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Abstract

This paper discusses the wild bootstrap for the Variance Ratio test. Under heteroskedasticity

of unknown form, a properly designed wild bootstrap method applied to the Variance Ratio

test shows better performance than the traditional asymptotic test. One of our main goals is to

study the impact of the form of the re-centering on the finite sample properties of the bootstrap

Variance Ratio statistic. The size and the power of different tests are compared using the popular

volatility models used in finance.
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1 Introduction

Variance Ratio (henceforth VR) statistics are very used in empirical finance and economics for

testing the null hypothesis of a random walk. For example, Liu and He (1991), Ayadi et al.

(1994), Fong et al. (1997) and Yilmaz (2003) evaluated the martingale property in exchange

rates. The use of the VR test for the martingale hypothesis of stock prices include Lo and

MacKinlay (1988), Kim et al. (1991), Frennberg and Hansson (1993), and Malliaropulos and

Priestley (1999). Typically VR tests are based on the first order asymptotic theory as de-

veloped by Lo and MacKinlay (1988). Because financial data is characterized by conditional

heteroskedasticity of unknown form, it is important to use a heteroskedasticity consistent vari-

ance estimator. Lo and MacKinlay (1988) propose such an estimator. Existing simulation results

show that the asymptotic theory is a poor approximation to the true finite sample distribution

of the VR statistic. For example, Lo and MacKinlay (1989) found that the sampling distribu-

tion of their VR statistic can be very different from the standard normal distribution in small

samples, with severe bias and right skewness. This can lead to size distortions or low power in

small samples, resulting in misleading statistical inference.

In this paper we consider the bootstrap for VR statistics. Our main motivation is to improve

upon the first order asymptotic theory of Lo and MacKinlay (1988). In particular, we focus on

the wild bootstrap (henceforth WB) for VR statistics. The WB was introduced by Wu (1986)

to handle unconditional heteroskedasticity in linear regression models and further studied by

Mammen (1993). Recently, Goncalves and Kilian (2004) proved the first order asymptotic valid-

ity of the WB in the context of linear dynamic regression models whose errors are conditionally

heteroskedastic. In our context, the WB is robust to conditional heteroskedasticity of unknown

form, often present in financial data.

Interestingly, not many papers have considered the bootstrap for VR statistics. One exception

is Kim (2006), who also studies the finite sample properties of the WB for VR statistics. In

particular, Kim (2006) proposes a wild bootstrap method that re-centers the bootstrap VR

statistic around the null hypothesis value of unity. Here one of our main goals is to study

the impact of the form of the re-centering on the finite sample properties of the bootstrap

VR statistics. In particular, we consider an additional bootstrap VR statistic that re-centers

the bootstrap value of VR around the value of VR in the original sample. This is the usual

practice when constructing bootstrap confidence intervals, following the bootstrap principle that

population parameters are replaced by their estimators. We conduct a Monte Carlo simulation

to compare the finite sample properties of Kim’s bootstrap method with our bootstrap method.

We conclude that imposing the null hypothesis when constructing the bootstrap statistic delivers

better finite sample results than not imposing it. One possible explanation for this Monte Carlo

finding is the fact that the wild bootstrap re-sampling scheme imposes the null hypothesis of no

I would like to thank particularly Silvia Gonçalves for her advice and her financial support. I am also grateful
to Benôıt Perron for helpful comments and Qingzhou Yang for research assistance.
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correlation in the bootstrap data, i.e. when applying the wild bootstrap to the current context,

we are effectively bootstrapping under the null hypothesis being tested. As previous papers have

shown in other contexts (see e.g. Li and Maddala (1996) and Giersbergen and Kiviet (2002)),

coordinating the bootstrap sample scheme with the bootstrap centering is important for good

finite sample results. In particular, these papers have shown that if one re-samples under the

null hypothesis, then one should also impose the null hypothesis in the bootstrap statistic by

centering it around the null value. Whereas Kim’s (2006) method applies this principle to the

VR statistic, our bootstrap method does not and this may explain why Kim’s method is the

preferred method in this context.

