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1 Introduction

Understanding strategic choice has become a key goal of modern economics. Over the last

half century a large body of theoretical work has been developed in this area. More recently,

experimental work has begun to illuminate the various behavioral tendencies of real strategic

agents. Here we develop techniques designed to divine the underlying “program” that directs

individual strategic behavior in repeated games. By capturing the computation inherent in

actual strategic decision making, we should be able to improve our predictions of social

system behavior, as well as provide new empirical and theoretical insights.

The Bayesian inference technique we develop here allows us to draw inferences from choice

data regarding the number and characteristics of repeated-game strategies in a population of

experimental subjects. Our ‘machine”-based repeated-game strategy model is based on finite

automata, which capture the computation inherent in strategic choice and represent a rich

class of behavior for systems that rely on finite inputs and outputs. Our goal is to develop an

empirically based model of the set of strategies that people actually use in repeated games.

Since our procedure is applicable to a much wider class of games than we investigate here,

it will open the door for researchers to supplement common tests of behavioral conformance

to theories with deeper investigation of the strategic heterogeneity behind observed choices

in many economically interesting contexts.

The econometric model is based on finite state machines. We make the model stochastic

by making action probabilities, but not state transitions, random. The number of machines,

their probabilities in the population, numbers of machine states, state transition functions

and action probabilities (by machine state) are all variable: using repeated game data from

the laboratory, we obtain the joint posterior distribution of all these unknown quantities.

Following a large literature on data augmentation, introduced to the statistics literature by

Tanner and Wong (1987), we add the function mapping experimental subjects to machines

to the list of unknown quantities. Doing this simplifies posterior simulation greatly. In
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particular, it allows us to integrate out action probabilities, an enormous computational

advantage. It also provides us with the posterior distribution (jointly with other unknowns)

of the machine assignments, which is useful in its own right. Conditional simulation of

transition functions is based partly on a new Metropolis-Hastings proposal that stochastically

builds a state transition function based on the tree of supergame play generated by the

subjects assigned to a given machine type. We introduce a useful way of identifying machines

in a population using a labelling technique.

We apply our technique to a choice data set from a series of experiments in which human

subjects play a repeated Prisoner’s Dilemma. We use this data set to attempt to uncover

the strategies driving human behavior in such a context. The results give us a new picture of

play in repeated prisoner’s dilemma games. We find strong evidence for heterogeneity. We

find evidence that people use strategies that punish and reward behavior of the opponent.

Interestingly, the strategies we infer do not contain harsh enough punishments to support

cooperation in equilibrium.

Our procedure is closely related to the early work on identifying subject heterogeneity in

experiments by El-Gamal and Grether (1995), who used a Bayesian procedure to estimate

decision rules in a population of subjects faced with a static, individual choice task. Their

goal was to discover whether or not people are Bayesian, and they did this convincingly by

assuming a functional form for the decision rule and using their Bayesian technique to draw

inference regarding the number and types of rules that generated their data. By contrast,

our application is to repeated-game strategies, which requires both a very different strategy

model and computational technique for inference.1

Houser, Keane, and McCabe (2004) provide a method to draw inference regarding the

number and types of decision rules in a population of subjects playing a dynamic game.

1 Other probabilistic choice models include Stahl and Wilson (1995) study heterogeneity in levels of
reasoning in games solvable through iterated dominance specifying both the form and number of decision
rules, and McKelvey and Palfrey (1992), who introduce Quantal Response Equilibrium, which makes it
possible to study subject behavior in deviation from optimality (though not subject heterogeneity).
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They estimate a polynomial approximation of the value function (that is, the expected value

of future payoffs) in state variables similar to Geweke and Keane (1999, 2001), allowing

individual decision rules to differ by the parameters in their value functions. They illustrate

their technique with a game that subjects play against nature based on a model of school

choice, and find evidence for a few interesting behavioral types. This approach is very

flexible because the researcher does not have to specify a priori the functional form of

the decision rules. One simulates the rules to interpret the behavior. Our application gains

some efficiency (at the cost of flexibility) by specifying a strategy model. Our strategy model,

however, is general for a rather wide class of multi-player games, covering strategies predicted

by theory and simpler rules of thumb, and in the end, we are interested in characterizing the

strategies.2

One can also address the question of strategy types through experimental design. Exper-

imental economists have, for example, attempted to elicit strategies directly from subjects

(see, for example, Selten et al. (1997)). Others identify strategies by tracking the manner in

which subjects collect and process information, as was done by Costa-Gomes, Crawford, and

Broseta (2001), and Johnson, Camerer, Sen, and Rymon (2001). Other alternatives include

various experimental manipulations and the use of protocol responses. While all of these

techniques can provide insight into strategic choice, they may be limited to particular games,

require self-reports of behavior, or costly experimental design. As such they are important

complements to the larger quest of understanding actual strategic behavior.

2 Houser, Keane, and McCabe note that the two types of procedures can be complementary: one could
use their procedure to identify subject types and then the El-Gamal and Grether procedure to describe the
decision rules, and the same holds true for our procedure.
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2 Games and Machines

Here we provide some formal definitions, and examples, that will provide the needed frame-

work for the work that follows. We consider a world in which agents play a repeated stage

game. We call a single instance of a repeated stage game a supergame. An agent’s repeated-

game strategy is embodied by a machine (a stochastic automaton), a representation that

provides a compact description of a broad swath of potential strategies. We assume that

each agent has access to a heterogeneous collection of such machines, and randomly chooses

one machine when called upon to play.

Agents repeatedly play a stage game, γ, defined by the triple (N,A, (ui)i∈N). The set of

players is given by N . For each player i ∈ N , they have a set Ai of potential actions. Let

A = ×i∈NAi give the action profile set (the set of potential actions) and let a = (ai)i∈N ∈ A

give the action profile (the set of actual actions chosen by each player during the stage game).

The payoff function for each player i ∈ N , is given by ui : A → �. For example, a Prisoner’s

Dilemma stage game has N = {1, 2}, A = A1 × A2 = {d, c} × {D,C} (where, we use

lower case to indicate the actions of Player 1), and u1(d,D) = u2(d,D) = P (punishment),

u1(c,D) = u2(d, C) = S (sucker), u1(d, C) = u2(c,D) = T (temptation), and u1(c, C) =

u2(c, C) = R (reward).

Agents employ machines—represented by stochastic automata—to implement a given

strategy. Aumann (1981) suggested that such machines would be a useful way to represent

game strategies in economics. Automata model systems that generate discrete outputs in

response to discrete inputs, and as such they represent a fundamental class of systems.

Automata have been used to explore bounded rationality in repeated games (e.g., Rubinstein,

1986), evolutionary games (Binmore and Samuelson, 1992), and learning (Miller, 1996).3

3 Engle-Warnick and Slonim (2003) use deterministic finite automata to describe play in an indefinitely
repeated prisoner’s dilemma. Aoyagi and Frechette (2004) fit finite automata with transitions determined by
thresholds to data in an indefinitely repeated prisoner’s dilemma game with imperfect monitoring; in their
model heterogeneity is characterized by the level of the threshold, not the structure of the machine.
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We define a machine, by the quadruple (Q, λ, µ, q). Each machine has a non-empty and

finite set of states, Q. One of these states, qs ∈ Q, is the initial state. In any given state,

the machine takes an action given by an action probability mass function, µ : Ai × Q → �.

Thus, if the machine is in state q ∈ Q, it plays ai ∈ Ai with probability µ(ai; q). We define a

(deterministic) state transition function for each state of the machine, λ : A × Q → Q, that

maps the current action profile and state of the machine to the next state that the machine

will enter. Thus, if the action profile is a ∈ A and the machine is in state q ∈ Q, then the

machine will enter state λ(a; q).

The following two examples illustrate the above ideas. First, we illustrate a machine that

implements an “85% grim trigger” strategy in the Prisoner’s Dilemma:

m1
1 = (Q1

1, λ
1
1, µ

1
1, q

1
1), Q1

1 = {1, 2}, q = 1

λ((d,D), 1) = λ((c,D), 1) = 2, λ((d, C), 1) = λ((c, C), 1) = 1

λ((d,D), 1) = λ((c,D), 1) = λ((d, C), 2) = λ((c, C), 2) = 2

µ(d; 1) = 0.15, µ(c; 1) = 0.85, µ(d; 2) = 0.85, µ(c; 2) = 0.15.

If this machine is in State 1, if the opponent plays C (that is, action profiles (c, C) and

(d, C)) the machine will remain in State 1, and if the opponent plays D (action profiles

(c,D) and (d,D)) the machine will move to State 2, and so on. Thus, this machine begins

by playing c with probability 0.85 and continues to do so as long as the opponent is observed

to cooperate. If the opponent ever defects, the machine switches to State 2 for the remainder

of the game and plays d with probability 0.85.

