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Abstract

This thesis makes a contribution to the event study methodology. We
first provide a unified methodology to test the main hypotheses of
interest when the events cluster in time. Second, we apply a boot-
strap inference method the our event study approach. The bootstrap
here has two functions: (1) it provides a method of testing hypothe-
ses for which there is no parametric counterpart, and (2) it corrects
for possible biases due to non-normalities and serial correlation in the
data. Finally, Monte Carlo simulations show in which case the infer-
ence methods proposed in this thesis are well specified.
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1 Introduction

Since the seminal paper by Fama, Fisher, Jensen, and Roll (1969), whose

number of citations exceeds 5001, more than 500 event studies have been

published2. Fama, Fisher, Jensen, and Roll (1969) were the first to provide

a methodology for testing the statistical significance of the effect an event of

interest has on a firm or portfolio return. This methodology has proven to

be very useful in a variety of finance related fields such as corporate finance,

accounting, management, etc. Examples are studies of the impact of mergers

and acquisitions, stock splits, new legislations, earning announcements, and

other finance related events, on the profitability of firms.

A vast literature on the theory of event study methods also exists. The

main references are Campbell, Lo, and MacKinlay (1997), Binder (1998) and

Khotari and Warner (2007). But many papers extend the basic methodology

in several directions. In this thesis, we are interested in the case where the

event of interest occurs during the same calendar day for every firm under

study. This has been called "clustering" in the literature. The first papers

that studied this case are Schipper and Thompson (1983, 1985) and Binder

(1985). They use an econometric method called MVRM (for Multivariate

Regression Method). This method is a special case of the more general SURE

methods in econometrics (Seemingly Unrelated Regression Equations).

The contribution of our study is first to provide a unified framework

for estimating and testing abnormal returns. For this, we simplify greatly

the MVRM approach by the use the Frisch-Waugh-Lowell theorem and also
1According to Binder (1998).
2According to the census made by Khotari and Warner (2007)
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by the use of well known properties of the vec operator. Our methodology

provides a unified means for testing different kinds of hypotheses.

Another extension of the event study methodology that is provided in

the literature is for improving robustness of inference. The classical hy-

pothesis tests are almost all based on the assumption of independent and

normally distributed residuals. However, it is well known that financial data

are characterized by non-normalities, expecially non-zero skewness and ex-

cess kurtosis, but also time series dependence (see e.g. Kramer, 2001).

A strand of literature has tried to provide robust inference methods in the

case of non-normalities (Kramer, 2001), clustering events (Chou, 2004) and

serial correlation of the residuals (Hein and Westfall, 2004). The technique

used is the bootstrap. Our contribution is to go further in this direction. The

bootstrap is an inference method that uses resamples of the data in order

to study in a non parametric way the distribution of the test statistic. This

method has proven to be very useful either when no parametric distribution

exists for some test statistics, or when small samples and non-normalities

alter the existing parametric methods. The bootstrap was introduced by

Efron (1979) and has been studied extensively in the econometric literature

(for references, see Horowitz, 2001).

Some characteristics of financial data contribute to bias existing para-

metric inference methods. The type of bias that we study in this thesis is

when the true error type I is not equal to the specified level of the test. This

means that the test will either over-reject the null hypothesis or under-reject

(i.e. will be too conservative). We control the level of tests by the use of

Monte Carlo simulations.
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In the event study literature, two types of Monte Carlo simulations are

used to assess event study tests. The first type is what we could call "pure"

Monte Carlo. It generates artificial data from a pre-specified distribution

(i.e. the data generating process). When using this approach, researchers

usually use distributions that closely match characteristics of real financial

data. The second type of Monte Carlo experiment is called "historical"

Monte Carlo (see Binder, 1985; Butler and Frost, 1992). It uses a vast

sample of historical financial data, and it uses random subsamples (instead of

artificial data). The main advantage of this last method is that the researcher

does not have to specify fully the data generating process. On the other hand,

it has the drawback that if the test turns out to be biased, the researcher

cannot determine exactly which characteristic of financial data is responsible

for it. In this thesis, we use "pure" Monte Carlo methods in which we test

separately the robustness of the inference methods for each aspect. This

permits us to pin-point to the exact cause of mis-specification of some tests.

This thesis is organized as follows. The next section introduces the basic

event study methodology as it is exposed, for instance, in Campbell, Lo,

and MacKinlay (1997). Then, in Section 3 we expose in length our uni-

fied approach for event studies, and we precisely characterize three types of

hypotheses that can be tested, as well as their test statistics. The follow-

ing section reviews the existing bootstrap methods for event study analysis.

Section 5 shows descriptive statistics from real financial data, in order to

precisely specify the data generating process used in our Monte Carlo exper-

iment. In Section 6, we present and analyze the results of our Monte Carlo

experiments, in comparison with other existing inference methods. Finally,
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Section 7 concludes.

2 The classical event study methodology

The classical event study methodology is explained in Campbell, Lo, and

MacKinlay (1997, Chap. 4). In this section we introduce the notation and

summarize the method. An event study aims at measuring the effect a given

event has on a security’s return. In order to do this, the researcher uses a

benchmark model for predicting the returns. The parameters of this model

are estimated using data prior to the event, i.e. the estimation window. In

the event window, where the actual event occurs, the predicted returns from

the model are compared with the true returns. Then, an inference is made

to determine if the difference between the true returns and the predicted

returns is statistically different from zero.

The most common benchmark model is the market model, inspired by the

CAPM (Capital Asset Pricing Model). The data used is the firm’s returns

and the market returns (as proxied by the returns on a relevant market

index). The parameters are the firm’s β and the intercept, α. The so-called

normal returns are the firm’s returns during the event window predicted by

the market model. The normal returns minus the firm’s actual returns are

what we call the abnormal returns. If these abnormal returns are not zero,

the researcher concludes that the event has affected the returns of the firm.

The estimation window has typically 250 daily observations, i.e. one year

of returns. The event window can have different lengths, depending on the

application. In this paper, we concentrate on short term effects of events, so
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Figure 1: Time line of an event study

This figure represents the time line of a typical event study. The estimation window starts
at time T0, ends at T1 and has n observations. Typically, the event of interest occurs at
time Te, i.e. at observation number n + 1. The event window has m observations, ends at
time T2. In total, there are T = n + m observations.

that the event window has ten observations. Long term event studies have

their own issues, which we do not treat here. See reviews by Binder (1998)

and Khotari and Warner (2007).

The parameters of the benchmark model are estimated in the estimation

window with observations from T0 to T1, i.e. n observations. Then, the

abnormal returns are computed for the m periods of the event window.

Figure 1 illustrate the notation and timing of a typical event study.

The parameters are estimated using the following regression equation:

rt = α+ βrmt + εt , t ∈ [T0, T1] ,

where rt is the return of the firm between at time t, rmt is the return of the

market index and εt is an error term. Then, using the estimated parameters

and the explanatory variable (here: the market return), we obtain the normal

returns for the event window. The abnormal returns, AR, are then obtained

by subtracting the actual return by the normal return:
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r∗t = E [rt|rmt] , t ∈ [T1 + 1, T2]
= α̂+ β̂rmt ,

where r∗t is the predicted, or normal, returns.

ARt = rt − E [rt|rmt] t ∈ [T1 + 1, T2]
= rt − r∗t

The statistic of interest is the cumulative abnormal return over the event

window, or CAR for short. The null hypothesis is that the event has no effect

on the firm’s return, i.e. H0 : CAR = 0. To determine a test statistic and its

distribution, we need some assumption on the ARs.

If we assume that the ARs are i.i.d. normally distributed, then the CAR

is the sum of m normally distributed variables. The ARs have mean zero

under the null hypothesis. Their variance has a component that is due to

the variance of the residuals of the estimation window regression, σ2
ε and

another component that is due to the estimation uncertainty.