The rest of the paper is structured as follows. In Section 2, we describe the VR statistic

and review its first order asymptotic distribution. In Section 3, we first present the bootstrap

algorithm of Kim (2006) and its bootstrap VR statistic and then we introduce our new bootstrap

statistic. Section 4 contains the Monte Carlo results and Section 5 concludes.

2 The Variance Ratio statistic

Let xt denote a time series of which we observe a realization consisting of T observations

{x1, . . . , xT}. We assume that xt is a martingale difference sequence, which implies that xt

is uncorrelated. Nevertheless, xt can be conditionally heteroskedastic.

The VR statistic can be written as:

V R(x; k) =

{
1

Tk

T∑

t=k

(xt + xt−1 + . . . + xt−k+1 − kû)2

}
÷

{
1

T

T∑
t=1

(xt − û)2

}
, (1)

where û = T−1
∑T

t=1 xt. This is an estimator for the unknown population VR, denoted as V (k),

which is the ratio of the variance of the k-period return to k times of the variance of the one

period return. It satisfies the relation:

V (k) ≡ V ar[xt(k)]

k · V ar[xt]
= 1 + 2

k−1∑
q=1

(1− q

k
)ρ(q) (2)

where xt(k) ≡ xt + xt−1 + . . . + xt−k+1 and ρ(k) is the kth order autocorrelation coefficient of

{xt}.
Lo and MacKinlay (1988) show that if xt is independent and identically distributed, then

under the null hypothesis that V (k) = 1,

MV1(x; k) = (V R(x; k)− 1)

(
2(2k − 1)(k − 1)

3kT

)−1/2

, (3)

follows the standard normal distribution asymptotically. To accommodate xt’s exhibiting con-

ditional heteroskedasticity, Lo and MacKinlay (1988) propose a heteroskedasticity robust test
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statistic:

MV2(x; k) = (V R(x; k)− 1)

(
k−1∑
j=1

[
2(k − j)

k

]2

δj

)−1/2

(4)

where δj =
{∑T

t=j+1(xt − û)2(xt−j − û)2
}
÷

{[∑T
t=1(xt − û)2

]2
}

. This statistic also follows the

standard normal distribution asymptotically under the null hypothesis. The notation is different

from that of Lo and MacKinlay (1988), because we are using the data on the returns and not

the price data as showed in Lo and MacKinlay (1988).

The VR statistics can be used to derive confidence intervals and tests of the random walk

hypothesis. But since the test is based on asymptotic theory, the statistical inference can be

misleading in small samples, see for example Richardson and Stock (1989). The use of multiple

horizon returns reduces the number of observations and this limits the value of the asymptotic

distributions, derived under the assumption that the sample size increases to infinity. The

bootstrap method is known to improve upon the first order asymptotic distribution in many

econometric application. Hence we consider the bootstrap as an alternative inference tool to the

asymptotic distribution derived by Lo and Mackinlay (1988).

3 The bootstrap Variance Ratio statistic

In this section we study the application of the bootstrap to the VR statistic. It is well known that

financial returns are characterized by conditional heteroskedasticity. The i.i.d. bootstrap is not

valid under conditional heteroskedasticity, because it destroys the dependence in the data. See

for example Goncalves and Kilian (2004), who studied several bootstrap methods in the context

of dynamic regression models under conditional heteroskedasticity. In particular, Goncalves

and Kilian (2004) propose a residual based wild bootstrap method for autoregressive regression

models. The Wild Bootstrap was introduced by Wu (1986) and Mammen (1993) to handle

unconditional heteroskedasticity in cross section regression models. Because the VR statistic is

based on returns that are possibly conditionally heteroskedastic, the WB is a natural choice in

this context.

Recently, Kim (2006) proposes a joint VR test based on wild bootstrap. The VR tests can

be classified into individual and joint versions. The former tests whether the VR is equal to

one for a particular holding period, while the latter tests whether a set of VR’s over a number

of holding periods are jointly equal to one. For simplicity, we consider here only the individual

test. An extension to the multi-variance context is nevertheless straightforward.