Second, we present an “85% tit-for-tat” machine:

m2
1 = (Q2

1, λ
2
1, µ

2
1, q

2
1), Q2

1 = {1, 2}, q = 1

λ((d,D), 1) = λ((c,D), 1) = 2, λ((d, C), 1) = λ((c, C), 1) = 1

λ((d,D), 1) = λ((c,D), 1) = 2, λ((d, C), 2) = λ((c, C), 2) = 1
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µ(d; 1) = 0.15, µ(c; 1) = 0.85, µ(d; 2) = 0.85, µ(c; 2) = 0.15.

This machine differs from grim solely through a modification of the transition function in

State 2, whereby if the opponent cooperates the machine reenters State 1. Thus, this machine

behaves very much like a traditional Tit-For-Tat except that it always has a slight chance

(15%) of taking the opposite of the “traditional” action.

To complete the framework we combine the above ideas. For a given game, with stage

game γ, we assign each player i ∈ N a machine, mi = (Qi, λi, µi, qi). We call such an

assignment a machine profile and can imagine that these N machines repeatedly play the

stage game against one another.

We assume that the machine, mi, chosen by a player is the result of a random draw from

a heterogeneous population of machines. Precisely, a population for player i ∈ N is given by

the triple (Ki, πi, (Q
k
i , λ

k
i , µ

k
i , q

k
i )k∈Ki

), where Ki is a set of machine types and πi : Ki → �
is a machine probability mass function giving the probability with which each machine is

selected. For example, we could have a population of players that with, say, probability

0.50 plays 85% Grim Trigger and with probability 0.50 plays 85% Tit-For-Tat. A population

profile is an assignment to each player type of a machine population. This is useful to think

about in asymmetric games where players of different types play different roles, and thus

may use different strategy sets. We can think of drawing a machine from each of the N

populations, and having the resulting machines repeatedly play the stage game.

3 Data and Inference

In this section we describe how to draw inferences about unknown populations and the

assignment of subjets to machines, given observed behavior in repeated games. Our goal

is to be able to numerically approximate functions of posterior expectations of functions of

these unknown quantities, including
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• the posterior probability that one machine accounts for more than 50% of the popula-

tion,

• the posterior mean and variance of the number of machine states of the machine used

by a random subject,

• the same for a particular subject,

• the probability that some machine in the population has an absorbing state,

• the posterior mean and variance of the probability that a random subject cooperates

on her first move, and

• the posterior probability that subjects s and s′ use the same machine.

We accomplish this goal by simulating, using Markov Chain Monte Carlo techniques, a

Markov chain on the space of the unknown quantities. The chain is ergodic and its unique

invariant distribution is the posterior distribution of the unknown quantities, so Birkhoff’s

ergodic theorem implies that sample moments of the simulated chain converge almost surely

to their respective population moments, as long as the latter exist. We first introduce

notation for the relevant observed and unknown quantities, as well as for a latent variable

representing the assignment of subjects to machines. We then give distributions for the

observed data given unknown quantities, both conditional and unconditional on the latent

machine assignments. Next, we complete the statistical model for unknown and observed

quantities by providing prior distributions for the unknown quantities. After deriving some

useful conditional posterior distributions, we describe algorithms for posterior simulation.

After discussing the identification of machine types, we describe how to do draw inference

on the number of machine types in a population.

7



3.1 Quantities

Observed data

A convenient unit of observation is the supergame, which consists of a duration T , deter-

mined stochastically as part of the experimental design, and a sequence of T action profiles,

representing choice sequences recorded in the laboratory. A supergame realization for a stage

game (N,A, (ui)i∈N ) is a pair σ = (T, (a1, . . . , aT )), where positive integer T is a number

of periods and (a1, . . . , aT ) is an observed action profile sequence. For each t ∈ {1, . . . , T},
action profile at = (ati)i∈N ∈ A.

In an experiment, there are a number of subjects, each of whom plays a number of

supergames. For each player, we have a set of subjects, whom we track through all the

supergames they play. Since we ignore learning in this paper, we represent the supergame

realizations played by a subject as a set rather than an ordered tuple. An experiment

realization is a (Si, (Rs, (σ
r
s)r∈Rs)s∈Si

)i∈N , where for each i ∈ N , Si is a set of subjects

playing as player i, Rs is a set of indices to supergame realizations involving subject s and

σr
s = (T r, (ar

1, . . . , a
r
T r)) is a supergame realization involving subject s.

The observed data consists of an experiment realization e ≡ (ei)i∈N ≡ (Si, (Rs, (σ
r
s)r∈Rs)s∈Si

)i∈N .

Since the Si, the Rs and the T r are part of the experimental design, we condition on these

values throughout and suppress notation for this conditioning. When we treat e as a random

variable below, we consider the action profiles to be random and the rest to be constant.

Unknown quantities

The unknown quantity that we are trying to learn about is the population profile (pi)i∈N =

(Ki, πi, (Q
k
i , λ

k
i , µ

k
i , q

k
i )k∈K)i∈N . For convenience and without loss of generality we assume

hereafter that A = {1, . . . , |A|} and that for every i ∈ N and k ∈ Ki, Qk
i = {1, . . . , |Qk

i |}.
We use the | · | notation for the cardinality of a set.

8



In a inferential context, two issues arise over the initial states qk
i and state transition

functions λk
i . First, any permutation of states gives an observationally equivalent combina-

tion of initial state and transition function. Second, if some states are unreachable from the

initial state, the transition function is observationally equivalent to a transition function for

a smaller state set.

We resolve these issues by selecting one combination of initial state and transition function

from each equivalence class to represent the class. We will assign positive probability to the

chosen combination, and zero probability to the other elements of its class. We choose the

initial state qk
i to be the first state. We form a list of the values λk

i (a, q) in q-first lexicographic

order and insist that each q > 1 appears in the list before the first occurence of each q ′ > q.

We also insist that all states are reachable. More precisely, for all i ∈ N and k ∈ Ki, we

choose the qk
i and λk

i that satisfy the following three conditions.

1. (order of initial state) qk
i = 1,

2. (order of non-initial states) for every a, a′ ∈ A and every q, q′ ∈ Qk
i \{1} such that

(q′ < q) or (q′ = q) ∧ (a′ < a),

λk
i (a, q) ≤ λk

i (a
′, q′) + 1,

3. (no unreachable states) for every a ∈ A and every q ∈ Qk
i \{1}, there exists a q′ ∈ Qk

i

and a′ ∈ A such that q′ < q and λk
i (a

′, q′) = q.

Having set all the qk
i equal to one, we suppress notation for initial states. We will call a state

transition function λ regular if it satisfies conditions 2 and 3, and denote by Λ(A,Q) the set

of regular state transition functions on A × Q.

We will use the following notational shortcuts.

K ≡ (Ki)i∈N π ≡ (πi)i∈N Q ≡ ((Qk
i )k∈Ki

)i∈N

λ ≡ ((λk
i )k∈Ki

)i∈N µ ≡ ((µk
i )k∈Ki

)i∈N p ≡ (K,π,Q,λ,µ)
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We augment the data by adding a latent variable representing machine assignments. For

each i ∈ N , let machine assignment function φi : Si → Ki be the function assigning subjects

to machine types. Let φ = (φi)i∈N . In Section 3.5, we will describe how to simulate the

joint posterior distribution of machine assignments and other unknowns. Augmenting the

data in this way simplifies posterior simulation enormously, and the posterior distribution

of machine assignments is interesting in its own right.

3.2 Data distributions

We assume that for each player i ∈ N , the actions of each subject s ∈ Si in all the supergames

(σr
s)r∈Rs are generated by one of the machines of population pi. Machine assignments are

independant across subjects, and governed by the machine probability mass function πi.

The data distribution e|p is given by the probability mass function

f(e|p) =
∏
i∈N

∏
s∈Si

∑
k∈Ki

πi(k)
∏
r∈Rs

T r∏
t=1

µk
i (a

r
ti; q(a

r
1, . . . , a

r
t−1; λ

k
i ),

where q(a1, . . . , at−1; λ
k
i ) is the state that machine with initial state 1 and transition function

λk
i will be in at period t, after the observed action profile sequence (a1, . . . , at−1). That is,

q(a1, . . . , at−1; λ
k
i ) ≡

⎧⎪⎪⎨
⎪⎪⎩

qk
i t = 1

λk
i (at−1, q

k
i,t−1(a1, . . . , at−2)) t = 2, . . . , T.

(1)

The joint distribution e,φ|p of data and machine assignments given unknown parameters

is given by the distributions e|φ,p and φ|p, with probability mass functions

f(e|φ,p) =
∏
i∈N

∏
s∈Si

∏
r∈Rs

T r∏
t=1

µ
φi(s)
i (ar

ti; q(a
r
1, . . . , a

r
t−1, λ

φi(s)
i ))

and

f(φ|p) =
∏
i∈N

∏
s∈Si

∑
k∈Ki

πi(φi(s))).
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3.3 Prior Distributions

We complete the model by providing a prior distribution for p. Populations in a population

profile are independant and machines in a population are i.i.d. We leave the priors on the

number of machines in a population and the number of machine states of a machine for the

user to specify. These quantities are thought to be small positive integers, so this flexibility

does not come with a significant burden. The prior on the transition functions is uniform

on the set of regular transition functions.