V [AR|rm] = σ2
εIm + σ2

εX
∗ (
X ′X

)−1
X∗′ , (1)

where σ2
ε is the variance of the residuals from the estimation window re-

gression, Im is an identity matrix of size m, X∗ is a m × 2 matrix of the

regressors in the event window and X is the matrix of the regressors in the

estimation window. See Campbell, Lo, and MacKinlay (1997, p. 159) for a
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formal derivation of this result. We can now derive the distribution of the

CAR:

E [CAR|rm] = ι′mE [AR|rm]
V [CAR|rm] = ι′mV [AR|rm] ιm ,

where ιx is a column vector of ones of size x. The test statistic is called J1

and is computed as follows:

J1 =
E [CAR|rm]√
V [CAR|rm]

. (2)

The test statistic follows a Student t distribution with n − 2 degrees of

freedom (because the σ2
ε was estimated with n observations and there are 2

parameters: α and β).

In the case where multiple firms are affected by the event, the case that

interests us, the test can be done by aggregating the CARs of the firms. This

is done by taking the average of the individual CARs, or CAR. Under the null

hypothesis, no firms are affected by the event, implying that the expected

value of CAR is zero. More formally, H0 : CAR = 1
N

∑N
i=1CARi = 0 and the

alternative hypothesis is H1 : CAR 6= 0 (two-sided test). To compute the

variance, we have to assume that the individual CARs are independent (this

is true when there is no clustering), and we sum the individual variances.

The test statistic then becomes:
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J1 =
CAR√

1
N2

∑N
i=1 V [CARi|rm]

=
1
N

∑N
i=1CARi√

1
N2

∑N
i=1 V [CARi|rm]

=
∑N

i=1CARi√∑N
i=1 V [CARi|rm]

.

Campbell, Lo, and MacKinlay (1997) provide no small sample distribu-

tion for this statistic, only an asymptotic distribution, which is the standard

normal distribution as the number of firms, N , tends to infinity. This means

that the test is best used when the number of firms under study is large.

Campbell, Lo, and MacKinlay (1997) provide an alternative test statistic

called J2, which is similar to the J1 test. The difference is that the J2 test

is performed by scaling each CAR by its standard deviation (the standard

deviation of the CAR is closely related to the standard deviation of the

idiosyncratic risk, σε). In other words, it is a weighted average of the CARs

instead of the average CAR like in the J1. The rationale of this method

is to give more weight to the firms with lower residual variance, in order

to increase the power of the test (see Campbell, Lo, and MacKinlay, 1997,

p. 162). See de Roon and Veld (1998) for a similar approach.

The J2 statistic is constructed by weighting the CAR of each firm by its

standard deviation, then by summing the standardized CARs and finally by

multiplying by an adjustment factor:
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J2 =
[
N(n− 2)
n− 4

]− 1
2

N∑
i=1

SCARi ,

where SCAR stands for standardized CAR and is defined as:

SCARi =
CARi√

V [CARi|rm]
.

The J2 statistic is the sum of N independent t statistics with n − 2

degrees of freedom. Each standardized CAR has mean zero and variance

n−2
n−4 under the null. Assuming the CARs to be independent, the sum of N

standardized CARs has mean zero and variance N(n−2)
n−4 . This means that

multiplying by
[

N(n−2)
n−4

]− 1
2 , we have a statistic that follows the standard

normal distribution asymptotically, as N goes to infinity (see Campbell, Lo,

and MacKinlay, 1997, Chap. 4).

Although Campbell, Lo, and MacKinlay (1997) treat only one hypothesis

to test in event studies, in the literature we see more hypotheses in which

researchers are interested. Indeed, the hypothesis treated above (call it H1)

is typically used when the researcher knows that the event induces abnormal

returns to firms in the same direction (either positive or negative) and he

wants to test whether the average effect across firms is statistically significant

or not. Alternatively, a researcher could want to do an event study when

all firms are not thought to have abnormal returns in the same direction

(some firms might profit from the event, others might be worse off). Then,

a more adapted hypothesis (H2) would be that all CARs are jointly equal

to zero. A third possible hypothesis (H3) would be to study whether all

abnormal returns for all firms and all event period are jointly equal to zero.

11



This hypothesis is typically used when the number of firms under study is

small.

In all hypotheses, the length of the event window can vary depending on

the research question. But the third hypothesis uses usually a short event

window. The second and third hypotheses are mostly used when there are

reasons to think that returns react slowly to the event, or when the exact

time at which the event occurred in not known precisely. In the next section,

we will treat all three hypotheses using two approaches: in the spirit of the

J1 test (i.e. no weighting) and in the spirit of the J2 test (i.e. by weighting

the abnormal returns by their standard deviation).

As mentioned in the introduction, there are three problems with this

methodology. First, most of the test statistics that have been developed

by econometricians are based on the assumption of normality and are valid

asymptotically. Moreover, some test statistics have distributions that are

defined only approximately (see for instance Butler and Frost (1992)). This

problem is especially severe when the sample size (either n or N) is small

and is treated by the use of resampling methods like the bootstrap. Section

4 will look what has been suggested in the literature to treat this problem.

The second problem is the fact that residuals exhibit cross-sectional corre-

lation when the event is clustering in time. This aspect is explicitly taken into

account by the method called MVRM (for Multivariate Regression Model).

The next section will develop in length this method. The third problem is

related to serial correlation of the residuals. In Section 4, we will see how

researchers in the literature have treated it.

The next section will study in length the estimation techniques and the
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test statistics for testing the three above mentioned hypothesis.

3 A unified methodology

In this section we explain the event study methodology and testing methods

that have been introduced in the literature. The main estimation techniques

are in Campbell, Lo, and MacKinlay (1997), but the approach does not in-

clude the dummy variable method from Karafiath (1988) and the MVRM

framework from Schipper and Thompson (1983, 1985). The main contribu-

tion of our exposition is to merge these approaches and to provide a unified

and consistent approach that embodies and simplifies the three approaches.

As for the inferences, we will distinguish between three types of hypothe-

ses to test. All these hypotheses can be done in a J1 spirit or in a J2 spirit.

In the next subsection, we briefly discuss some properties of the Kro-

necker product and the vec operator that will be used in the following devel-

opment. Subsection 3.2 explains how to estimate the abnormal returns in the

MVRM framework. Subsection 3.3 explains a way to simplify the calcula-

tions both analytically and computationally using the Frisch-Waugh-Lowell

(or FWL) theorem. Subsection 3.4 shows that estimating the abnormal re-

turns equation by equation (i.e. firm by firm) is mathematically equivalent

to estimating them in the MRVM framework, when one treats correctly the

covariance matrix of the residuals. Subsection 3.6 explains what are the 2

types of tests that are explained in Campbell, Lo, and MacKinlay (1997):

the J1 and J2 tests. The three most common hypothesis to test in event

studies are explained in Subsection 3.5. Each of them will be developed sep-
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arately in Subsections 3.7, 3.8 and 3.9, and each of them will treat both the

J1 and J2 approaches.

3.1 Preleminary: the Kronecker product and vec operator

The Kronecker product uses the symbol ⊗ and means that 2 matrices are

to be multiplied, but differently from the normal matrix multiplication. Let

A be a matrix of size m × n, B a matrix of size o × p. Then A ⊗ B means

that each element of A multiplies the whole matrix B and the result forms

matrix C, which is of size mo× np. Here is an example:

[
a11 a12

a21 a22

]
⊗B =

[
a11B a12B
a21B a22B

]
There is no conformity requirement for the Kronecker product, contrary

to the normal matrix multiplication. Matrices A and B can be of any size,

including vectors and scalars. If one of the matrices is actually a scalar, the

Knonecker product collapses to a normal product of a scalar with a matrix.

If both matrices A and B are scalars, the Kronecker product is simply the

normal multiplication of two scalars.

Useful properties include:

1.
(A⊗B)′ = A′ ⊗B′

2.
(A⊗B) (C ⊗D) = AC ⊗BD

for conforming matrices A, C and B, D.

3.
(A⊗B)−1 = A−1 ⊗B−1

14



for invertible matrices A and B.