The wild bootstrap proposed by Kim (2006) can be conducted in three stages as follows:

1. Form a bootstrap sample of T observations x∗t = ηtxt, (t = 1, . . . , T ) where ηt is a random

sequence with zero mean and unit variance.
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2. Calculate MV ∗
2 , which is the MV2 statistic given in (4) obtained from the bootstrap sample

generated in stage 1. More precisely, the bootstrap statistic is:

MV ∗
2 (x∗; k) = (V R(x∗; k)− 1)

(
k−1∑
j=1

[
2(k − j)

k

]2

δ∗j

)−1/2

, (5)

where δ∗j =
{∑T

t=j+1(x
∗
t − û∗)2(x∗t−j − û∗)2

}
÷

{[∑T
t=1(x

∗
t − û∗)2

]2
}

, û∗ = T−1
∑T

t=1 x∗t .

3. Repeat (1) and (2) sufficiently many times to form a bootstrap distribution of the test

statistic MV ∗
2 .

The bootstrap distribution of MV ∗
2 is used to approximate the sampling distribution of the

MV2 given in (4). Equal-tailed confidence intervals can be constructed using this bootstrap

distribution. Suppose the test level is α, then the coverage level of the confidence interval is

1 − α. Put T = n1/2(θ̂ − θ0)/σ̂ and T ∗ = n1/2(θ̂∗ − θ0)/σ̂
∗, and let υα and υ̂α be the quantiles

of T and T ∗ respectively. Here θ̂ is an estimator of a parameter θ and σ̂ is its asymptotic

standard error estimator. A theoretical 1 − α level percentile-t confidence interval for θ0 is

I = (θ̂ − n−1/2σ̂υ1−α/2, θ̂ − n−1/2σ̂υα/2). The bootstrap version of this interval is Î = (θ̂ −
n−1/2σ̂υ̂1−α/2, θ̂ − n−1/2σ̂υ̂α/2) with υ1−α/2 and υα/2 replaced by υ̂1−α/2 and υ̂α/2 respectively,

where υ̂1−α/2 and υ̂α/2 denote the bootstrap quantiles. The bootstrap confidence interval can

be used to make decision of hypothesis test. Since there is an argument that the symmetric

bootstrap confidence interval outperforms the equal-tailed confidence interval asymptotically,

see e.g., Hall (1992), we will consider the Monte Carlo experiment using the symmetric bootstrap

confidence interval as well. Let ω1−α and ω̂1−α be the solutions of the equations

P (|T | 6 ω1−α) = P (|T | 6 ω̂1−α|χ) = 1− α

The theoretical symmetric confidence interval is J = (θ̂ − n−1/2σ̂ω1−α, θ̂ − n−1/2σ̂ω1−α) and

the bootstrap interval is Ĵ = (θ̂ − n−1/2σ̂ω̂1−α, θ̂ − n−1/2σ̂ω̂1−α) with ω1−α replaced by ω̂1−α.

In constructing the WB data, we need to choose ηt. The first order validity of the WB

requires ηt to be such that E(x∗t | xt) = 0 and E(x∗2t | xt) = x2
t . The conditions E(ηt) = 0 and

E(η2
t ) = 1 are essential for the validity of the wild bootstrap. Kim (2006) considers three choices

of ηt. His results show that the VR test is not very sensitive to the choice of ηt. Henceforth, we

will consider only one choice of ηt, namely ηt ∼ N(0, 1).

One main feature of Kim’s (2006) bootstrap algorithm is that the bootstrap VR test statistic

is centered around 1, the value of the original VR statistic under the null hypothesis.

The usual approach when constructing bootstrap confidence intervals is to center the boot-

strap statistic around the sample statistic with the original data. In this paper, we consider an

alternative bootstrap method to Kim (2006), where the bootstrap statistic is centered around

the original value of the VR statistic. In particular, our bootstrap statistic is defined as follows:

MV ∗∗
2 (x∗; k) = (V R(x∗; k)− V R(x; k))

(
k−1∑
j=1

[
2(k − j)

k

]2

δ∗j

)−1/2

, (6)
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where δ∗j =
{∑T

t=j+1(x
∗
t − û∗)2(x∗t−j − û∗)2

}
÷

{[∑T
t=1(x

∗
t − û∗)2

]2
}

, û∗ = T−1
∑T

t=1 x∗t .

