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RESUME

Cette note examine la pertinence de I'approximation en échantillon fini donnée par
le théoréme de la limite centrale fonctionnelle quand les erreurs sont dépendantes. Nous
comparons la distribution des sommes partielles échelonnées de quelques donnés avec la
distribution du processus de Wiener sur lequel elle converge. Notre modele est
intentionnellement trés simple, compte tenu qu'il considere les donnés générées a partir
d'un processus ARMA(1,1). Cependant, c'est suffisant pour obtenir des conclusions
intéressantes sur les éléments particuliers qui causent des approximations inadéquates

méme en larges échantillons.

Mots clés : processus de Wiener, pont brownien, fonction de répartition, corrélation

temporelle, approximation asymptotique

ABSTRACT

This note investigates the adequacy of the finite-sample approximation provided by
the Functional Central Limit Theorem (FCLT) when the errors are allowed to be
dependent. We compare the distribution of the scaled partial sums of some data with the
distribution of the Wiener process to which it converges. Our setup is purposely very
simple in that it considers data generated from an ARMA(1,1) process. Yet, this is
sufficient to bring out interesting conclusions about the particular elements which cause

the approximations to be inadequate in even quite large sample sizes.

Key words : Wiener process, Brownian bridge, distribution function, serial correlation,

asymptotic approximation



1 Introduction

The Central Limit Theorem (CLT) allowing data to be heterogenous and/or dependent and
its generalization to the Functional Central Limit Theorem (FCLT') are by now standard tools
in econometrics. The FCLT states that, under suitable conditions on the data generating
process of some series x;, we have the following convergence results as the sample size, T,

Increases:
[Tr]

Xp(r)=o ' Y2 > xy=W(r) (1)

t=1

for r € [0, 1], where W (r) is the standard Wiener process, = denotes weak convergence in
distribution (usually from the space D[0, 1] to C'[0, 1] under the sup or the Skorohod metrics)
and 0% = limp . T7'F (Zle a:t)Q which in the case of a stationary process is equivalent to
(27r) times the spectral density function at frequency zero of the series z;. There are a
wide variety of sufficient conditions available in the literature which ensure that the result
(1) holds. For example, a class of linear processes with martingale difference innovations
(Phillips and Solo, 1992), mixing conditions as used in Phillips and Perron (1988) (Herrndorf
(1984)), and so on. For a comprehensive review, see Davidson (1994).

This asymptotic result has been widely used in time series analysis, in particular in
relation to the asymptotic distribution of estimators and test statistics related to integrated
(autoregressive unit root) and cointegrated processes. Yet, despite its popularity, little has
been documented on how well the distribution of the Wiener process W (r) approximates
the finite sample distribution of X7 (r) in finite samples, especially in the context where
serial correlation is present. In this note, we try to partially fill this gap using simple
ARM A(1,1) processes for the data z;. The framework is kept very simple to better highlight
the importance of the nature of the serial correlation for the adequacy (or lack of it) of the
asymptotic approximation. We furthermore assume that the innovations of the ARM A
processes are i.i.d. N(0,1). In that case, both Xr(r) and W(r) are normally distributed
with mean 0 and to the extent that their distributions differ they do so only via a different
variance. Hence, a comparison of the relative variances of Xp(r) and W(r) is enough to
assess the extent to which the approximation is adequate or not.

The rest of this note is structured as follows. Section 2 discusses the experimental design
and states some required results concerning the distributions of Xr(r) and W (r) in relation
to the data-generating processes used. Section 3 discusses the special case with i.i.d. data.

Section 4 presents the results in the general case. Section 5 concludes.



2 The Experimental Design

What is of interest here is to highlight the nature of the serial correlation which can cause
the approximation to be adequate or not in finite samples. To that extent, a useful starting

point is to consider a simple ARM A(1,1) process for the x,’s, 1.e.
Ty = X1+ e+ Oepq, (2)

where the sequence of innovations ¢; is assumed to be i.i.d. N(0,1) and 9 = 0. To ensure
that the process satisfies the conditions such that (1) holds, we impose || < 1 and |f] < 1. In
this case, Xr(r) is normally distributed with mean 0 as is W(r). Hence, the only difference
between the distribution of Xp(r) and W(r) relates to the variance of each variable. As is

well known, Var(W(r)) = r. Using the fact that
T 1 0 2
o= lim TT'ED_x]* = << +9)

_ 27
T— 00 =1 1 @)

tedious but straightforward algebra shows that

(=) (I | (0+a) (T7)=1)  a(l—almi))
VarlXr(r)) = a5gp { T T Xioel T T Ta—a
0+ a)? ([Tr] - 1) ol - alTr=1y  a2(1 — 2([T71=1)
+(1 = oz)Q[ T 2 T(l—«) + T(1— a?) }

As special cases, we have that with an M A(1) process:

([Tr]—1) N 1

VCLT(XT(T» = T T(l + 6)27

and with an AR(1) process:

[Tr]  2a(l—al™y  a?(1 — a2
Var(Xr(r)) = =5~ T—a) @ Tl—a?)