The vec operator transforms a matrix into a column vector by stacking

all the columns of the argument. Here is an example:

vec(A) = vec
([

a11 a12

a21 a22

])
=


a11

a21

a12

a22


Useful properties include:

1. (
B′ ⊗A

)
vec(C) = vec(ACB)

for conforming matrices A, B and C.

2.
vec(C)′(B′ ⊗A)vec(C) = tr(C ′ACB)

for conforming matrices A, B and C, and where tr is the trace operator
(i.e. the sum of all the diagonal elements of the argument matrix).

3.2 Estimation

This subsection treats the estimation of abnormal returns. We will use the

MVRM framework introduced first by Schipper and Thompson (1983, 1985)

and the dummy variable technique as formalized in Karafiath (1988).

The MVRM framework is a special case of the SURE (Seemingly Un-

related Regression Equations) methodology that has the same regressor for

every equation3. In event studies, the regressor is the market return and a

set of dummy variables. The dummy variables a la Karafiath (1988) is a set

of m dummy variables, where m is the length of the event window for which
3See for instance Greene (2003, Chap. 14) for an introduction to SURE methods.
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we want to assess the abnormal returns of the firms. Each dummy variable

is a column of zeros with a single 1 at the position of the corresponding event

window observation.

The estimation window has n observations, and we have N firms that

are clustering exactly in time (hence the MVRM framework for identical

regressors). Let T be the total length of the observation and estimation

window, T = n+m. Let ri be the vector of returns of firm i, i = 1, . . . , N .

Let εi be the vector of regression errors for firm i that are i.i.d. with mean

zero and variance σ2
i . At a given time period, the errors of the firms are

correlated (cross-sectional correlation):

cov(εis, εjt) =


σ2

i if i = j and s = t
σij if i 6= j and s = t
0 if i 6= j and s 6= t

For now, we assume that there is no serial correlation in the error terms

(hence the i.i.d. assumption above). We will relax this assumption when

treating the bootstrap below.

The regression model is the following.

r = Gγ + ε , (3)

where
r =

[
r′1 r′2 · · · r′N

]′
, a NT × 1 vector,

ε =
[
ε′1 ε′2 · · · ε′N

]′
, a NT × 1 vector,

G =


X̄ 0 · · · 0
0 X̄ · · · 0
...

...
. . .

...
0 0 · · · X̄

 = IN ⊗ X̄ ,
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X̄ = [X D] , X = [ιT rm] , D =
[

0n×m

Im

]
,

where ιT is a column vector of length T and rm is the vector of market
returns of length T , and

γ =
[
α1 β1 δ′1 α2 β2 δ′2 · · · αN βN δ′N

]′
where αi is the intercept of each firm, βi is the slope estimator (the firm’s

beta) and δi is the firm’s vector of abnormal returns (of length m).

Since we allow for cross-sectional correlation between firms but no se-

rial correlation (for the moment), the regression errors have the following

covariance matrix:

V [ε|X] = ΣN ⊗ IT ,

where ΣN is a positive definite covariance matrix (the index N is simply to

emphasize that the matrix is of size N ×N).

The estimation is done by simple OLS.

γ̂ =
(
G′G

)−1
G′r

=
[(
IN ⊗ X̄ ′) (

IN ⊗ X̄
)]−1 (

IN ⊗ X̄ ′) r
=

(
IN ⊗ X̄ ′X̄

)−1 (
IN ⊗ X̄ ′) r

=
[
IN ⊗

(
X̄ ′X̄

)−1
X̄ ′

]
r

If we assume that the firms have different variance of their residuals (that

is, they have a different variance of idiosyncratic risk), one could use GLS

instead of OLS. But it is known in the literature that the GLS estimator is
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mathematically equivalent to the OLS estimator in the case of the MVRM

framework. See for instance Greene (2003).

The expectation of the estimator is:

E [ γ̂|X] = γ +
[
IN ⊗

(
X̄ ′X̄

)−1
X̄ ′

]
ε .

Its variance is:

V [ γ̂|X] =
[
IN ⊗

(
X̄ ′X̄

)−1
X̄ ′

]
V [ε|X]

[
IN ⊗ X̄

(
X̄ ′X̄

)−1
]

=
[
IN ⊗

(
X̄ ′X̄

)−1
X̄ ′

]
(ΣN ⊗ IT )

[
IN ⊗ X̄

(
X̄ ′X̄

)−1
]

= ΣN ⊗
(
X̄ ′X̄

)−1

An estimator for ΣN could be for instance

Σ̂N =
E′E

T −m− 2
=

E′E

n− 2

where E is a T ×N matrix of the residuals, i.e. E = [ε̂1 ε̂2 · · · ε̂N ]. See

Schipper and Thompson (1985).

3.3 Short-cut: using the FWL theorem

There is a way to simplify the computations by using the FWL (for Frisch-

Waugh-Lowell) theorem (Davidson and MacKinnon, 2004, see e.g. ). This

theorem provides a method to estimate directly the abnormal returns, with-

out having the α s and βs in the estimator vector.

Assume for now that we have N = 1 and so we leave the MVRM frame-

work. We have X̄ = [X D] as defined above. Then
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r = X̄γ + ε

= X

[
α
β

]
+Dδ + ε

If we pre-multiply all the terms by the idempotent projection matrix

M = IT −X (X ′X)−1X ′, we have

Mr = MX

[
α
β

]
+MDδ +Mε

= MDδ + ξ

because MX = 0. The estimator for δ becomes:

δ̂ =
[
(MD)′ (MD)

]−1 (MD)′ r

=
(
D′MD

)−1
D′Mr

We can simplify further by noticing that the matrices D and M can be

written as block matrices:

D =
[

0n×m

Im

]
M =

[
M11 M12

M21 M22

]
,

where the four matricesM11, M12, M21 andM22 are of size n×n, m×n, n×m

and m×m, respectively. The matrix multiplication D′MD can simplify to:

D′MD = [0m×n Im]
[
M11 M12

M21 M22

] [
0n×m

Im

]
= M22
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The estimator for δ then becomes simply:

δ̂ = M−1
22 D

′Mr .

We now come back to the MVRM framework where N ≥ 1. The FWL

theorem can be applied to the MVRM model (3) by pre-multiplying each

term by (IN ⊗M). Let y be the vector of firm returns that has been pre-

multiplied by the above matrix. Similary, let Z be the pre-multiplied matrix

G, i.e.

Z = (IN ⊗M)G
= (IN ⊗M)

(
IN ⊗ X̄

)
=

(
IN ⊗MX̄

)
= (IN ⊗MD) .

The model becomes

y = Zδ + ξ ,

and the estimator the the abnormal returns is:

δ̂ = (Z ′Z)−1Z ′y

=
[
(IN ⊗MD)′(IN ⊗MD)

]−1 (IN ⊗MD)′(IN ⊗M)r
= (IN ⊗D′MD)−1(IN ⊗D′M)(IN ⊗M)r
= (IN ⊗M−1

22 )(IN ⊗D′M)r
= (IN ⊗M−1

22 D
′M)r .
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And the variance of the estimator is

V
[
δ̂
∣∣∣X]

= (IN ⊗M−1
22 D

′M)V [(IN ⊗M)ε|X] (IN ⊗MDM−1
22 )

= (IN ⊗M−1
22 D

′M)(IN ⊗M)V [ε|X] (IN ⊗M)(IN ⊗MDM−1
22 )

= (IN ⊗M−1
22 D

′M)(ΣN ⊗ IT )(IN ⊗MDM−1
22 )

= Σ⊗M−1
22 D

′MDM−1
22

= Σ⊗M−1
22

This simplification using the FWL theorem will prove to be useful, below,

for imposing linear restrictions on the abnormal returns for the purpose of

testing.

3.4 SURE or equation by equation?

In this section, we will show that actually, we do not need the Kronecker

product for estimation. We show that the SURE framework can be avoided

by estimating the abnormal returns equation be equation, and this leads to

the same result.

