C/EBPα antagonize each other during HPCs 

commitment towards neutrophils or monocytes.
141

 
142

 

The variable influence that TFs exert on gene expression can be explained by the 

interplay between TFs and cofactors such as chromatin modifying and/or remodeling 

proteins. For example, in lymphoid cells, Ikaros can associate with Mi2b, HDAC1 (histone 

deacetylase 1) and HDAC2, which are components of the nucleosome remodeling and 

deacetylation (NuRD) complex.
143

 However, in adult erythroid cells Ikaros is part of the 

PYR complex, which targets to the β-globin locus two types of chromatin remodeling 
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activities that activate (SWI/SNF, as BAF57, BAF155, BRG1) or repress (NuRD, as 

HDAC2, Mi-2) gene transcription.
144

 

Interestingly, also in the same cell type a given TF can function both as an activator 

and a repressor of gene transcription. This duality is explained by the fact that interactions 

between lineage-specific TFs and cofactors vary according to the gene regulatory region 

targeted. For instance, GATA-1 and its cofactor FOG-1, can function as activators at 

certain gene promoters (α- and β-globin, EKLF, glycophorin A) and as repressors at others 

(GATA-2, myc, myb) by forming distinct protein complexes. In fact, it is reported that in 

erythroid cells, the GATA-1/FOG-1/MeCP1 complex represses hematopoietic genes, 

whereas the interaction between GATA-1 and TAL-1 activates erythroid-specific genes.
145

 

In addition to the above mentioned, TF protein levels contribute to lineage-specific 

gene expression. Among others, TAL-1, HEB and E2A protein levels have been shown to 

fluctuate during hematopoiesis. In hematopoietic progenitors, TAL-1 interacts with ETO2, 

and via E2A/HEB recruitment, they are both targeted to gfi-1b, p21cip, and GPA 

promoters.
146

 ETO2 recruits several members of the HDAC family and therefore 

participates in the repression of specific genes including the ones listed above.
147

 In 

hematopoietic progenitor cell lines, GPA is poorly transcribed and the TAL-1 complex 

recruited at GPA promoter consists of HEB, E2A and ETO2. During erythroid 

differentiation, TAL-1, E2A and HEB expression levels increase, thereby is changing the 

relative ratio TAL-1/ETO2 in favor of TAL-1. This reduces the inhibitory activity of ETO2 

and relieves TAL-1-dependent erythroid genes repression.
148

 Similarly, in erythroid cells 

the Ldb1-Lmo2-TAL-1-E2A-GATA-1 complex binds to globin LCR and β-gene 

promoter.
149

 Recently Meier and collaborators
150

 have demonstrated that this complex also 

includes ETO-2 and that upon erythroid differentiation of mouse erythroleukemic (MEL) 

cells the level of ETO2 and ETO-2/Ldb1 complex decreases, while the level of Lmo-4 

increases. They propose that the level of the large Ldb1-ETO2 complex drops to be 

replaced by one with Lmo-4 to allow late erythroid genes to become activated. Therefore, 
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relative variations of TFs or cofactors concentration can, by itself, influence the 

composition of protein complexes recruited at gene regulatory regions and consequently 

their activating or repressing activities. 

POTENTIATION AND GENE PRIMING IN HPCs 

In embryonic stem (ES) cells as well as HPCs several lineage-specific genes are 

located in transcriptionally potent chromatin i.e., chromatin in an open conformation which 

allows access of TFs and transcriptional machinery to gene regulatory regions. It is in fact 

proposed that most of the hematopoietic-specific genes are potentiated before their 

transcriptional activation in mature cells,
151

 
152

 
153

 a mechanism that would protect these 

genes from epigenetic silencing.
154

 
155

 Gene potentiation has been linked to histone 

covalent modifications of the locus of interest. For example, a discrete site of the B-cell 

specific mouse λ5-VpreB1 locus
156

 
157

 is marked by histone H3 acetylation and lysine 4 

methylation (both marks of active chromatin) in ES cells.
158

 Similar observations have been 

made at the human β- (huβ-) globin locus (see below) and at the murine MHC class II locus 

in multipotent HPCs (Figure 10). According to our recent data, the murine MHC class II 

locus appears to be potentiated in bone marrow derived common lymphoid progenitor cells 

(CLP; Lin-, IL-7R
+
). More specifically, we assessed histone covalent modifications at 

DNaseI hypersensitive site 1 and 2 (HS1 and HS2), two of the five HSs forming the MHC 

class II LCR located 5' to the Eα gene. Our results indicate the presence of histone H3 

acetylation and lysine 4 (K4) methylation at these regions, suggesting an accessible 

chromatin conformation and potentiation of the Eα gene locus. 
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Figure 10- Chromatin immunoprecipitation (ChIP) assays on Mac-1+, B220+, and common 

lymphoid progenitor (CLP) cells. Immunoprecipitated and unbound chromatin samples were subjected to 

real-time PCR with primer set specific for the murine MHC class II locus (EαHS1 and EαHS2) and with 

another primer set specific for mouse THP (kidney-specific Tamm-Horsfall gene) promoter; pax6 (neural-

specific paired box protein 6 gene) promoter is used as a control for ChIP procedure. The level of enrichment 

(according to the 2
∆∆Ct

 method) of globin regions relative to pax6 and input is shown by bars, with their 

corresponding standard deviations. A value of 1 indicates no enrichment. AcH3: anti-acetylated histone H3; 

K4me: anti-lysine 4 methylated histone H3; CLP: common lymphoid progenitor cells (Lin
-
, IL-7R

+
). Further 

technical details are found in ref. 159.  

As mentioned above, the development of more sensitive and accurate techniques has 

revealed that gene promoters and LCR or LCR-like structures are frequently occupied by 

lineage-specific TFs in multipotent HPCs. Recently, Anguita and collaborators
160

 

demonstrated that in a multipotent hematopoietic progenitor cell line, activation of the 

murine α- globin locus is associated with histone acetylation and with recruitment of 

GATA-2, NF-E2, and TAL-1 to a LCR-like structure located upstream of the genes (HS-26 

and HS-12). Despite the active chromatin conformation and TF recruitment, gene 
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expression only commences in differentiated erythroid cells, and corresponds to Pol II 

(RNA Polymerase II) recruitment to gene promoters. Chromatin activation and TF 

recruitment in primary multipotent HPCs occur in a similar way at the huβ-globin locus, 

even though in these cells TFs and cofactors are recruited at human β LCR (βLCR) as well 

as gene promoters, and gene potentiation is associated to basal level of globin gene 

expression (see below).
161

 Another example of potentiation and priming in multipotent 

HPCs is the lysozyme locus, where lineage-specific chromatin alterations can be detected 

prior to lysozyme transcriptional activation and cell lineage specification in multipotent 

HPCs.
162

 Additionally, chromatin reorganization
163

 and transient interactions with lineage-

specific TFs at specific lysozyme regulatory regions have been demonstrated in a 

multipotent myeloid progenitor cell line.
164

 

β-GLOBIN GENE POTENTIATION: THE ROLE OF LINEAGE-SPECIFIC TFs  

The huβ-globin locus consists of five developmentally regulated genes (ε-Gγ-Aγ-δ-

β).
165

 Their high-level expression in mature erythroid cells depends on the βLCR comprised 

of five DNaseI HSs. As expected, HS core regions are rich in hematopoietic and erythroid-

specific TF binding sites. In erythroid cells, the βLCR activates transcription through direct 

interaction with gene promoters and it is a major determinant of locus chromatin 

conformation.
166

 
167

 The β-globin locus has been extensively used as a model to investigate 

gene regulation in mature erythroid cells. More recently, it has been exploited to understand 

the mechanisms regulating gene potentiation and priming in multipotent HPCs and during 

their differentiation towards the erythroid pathway. The first report of globin potentiation 

dates back to 1992, when Jimenez and collaborators
168

 demonstrated that the mouse β-

globin LCR is in an open chromatin conformation in murine multilineage progenitor cell 

lines. Few years later β-like globin genes were shown to be expressed at low levels in 

hematopoietic progenitor cell lines
169

 and in primary HPCs of the aorta-gonad-mesonephros 

region (AGM).
170
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In an attempt to define the mechanisms leading to gene potentiation, we have 

studied globin potentiation and priming in primary multipotent HPCs of human (CD34
+
 

cells) and murine (c-Kit
+
/CD31

high
/Ly-6C

- 
cells) origin. The latter are cells purified from 

hematopoietic tissues of a mouse line transgenic for the whole huβ-globin locus (ln2). 