The priors on the machine probability mass functions πi and the action probability mass

functions µk
i are both Dirichlet. Dirichlet distributions are commonly used as distributions

over discrete distributions. In order to treat machines in populations and actions in action

sets symmetrically, we impose exchangeability of machine probabilities and action probabil-

ities, which reduces the number of parameters of each Dirichlet distribution to one.

The choice of the Dirichlet distribution for action probabilities allows us to integrate out

all the action probabilities from the posterior distribution, an enormous computational ad-

vantage. The user chooses a single parameter ν for this distribution, which has a meaningful

interpretation, discussed below.

We now give details on the prior distribution for p. It has the following conditional

independance structure:

f(K,π,Q,λ,µ) = f(K) · f(π|K) · f(Q|K) · f(λ|K,Q) · f(µ|K,Q).

Distribution K

The numbers |Ki| of machine states are i.i.d. across players i, with probability masses

ωk ≡ Pr[|Ki| = k], k = 1, . . . ,∞. Thus the probability mass function for K is given by

f(K) =
∏
i∈N

f(Ki) =
∏
i∈N

ω|Ki|.
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The |Ki| are thought to be small numbers, and we recommend truncating the prior to a

small set, such as {1, 2, 3} or {1, 2, 3, 4}.

Distribution π|K

The machine probability mass functions πi are independent, with each πi distributed as a

Dirichlet random variable with |Ki| parameters, all equal to α. Thus the density for π|K is

given by

f(π|K) =
∏
i∈N

f((πi(k))k∈Ki
|Ki) =

∏
i∈N

Γ(α · |Ki|))
[Γ(α)]|Ki|

∏
k∈Ki

[πi(k)]α−1.

The choice of α determines how close to zero or one machine probabilities are likely to be.

For α = 1, the density is uniform on the |Ki|-dimensional simplex. Values α > 1 favor more

moderate machine probabilities such as (πi(0), πi(1), πi(2)) = (0.4, 0.3, 0.3). Values α ∈ (0, 1)

favor more extreme machine probabilities such as (πi(0), πi(1), πi(2)) = (0.9, 0.04, 0.06).

Distribution Q|K

The sets Qk
i of machine states are i.i.d. across machines k and players i, with the cardinality

of each Qk
i governed by the probability masses θQ ≡ Pr[|Qk

i | = Q], Q = 1, . . . ,∞. Thus the

probability mass function for Q|K is

f(Q|K) =
∏
i∈N

∏
k∈Ki

f(Qk
i ) =

∏
i∈N

∏
k∈Ki

θ|Qk
i |.

The |Qk
i | are thought to be small numbers, and we recommend truncating the prior to a

small set, such as {1, 2, 3} or {1, 2, 3, 4}.

Distribution λ|K,Q

Given K and Q, the state transition functions λk
i are independant across players i and

machine types k, with a uniform distribution over the set Λ(A,Qk
i ) of regular transition

functions λ : A × Qk
i → Qk

i .
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Thus the probability mass function for λ|K,Q is

f(λ|K,Q) =
∏
i∈N

∏
k∈Ki

f(λk
i |Qk

i ) =
∏
i∈N

∏
k∈Ki

1

n(|A|, |Qk
i |)

,

where n(|A|, |Q|) is the number of regular state transition functions λ : A × Q → Q.

We now derive a expression for n(|A|, |Q|). We first derive a recursive expression for the

number n̄(|A|, |Q|) of maps λ : A × Q → Q statisfying condition 2 (no unreachable states)

but not necessarily condition 3 (order of non-initial states).

The total number of maps λ : A×Q → Q is |Q||A||Q|. The number of maps with exactly

m unreachable states is ⎛
⎝|Q| − 1

m

⎞
⎠ · n̄(|A|, |Q| − m) · |Q|m|A|

The first factor gives the number of choices of m unreachable states out of |Q|−1 non-initial

states. The second factor gives the number of maps on the |Q| − m reachable states where

all states are indeed reachable. The third factor gives the number of maps A × Q∗ → Q,

where Q∗ is a set of m unreachable states. For |Q| = 1, the total number of maps is 1, and

for this map, all states are reachable. Therefore n̄(|A|, 1) = 1. For |Q| > 1, we can calculate

recursively

n̄(|A|, |Q|) = |Q||A||Q| −
|Q|−1∑
m=1

⎛
⎝|Q| − 1

m

⎞
⎠ · n̄(A, |Q| − m) · |Q|m|A|.

We now obtain n(|A|, |Q|) by dividing by the number of permutations of the non-initial

states:

n(|A|, |Q|) =
n̄(|A|, |Q|)
|Q − 1|! .

Distribution µ|K,Q

Given K and Q, the action probability mass functions µk
i (·; q) are independant across players

i, machine types k and machine states q ∈ Qk
i , with each distributed as a Dirichlet random

13



variable with |Qk
i | parameters, all equal to ν. Thus the density for µ|K,Q is

f(µ|K,Q) =
∏
i∈N

∏
k∈Ki

∏
q∈Qk

i

f((µk
i (ai; q))ai∈Ai

|Qk
i )

=
∏
i∈N

∏
k∈Ki

∏
q∈Qk

i

Γ(ν|Ai|)
[Γ(ν)]|Ai|

∏
ai∈Ai

[µk
i (ai; q)]

ν−1.

The choice of ν determines how close to zero or one action probabilities are likely to be.

For ν = 1, the density is uniform on the |Ai|-dimensional simplex. Values ν > 1 favor

more moderate action probabilities such as (µk
i (C), µk

i (D)) = (0.6, 0.4). Values ν ∈ (0, 1)

favor more extreme action probabilities such as (µk
i (C), µk

i (D)) = (0.1, 0.9). The choice of ν

expresses the user’s belief about how close machines are to deterministic machines.

3.4 Conditional Posterior Distributions

In this section we derive some posterior distributions that will be useful for posterior sim-

ulation. The derivations are straighforward once we know the following property of the

Dirichlet and multinomial distributions. If θ = (θ1, . . . , θn) is Dirichlet with parameter

α = (α1, . . . , αn) and c|θ = (c1, . . . , cn)|θ is multinomial with parameters θ and
∑n

j=1 cj,

then θ|c is Dirichlet with parameter (α1 + c1, . . . , αn + cn) and the marginal probability mass

function for c is

f(c) =

∏n
j=1 Γ(αj)

Γ(
∑n

j=1 αj)
· Γ(

∑n
j=1 αj + cj)∏n

j=1 Γ(αj + cj)
.

The fact that the prior and data densities both factor by player implies that the posterior

does as well, which simplifies affairs greatly.

Distribution π|K,Q,λ,µ,φ, e

The machine probability mass functions πi are conditionally independent, with each πi dis-

tributed as a Dirichlet random variable with parameters (α+dk
i (φi))k∈Ki

, where the machine

14



counts dk
i (φi) are given by4

dk
i (φi) ≡

∑
s∈Si

δk,φi(s) k ∈ Ki, i ∈ N. (2)

That is, the conditional posterior density for π is

f(π|K,Q,λ,µ,φ, e) =
∏
i∈N

f(πi|Ki, φi) (3)

=
∏
i∈N

Γ(
∑

k∈Ki
α + dk

i (φi))∏
k∈Ki

Γ(α + dk
i (φi))

∏
k∈Ki

[πi(k)]α+dk
i (φi)−1.

Distribution µ|K,π,Q,λ,φ, e

The action probability mass functions µk
i (·; q) are independant across players i, machine types

k and machine states q ∈ Qk
i , with each (µk

i (ai, q))ai∈Ai
distributed as a Dirichlet random

variable with parameters (ν + ck
i (ai, q; λ

k
i , φi))ai∈Ai

, where the action counts ck
i (ai, q; λ

k
i , φi)

are given by (recall equation (1) defining q(·))

ck
i (ai, q; λ

k
i , φi) =

∑
s∈{Si : φi(s)=k}

∑
r∈Rs

T r∑
t=1

δq,q(ar
1,...,ar

t−1,λk
i )δai,ar

ti
, (4)

ai ∈ Ai, q ∈ Qk
i , k ∈ Ki, i ∈ N.

That is, the posterior density for µ is given by

f(µ|K,π,Q,λ,φ, e)

=
∏
i∈N

∏
k∈Ki

∏
q∈Qk

i

f((µk
i (ai; q))ai∈Ai

|Qk
i , λ

k
i , φi, e) (5)

=
∏
i∈N

∏
k∈Ki

∏
q∈Qk

i

Γ(
∑

ai∈Ai
ν + ck

i (ai, q; λ
k
i , φi))∏

ai∈Ai
Γ(ν + ck

i (ai, q; λk
i , φi))

∏
ai∈Ai

[µk
i (ai; q)]

ν+ck
i (ai,q;λ

k
i ,φi)−1.