This might be useful when, instead of stacking all the firms’ returns in a

single vector, one would have to keep the returns in a matrix of size T ×N .

This properties of the MVRM method is simply shown by using the vec

operator (see Subsection 3.1). Start with the above equation for the OLS

estimation of the abnormal returns. Then, define the matrix R to be the

unstacked firms’ returns, i.e. R = [r1 r2 · · · rN ]. With the vec operator,

this means that vec(R) = r. Then, using the properties of the vec operator

and the Kronecker product, we have that:
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δ̂ = (IN ⊗M−1
22 D

′M)r
= (IN ⊗M−1

22 D
′M)vec(R)

= vec(M−1
22 D

′MRIN )
= vec(M−1

22 D
′MR) .

We can then define ∆̂ to be the un-stacked matrix of abnormal returns,

which is simply ∆̂ = M−1
22 D

′MR. This matrix is of size m × N . In other

words, ∆̂ =
[
δ̂1 δ̂2 · · · δ̂N

]
and vec(∆̂) = δ̂.

We have just shown that the estimation of the abnormal returns in the

MVRM framework is mathematically equivalent to equation by equation

estimation. Also, we have shown how to avoid completely the vec operator

and the Kronecker product in the computations.

In the next subsections, we will speak about hypothesis testing.

3.5 Three hypotheses to test

The most common hypotheses to test from the literature (Chou, 2004, see

e.g. ) in event studies are:

1. The average cumulative abnormal return across firms is equal to zero.

H1 :
1
N

N∑
i=1

m∑
j=1

δij = 0 or
1
N
ι′m∆ιN = 0

2. All cumulative abnormal returns during the event period are all jointly
equal to zero.

H2 :
m∑

j=1

δi,j = 0 ∀ i or ι′m∆ = 01×N
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3. All abnormal returns are jointly equal to zero for all firms and all event
periods.

H3 : δij = 0 ∀ i, j or ∆ = 0m×N

3.6 Two approaches for testing

There seems to be two approaches for testing the above hypotheses. The first

one is in the spirit of the J1 test of Campbell, Lo, and MacKinlay (1997).

The test statistic is either the t statistic, in the case of hypothesis 1, or the

Wald statistic in the case of hypotheses 2 and 3.

The second approach is used when there is heterogeneity across firms,

i.e. when the variance of the residuals is different from one firm to another.

In other words, when the idiosyncratic variance differs across firms. This

approach gives a different weight to the abnormal returns depending on the

residual variance. It is in the spirit of the J2 test in Campbell, Lo, and

MacKinlay (1997). It can be shown that hypotheses 1 and 2 are tested with

an increased power when this approach is used. But the third hypothesis

turns out not to be affected when using this approach (see below).

In each hypothesis, a test statistic is computed similarly to the Wald

statistic, see Schipper and Thompson (1985). For this, we need a restriction

matrix A′ that will pre-multiply the estimator of the abnormal returns. For

the first approach, in the spirit of the J1 test, the Wald statistic becomes:

W̃ 1 =
(
A′δ̂

)′
V

[
A′δ̂

∣∣∣X]−1 (
A′δ̂

)
= δ̂′A

{
A′V

[
δ̂
∣∣∣X]

A
}−1

A′δ̂
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For the first hypothesis, there is a single linear restriction, so that A is a

vector, and thus a t statistic can be used instead of the Wald statistic:

t̃1 =
A′δ̂√

V
[
A′δ̂

∣∣∣X] =
A′δ̂√

A′V
[
δ̂
∣∣∣X]

A

In the second approach, the J2-type test, we need a weighting matrix for

the abnormal returns. This matrix is obtained from the estimated variance

of the abnormal returns. Define ψ such that ψ2 = ψψ = Σ−1
N and similarly,

define θ such that θ2 = θθ = M22. We then see that:

V
[
δ̂
∣∣∣X]−1

=
(
ΣN ⊗M−1

22

)−1

= Σ−1
N ⊗M22

= ψ2 ⊗ θ2

= (ψ ⊗ θ)(ψ ⊗ θ)

The idea behind the J2 test is to pre-multiply the parameter vector δ̂ by

(ψ ⊗ θ). In this case, the Wald statistic becomes:

W̃ 2 =
[
A′(ψ ⊗ θ)δ̂

]′
V

[
A′(ψ ⊗ θ)δ̂

∣∣∣X]−1 [
A′(ψ ⊗ θ)δ̂

]
= δ̂′(ψ ⊗ θ)A

{
A′(ψ ⊗ θ)V

[
δ̂
∣∣∣X]

(ψ ⊗ θ)A
}−1

A′(ψ ⊗ θ)δ̂

For the first hypothesis, the J2 approach gives:
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t̃2 =
A′(ψ ⊗ θ)δ̂√

V
[
A′(ψ ⊗ θ)δ̂

∣∣∣X] =
A′(ψ ⊗ θ)δ̂√

A′(ψ ⊗ θ)V
[
δ̂
∣∣∣X]

(ψ ⊗ θ)A

The difference between, on one side, the J1 and J2 statistics as they are

presented in Campbell, Lo, and MacKinlay (1997), and on the other side the

t̃1 and t̃2 is that here we have only firms that cluster in time, so that the

regressors are exactly the same (the market return is the same for all firms).

In the book, they explain the methodology when firms do not cluster, and

thus they have different values for the corresponding market return. But in

this case, there is no problem of cross-sectional correlation.

In the next subsections, we will derive with more details the exact test

statistics to compute.

3.7 Hypothesis 1

As shown above, hypothesis 1 means that the average cumulative abnormal

return is zero. The t statistic is used here. Econometric theory tells us that

multiplying by a constant does not change the value of the test statistic.

This means that the test is the same as testing whether the sum (instead of

the average) of the cumulative abnormal returns is zero. We will thus test

the following linear restriction:

A′δ̂ = (ι′N ⊗ ι′m)δ̂ = ι′m∆̂ιN

The variance is:
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V
[
A′δ̂

∣∣∣X]
= A′V

[
δ̂
∣∣∣X]

A

= (ι′N ⊗ ι′m)
(
ΣN ⊗M−1

22

)
(ιN ⊗ ιm)

= ι′NΣN ιN ⊗ ι′mM
−1
22 ιm ,

which is a scalar. The t statistic is:

t̃11 =
ι′m∆̂ιN√

(ι′NΣN ιN )× (ι′mM
−1
22 ιm)

.

For the case where ΣN = σ2IN and V [ε|X] = σ2INT , the test statistic is

distributed exactly as Student t distribution withN(n−2) degrees of freedom

(following standard econometric theory). But when there is heteroscedastic-

ity across firms and structure is imposed on the covariance matrix of the

residuals, we are in a GLS framework. According to Greene (2003), the dis-

tribution of the test statistic is the same but is valid asymptotically (as n

tends to infinity). For this result to hold, we need only consistency of the

estimates of the parameters in the covariance matrix (which is the case for

the estimator above, proposed by Schipper and Thompson (1983, 1985)).

Now for the J2-type approach, the restriction matrix is the same, but the

abnormal return vector is pre-multiplied by a weighting matrix ψ ⊗ θ:

A′(ψ ⊗ θ)δ̂ = (ι′N ⊗ ι′m)(ψ ⊗ θ)δ̂
= (ι′Nψ ⊗ ι′mθ)δ̂

= vec
(
ι′mθ∆̂ψιN

)
= ι′mθ∆̂ψιN .
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The variance is:

V
[
A′(ψ ⊗ θ)δ̂

∣∣∣X]
= (ι′N ⊗ ι′m)(ψ ⊗ θ)V

[
δ̂
∣∣∣X]

(ψ ⊗ θ)(ιN ⊗ ιm)

= (ι′N ⊗ ι′m)(ψ ⊗ θ)
(
ΣN ⊗M−1

22

)
(ψ ⊗ θ)(ιN ⊗ ιm)

= ι′NψΣNψιN ⊗ ι′mθM
−1
22 θιm

= ι′N ιN ⊗ ι′mιm

= N ⊗m

= Nm .