These transgenic mice express the huβ-like globin genes in a developmentally regulated 

manner.
171

 We demonstrated that in human and transgenic primary multipotent HPCs the 

globin locus is in an active chromatin conformation characterized by histone H3 

hyperacetylation and K4 dimethylation. Furthermore, we observed that chromatin 

activation is established and maintained by gene- and developmental-specific patterns of 

histone covalent modifications.
172

 These observations suggest that huβ-like globin genes 

are independently potentiated in HPCs, presumably through histone modifying activities 

recruited at specific regulatory regions by lineage-specific TFs. At the time we felt that 

GATA-1 and NF-E2 were good candidates because they: (1) are erythroid-specific TFs that 

interact with CBP at the locus;
173

 
174

 and (2) are expressed at low level in HPCs.
175

 
176

 Low 

level expression of lineage-specific TFs in HPCs is known as promiscuous expression since 

it initially appeared that it did not exert any precise role in HPCs.
177

 However, recent 

observations have led to revisit the role of lineage-specific TFs expressed at low or basal 

level in HPCs. We have demonstrated that NF-E2, in addition to stabilize CBP binding to 

the locus in erythroid cells, also plays a pivotal role in globin gene potentiation and priming 

in HPCs, since CBP recruitment to the huβ-gene promoter is NF-E2-dependent. The 

erythroid-specific factor EKLF also influences CBP binding to the locus in HPCs, most 

likely by providing an open chromatin configuration that would support NF-E2 and CBP 

recruitment. Indeed, EKLF is expressed at low levels in HPCs
178

 
179

 and, as in erythroid 

cells, it can interact with BRG1 in the E-RC1 remodeling complex targeting BRG1 to the 

locus.
180

 
181

 Accordingly, in HPCs purified from 13.5 dpc (day post coitus) EKLF knockout 

fetal livers chromatin at and huβ-promoter is not in an active conformation.
182

 These 

results, obtained through a genetic approach, have been confirmed by direct ChIP analysis 

using antibodies against EKLF (generous gift of S. Philipsen). As shown in Figure 11, 
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EKLF is efficiently detected at HS2 and HS3 and to the huβ-gene promoter in transgenic 

(c-Kit
+
/CD31

high
/Ly-6C

- 
cells) as well as human CD34

+
 multipotent HPCs (supplementary 

section).  

 

Figure 11- Chromatin immunoprecipitation (ChIP) assays on common myeloidprogenitor 

(CMP), wild type erythroid (EryC), and EKLF knock-out erythroid (EKLF KO) cells. 

Immunoprecipitated (with antibodies against EKLF, gift of J. Philipsen) and unbound chromatin samples 

were subjected to real-time PCR with primer set specific for the huβ-globin locus (HS3, HS2, huγ- and huβ-

promoters) and with another primer set specific for mouse THP (kidney-specific Tamm-Horsfall gene) gene 

promoter; GAPDH promoter is used as a control for ChIP procedure. The level of enrichment (according to 

the 2
∆∆Ct

 method) of globin regions relative to THP and input is shown by bars, with their corresponding 

standard deviations. A value of 1 indicates no enrichment. CMP: common myeloid progenitor cells (c-

Kit
+
/CD31

high
/Ly-6C

- 
cells). Further technical details are found in ref. 183. 

Altogether, we propose that EKLF is instrumental in huβ-gene potentiation in 

HPCs. EKLF and BRG1 would promote chromatin remodeling and favors the association 

of other TFs (such as NF-E2) as well as cofactors (such as CBP) to the globin locus in 

HPCs. Finally, we have shown that huβ-like globin priming is associated with TBP and Pol 

II recruitment to and to TBP recruitment to huβ-gene promoter in HPCs.
184

 Pol II could not 

be detected at the huβ-gene promoter even though the huβ-gene is primed in HPCs. This 
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suggests that Pol II loading at the huβ-promoter is not very efficient in HPCs and it is likely 

to be the limiting step for high-level globin gene expression such as observed in erythroid 

cells (Figure 12). 

 

Figure 12- Model of TFs recruitment at the huβ-globin locus in HPCs and EryCs. Schematic 

representation of TF network at βLCR HS2 and huβ-promoter in hematopoietic progenitor cells (HPCs) and 

erythroid cells (EryCs), according to our most recent works. Huβ-gene potentiation in 13.5 dpc fetal liver-

derived HPCs is associated to NF-E2, EKLF, CBP and BRG1 recruitment to HS2. CBP and BRG1 targeting 

to HS2 occurs by, thus far, unidentified TFs (indicated by questions marks in the model). NF-E2-CBP and 

EKLF-BRG1 are also recruited at huβ-promoter, together with TBP, whereas Pol II is detected at HS2 but not 

at huβ-promoter. In EryC, looping out of intervening chromatin allows HS2 (along with βLCR holocomplex) 

and huβ-globin promoter to come in close proximity.
185

 The E-RC1 complex (constituted by EKLF, BRG1 

and other SWI/SNF subunits)
186

 farther increase chromatin remodeling at both regulatory regions and 

facilitate the recruitment of other TFs, like GATA-1.Concomitantly, Pol II, transferred from HS2 to huβ-

promoter, is efficiently phosphorylated at its C-terminal domain (CTD). Altogether, chromatin remodeling, 

histone acetylation, and phospho-CTD Pol II recruitment contribute to high-level huβ-gene transcription in 

mature EryCs. 
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β-GLOBIN GENE POTENTIATION: THE ROLE OF LCR-LIKE 

STRUCTURES 

Analysis of several loci where gene expression is regulated by LCR or LCR-like 

structures revealed that most of them are potentiated during early hematopoietic 

development. General (GTFs) and lineage specific TFs are often bound to LCRs and gene 

promoters in multipotent HPCs, and as already discussed, some of them have been shown 

to recruit cofactors involved in chromatin remodeling or histone covalent modifications. 

