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Abstract

This paper provides new versions of Harsanyi’s social aggregation theorem that are for-

mulated in terms of prospects rather than lotteries. Strengthening an earlier result, fixed-

population ex-ante utilitarianism is characterized in a multi-profile setting with fixed prob-

abilities. In addition, we extend the social aggregation theorem to social-evaluation prob-

lems under uncertainty with a variable population and generalize our approach to uncertain

alternatives, which consist of compound vectors of probability distributions and prospects.

Journal of Economic Literature Classification Numbers: D71, D81.

Keywords: Harsanyi’s social aggregation theorem, multi-profile social choice, population
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1. Introduction

Harsanyi’s [1955, 1977] social aggregation theorem establishes that if individuals and so-

ciety are endowed with von Neumann – Morgenstern (vNM) functions (von Neumann

and Morgenstern [1944, 1947]) defined on the set of lotteries over alternatives and the

Pareto-indifference axiom formulated for lotteries is satisfied, then, under some regular-

ity assumptions, the social vNM function can be written as an affine combination of the

individual vNM functions. If, as Harsanyi assumes, there are individual vNM functions

that measure actual (ex-post) utility, utilitarianism results. This result has been dis-

cussed extensively in the literature and variants of it have been established in a number

of contributions; see, for example, Blackorby, Donaldson and Weymark [1980, 1999, 2003],

Broome [1990, 1991], Coulhon and Mongin [1989], De Meyer and Mongin [1995], Domotor

[1979], Fishburn [1984], Hammond [1981, 1983], Mongin [1994, 1995, 1998], Mongin and

d’Aspremont [1998], Weymark [1991, 1993, 1994, 1995] and Zhou [1997]. An elegant proof

due to Border [1981] is reproduced in expanded form in Weymark [1994].

Most of the literature focuses on the social ranking of lotteries. In this paper, however,

we employ an alternative model in which probabilities are fixed but utility profiles are

allowed to vary. In that case, prospects (vectors of alternatives, one for each of the possible

states) rather than lotteries are ranked. An important feature of our approach is that it

operates in a framework with multiple utility profiles.1 This formulation, which follows

the multi-profile of much of the traditional social-choice literature, allows us to proceed

without the regularity conditions that are required in the lottery approach and permits the

use of standard anonymity axioms. We prove our main theorems for a fixed probability

distribution which is common to all individuals and the social evaluator. However, the

results continue to apply if the probability distribution may vary, as long as probabilities

are objectively known or agreed upon by all individuals and society.

We establish new variants of Harsanyi’s social aggregation theorem. First, we gener-

alize a fixed-population result due to Blackorby, Bossert and Donaldson [2002] by showing

that its conclusion is valid under weaker assumptions: in particular, the minimal number

of alternatives required can be reduced from four to three. The resulting characterization

is a reformulation of a result due to Mongin [1994].2 Second, we extend the model to

variable-population comparisons. This generalization involves substantial additional com-

plexities because the composition and the size of the population may vary across states.

Thus, individuals may be alive in some states but not in others. We take the view that

ex-ante assessment of prospects are meaningless if an individual is not alive in all possible

1 Multi-profile models of social choice under uncertainty are also discussed, for example, in Black-
orby, Donaldson and Weymark [1999, 2003], Hammond [1981, 1983], Mongin [1994] and Mongin and
d’Aspremont [1998].
2 Mongin [1994] uses a different domain assumption for some of his results.
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states. As a consequence, we formulate all axioms that are concerned with individual ex-

ante utilities so that they apply to complete prospects only—prospects where each person

who is alive in one state is alive in all states.

Two classes of variable-population extensions of ex-ante utilitarianism are character-

ized. To do this, we employ axioms which ensure that, for every incomplete prospect, there

is a complete prospect that is equally good. In addition, we discuss the generalization of

our results to a setting in which both prospects and probabilities may vary.

The proof technique employed in the multi-profile fixed-population case is different

from those that appear in the lottery framework. However, the most novel part of the paper

is the variable-population extension: the consideration of population problems introduces

substantial additional complexities.

The fixed-population model of social evaluation under uncertainty formulated in terms

of prospects is introduced in Section 2. Section 3 contains a characterization of ex-ante

utilitarianism and an impossibility result. Two classes of variable-population extensions of

ex-ante utilitarianism are characterized in Section 4. Section 5 provides a generalization

to uncertain alternatives, which consist of compound vectors of probability distributions

and prospects. Section 6 concludes.

2. Ex-ante social evaluation with a fixed population

There are several ways of incorporating uncertainty into a model of social evaluation. Al-

though much of the relevant literature—including Harsanyi’s [1955] original contribution—

focuses on the social ranking of lotteries (probability distributions defined on the set of

possible alternatives), we use a formulation in terms of prospects instead because it al-

lows for a more natural extension of standard multi-profile social evaluation to situations

involving uncertainty. In order to prove our theorems, it is not necessary to allow the

probabilities to vary.

We use Z++ to denote the set of positive integers. R is the set of all real numbers,

R++ is the set of all positive real numbers and, for n ∈ Z++ and an arbitrary set S, Sn

is the n-fold Cartesian product of S. 1n is the vector consisting of n ∈ Z++ ones.

In the fixed-population case, there are n ∈ Z++ individuals labelled 1, . . . , n. Thus,

the set of individuals is N = {1, . . . , n}. The universal set of alternatives is X and, in

order to ensure that the standard welfarism results apply, we assume that X contains at

least three elements.

Suppose there is a setM = {1, . . . , m} of possible states, where m ≥ 2, and an associ-

ated vector of fixed positive probabilities p = (p1, . . . , pm) ∈ Rm
++ where, by definition of a

probability distribution,
∑m

j=1 pj = 1. Because probabilities are assumed to be fixed, any

state with a probability of zero may be dropped and, therefore, the positivity requirement
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on p involves no loss of generality as long as there are at least two states with positive

probabilities. A prospect is a vector x ∈ Xm where, for all j ∈ M , xj is the alternative

that materializes in state j. We use X to denote the set of all prospects, that is, X = Xm.

For x ∈ X, the prospect x1m, defined as (x, . . . , x) ∈ X, is one in which the alternative x
occurs with certainty (that is, x is realized in all possible states).

For each individual i ∈ N , Ui:X → R is i’s actual or ex-post utility function. That is,

Ui(x) measures i’s well-being in alternative x ∈ X. An ex-post utility profile is an n-tuple
U = (U1, . . . , Un), and the set of all possible profiles is U . For an alternative x ∈ X, we

let U(x) = (U1(x), . . . , Un(x)).

Individual i’s ex-ante utility function is UEA
i :X→ R, that is, UEA

i (x) is the value of

the prospect x ∈ X to individual i ∈ N . A profile of ex-ante utility functions is an n-tuple
UEA = (UEA

1 , . . . , UEA
n ), and the set of all possible ex-ante profiles is UEA. For x ∈ X,

we let UEA(x) = (UEA
1 (x), . . . , UEA

n (x)). Note that, in contrast to ex-post utilities that

assign an individual value to each alternative in X, ex-ante utility functions assign a value

to each prospect in X.

Throughout, we assume that ex-ante and ex-post utilities satisfy the fundamental

consistency requirement that their assessments of certain outcomes are identical: if an

alternative materializes in every possible state, ex-ante utility coincides with ex-post utility.

That is, for all i ∈ N and for all x ∈ X,

UEA
i (x1m) = Ui(x). (1)

(1) implies that the ex-ante utility function UEA
i determines the ex-post utility function

Ui, although the converse is not true.

To define an ex-ante criterion for social evaluation, we use the following terminology.

An ex-ante ordering is an ordering defined on the set of prospects X, and the set of all

ex-ante orderings on X is denoted by OEA. An ex-ante social-evaluation functional is a

mapping FEA:DEA → OEA with ∅ �= DEA ⊆ UEA. FEA assigns a social ordering on

X to each profile of ex-ante utility functions in its domain DEA. We use the notation

REA
UEA = FEA(UEA) for all UEA ∈ DEA. PEA

UEA and IEA
UEA denote the asymmetric and

symmetric factors of REA
UEA .

For an individual i ∈ N , a von Neumann – Morgenstern (vNM) function is a mapping
UvNM

i :X → R. A vNM profile is an n-tuple UvNM = (UvNM
1 , . . . , UvNM

n ) ∈ U . Note
that, without further assumptions, vNM functions do not necessarily measure individual

well-being and, conversely, ex-post utility functions can not necessarily be employed as

vNM functions.

The individual expected-utility hypothesis requires that the individual ex-ante rank-

ing of any two prospects x and y is determined by the expected values of i’s vNM func-

tion obtained for x and y, given the probability vector p. In our multi-profile approach,
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we require the ex-ante social-evaluation functional to be consistent with the individual

expected-utility hypothesis in the sense that it produces a social ordering for each utility

profile that is composed of individual ex-ante utilities satisfying the hypothesis. Thus,

expected-utility consistency is formulated as a domain assumption. The expected-utility

domain DEU ⊆ UEA is defined as follows. For all UEA ∈ UEA, UEA ∈ DEU if and only

if there exists a profile UvNM ∈ U of vNM functions such that, for all i ∈ N and for all

x,y ∈ X,
UEA

i (x) ≥ UEA
i (y)⇔

m∑
j=1

pjU
vNM
i

(
xj

) ≥
m∑

j=1

pjU
vNM
i

(
yj

)
.