The t statistic is:

t̃21 =
ι′mθ∆̂ψιN√

Nm
.

The distribution of this test statistic is not known. In the case of non

clustering, i.e. V [ε|X] is a diagonal matrix, Campbell, Lo, and MacKinlay

(1997) argue that each standardized CAR follows a Student t distribution,

with n− 2 degrees of freedom, thus having a variance of n−2
n−4 . Summing the

CARs gives a statistic that has a variance of N(n−2)
n−4 . The authors propose to

standardize the statistic,
∑N

j=1CARj , by its standard deviation. This would

give a statistic that is approximately normally distributed. This approach, on

the contrary to ours, does not take into consideration the cross-sectional cor-

relation between firms, although the heteroskedasticity across firm is taken

into account. The problem with clustering is that the standardized CARs

are not independent, and thus one cannot simply sum their variance.

The two statistics proposed here, t̃11 and t̃21, are standardized with the
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correct standard deviation (assuming clustering and no serial correlation).

The degrees of freedom to apply is not known precisely, but the approxi-

mation to normality is probably better than in the case of the J1 and J2

statistics in Campbell, Lo, and MacKinlay (1997).

3.8 Hypothesis 2

Hypothesis 2 is that all CARs are jointly equal to zero. In this case, the

restriction matrix is A′ = IN ⊗ ι′m. We then have:

A′δ̂ = vec
(
ι′m∆̂IN

)
= vec

(
ι′m∆̂

)
= ∆̂′ιm .

The variance of A′δ̂ is:

V
[
A′δ̂

∣∣∣X]
= A′V

[
δ̂
∣∣∣X]

A

=
(
IN ⊗ ι′m

) (
ΣN ⊗M−1

22

)
(IN ⊗ ιm)

= ΣN ⊗ ι′mM
−1
22 ιm

= cΣN ,

where c = ι′mM
−1
22 ιm (a scalar). The test statistic is the Wald statistic:
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W̃ 1
2 =

(
A′δ̂

)′ {
V

[
A′δ̂

∣∣∣X]}−1 (
A′δ̂

)
= ι′m∆̂ (cΣN )−1 ∆̂′ιm

=
1
c
ι′m∆̂Σ−1

N ∆̂′ιm .

Now for the J2-type of test:

A′(ψ ⊗ θ)δ̂ =
(
IN ⊗ ι′m

)
(ψ ⊗ θ)δ̂

= (ψ ⊗ ι′mθ)δ̂

= vec
(
ι′mθ∆̂ψ

)
= ψ∆̂′θιm ,

and

V
[
A′(ψ ⊗ θ)δ̂

∣∣∣X]
=

(
IN ⊗ ι′m

)
(ψ ⊗ θ)V

[
δ̂
∣∣∣X]

(ψ ⊗ θ) (IN ⊗ ιm)

=
(
IN ⊗ ι′m

)
(ψ ⊗ θ)

(
ΣN ⊗M−1

22

)
(ψ ⊗ θ) (IN ⊗ ιm)

= ψΣNψ ⊗ ι′mθM
−1
22 θιm

= IN ⊗ ι′mImιm

= mIN .

The Wald statistic is:

W̃ 2
2 =

[
A′(ψ ⊗ θ)δ̂

]′ {
V

[
A′(ψ ⊗ θ)δ̂

∣∣∣X]}−1
A′(ψ ⊗ θ)δ̂

=
(
ψ∆̂′θιm

)′
(mIN )−1ψ∆̂′θιm

=
1
m
ι′mθ∆̂ψψ∆̂′θιm

=
1
m
ι′mθ∆̂Σ−1

N ∆̂′θιm .

The test statistics derived in this subsection have no known distribution.
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3.9 Hypothesis 3

The Wald statistic for this test uses a restriction matrix A that is simply an

identity matrix of size Nm (note that A can be written as the Kronecker

product IN ⊗ Im).

The J1-type of test for this hypothesis is:

A′δ̂ = δ̂ = vec
(
∆̂

)
.

The variance of A′δ̂ is simply
(
ΣN ⊗M−1

22

)
. The Wald statistic is:

W̃ 1
3 = δ̂′

(
ΣN ⊗M−1

22

)−1
δ̂

= δ̂′
(
Σ−1

N ⊗M22

)
δ̂

= tr
(
∆̂′M22∆̂Σ−1

N

)
.

Finally, for the J2-type test for hypothesis 3:

A′(ψ ⊗ θ)δ̂ = (ψ ⊗ θ)δ̂ ,

V
[
A′(ψ ⊗ θ)δ̂

∣∣∣X]
= (ψ ⊗ θ)V

[
δ̂
∣∣∣X]

(ψ ⊗ θ)

= (ψ ⊗ θ)
(
ΣN ⊗M−1

22

)
(ψ ⊗ θ)

= ψΣNψ ⊗ θM−1
22 θ

= IN ⊗ Im

= INm .

And the Wald statistic becomes:
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W̃ 2
3 =

[
A′(ψ ⊗ θ)δ̂

]′ {
V

[
A′(ψ ⊗ θ)δ̂

∣∣∣X]}−1
A′(ψ ⊗ θ)δ̂

= δ̂′(ψ ⊗ θ)(ψ ⊗ θ)δ̂
= δ̂′

(
Σ−1

N ⊗M22

)
δ̂

= tr
(
∆̂′M22∆̂Σ−1

N

)
.

We see that the Wald statistic for the J1-type of test and the J2-type of

test are exactly equivalent. The weighting of the estimator by its standard

deviation has no effect for this hypothesis.

The test statistic W̃3 follows no known distribution, but a likelihood ratio

test statistic for a this hypothesis is studied in Rao (1973) and is known to

follow asymptotically an F distribution if the rank of A′δ̂ is less than equal

to 2. This means that either the number of event period m or the number

of firms N is equal or less than 2. See e.g. Chou (2004); Butler and Frost

(1992).

To summarize all the results of this section, Table 1 shows the null hy-

pothesis and the test statistics that we derived.

4 The bootstrap in event studies

In this section, we look at the bootstrap and its use in the event study

literature. To our knowledge, the first application of the bootstrap method to

event studies is in Marais (1984). The purpose of this application was to cope

with non-normalities when there is limited observations in the estimation

period (or using monthly data), but treats the case of single firm event

studies. The methodology resembles another one by Chou (2004), which
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Table 1: The three hypotheses and their test statistics

Hypothesis J1- and J2-type and Test statistic

H1: The average CAR
across firms is equal to
zero

J1: t̃11 =
ι′m∆̂ιN√

(ι′NΣN ιN )× (ι′mM
−1
22 ιm)

J2: t̃21 =
ι′mθ∆̂ψιN√

Nm

H2: All CARs during the
event period are jointly
equal to zero

J1: W̃ 1
2 =

1
c
ι′m∆̂Σ−1

N ∆̂′ιm

J2: W̃ 2
2 =

1
m
ι′mθ∆̂Σ−1

N ∆̂′θιm

H3: All ARs are jointly
equal to zero for all
firms and all event
periods

J1 and J2: W̃3 = tr
(
∆̂′M22∆̂Σ−1

N

)

has the same motivation: to be robust in the case of non-normalities of

return data but extends the method to the MVRM dummy variable method.

Another extension is proposed by Hein and Westfall (2004). The authors

claim that in addition to provide more precise tests in small sample of firms,

their method is robust to time series correlation in returns. A third type of

extension is provided by Kramer (2001), which treats the problem of small

sample of firms (not observation period).

4.1 Marais, 1984

Marais (1984) studies the impact of small sample size and non-normality on

a test similar to the Campbell, Lo, and MacKinlay (1997) J2 test, but in the

quadratic form (i.e. a Wald test statistic based on the standardized abnormal
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returns). The author recognizes that this test statistic is very sensitive to

non-normalities of residuals, and he proposes a bootstrap method to remedy

to this problem. His bootstrap method is a residual based bootstrap.