This activating mechanism could counterbalance epigenetic silencing therefore allowing a 

particular locus to be maintained active from HPCs (and probably HSCs) to committed and 

differentiated hematopoietic cells. Furthermore, probably due to high density of TFs 

binding sites, LCRs can behave as nucleation centre for assembly of the preinitiation 

complex (PIC) in order to promote lineage-specific gene potentiation in HPCs and then 

high-level gene expression in mature cells.
187

 
188

 
189

 
190

 

Investigations made at the β-globin locus support these views since it has been 

observed that in HPCs the βLCR is capable of recruiting not only GTFs and Pol II
191

 
192

 but 

also lineage-specific TFs and chromatin modifying activities.
193

 Previous data from our lab 

led us to hypothesize that the βLCR is involved in globin gene potentiation in multipotent 

HPCs.
194

 To validate this hypothesis, we have investigated and compared gene potentiation 

and chromatin activation of the huβ-globin locus in HPCs purified from transgenic mice 

made either with a wild type huβ-globin locus or with a locus deleted for LCR HS2.
195

  

Mature erythroid cells isolated from adult hematopoietic tissues of 2B mouse line 

(containing the huβ-globin locus with a crippled LCR) display PEV (position effect 

variegation) and only one out of four erythroid cells expresses the huβ-gene even though at 

normal, high-levels.
196

 Since lack of HS2 significantly affects globin gene potentiation and 

priming,
197

 it is highly probable that βLCR dictates general chromatin conformation of the 

locus and functions as an anchoring structure for GTFs, TFs, and coactivators in HPCs. 

However, besides the important role of βLCR, we demonstrated that globin promoters are 
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also critical for gene potentiation and priming in HPCs. In actual fact, in multipotent HPCs, 

some GTFs and lineage-specific TFs are recruited to globin gene promoters according to 

their developmental activation (huβ-like globin gene expression is finely regulated during 

development; particularly γ-globin genes are expressed in fetal life and the β-gene is 

expressed in adult life).
198

 For example, in adult multipotent HPCs EKLF acts as a gene- 

and developmental-specific TF since it contributes to huβ- but not to huγ-gene 

potentiation.
199

 In conclusion, it can be assumed that both βLCR and globin gene promoters 

contribute to gene potentiation in multipotent HPCs. The βLCR would provide a chromatin 

environment prone to gene transcription and refractory to epigenetic silencing, and it would 

facilitate PIC nucleation. On the other hand, promoter regions would rather control 

developmental-specific potentiation and gene transcriptional activation (Figure 13). 

CONCLUDING REMARKS 

Molecular and biochemical studies have demonstrated that lineage-specific TFs, 

even when expressed at basal levels in HSCs or multipotent HPCs, can bind to gene 

regulatory regions like LCRs, LCR-like structures and gene promoters of a variety of 

hematopoietic loci. From the very early hematopoietic steps, lineage-specific TFs can 

recruit chromatin modifying and remodeling complexes to gene regulatory regions, hence 

favoring the recruitment of GTFs and PIC assembly. Therefore, by potentiating lineage-

specific gene expression, lineage-specific TFs can influence the identity of progeny cells. 
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Human HPCs population (CD34
+
 cells) was purified and enriched from human 

leukapheresis samples by magnetic positive selection procedure. The phenotypic purity of 

enriched population was assessed by flow cytometry in FACScan when the magnetically 

selected CD34
+
 cells were stained with anti-CD34 (FITC)-conjugated Abs. The isolated 

population was ≥ 96% pure for CD34
+
 cells. Experimental details are depicted in Figure-16 

in chapter two of results section. 

As shown in Figure 11, EKLF is efficiently detected at HS2 and HS3 and to the 

human β-gene promoter in transgenic (c-Kit
+
/CD31

high
/Ly-6C

- 
cells) as well as human 

CD34
+
 multipotent HPCs (Figure 13). 

 

Figure 13- Chromatin immunoprecipitation (ChIP) assays on human CD34+ multipotent HPCs 

cells. Immunoprecipitated (with antibodies against EKLF, gift of J. Philipsen) and unbound chromatin 

samples were subjected to real-time PCR with primer set specific for the human β-globin locus (HS3, HS2, 

human γ- and β-promoters) and with another primer set specific for human PAX6 (Paired box gene 6) gene 

promoter; p21 (Cyclin-dependent kinase inhibitor 1A, also known as CDKN1A) gene promoter is used as a 

control for ChIP procedure. The level of enrichment (according to the 2
∆∆Ct

 method) of globin regions relative 

to PAX6 and input is shown by bars, with their corresponding standard deviations. A value of 1 indicates no 

enrichment. Each value is the mean ± SD of at least three independent experiments. 
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Chapter two 

The basic helix-loop-helix transcription factors E2A and 

HEB are involved in globin gene expression 
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The animal modeling provides a powerful tool to directly investigate the role of 

bHLH proteins in the expression of globin genes. We tested the recruitment of bHLH 

proteins to both LCR and promoters of γ- and β-genes during the development from HPC to 

erythroid cells and investigate their recruitment considering their interaction with two 

closely related factors of ETO-2 and HDAC-1. Using the power of mouse genetics, we also 

investigated the effects of absence of E2A and HEB on the recruitment of these factors to 

β-globin locus. 

Identification of factors bound to the human β-globin locus in erythroid cells 

and murine HPCs 

Murine erythroid cells were isolated from bone marrow of adult mice transgenic for 

the entire human β-globin locus (ln2) using Ter119 antibody. Ter-119 antibody recognizes 

an epitope on murine erythroid cells at different stages of development, from early 

proerythroblasts to mature erythrocytes. These cells account for 20-25% of adult bone 

marrow cells (Figure 14.A) and do not express myeloid or B-cell markers and do not 

include more developed cells such as BFU-E or CFU-E according to colony assays.
200

 The 

purity of sorted population was always ≥ 95% (Figure 14.B). Murine HPCs were isolated 

from bone marrow of adult ln2 mice using Ly-6C/CD31/c-Kit antibodies. Ly-6C
-

CD31
high

c-Kit
+ 

cells sorted by FACS Vantage Flow Cytometer/Cell Sorter machine were 

cultured onto methylcellulose-based MethoCult
®

 M3434 medium for colony-forming cell 

(CFC) assays to detect and quantify mouse hematopoietic progenitors in bone marrow. 

Single cultures contained 50, 100, or 200 Ly-6C
-
CD31

high
c-Kit

+
. Hematopoietic colony 

types were determined and scored by inverted microscope at three days, for CFU-E and at 

14 days, for BFU-E, CFU-G, CFU-GEMM, after the cultures were initiated (Table-3). 

Phenotypic characteristics of these cells are described previously. These cells (Ly-6C
-

CD31
high

c-Kit
+
) include about 2% of adult bone marrow cells and are early hematopoietic 

cells without mature or late-committed properties (Figure 14.C). The purity of sorted 

population was always ≥ 95% (Figure 14.D). 
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Figure 14- Analysis of hematopoietic cells from ln2 bone marrow mice with Ter119 and Ly-

6C/CD31/c-Kit expression. Cells were stained with anti-Ter119 and anti-Ly-6C/CD31/c-Kit antibodies and 

sorted by FACS Vantage Flow Cytometer/Cell Sorter machine. Results for representative histograms obtained 

from (A) murine erythroid cells subpopulation (Ter119
+
), representing 20-25% of total bone marrow, and (C) 

murine HPCs subpopulation (Ly-6C
-
CD31

high
c-Kit

+
), representing 2% of total bone marrow. Assessment of 

phenotypic purity of (B) isolated Ter119
+
 fraction after sorting, and of (D) isolated Ly-6C

-
CD31

high
c-Kit

+
 

fraction after sorting. Numbers indicate the percentage of the total cells localized in the indicated quadrants. 

