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Abstract. Smooth stable planes have been introduced in [3]. At every point p of a smooth stable
plane S � �P;L;F� the tangent spaces of the lines through p form a compact spread (see the
de®nition in Section 2) on the tangent space TpP thus de®ning a locally compact topological af®ne
translation plane Ap. We introduce the moduli space Jl�R2l� of isomorphism classes of compact
spreads, l 2 f1; 2; 4; 8g. We show that for l > 1 the topology of Jl�R2l� is not T1 by constructing a
sequence of non-classical spreads in F2 that converges to the classical spread in F2, where
F 2 fC;H;Og. Moreover, we prove that the isomorphism type of Ap varies continuously with the
point p. Finally, we give examples of smooth af®ne planes which have both classical and non-classical
tangent translation planes.
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Topological geometry was born in 1932 when Kolmogoroff published his paper
Zur BegruÈndung der projektiven Geometrie [12]. He was the ®rst who combined
incidence structures (projective spaces) and topology. Skornyakov (1954) and
Freudenthal (1957) continued Kolmogoroff's ideas. In the late '50s, Salzmann
started the systematic investigation of topological plane geometries. An account of
this theory is given in the recent book Compact Projective Planes [21].

The four classical examples of compact projective planes, namely the projective
planes P2K over the locally compact division algebras K 2 fR;C;H;Og, are not
only topological planes; the set of points and the set of lines are, in fact, smooth
manifolds and the geometric operations of join and intersection are not only
continuous but even smooth. This leads to the notion of smooth incidence structures.
In the present paper we will study smooth stable planes (see the de®nition in Section
1). These objects were ®rst investigated in [3], [4], and [5]. The fact that every
continuous collineation of a smooth stable plane is in fact a smooth collineation (see
[4]) implies that the smooth structures (on the set of points and the set of lines) of a
smooth stable plane are uniquely determined by the underlying topological stable
plane. Among the nice features of smooth stable planes are the so-called tangent
translation planes which live on the tangent spaces TpP of points p. We will give a
construction of these tangent planes in Section 2. Translation planes in general are
uniquely determined by so-called spreads. We will introduce the moduli space Jl�V�
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consisting of isomorphism classes of spreads on a real 2l-dimensional vector space
V; l 2 f1; 2; 4; 8g. We will prove and make precise the following results:

Theorem A. For l > 1, the moduli space Jl�V� does not satisfy the T1

separation axiom.

Theorem B. For every smooth stable plane S the isomorphism type of the
tangent translation plane Ap varies continuously with the point p.

Theorem C. There exist smooth af®ne planes which have non-isomorphic
tangent translation planes Ap and Aq at some points p and q.

The authors would like to thank the referees for their valuable comments and
suggestions which helped to improve this paper considerably.

1. Basic Notions

The de®nition of a smooth stable plane is based on the purely incidence geometric
notion of a linear space. A linear spaceS � �P;L;F� consists of sets P,L and F,
where P denotes the set of points, L is the set of lines and F � P�L is the set of
¯ags, such that for every pair of distinct points p, q there is exactly one joining line
L � p _ q 2 L, i.e. �p; L�, �q; L� 2F. If �p; L� 2F, we shall say that p and L are
incident, or p lies on L, or L passes through p. Sometimes it is convenient to identify
each line L of a linear space with the set of points that are incident with L, i.e. we
identify L with the setfp 2 Pj�p; L� 2 Fg. If we look at a line this way, we frequently
will call it a point row. Similarly, a pencil Lp of lines is the set of all lines that are
incident with a given point p.

The map _ : P� PndiagP !L which assigns to each pair of distinct points
its joining line is called the join map. The intersection map ^ is de®ned dually.
Note that in a linear space two lines may not intersect. Hence, for a linear space,
the map ^ need not be de®ned on the whole set L�LndiagL.

A stable plane S is a linear space �P;L;F� that satis®es the following
axioms.

(S1) There are Hausdorff topologies on both P and L that are neither discrete
nor antidiscrete such that the join map _ and the intersection map ^ are
continuous. Morover, the domain O of the intersection map is an open subset of
L�L (stability axiom).

(S2) The topology on P is locally compact and has positive ®nite covering
dimension.

(S3) S contains four points such that any three of them do not lie on a common
line.

A smooth stable plane S is a stable plane �P;L;F� such that P and L are
smooth manifolds and such that the join and intersection maps are smooth on their
(respective) domains. A smooth stable plane A is called a smooth af®ne plane if it
is an af®ne plane (from the incidence geometric point of view) and if the map
which assigns to each line and each point p the parallel line through p is smooth.

We will always consider a smooth stable plane S � �P;L;F� with lines
of dimension l. According to LoÈwen, [16], or Breitsprecher, [6], we have
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n � dim P � 2l, where the integer l is one of the numbers 1,2,4,8. By [3], (2.6) and
(2.14), every point row is a closed submanifold of P, every line pencil is a compact
submanifold of L, and the ¯ag space F is a closed submanifold of the product
manifold P�L. The restrictions �P : F! P and �L : F!L of the canonical
projections P�L! P and P�L!L to F are submersions, see [3], end of
Section 2.