Clearly, this requirement is satisfied if and only if there exists an increasing function

ϕi:R → R such that, for all i ∈ N and for all x ∈ X,

UEA
i (x) = ϕi

( m∑
j=1

pjU
vNM
i

(
xj

))
. (2)

Equation (1) implies that Ui(x) = ϕi ◦ UvNM
i . If the social-evaluation functional is re-

quired to generate a social ordering for all profiles such that the individual ex-ante utilities

are required to satisfy the expected-utility hypothesis, we obtain the following domain

assumption.

Individual Expected-Utility Consistency: DEA = DEU .

The Bernoulli hypothesis (see Arrow [1972] and Broome [1991]) imposes a more strin-

gent restriction on individual ex-ante utilities than the expected-utility hypothesis: it re-

quires that the function ϕi in (2) is affine. Because, by assumption, an individual’s ex-post

utility of an alternative x ∈ X is given by the ex-ante value of the prospect that yields x

with certainty, the Bernoulli hypothesis implies

Ui(x) = U
EA
i (x1m) = aiU

vNM
i (x) + bi

where ai ∈ R++ and bi ∈ R are the parameters of the affine function ϕi. Thus, the

Bernoulli hypothesis implies that the ex-post utility function Ui is an increasing affine

transformation of the vNM function UvNM
i and, therefore, is a particular vNM function

itself. Equation (2) can therefore be written as

UEA
i (x) = ai

m∑
j=1

pjU
vNM
i

(
xj

)
+ bi =

m∑
j=1

pjUi

(
xj

)
. (3)

(3) shows that if the Bernoulli hypothesis is satisfied, the individual utility function Ui

plays two roles: it is an indicator of actual well-being and, in addition, it is a vNM function.
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Thus, the value of a prospect x ∈ X to i ∈ N according to UEA
i is the expected utility of

x given the probabilities p and the ex-post utility function Ui.

As is the case for the individual expected-utility hypothesis, consistency with the

individual Bernoulli hypothesis is a domain restriction. The Bernoulli domain DB ⊆ UEA

is defined as follows. For all UEA ∈ UEA, UEA ∈ DB if and only if there exists a profile

U ∈ U such that, for all i ∈ N and for all x ∈ X,

UEA
i (x) =

m∑
j=1

pjUi

(
xj

)
. (4)

Individual Bernoulli consistency can now be formulated by specifying the domain of the

ex-ante social-evaluation functional FEA.

Individual Bernoulli Consistency: DEA = DB.

In our multi-profile setting, consistency with the individual Bernoulli hypothesis re-

quires the social-evaluation functional to produce a social ordering on a smaller domain

than consistency with the individual expected-utility hypothesis does. Consequently, con-

sistency with the individual Bernoulli hypothesis is a weaker requirement than consistency

with the individual expected-utility hypothesis. In contrast, the individual Bernoulli hy-

pothesis is the stronger assumption in the single-profile case because each axiom merely

requires the single profile to belong to the appropriate domain.

Following Harsanyi [1955, 1977], we assume that individual ex-ante utility functions

satisfy the Bernoulli hypothesis (the consequences of strengthening individual Bernoulli

consistency to individual expected-utility consistency are examined later). Social orderings

are assumed to satisfy the expected-utility hypothesis. This requires the existence of a

social vNM function such that the social ranking of two prospects is obtained by comparing

their social expected vNM values.

Social Expected-Utility Hypothesis: There exists a function U0:X ×DEA → R such

that, for all x,y ∈ X and for all UEA ∈ DEA,

xREA
UEAy⇔

m∑
j=1

pjU0

(
xj , U

EA
) ≥

m∑
j=1

pjU0

(
yj , U

EA
)
.

The social vNM function U0 is allowed be profile-dependent. In our multi-profile setting,

if this function were not allowed to depend on UEA, an imposed social ranking would

result. In Harsanyi’s [1955] lottery framework, there is only a single profile of ex-ante

utility functions and the second argument is not needed.
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3. The social aggregation theorem for prospects

We first state a version of the welfarism theorem for ex-ante utilities. The first part is a

straightforward reformulation of the standard welfarism theorem: on the Bernoulli domain,

ex-ante versions of Pareto indifference and binary independence of irrelevant alternatives

together are equivalent to the existence of an ex-ante social-evaluation ordering R on

Rn such that, for any ex-ante profile in the domain of FEA and for any two prospects

x and y, the ranking of x and y according to REA
UEA is determined by the ranking of the

associated ex-ante utility vectors according to R. The second part shows that comparisons

of prospects in which alternatives occur with certainty must be performed according to

the ex-ante social-evaluation ordering R as well.

The ex-ante versions of the welfarism axioms are defined as follows.

Ex-Ante Pareto Indifference: For all x,y ∈ X and for all UEA ∈ DEA, if UEA(x) =

UEA(y), then xIEA
UEAy.

Ex-Ante Binary Independence of Irrelevant Alternatives: For all x,y ∈ X and

for all UEA, ŪEA ∈ DEA, if UEA(x) = ŪEA(x) and UEA(y) = ŪEA(y), then

xREA
UEAy ⇔ xREA

ŪEAy.

We obtain the following result, the proof of which can be found in Blackorby, Bossert and

Donaldson [2002] (see also Blackorby, Donaldson and Weymark [2003], Mongin [1994] and

Mongin and d’Aspremont [1998]).

Theorem 1: If FEA satisfies individual Bernoulli consistency, ex-ante Pareto indiffer-

ence and ex-ante binary independence of irrelevant alternatives, then there exists a social-

evaluation ordering R on Rn such that, for all x,y ∈ X and for all UEA ∈ DB,

xREA
UEAy⇔ UEA(x)RUn

E(y) (5)

and, for all x, y ∈ X and for all U ∈ U ,

x1mR
EA
UEAy1m ⇔ U(x)RU(y)

where U is the profile corresponding to UEA according to (4).

Now we show that any ex-ante social-evaluation functional satisfying the axioms of

Theorem 1 and the social expected-utility hypothesis must possess a property that is equiv-

alent to the requirement that R satisfy information invariance with respect to translation-

scale non-comparability.3

3 In Blackorby, Bossert and Donaldson [2002], a weaker version of this theorem that requires X to
contain at least four alternatives is proven. See Mongin [1994] and Mongin and d’Aspremont [1998] for
a similar theorem, establishing that the independence axiom of expected-utility theory is equivalent to
cardinal unit comparability formulated for an ex-ante social-evaluation ordering.

6



Theorem 2: If FEA satisfies individual Bernoulli consistency, the social expected-utility

hypothesis, ex-ante Pareto indifference and ex-ante binary independence of irrelevant al-

ternatives, then, for all u, v, b ∈ Rn,

uRv ⇔ (u+ b)R(v + b) (6)

where R is the ex-ante social-evaluation ordering corresponding to FEA.

Proof. Let u, v, b ∈ Rn. By individual Bernoulli consistency, DEA = DB. The social

expected-utility hypothesis implies that there exists a function U0:X × DB → R such

that, for all x,y ∈ X and for all UEA ∈ DB,

xREA
UEAy⇔

m∑
j=1

pjU0

(
xj , U

EA
) ≥

m∑
j=1

pjU0

(
yj , U

EA
)
.

Combined with (5), this yields

UEA(x)RUEA(y)⇔
m∑

j=1

pjU0

(
xj , U

EA
) ≥

m∑
j=1

pjU0

(
yj , U

EA
)

(7)

for all x,y ∈ X and for all UEA ∈ DB.

Because X contains at least three alternatives, we can choose x, y, z ∈ X and U ∈ U
so that

U(x) =
1

p1
u−

∑m
j=2 pj

p1
v + b,

U(y) = v + b

and

U(z) = v − p1∑m
j=2 pj

b.

Let x,y, z,w ∈ X be such that x(1) = z(1) = x, y(1) = w(1) = y, xj = yj = z for all

j ∈M \ {1} and zj = wj = y for all j ∈M \ {1}. By individual Bernoulli consistency, the
profile UEA ∈ DB that corresponds to U satisfies

UEA(x) =

m∑
j=1

pjU
(
xj

)
= u,

UEA(y) =

m∑
j=1

pjU
(
yj

)
= v,

UEA(z) =

m∑
j=1

pjU
(
zj

)
= u+ b
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and

UEA(w) =
m∑

j=1

pjU
(
wj

)
= v + b.