To determine if E2A and HEB are directly involved in regulating the β-globin locus, 

chromatin immunoprecipitation was performed on chromatin prepared from erythroid cells 

and murine HPCs harvested from bone marrow of adult transgenic mice ln2. ChIP primers 
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were designed to amplify the HS3, HS2 core regions and promoters of γ- and β-globin 

genes. As aforementioned,  HS2 and HS3 regions as well as promoters of γ- and β-globin 

genes are crucial cis elements regulating the expression of globin genes which theoretically 

have potential binding sites (E-box) for E2A and HEB. The specificity of antibodies used 

against E2A and HEB were initially validated in western blot analysis prior to ChIP 

experiments (Figure 15.A). In both EryC cells and murine HPCs, strong binding of the E2A 

and HEB to HS3, and particularly to HS2 and β-promoter was observed, which were not 

affected by differentiation from HPCs to EryC cells (Figure 15.B). The patterns of 

recruitment were suggesting an increased recruitment of E2A in HPCs and an increased 

recruitm,ent of HEB in erythroid cells. E2A and HEB binding was not detectable in a 

comparable site at γ-globin promoter at regions amplified where potential binding site of 

E2A and HEB (E-box) have been described. ChIP analysis of EryCs and murine HPCs 

suggests that basal level of β-globin expression in progenitor cells and high level of β-

globin expression in EryCs could be mediated through recruitment of E2A and HEB.  

To test the hypothesis that the binding of E2A and HEB on globin locus at different 

stages of differentiation is associated with ETO-2 and HDAC-1 co-factors, we looked at the 

recruitment patterns at the same crucial regulatory regions of β-globin locus by ChIP assays 

using anit-ETO-2 and anti-HDAC-1 antibodies. The specificity of antibodies used against 

ETO-2 and HDAC-1 were initially validated in western blot analysis prior to ChIP 

experiments (Figure 15.A). In EryCs, HS3 and HS2 regions and the promoter of β-globin 

gene were identified as positive for both ETO-2 and HDAC-1 binding by ChIP (Figure 

15.C). ChIP results showed a marked binding affinity of ETO-2 to β-promoter in HPCs in 

parallel with reduction in binding in erythroid cells. HDAC-1 was more or less evenly 

recruited to HS3, HS2 and β-promoter in both EryC cells and HPCs. HDAC-1 was also 

recruited concurrently onto the γ-promoter, but the binding was weak. These findings 

suggest that ETO-2 was significantly associated with the β-promoter in progenitor cells and 

thus repressed the activity of the β-promoter by recruiting transcription repressor HDAC-1.  
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Figure 15- Chromatin immunoprecipitation (ChIP) assays on murine erythroid cells (EryC, 

Ter119+) and murine hematopoietic progenitor cells (HPC, Ly-6C-CD31highc-Kit+). (A) Western blot 

analysis of cell lysates from 12.5 dpc fetal liver ln2 wild type cells expressing E2A (90kDa), HEB (85kDa), 

ETO-2 (76kDa) and HDAC-1 (55kDa) proteins. Immunoprecipitated with antibodies against (B) E2A and 

HEB or (C) ETO-2 and HDAC-1, and unbound chromatin samples were subjected to real-time PCR with 

primer sets specific for the human β-globin locus (HS3, HS2, huγ- and human β-promoters) and with another 

primer set specific for mouse THP (kidney-specific Tamm-Horsfall gene) gene promoter; GAPDH promoter 

is used as a control for ChIP procedure. The level of enrichment (according to the 2
∆∆Ct

 method)
201

 of globin 

regions relative to THP and input is shown by bars, with their corresponding standard deviations. A value of 1 

indicates no enrichment. Each value is the mean ± SD of at least three independent experiments.  
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Identification of factors bound to the human β-globin locus in human primitive 

progenitor cells 

Human primitive progenitor cells express CD34 (Cluster of Differentiation 34) and 

represent 1-3% of total human bone morrow cells. Colony-forming assays have shown that 

this population includes all bi or unipotent, colony forming units-granulocyte-macrophage 

(CFU-GM), CFU megakaryocyte (CFU-meg), burst forming units-erythroid (BFU-E) and 

multipotent progenitors CFU granulocyte/erythroid/macrophage/megakaryocyte (CFU-

GEMM) as well as pre-CFU.
202

 Although several CD34 antibodies are commercially 

available to isolate CD34
+
 cells from human bone morrow, it is lengthy to separate the 1-

3% CD34
+
 cells on the scale required for Chromatin Immunoprecipitation. A simple and 

rapid method to isolate primitive hematopoietic progenitor cells from bone marrow is to use 

immunomagnetic cell selection procedure. To enrich for human HPCs, CD34
+
 cells were 

purified from human leukapheresis samples by magnetic positive selection procedure 

(Figure 16.A). The phenotypic purity of enriched population (Figure 16.B) was assessed by 

flow cytometry in FACScan when the magnetically selected CD34
+
 cells were stained with 

anti-CD34 (FITC)-conjugated Abs (Figure 16.C). The isolated population was ≥ 96% pure 

for CD34
+
 cells (Figure 16.D). 
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Figure 16- Purification of human hematopoietic progenitor cells (CD34+). (A) Schematic 

representation of magnetic positive selection procedure. Bone marrow CD34
+
 cells (B, Left), Bone marrow 

CD34 carrying cells and magnetic beads (B, Right). Flow cytometric analysis of magnetic selected cells (C, 

Left), CD34
+
 subpopulation representing about 2% of total bone marrow (C, Right). Assessment of 

phenotypic purity of CD34
+
 isolated fraction. Numbers indicate the percentage of the total cells localized in 

the indicated quadrants. 
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In the comparative ChIP experiments on human HPCs, harvested from human 

leukapheresis samples (hereafter referred to as bone marrow cells), binding of the E2A and 

HEB to HS3, and particularly to HS2 and β-promoter was observed (Figure 17.A and B), 

and their patterns of association were similar. E2A and HEB were also associated with the 

γ-promoters. We carried out ChIP analyses for ETO-2 and found that ETO-2 is 

significantly recruited to the LCR and β-promoter but not to γ-promoters (Figure 17.C). 

These findings are explained seeing that CD34
+
 cells were purified from leukapheresis 

samples and the patients received stem cell factor (SCF) and granulocyte colony-

stimulating factor (G-CSF) treatment to increase CD34
+
 cell mobilization. The addition of 

SCF to G-CSF remarkably enhances the mobilisation of peripheral blood progenitor 

cells.
203

 SCF can also induce γ-globin expression in adult human erythroblasts.
204

 The same 

finding was observed in terms of EKLF recruitment to γ-promoter in human CD34
+
 cells 

(Chapter 1, Figure 12). ETO-2 binding pattern is consistent with the low level of β-globin 

gene expression in primitive progenitor cells and the expected effect of ETO-2 as a 

repressor of transcription.
205,206

 Using ChIP assays, we similarly demonstrated the presence 

of HDAC-1 at the LCR and the γ- and β-promoter regions. As shown in Figure 17.D, all 

regulatory regions appeared to be active binding site for HDAC-1 and the binding was 

relatively alike across the locus but not at the control region (p21 promoter). 
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Figure 17- Chromatin immunoprecipitation (ChIP) assays on human CD34+ multipotent HPCs 

cells. Immunoprecipitated with antibodies against (A) E2A, (B) HEB, (C) ETO-2 and (D) HDAC-1 and 

unbound chromatin samples were subjected to real-time PCR with primer sets specific for the human β-globin 

locus (HS3, HS2, human γ- and β-promoters) and with another primer set specific for human PAX6 (Paired 

box gene 6) gene promoter; p21 (Cyclin-dependent kinase inhibitor 1A, also known as CDKN1A) gene 

promoter is used as a control for ChIP procedure. The level of enrichment (according to the 2
∆∆Ct

 method)
207

 

of globin regions relative to PAX6 and input is shown by bars, with their corresponding standard deviations. 

