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Abstract

This paper revisits Diamond’s classical impossibility result regarding the ordering of in-

finite utility streams. We show that if no representability condition is imposed, there do

exist strongly Paretian and finitely anonymous orderings of intertemporal utility streams

with attractive additional properties. We extend a possibility theorem due to Svensson to

a characterization theorem and we provide characterizations of all strongly Paretian and

finitely anonymous rankings satisfying the strict transfer principle. In addition, infinite-

horizon extensions of leximin and of utilitarianism are characterized by adding an equity-

preference axiom and finite translation-scale measurability, respectively, to strong Pareto

and finite anonymity. Journal of Economic Literature Classification Nos.: D63, D71.

Keywords: Intergenerational justice, multi-period social choice, leximin, utilitarianism.



1 Introduction

Treating generations equally is one of the basic principles in the utilitarian tradition of

moral philosophy. As Sidgwick (1907, p. 414) observes, “the time at which a man ex-

ists cannot affect the value of his happiness from a universal point of view; and [. . . ]

the interests of posteriority must concern a Utilitarian as much as those of his contem-

poraries”. This view, which is formally expressed by the anonymity condition, is also

strongly endorsed by Ramsey (1928).

Following Koopmans (1960), Diamond (1965) establishes that anonymity is incompat-

ible with the strong Pareto principle when ordering infinite utility streams. Moreover, he

shows that if anonymity is weakened to finite anonymity—which restricts the application

of the standard anonymity requirement to situations where utility streams differ in at

most a finite number of components—and a continuity requirement is added, an impossi-

bility results again. Suzumura and Shinotsuka (2003) adapt the well-known strict transfer

principle to the infinite-horizon context. They show that this principle is incompatible

with strong Pareto and continuity even if the ranking is merely required to be acyclical.

Basu and Mitra (2003) show that strong Pareto, finite anonymity and representability by

a real-valued function are incompatible.

A natural question to ask is what happens if no continuity or representability assump-

tions, which are technical rather than ethical in nature, are imposed. Svensson (1980)

proves that strong Pareto and finite anonymity are compatible by showing that any or-

dering extension of an infinite-horizon variant of Suppes’ (1966) grading principle satisfies

the required axioms. The Suppes grading principle is a quasi-ordering that combines the

Pareto quasi-ordering and finite anonymity. Given Arrow’s (1951) version of Szpilrajn’s

(1930) extension theorem, this establishes the compatibility result.

Capitalizing on Svensson’s (1980) results, the focus of this paper is on possibilities

rather than impossibilities. We show that, if neither representability nor continuity as-

sumptions are imposed, orderings of infinite utility streams with attractive properties that

go beyond the grading principle exist. Especially in an infinite-dimensional framework,

technical requirements such as representability and continuity can be considered overly

demanding and, as a consequence, the observation that the orderings characterized in

this paper fail to satisfy them does not appear to be a serious shortcoming. This view is

confirmed by the fact that the set of rules we characterize include orderings where vio-

lations of representability or continuity only occur when comparing utility streams that

differ in infinitely many components. Thus, we think that the results of this paper are
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very encouraging.

We first strengthen Svensson’s result to a characterization theorem by establishing

that any ordering satisfying the two axioms must be an extension of the infinite-horizon

Suppes grading principle. We then show that the compatibility survives even if the strict

transfer principle is added to strong Pareto and finite anonymity. This is accomplished

by characterizing all orderings with these properties and establishing the non-emptiness

of this class. Finally, we show how some well-known characterization results appearing

in finite-population social-choice theory can be extended to the infinite-horizon model.

In particular, we employ an equity-preference condition to characterize infinite-horizon

versions of the leximin principle and we use a suitable variant of translation-scale mea-

surability to axiomatize analogous extensions of utilitarianism.