Substituting into (7), we obtain

uRv ⇔ p1U0(x, U
EA) +

m∑
j=2

pjU0(z, U
EA) ≥ p1U0(y, U

EA) +

m∑
j=2

pjU0(z, U
EA)

⇔ p1U0(x, U
EA) ≥ p1U0(y, U

EA)

(8)

and, using (7) with x = z and y = w,

(u+ b)R(v + b)⇔ p1U0(x, U
EA) +

m∑
j=2

pjU0(y, U
EA) ≥ p1U0(y, U

EA) +

m∑
j=2

pjU0(y, U
EA)

⇔ p1U0(x, U
EA) ≥ p1U0(y, U

EA).

(9)

Because the second lines of (8) and (9) are identical, (6) follows.

The property of R established in Theorem 2 is identical to information invariance with

respect to translation-scale non-comparability defined for the ex-ante social-evaluation or-

dering R. Therefore, we can apply a well-known result from the theory of social choice

under certainty to characterize utilitarianism in the present framework. To do so, we intro-

duce ex-ante versions of the axioms minimal increasingness and same-people anonymity.

Ex-ante minimal increasingness is implied by the ex-ante weak Pareto principle. Ex-

ante weak Pareto requires that if each person’s ex-ante utility is higher in prospect x than

in prospect y, then x is declared better than y. Ex-ante minimal increasingness requires

this conclusion to obtain only if the ex-ante utilities are equally distributed in both x and

in y. If a single utility level increases, utility inequality may increase and ex-ante minimal

increasingness permits a ranking in which the original situation is better.

Ex-Ante Minimal Increasingness: For all a, b ∈ R, for all x,y ∈ X and for all

UEA ∈ DEA, if UEA(x) = a1n � b1n = U
EA(y), then xPEA

UEAy.

Ex-ante same-people anonymity is an impartiality condition requiring that the iden-

tities of the individuals are irrelevant.

Ex-Ante Same-People Anonymity: For all UEA, ŪEA ∈ DEA, if there exists a bijec-

tion ρ:N → N such that UEA
i = ŪEA

ρ(i) for all i ∈ N , then REA
UEA = R

EA
ŪEA .

A well-known result in social-choice theory states that the ex-post versions of weak

Pareto, same-people anonymity and translation-scale non-comparability characterize the
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utilitarian (ex-post) social-evaluation functional; see, for example, Blackorby, Bossert and

Donaldson [2002], Blackorby, Donaldson and Weymark [1984], Blackwell and Girshick

[1954], Bossert and Weymark [2003], d’Aspremont and Gevers [1977], Milnor [1954] and

Roberts [1980]. Though the above contributions state the result using weak Pareto instead

of minimal increasingness, it is clear from the proof employed in Blackorby, Bossert and

Donaldson [2002] that the result can be strengthened by employing the weaker axiom.

Translated into the uncertainty framework considered here, the axioms can be used to

characterize an ex-ante version of utilitarianism. We call the corresponding ex-ante social-

evaluation functional ex-ante utilitarianism and it is defined as follows. For all x,y ∈ X
and for all UEA ∈ DEA,

xREA
UEAy ⇔

n∑
i=1

UEA
i (x) ≥

n∑
i=1

UEA
i (y)

⇔
m∑

j=1

pj

n∑
i=1

Ui

(
xj

) ≥
m∑

j=1

pj

n∑
i=1

Ui

(
yj

)

where U is the profile corresponding to UEA according to (4).

The proof of the following result is identical to the proof of Theorem 22 in Blackorby,

Bossert and Donaldson [2002, p. 586]. Though the result reported there assumes that X

contains at least four alternatives, the argument is the same given that Theorem 2 applies

to the case of three alternatives as well. We therefore do not provide a proof here. Mongin

[1994] proves a version of the theorem with a more structured universal set of alternatives.

Theorem 3: Suppose FEA satisfies individual Bernoulli consistency. FEA satisfies

the social expected-utility hypothesis, ex-ante Pareto indifference, ex-ante binary indepen-

dence of irrelevant alternatives, ex-ante minimal increasingness and ex-ante same-people

anonymity if and only if FEA is ex-ante utilitarian.

Note that, if the ex-post utilities in any two alternatives differ in a single state only,

they can be ranked with the sum of ex-ante utilities or with the sum of ex-post utilities in

that state. Thus, there is a utilitarian ex-post social-evaluation functional which applies

to each state. Consequently, the social-evaluation functional is both ex-ante and ex-post

welfarist. Note that ex-post welfarism is implied; it need not be assumed.

The characterization result of Theorem 3 requires the social-evaluation functional

to produce a social ordering only for profiles of ex-ante utilities satisfying the Bernoulli

hypothesis.4 An immediate question asks how the result is affected by requiring consistency

with the individual expected-utility hypothesis instead. In contrast to the single-profile

4 See Broome [1991] for arguments in favor of the individual Bernoulli hypothesis.

9



setting, requiring consistency with the individual expected-utility hypothesis represents

a stronger condition on the ex-ante social-evaluation functional because it is required

to produce a social ordering on a larger domain. Thus, the scope of the other axioms

is widened. In that case, we obtain an impossibility result. Again, the proof of the

corresponding result in Blackorby, Bossert and Donaldson [2002, Theorem 23] for universal

sets with at least four alternatives is easily adapted to the case where X may contain three

alternatives only. However, a more direct proof is available, and we present it here.

Theorem 4: There exists no ex-ante social-evaluation functional that satisfies individual

expected-utility consistency, the social expected-utility hypothesis, ex-ante Pareto indiffer-

ence, ex-ante binary independence of irrelevant alternatives, ex-ante minimal increasing-

ness and ex-ante same-people anonymity.

Proof. Suppose FEA satisfies the axioms in the theorem statement. Clearly, DB ⊆ DEU .

Theorem 3 implies that, for all x,y ∈ X and for all UEA ∈ DB,

xREA
UEAy⇔ UEA(x)RUEA(y)

or, equivalently,

xREA
UEAy ⇔

( m∑
j=1

pjU
vNM
1

(
xj

)
, . . . ,

m∑
j=1

pjU
vNM
n

(
xj

))

R
( m∑

j=1

pjU
vNM
1

(
yj

)
, . . . ,

m∑
j=1

pjU
vNM
n

(
yj

))

for some UvNM ∈ U , where R satisfies

uRv ⇔
n∑

i=1

ui ≥
n∑

i=1

vi (10)

for all u, v ∈ Rn.

Let ϕ:R → R be an increasing, surjective and non-affine function, and define the

subset Dϕ of DEU as follows. For all UEA ∈ DEU , UEA ∈ Dϕ if and only if there exists a

profile UvNM ∈ U such that, for all i ∈ N and for all x ∈ X,

UEA
i (x) = ϕ

( m∑
j=1

pjU
vNM
i

(
xj

))
. (11)

Now define the ordering Rϕ on Rn by

uRϕv ⇔ (
ϕ(u1), . . . , ϕ(un)

)
R

(
ϕ(v1), . . . , ϕ(vn)

)
(12)

10



for all u, v ∈ Rn. Because ϕ is a bijection, its inverse ϕ−1 exists and (12) is equivalent to

uRv ⇔ (
ϕ−1(u1), . . . , ϕ

−1(un)
)
Rϕ

(
ϕ−1(v1), . . . , ϕ

−1(vn)
)

(13)

for all u, v ∈ Rn. Let UEA ∈ Dϕ. By definition, there exists a vNM profile UvNM ∈ U
such that (11) is satisfied for all x ∈ X. Therefore, for any two prospects x,y ∈ X, it
follows that

UEA(x)RUEA(y)⇔
(
ϕ
( m∑

j=1

pjU
vNM
1

(
xj

))
, . . . , ϕ

( m∑
j=1

pjU
vNM
n

(
xj

)))

R

(
ϕ
( m∑

j=1

pjU
vNM
1

(
yj

))
, . . . , ϕ

( m∑
j=1

pjU
vNM
n

(
yj

)))

and, by (12),

UEA(x)RUEA(y)⇔
( m∑

j=1

pjU
vNM
1

(
xj

)
, . . . ,

m∑
j=1

pjU
vNM
n

(
xj

))

Rϕ
( m∑

j=1

pjU
vNM
1

(
yj

)
, . . . ,

m∑
j=1

pjU
vNM
n

(
yj

))
.

Letting ŪEA
i (x) =

∑m
j=1 pjU

vNM
i

(
xj

)
for all i ∈ {1, . . . , n} and for all x ∈ X, this implies

ŪEA(x)RϕŪEA(y)⇔
( m∑

j=1

pjU
vNM
1

(
xj

)
, . . . ,

m∑
j=1

pjU
vNM
n

(
xj

))

Rϕ
( m∑

j=1

pjU
vNM
1

(
yj

)
, . . . ,

m∑
j=1

pjU
vNM
n

(
yj

))
.

Because, by definition, ŪEA ∈ DB, it follows that

ŪEA(x)RϕŪEA(y)⇔ xREA
ŪEAy.