4 Simulation results

4.1 The empirical distributions

The empirical CDF of different statistics are compared to understand how well the approximation

is done for different statistics. Our goal is to approximate the distribution of the sample statistic

MV2(x; k). Its empirical CDF can be obtained by simulation. The test of Lo and MacKinlay

(1988) uses the distribution of the standard normal to approximate the distribution of MV2(x; k).

Kim’s (2006) uses the distribution of the bootstrap statistic MV ∗
2 and we propose here to use the

distribution of the bootstrap statistic MV ∗∗
2 . Since the bootstrap statistic depends on the sample

xt, we need to obtain the conditional empirical distribution of the bootstrap statistic. They

are obtained as follows: for each realization of MV2(x; k), form v wild bootstrap distributions

of the test statistic. The wild bootstrap distributions are obtained following the three steps

introduced in Section 3. We order these v bootstrap distributions and then make an average of

the distributions. For each realization of the statistic MV2(x; k), there is a corresponding average

distribution of MV ∗
2 or MV ∗∗

2 . We illustrate by reporting the bootstrap CDF conditional on

the value of the VR statistic obtained in the first 4 Monte Carlo replications. Once we get

all the empirical CDF of the statistics, we could plot them on the same graph to compare the

approximation performance.

The model selected is GARCH(1,1), the details can be found in model 1 of Table 1. The

parameters of the experiment are as follows: n is the sample size, set to 160; k is the holding

period, set to 2; b is the replication number of bootstrap, set to 1000; m is the replication

number of Monte Carlo experiment, set to 1000; v is the replication number of the bootstrap

distribution, set to 1000.

Figure 1 compares empirical CDF of the MV ∗∗
2 vs the sample statistic MV2(x; k). We can

see that the distribution of the MV ∗∗
2 suffers serious distortions and the conditional bootstrap

distribution is not stable, it changes with the sample value. When the sample statistic value

is positive, the bootstrap CDF drifts to the left of the CDF of the sample statistic. When

the sample statistic value is negative, the bootstrap CDF drifts to the right of the CDF of the

sample statistic. If we use the distribution of this statistic to approximate the distribution of the

sample statistic in the hypothesis test, when the sample statistic value is negative, the confidence

interval estimated tends to be more at right side, when the sample statistic value is positive, the

confidence interval estimated tends to be more at left side. This observation leads us to conclude

that too many rejections will be observed at both sides of the confidence interval when making

decision on the hypothesis test.

Figure 2 compares the empirical CDF of the MV ∗
2 vs the sample statistic MV2(x; k). We can

see that though the conditional bootstrap distributions of MV ∗
2 vary according to the sample
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value, they are very close to the CDF of sample statistic. There’s no significant distortion. The

CDF of the statistic MV ∗
2 approximates the CDF of the sample statistic quite well.

From Figure 3, we can see that the distribution of the MV ∗
2 is closer to the CDF of the

sample statistic than the CDF of the standard normal statistic. We expect that the test using

bootstrap statistic MV ∗
2 will perform better than the traditional test using the standard normal

distribution.

4.2 The size of the tests

Extensive Monte Carlo simulations are conducted to compare the empirical size of different VR

tests. The simulation design is as follows. The sample sizes considered are 160, 320, 640 and

1280. For the wild bootstrap test, the number of bootstrap replications m is set to 1000. The

holding period k is set to 2,4,8,16,32. The significance level α is 0.05. The test is based on an

equal-tailed confidence interval.

The data generating processes for Xt are simulated, according to the DGP’s list in Table 1.

Table 2 reports the size properties of the asymptotic test using the normal statistic. Table

3 reports the size properties of the wild bootstrap test using MV ∗
2 . Table 4 reports the size

properties of the wild bootstrap test using MV ∗∗
2 , with sample size of 10000 added.