The steps for his bootstrap method are:

1. Estimate by OLS the regression equation rt = α + βrmt + εt for t =
1, . . . , n. Obtain the parameter estimates α̂, β̂, σ̂2

ε and the residuals
ε̂t;

2. Compute the test statistic;

3. Repeat a large number of times the following steps:

(a) Select randomly with replacement n + m observations from the
couple (ε̂t, rmt), t = 1, . . . , n;

(b) Treat the OLS parameters α̂, β̂ as if they were the true parameters
and compute n+m artificial returns from the residuals randomly
chosen in step (a);

(c) Estimate by OLS the market model parameters α∗, β∗ and the ab-
normal returns using the artificial returns. Compute the artificial
test statistic J∗ or W ∗;

4. Use the empirical distribution function of the bootstrap test statistics
to determine whether the true test statistic is to be rejected or not.

The author studies the properties of his bootstrap method by a Monte

Carlo experiment. The results are that the bootstrap helps to correct for

the size of the test when data exhibits excess kurtosis. The rejection rate is

closer to the specified size of the test when using the bootstrap than when

using asymptotic distribution of the test statistic.

Note that this method assumes no time series dependences in the returns

or the residuals because the resampling is done independently. This is called

an i.i.d. bootstrap. Also, this method is used for a single firm. There is no
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indication how it can be extended to multiple firms with or without cross-

sectional correlation. This last issue is the extension presented by Chou

(2004).

4.2 Chou, 2004

The contribution of Chou (2004) is that the bootstrap method is adapted to

the MVRM framework, and that a wider class of tests can be performed in

an unbiased way. He studies three different null hypotheses:

1. The ARs are jointly equal to zero for all firms for event date j. This
hypothesis is equivalent to our H3 but with m = 1, i.e. only one event
period.

2. The ARs are zero for all firms and all event periods, for N = 1 and
N = 2. This hypothesis is equivalent to our H3.

3. The mean AR for event period j is zero. This is equivalent to both our
hypothesis H1 and H2, but with m = 1.

His bootstrap method is similar to Marais (1984) except that a covariance

matrix of the residuals is computed (ΣN ) in each bootstrap iteration. The

resampling is not done with the couple (ri,t, rmt) but now with the N + 1-

tuple (r1,t, . . . , rN,t, rmt).

The author uses historical simulation following the method of Butler

and Frost (1992). For hypothesis H3 of abnormal return jointly zero for

all firms and for a given event period, the existing asymptotic test is mis-

specified (over-rejects). The bootstrap test slightly over-rejects for small N ,

but largely over-rejects for N = 25.

The second hypothesis is where the author tests whether all abnormal

returns for all firms are jointly zero for m = 2, and for various number of
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firms. All tests, including bootstrap, over-reject the null hypothesis for a

specified size and a specified N , although the bootstrap method performs

slightly better.

All the tests for hypotheses H1 and H2 over-reject of null hypothesis,

even for the bootstrap tests (in a lesser manner when N is small). We do

not know whether this over-rejection is due to mis-specification of the tests

in the framework of MVRM, or if it is due to non-normality and/or serial

correlation of the data.

For hypothesis H1 (similar to the J1 test) and for m = 1, the speci-

fied size matches the rejection rate, both for the conventional tests and the

bootstrap test. This suggests that non-normality is not an issue with a esti-

mation period of size 200 (n = 200). It means also that the cross-sectional

correlation issue is robustly taken into account in the MVRM framework.

The fact that an event window of only one period is used rule out the mis-

specification due to serial correlation. Here also, we do not know if serial

correlation significantly bias the test statistics when more than one event

period is studied.

In the next subsection, we will see a different approach of the bootstrap

method for event study, namely the test statistic-based bootstrap (in the

terminology of Hein and Westfall, 2004).

4.3 Kramer, 2001

Kramer (2001) provides a bootstrap method that is useful in the case when

non-normalities affect the specification of the test statistic. The hypothesis

under study is the sum of the N t statistics based on the single event period
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market model (m = 1). In the notation of Section 3, this the hypothesis H1

for the J2-type test. Asymptotic theory stipulates that a sum of N Student

t distributed variables divided by the square root of N , what Kramer calls

the Z statistic, is asymptotically distributed as standard normal:

Z =
∑N

i=1 ti√
N

∼ N(0, 1) .

But, as Kramer argues, in samples where N is small and where returns

are not normally distributed, this approximation might be weak and the test

statistic might be biased.

Her solution to the problem is to take the N t statistics, to subtract the

mean, and then to bootstrap them in order to obtain a relatively precise

empirical distribution function. The rationale is that under the null, the t

statistics have mean zero. This is why the method uses de-meaned t statistics

in the bootstrap. The true distribution of the t statistic differs from the null

distribution only from a shift parameter.

More formally, here are the steps of the bootstrap method:

1. Estimate the market model and obtain the abnormal returns.

2. Compute the t statistics ti, i = 1, . . . , N .

3. Compute the Z̃ statistics that are the standardized Z statistics:

Z̃ =
Z

σ̂N

where

σ̂N =

√∑N
i=1(ti − t̄)2

N − 1

and t̄ is the simple average of the ti statistics.
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4. Subtract the mean t̄ from the ti statistics:

t∗i = ti − t̄ , i = 1, . . . , N .

5. Repeat a large number of times the following steps:

(a) Draw a sample of size N from the t∗i statistics. Call this sample
t∗bi , i = 1, . . . , N .

(b) Compute a pseudo Z̃ statistic with the t∗bi statistics (just like in
step 3). Call it Z̃b.

6. Then, compute the empirical distribution function of Z̃b and decide to
reject or not the statistic Z̃.

The results suggest that the method provides a good improvement rel-

atively to the asymptotic distribution for small sample of firms (that is,

relatively small; the algorithm does not work for N = 2 or 3). However, this

bootstrap method is not robust to cross-sectional correlation between firms,

as noted in Hein and Westfall (2004), because in this case the statistic Z

or Z̃ is the sum of dependent t statistics, which does not converge to the

normal distribution (see Hein and Westfall, 2004, Section 3 for a theoretical

analysis of the cross-section correlation case).

4.4 Hein and Westfall, 2004

Hein and Westfall (2004) provide a comparison of several methods of testing

hypothesis H3 in the MVRM framework when the number of event period

is 1 (m=1). They compare the classical parametric F test as developed in

Binder (1985) and Schipper and Thompson (1985) to four types of boot-

strap algorithm. The first algorithm is similar to Chou (2004) and tests

the hypothesis H3. The second is an algorithm called BT that is similar to
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the preceding one, but tests the hypothesis H1 with the J2 approach. The

third is called BK and is like the Kramer (2001) bootstrap but extended for

the MVRM framework. The last type of bootstrap is the one proposed by

Kramer (2001) without adjustment for cross-sectional correlation.

To give more details, the second bootstrap algorithm is simply like the

Chou (2004) bootstrap but the test statistic used is the (un-standardized)

sum of the firms’ t statistics. In other words, it is similar to the J2 test

for hypothesis H1 except that the sum of the CARs is not multiplied by the

scaling factor N(n−2)
n−4 . The third bootstrap algorithm under study is very

similar to this one except that the test statistic is the Z statistic of Kramer

(2001) (this means that it is not a t statistic-based bootstrap, but rather a

data-based bootstrap of the Z statistic).

The results are that all the inference methods have the right size in

presence of even extreme cross-sectional correlation, except the method of

Kramer (2001). They note that the first bootstrap method, similar to Chou

(2004), is too conservative. In the presence of serial correlation, all testing

methods have the right size, except in extreme cases of high AR(1) correla-

tion, which is not likely with real data. Unfortunately, they only study the

case of a single period event window, which is the case that is least sensitive

to serial correlation. We do not know the effect of serial correlation when

the event window expands to several days.