2 Definitions

The set of infinite utility streams is X = R
N, where R denotes the set of all real numbers

and N denotes the set of all natural numbers. A typical element of X is an infinite-

dimensional vector x = (x1, x2, . . . , xn, . . .) and, for n ∈ N, we write x−n = (x1, . . . , xn)

and x+n = (xn+1, xn+2, . . .). The standard interpretation of x ∈ X is that of a countably

infinite utility stream where xn is the utility experienced in period n ∈ N. Of course,

other interpretations are possible—for example, xn could be the utility of an individual

in a countably infinite population.

Our notation for vector inequalities on X is as follows. For all x, y ∈ X, (i) x ≥ y

if xn ≥ yn for all n ∈ N; (ii) x > y if x ≥ y and x �= y; (iii) x � y if xn > yn for all

n ∈ N. For n ∈ N and x ∈ X, (x(1), . . . , x(n)) is a rank-ordered permutation of x−n such

that x(1) ≤ . . . ≤ x(n), ties being broken arbitrarily.

R ⊆ X × X is a weak preference relation on X with strict preference P (R) and

indifference relation I(R). A quasi-ordering is a reflexive and transitive relation, and

an ordering is a complete quasi-ordering. Analogously, a partial order is an asymmetric

and transitive relation, and a linear order is a complete partial order. Let R and R′ be

relations on X. R′ is an extension of R if R ⊆ R′ and P (R) ⊆ P (R′). If an extension

R′ of R is an ordering, we call it an ordering extension of R, and if R′ is an extension of

R that is a linear order, we refer to it as a linear order extension of R. The transitive

closure of a relation R is denoted by R, that is, for all x, y ∈ X, (x, y) ∈ R if there exist

K ∈ N and z0, . . . , zK ∈ X such that x = z0, (zk−1, zk) ∈ R for all k ∈ {1, . . . , K} and

zK = y.
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A finite permutation of N is a bijection ρ: N → N such that there exists m ∈ N

with ρ(n) = n for all n ∈ N \ {1, . . . , m}. The corresponding finite permutation matrix

Bρ = (bρ
ij)i,j∈N is defined by letting, for all i ∈ N, bρ

iρ(i) = 1 and bρ
ij = 0 for all j ∈ N\{ρ(i)}.

Finite permutation matrices are special cases of finite bistochastic matrices. A finite

bistochastic matrix is a matrix B = (bij)i,j∈N such that there exists m ∈ N such that

bij ≥ 0 for all i, j ∈ {1, . . . , m}, ∑m
i=1 bij = 1 for all j ∈ {1, . . . , m}, ∑m

j=1 bij = 1 for all

i ∈ {1, . . . , m}, bii = 1 for all i ∈ N \ {1, . . . , m} and bij = 0 for all i, j ∈ N \ {1, . . . , m}
with i �= j. Finite bistochastic matrices will be convenient in the proof of Theorem 2.

The following axioms are used in this paper.

Strong Pareto: For all x, y ∈ X, if x > y, then (x, y) ∈ P (R).

Finite anonymity: For all x ∈ X and for all finite permutations ρ of N,

(Bρx, x) ∈ I(R).

Strict transfer principle: For all x, y ∈ X and for all n, m ∈ N, if xk = yk for all

k ∈ N \ {n, m}, ym > xm ≥ xn > yn and xn + xm = yn + ym, then (x, y) ∈ P (R).

Equity preference: For all x, y ∈ X and for all n, m ∈ N, if xk = yk for all k ∈ N\{n, m}
and ym > xm > xn > yn, then (x, y) ∈ R.

Finite translation-scale measurability: For all x, y, z ∈ X and for all m ∈ N, if

xn = yn for all n ∈ N \ {1, . . . , m}, then

(x + z, y + z) ∈ R ⇔ (x, y) ∈ R.

Strong Pareto and finite anonymity are the standard axioms used in the literature on

ranking infinite utility streams.

The strict transfer principle is the natural analogue of the corresponding condition for

finite streams. See also Suzumura and Shinotsuka (2003).