Applying Theorem 3, we obtain

uRϕv ⇔
n∑

i=1

ui ≥
n∑

i=1

vi

for all u, v ∈ Rn. Together with (10) and (13), it follows that

n∑
i=1

ui ≥
n∑

i=1

vi ⇔
n∑

i=1

ϕ−1(ui) ≥
n∑

i=1

ϕ−1(vi) (14)

11



for all u, v ∈ Rn. (14) is equivalent to the existence of an increasing function H:R → R
such that

n∑
i=1

ϕ−1(ui) = H
( n∑

i=1

ui

)
(15)

for all u, v ∈ Rn. (15) is a Pexider equation and it follows that ϕ−1 must be affine (see

Aczél [1966, Chapter 3] for Pexider equations and their solutions). This implies that ϕ is

affine as well, a contradiction.

The proof of Theorem 4 shows that, when the increasing transformations ϕ1, . . . , ϕn

are identical, prospects must be ranked according to their sums of expected utilities. This

means, however, that R must depend on the common transformation ϕ, contradicting

welfarism. A variant of Theorem 4 is obtained if anonymity is replaced by continuity.5

In a single-profile setting, the impossibility is avoided because, with a single ex-

ante profile, consistency with the individual expected-utility hypothesis is a weaker axiom

than consistency with the individual Bernoulli hypothesis and ex-ante social-evaluation

principles other than ex-ante utilitarianism become available. Blackorby, Donaldson and

Weymark [2003] prove that, in the single-profile case, prospects must be ranked by their

respective transformed sums of individual ex-ante utilities if the individual expected-utility

hypothesis (but not necessarily the individual Bernoulli hypothesis) is satisfied. As in

our multi-profile approach, utilitarianism obtains if the individual Bernoulli hypothesis is

satisfied.6 We believe that the multi-profile framework employed here represents a suitable

way of formulating social-choice problems under uncertainty and we consider Theorems 3

and 4 to provide a strong argument in favour of utilitarianism.

One possible relaxation of the axioms in Harsanyi’s result (and our Theorem 3) is to

drop the social expected-utility hypothesis, a move that has been suggested by Diamond

[1967] and by Sen [1976, 1977, 1986]. They argue that ex-ante social-evaluation functionals

that satisfy the social expected-utility hypothesis cannot take account of the fairness of

procedures by which outcomes are generated (see also Weymark [1991]).

An interesting alternative, however, is to relax the ex-ante welfarism axioms. The

form of ex-ante welfarism of Theorem 1 is not applied to actual well-being, and this

suggests that ex-post welfarism may be more appropriate and ethically easier to defend

than ex-ante welfarism. Given individual Bernoulli consistency, ex-ante welfarism implies

ex-post welfarism but the converse implication is not true. A second way to relax the

assumptions of Theorem 3, therefore, is provided by requiring ex-post welfarism only.

5 See also Blackorby, Donaldson and Weymark [1999, 2003], Roemer [1996], Sen [1976] and Weymark
[1991].
6 A regularity condition is required in these single-profile characterizations. This is not necessary in

our multi-profile approach.
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Suppose, for example, that when the ex-post profile is U ∈ U , such a principle
produces the ex-post ordering REP

U of prospects, which is given by

xREP
U y ⇔

m∑
j=1

pj
1

n2

n∑
i=1

(2i− 1)U(i)

(
xj

) ≥
m∑

j=1

pj
1

n2

n∑
i=1

(2i− 1)U(i)

(
yj

)

where, for all x ∈ X, (U(1)(x), . . . , U(n)(x)) is a permutation of (U1(x), . . . , Un(x)) such

that Uk(x) ≥ Uk+1(x) for all k ∈ {1, . . . , n− 1}. In this case, alternatives are ranked, ex
post, with a social-evaluation functional that expresses aversion to utility inequality. This

principle is not consistent with ex-ante Pareto indifference if individual ex-ante utilities

satisfy the Bernoulli hypothesis. This means that a prospect x may be regarded as better

than a prospect y although x and y are equally good for each person. With such a

principle, therefore, social rationality trumps individual rationality.

4. Ex-ante population principles for prospects

We now extend the fixed-population model to cover situations where the population may

vary within and among prospects.7 In a variable-population framework, the universal set

X contains alternatives with different sets (and numbers) of individuals alive. We use the

same notation as in the fixed-population model for simplicity; to avoid ambiguities, we

rephrase all definitions in terms of the variable-population setting of this section.

There is a set M = {1, . . . , m} of m ≥ 2 possible states with fixed positive proba-

bilities p = (p1, . . . , pm) ∈ Rm
++, where

∑m
j=1 pj = 1. As before, a prospect is a vector

x ∈ X where, for all j ∈ M , xj ∈ X is the alternative that occurs in state j. For x ∈ X,
the prospect x1m = (x, . . . , x) ∈ X is the prospect in which the alternative x occurs with

certainty.

In contrast to the fixed-population case analyzed in the earlier sections, the compo-

sition and the size of the population may differ from one alternative in X to another.

To keep track of the population associated with each alternative, we use a function

N:X → P(Z++), where P(Z++) is the set of all non-empty and finite subsets of Z++.

Thus, for an alternative x ∈ X, N(x) is the set of individuals alive in x. Furthermore,

we employ a function n:X → P(Z++) to denote the number of people alive in each alter-

native; that is, n(x) = |N(x)| for all x ∈ X. For a non-empty and finite set N ⊆ Z++,

XN ⊆ X is the set of all alternatives x ∈ X such that N(x) = N . Analogously to the

corresponding assumption in the fixed-population setting, we assume that XN contains at

least three elements for all non-empty and finite N ⊆ Z++. For i ∈ Z++, we define

Xi = {x ∈ X | i ∈ N(x)},
7 A variable-population model of social choice under uncertainty in a lottery setting is discussed in

Blackorby, Bossert and Donaldson [1998].
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that is, Xi ⊆ X is the set of alternatives in which i is alive.

We introduce analogous definitions for prospects. Let N ⊆ Z++ be non-empty and

finite. XN is the set of all prospects where the individuals in N are alive in all states.

That is,

XN = {x ∈ X | N(
xj

)
= N for all j ∈M}.

The functions NEA:X → P(Z++) and n
EA:X → P(Z++) are defined by

NEA(x) = ∪m
j=1N

(
xj

)
and nEA(x) = |NEA(x)|

for all x ∈ X, that is, NEA(x) is the set of individuals alive in at least one state of prospect

x and nEA(x) is their number. Furthermore, let

Xθ = {x ∈ X | N(
xj

)
= N

(
xk

)
for all j, k ∈M}.

The set Xθ is the set of complete prospects. In them, everyone who is alive in at least one

state is alive in all states. For x ∈ Xθ, we let Nθ(x) = N
(
xj

)
for some j ∈ M . Clearly,

by definition of Xθ, any state j ∈M can be used in this definition.

Consider an individual i ∈ Z++, and let

Xi = {x ∈ X | i ∈ N(
xj

)
for all j ∈M}.

The set Xi contains all prospects such that i is alive in all states. Ui:Xi → R is i’s actual

or ex-post utility function. An ex-post utility profile is an infinite-dimensional vector

U = (Ui)i∈Z++
, and the set of all possible profiles is U . For an alternative x ∈ X, we

let U(x) = (Ui(x))i∈N(x). Individual ex-post utilities are interpreted as lifetime utilities

to avoid counter-intuitive recommendations regarding the termination of lives. We use

the standard normalization employed in the literature and identify a neutral life with a

lifetime-utility level of zero. A neutral life is a life that is as good as a life without any

experiences from the viewpoint of the individual leading it. Consequently, a fully informed,

self-interested and rational individual whose lifetime utility is below neutrality considers

her or his life to be worse than a life with no experiences.8

Individual i’s ex-ante utility function is UEA
i :Xi → R. A profile of ex-ante utility

functions is denoted by UEA = (UEA
i )i∈Z++ , and the set of all logically possible ex-ante

profiles is UEA. For x ∈ X, we define UEA(x) =
(
UEA

i (x)
)
i∈NEA(x)

. Note that UEA
i is

defined on the domain Xi, that is, on the set of prospects in which i is alive in all states.

As is the case in a certainty framework, there is no reasonable interpretation of individual

utility values for situations in which the individual does not exist. Again, we assume that

8 See, for example, Blackorby, Bossert and Donaldson [1997] and Broome [1993, 1999] for discussions
of neutrality and its normalization in population ethics.
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ex-ante utility and ex-post utility coincide in the presence of certainty. That is, for all

i ∈ Z++ and for all x ∈ Xi,

UEA
i (x1m) = Ui(x).

As in the fixed-population case, ex-post utility functions are determined by ex-ante utility

functions even though the ex-ante functions are not defined for all prospects.

The set of all ex-ante orderings on X is denoted by OEA, and an ex-ante social-

evaluation functional is a mapping FEA:DEA → OEA with ∅ �= DEA ⊆ UEA. FEA

assigns a social ordering on X to each admissible profile of ex-ante utility functions. We

define REA
UEA = F

EA(UEA) for all UEA ∈ DEA, and we use PEA
UEA and I

EA
UEA to denote the

asymmetric and symmetric factors of REA
UEA.