2. Tangent Translation Planes and Moduli Spaces of Translation Planes

Let �P;L;F� be a smooth stable plane of dimension n � 2l. Consider the tangent
space TpP at some point p 2 P. On TpP we can de®ne an af®ne translation plane Ap

in the following way. The set of points is just TpP and the collection
Sp :� fTpLjL 2Lpg of l-dimensional subspaces serves as the line pencil through
the origin 0 2 TpP. By [3], we have (SP1)

S
K2Lp

TpK � TpP and (SP2)
TpL� TpK � TpP for any two distinct lines K;L 2Lp. Any family of l-dimensional
subspaces of a 2l-dimensional vector space V that satis®es these two axioms is called a
spread in V . It is a well-known result that every spread S in V de®nes a translation
plane A on the point set V by de®ning L :� fW � vjW 2S; v 2 Vg as the set of
lines ofA. By [3], (3.5), the planesAp are even topological af®ne translation planes.
In particular, the map �p which assigns to every non-zero vector v of TpP the (unique)
tangent space TpL containing v is a continuous map (with respect to the Grassmann
topology). According to LoÈwen, [17], the planeAp is a topological af®ne plane if and
only if the spread Sp is compact (and in this case Sp is homeomorphic to the l-
sphere). We refer to Ap � �TpP;Sp� as the tangent translation plane at p and to Sp

as the tangent spread at p. It is unknown whether or not the tangent translation planes
are smooth af®ne planes in general. However, we will prove that the smooth af®ne
planes which are constructed in the last section do have smooth tangent translation
planes. Note that the tangent incidence structure AL at some line L, which is de®ned
dually to Ap, need not be an af®ne plane. While axiom (SP2) remains valid, axiom
(SP1) may not be true anymore. Nevertheless, the incidence structureAL is the dual of
a so-called shear plane which is a special kind of a stable plane. In fact, shear planes
can be regarded as a generalization of dual translation planes in the category of stable
planes, see [3], Section 4, and [14].

Each spread S of a real 2l-dimensional vector space V can be thought of as a
subset of the Grassmann manifold Gl�V�. Let Kl�V� be the set of all compact
subsets of the Grassmannian Gl�V� taken with the Hausdorff topology, induced by
the Hausdorff metric. Convergence with respect to this topology can be described
as follows: a sequence �Kn�n2N of compact subsets of Gl�V� converges to a
compact subset K of Gl�V� if and only if every element of K is a limit point of
some sequence �xn�n2N with xn 2 Kn and, on the other hand, every cluster point of
such a sequence is contained in K. Consider the subspace Sl�V� of Kl�V�
consisting of all compact spreads on V . We take Sl�V� with the subspace topology.
Since the spread S completely determines the translation plane A, we can think
of A as an element of the topological space Sl�V�. Finally, we introduce an
equivalence relation on Sl�V� by calling two spreads equivalent if and only if they
determine isomorphic translation planes. Note that two translation planes �V;S�
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and �V;S0� are isomorphic if and only if there exists a R-linear regular mapping
� : V ! V which maps S onto S0, see Knarr [11]. Thm. 1.18. The resulting
quotient space is denoted by Jl�V�, and we topologize Jl�V� by taking the quotient
topology.

2.1 De®nition. Let V be a 2l-dimensional real vector space. The set Jl�V� of
isomorphism classes of compact spreads on V is called the moduli space of 2l-
dimensional translation planes (with point space V).

Finally, we describe another way to introduce a topology on the moduli space
Jl�V�. If S 2 Sl�V� is a compact spread, then the lines of the corresponding
translation plane A2�S� are precisely the af®ne cosets of the elements of S.
We follow LoÈwen, [17], for a description of the topology of A2�S�: consider V
as a hyperplane of W � V � R. Set P :� G1�W�nG1�V� and L �L�S� :�
fX 2 Gl�1�W�jX \ V 2 Sg. We endow both P and L with the Grassmannian
topology. Then �P;L� is a topological af®ne translation plane (incidence is
inclusion) which is isomorphic to A2�S�.

Let S0l�P� be the family of all subsets L � Gl�1�W� such that the intersection
L \ V :� fL \ VjL 2Lg is a compact spread on V . By our discussion above,
S0l�P� is the family of the line sets of all topological af®ne translation planes with
point set P. Note that such sets L are actually contained in Gl�1�W�nGl�1�V� as
closed subsets. We endow S0l�P� with the Hausdorff topology induced by the
Hausdorff metric; see Busemann [7], (3.8). Convergence with respect to this
topology can be described similarly as above: as sequence �Li�i with Li 2 S0l�P�
converges to L 2 S0l�P� if and only if every element of L is the limit of a
sequence �Li�i with Li 2Li and, on the other hand, every accumulation point X
with X 6� V of such a sequence is an element of L.

The composition �0 � � � � of the map � : S0l�P� ! Sl�V� : L 7!L \ V with
the quotient map � : Sl�V� ! Jl�V� maps an element L 2 S0l�P� to the
isomorphism class of the af®ne translation plane �P;L�. Therefore, the moduli
space Jl�V� can also be considered as a quotient space of S0l�P�. The next lemma
shows that � is a homeomorphism. We conclude that S0l�P� and Sl�V� induce the
same topology on Jl�V�.