4δ is the Kronecker delta function. For integers i and j, δij = 1 if i = j and 0 otherwise.
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Distribution Q,λ|K,π,φ, e

We can marginalize out µ in e,µ|K,π,Q,λ,φ, given by e|K,π,Q,λ,µ,φ and µ|K,Q, to

obtain the probability mass function

f(e|K,π,Q,λ,φ) =
∏
i∈N

∏
k∈Ki

∏
q∈Qk

i

[Γ(ν)]|Ai|

Γ(ν|Ai|) · Γ(
∑

ai∈Ai
ν + ck

i (ai, q; λ
k
i , φi))∏

ai∈Ai
Γ(ν + ck

i (ai, q; λk
i , φi))

. (6)

The pairs (Qk
i , λ

k
i ) of machine state set Qk

i , and state transition function λk
i are condi-

tionally independant across players i and machine types k. The posterior probability mass

function for Q,λ|K,π,φ, e is

f(Q,λ|K,π,φ, e)

=
∏
i∈N

∏
k∈Ki

f(Qk
i , λ

k
i |φi, ei) (7)

∝
∏
i∈N

∏
k∈Ki

θ|Qk
i |

n(|A|, |Qk
i |)

· [Γ(ν)]|Ai||Qk
i |

[Γ(ν|Ai|)]|Qk
i |

∏
q∈Qk

i

Γ(
∑

ai∈Ai
ν + ck

i (ai, q; λ
k
i , φi))∏

ai∈Ai
Γ(ν + ck

i (ai, q; λk
i , φi))

.

Distribution φ|p, e

The machine assignments φi(s) are conditionally independant across players i and subjects

s. The posterior probability mass function for φ is

f(φ|p, e) =
∏
i∈N

∏
s∈Si

f(φi(s)|πi, (Q
k
i , µ

k
i , λ

k
i )k∈Ki

, e) (8)

=
∏
i∈N

∏
s∈Si

πi(k)
∏

r∈Rs

∏T r

t=1 µk
i (a

r
ti; q

k
it(a

r
1, . . . , a

r
t−1))∑

κ∈Ki
πi(κ)

∏
r∈Rs

∏T r

t=1 µκ
i (a

r
ti; q

κ
it(a

r
1, . . . , a

r
t−1))

.

3.5 Posterior Simulation

Since both the prior and the posterior factor by player, the |N | populations are a priori

and a posteriori independent, and we can independently simulate the unknown quantities

for each player i. We now fix i ∈ N arbitrarily.
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Here we will condition on Ki and describe how to simulate the distribution πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

, φi|Ki, ei.

Later, in Section 3.7, we discuss how to use a method for computing marginal likelihoods to

obtain f(Ki|ei).

We describe seven different parameter update blocks, each of which stochastically updates

one or more of the unknown quantities, conditioning only on the current values of other

unknown quantities. We can chain together any number of these blocks (repetitions are

allowed) to form a sweep. The sweep in thus a stochastic update of the vector of unknown

quantities conditioning only on the current value of the vector. It therefore defines a Markov

transition kernel. Under conditions described below, we obtain an ergodic Markov chain

whose invariant distribution is the posterior distribution πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

, φi|Ki, ei, and

therefore we can use the chain to simulate the posterior.

Two blocks preserve the distribution πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

, φi|Ki, ei. Block Bπ updates the

machine probability mass function πi and block Bφ updates the machine assignment function

φi.

Four blocks preserve the marginal distribution πi, (Q
k
i , λ

k
i )k∈Ki

, φi|Ki, ei. Blocks BQ,λ(k)

and B′
Q,λ(k) update, for the given k ∈ Ki, the machine state set Qk

i and the state transition

function λk
i . Block Bλ(k) updates, for the given k ∈ Ki, the state transition function λk

i .

Block B′
φ updates the machine assignment function φi.

Finally, block Bµ(k) draws, for the given k ∈ Ki, the action probability mass func-

tion µk
i from the distribution µk

i |Ki, πi, (Q
k
i , λ

k
i )k∈Ki

, φi, ei. In this way, a block preserv-

ing πi, (Q
k
i , λ

k
i )k∈Ki

, φi|Ki, ei followed by a Bµ(k) block together preserve the distribution

πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

|Ki, ei.

A sweep is a sequence of blocks, with possible repetitions. If a sweep satisfies the following

conditions:

1. It includes Bπ and Bφ and for each k ∈ Ki, Bµ(k) and one of BQ,λ or B′
Q,λ.

2. A block preserving πi, (Q
k
i , λ

k
i )k∈Ki

, φi|Ki, ei cannot be followed by a block preserving
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πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

, φi|Ki, ei.

3. The last block of the sweep must either be a Bµ(k) block or preserve πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

, φi|Ki, ei.

then the Markov transition kernel is ergodic and its unique invariant distribution is πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

, φi|Ki

Then Birkhoff’s ergodic theorem implies that posterior simulation sample moments converge

almost surely to posterior population moments whenever the latter exist.

The fact that πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

|Ki, ei is an invariant distribution of the Markov transi-

tion kernel follows from Conditions 2 and 3. All blocks required by Condition 1 have updates

whose support is the same as the support of the appropriate conditional distribution, and

together they update the entire parameter vector. The chain is therefore Harris recurrent

and aperiodic. This in turn implies that the chain is ergodic and has a unique invariant

distribution.

We now describe in detail the various blocks.

Blocks preserving πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

, φi|Ki, ei

By (3), the distribution πi|Ki, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

is Dirichlet. Block Bπ draws πi directly from

this distribution using standard procedures.

By (8), the probability mass function for φi|Ki, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

is a product of |Si| prob-

ability mass functions, each of which has only |Ki| mass points. Block Bφ draws φi directly

from this distribution using standard procedures.

Blocks preserving πi, (Q
k
i , λ

k
i )k∈Ki

, φi|Ki, ei

Block B′
φ is a random walk Metropolis update which proposes a φ∗

i identical to φi except

for a random mutation and adopts the proposal with a certain probability. The proposal

consists of drawing a random subject s∗ from the uniform distribution on Si, then drawing

φ∗
i (s

∗) from the uniform distribution on Ki\φi(s
∗). For all s ∈ Si\{s∗}, we set φ∗

i (s) = φi(s).
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The proposal is a random walk on the space of machine assignments. We accept the proposal

φ∗
i with probability

min

[
1,

πi(k
∗)

πi(k)
· B(k, φ∗

i )

B(k, φi)
· B(k∗, φ∗

i )

B(k∗, φi)

]
,

where k = φi(s), k∗ = φ∗
i (s), and for all k ∈ Ki and all machine assignment functions

φi : Si → Ki,

B(k, φi) ≡
∏

q∈Qk
i

Γ(
∑

ai∈Ai
ν + ck

i (ai, q; λ
k
i , φi))∏

ai∈Ai
Γ(ν + ck

i (ai, q; λk
i , φi))

.

Acceptance means we move to the proposed state, replacing φi with φ∗
i . If we do not accept,

φi remains unchanged.

For given k ∈ Ki, block BQ,λ is an independance Metropolis Hastings update with the

prior distribution f(Qk
i , λ

k
i ) as the proposal distribution. This involves the following steps.

We first draw the proposal Qk∗
i , λk∗

i from the joint prior distribution of Qk
i and λi. We then

accept with probability

min

⎡
⎢⎣1,

θQk
i

θQk∗
i

· [Γ(ν)]|Ai|(|Qk∗
i |−|Qk

i |)

[Γ(ν|Ai|)]|Qk∗
i |−|Qk

i |
·
∏

q∈Qk∗
i

Γ(
∑

ai∈Ai
ν+ck∗

i (ai,q;λ
k∗
i ,φi))

∏
ai∈Ai

Γ(ν+ck∗
i (ai,q;λk∗

i ,φi))∏
q∈Qk

i

Γ(
∑

ai∈Ai
ν+ck

i (ai,q;λk
i ,φi))

∏
ai∈Ai

Γ(ν+ck
i (ai,q;λk

i ,φi))

⎤
⎥⎦ .

Acceptance means we move to the proposed state, replacing Qk
i and λk

i with Qk∗
i and λk∗

i . If

we do not accept, λk
i remains unchanged.

Block B′
λ,Q is also an independance Metropolis-Hastings update, but features a proposal

distribution more closely resembling the posterior distribution Qk
i , λ

k
i |Ki, φ

k
i , ei.

Denote by Qk∗
i , λk∗

i the proposal. Qk∗
i is drawn from the prior distribution for Qk

i :

f(Qk∗
i |Ki, φi, ei) = θ|Qk∗

i |.