It is easily seen, from each expression, that as T — oo, Var(Xr(r)) — r = Var(W(r)).

To assess, the “approximation error” we use the percentage relative deviation of Var(Xr(r))

and Var(W(r)), that is

(Var(Xr(r)) — Var(W(r))) _ 100(Va7"(XT(7")) — )

e(T,r, o, 0) =100 Var V0] . : (3)

As highlighted in the argument of the error function e(+), this error depends on the parameters

T, r, a and 6.



3 The Case with an i.7.d. Process

When the process is i.i.d. N(0,1), we have

e(T,r,0,0) = 100(@ —r)/r= 100(% —1). (4)

It is to be noted that the error is non-positive for all 1" and r, so that the variance of the
Wiener process W (r) over-estimates the variance of Xp(r). An interesting feature of the
error function (4) is that it can easily be seen that the error is not, in general, a monotonically
decreasing function of the sample size. Take for example the case r = .5, the error is 0 for an
even-valued sample size but is 100 * (.5/7) for any odd-valued sample size. There is, hence,
a seesaw pattern in the mean-squared error which increases in importance as r decreases.
The error caused by this feature can be quite large. Take for example the case r = .1. The
errors are as follows: 0% at T = 20, —4.76% at T = 21 up to —31.03% at T = 29, back to 0
at T = 30, —3.23% at T = 31 and up to —23.08% at T" = 39.

In Figure 1, we present the percentage error function for values of T' ranging from 10 to 100
(in steps of 1) and for 7 between 0.05 and 1.0 (in steps of .05). The seesaw pattern is seen to
be quite important when 1" and r are small. When 7 increases, it rapidly becomes negligeable.
However, when 7 is small (e.g. .1), the non-monotonic pattern remains important even when
T is as large as 100.

A closely related asymptotic result concerns the demeaned process
T
Ty =Ty — Tt Za:t.
=1

It follows from the basic functional central limit theorem (1), that

[T7]
Xi(r) =o' T 2N ap = W(r) —rW (1) = W(r),

t=1
where W*(r) is a standard Brownian Bridge which starts and ends at 0. It is easy to see

that var(W*(r)) =r(1 —r), and with i.i.d. N(0,1) data,

var(x;() = L - L)

so that, in this case the error function is

e*(T,r,0,0) = 100 * ([77:—7"](1 — [77:_7"]) —r(l— 7")) J(r(1—r)).



In Figure 2, we present the corresponding percentage error function again for values of T’
ranging from 10 to 100 (in steps of 1) and for r between 0.05 and 1.0 (in steps of .05). The
behavior of this error function is rather different than {rom that of e(T',r,0,0) presented in
Figure 1. Here when r < .5, the error is non-positive while it is non-negative when r > .5.
The error and the accompanying seesaw pattern can be quite important when 1" is small and
7 is close to either 0 or 1. When r approaches .5, the error approaches 0, faster as T" is large.

This feature due to the truncation argument holds as well in the general ARM A case.
We shall, however, not dwell upon it and choose values of T and r such that [Tr] = Tr to

concentrate of the eflect of the serial correlation.

4 Numerical Results for ARMA(1,1) Processes

We present results of the error function (3) for a wide range of values for o and ¢ and values
of T selected to be T" = 30, 100, 500 and 5,000. The values of r are from .1 to .9 in steps of
1. The pairs {r,T'} selected avoid the non-monotonic behavior of the error caused by the
truncation [T'r| relative to T'r.

Figure 3 presents the error function (7, r,0,0) corresponding to the case of an M A(1)
process. The graphs are constructed using values of § between —0.95 and 0.95 in steps of
.05. For any value of the MA parameter, the error function is positive and decreasing as r
increases. A notable feature is the fact that when the MA component is close to —1, the
error is very large reaching as high a 14,000% for 1" = 30 when r» = .1 and 6 = —.95. Even,
when r = 1, it is of the order of 2,000%. As expected, the error function decreases as T’
increases but very slowly when the MA parameter is large and negative. Even at T = 5000,
the error with § = —.95 is between 10% and 80% depending on the value of r.

Figure 4 presents a similar graph for the case of an AR(1) process again for values of
a between —0.95 and 0.95 in steps of .05. Here the results are quite different. First, the
errors are nowhere near as large as in the MA case. The largest error is of the order of 160%
when T" = 30. An interesting feature is that the error is negative when « is positive and
vice versa. The error declines in absolute value as r increases. Also, the errors are larger for
negative values of . The largest errors occur when « is either close to —1 or +1 in which
case the rate of decrease as T’ increases is rather slow. The rate of decrease is slower when «
is positive, so that when T is either 500 or 5000, the error is now larger (in absolute value)
for positive than for negative values of «.