The formulation of the Bernoulli hypothesis is easily extended to our variable-population

setting. The extended Bernoulli domain DB ⊆ UEA is defined as follows. For all

UEA ∈ UEA, UEA ∈ DB if and only if there exists a profile U ∈ U such that, for all

non-empty and finite N ⊆ Z++, for all i ∈ N and for all x ∈ XN ,

UEA
i (x) =

m∑
j=1

pjUi

(
xj

)
. (16)

As in the certainty case, Ui is the ex-post utility function for person i. Extended individual

Bernoulli consistency is, again, expressed in the form of a domain restriction. Note that

restrictions are only imposed on complete prospects.

Extended Individual Bernoulli Consistency: DEA = DB.

The only change that is required in order to extend the social expected-utility hy-

pothesis to the variable-population setting is to require the existence of a social expected-

utility function that can be used to rank the prospects in XN for all non-empty and finite

N ⊆ Z++.

Extended Social Expected-Utility Hypothesis: For all non-empty and finite N ⊆
Z++, there exists a function U

N
0 :X

N ×DEA → R such that, for all x,y ∈ XN and for all

UEA ∈ DEA,

xREA
UEAy ⇔

m∑
j=1

pjU
N
0

(
xj , U

EA
) ≥

m∑
j=1

pjU
N
0

(
yj , U

EA
)
.

The variable-population versions of the welfarism axioms are defined as follows.

Ex-Ante Pareto Indifference: For all non-empty and finite N ⊆ Z++, for all x,y ∈ XN

and for all UEA ∈ DEA, if UEA(x) = UEA(y), then xIEA
UEAy.
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Ex-Ante Binary Independence of Irrelevant Alternatives: For all non-empty and

finite N ⊆ Z++, for all x,y ∈ XN and for all UEA, ŪEA ∈ DEA, if UEA(x) = ŪEA(x)

and UEA(y) = ŪEA(y), then

xREA
UEAy ⇔ xREA

ŪEAy.

Ex-ante minimal increasingness translates into the variable-population framework

analogously.

Ex-Ante Minimal Increasingness: For all non-empty and finite N ⊆ Z++, for all

a, b ∈ R, for all x,y ∈ XN and for all UEA ∈ DEA, if UEA(x) = a1n � b1n = UEA(y),

then xPEA
UEAy.

We use the same names for the last three axioms as for their same-number counter-

parts because they merely require the corresponding same-number axiom to be satisfied

for every population. Finally, we define an extended version of ex-ante anonymity suitable

for our variable-population model.

Extended Ex-Ante Anonymity: For all x,y ∈ Xθ and for all U
EA ∈ DEA, if there

exists a bijection ρ:Nθ(x) → Nθ(y) such that U
EA
i (x) = UEA

ρ(i)(y) for all i ∈ Nθ(x), then

xIEA
UEAy.

If an ex-ante social-evaluation functional FEA satisfies extended individual Bernoulli

consistency, ex-ante Pareto indifference, ex-ante binary independence of irrelevant alter-

natives and extended ex-ante anonymity, then complete prospects are ranked by a single

anonymous ordering of vectors of ex-ante utilities. The result follows from the variable-

population version of the welfarism theorem without uncertainty and is omitted.9 An or-

dering Rn on Rn is anonymous if and only if, for all bijections ρ: {1, . . . , n} → {1, . . . , n}
and for all u, v ∈ Rn, if vi = uρ(i) for all i ∈ {1, . . . , n}, then uInv. Furthermore, we

say that an ordering R on ∪n∈Z++Rn is anonymous if and only if its restriction to Rn is

anonymous for each n ∈ Z++.

Theorem 5: If FEA satisfies extended individual Bernoulli consistency, ex-ante Pareto

indifference, ex-ante binary independence of irrelevant alternatives and extended ex-ante

anonymity, then there exists an anonymous ordering RE on
⋃

n∈Z++
Rn such that, for all

x,y ∈ Xθ and for all UEA ∈ DB,

xREA
UEAy⇔ UEA(x)REUEA(y).

9 See Blackorby, Bossert and Donaldson [1999] or Blackorby and Donaldson [1984].
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Theorems 3 and 5 together imply that the same-number sub-orderings of RE must be

utilitarian. We call any principle with this property a same-number utilitarian principle.

Theorem 6: If FEA satisfies extended individual Bernoulli consistency, the extended

social expected-utility hypothesis, ex-ante Pareto indifference, ex-ante binary independence

of irrelevant alternatives, ex-ante minimal increasingness and extended ex-ante anonymity,

then, for all non-empty and finite N ⊆ Z++, for all x,y ∈ XN and for all UEA ∈ DB,

xREA
UEAy ⇔

∑
i∈N

UEA(x) ≥
∑
i∈N

UEA(y)

⇔
∑
i∈N

m∑
j=1

pjU
i(xj) ≥

∑
i∈N

m∑
j=1

pjU
i(yj)

⇔
m∑

j=1

pj

∑
i∈N

U i(xj) ≥
m∑

j=1

pj

∑
i∈N

U i(yj)

where U ∈ U is the profile corresponding to UEA according to (16).

The fixed-population characterization of Theorem 3 can now be extended to all

prospects in a variable-population setting by employing, in addition to the variable-

population versions of the axioms introduced above, the critical-level population principle,

which is the uncertainty analogue of Blackorby and Donaldson’s [1984] corresponding ax-

iom. It requires the existence of a fixed critical level c ∈ R+ with the following property.

Consider two prospects x,y ∈ X and a profile UEA ∈ DB, and suppose there is a person

k ∈ Z++ who is not alive in state j for some j ∈ M ; that is, k �∈ N(
xj

)
. Now consider a

prospect x̄ ∈ X and a profile ŪEA ∈ DB such that, in x̄, individual k is alive in state j

with utility level Ūk

(
x̄j

)
= c, other things the same. The critical-level population principle

requires that the ranking of x and y according to REA
UEA is the same as the ranking of x̄

and y according to REA
ŪEA. Note that the axiom applies to the extended Bernoulli domain

only—the individual ex-post utility functions Ui rather than the ex-ante utility functions

UEA
i are referred to. We require the fixed critical level to be non-negative so that additions

to utility-unaffected populations of individuals with negative utility levels are never ranked

as social improvements. We could impose this property separately but we incorporate it

into the critical-level axiom to simplify our exposition.

Critical-Level Population Principle: If DEA = DB, then there exists c ∈ R+ such

that, for all x,y, x̄ ∈ X, for all UEA, ŪEA ∈ DEA, for all j ∈ M and for all k ∈ Z++ \
N

(
xj

)
, if

Ū
(
y�

)
= U

(
y�

)
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for all � ∈M ,
N

(
x̄�

)
= N

(
x�

)
for all � ∈M \ {j},

Ūi

(
x̄�

)
= Ui

(
x�

)
for all � ∈M and for all i ∈ N(

x�

)
,

N
(
x̄j

)
= N

(
xj

) ∪ {k}
and

Ūk

(
x̄j

)
= c,

then

xREA
UEAy ⇔ x̄REA

ŪEAy.

As an example, consider the two prospects which are outlined in Table 1. There are

two states. In prospect x, person 1 is alive in both states with ex-post utility levels 10 and

20, but person 2 is alive in state 1 only with a utility level of 12. Consequently, an ex-ante

utility level is not defined for person 2.

Table 1

Prospect x Prospect x̄

State 1 State 2 State 1 State 2

Person 1 10 20 10 20

Person 2 12 12 c

The critical-level population principle asserts that there exists a non-negative utility level c

such that prospects x and x̄ are equally good. Prospect x̄ is complete and ex-ante utilities

are defined for both individuals. c is independent of all other information and it can be

used to convert any prospect to a complete prospect that is equally good.

A variable-population extension of ex-ante utilitarianism is given by ex-ante critical-

level utilitarianism which is defined as follows. There exists α ∈ R such that, for all

x,y ∈ X and for all UEA ∈ DEA,

xREA
UEAy⇔

m∑
j=1

pj

∑
i∈N(xj)

[
Ui

(
xj

) − α] ≥ m∑
j=1

pj

∑
i∈N(yj)

[
Ui

(
yj

) − α]
(17)
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where U is the profile corresponding to UE according to (16).10 For complete prospects,

N(xj) = N(xk) = Nθ(x) for all j, k ∈ {1, . . . , m} and all x ∈ Xθ and, in that case, (17)

can be written as

xREA
UEAy⇔

∑
i∈Nθ(x)

[( m∑
j=1

pjUi

(
xj

)) − α
]
≥

∑
i∈Nθ(y)

[( m∑
j=1

pjUi

(
yj

)) − α
]

⇔
∑

i∈Nθ(x)

[
UEA

i (x)− α
]
≥

∑
i∈Nθ(x)

[
UEA

i (y)− α
] (18)

for all x,y ∈ Xθ. The entries on the second line of (18) are given by the critical-level-

utilitarian value function applied to ex-ante utilities.

We obtain the following characterization of ex-ante critical-level utilitarianism with

a non-negative critical level α.