Equity preference is the extension of Hammond’s (1976) equity axiom to the infinite-

horizon environment. d’Aspremont and Gevers (1977) use a stronger axiom by requiring

(x, y) ∈ P (R) rather than merely (x, y) ∈ R in the conclusion of the axiom. In the

presence of strong Pareto, the two axioms are equivalent. Moreover, strong Pareto and

equity preference together imply the following property which, in turn, obviously implies

the strict transfer principle.
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Strict equity preference: For all x, y ∈ X and for all n, m ∈ N, if xk = yk for all

k ∈ N \ {n, m} and ym > xm ≥ xn > yn, then (x, y) ∈ P (R).

To see that strict equity preference is implied by strong Pareto and equity preference,

suppose that R satisfies the first two axioms, and let x, y ∈ X and n, m ∈ N be such that

xk = yk for all k ∈ N \ {n, m} and ym > xm ≥ xn > yn. Let z ∈ X be such that zk =

xk = yk for all k ∈ N \ {n, m} and xn > zm > zn > yn. By strong Pareto, (x, z) ∈ P (R)

and by equity preference, (z, y) ∈ R. Thus, transitivity implies (x, y) ∈ P (R) and strict

equity preference is satisfied.

Finite translation-scale measurability imposes restrictions on the informational con-

tents of utility streams. It requires that utilities are unique up to independent translations.

This is the natural adaptation of the corresponding axiom known from finite-population

social-choice theory to our environment. Note that the axiom only applies to comparisons

of utility streams that differ in at most a finite number of components.

Szpilrajn’s (1930) fundamental result establishes that every partial order has a linear

order extension. Arrow (1951, p. 64) presents a variant of Szpilrajn’s theorem stating that

every quasi-ordering has an ordering extension; see also Hansson (1968). This implies that

the sets of orderings characterized in the theorems of the following sections are non-empty

and, therefore, our results indeed show the compatibility of the stated systems of axioms.

3 The infinite-horizon Suppes grading principle

The Suppes (1966) grading principle combines the requirements of strong Pareto and

anonymity into a criterion for establishing a partial social ranking. Adapted to the multi-

period framework, the Suppes quasi-ordering RS on X is defined as follows. For all

x, y ∈ X, (x, y) ∈ RS if there exists a finite permutation ρ of N such that x ≥ Bρy.

Svensson (1980, Theorem 2) shows that any ordering extension of RS satisfies strong

Pareto and finite anonymity. We formulate a stronger result by establishing that these

ordering extensions of RS are the only orderings on X with these properties.

Theorem 1 An ordering R on X satisfies strong Pareto and finite anonymity if and only

if R is an ordering extension of RS.

Proof. ‘If.’ That any ordering extension of RS satisfies strong Pareto and finite equity

is shown in Svensson (1980, Theorem 2).
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‘Only if.’ Now suppose R is an ordering that satisfies the two axioms. We prove that

R is an ordering extension of RS.

Let x, y ∈ X be such that (x, y) ∈ RS. Thus, there exists a finite permutation ρ of N

such that x ≥ Bρy. By finite anonymity, (Bρy, y) ∈ I(R) ⊆ R. If x = Bρy, (x, Bρy) ∈ R

follows from the reflexivity of R. If x > Bρy, strong Pareto implies (x, Bρy) ∈ P (R) ⊆ R.

Because R is transitive, we obtain (x, y) ∈ R in all cases.

Now let x, y ∈ X be such that (x, y) ∈ P (RS). By definition, there exists a finite

permutation ρ of N such that x ≥ Bρy and there exists no finite permutation ρ′ of N

such that y ≥ Bρ′x. As shown above, (x, y) ∈ RS implies (x, y) ∈ R. If x = Bρy,

letting ρ′ = ρ−1 immediately yields a contradiction. Thus, x > Bρy. By strong Pareto,

(x, Bρy) ∈ P (R). Finite anonymity implies (Bρy, y) ∈ I(R) and, by transitivity, we

obtain (x, y) ∈ P (R). Thus, R is an extension of RS.