We construct λk∗
i stochastically, one value λk∗

i (a, q) at a time. To establish an order for these

values, we introduce a lexicographic order on A×N. It is useful to think of N as an extention

of Qk∗
i . For all a, a′ ∈ A and q, q′ ∈ N,

(a, q) > (a′, q′) iff (q > q′) or (q = q′ ∧ a > a′).
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We also introduce some convenient related notation. For all a ∈ A and q ∈ N, we denote by

(a, q)+ the successor of (a, q) and by (a, q)− its predecessor.

After each successive draw of a value λk
i (a, q), we have a “history” L(a, q) of drawn values:

L(a, q) ≡ (λ(a′, q′))(a′,q′)≤(a,q).

We now introduce a measure of how well an incomplete transition function, given by history

L(a, q), fits the data. We first describe an infinite state machine which agrees with the

incomplete transition function for values up to and including λ(a, q), but otherwise has no

recurrent states. The initial state is 1 and the transition function λ̄L(a,q) : A×N → N is given

by

λ̄L(a,q)(a
′, q′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λk
i (a

′, q′) (a′, q′) ≤ (a, q)

|Qk∗
i | + 1 (a′, q′) = (a, q)+

λk
i ((a

′, q′)−) + 1 (a′, q′) > (a, q)+

.

We now consider the question of fit. Recalling (6), the probability mass function of the data

ek
i attributable to subjects of player i assigned to machine k ∈ Ki, given the state set Qk

i ,

transition function λk
i and machine assignment function φi, but with action probabilities µk

i

marginalized out, is

f(ek
i |Qk

i , λ
k
i , φi) =

∏
q∈Qk

i

[Γ(ν)]|Ai|

Γ(ν|Ai|) · Γ(
∑

ai∈Ai
ν + ck

i (ai, q; λ
k
i , φi))∏

ai∈Ai
Γ(ν + ck

i (ai, q; λk
i , φi))

.

This naturally extends to infinite state machines with N replacing Qk
i in this equation and

in the definition of action counts ck
i of equation (4). The resulting infinite product is no

cause for alarm. With a finite amount of data, the counts ck
i will be non-zero only for a finite

number of values q ∈ N, and thus only a finite number of factors will take on values other

than 1.

We are now ready to describe the proposal distribution, which is designed to favor ma-
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chines with higher degrees of fit. We have the following probability mass function for λk
i :

h(λk∗
i |Ki, Q

k∗
i , φk

i , ei) =
∏

(a,q)∈A×Qk∗
i

h(λk∗
i (a, q)|L((a, q)−), Ki, Q

k∗
i , φk

i , ei),

where

h(λk∗
i (a, q)|L((a, q)−), Ki, Q

k∗
i , φk

i , ei) ∝⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞ λk∗
i = q + 1, a = |A|, max(a′,q′)<(a,q) λk∗

i (a′, q′) = q

f(ek
i |Qk

i , λ̄L(a,q), φi) λk∗
i ∈ {1, . . . , max(a′,q′)<(a,q) λk∗

i (a′, q′) + 1}

0 otherwise.

The value ∞ forces us to choose λk∗
i = q + 1 if otherwise the resulting machine would

have unreachable states. The support {1, . . . , max(a′,q′)<(a,q) λk∗
i (a′, q′) + 1} ensures that the

non-initial states are correctly ordered.

For every k ∈ K, we draw Qk∗
i and λk∗

i as described above, and accept with probability

min

⎡
⎢⎣1,

h(λk
i |Ki, Q

k
i , φi, ei)

h(λk∗
i |Ki, Qk∗

i , φi, ei)
· θQk

i

θQk∗
i

· [Γ(ν)]|Ai|(|Qk∗
i |−|Qk

i |)

[Γ(ν|Ai|)]|Qk∗
i |−|Qk

i |
·
∏

q∈Qk∗
i

Γ(
∑

ai∈Ai
ν+ck∗

i (ai,q;λ
k∗
i ,φi))

∏
ai∈Ai

Γ(ν+ck∗
i (ai,q;λk∗

i ,φi))∏
q∈Qk

i

Γ(
∑

ai∈Ai
ν+ck

i (ai,q;λk
i ,φi))

∏
ai∈Ai

Γ(ν+ck
i (ai,q;λk

i ,φi))

⎤
⎥⎦ .

For given k ∈ Ki, block Bλ is a random walk Metropolis update which proposes a

λk∗
i identical to λk

i except for a random mutation. The proposal consists of drawing a

random pair (a, q) from the uniform distribution on A × Qk
i , then drawing λk∗

i (a, q) from

the uniform distribution on Qk
i \λk

i (a, q). For all pairs (a′, q′) ∈ (A × Qk
i )\{(a, q)}, we set

λk∗
i (a′, q′) = λk

i (a
′, q′). Then if necessary, we permute the non-initial states so that λk∗

i

satisfies the order condition for non-initial states.

The proposal is a random walk on the space of transition functions satisfying condition

2 (order of non-initial states) but not necessarily 3 (no unreachable states). We accept the

proposal λk∗
i with probability

min

⎡
⎢⎣1,

∏
q∈Qk∗

i

Γ(
∑

ai∈Ai
ν+ck∗

i (ai;q))
∏

ai∈Ai
Γ(ν+ck∗

i (ai;q))∏
q∈Qk

i

Γ(
∑

ai∈Ai
ν+ck

i (ai;q))
∏

ai∈Ai
Γ(ν+ck

i (ai;q))

· 1Λ(A,Qk
i )(λ

k∗
i )

⎤
⎥⎦ .
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Note that the indicator function 1Λ(A,Qk
i ), which comes from the prior on λk

i , means we reject

any proposal with unreachable states.

A block drawing µk
i from its conditional posterior distribution

By (5), the density for µk
i |Ki, πi, Q

k
i , λ

k
i , φi, ei is a product of independent Dirichlet distri-

butions. Block Bµ draws each µk
i directly from its Dirichlet distribution using standard

procedures.

3.6 Machine Type Identification

In this section we discuss an identification issue concerning machine type labels. Any per-

mutation of machine types of a population pi gives an observationally equivalent population.

So the population in the example of Section 2, where m1 is 85% grim trigger, m2 is 85%

tit-for-tat and their respective probabilities are π(1) = 0.6 and π(2) = 0.4, is observationally

equivalent to a population where m1 is 85% tit-for-tat, m2 is 85% grim trigger, π(1) = 0.4

and π(2) = 0.6.

Note that we have already resolved a similar issue with state labels: if we permute the

states of a regular state transition function we obtain a non-regular state transition function,

which the prior assigns zero probability. This is an example of identification through labelling

restrictions, where the restriction is expressed by conditions 2 and 3 on λ.

The non-identification of machine types is not always a problem. Many questions can

be answered without recourse to machine type identification restrictions. The posterior

distribution of the number of machine states (a measure of complexity) of the machine to

which a particular subject is assigned can be obtained without such recourse.

Sometimes, however, it is convenient to introduce labelling restrictions. Suppose Si =

{1, 2, 3} is the set of subjects for player i and Ki = {1, 2} is the set of machine types for i.

With no labelling restrictions, we might infer that machine assignments (φi(1), φi(2), φi(3))
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Table 1: Example of Posterior Probabilities of Machine Assignments

Values of (φi(1), φi(2), φi(3)) Posterior Probability

(1,1,1), (2,2,2) 0.05

(1,1,2), (2,2,1) 0.05

(1,2,1), (2,1,2) 0.10

(1,2,2), (2,1,1) 0.30

have the posterior distribution given in Table 2.

Each row gives an equivalence class of two observationally equivalent machine assign-

ments. Symmetry requires their posterior probabilities to be equal, and this common proba-

bility is also tabulated. The partition of the subject set implied by the machine assignments

is important, not the label values.

We identify machine types by selecting one map from each equivalence class to represent

the class. If, for example, we choose the first map of each row, we are labelling as machine

1 the machine to which subject 1 is assigned, and machine 2 as the other machine.

Alternatively, we can choose the high probability map (1, 2, 2) from the fourth row and

the three maps which differ from it by only one subject assignment: (2, 2, 2), (1, 1, 2) and

(1, 2, 1). We can think of machine 1 as the machine to which subjects 2 and 3 tend to be

assigned and to which subject 1 tends not to be assigned. This kind of identification is

useful if posterior probability is dominated by a “central” machine assignment, a few “close”

machine assignments, and the observationally equivalent machine assignments obtained by

permuting machine type labels.

We now make precise a identification strategy based on this general idea. This strategy

involves a central machine assignment: φ̄i : S → Ki, which we describe how to obtain below.

Each class of observationally equivalent machine assignments is represented by the one closest

in Hamming distance to φ̄, with ties resolved using a lexicographic order. The Hamming
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distance between two machine assignment functions is the number of subjects for which their

values are not equal.