From above tables, we can see that the test with the bootstrap statistic centered at VR

suffers from severe size distortions for all sample sizes and k lags considered, even when the

sample size is increased to 10000. The size distortions remain big as the number of observations

increase, which suggests that the test is not valid asymptotically. As for the test with bootstrap

statistic centered at null, there’s no significant size distortion for all the models selected. The

test shows desirable size properties even when the holding period k is fairly long.

Table 5 reports the size properties of the wild bootstrap test using MV ∗
2 and the test is based

on a symmetric confidence interval.

A comparison of Table 3 and Table 5 shows that the size of the test using symmetric confi-

dence interval is similar to that of test using an equal-tailed confidence interval. It is not clear

whether one outperforms the other.

Interestingly, when we try to compare the size of the test with the bootstrap statistic centered

around VR on the basis of symmetric confidence interval, the simulation results report zero

size everywhere for all the models and lags considered. To explain this result, we compared

the empirical distributions of |MV2| with |MV ∗
2 | and with |MV ∗∗

2 | in Figure 4 and Figure 5,

respectively. The experiment design is similar to the comparison of different distributions at

the beginning of Section 3, only we compare here the distributions of the absolute statistics

and the VR values chosen are those bigger or equal than three which are extreme values of the

distribution |MV2|.
From these figures, we can see that when the bootstrap statistic is centered around VR, the

conditional bootstrap distributions of |MV ∗∗
2 | are largely biased to the right of the distribution of
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|MV2(x; k)|. And the bigger the VR value, the larger the deviation of the conditional bootstrap

distribution from the sample distribution. This observation may help us to understand why we

get zero size everywhere when the bootstrap statistic is centered around VR. For example, when

the VR value is 3.5447, the estimated quantile of ω1−α/2 we get from the bootstrap distribution

is between 5 and 7, obviously we can’t reject the hypothesis even when the VR value is far away

from the null value.

One of possible explanation for the superior performance of the bootstrap statistic centered

around 1 may be found in the paper of Li and Maddala (1996). They propose some guidelines

of bootstrap testing in the context of linear regression, one of them is to coordinate the re-

sampling scheme with the bootstrap statistic. If one re-samples under the null hypothesis, then

one should also impose the null hypothesis in the bootstrap statistic by centering it around the

null value. In the context of linear regression, we have two options of re-sampling scheme. When

constructing the wild bootstrap data, we have choices to impose the null or not to impose the

null. However in the VR test case, there’s no choice of re-sampling scheme when applying wild

bootstrap. In fact, when we re-sample the sample data by the wild bootstrap, we effectively

impose the null, i.e., there is no correlation in the bootstrapped data. Of course, they may still

remain the conditional heteroscedasticity. So by the guidelines of Li and Maddala (1996), we

need to re-center the bootstrap statistic around the null. The test we proposed here is actually

against this principle and as we can see in the simulation experiment, the test suffers a serious

size distortion and the result of the test is not reliable. Again, this finding emphasizes the

guidelines proposed by Li and Maddala (1996).

4.3 The power of the tests

The power of the asymptotic test is reported in Table 6. Table 7 and Table 8 report the power of

the wild bootstrap tests center around 1 based on equal-tailed confidence intervals and symmetric

confidence intervals, respectively.

We can see that these tests have similar power. The improvement of the power of the

asymptotic test is not significant when using the wild bootstrap statistics centered around 1

in the test, no matter the test are based on equal-tailed confidence intervals or on symmetric

confidence intervals.
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Table 1: Models used in Monte Carlo experiment

Model

1 Xt =
√

htεt;ht = 0.01 + 0.75ht−1 + 0.2ε2
t−1 GARCH

2 Xt =
√

htεt; EGARCH
lnht = −5.496(1− 0.856) + 0.856 ln ht−1 + g(εt−1)

3 Xt = exp(0.5ht)εt;ht = 0.95ht−1 + ηt SV
4 Xt = Yt − Yt−1, Yt = 0.1Yt−1 + µt AR(1) with GARCH error
5 Xt = 0.0195 + 0.092Xt−1 +