A value of 1 indicates no enrichment. Each value is the mean ± SD of at least three independent experiments. 
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Identification of factors bound to the human β-globin locus in murine 

lymphoid progenitor (LP: Lin
-
c-Kit

low
Sca1

low
IL-7Rα

+
) cells 

Adult ln2 mice were killed and murine LPs were isolated from bone marrow using 

Lin
-
c-Kit

low
Sca1

low
IL-7Rα

+
 expression profile. Lin

-
c-Kit

low
Sca1

low 
cells were initially 

isolated by negative selection magnetic system (Figure 18.A) and then stained for IL-7Rα 

and sorted by FACS Vantage Flow Cytometer/Cell Sorter machine. These cells (Lin
-
c-

Kit
low

Sca1
low

IL-7Rα
+
) include about 0.2% of adult bone marrow cells (Figure 18.B). The 

purity of sorted population was always ≥ 95% (Figure 18.C). 

 

Figure 18- Purification of murine lymphoid progenitor (LP: Lin-c-KitlowSca1lowIL-7Rα+) cells. 

(A) Schematic representation of magnetic negative selection procedure. Lin
-
c-Kit

low
Sca1

low
 cells (B, Left) 

were stained with IL-7Rα antibody and those positive for IL-7Rα were gated and sorted by FACS Vantage 

Flow Cytometer/Cell Sorter machine. This subpopulation was representing about 2% of total bone marrow 

(B, Right). (C) Assessment of phenotypic purity of IL-7Rα 
+
 isolated fraction. Numbers indicate the 

percentage of the total cells localized in the indicated quadrants. 
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The lymphoid developmental potential of enriched LP pop of cells from bone 

marrow and the sorted LP population were determined in long term bone marrow culture 

(LTBMC) according to Whitlock-White (W-W) culture system (Figure 19). W-W culture is 

an established in vitro model system specific for the lymphoid-lineage hemopoiesis.
208

 The 

cultured cells were fed by the removal of the growth medium and replenishment with the 

fresh medium. Colonies were counted 3 weeks after the incubation. The myeloid-specific 

differentiation potential of murine HPCs was also verified by Whitlock-Witte culture 

system. The ratio of LP cells/Total Bone Marrow was calculated by limiting dilutions using 

the LDA program. We observed a linear relationship between the number of cells plated 

and the number of B-cell colonies obtained, with an average of 1 LP/5000 MNC (Table-3). 

As expected, LP cells did not show any erythro-myeloid activity evidenced by no growth in 

complete methylcellulose-based M3434 medium, and HPCs did not yield any cell with 

lymphoid-lineage potential in W-W culture system vice versa.  

 

Figure 19- Whitlock-Witte long-term bone marrow culture. Bone marrow cells from adult mice 

were extracted and plated on a fresh monolayer of S17 stromal cells. B-cell colonies were scored at day 21.  
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 Colonies/103 cells Colonies/103 cells 

 M3434 culture Whitlock-Witte assay 

HPC: Ly-6C-CD31highc-Kit+ 220 ± 25 0 

LP:Lin-c-KitlowSca1lowIL-7Rα+ 0 ND 

 Colonies/104 cells Colonies/104 cells 

Total Bone Marrow 41 ± 8 3.75 ± 1.2 

 

Table 3- The ratio of LP (lymphoid progenitor) cells/Total Bone Marrow was calculated by 

limiting dilutions using the LDA program. We observed a linear relationship between the number of cells 

plated and the number of B-cell colonies obtained, with an average of 1 LP/5000 MNC. As expected, LP cells 

did not show any erythro-myeloid activity evidenced by no growth in complete methylcellulose-based 

MethoCult M3434 medium by performing colony-forming cell (CFC) assays. Similarly, HPCs did not yield 

any cell with lymphoid-lineage potential in Whitlock-Witte culture system. 

Histone H3 acetylation (H3Ac) at the lysine-9 and -14 (K9) are well-established 

markers of active chromatin and presumably leads to the formation of a chromatin 

environment that promotes the accessibility of promoters to transcription factors and thus 

the transcription.
209

 We tested the hypothesis that β-globin locus is in active chromatin in 

LP cells that is manifested as increased histone acetylation at the K9 and k14 residues of 

the H3 histone associated with the LCR and γ- and β-promoters. Using ChIP assay, we 

studied the pattern of histone acetylation at the β-globin locus and showed for the first time 

that β-globin locus is in active chromatin configuration in LP cells evidenced by 

enrichment of H3Ac at LCR (HS3 and HS2) and γ- and β-promoters with a trend toward 

greater acetylation at HS2 and β-promoter (Figure 20.A). To determine if histone 

acetylation of β-globin locus is associated with increased interaction between transcription 
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factors and the regulatory regions, we performed ChIP analysis for E2A and HEB. Our data 

indicated that the chromatin acetylation status correlated with the binding of E2A (Figure 

20.B). The HS3, HS2 and β-promoter interacted mainly with E2A though minimal binding 

of HEB was also seen at LCR (HS3, HS2) (Figure 20.C). γ-promoters was also found to be 

positive for E2A (Figure 20.B). These results suggest the basal level of β-globin expression 

in LP cells is mediated by recruitment of E2A and minimal binding of HEB. Since ETO-2 

binding mediates the repressive effect, we examined the interaction of ETO-2 with the LCR 

and γ- and β-promoters using ChIP assay. All the regulatory regions exhibited high level of 

binding for ETO-2 (Figure 20.D). Thus the presence of ETO-2 could prevent high level of 

globin gene expression in LP cells. To obtain some more information, mRNA expression of 

human β-globin gene was determined by RT-PCR of total RNA obtained from LP cells and 

data was calculated as relative expression to HPCs (HPC/LP: 15X) and to erythroid cells 

(EryC/LP: 2400X). Taking all together, our findings suggest that human β-globin is in 

active chromatin in LPs characterized by H3Ac binding according to ChIP assays and basal 

level of expression according to RT-PCR results. 
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Figure 20- ChIP analysis of histone acetylation and interaction of E2A, HEB and ETO-2 

proteins with the human β-globin locus in LP (Lin-c-KitlowSca1lowIL-7Rα+) cells from adult ln2 mice. 

(A) Acetyl-histone H3 profiling of globin gene locus was assayed using ChIP. Immunoprecipitated chromatin 

with antibodies against (A) Acetyl-histone H3, (B) E2A, (C) HEB or (D) ETO-2, and unbound chromatin 

samples were subjected to real-time PCR with primer set specific for the human β-globin locus (HS3, HS2, 

human γ- and β-promoters) and with another primer set specific for mouse THP (kidney-specific Tamm-

Horsfall gene) gene promoter. The silent Amylase promoter was used as a negative control and to set the 

baseline of one-fold enrichment. The level of enrichment (according to the 2
∆∆Ct

 method)
210

 of globin regions 

relative to THP and input is shown by bars, with their corresponding standard deviations. A value of 1 

indicates no enrichment. Each value is the mean ± SD of at least three independent experiments. 
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Identification of factors bound to the human β-globin locus in fetal erythroid 

cells with E2A and HEB knock-out background 

Novel mouse models knock-out for E2A and HEB and transgenic for human β-

globin locus were generated after a long process of breeding of homozygous mutant mice 

for E2A and HEB (E2A +/- and HEB +/-) with males or females of ln2 +/+ background, 

respectively (Figure 21.H). As described above, E2A knockout (E2A-/-) and HEB knockout 

(HEB -/-) genotypes are almost always lethal before birth;
211

 therefore, hematopietic cells 

from E2A-and HEB-null backgrounds were harvested from fetal livers of 13.5 dpc 

embryos. All genotypes were confirmed by polymerase chain reaction. Representative PCR 

analyses of genomic DNA prepared from fraction of these cells and their corresponding 

PCR products are shown in Figure 9. All animals were maintained under specific-pathogen-

free conditions. 