Because R is an ordering by assumption, this implies that R is an ordering extension

of RS.

4 Transfer-sensitive infinite-horizon orderings

Now we examine the consequences of adding the strict transfer principle to our list of

axioms. We provide a strengthening of Svensson’s (1980) possibility result by showing

that the three resulting axioms are compatible. Moreover, we characterize all orderings

with these properties.

To define this class of orderings, consider first the following relation RT . For all

x, y ∈ X, (x, y) ∈ RT if there exist n, m ∈ N such that xk = yk for all k ∈ N \ {n, m},
ym > xm ≥ xn > yn and xn + xm = yn + ym. This relation captures the requirements

imposed by the strict transfer principle. Clearly, P (RT ) = RT . Note that if (x, y) ∈ RT ,

then there exists a finite bistochastic matrix B such that x = By. This matrix is obtained

by letting bnm = bmn = (xn − yn)/(ym − yn), bnn = bmm = (xm − yn)/(ym − yn), bni =

bin = bmi
= bim = 0 for all i ∈ N \ {n, m}, bii = 1 for all i ∈ N \ {n, m} and bij = 0 for all

i, j ∈ N \ {n, m} with i �= j.

Because, in addition, we want our ordering to satisfy strong Pareto and finite anonymity,

the relation RS must be respected as well. Finally, because we only consider transitive

relations, the transitive closure of the union of these two relations appears in the definition

of the relevant class of orderings. Clearly, the transitive closure RS ∪ RT of RS ∪ RT is a

quasi-ordering: reflexivity follows from the reflexivity of RS and transitivity is satisfied by

definition. We obtain the following characterization of the class of all ordering extensions
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of RS ∪ RT .

Theorem 2 An ordering R on X satisfies strong Pareto, finite anonymity and the strict

transfer principle if and only if R is an ordering extension of RS ∪ RT .

Proof. ‘If.’ We first prove that RS ∪ RT is an extension of both RS and RT . It is

immediate that RS ⊆ RS ∪ RT and RT ⊆ RS ∪ RT , so we only need to establish the set

inclusions

P (RS) ⊆ P (RS ∪ RT ) (1)

and

P (RT ) ⊆ P (RS ∪ RT ). (2)

To prove (1), suppose that (x, y) ∈ P (RS). This implies (x, y) ∈ RS ∪ RT . By way of

contradiction, suppose that (y, x) ∈ RS ∪ RT . Thus, there exist a finite permutation ρ of

N, K ∈ N and z0, . . . , zK ∈ X such that x > Bρy, y = z0, (zk−1, zk) ∈ RS ∪ RT for all

k ∈ {1, . . . , K} and zK = x. Let k ∈ {1, . . . , K}. If (zk−1, zk) ∈ RS, it follows that there

exists a finite permutation ρk of N such that zk−1 ≥ Bρk
zk. If (zk−1, zk) ∈ RT , it follows

that there exists a finite bistochastic matrix B such that zk−1 = Bzk. Suppose first that,

whenever (zk−1, zk) ∈ RS, we have zk−1 = Bρk
zk for some finite permutation ρk. Because

the set of finite bistochastic matrices is closed under matrix multiplication, it follows that

y = B0x for some finite bistochastic matrix B0. Let m ∈ N be such that b0
ii = bρ

ii = 1

for all i ∈ N \ {1, . . . , m}. Because y = B0x, it follows that
∑m

i=1 yi =
∑m

i=1 xi. But

x > Bρy implies
∑m

i=1 xi >
∑m

i=1 yi, a contradiction. If some of the inequalities are strict,

an analogous contradiction emerges. Therefore, (y, x) ∈ RS ∪ RT is impossible and (1)

follows. The proof of (2) is analogous.

Next, we prove that any ordering extension of RS ∪ RT satisfies the required axioms.

Suppose R is such an ordering extension.