The authors provide also results for the study of power of the proposed

tests, using historical simulations. Among the tests that have the right size,

namely the Chou (2004) bootstrap, the BT and the BK bootstraps, the one

with highest power is BT.
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A drawback of the analysis of Hein and Westfall (2004) is that they

compare inference methods that test different hypothesis. The hypothesis of

the F test of Binder (1985) (hypothesis H3 in our notation) is quite different

than the one of Kramer, which is similar to the J2 test of Campbell, Lo,

and MacKinlay (1997), which we called J2-H1. These differences are most

notable in the study of power, because their data generating process might

simulate a case more easily identified by one of the tests and less by the

other.

Before to study our test statistics with the bootstrap, we will have an

empirical look on the distribution of residuals from the market model.

5 Descriptive statistics

It is well known in the finance literature that stock market returns are not

normally distributed. But for event study analysis, the distribution that

counts is not the distribution of the returns, but rather of the residuals.

In this section, we give some descriptive statistics about the market model

residuals.

We use 15 years of daily data (from 1990 to 2004) from 30 companies in-

cluded in the Dow Jones Industrial Average index in the end of 2004. For this

time period, we estimate the market model using the Dow Jones Industrial

Average as market proxy. First, a test of normality using the Jarque-Bera

test shows that residuals are far from normal. For all 30 firms, the normal-

ity of residuals can be rejected. Table 2, Panel A, gives an overview of the

distribution of the Jarque-Bera statistics across firms.
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From the sample of 30 companies, we computed the skewness and kur-

tosis of each stock. In Table 2, we show the minimum, median, mean and

maximum value of the statistics in the sample. We see that both positive and

negative skewness are possible, but negative skewness is most likely. Con-

cerning kurtosis, we see that all firms have residuals that exhibit fat tails.

The mean kurtosis is already extremely high with a value of above 15.

As mentioned earlier, it is well known that the cross-sectional correlation

of stock returns can be high, but it is less clear how large is the cross-sectional

correlation of residuals. With a sample of N = 30 companies, the number of

cross-sectional correlation coefficients is N(N−1)
2 = 435. In the Figure 2, we

show the histogram of these 435 correlation coefficients.

The time series correlation can also be quite varied across stocks. Testing

for the statistical significance of the autocorrelations using the Ljung-Box

test with five lags, we can reject at the 5% level that 25 out of 30 companies

have regression residuals uncorrelated. For the remaining five companies,

we cannot reject time series independence even at the 10% level. If we use

the same test for ten lags, the number of companies for which we can reject

the times series independence is 24 out of 30. Panel C of Table 2 shows the

distribution of the Ljung-Box Q statistic.

Table 2, Panel C, gives an overview of the autocorrelations of the resid-

uals by giving, for each lag, the minimum, the mean, the median and the

maximum of the autocorrelation among the 30 companies. We see that the

autocorrelations can be either positive or negative but are not high, ranging

from −0.0974 (lag 2) to 0.0607 (lag 1). It is worthwhile noting that this
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Figure 2: Histogram the the sample residual correlations
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Note: This figure shows the histogram of all the values the the correlations of the 30
companies’ residuals from the market model, for a total of 435 observations.
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sample of firms is quite homogeneous, being all big companies from the Dow

Jones Industrial Average index. Kramer (2001) argues that small compa-

nies and especially technological companies from the Nasdaq stock market

usually have higher serial correlation.

Since event studies are performed with a selection of firms, depending on

the event under study, the some firms under study can exhibit large cross-

sectional correlation and departure from normal distribution that can be

severe. But it is not likely that the residuals would show a high amount of

autocorrelation.

6 Monte Carlo experiment

In this section, we test our five test statistics for the three hypotheses devel-

oped in Section 3. We use the Monte Carlo simulation technique. The aim of

this experiment is to study whether the test statistics control the level of the

test, and if they are robust to non-normalities and serial correlation. The

test statistics are developed especially to take into account cross-sectional

correlation of residuals in the case of clustering.

Test statistics for hypotheses J1-H1 and J2-H1 are studied with their

parametric distribution as well as with the bootstrap method. For the two

other hypotheses, the test statistics are studied here only with the boot-

strap method because no parametric distribution is well specified in the case

of many firms N > 1, multiple event periods m > 1 and cross-sectional

correlation.

We study the case where residuals are normally distributed and where
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Table 2: Descriptive statistics of the market model residuals

Note: The data used is the market model residuals for 30 stocks of the Dow Jones Indus-
trials index from year 1990 to 2004. Panel A shows the distribution of the Jarque-Bera
statistic for the 30 sets of residuals. "P-Value" is the probability value associated with the
statistic. Panel B shows the distribution of skewness and kurtosis of the sets of residuals.
Panel C shows the Ljung-Box Q statistics for time series independence. The first line
shows the distribution of the statistics corresponding to the 30 sets of residuals for 5 lags.
The third line shows the distribution of statistics for 10 lags. P-Value is the probability
value associated to the above Q statistic. Panel D shows the distribution of the value of
autocorrelation as a function of the lag.
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they depart from normality by (1) non-zero skewness, (2) excess kurtosis,

and (3) for both skewness and excess kurtosis. The data generating process

uses the standard methodology for generating random normal distribution

(i.e. generate first a uniform variable and use the inverse normal CDF). For

the non-normal data, we use the same algorithm as Kramer (2001), namely

the Lamda distribution.

For every test statistics, the bootstrap is done the same way: residual

based bootstrapping and generating artificial data under the hull hypothe-

sis. This method is proposed by Marais (1984) and adapted to the MVRM

framework by Hein and Westfall (2004) and Chou (2004). Here are the steps:

1. Estimate the abnormal returns δ̂ and obtain the residuals ε̂ for all firms
and for time t = 1, . . . , n (the residuals for time t = n + 1, . . . , T are
automatically set to zero because of the dummy variables).

2. Estimate the correlation matrix Σ̂N and compute the test statistic, say
W̃ .

3. Repeat a large number of times the following steps:

(a) Draw with replacement a sample of T observations from the vector
(rmt, Êt), where Êt is the residuals of the N firms for time t,
t = 1, . . . , n. This represents an artificial sample of data from the
null hypothesis of no event.

(b) Estimate a bootstrap equivalent of the abnormal returns:

∆̂∗ = M∗−1
22 D′M∗Ê∗ ,

as well as the covariance matrix Σ̂∗
N = Ê∗′Ê∗/(n − 2) and the

relevant test statistic, W̃ ∗.

4. With the empirical distribution function of the bootstrap test statistics,
decide whether the null hypothesis is rejected of not.

The Monte Carlo simulations are all done with the same amount or cross-
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sectional correlation: 0.2. We used N = 5 firms and an event window of

m = 10. The number of Monte Carlo repetitions is 1000 and the number of

bootstrap repetitions is 200. The data generating process uses the following

steps:

1. Generate a matrix Ẽ of i.i.d. error terms of size T×N from the specified
distribution (either normal or the Lamda distribution).

2. Post-multiply the matrix of error terms by a rotating matrix that con-
fers cross-sectional correlation:

E = Ẽ Σ
1
2
N ,

where Σ
1
2
N is computed by the Cholesky decomposition of the theoret-

ical covariance matrix, Σ, of the specified structure of cross-sectional
correlation.

3. For the serial correlation case: add serial correlation to every column
of E, by applying an autoregressive filter of order 1, with parameter ρ.

4. Generate T observations of the market return rmt, from the standard
normal distribution.

5. Form the matrix of firms’ returns4:

R = ιT ι
′
N + rm ι′N + E .

We performed a series of four Monte Carlo simulations (called Panel

A to Panel D). In every panel, we studied the rejection rate of the test

statistic with nominal size of 5%. The tests that are studied are: (1) both

parametric tests for hypothesis 1 (similar to Campbell, Lo, and MacKinlay

(1997) statistic J1 and J2, what we have called t̃11 and t̃21 above). These
4Note that this is equivalent to forming firms’ returns that all have unit variance, a

β of 1 and an α of 1. As noted in Hein and Westfall (2004), the distribution of the test
statistic depends on the distribution of the error terms, not on the distribution of the
market returns or on the coefficients.
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test statistics follow asymptotically the Student t distribution with n − 2

degrees of freedom and the standard normal distribution, respectively. (2)

The bootstrap counterpart to the same hypothesis H1 and the same test

statistics t̃11 and t̃21. (3) The bootstrap test for hypothesis H2 using the test

statistics W̃ 1
2 and W̃ 2

2 . (4) The bootstrap test for hypothesis H3 using W̃3

as test statistic.