Fetal liver erythroid cells (FL EryC 13.5 dpc) with E2A-/- ln2+ or HEB-/- ln2+ 

genotype were subjected to ChIP assays, in separate experiments, to investigate the effect 

of absence of either E2A or HEB on recruitment of other factors to β-globin locus. The 

alteration of transcriptional network at globin locus in erythroid cells and the possibility of 

compensatory factors, when E2A and HEB proteins are absent, can be investigated by such 

knock-out studies. ChIP samples from knock-out and wild-type backgrounds were prepared 

in simultaneous parallel experiments for each protein. As expected, both E2A and HEB 

were first detected at the regulatory regions, LCR and β-promoter, of β-globin locus in 

wild-type background (Figure 21.A and D). The pattern of recruitment was similar to and 

so confirmatory the data found in terms of erythroid cells (Ter119
+
) in normal ln2 

background. Neither E2A nor HEB was bound to γ-promoters in wild-type fetal liver 

erythroid cells (Figure 21.A and D). Similar enrichments were observed as high level of 

ETO-2 binding at both the LCR and β-promoter and also as minimal binding thereof at γ-

promoters (Figure 21.B and E). Generally, in both knock-outs, a slight increase in binding 

potential was observed for all factors when the ChIP results of knock-out backgrounds were 
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compared to those obtained from wild-type. That is, when ChIPs performed with HEB 

antibody on E2A-knouck-out FL EryCs and also when ChIPs performed with E2A 

antibody on HEB-knock-out FL EryCs, the higher level of enrichment was detected (Figure 

21.A and D). In addition, γ-promoters were found to be positive for both E2A and HEB in 

knock-out backgrounds (Figure 21.A and D). Further to such findings, one may argue that 

the recruitment of any of these two factors was either entirely independent of the presence 

of another indicating that their recruitment was not a reflection of the expression levels of 

the other and thus suggesting the existence of different protein complex at β-globin locus, 

or  they can have repressor activity independently. This increase in enrichment was more 

obvious in case of ChIP assays with anti-ETO-2 in both E2A and HEB knockouts (Figure 

21.A and D). When it came to ChIP assays for HDAC-1 protein, a lower level of HDAC-1 

enrichment was evenly detected at the LCR and β-promoter in wild-type and knock-outs of 

both E2A and HEB (Figure 21.C and F). Moreover, the γ-promoters were identified as 

negative for HDAC-1 recruitment in both E2A and HEB knock-outs (Figure 21.C and F).  

The E2A and HEB recruitment could not be detected by immunoprecipitation with 

related antibodies in corresponding knock-out background (Figure 21G), confirming the 

specificity of the antibodies used in the ChIP assays and genotypes of extracted fetal liver 

cells and the accuracy of ChIP experiments.  
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Figure 21- ChIP assays on fetal liver eythroid cells (13.5 dpc) with wild-type and knock-out 

backgrounds. Immunoprecipitated chromatin with antibodies against (A) HEB, (B, E) ETO-2, (C, F) HDAC-

1 or (D) E2A, and unbound chromatin samples either in E2A knock-out erythroid cells (A, B and C) or in 

HEB knock-out erythroid cells (D, E, F) were subjected to real-time PCR with primer sets specific for the 

human β-globin locus (HS3, HS2, human γ- and β-promoters) and with another primer set specific for mouse 

THP (kidney-specific Tamm-Horsfall gene) gene promoter. The similar assays were performed using 

antibodies against the knock-out proteins to control the ChIP experiments (G). The silent Amylase promoter 

was used as a negative control and to set the baseline of one-fold enrichment. The level of enrichment 

(according to the 2∆∆Ct method)
212

 of globin regions relative to THP and input is shown by bars, with their 

corresponding standard deviations. A value of 1 indicates no enrichment. Each value is the mean ± SD of at 

least three independent experiments. (H) Schematic diagram of generation and establishment of knock-out 

mouse models used in study and representative PCR analysis of genotype (see methods and Figure 9). 
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The combination of chromatin immunoprecipitation (ChIP) assay with real-time 

PCR has provided a major boost to quantitatively measure the relative interaction of 

transcription factors with endogenous chromatin sites in living cells.
213

 ChIP analyzing 

helps to understand how transcription factors select functional sites in the genome.
214

 This 

attests to the intense interest in the field globin research and the acknowledgement of the 

potential for animal modeling to advance understanding in this area. We utilized the power 

of mouse genetics to propose incisive information about the transcriptional control of β-

globin locus during hematopoiesis. Animal model of human β-globin locus, namely Ln2, is 

a widely accepted and well established model to investigate the molecular events regulating 

the β-globin locus during erytropoiesis.
215,216 

 

Understanding the in vivo function of the LCR and promoters will enrich our 

knowledge about the process of gene activation. While research on globin has shown a 

surge in popularity, no group has yet approached the crucial issue of the mechanisms by 

which E proteins regulate β-globin gene expression in vivo. In this respect, our results 

provide the first evidence to date to support the hypothesis that the E proteins E2A and 

HEB, are important transcription factors directly involved in regulating the human β-globin 

locus during hematopoietic differentiation. The present project is in a unique position to 

address these mechanisms, since we bring together data from different murine 

hematopoietic cell types containing normal human β-globin locus in combination with the 

study of knockout backgrounds. This mix is essential to fairly increase the body of 

knowledge in terms of transcriptional control of β-globin locus by E proteins. Data 

provided here could be employed in novel pharmacological approaches targeting the 

mechanisms involved in transcriptional control of β-globin gene expression and hopefully 

one would come up with new ideas for treatment of sickle cell anemia and/or β-

thalassemia.    
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Human β-globin locus in erythroid cells and murine HPCs 

ChIP experiments performed on chromatin prepared from murine erythroid cells 

and HPCs, harvested from transgenic mouse ln2, showed the strong binding of the E2A and 

HEB to HS3, and particularly to HS2 and β-promoter in both murine HPCs and EryC cells. 