√
htεt AR(1) with EGARCH error

6 Xt = 0.1Xt−1 + exp(0.5ht)εt AR(1) with SV error

Note:g(εt) = −.0795εt + .2647[|εt| − E(|εt|)]; εt ∼ iidN(0, 1); h0 = 0.01; X0 = 0.01; ηt ∼
iidN(0, 0.1); SV: stochastic volatility; EGARCH model is chosen from Tsay (2002); GARCH

and SV models are chosen as in Kim (2006)
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Table 2: Empirical size of asymptotic test, Lo and Mackinlay’s (1988) approach (α = 0.05)

GARCH

T�κ 2 4 8 16 32

160 0.047 0.039 0.041 0.044 0.036
320 0.043 0.043 0.046 0.048 0.041
640 0.057 0.049 0.046 0.045 0.047
1280 0.046 0.048 0.047 0.043 0.052

EGARCH
160 0.044 0.043 0.044 0.038 0.028
320 0.047 0.039 0.047 0.058 0.040
640 0.049 0.050 0.063 0.065 0.047
1280 0.052 0.045 0.058 0.057 0.055

SV
160 0.055 0.047 0.047 0.051 0.025
320 0.058 0.060 0.053 0.044 0.031
640 0.054 0.050 0.050 0.049 0.036
1280 0.061 0.051 0.050 0.051 0.042

Table 3: Empirical size of WB test, center around 1, Kim’s (2006) approach (α = 0.05)

GARCH

T�κ 2 4 8 16 32

160 0.050 0.047 0.050 0.041 0.032
320 0.053 0.033 0.034 0.040 0.049
640 0.051 0.054 0.050 0.047 0.059
1280 0.060 0.046 0.051 0.053 0.044

EGARCH
160 0.052 0.058 0.050 0.039 0.044
320 0.052 0.041 0.043 0.039 0.053
640 0.070 0.058 0.049 0.055 0.058
1280 0.059 0.044 0.064 0.065 0.054

SV
160 0.050 0.049 0.051 0.057 0.050
320 0.056 0.052 0.058 0.045 0.048
640 0.058 0.056 0.048 0.049 0.034
1280 0.054 0.049 0.044 0.047 0.046
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Table 4: Empirical size of WB test, center around VR (α = 0.05)

GARCH

T�κ 2 4 8 16 32

160 0.458 0.432 0.446 0.537 0.638
320 0.437 0.416 0.394 0.401 0.460
640 0.418 0.396 0.386 0.419 0.454
1280 0.453 0.424 0.417 0.379 0.401
10000 0.436 0.436 0.397 0.407 0.394

EGARCH
160 0.414 0.437 0.444 0.548 0.638
320 0.411 0.426 0.410 0.431 0.460
640 0.417 0.385 0.426 0.455 0.454
1280 0.413 0.386 0.369 0.396 0.401
10000 0.402 0.391 0.421 0.473 0.396

SV
160 0.454 0.462 0.470 0.525 0.638
320 0.402 0.393 0.397 0.410 0.465
640 0.394 0.396 0.424 0.415 0.409
1280 0.415 0.363 0.359 0.365 0.376
10000 0.385 0.364 0.447 0.403 0.359
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Table 5: Empirical size of WB test, center around 1, based on symmetric confidence intervals (α = 0.05)

GARCH

T�κ 2 4 8 16 32

160 0.058 0.055 0.044 0.045 0.031
320 0.049 0.046 0.059 0.055 0.056
640 0.044 0.063 0.037 0.054 0.051
1280 0.062 0.052 0.074 0.061 0.053

EGARCH
160 0.056 0.046 0.050 0.041 0.038
320 0.053 0.055 0.068 0.052 0.049
640 0.054 0.059 0.039 0.053 0.055
1280 0.057 0.066 0.069 0.060 0.058

SV
160 0.048 0.039 0.052 0.053 0.056
320 0.060 0.070 0.049 0.050 0.044
640 0.058 0.042 0.064 0.061 0.060
1280 0.066 0.054 0.044 0.049 0.045

Table 6: Power of the asymptotic test

AR-GARCH

T�κ 2 4 8 16 32

160 0.145 0.160 0.116 0.090 0.066
320 0.320 0.227 0.139 0.116 0.074
640 0.498 0.350 0.212 0.158 0.121
1280 0.771 0.558 0.360 0.255 0.172