We begin with strong Pareto. Suppose that x > y for some x, y ∈ X. This implies

(x, y) ∈ P (RS) and, by (1), (x, y) ∈ P (RS ∪ RT ). Because R is an ordering extension of

RS ∪ RT , it follows that (x, y) ∈ P (R) and strong Pareto is satisfied.

To establish finite anonymity, let x ∈ X and let ρ be any finite permutation of N. This

implies (Bρx, x) ∈ I(RS) and, because RS ⊆ RS ∪ RT ⊆ R, we obtain (Bρx, x) ∈ I(R).

Finally, we prove that the strict transfer principle is satisfied. Suppose x, y ∈ X

and n, m ∈ N are such that xk = yk for all k ∈ N \ {n, m}, ym > xm ≥ xn > yn and

xn + xm = yn + ym. This implies (x, y) ∈ P (RT ) and, by (2) and the assumption that R

is an ordering extension of RS ∪ RT , we obtain (x, y) ∈ P (R).
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‘Only if.’ Suppose R satisfies the three axioms of the theorem statement. To prove

that R is an ordering extension of RS ∪ RT , suppose first that (x, y) ∈ RS ∪ RT . By

definition, there exist K ∈ N and z0, . . . , zK ∈ X such that x = z0, (zk−1, zk) ∈ RS ∪ RT

for all k ∈ {1, . . . , K} and zK = y. By Theorem 1, (zk−1, zk) ∈ R follows whenever

(zk−1, zk) ∈ RS and, by the strict transfer principle, (zk−1, zk) ∈ R follows whenever

(zk−1, zk) ∈ RT . Because R is transitive, it follows that (x, y) ∈ R.

Now suppose that (x, y) ∈ P (RS ∪ RT ). By definition, there exist K ∈ N and

z0, . . . , zK ∈ X such that x = z0, (zk−1, zk) ∈ RS ∪ RT for all k ∈ {1, . . . , K} and

zK = y. Moreover, at least one of these preferences must be strict because otherwise

we would have (y, x) ∈ RS ∪ RT , contradicting (x, y) ∈ P (RS ∪ RT ). If the strict prefer-

ence is such that (zk−1, zk) ∈ P (RS), (zk−1, zk) ∈ P (R) follows from Theorem 1. If the

strict preference is such that (zk−1, zk) ∈ P (RT ), (zk−1, zk) ∈ P (R) follows immediately

from the strict transfer principle. Therefore, in either case, the transitivity of R implies

(x, y) ∈ P (R). This completes the proof that R is an ordering extension of RS ∪ RT .

5 Infinite-horizon leximin

If the strict transfer principle is replaced by equity preference (which, in the presence

of strong Pareto, is a strengthening), the only remaining orderings are infinite-horizon

versions of the leximin criterion. Let n ∈ N. We denote the usual leximin ordering on R
n

by Rn
� , that is, for all x, y ∈ X,

(x−n, y−n) ∈ Rn
� ⇔ x−n is a permutation of y−n or there exists m ∈ {1, . . . , n} such that

x(k) = y(k) for all k ∈ {1, . . . , n} \ {m, . . . , n} and x(m) > y(m).

Again, let n ∈ N and define a relation Rn
L ⊆ X×X by letting, for all x, y ∈ X, (x, y) ∈ Rn

L

if (x−n, y−n) ∈ Rn
� and x+n ≥ y+n. It is straightforward to verify that Rn

L is a quasi-

ordering for all n ∈ N. Finally, let RL = ∪n∈NRn
L. This relation is a quasi-ordering but

it is not complete—some infinite utility streams are not ranked by RL. Our next result

characterizes all ordering extensions of RL.

Theorem 3 An ordering R on X satisfies strong Pareto, finite anonymity and equity

preference if and only if R is an ordering extension of RL.

Proof. ‘If.’ First, we prove that, for all n, m ∈ N such that m > n,

Rn
L ⊆ Rm

L (3)
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and

P (Rn
L) ⊆ P (Rm

L ). (4)

Let n, m ∈ N be such that m > n.