The central machine assignment φ̄i is a fixed point satisfying

φ̄i(s) = arg max
k∈Ki

Pr[φi(s) = k|Ki, ei] for every s ∈ Si,

where the probabilities are computed after identifying machine types as described in the

previous paragraph.

3.7 Marginal Likelihood Computation

To compute the posterior mass function f(Ki|ei), it is useful to have the values f(ei|Ki) for

all Ki with positive prior probability, since we can then compute f(Ki|ei) using Bayes rule:

f(Ki|ei) =
f(Ki)f(ei|Ki)∑∞

κ=1 Pr[Ki = κ]f(ei|Ki = κ)
.

We use the method of Gelfand and Dey to compute the values f(ei|Ki). We require a

properly normalized density function f̂(πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

|Ki, ei), resembling the posterior

density f(πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

|Ki, ei). With M draws (πm
i , (Qk,m

i , λk,m
i , µk,m

i )k∈Ki
)m∈{1,...,M}

simulated from the posterior distribution, we compute

ĝ =
1

M

M∑
m=1

f̂(πm
i , (Qk,m

i , λk,m
i , µk,m

i )k∈Ki
|Ki)

f(ei, πm
i , (Qk,m

i , λk,m
i , µk

i )k∈Ki
|Ki)

.

Provided that our Markov chain is ergodic and its invariant distribution is the posterior

distribution πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

, φi|Ki, ei, the sample mean ĝ converges almost surely to the

following population mean g:

g ≡ E

[
f̂(πi, (Q

k
i , λ

k
i , µ

k
i )k∈Ki

|Ki, ei)

f(ei, πi, (Qk
i , λ

k
i , µ

k
i )k∈Ki

|Ki)
|Ki, ei

]

=
1

f(ei|Ki)
· E

[
f̂(πi, (Q

k
i , λ

k
i , µ

k
i )k∈Ki

|Ki, ei)

f(πi, (Qk
i , λ

k
i , µ

k
i )k∈Ki

|Ki, ei)
|Ki, ei

]
. (9)
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The posterior expectation in (9) is the following integral over the parameter space Θ:

∫
Θ

f̂(πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

|Ki, ei)

f(πi, (Qk
i , λ

k
i , µ

k
i )k∈Ki

|Ki, ei)
· f(πi, (Q

k
i , λ

k
i , µ

k
i )k∈Ki

|Ki, ei) dν(ϑ)

=

∫
Θ

f̂(πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

|Ki, ei) dν(ϑ) = 1,

where ν is the appropriate measure. Therefore g is the reciprocal of the marginal likelihood

f(ei|Ki).

The choice of f̂ is important, since the error of approximation depends on the distribution

of the ratio f̂/f . The ratio is bounded below by zero, so reducing the error of approximation

involves controlling the right tail of this distribution. Roughly speaking, f̂ should approxi-

mate f , but errors of understatement are less serious than errors of overstatement.

Our choice of f̂ is based on the central machine assignment functions φ̄i discussed in

Section 3.6:

f̂(πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

|Ki, ei)

= f(πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

|Ki, ei, φi = φ̄i, |Qk
i | ≤ Q̄)

= f(πi|Ki, φi = φ̄i)

·
∏

k∈Ki

f(Qk
i , λ

k
i |φi = φ̄i, |Qk

i | ≤ Q̄, ei) · f(µk
i |Qk

i , λ
k
i , φi = φ̄i, ei)

Equation (3) gives the normalized density f(πi|Ki, φi = φ̄i) and equation (5) gives the

normalized densities f(µk
i |Qk

i , λ
k
i , φi = φ̄i, ei). Equation (7) gives a probability mass function

proportional to f(Qk
i , λ

k
i |φi = φ̄i, |Qk

i | ≤ Q̄, ei), but not the normalization constant. We

calculate this normalization constant numerically by summing over all machines with up

to Q̄ states. The choice of Q̄ reflects a tradeoff. The computational cost of the summation

increases with Q̄. However, as Q̄ decreases, the variance of f̂/f increases due to the increased

probability of the event f̂/f = 0.

Note that the true posterior distribution πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

|Ki, ei is a mixture of distribu-

tions πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

|Ki, φi, ei, where the mixing distribution is φi|Ki, ei. One component
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of this mixture is πi, (Q
k
i , λ

k
i , µ

k
i )k∈Ki

|Ki, φi = φ̄i, ei, which is proportional to f̂ on the region

where |Qk
i | ≤ Q̄. We see that the ratio gf̂/f is bounded above by the reciprocal of the

probability Pr[φi = φ̄i, |Qk
i | < Q̄|Ki, ei]. In practice, we find that the procedure for choosing

φ̄ described in Section 3.6, and a feasible choice Q̄ makes this probability fairly high, and we

obtain very satisfactory standard errors for marginal likelihoods.

4 Experimental Design and Procedures

The stage game we study is the well known Prisoner’s Dilemma. In our game the punishment

(mutual defection) payoff is 60, the temptation (play d when the opponent plays C) is 180,

the sucker (play c when the opponent plays D) is 0, and the reward (play c when the opponent

plays C) is 90. Recall that both the unique stage-game equilibrium and sub-game perfect

equilibrium in the finitely repeated game (by backward induction) are mutual defection in

each round.

By the folk theorem, we know that in the indefinitely repeated game cooperative equilibria

can arise via the threat that deviations off of the equilibrium path are punished forever by

defection. To compute the minimum discount factor required to achieve cooperation it is

sufficient to ensure that a one-period deviation is not profitable:

∞∑
t=0

δt90 ≥ 180 +

∞∑
t=1

δt60.

Thus for any discount factor δ ≥ 0.75 cooperative equilibria exist. In our experiments we

simulated a discount factor of 0.80 by introducing a constant and independent probability

of continuing the repeated game after each stage game. We set the continuation probability

just above the threshold of 0.75 so that cooperation is possible but not necessarily obvious.

With a continuation probability of 0.80 the expected length of a supergame is five rounds,

thus it is possible to run laboratory experiments where we can observe many supergames.

In the experiments, subjects were randomly and anonymously paired to play twenty
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supergames of indefinite length. After each supergame subjects were randomly matched

with a new opponent. The supergame lengths were determined in advance using the stated

distribution.5 Each subject experienced the same sequence of supergame lengths, which

mitigated any differences in behavior due to different experiences with the random process.

Subjects were informed of this procedure (but not the outcome) in advance.

The subjects were seated at a computer terminal displaying the earnings table for a row

and a column player. All subjects viewed the game as if they were the row player. The

choices of each stage game were recorded at the bottom of the screen, along with a label

that identified each supergame, and subjects were able to review these data at any time. A

screen informed the subjects whenever a new pairing was about to begin.

Subjects took a brief quiz that indicated whether or not they understood the earnings

table, and whether or not they understood the constant and independent continuation prob-

ability. For the latter, specifically, they were asked what chances out of ten there would be

that a pairing would continue if it had already lasted 1, 5, 10, and 100 periods. The answer

in each case is eight and the sessions did not begin until all subjects correctly answered the

questions. Subjects correctly answering these questions should have a better understand-

ing regarding the stochastic process that governed the end of the supergames and less of a

tendency toward the gambler’s fallacy.

A total of 44 English-speaking university students in Montreal participated in four ex-

perimental sessions.6 The experiment was programmed and conducted using z-Tree software

(Fischbacher 1999). The experiments were run in June and July, 2004, at the Bell Exper-

imental Laboratory for Commerce and Economics at the Centre for Research and Analysis

on Organizations. Subjects earned CAD $10.00 for showing up on time and participating

fully (which compensated for travel to the off-campus laboratory). Subjects averaged an

5 The random number generator and seed are available upon request. The minimum supergame length
was 1; the maximum supergame length was 25; the average was 4.975.

6 We use only the first session here.

27



additional CAD $18.27 during the experiment that lasted between one and one and a half

hours. To control for possible wealth effects accumulating during the (on average) 100 de-

cisions made by each subject, they were paid for the sum of their earnings in a randomly

selected five supergames. Alternative opportunities for pay in Montreal for our subjects is

considered to be approximately CAD $8.00 per hour.

5 Results

5.1 Simulation Results

To illustrate our procedure, we generate artificial data by having machines from two pop-

ulations play Prisoner’s Dilemma against each other, and then show what features of the

original populations we can recover.

Population 1 is the population described in Section 2. Machine k = 1 is 85% grim trigger,

machine k = 2 is 85% tit-for-tat, and both are equally likely. Population i = 2 also has two

equally probable machines, both with a single state. Machine k = 1 is 60% defect and

machine k = 2 is 60% cooperate.

We have eight subjects from each population, and each subject from population i = 1

plays each subject from population i = 2 exactly once. Unlike in the experimental data, we

draw an independent supergame duration T for every pair of subjects. As with the experi-

mental data, T is exponential with mean 5, representing a constant continuation probability

of 0.8.