Theorem 7: Suppose FEA satisfies extended individual Bernoulli consistency. FEA

satisfies the extended social expected-utility hypothesis, ex-ante Pareto indifference, ex-ante

binary independence of irrelevant alternatives, ex-ante minimal increasingness, extended

ex-ante anonymity and the critical-level population principle if and only if FEA is ex-ante

critical-level utilitarian with α ≥ 0.

Proof. That ex-ante critical-level utilitarianism with a non-negative critical level satisfies

the required axioms is straightforward to verify. Now suppose FEA satisfies the axioms.

By Theorem 6, for all non-empty and finite N ⊆ Z++, for all x,y ∈ XN and for all

UEA ∈ DB,

xREA
UEAy ⇔

m∑
j=1

pj

∑
i∈N

Ui

(
xj

) ≥
m∑

j=1

pj

∑
i∈N

Ui

(
yj

)
(19)

where U ∈ U is the profile corresponding to UEA according to (16). By the critical-level

population principle, there exists c ∈ R+ with the properties described in the axiom. Let

α = c and consider two prospects x,y ∈ X. Let x̄, ȳ ∈ X and ŪEA ∈ DB be such that

N
(
x̄j

)
= NEA(x) and N

(
ȳj

)
= NEA(y)

for all j ∈M ,
Ūi

(
x̄j

)
= Ui

(
xj

)
and Ūk

(
ȳj

)
= Uk

(
yj

)
for all j ∈M , for all i ∈ N(

xj

)
and for all k ∈ N(

yj

)
,

Ūi

(
x̄j

)
= α and Ūk

(
ȳj

)
= α

10 See Blackorby, Bossert and Donaldson [1995] and Blackorby and Donaldson [1984] for a discussion of
critical-level utilitarianism in the context of social evaluation under certainty.
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for all j ∈ M , for all i ∈ NEA(x) \N(
xj

)
and for all k ∈ NEA(y) \N(

yj

)
. By repeated

application of the critical-level population principle,

xREA
UEAy ⇔ x̄REA

ŪEA ȳ. (20)

Suppose that nEA(x̄) = nEA(ȳ). By extended ex-ante anonymity, we can, without

loss of generality, assume that NEA(x̄) = NEA(ȳ), and we denote this common set of

individuals by NEA. By (19), it follows that

x̄REA
ŪEA ȳ⇔

m∑
j=1

pj

[ ∑
i∈N(xj)

Ui

(
xj

)
+

∑
i∈NEA\N(xj)

α
]

≥
m∑

j=1

pj

[ ∑
i∈N(yj)

Ui

(
yj

)
+

∑
i∈NEA\N(yj)

α
]
.

This inequality is equivalent to

m∑
j=1

pj

[ ∑
i∈N(xj)

Ui

(
xj

)
+

∑
i∈NEA

α−
∑

i∈N(xj)

α
]

≥
m∑

j=1

pj

[ ∑
i∈N(yj)

Ui

(
yj

)
+

∑
i∈NEA

α−
∑

i∈N(yj)

α
]
.

Simplifying, we obtain

m∑
j=1

pj

[ ∑
i∈N(xj)

Ui

(
xj

) − ∑
i∈N(xj)

α
]

≥
m∑

j=1

pj

[ ∑
i∈N(yj)

Ui

(
yj

) − ∑
i∈N(yj)

α
]

and, therefore,

x̄REA
ŪEAȳ ⇔

m∑
j=1

pj

∑
i∈N(xj)

[
Ui

(
xj

) − α] ≥ m∑
j=1

pj

∑
i∈N(yj)

[
Ui

(
yj

) − α]
.

Together with (20), this implies (17).

Now suppose nEA(x̄) �= nEA(ȳ). Without loss of generality, suppose nEA(x̄) <

nEA(ȳ) and, by extended ex-ante anonymity, we can assume that NEA(x̄) ⊂ NEA(ȳ) =

NEA(y). Let x̂ ∈ X and ÛEA ∈ DB be such that

Û
(
ȳj

)
= Ū

(
ȳj

)
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for all j ∈M ,
N

(
x̂j

)
= NE(y)

for all j ∈M ,
Ûi

(
x̂j

)
= Ūi

(
x̄j

)
for all j ∈M and for all i ∈ NEA(x̄) and

Ûi

(
x̂j

)
= α

for all j ∈M and for all i ∈ NEA(y)\NEA(x̄). Again applying the critical-level population

principle repeatedly, we obtain

x̄REA
ŪEAȳ ⇔ x̂REA

ÛEA ȳ. (21)

By (19), it follows that

x̂REA
ÛEA ȳ⇔

m∑
j=1

pj

[ ∑
i∈N(xj)

Ui

(
xj

)
+

∑
i∈NEA(x)\N(xj)

α +
∑

i∈NEA(y)\NEA(x)

α
]

≥
m∑

j=1

pj

[ ∑
i∈N(yj)

Ui

(
yj

)
+

∑
i∈NEA(y)\N(yj)

α
]
.

Rewriting, the inequality becomes

m∑
j=1

pj

[ ∑
i∈N(xj)

Ui

(
xj

) − ∑
i∈N(xj)

α +
∑

i∈NEA(y)

α
]

≥
m∑

j=1

pj

[ ∑
i∈N(yj)

Ui

(
yj

) − ∑
i∈N(yj)

α +
∑

i∈NEA(y)

α
]

which is equivalent to

m∑
j=1

pj

[ ∑
i∈N(xj)

Ui

(
xj

) − ∑
i∈N(xj)

α
]

≥
m∑

j=1

pj

[ ∑
i∈N(yj)

Ui

(
yj

) − ∑
i∈N(yj)

α
]
.

Therefore, we obtain

x̂REA
ÛEA ȳ⇔

m∑
j=1

pj

∑
i∈N(xj)

[
Ui

(
xj

) − α] ≥ m∑
j=1

pj

∑
i∈N(yj)

[
Ui

(
yj

) − α]

and, together with (20) and (21), this implies (17).
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It is natural to ask what additional principles become available if the critical levels in

the critical-level population principle are allowed to be different for different utility vectors

and, therefore, population sizes. The following axiom is a weakening of the critical-level

population principle.

Critical-Level Consistency: IfDEA = DB, then there exists a function C:∪n∈Z++Rn →
R+ such that, for all x,y, x̄ ∈ X, for all UEA, ŪEA ∈ DEA, for all j ∈ M and for all

k ∈ Z++ \N(
xj

)
, if

Ū
(
y(�)

)
= U

(
y(�)

)
for all � ∈M ,

N
(
x̄(�)

)
= N

(
x(�)

)
for all � ∈M \ {j},

Ūi

(
x̄(�)

)
= Ui

(
x(�)

)
for all � ∈M and for all i ∈ N(

x(�)
)
,

N
(
x̄j

)
= N

(
xj

) ∪ {k}
and

Ūk

(
x̄j

)
= C

(
U

(
xj

))
,

then

xREA
UEAy ⇔ x̄REA

ŪEAy.

Critical-level consistency asserts that, for each incomplete prospect, there is a com-

plete prospect which is equally good. The (ex-post) critical level used in the expansion

is, however, given by a function which can depend on the utilities of those alive (and

their number) in the state in question. As in the critical-level population principle, non-

negativity of the critical levels prevents the social-evaluation functional from ranking the

ceteris paribus addition of a person whose utility level is below neutrality as a social

improvement.

Replacing the critical-level population principle with the above axiom yields a charac-

terization of a subclass of an ex-ante version of the number-sensitive critical-level utilitarian

orderings.11 FEA is ex-ante number-sensitive critical-level utilitarian if and only if there

exists a function A:Z++ → R such that, for all x,y ∈ X and for all UEA ∈ DEA,

xREA
UEAy ⇔

m∑
j=1

pj


 ∑

i∈N(xj)

Ui

(
xj

) − A(
n
(
xj

))


≥
m∑

j=1

pj


 ∑

i∈N(yj)

Ui

(
yj

) − A(
n
(
yj

))


11 See Blackorby, Bossert and Donaldson [2001] for a discussion of the certainty version of these principles.
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where U is the profile corresponding to UEA according to (16). The function A can be

written as

A(n) =
n∑

k=1

ck−1

for all n ∈ Z++, where c0 ∈ R is arbitrary and ck is the ex-post critical level for population

size k ∈ {1, . . . , n}. Note that the ex-post critical levels can depend on population size
but not on utilities. We obtain

Theorem 8: Suppose FEA satisfies extended individual Bernoulli consistency. FEA

satisfies the extended social expected-utility hypothesis, ex-ante Pareto indifference, ex-ante

binary independence of irrelevant alternatives, ex-ante minimal increasingness, extended

ex-ante anonymity and critical-level consistency if and only if FEA is ex-ante number-

sensitive critical-level utilitarian with a non-decreasing function A.