AR-EGARCH
160 0.245 0.119 0.058 0.023 0.012
320 0.378 0.217 0.132 0.068 0.018
640 0.611 0.426 0.244 0.127 0.058
1280 0.869 0.691 0.462 0.240 0.131

AR-SV
160 0.173 0.167 0.120 0.110 0.046
320 0.365 0.261 0.191 0.123 0.099
640 0.643 0.489 0.302 0.197 0.142
1280 0.915 0.787 0.506 0.323 0.209
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Table 7: Power of the WB test, based on equal-tailed confidence intervals

AR-GARCH

T�κ 2 4 8 16 32

160 0.186 0.145 0.103 0.071 0.057
320 0.335 0.208 0.154 0.118 0.088
640 0.572 0.371 0.202 0.135 0.093
1280 0.792 0.560 0.338 0.202 0.144

AR-EGARCH
160 0.167 0.131 0.101 0.077 0.058
320 0.309 0.213 0.153 0.118 0.082
640 0.518 0.397 0.191 0.152 0.106
1280 0.802 0.635 0.414 0.262 0.151

AR-SV
160 0.221 0.159 0.137 0.097 0.091
320 0.415 0.278 0.178 0.140 0.093
640 0.726 0.518 0.303 0.179 0.119
1280 0.905 0.798 0.505 0.302 0.181

Table 8: Power of the WB test, based on symmetric confidence intervals

AR-GARCH

T�κ 2 4 8 16 32

160 0.108 0.119 0.101 0.075 0.062
320 0.248 0.189 0.156 0.127 0.087
640 0.479 0.381 0.197 0.159 0.120
1280 0.769 0.624 0.427 0.266 0.163

AR-EGARCH
160 0.241 0.123 0.078 0.040 0.032
320 0.356 0.264 0.152 0.085 0.065
640 0.598 0.421 0.228 0.132 0.081
1280 0.864 0.687 0.449 0.270 0.138

AR-SV
160 0.164 0.151 0.142 0.101 0.100
320 0.362 0.264 0.192 0.155 0.113
640 0.689 0.511 0.314 0.189 0.138
1280 0.899 0.790 0.510 0.319 0.201
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5 Conclusion

The variance ratio test has been widely used as a means of testing for the martingale hypothesis

in financial time series. The conventional VR tests are based on asymptotic approximations,

which may not be reliable when the sample size is not large enough to justify the asymptotic

theories involved. These small sample deficiencies can lead to misleading inferential outcomes in

practical applications. Kim (2006) uses the wild bootstrap in the VR test and shows that this

method has desirable size properties under a wide range of data generation processes. Kim’s

method uses bootstrap statistic centered around the null hypothesis. In this paper, we propose a

VR test based on the wild bootstrap in which the bootstrap statistic is centered around sample

statistic.

Extensive Monte Carlo simulations are conducted to compare size and power properties of the

wild bootstrap tests. It is found that the distribution of the bootstrap statistic centered at sample

statistic is not stable and suffers severe distortions from the distribution of the sample statistic.

When the test is based on an equal-tailed confidence interval, the test using the bootstrap

statistic centered around the sample statistic shows large possibility of rejection compared to

the nominal rejection level. When the test is based on a symmetric confidence interval, the

size is zero everywhere for all the models and lags considered. As a result, the size of the test

is largely distorted and make this test not reliable. By contrast, the test using the bootstrap

statistic centered around the null hypothesis shows desirable size and power properties.

From this finding, we emphasize the guidelines proposed by Li and Maddala (1996) that

coordinating the bootstrap sample scheme with the bootstrap centering is important for good

finite sample results. In particular, the paper has shown that if one re-samples under the

null hypothesis, then one should also impose the null hypothesis in the bootstrap statistic by

centering it around the null value. Although the discussion of Li and Maddala (1996) is limited

to the linear regression, the principle applies also to the VR test. In fact, when applying the

wild bootstrap to the VR test, we are effectively bootstrapping under the null hypothesis being

tested, so the only appropriate bootstrap statistic is the one centered by the null value.
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