We now consider the behavior of the error function as a function of the MA and AR

parameters jointly. We consider the case r = 1 for illustration since the qualitative results

4



are unchanged using other values of r. What transpires from Figure 5 is the fact that the
error function is totally dominated by the region where both the MA and the AR coefficients
are large and negative. In the extreme, with o = 6 = —.95, the error is of the order of
50,000% when 1" = 30 and is still as high as 300% when T = 5,000. The error in this
region is so large that we fail to see variations in the error function for other parameter
configurations. To that effect, we present in Figure 6, the error function in the region where
the AR coefficient « is positive. One can see that there are still important variations when
the MA coefficient is negative. For example, with T"= 30, « = 0 and § = —.95, the error
is sill around 1,400% and decreases to 0% when o = .95 and 6 = —.95 (in which case the
process is i.i.d. since the roots cancel). The error decreases quite rapidly but when 7" = 5,000
it is still around 8% when o = 0 and # = —.95. Hence, we see that the error function is
highest, by a wide margin when the MA coeflicient is close to —1. The effect induced by the
presence of an autoregressive component is to reduce the error function when « is positive
and to increase it when « is negative reaching extremely high values as both the MA and
AR coefficients get close to —1.

To better assess the effect on the error function of variations in the AR coefficient, Figure
7 presents the results for the parameter space where the MA coefficient is constrained to be
non-negative. What is first of interest is the fact that variations in the MA coefficient from
0 to 0.95 basically induce no variation in the error function (except somewhat when the
AR coefficient takes a high negative value in which case an increase in the MA coefficient
decreases somewhat the error). Hence, the behavior of the error function as « varies is
basically the same as that presented in Figure 3 for r = 1.

In summary, the results show that when the data exhibit little serial correlation, the
Wiener process is a good approximation to the finite sample distribution of the scaled par-
tial sums Xr(r), except for some non-monotonicities caused by truncation which, however,
dissipate rather quickly as the sample size increases. The presence of positive serial cor-
relation of the moving-average type, even if quite large, does not induce a deterioration of
the approximation. However, the presence of a negative moving average component causes
serious distortions to the approximation. Such distortions become very important when
the moving average coefficient approaches the boundary —1. The distortions are mitigated
somewhat when a positive autoregressive component is present as well but exacerbated to a
great extent with a negative autoregressive component. When both the MA and AR coeffi-
clents are close to —1 the error can reach as much as 50,000% when 1" is small and reduces

only very slowly as T" increases; the error remaining important even if " is as large as 5,000.



When only an autoregressive component is present, the errors can be large for sample sizes
like T" = 100 but become small as T increases further.

We have performed the same experiments with the demeaned process X7.(r) in relation
to its asymptotic approximation W*(r), the Brownian Bridge. The qualitative results are
very similar when r» = .5. The difference is that the magnitude of the errors decreases as
7 approaches either 0 or 1, but the general shape remains the same. The interested reader
may consult the full set of results in Mallet (1995).

5 Conclusion

Our analysis, though very simple, yields nevertheless interesting implications about the
quality of the approximation provided by the class of Functional Central Limit Theorem
when dependent errors are allowed. The main qualitative result is that care should be
applied when using such an approximation when the data are heavily serially correlated.
The problem is especially severe when a negative moving average component is present and
even more so when it is accompanied by a negative autoregressive component.

The fact that the approximation is poor is such cases has clear implications for the ade-
quacy of the asymptotic distribution of statistics that are based on the partial sums Xz (7).
A leading example is the least-squares estimate in a first-order autoregression. This case
was extensively analyzed by Perron (1996) where it is shown that the asymptotic distribu-
tion provides a poor approximation to the finite sample distribution when the errors have
a strongly negative MA component or a strongly positive or negative AR component. An
alternative asymptotic framework that treats the coefficient as local to its relevant boundary
was developed in Nabeya and Perron (1994) and found to yield quite accurate approxima-
tions. Another example is the class of unit root tests developed by Phillips (1987) and
extended in Phillips and Perron (1988). Since these tests are directly based on estimates
from a first-order autoregression, they inherit the same problems. This issue is addressed
in details in Perron and Ng (1996) where the local framework of Nabeya and Perron (1994)
is used to motivate alternative tests that suffer less from size distortions in the presence of
substantial correlation in the data. Of course, given the widespread application of the FCLT
in deriving asymptotic approximations, the results documented here have implications for

many other estimators and test statistics.
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Wiener Process

Relative Error in the 1.i.d. Case;

Figure 1:

(Negative of the value)
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Brownian Bridge

Figure 2: Relative Error in the 1.i.d. Case;
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Figure 3: The Error Function in the MA Case
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Figure 4: The Error Function in the AR Case
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Figure 7: The Error Function in the ARMA(1,1) Case
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