Proof. That the ex-ante number-sensitive critical-level utilitarian ex-ante social-evaluation

functionals with a non-decreasing function A satisfy the required axioms is straightforward

to verify. Now suppose FEA satisfies the axioms. By critical-level consistency, there exists

a function C:∪n∈Z++Rn → R with the requisite properties. Let n ∈ Z++ be arbitrary

and consider four prospects x,y, x̄, ȳ ∈ Xθ and two profiles U
EA, ŪEA ∈ DB such that

Nθ(x) = Nθ(y) = {1, . . . , n},

Ui

(
yj

)
=

m∑
k=1

pkUi

(
xk

)
for all i ∈ {1, . . . , n} and for all j ∈M ,

Nθ(x̄) = Nθ(ȳ) = {1, . . . , n+ 1},
Ūi

(
x̄j

)
= Ui

(
xj

)
and Ūi

(
ȳj

)
= Ui

(
yj

)
for all i ∈ {1, . . . , n} and for all j ∈M , and

Ūn+1

(
x̄j

)
= C

(
U

(
xj

))
and Ūn+1

(
ȳj

)
= C

(
U

(
yj

))
for all j ∈M , where U, Ū ∈ U are the profiles of ex-post utilities corresponding to UEA and

ŪEA. Using Theorem 6, it follows that xIEA
UEAy. By repeated application of critical-level

consistency, this implies x̄IEA
ŪEAȳ. Again using Theorem 6, it follows that

m∑
j=1

pjC
(
U

(
xj

))
= C

( m∑
j=1

pjU
(
xj

))
. (22)
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Because, for any m vectors u1, . . . , um ∈ Rn, a profile U ∈ U with the above properties

can be chosen so that U
(
xj

)
= uj for all j ∈M , the function C must satisfy

m∑
j=1

pjC(u
j) = C


 m∑

j=1

pju
j


 (23)

for all u1, . . . , um ∈ Rn. By Theorem 3 and critical-level consistency,

C(uj) = C

(
1

n

n∑
i=1

uj
i1n

)
(24)

and

C


 m∑

j=1

pju
j


 = C





 m∑

j=1

pj
1

n

n∑
i=1

uj
i


 1n


 (25)

for all j ∈M and for all uj ∈ Rn. Fix n ∈ Z++ and define C̄
n(τ) = C(τ1n) for all τ ∈ R.

Letting tj = (1/n)
∑n

i=1 u
j
i for all j ∈M , (23), (24) and (25) together imply

m∑
j=1

pjC̄
n(tj) = C̄

n


 m∑

j=1

pjtj


 (26)

for all t ∈ Rm. Letting zj = pjtj for all t ∈ Rm and for all j ∈M , this equation specializes
to

m∑
j=1

pjC̄
n(zj/pj) = C̄

n


 m∑

j=1

zj




for all z ∈ Rm. Defining Ĉn
j (zj) = pjC̄

n(zj/pj) for all z ∈ Rm and for all j ∈ M , we

obtain
m∑

j=1

Ĉn
j (zj) = C̄

n


 m∑

j=1

zj


 (27)

for all z ∈ Rm. This is a Pexider equation which has the solutions

Ĉn
j (τ) = d

nτ + c̄nj (28)

and

C̄n(τ) = dnτ +
m∑

j=1

c̄nj (29)

for all τ ∈ R and for all j ∈ M , where dn ∈ R and c̄nj ∈ R for all j ∈ M . To establish

that there are no further solutions, we show that the Ĉn
j (and, thus, C̄

n) must be bounded

below on a non-degenerate interval (see Aczél [1966, p. 34 and p. 142]). Let j ∈ M and
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consider an arbitrary z ∈ Rm. Given z, let z̄ ∈ Rm be such that z̄k = zk for all k ∈M \{j}
and z̄j = z0 where z0 ∈ R is fixed. Applying Theorem 3 and critical-level consistency, it

follows that

m∑
k=1

zk +
m∑

k=1

Ĉn
k (zk) ≥

m∑
k=1

z̄k +
m∑

k=1

Ĉn
k (z̄k) ⇔

m∑
k=1

zk ≥
m∑

k=1

z̄k. (30)

Substituting the definition of z̄ and rearranging, (30) implies that

Ĉn
j (zj) ≥ Ĉn

j (z0) + z0 − zj
for all zj ≥ z0. This implies that Ĉ

n
j is bounded below on any interval [a, b] with z0 < a < b

and, therefore, the only solutions of (27) are given by (28) and (29). Using (24), (26) and

the definition of C̄n, substituting back yields

C(uj) = C

(
1

n

n∑
i=1

uj
i1n

)
= C̄n

(
1

n

n∑
i=1

uj
i

)
=
dn

n

n∑
i=1

uj
i + cn

for all j ∈ M and for all uj ∈ Rn, where cn =
∑m

j=1 c̄
n
j . By critical-level consistency,

critical levels must be non-negative and, because average utility can be arbitrarily high or

arbitrarily low for any given value of n, it follows that dn must be equal to zero for all

n ∈ Z++. Thus, there exists a sequence (cn)n∈Z++ such that the critical-level function C

is given by C(u) = cn for all n ∈ Z++ and for all u ∈ Rn. Because the range of C is R+, it

follows that cn ≥ 0 for all n ∈ Z++. Letting c0 ∈ R be arbitrary, setting A(n) =
∑n

i=1 ci−1

for all n ∈ Z++ and using the definition of critical levels as in the proof of Theorem 7, it

follows that FEA is ex-ante number-sensitive critical-level utilitarian. Because the cn are

non-negative for all n ∈ Z++, A is non-decreasing.

The proof of Theorem 8 can be illustrated by an example which is depicted in Table 2.

As in the previous example, there are two states. In prospects x and y, the population is

{1, . . . , n} and, in prospects x̄ and ȳ, the population is {1, . . . , n+1}. uj
i is the utility level

of person i in state j and EUi =
∑2

j=1 pju
j
i is the expected utility of person i. Because

each person has the same expected utility in prospects x and y, they are equally good.
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Table 2

Prospect x Prospect y

State 1 State 2 State 1 State 2

Person 1 u1
1 u2

1 EU1 EU1

...
...

...
...

...

Person n u1
n u2

n EUn EUn

Prospect x̄ Prospect ȳ

State 1 State 2 State 1 State 2

Person 1 u1
1 u2

1 EU1 EU1

...
...

...
...

...

Person n u1
n u2

n EUn EUn

Person n + 1 C(u1
1, . . . , u

1
n) C(u2

1, . . . , u
2
n) C(EU1, . . . , EUn) C(EU1, . . . , EUn)

In prospects x̄ and ȳ, the utilities of persons 1, . . . , n are the same as in prospects

x and y. In x̄ and ȳ, the added person has a utility levels given by the critical-level

function whose existence is guaranteed by critical-level consistency. That axiom implies

that prospects x and x̄ are equally good and that prospects y and ȳ are equally good.

Because x and y are equally good, transitivity implies that x̄ and ȳ are equally good.

Because, by Theorem 6, the social-evaluation functional is same-number utilitarian, it

must therefore be true that expected utilities for person n + 1 are the same in prospects

x̄ and ȳ. Thus,

C
(
EU1, . . . , EUn

)
= C


 2∑

j=1

pju
j
1, . . . ,

2∑
j=1

pju
j
2


 =

2∑
j=1

pjC
(
uj

1, . . . , u
j
n

)
.

The solution of this functional equation (equation (22) in the proof) allows C to depend

on population size but not on utility levels. The non-negativity requirement for ex-post

critical levels plays an important role in this result.

The conclusion of Theorem 8 is quite remarkable. Critical levels are shown to be

independent of utilities (but may depend on population sizes) as a result of adding other

axioms—critical-level consistency by itself allows for utility-dependent critical levels.

Analogous to the fixed-population case, there is a single variable-population ordering

which, when applied to ex-ante utilities, can be used to rank complete prospects and, when
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applied to ex-post utilities, can be used to rank prospects whenever they differ in a single

state only.

5. Variable probability distributions and prospects

The theorems of Sections 3 and 4 can be extended so that combinations of lotteries and

prospects are ranked. To do this, we let P = {p ∈ Rm
+ | ∑m

j=1 pj = 1} and define an
uncertain alternative (U-alternative) to be a compound vector consisting of a probability

vector p ∈ P and a prospect x ∈ X. That is, (p,x) ∈ P×X is a U-alternative in which xj

is realized with probability pj for all j ∈M . Because probabilities are allowed to be zero,
the case in which the number of states is U-alternative dependent is implicitly covered.

We first turn to the fixed-population case and, as in Section 2, let the population be

N = {1, . . . , n}. Individual ex-ante utility functions can depend on the probability vector
p. UUEA

i :P × X → R is the individual ex-ante utility function for person i ∈ N and

UUEA is the set of all profiles of such functions. If the individual Bernoulli hypothesis is

satisfied,

UUEA
i (p,x) =

m∑
j=1

pjUi(xj)

where Ui ∈ U is person i’s ex-post utility function. UUB is the set of all profiles of ex-ante

utility functions that satisfy the Bernoulli hypothesis.