To prove (3), suppose that (x, y) ∈ Rn
L. By definition, (x−n, y−n) ∈ Rn

� and x+n ≥ y+n.

Hence (x−m, y−m) ∈ Rm
� and x+m ≥ y+m, that is, (x, y) ∈ Rm

L .

To establish (4), suppose that (x, y) ∈ P (Rn
L). By definition, at least one of the

following two statements is true:

(x−n, y−n) ∈ P (Rn
� ) and x+n ≥ y+n; (5)

(x−n, y−n) ∈ Rn
� and x+n > y+n. (6)

By (3), it follows that (x, y) ∈ Rm
L . To prove that (x, y) ∈ P (Rm

L ), suppose, by way of

contradiction, that (y, x) ∈ Rm
L . Then, by definition,

(x−n, y−n) ∈ I(Rn
� ) and x+n = y+n,

contradicting (5) and (6).

Next, we prove that RL is a quasi-ordering. Reflexivity is immediate because, for all

x ∈ X, (x, x) ∈ Rn
L for all n ∈ N and hence (x, x) ∈ RL. To prove that RL is transitive,

suppose that (x, y), (y, z) ∈ RL. By definition, there exist n, m ∈ N such that (x, y) ∈ Rn
L

and (y, z) ∈ Rm
L . Let k = max{n, m}. By (3), (x, y), (y, z) ∈ Rk

L and by the transitivity

of Rk
L, (x, z) ∈ Rk

L which, in turn, implies (x, z) ∈ RL.

We now show that, for all x, y ∈ X,

(x, y) ∈ P (RL) ⇔ ∃n ∈ N such that (x, y) ∈ P (Rn
L). (7)

Suppose first that (x, y) ∈ P (RL). By definition, there exists n ∈ N such that (x, y) ∈
Rn

L. Moreover, (y, x) �∈ Rn
L because otherwise we obtain (y, x) ∈ RL by definition and

thus a contradiction to our hypothesis that (x, y) ∈ P (RL). Hence (x, y) ∈ P (Rn
L).

Conversely, suppose that there exists n ∈ N such that (x, y) ∈ P (Rn
L). Suppose there

exists m ∈ N such that (y, x) ∈ Rm
L . Because (x, y) ∈ P (Rn

L), (4) implies n > m. But then

(3) implies (y, x) ∈ Rn
L, a contradiction. We conclude that (x, y) ∈ Rn

L and (y, x) �∈ Rm
L

for all m ∈ N. By definition, this implies (x, y) ∈ P (RL).

Now let R be an ordering extension of RL. We complete the proof of the ‘if’ part by

showing that R satisfies the required axioms.

To establish that strong Pareto is satisfied, suppose that x, y ∈ X are such that x > y.

Let n = min{m ∈ N | xm > ym}. By definition, (x, y) ∈ P (Rn
L). By (7), (x, y) ∈ P (RL)

and, because R is an ordering extension of RL, we obtain (x, y) ∈ P (R).
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Next, we show that finite anonymity is satisfied. Let x ∈ X and let ρ be a finite

permutation of N. By definition, there exists m ∈ N such that ρ(n) = n for all n ∈
N \ {1, . . . , m}. By definition of Rm

L , (Bρx, x) ∈ I(Rm
L ). By definition of RL, this implies

(Bρx, x) ∈ I(RL). Because R is an ordering extension of RL, we obtain (Bρx, x) ∈ I(R).

Finally, we show that equity preference is satisfied. Consider x, y ∈ X and n, m ∈ N

such that xk = yk for all k ∈ N \ {n, m} and ym > xm > xn > yn. Let j = max{n, m}.
By definition of Rj

L, we obtain (x, y) ∈ Rj
L. By (7), (x, y) ∈ RL and, because R is an

ordering extension of RL, (x, y) ∈ R.