Rather than draw machine types randomly from the population, we “stratify” the sub-

jects so that there are four subjects of each machine type in both populations. Specifically,

we set φi(1) = φi(3) = φi(5) = φi(7) = 1 and φi(2) = φi(4) = φi(6) = φi(8) = 2 for

i ∈ {1, 2}.
We choose machines for population i = 1 whose deterministic counterparts (machines
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playing the probable state with probability one) are supported by equilibrium predictions

or past investigations of repeated games (e.g., Axelrod 1985). Population i = 2 machines

generate variation in play that reveals the machine types of population i = 1.

We choose the following prior parameters. We set α = 1, implying, for each Ki ∈ {1, 2, 3},
a uniform density for πi|Ki on the Ki-dimensional simplex. We set the priors for the numbers

of machines states and the numbers of machine types to be uniform on {1, 2, 3}. That is,

θ1 = θ2 = θ3 = ω1 = ω2 = ω3 = 1/3 and θj = ωj = 0 for all j > 3. We set ν = 0.6, which

favors extreme action probabilities. The density for the 2-dimensional Dirichlet (i.e. the

Beta) distribution with parameter vector (0.6, 0.6) is shown in Figure 1.

We present results only for population i = 1, the more interesting case.

How well do we recover K1, the number of machines? The true value is 2, and we obtain

the posterior distribution (0.00, 0.23, 0.77) on {1, 2, 3}. We discover heterogeneity, but we

have difficulty learning whether or not there is a third machine type. Since we observe the

behavior of only 8 subjects, it is difficult to know how many more than 2 of machine types

there are. Since the posterior probability Pr[K1 = 1|e1] is negligible, we discuss results

conditional only on K1 = 2 and K1 = 3. We can think of the whole posterior distribution as

being a mixture of the two conditional distributions, with the mixing weights 0.23 and 0.77.

How well do we recover φ1, the machine assignment function? We first condition on

K1 = 2. Later, we will condition instead on K1 = 3. Only two partitions of subjects have

non-negligible posterior probability. The partition with subjects 1, 3, 5 and 7 assigned to

one machine and subjects 2, 4, 6 and 8 assigned to the other (which is the true partition)

has posterior probability 0.995. The partition with subjects 1, 2, 3, 5, 7 assigned to one

and subjects 4, 6 and 8 to the other has posterior probability 0.005. Clearly, we recover φ1

quite well. We classify all subjects correctly. We are nearly certain about our classification

of all subjects except subject 2 and even for this subject, our classification has posterior

probability 0.995.
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Figure 1: Density of Beta(0.6,0.6) distribution
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Table 2: Posterior probabilities Pr[φ1(s) = k|Ki = 3, ei]

Subject (s) k = 1 k = 2 k = 3
1 0.891 0.000 0.109
2 0.000 0.952 0.048
3 0.767 0.009 0.224
4 0.000 0.998 0.002
5 0.963 0.000 0.037
6 0.000 0.997 0.003
7 0.957 0.000 0.043
8 0.000 0.997 0.003

The central machine assignment, obtained using the method of Section 3.6, is φ̄1(1) =

φ̄1(3) = φ̄1(5) = φ̄1(7) = 1 and φ̄1(2) = φ̄1(4) = φ̄1(6) = φ̄1(8) = 2. The is exactly the

same as the true φ1, but note that it could just as easily have been φ̄1(1) = φ̄1(3) = φ̄1(5) =

φ̄1(7) = 2 and φ̄1(2) = φ̄1(4) = φ̄1(6) = φ̄1(8) = 1, in which case we would need to permute

the results below in the obvious way. According to the method of Section 3.6, we identify as

machine k = 1 the one with the highest count of subjects 1, 3, 5, and 7 assigned to it plus

subjects 2, 4, 6 and 8 not assigned to it. Machine k = 2 is the other one.

We now condition on K1 = 3. The central machine assignment is φ̄1(1) = φ̄1(3) =

φ̄1(5) = φ̄1(7) = 1 and φ̄1(2) = φ̄1(4) = φ̄1(6) = φ̄1(8) = 2, as before: φ̄ assigns no subject to

machine k = 3. This identifies machine k = 1 as the one with the highest count of subjects

1, 3, 5, and 7 assigned to it plus subjects 2, 4, 6 and 8 not assigned to it; machine k = 2 as

the one with the highest count of subjects 2, 4, 6, and 8 assigned to it plus subjects 1, 3, 5

and 7 not assigned to it; and machine k = 3 as the remaining machine. Table 2 tabulates

the posterior probabilities of each assignment.

Results for the posterior distribution of π1, the machine probability mass function, are

somewhat misleading, since we did not draw from any distribution, but instead arranged

for equal proportions in the sample. Conditional on K1 = 2, we compute a posterior mean

(standard deviation) for π1(1), the probability that a random subject of population 1 is
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Table 3: Posterior probabilities Pr[Qk
1 = Q|K1, e1] of machine state numbers

K1 k Q = 1 Q = 2 Q = 3
2 1 0.000 0.745 0.254
2 2 0.000 0.892 0.108
3 1 0.000 0.656 0.344
3 2 0.000 0.889 0.111
3 3 0.203 0.375 0.422

machine type 1, of 0.50 (0.15). The relative uncertainty reflects the fact that we only observe

eight subjects from the population. Conditional on K1 = 3, we have a posterior mean for

(π1(1), π1(2), π1(3)) of (0.416, 0.451, 0.133).

How well do we recover numbers of states? The true values for both machines is 2. The

posterior distribution of machine state numbers is given in Table 3. Given K1 = 2, we

are all but certain that machine k = 1 has memory, but still somewhat unsure of the exact

complexity. We are nearly sure that machine k = 2 also has memory, and somewhat more

confident that there are only 2 states. For K1 = 3, the distributions for machines k = 1 and

k = 2 change slightly. Since no subject is assigned to machine k = 3 with much probability,

we learn little about it: the posterior distribution of its number of states is close to the

(uniform) prior. If we further condition on at least one of the eight subjects being assigned

to it, the probability that the machine has one state drops almost to zero.

Finally, how well do we recover the state transition functions and action probability

mass functions? Once again, we first condition on K1 = 2. Machine k = 1 has the exact

state transition function of its true value (grim trigger transitions) with posterior probability

0.892. If it does have this transition function, the cooperate probability in the initial state

has a posterior mean (standard deviation) of 0.876 (0.026), and the defect probability in the

other state has a posterior mean (standard deviation) of 0.864 (0.039). Recall that both true

values are 0.85. No other transition function has posterior probability greater than 0.02.
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The prior probability of each of the 240 unique 2-state transition functions is 0.00139.

Machine k = 2 has exact tit-for-tat transitions (the true transitions) with probability

0.892. With this transition function, the cooperate probability in the initial state has a

posterior mean (standard deviation) of 0.863 (0.049), and the defect probability in the other

state has a posterior mean (standard deviation) of 0.865 (0.135). No other transition function

has probability greater than 0.02.

Now we condition on K1 = 3. Machine k = 1 has exact grim trigger transitions with

posterior probability 0.589. With this transition function, the cooperate probability in the

initial state has a posterior mean (standard deviation) of 0.865 (0.037), and the defect

probability in the other state has a posterior mean (standard deviation) of 0.857 (0.134).

With another 0.058 probability, the transition function for machine k = 1 is like grim trigger

except that the machine returns to the initial state if it cooperates against a defecting

opponent. Since cooperating in this state is the unlikely action, we have less data informing

us about this state transition than we have informing us about other transitions. No other

transition function has posterior probability greater than 0.02.

Machine k = 2 has exact tit-for-tat transitions with posterior probability 0.886. With

this transition function, the cooperate probability in the initial state has a posterior mean

(standard deviation) of 0.875 (0.027), and the defect probability in the other state has

a posterior mean (standard deviation) of 0.869 (0.131). No other transition function has

posterior probability greater than 0.02.

Machine k = 3 has probability 0.203 of having 1 state and therefore no non-degenerate

transitions, probability 0.034 of having exact grim trigger transitions, probability 0.026 of

having the same near-grim-trigger transitions as above and probability 0.015 of having exact

tit-for-tat transitions. No other transition function has posterior probability greater than

0.02.
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5.2 Experimental Results

We use the same prior for inferring populations from experimental data. Because of the

symmetry of the game, we treat all experimental subjects as being from population 1.

The posterior distribution, on {1, 2, 3}, for the number of machines K1 is (0.00, 0.28, 0.72).

We are nearly certain that there is heterogeneity, but less sure about the degree. Given the

small number of subjects, this is understandable. Again and for the same reasons, we ignore

the case K1 = 1 and treat the cases K1 = 2 and K1 = 3 separately.