An ex-ante social-evaluation functional is a mapping FUEA:DUEA → OUEA where

∅ �= DUEA ⊆ P×UUEA is the domain and OUEA is the set of all orderings on P×X. We
write RUEA

UUEA = FUEA(UUEA) and use PUEA
UUEA and I

UEA
UUEA to denote the asymmetric and

symmetric factors of RUEA
UUEA .

The fixed-population axioms are straightforward generalizations of the fixed-population

axioms of Section 2.

Uncertainty Individual Bernoulli Consistency: DUEA = P×DUB.

Uncertainty Social Expected-Utility Hypothesis: There exists a function U0:P ×
X ×DUEA → R such that, for all (p,x), (q,y) ∈ P×X and for all UUEA ∈ DUEA,

(p,x)RUEA
UUEA(q,y)⇔

m∑
j=1

pjU0

(
xj , U

UEA
) ≥

m∑
j=1

qjU0

(
yj , U

UEA
)
.

Uncertainty Ex-Ante Pareto Indifference: For all (p,x), (q,y) ∈ P ×X and for all

UUEA ∈ DUEA, if UUEA(p,x) = UUEA(q,y), then (p,x)IUEA
UUEA(q,y).
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Uncertainty Ex-Ante Binary Independence of Irrelevant Alternatives: For all

(p,x), (q,y) ∈ P×X and for all UUEA, ŪUEA ∈ DUEA, if UUEA(p,x) = ŪUEA(p,x) and

UUEA(q,y) = ŪUEA(q,y), then

(p,x)RUEA
UUEA(q,y)⇔ (p,x)RUEA

ŪUEA(q,y).

Uncertainty Ex-Ante Minimal Increasingness: For all a, b ∈ R, for all (p,x), (q,y) ∈
P × X and for all UUEA ∈ DUEA, if UUEA(p,x) = a1n � b1n = UUEA(q,y), then

(p,x)PUEA
UUEA(q,y).

Uncertainty Ex-Ante Same-People Anonymity: For all UUEA, ŪUEA ∈ DUEA, if

there exists a bijection ρ:N → N such that UUEA
i = ŪUEA

ρ(i) for all i ∈ N , then RUEA
UUEA =

RUEA
ŪUEA .

The following theorem generalizes Theorem 1.

Theorem 9: If FUEA satisfies uncertainty individual Bernoulli consistency, uncertainty

ex-ante Pareto indifference and uncertainty ex-ante binary independence of irrelevant al-

ternatives, then there exists a social-evaluation ordering RU on Rn such that, for all

(p,x), (q,y) ∈ P×X and for all UUEA ∈ DUB,

(p,x)RUEA
UUEA(q,y)⇔ UUEA(p,x)RUUUEA(q,y). (31)

The social-evaluation functional FUEA is ex-ante utilitarian if and only if, for all

(p,x), (q,y) ∈ P×X and for all UUEA ∈ DUEA,

(p,x)RUEA
UUEA(q,y)⇔

n∑
i=1

UUEA
i (p,x) ≥

n∑
i=1

UUEA
i (q,y)

⇔
n∑

i=1

m∑
j=1

pjUi(xj) ≥
n∑

i=1

m∑
j=1

qjUi(yj)

⇔
m∑

j=1

pj

n∑
i=1

Ui(xj) ≥
m∑

j=1

qj

n∑
i=1

Ui(yj).

The following theorem is a consequence of Theorems 3 and 9.

Theorem 10: Suppose FUEA satisfies uncertainty individual Bernoulli consistency.

FUEA satisfies the uncertainty social expected-utility hypothesis, uncertainty ex-ante Pareto

indifference, uncertainty ex-ante binary independence of irrelevant alternatives, uncer-

tainty ex-ante minimal increasingness and uncertainty ex-ante same-people anonymity if

and only if FUEA is ex-ante utilitarian.
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Proof. If FUEA is ex-ante utilitarian, it is straightforward to show that all of the axioms

are satisfied. Now suppose that FUEA satisfies the axioms of the theorem statement. By

Theorem 9, there exists an ordering RU on Rn such that (31) is satisfied. Because RU

is independent of probabilities, it can be found by examining the restriction of RUEA
UUEA to

{p̄} ×X where p̄ ∈ P ∩Rm
++. Theorem 3 implies that, for all u, v ∈ Rn,

uRUv ⇔
n∑

i=1

ui ≥
n∑

i=1

vi

and, as a consequence, FUEA is ex-ante utilitarian.

Although notational complexities have persuaded us not to include a formal demon-

stration, the results of Theorems 7 and 8 can be extended to cover all U-alternatives. To

do so, the axioms presented in Section 4 must be extended to the variable-population en-

vironment of U-alternatives. In addition, it is a simple matter to rewrite the critical-level

population principle and critical-level consistency in a similar way. We call the result-

ing axioms the uncertainty critical-level population principle and uncertainty critical-level

consistency.

Using the argument in the proof of Theorem 10, it is immediate that all complete

U-alternatives (in which each person is alive in all states or in none) with the same number

of people must be ranked with ex-ante utilitarianism.

Given the extended axioms and the uncertainty critical-level population principle, the

uncertainty ex-ante critical-level utilitarian principles with a non-negative critical level are

characterized. That is, there exists α ≥ 0 such that, for all (p,x), (q,y) ∈ P×X and for

all UUEA ∈ DUEA,

(p,x)REA
UUEA(q,y)⇔

m∑
j=1

pj

∑
i∈N(xj)

[
Ui

(
xj

) − α] ≥ m∑
j=1

qj
∑

i∈N(yj)

[
Ui

(
yj

) − α]
. (32)

If uncertainty critical-level consistency is used instead of the uncertainty critical-level

population principle, the argument in the proof of Theorem 8 establishes that ex-post

critical levels are utility-independent but may depend on the number of people alive. We

therefore obtain a characterization of uncertainty ex-ante number-sensitive critical-level

utilitarianism with a non-decreasing function A. That is, there exists a non-decreasing

function A:Z++ → R such that, for all (p,x), (q,y) ∈ P×X and for all UUEA ∈ DUEA,

(p,x)RUEA
UUEA(q,y)⇔

m∑
j=1

pj


 ∑

i∈N(xj)

Ui

(
xj

) − A(
n
(
xj

))


≥
m∑

j=1

qj


 ∑

i∈N(yj)

Ui

(
yj

) − A
(
n
(
yj

))
 .
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As in Section 4, the function A can be written as

A(n) =
n∑

k=1

ck−1

for all n ∈ Z++, where c0 ∈ R is arbitrary and ck is the ex-post critical level for population

size k ∈ {1, . . . , n}.
A simple example illustrates the application of the first of these classes of social-

evaluation functionals. Suppose that, in the year 2100, astronomers discover that an

asteroid is on a collision course with Earth and will obliterate life on the planet if nothing

is done (alternative x). If, however, resources are committed to a very costly international

program, the asteroid might be diverted and the planet saved. The probability of success

(alternative y) is 1/2. If the program fails, alternative z is realized. Population sizes and

average utilities are given in Table 3.

Table 3

Population size Average utility

x 10 billion 50

y 20 billion 40

z 10 billion 35

If nothing is done (x), 10 billion people live with an average utility level of 50. If the

asteroid is diverted (y), the number of people who ever live is doubled and their average

utility is 40; average well-being is lower because of the resources used to divert the asteroid.

If the attempt to divert the asteroid fails (z), 10 billion people live with an average utility

of 35; average utility is still lower because of the sacrifice of the initial population.

The possibilities can be expressed by means of the two U-alternatives ((1, 0), (x, x))

and ((1/2, 1/2), (y, z)). According to (32), taking action is better than doing nothing if

and only if
1

2

[
20(40− α)]+ 1

2

[
10(35− α)] > 10(50− α),

which obtains if and only if α < 15.

6. Concluding remarks

Harsanyi’s social aggregation theorem is one of the most fundamental results in social-

choice theory. Its original formulation and most of the subsequent literature are phrased
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in terms of variable lotteries and a single utility profile. The absence of a multi-profile

framework necessitates some regularity assumptions and, as a consequence, the result lacks,

to some extent, transparency. Moreover, the anonymity axioms of standard social-choice

theory cannot be applied in the single-utility-profile setting. Our formulation in terms of

prospects in a multi-profile setting allows us to proceed without regularity assumptions

(not even continuity is required if anonymity is assumed) and fits naturally with the

standard multi-profile social-choice framework.

The proof technique in the fixed-population case is novel: we prove a variant of

Harsanyi’s theorem by showing that translation-scale non-comparability is implied, which

permits us to involve a classical result on utilitarian social-evaluation functionals under

certainty. This differs substantially from the methods employed in the lottery setting.

The variable-population model represents a substantial generalization of the fixed-

population case. Although the fixed-population results are used in our characterizations,

there is a considerable amount of additional complexity. By using an axiom—critical-level

consistency—that associates an equally-good complete prospect with every incomplete one,

we are able to reduce the plethora of ethically acceptable social-evaluation functions to a

single class, the ex-ante number-sensitive utilitarian functionals. The ex-ante critical-level

utilitarian subclass results if the stronger critical-level population principle is employed.
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