Tables 3 and 4 show the results of the Monte Carlo simulations. For nor-

mally distributed residuals and no serial correlation (Panel A), most tests

are well specified, including the parametric tests, except the bootstrap ver-

sion of hypothesis 1, which seems to under reject the null hypothesis (this is

consistent with the results in Hein and Westfall (2004)).

For non normal residuals (Panel B), we see that the parametric tests

of hypothesis H1 are still well specified. This suggests that a sample of

n = 200 observations in the estimation window is sufficient for these tests to

converge to their specified distributions. The bootstrap tests have rejection

rates similar to the case of normal residuals, but hypothesis 1, the test still

under rejects the null. For the other tests, the bootstrap performs quite well

with non-normalities.

For the case of serial correlation of residuals (Panel C), two values of

the autocorrelation parameters are studied: ρ = 0.1 and ρ = 0.2. Both

parametric tests for hypothesis 1 over reject the null proportionally to ρ.

For the bootstrap tests, hypothesis 1 and 3 slightly over reject with with

small autocorrelation of 0.1. Tests for hypothesis 2 are biased by far. For

larger autocorrelations, we see that the bootstrap version of H1 have the

correct level. Tests for hypothesis H2 clearly over reject, while tests for
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hypothesis H3 slightly over rejects.

Finally, Panel D shows results for a DGP that feature both non-normalities

and serial correlation. The parametric tests over reject to a small extent, but

are still of interest for all practical purposes. The bootstrap tests for hypoth-

esis 1 are just well specified. But this might be misleading since Panel A

showed that the test is biased even for i.i.d normal residuals. Just like in

Panel C, tests for hypothesis 2 over reject to a large extent and test for

hypothesis 3 slightly over reject.

Interpretation

For hypothesis 1, the best test is the parametric test, either J1 or J2.

With an estimation window of 200 observations, the test is correctly specified

event when the number of firms is relatively small (here it is 5). Campbell,

Lo, and MacKinlay (1997) suggested that the distribution of the J2 statistic

was asymptotic in N . In the context of MVRM, this does not seems to be

the case, at least in our Monte Carlo experiment.

For hypothesis 2, our Monte Carlo results tell us that the test is well

specified only when there is no serial correlation in the residuals. For rela-

tively large serial correlation of 0.2, the rejection rate more than four times

the theoretical level of the test. In practice, one should verify empirically the

presence of serial correlation before to test this hypothesis with the bootstrap

procedure that we proposed. If there is indeed presence of autocorrelation,

a possible alternative would be to model explicitely this autocorrelation (by

ARMA models, for instance), or to use a benchmark model that contains

more factors (i.e. a better suited asset pricing model). This could take away

the serial correlation. In any case, researchers should test this hypothesis
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Table 3: Monte Carlo rejection rates: no serial correlation

Note: This table shows the rejection rates obtained from Monte Carlo experiments pro-
duced with 1000 repetitions. Event study parameters are: 200 observations in the esti-
mation window; 10 periods for the event window; 5 firms that have equal variance of the
residuals and cross-sectional correlation of 0.2. Two tests are done with the parametric
distribution of the test statistic. Five tests are done using the bootstrap method. Hx

means that hypothesis x is tested. J1 and J2 mean that the test statistic has the form
corresponding to the J1 of J2 test in Campbell, Lo, and MacKinlay (1997). "DGP" is
for Data Generating Process. The p-values of the rejection rate being different from the
nominal level of 5% are shown in italic. The variance of the Monte Carlo estimates of the
rejection rates is α(1 − α)/MC where α is the estimated rejection rate and MC is the
number of Monte Carlo repetitions. "S" means that the data depart from normality by a
skewness of 0.75. "K" means that the distribution of the residuals have a kurtosis of 8.
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Table 4: Monte Carlo rejection rates: with serial correlation

Note: This table shows the rejection rates obtained from Monte Carlo experiments. See
note from Table 3 for details. "ρ = x" means that the residuals are generated from an
autoregressive model of order 1 with coefficient x.
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with great care.

The test for hypothesis 3 seems to react quite well to non normalities or

to serial correlation or both. Our Monte Carlo experiments showed that the

test slightly over reject the null, but to a small extent. In practical situations,

this test could be used, although care should be taken if the null hypothesis

is close to be rejected.

Comparison of these results with previous ones in the literature teaches

us that the exact null hypothesis is important when performing event studies.

The bootstrap methods that are studied in Hein and Westfall (2004) have

different results (basically, the Kramer bootstrap over-rejects the null in the

presence of cross-sectional correlation, while their HWZ bootstrap is well

specified). The reason might be that they test different hypotheses more

than because of intrinsic characteristics of the bootstrap algorithm. Namely,

the Kramer bootstrap is equivalent to our H1−J2 hypothesis while the HWZ

bootstrap tests what we call the H3 hypothesis.

On one hand, having a unique event period makes the test statistic very

sensitive to non normalities, but it makes it robust to serial correlation. The

contrary is also true: a large event window makes the test robust to non

normalities but it causes bias in the case of serial correlation.

7 Conclusion

The contribution of this thesis is two-fold. First we provide a unified method-

ology for estimating and testing the abnormal returns in event studies when

(1) many firms cluster in time and (2) the event window spans many days.
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Our methodology also unifies the different hypotheses that are usually tested

in the literature with the two approaches that are exposed in Campbell, Lo,

and MacKinlay (1997): the J1 approach that tests whether the sum of ab-

normal returns is equal to zero, and the J2 approach that takes into account

the heterogeneity between firms and tests whether a weighted average of the

abnormal returns is equal to zero.

We separate the relevant hypotheses into three groups. H1 tests whether

the sum (or the weighted sum) of all abnormal returns across firms and

event periods is equal to zero. The second hypothesis H2 tests whether the

cumulative abnormal returns of the firms are jointly equal to zero. The

third hypothesis H3 tests whether all abnormal returns in all event periods

are jointly equal to zero for all firms.

We also propose a bootstrap algorithm that is not new, but that unifies

the existing bootstrap methods proposed in the literature. We chose to use

this bootstrapping technique to verify the claims in the literature that it is

robust to serial correlation as well as to non-normalities of the data. We

explain how to use this bootstrap procedure for inference in the case where

many firms cluster in time and when the event window has more than one

observation.

Monte Carlo simulations are used to assess the error type I of the tests

that we propose. We used a data generating process that can incorporates

non-normalities and serial correlation in a manner that is similar to real

financial data.

Our results show that for practical purposes, the parametric J1 and J2

tests of Campbell, Lo, and MacKinlay (1997)(used to test hypothesis 1),
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when adapted for clustering, are well specified even in the presence of non-

normalities or serial-correlation, even when the number of firms is relatively

small (5).

Hypothesis H2 is unbiased in the case of non-normalities, but not in the

presence of serial correlation of the residuals. In order to test this hypothesis,

the researcher has to make sure that the residuals in his sample do not suffer

from serial correlation. For the third hypothesis, our results show that the

test is slightly biased, but to a small extent.

This unified approach to event studies opens the way to wider research

on robust inference methods. For instance, one could use more sophisticated

bootstrap techniques that are more suited for time series data (e.g. the block

bootstrap). Alternatively, one could use a covariance matrix that is robust to

heteroskedasticity and autocorrelation (HAC covariance matrix), but prob-

ably to the price of lower power. Another alternative would be to study

whether using a more complex benchmark model could improve inference in

event studies.

Future research could also focus on the analysis of the power of the pro-

posed inference methods. Since the three different hypotheses answer differ-

ent research questions, the analyses should be specific to each hypothesis.
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