The central machine assignment given K1 = 2 is

φ̄1(1) = φ̄1(2) = φ̄1(3) = φ̄1(4) = φ̄1(5) = 1 φ̄1(6) = φ̄1(7) = φ̄1(8) = 2,

which establishes machine k = 1 as the machine associated with subjects 1 through 5 and

machine k = 2 as the machine associated with subjects 6 through 8. The central machine

assignment given K1 = 3 is

φ̄1(1) = φ̄1(2) = φ̄1(3) = φ̄1(4) = φ̄1(5) = 2 φ̄1(6) = φ̄1(7) = φ̄1(8) = 3,

with no subjects assigned to machine k = 1. We see that machine k = 2 tends to be assigned

the same subjects as machine k = 1 for K1 = 2, and machine k = 3 tends to be assigned

the same subjects as machine k = 2 for K1 = 2. Table 4 tabulates posterior probabilities

of assignments for both K1 = 2 and K1 = 3. Some of the features of the joint distribution

are obscured by reporting only these marginal distributions. For example, the assignments

of subjects 1 and 3 are highly correlated. If one is assigned the “5 through 8” machine, then

the other is more likely to be so assigned.

For the posterior mean of machine type probabilities, we have E[(π(1), π(2)|K1 = 2, e1]

= (0.609, 0.391) and E[(π(1), π(2), π(3)|K1 = 2, e1] = (0.117, 0.528, 0.355).

The posterior distribution of machine state numbers is given in Table 5. As with the

simulated data, we are quite sure that all machines have memory. Again we have a machine,
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Table 4: Posterior probabilities Pr[φ1(s) = k|Ki, ei] of state assignments

K1 Subject (s) k = 1 k = 2
2 1 0.965 0.035
2 2 1.000 0.000
2 3 0.970 0.030
2 4 1.000 0.000
2 5 1.000 0.000
2 6 0.000 1.000
2 7 0.000 1.000
2 8 0.153 0.847

k = 1 k = 2 k = 3
3 1 0.040 0.887 0.073
3 2 0.058 0.942 0.000
3 3 0.038 0.897 0.065
3 4 0.017 0.982 0.001
3 5 0.078 0.922 0.000
3 6 0.016 0.000 0.984
3 7 0.004 0.001 0.995
3 8 0.035 0.182 0.783
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Table 5: Posterior probabilities Pr[Qk
1 = Q|K1, e1] of state numbers

K1 k Q = 1 Q = 2 Q = 3
2 1 0.000 0.000 1.000
2 2 0.000 0.538 0.461
3 1 0.254 0.319 0.426
3 2 0.000 0.002 0.998
3 3 0.000 0.516 0.484

this time k = 1, having a low probability of any subject being assigned to it. As before, the

posterior distribution of its number of states differs little from the prior distribution, but

conditioning on some subject being assigned to it, the probability of having only one state

drops to nearly zero.

Given K1 = 2, several state transition functions have posterior probability greater than

0.02. High probability transition functions for k = 1 come in three clusters, illustrated in

Table 6. Entries in the table give either the state value in {1, 2, 3} or an X indicating a “don’t

care”. A cluster in the table consists of all transition functions obtained by independently

assigning values to the don’t cares.

Cluster 1 consists of nine transition functions that agree on all transitions except λ((c, C), 2)

and λ((d,D), 3). The posterior probabilities of the nine transition functions in cluster 1 range

from 0.056 to 0.060, and together account for 0.525 of posterior probability. Numerical stan-

dard errors suggest that these probabilities are different and not due to numerical sampling

error, but this is not conclusive. Cluster 2 consists of three transition functions that agree

on all transitions except λ((d,D), 3). Their posterior probabilities range from 0.028 to 0.029

and together account for 0.086 of posterior probability. Cluster 3 consists of nine more tran-

sition functions, with probabilities ranging from 0.024 to 0.026 and accounting for a posterior

probability of 0.224.

The three clusters together account for 0.835 of posterior probability. The 21 high prob-

36



ability transition functions, like all 343,000 state transition functions with three states, each

have a prior probability of 9.71 × 10−7.

Not only are the transition functions in each cluster very similar, the clusters themselves

are quite similar. All 21 high probability transition functions agree on eight of the twelve

transitions, including all four transitions from the initial state.

The action probability mass functions associated with these 21 high probability transi-

tion functions are very similar. The posterior mean (standard deviation) of the cooperate

probability is approximately 0.42 (0.05) in the initial state, 0.03 (0.01) in state 2 and 0.95

(0.03) in state 3.

The k = 1 machine exhibits at least three interesting behavioral characteristics. First,

it is complex, consisting of three states. Second, it has a buffer state (state 1) that delays

entering the defect state (2) after a defection is observed and the cooperative state (3) after

cooperation is observed. This state might be thought of as a cautious state: the machine

does not always immediately punish a defection, but sometimes waits for a second consec-

utive defection before punishing. Likewise, the machine sometimes waits for a second act

of cooperation before starting to cooperate itself. Second, it exhibits reciprocity, a feature

for which there is much experimental evidence (e.g., Fehr and Gaechter, 2000). Third, co-

operative actions result in cooperative responses with high probability, and non-cooperative

actions are likely to engender non-cooperative actions.

High probability transition functions for k = 2 come in one cluster, illustrated in Table

7. The cluster consists of 16 transition functions, which agree on 4 transition functions

and differ on the other 4. The cluster includes the tit-for-tat but not the grim trigger

transition function. Their probabilities range from 0.030 to 0.033 and together account for

0.495 of posterior probability. The action probability mass functions associated with these

16 high probability transition functions are again very similar. The posterior mean (standard

deviation) of the cooperate probability is approximately 0.02 (0.01) in the initial state, and
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Table 6: Three high probability clusters for machine k = 1

Cluster Action (a) λ(a, 1) λ(a, 2) λ(a, 3)
(d,D) 2 2 X

1 (c,D) 2 2 1
(d, C) 3 1 3
(c, C) 3 X 3
(d,D) 2 2 X

2 (c,D) 2 2 2
(d, C) 3 1 3
(c, C) 3 3 3
(d,D) 2 2 X

3 (c,D) 2 2 1
(d, C) 3 1 1
(c, C) 3 X 3

Table 7: One high probability cluster for machine k = 1

Action (a) λ(a, 1) λ(a, 2)
(d,D) 1 X
(c,D) X 1
(d, C) 2 X
(c, C) 2 X

0.98 (0.03) in the other. Note that in the initial state, defection is the high probability

action. Usually the initial state in a tit-for-tat machine is thought of as a cooperate state.

Machines k = 1 and k = 2 both have, with high posterior probability, a tit-for-tat quality

of imitating the opponent’s action in the previous period.

We don’t report results conditional on K1 = 3 except to point out that machine k = 2 is

very similar to the k = 1 machine for K1 = 2 and machine k = 3 is very similar to the k = 2

machine for K1 = 2.
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6 Conclusions

We presented a new method to draw inference about the number and types of repeated-game

strategies from choice data in experiments. We base our strategy model on finite automata,

which model a broad array of strategic behavior.

We demonstrated our ability to recover features of machines, commonly found in repeated

game theory, that generate artificial data. We generated an amount of data similar to what

we might expect to collect in the laboratory. We showed that our procedure does well

recovering the characteristics of the underlying machines. We applied our procedure to new

experiments in which subjects simply played many indefinitely repeated prisoner’s dilemma

games. The repeated game admits both cooperative and noncooperative equilibria.

The results give us a new picture of play in repeated prisoner’s dilemma games. We find

strong evidence for heterogeneity. We find evidence that people use strategies that punish

and reward behavior of the opponent. And interestingly, the strategies we infer do not

contain harsh enough punishments to support cooperation in equilibrium.

Our strategy model and inference procedure open doors for new avenues of investigation

of play in repeated games. For example, we can study equilibrium selection in a new (and

more natural) way by examining the expected payoff of inferred strategies when played

against the population, and comparing this to the expected payoff for the best-response to

the inferred population. And we are currently examining empirically based strategy models

across several different types of stage games in an effort to discover behavioral regularities

between them.

For another example, with the ability to base repeated-game strategies on empirical

observation we are poised for fresh contributions to the literature on learning in games

(Camerer and Ho, 1999; Cheung and Friedman, 1997; Erev and Roth, 1998), in which

boundedly rational learning models are employed to understand and predict play over time

(much longer periods of time than the in the supergames in our experiments). These dynamic
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models of behavior assume that subjects make choices from a set of strategies that typically

contains only stage-game actions. However, it seems likely that subjects are learning to

play repeated-game strategies. We should be able to augment the learning models with the

repeated-game strategies we recover using our procedure, thus broadening the class of games

to which the learning theories are applicable, and improving our predictions of strategic

choice behavior in dynamic environments.

Our strategy model is quite general; it can be applied to games with multiple actions

and player types, and it contains both equilibrium and non-equilibrium strategies. As such

we aim to make our procedure available as a tool to a least compliment existing methods of

statistical inference for a wide class of games. With our procedure we take a step toward a

deeper understanding of the ghost in repeated-game machine.
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