‘Only if.’ Suppose R is an ordering on X satisfying the three axioms of the theorem

statement. Fix n ∈ N and z ∈ X and define the relation Q(n, z) ⊆ R
n × R

n as follows.

For all x, y ∈ X,

(x−n, y−n) ∈ Q(n, z) ⇔ ((x−n, z+n), (y−n, z+n)) ∈ R.

Q(n, z) is an ordering because R is. Furthermore, it is clear that

(x−n, y−n) ∈ P (Q(n, z)) ⇔ ((x−n, z+n), (y−n, z+n)) ∈ P (R) (8)

for all x, y ∈ X. The three axioms imply that Q(n, z) must satisfy the n-person versions

of the axioms and, using Hammond’s (1976, Theorem 7.2) characterization of n-person

leximin (see also d’Aspremont and Gevers, 1977, Theorem 5), it follows that

Q(n, z) = Rn
� . (9)

Because n and z were chosen arbitrarily, (9) is true for all n ∈ N and for any z ∈ X.

By way of contradiction, suppose R is not an ordering extension of RL. There are two

possible cases.

Case 1. There exist x, y ∈ X such that (x, y) ∈ RL and (y, x) ∈ P (R). By definition

of RL, there exists n ∈ N such that (x, y) ∈ Rn
L, that is,

(x−n, y−n) ∈ Rn
� and x+n ≥ y+n.

Hence, by (9),

(x−n, y−n) ∈ Q(n, z) and x+n ≥ y+n

for all z ∈ X. Choosing z = y and using the definition of Q(n, z), it follows that

((x−n, y+n), (y−n, y+n)) ∈ R. Because x+n ≥ y+n, reflexivity (if x+n = y+n) or the con-

junction of strong Pareto and transitivity (if x+n > y+n) implies ((x−n, x+n), (y−n, y+n)) =

(x, y) ∈ R, a contradiction.
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Case 2. There exist x, y ∈ X such that (x, y) ∈ P (RL) and (y, x) ∈ R. By (7), there

exists n ∈ N such that (x, y) ∈ P (Rn
L). Thus, (5) or (6) is true. If (5) holds, (9) implies

(x−n, y−n) ∈ P (Q(n, z)) and x+n ≥ y+n

for all z ∈ X. Setting z = y and using (8), we obtain ((x−n, y+n), (y−n, y+n)) ∈ P (R) and,

using reflexivity or strong Pareto and transitivity as in case 1, we obtain (x, y) ∈ P (R),

a contradiction. If (6) holds, we proceed as in case 1.

6 Infinite-horizon utilitarianism

The technique employed in the previous section to characterize infinite-horizon versions

of leximin can also be applied to a characterization of utilitarian orderings. This is an

interesting observation because it demonstrates that the necessary violations of continuity

and representability are restricted to comparisons of genuinely different infinite utility

streams—streams differing in at most finitely many components can be ranked using

well-behaved criteria. To define infinite-horizon utilitarian orderings, we begin by letting,

for all n ∈ N and for all x, y ∈ X,

(x−n, y−n) ∈ Rn
u ⇔

n∑

i=1

xi ≥
n∑

i=1

yi

and

(x, y) ∈ Rn
U ⇔ (x−n, y−n) ∈ Rn

u and x+n ≥ y+n.

Clearly, Rn
U is a quasi-ordering for all n ∈ N. Now define RU = ∪n∈NRn

U . As is the case

for RL, RU is a quasi-ordering but it is not complete. However, as is straightforward to

verify, if x and y differ in at most a finite number of components, they are comparable

according to RU .

Our final result characterizes all ordering extensions of RU .

Theorem 4 An ordering R on X satisfies strong Pareto, finite anonymity and finite

translation-scale measurability if and only if R is an ordering extension of RU .