The patterns of binding were roughly not affected by differentiation from HPCs to EryC 

cells suggesting that the recruitment of E2A and HEB per say is not modulating the 

transcription level of b-like globin genes during erythropoiesis. However, the pattern of 

recruitment suggest that E2A recruitment is more pronounced in HPCs while recruitment of 

HEB is increasing from HPC to EryC. This model is consistent with the pattern of 

recruitment and with the role that E2A and HEB play in lymphoid-lineage during B-cell 

and T-cell differentiation. That is, E2A is recruited to regulatory regions of lymphoid cell-

specific genes during lymphoid-lineage priming in the multipotent progenitor population
217

 

and HEB is involved in T-lymphoid and B-lymphoid lineage commitment and the 

expression of lymphoid-lineage specific genes in more mature cells.
218,219,220

 

Our results suggest that in non-committed hematopoietic progenitor cells the LCR 

and β-globin promoter are already occupied by E2A and HEB. We also show that the 

binding of E2A and HEB to crucial regulatory regions on β-globin locus, at specific stages 

of differentiation, is associated with ETO-2 and HDAC-1 factors. A noticeable binding of 

ETO-2 to β-promoter in HPCs could explains the basal-level of β-globin gene expression 

once the activating effects of E2A and HEB are counterbalanced by ETO-2 and thus 

suggests that the previously published complex
221

 which contains E2A, HEB and ETO-2 

present at β-promoter in HPCs. The reduction in ETO-2 binding to β-promoter in erythroid 

cells, even if E2A and HEB are highly recruited to both, the LCR and β-promoter, is 

consequential with the high-level of β-globin gene expression to erythroid cells. HDAC-1 

was also evenly recruited to HS3, HS2 and β-promoter in both HPCs and EryC suggesting 

that the repression activity of ETO-2 in HPCs is in part due to the recruitment of the 

transcription repressor HDAC-1. The fact that E2A and HEB binding could not be detected 
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(at significant level) by ChIP assays at γ-globin promoters, further supports the activating 

role of E2A and HEB in globin gene expression since the γ-globin genes are not 

transcriptionally active in EryC at that stage of development. The potentiation of globin 

genes in hematopoietic progenitor cells is actually gene specific during development and 

fits with the subsequent  transcriptional activation of the specific globin genes.
222

 
223

  

This differentiation-coupled recruitment of E2A, HEB and ETO-2 indicates the 

harmony between their recruitment to β-globin locus and lineage- differentiation along with 

commitment. Results from our study suggest that E2A and HEB form homo- and 

heterodimers that bind to erythroid cell-specific genes.   

Human β-globin locus in human primitive progenitor cells 

Human early hematopoietic forming progenitor cells (human CD34
+ 

cells) represent 

1-3% of total human bone morrow cells. Colony-forming assays have shown that this 

population includes all unipotent, colony units-granulocyte-macrophage (CFU-GM), CFU 

megakaryocyte (CFU-meg), burst forming units-erythroid (BFU-E) and multipotent 

progenitors CFU granulocyte/erythroid/macrophage/megakaryocyte (CFU-GEMM) as well 

as pre-CFU.
224

 ChIP analysis performed on human HPCs harvested from human 

leukapheresis samples showed that E2A and HEB bind to HS3, and particularly to HS2 and 

β-promoter, and seem to follow a similar pattern of recruitment. These results further 

suggest the importance of E2A and HEB in the human β-globin gene potentiation and in the 

basal level of gene expression in HPCs.  

Interestingly, we also found that E2A, HEB and also EKLF were associated with the 

γ-promoter. These findings were expected in the light of treatment of leukapheresis samples 

with stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) to increase 

CD34
+
 cell mobilization.

225
 SCF can induce γ-globin expression in adult human 

erythroblasts.
226

 Similarly, previous studies have reported that the reactivation of fetal 

hemoglobin (HbF, α2γ2) synthesis and erythroid cell proliferation can be achieved by 
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addition of biosynthetic GM-CSF.
227

 The mechanisms underlying HbF reactivation have 

not been elucidated yet, but the modification of chromatin structure of the β-like globin 

gene cluster is raised as a possible mechanism of action.
228

 HDAC-1 is present at all 

regulatory regions across the locus. HDACs can induce local condensation in chromatin 

through the deacetylation of the acetylated lysine residues in histone tail and block access 

of transcriptional factors.
229

 The histone deacetylase (HDAC) inhibitors like sodium 

butyrate (NaB) and trichostatin A (TSA) were shown to be able to maintain active 

chromatin structure at γ-globin promoter, via histone hyperacetylation, and thus maintain 

the expression of the fetal globin gene and HbF production.
230,231,232

 The γ-globin 

promoters may be up-regulated by binding of transcription factors evidenced herein by 

recruitment of EKLF, E2A and HEB and the absence of ETO-2 as a repressor of 

transcription. ETO-2 binding pattern to LCR and β-promoter but not to γ-promoters was 

again consistent with the low level of β-globin gene expression in early progenitor cells and 

the expected effect of GM-CSF in stimulating the promoters of γ-globin genes. These data 

recommend the pharmacologic agents able to alter the chromatin structure as attractive 

drugs to reach the clinically effective levels of HbF production and open new horizons to 

treatment of individuals with sickle cell anemia and β-thalassemia in the future.  

Human β-globin locus in murine lymphoid progenitor cells (LPs)  

We next focused on the β-globin locus in lymphoid progenitor cells (LPs) to 

investigate the epigenetic state of the promoter and an upstream control region (LCR). 

Murine LPs were isolated from adult bone marrow according to their specific cell surface 

markers (Lin
-
c-Kit

low
Sca1

low
IL-7Rα

+
).  

Histone H3 acetylation (H3Ac) at the lysine-9 (K9) is an epigenetic mark usually 

associated with active chromatin and is a characteristic of transcriptional activation in 

active genes.
233

 Acetylation of the histone tails disrupts histone binding to negatively 

charged DNA and thus forms an open active chromatin (euchromatin) that promotes the 

transcription factor binding, i.e. genes in open chromatin domains are prepared for 
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expression. Once the activator proteins bind to regulatory regions, transcription commences 

and high-level of gene expression is achieved. Firstly, histone modifications were analyzed 

by ChIP assays and general acetylation of H3 was observed at both the promoters of γ- and 

β-genes and LCR. By such findings, we showed for the first time that β-globin locus is in 

open chromatin configuration in lymphoid progenitor cells which is consistent with the 

basal level of expression of globin genes in lymphoid progenitors.   

There has been no previous study to directly characterize E2A and HEB binding to 

β-globin locus in lymphoid progenitor cells (LPs). In fact, the investigation of the 

chromatin organization and transcription factor recruitment at the beta-globin locus in LP 

has never been done before. The attempts were made to assess whether histone acetylation 

of β-globin locus is associated with increased interaction between transcription factors and 

the regulatory regions. There is a marked binding of E2A to regulatory regions, at both the 

LCR and promoters, across the locus. Moreover, HEB protein was found to be minimally 

present at LCR and β-promoter at a basal level. There was significant enrichment of ETO-2 

at both, the LCR and promoters that marks characteristic of repressed gene promoters. 

Thus, the β-globin gene locus may exist in an open chromatin conformation in LPs before 

terminal lymphoid differentiation, and the assemblage of functional transcription apparatus 

to the LCR and active promoters may be a lineage-specifying and rate-limiting step in 

activation of β-globin gene expression. The histone acetylation that we observed here is not 

exceptional. Previous studies have similarly shown that several active genes like interferon-

α (IFN-α)
234

 and hormone receptor-dependent genes
235

 in mammals, and PHO8 gene in 

Saccharomyces cerevisiae,
236

 are hypoacetylated to facilitate the recruitment of remodeling 

complexes. We conclude that histone the histone post-translational modifications and E2A 

binding to LCR and β-promoter in LPs results in a basal level of β-globin expression.  

To verify the transcriptional effects of these factors on β-globin gene expression 

following their binding to locus, we also studied the level of β-globin gene expression in 

LPs. The concentration of human β-globin gene mRNA was determined by RT-PCR of 
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total RNA obtained from LP cells and data was calculated as relative expression to HPCs 

(HPC/LP: 15X) and to erythroid cells (EryC/LP: 2400X). These results show that the H3 

acetylation and binding of E2A alone at the LCR and β-promoter is not sufficient for high 

level of transcription. This reduction of β-globin gene expression could be mediated in part 

by recruitment of ETO-2 to crucial regulatory regions. Other epigenetic mechanisms and 

repressive factors may also influence transcriptional activity and contribute to such 

decrease in expression.  

Our results suggest that the β-globin gene and promoter would first be 

epigenetically marked by histone H3 acetylation in LPs and by basal level of expression 

prior to differentiation to more mature lymphoid cells where the locus is epigenetically 

silenced by the formation of a heterochromatin structure.  

E2A and HEB are associated with lineage- differentiation and commitment  

Taken together, results of the present study suggest that a defined pattern of 

transcription factor binding is important for the specific activation of human globin 

promoters and the human globin LCR in HPCs and erythroid cells. We showed that E2A 

and HEB drive β-promoter and β-LCR activity in HPCs through their high-affinity binding 

to two important regulatory regions: LCR and β-promoter.  

Earlier in vivo studies have indicated that chromatin is in open configuration at the 

human β-globin promoters and β-LCR in HPCs. The chromatin accessibility and 

recruitment of activating transcription factors to human β-globin regulatory regions set the 

gene-specific potentiation in HPCs before erythroid-lineage commitment. Accessibility at 

HS2 and HS3 increases in mature erythroid cells comparing with HPCs.
237

 Herein, ChIP 

results from murine HPCs and human CD34
+
 cells suggest that β-globin gene-potentiation 

in HPCs are mediated in part by binding of E2A and HEB, particularly of E2A to β-LCR 

and β-promoter. During erythroid differentiation from HPCs to erythroid cells, ETO-2 

binding affinity decreases at the LCR and promoters as cells progress through the later 
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stages of erythroid differentiation. Thus, high-level of β-globin gene expression in erythroid 

cells versus basal-level of β-globin gene expression in HPCs are acquired, after further 

remodeling of LCR and β-promoter during differentiation, through binding of different 

factors and/or with different relative ratios to the same regulatory regions. The ETO-2 

counterbalances the activating effect of E2A and HEB in HPCs but not in erythroid cells. 

However, E2A and HEB alone are not sufficient and other factors are definitely required 

for an appropriate gene expression in different stages of differentiation. 

Significantly, our results suggest that the pattern of histone acetylation in LPs is 

important for the transcriptional potentiation of globin genes and, more interestingly, for 

the developmentally regulated expression of these genes in erythroid cells. We show that 

the promoters of human globin genes are epigenetically active such as evidenced by histone 

H3 acetylation in LPs and we suggest that this potentiation allows proper expression in 

terminally differentiated erythroid cells via the recruitment of activators and/or remodeling 

complexes.  

Human β-globin locus in E2A and HEB knock-out fetal erythroid cells 

Novel mouse models knock-out for E2A and HEB and transgenic for human β-

globin locus were generated in present project. Since E2A knockout (E2A-/-) and HEB 

knockout (HEB -/-) genotypes were almost always lethal,
238

 fetal EryC from E2A-and 

HEB-null backgrounds were harvested from fetal livers of 13.5 dpc embryos. About 80-

90% of cell population harvested from 13.5 dpc fetal liver consists of erythroid cells. No 

deviation in phenotype was detected in mice heterozygote for E2A (+/-) or HEB (+/-) or in 

13.5 dpc embryos. The knock-out study was a major advantage of this project as the 

alteration of transcriptional network at globin locus in erythroid cells and the possibility of 

compensatory factors could be investigated when E2A and HEB proteins were absent. 

ChIP assays were performed on fetal liver erythroid cells with wild-type and knock-

out (E2A-/- ln2+ or HEB-/- ln2+) backgrounds in simultaneous parallel experiments. Both 
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E2A and HEB were detected at the regulatory regions, LCR and β-promoter, on β-globin 

locus in wild-type, which further emphasized their presence as a part of transcriptional 

network involved in β-globin gene expression. These data are consistent with our findings 

in erythroid cells (Ter119
+
) in normal ln2 background. With similar explanation, neither 

E2A nor HEB was bound to γ-promoter in wild-type fetal liver erythroid cells while high 

level of enrichment was seen for ETO-2 at both LCR and β-promoter besides its minimal 

binding to γ-promoter.  

In both E2A and HEB knockouts, a slight increase in binding potential was 

observed for all factors when the ChIP results of knock-out backgrounds were compared to 

those obtained in wild-type. In addition, γ-promoters was found to be positive for both E2A 

and HEB in knock-out backgrounds. The absence of E2A in the knockout mice could be 

compensated by recruitment of HEB, and vice versa. The in vivo association of E2A and 

HEB to LCR and β-promoter indicates that a knockout of E2A or HEB gene does not 

inhibit the recruitment of the other. In other words, the recruitment of any of these two 

factors is independent of the presence of the other indicating that their recruitment is not a 

reflection of the expression levels of the other. 

These observations suggest that neither E2A nor HEB are the limiting factor for the 

formation and recruitment of the ETO2 containing complex sitting at the locus. E2A and 

HEB are most likely in that complex but only one of them is sufficient for the recruitment 

of this ETO-2 complex to the locus. Given the dynamic nature of these protein complexes 

and widespread nature of E protein expression, their expression levels and their relative 

ratio could fluctuate during hematopoiesis and consequently master the lineage-specific 

gene expression. One may argue that E2A and HEB proteins can be present in different, 

and at least in more than one, protein complexes at locus and therefore be targeted to 

regulatory sequences through participation in different protein complexes. Supporting this 

issue, E2A and HEB are recently demonstrated to bind to β-globin LCR and β-globin gene 

promoter during erythroid differentiation via two different protein complexes of ETO-2 and 
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TAL-1, and TAL-1, HEB and E2A protein levels have been shown to fluctuate during 

differentiation. The detachment of ETO-2 complex, evidenced by decrease in level of ETO-

2, allows the activation of late erythroid genes. Therefore, the function of E2A and HEB in 

transcription activation has been postulated through the cooperation of multiple 

transactivators. 
239

 

  Conclusion 

In closing, we wish to emphasize that the ability of E proteins to form different 

homo/heterodimers make them challenging to study, but our results suggest that E-protein 

are key players in the expression of β-globin gene during erythroid differentiation from 

HPCs to mature erythroid cells. The accumulation of E proteins increases at β-globin locus 

in parallel with lineage-specification and commitment. As discussed here, initially in 

triggering hematopoiesis and later at each step of differentiation, the accumulation of a 

large amount of small changes in chromatin structure and transcription factors will form a 

finely orchestrated network necessary for developmental changes. The expression of a 

variety of tissue-specific genes is potentiated in progenitor cells and the chromatin 

preserves an accessible configuration for transcriptional machinery. Gene potentiation 

appears to counterbalance epigenetic silencing of lineage-specific genes in early 

progenitors, while maintaining an accessible chromatin conformation in the lineage 

pathway selected. Our results emphasize the complementary role of locus control region 

(LCR) or LCR-like structures and promoter regions in gene-specific potentiation events. 

The interplay between ubiquitous transcription factors, lineage-specific transcription 

factors, and chromatin remodeling activities determines the outcome of transcription. In 

addition, different sets of E protein target genes could be activated at each step. A 

comprehensive understanding of how E proteins could regulate globin gene expression 

calls for more studies from a molecular standpoint.  
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