Proof. ‘If.’ All steps in the ‘if’ part of the proof of Theorem 3 go through if Rn
� , Rn

L

and RL are replaced with Rn
u, Rn

U and RU , respectively, except, of course, for the proof

of equity preference. It remains to establish that any ordering extension of RU satisfies

finite translation-scale measurability. Let x, y, z ∈ X and m ∈ N be such that xn = yn
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for all n ∈ N \ {1, . . . , m}. By definition, x and y are ranked by RU because they differ

in at most a finite number of components, and the same is true for x + z and y + z.

Thus, because R is an ordering extension of RU , the ranking of x and y (x + z and y + z,

respectively) according to R is the same as the ranking of x and y (x + z and y + z,

respectively) according to RU , and we obtain

(x + z, y + z) ∈ R ⇔ (x + z, y + z) ∈ RU

⇔ ∃n ∈ N such that (x + z, y + z) ∈ Rn
U

⇔ ∃n ∈ N such that
n∑

i=1

(xi + zi) ≥
n∑

i=1

(yi + zi) and

x+n + z+n ≥ y+n + z+n

⇔ ∃n ∈ N such that
n∑

i=1

xi ≥
n∑

i=1

yi and x+n ≥ y+n

⇔ ∃n ∈ N such that (x, y) ∈ Rn
U

⇔ (x, y) ∈ RU

⇔ (x, y) ∈ R.

‘Only if.’ Again, all steps of the ‘only-if’ part of Theorem 3 go through, except that the

set of n-person axioms that are implied for the relation Q(n, z) is composed of n-person

strong Pareto, n-person anonymity and n-person translation-scale measurability. Now we

can invoke Theorem 3 of d’Aspremont and Gevers (1977), which remains true if cardi-

nal unit comparability is weakened to translation-scale measurability—see, for instance,

Theorem 12 in Blackorby, Bossert and Donaldson [2002], to conclude that Q(n, z) = Rn
u.

The remainder of the proof is identical to that of Theorem 3.

The restriction of finite translation-scale measurability to utility streams that differ

in at most a finite number of components is important for the conclusion of Theorem 4.

Without that restriction, the non-constructive technique employed in the proof does not

allow us to conclude that any arbitrary ordering extension of RU satisfies the resulting

stronger axiom. It is interesting to compare this feature of the axiom to a related ob-

servation regarding finite anonymity: as shown by Diamond (1965), limiting the scope

of the finite-anonymity axiom is crucial as well because, without the restriction to finite

permutations, an incompatibility with strong Pareto emerges.
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7 Concluding remarks

The results of this paper establish the existence of orderings of infinite utility streams sat-

isfying attractive properties. In addition, we provide characterizations of various classes

of such orderings. Given the nature of the proofs, we do not provide explicit constructions

of these orderings. However, this feature is by no means unique to our approach. Ex-

tending quasi-orderings to orderings often requires non-constructive techniques; see, for

example, Richter’s (1966) use of Szpilrajn’s (1930) extension theorem in the context of

rational choice.

A plausible conclusion to be drawn from this paper is that impossibility results such as

those of Diamond (1965), Basu and Mitra (2003) and Suzumura and Shinotsuka (2003)

are, to a large extent, caused by continuity or representability assumptions. Without

these rather restrictive requirements, evaluation rules satisfying attractive axioms can be

characterized. Most notably, even orderings such as the infinite-horizon variants of utili-

tarianism characterized in the previous section become available and, therefore, violations

of representability or continuity are limited to genuinely infinite utility streams. In our

view, this confirms that the state of affairs in this area is not as disappointing and negative

as has been suggested by the impossibility results of many earlier contributions.

The technique employed to characterize infinite-horizon versions of leximin and util-

itarianism appears to be very powerful and applicable to the extension of other finite-

population social-choice rules. However, as the discussion at the end of the previous

section demonstrates, care needs to be taken in formulating suitable extensions of finite-

population axioms and, thus, the methodology employed here cannot be applied in a

mechanical fashion. We hope that our approach will stimulate further research in the

area of intergenerational social choice by identifying alternative sets of attractive axioms

and characterizing the social orderings that satisfy them.
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