2.2 Lemma. The map � is a homeomorphism, i.e. the two descriptions of the
moduli space agree.

Proof. Clearly, � is a bijective map. Since the topologies on Sl�V� and S0l�P� are
induced by metrics, � is a homemorphism if and only if both � and �ÿ1 are
sequentially continuous. Let �Li�i be a sequence in S0l�P� which converges to
L 2 S0l�P�. Set S � ��L� �L \ V and Si � ��Li�. We have to prove that
H-limi!1Si � S, where H-lim denotes the Hausdorff limit. Consider an element
X 2S and choose a one-dimensional subspace U 2 G1�W�nG1�V�. Then U � X
is an element of L and we have U � X � limi!1Li for an appropriate sequence
�Li�i with Li 2Li. Thus, X � �U � X� \ V � limi!1�Li \ V� is the limit of the
sequence �Xi�i, where Xi � Li \ U 2Si. Similarly, one may show that every
accumulation point of a sequence �Xi�i with Xi 2 Si is an element of S; just
observe that Xi � U is an element of Li and that the sequence �Xi � U�i has
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X � U as an accumulation point. This shows that H-limi!1Si � S. Thus � is
(sequentially) continuous. With similar arguments we obtain that �ÿ1 is
continuous, too. This ®nishes the proof.

3. Proof of Theorem A

We consider the set Sl�V� of all compact spreads on a 2l-dimensional real vector
space V . Recall that two (compact) spreads de®ne isomorphic translation planes if and
only if they can be transformed into each other by a linear automorphism of V .
Moreover, the linear group GL�V� acts continuously on the Grassmannian Gl�V�.
Thus the moduli space Jl�V� can be considered as the orbit space of the natural action
of GL�V� on Sl�V�.

We will prove that Jl�R2l� does not satisfy the T1 separation axiom for l > 1:
there exists a sequence of pairwise isomorphic non-classicial spreads converging
to the classical spread on R2l. This will prove Theorem A.

E.N. Kuz'min, [13], analogously introduced the moduli space of real division
algebras of a ®xed dimension and mentioned without proof that this space is not
Hausdorff.

3.1 Example. Let F 2 fC;H;Og and let l be the dimension of the real division
algebra F. Consider V � F� F as a 2l-dimensional real vector space. For every
homeomorphism �1 : �0;1� ! �0;1� we may construct a compact spread as
follows. Set S :� f0g � F. For each positive real number r and a 2 F with jaj � 1 let

L1�a; r� :� f�x; a � �r � Re�x� � �1�r� � Pu�x���tjx 2 Fg;
where x � Re�x� � Pu�x� is the decomposition of x into its real and its pure part.
Then the family

S1 � fL1�a; r�jr 2 R; r50; a 2 F; jaj � 1g [ fSg
is a compact spread on V , i.e. S1 is an element of Sl�V�. These spreads where ®rst
de®ned and investigated by Betten [1] (for F � C), HaÈhl [8] (for F � H), and HaÈhl
[9] (for F � O) and play an important roÃle in the classi®cation of locally compact
translation planes with large automorphism groups. In particular, if the homeo-
morphism �1 is not linear, then the corresponding translation plane is not
isomorphic to the classical plane. These planes are coordinatized over so-called
generalized mutations of the division algebra F, see [21], 82.21.

We assume that �1 6� id is the identity on [0,1]. This implies that the sets
L1�a; r� are classical lines (i.e. they are lines of the classical af®ne plane A2F) if
r41. Thus, S1 contains an open part of the classical spread. We will blow up this
`̀ classical part'' by using the linear maps

fs : F� F! F� F : �x; y�7!�x; s � y�;
where s is a positive real number. De®ne Ss :� fs�S1�. Clearly, the family Ss

again is a compact spread. Another way to obtain Ss is to replace the homeo-
morphism �1 in the above construction by

�s : �0;1� ! �0;1� : r 7! r

s � �1
r

s

� � if r 4 s

if r 5 s:

(
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We claim that for any sequence �sj�j converging to1, the spreads Ssj
converge

to the classical spread in F2. Let �Lsj
�aj; rj��j be a sequence that converges to some

l-dimensional real linear subspace of F2. Since jajj � 1 for any j 2 N, the sequence
�aj�j has some cluster point a and we may assume that limj!1aj � a. If rj4sj for
almost all j, then Lsj

�aj; rj� is a classical line for almost all j and hence the limit L
of this sequence is classical as well. Thus, by passing to some subsequence, we
may suppose that rj > sj for all j. Then limj!1rj � 1 and we infer that the
sequence �Lsj

�aj; rj��j has S as its limit. Conversely, every classical line can be
written as the limit of such a sequence: for a classical line L � f�x; bx�jx 2 Fg we
write b � ar with jaj � 1 and r 2 R, r50. Then, for any sequence �sj� of real
numbers with sj5r we have Lsj

�a; r� � L. This shows that the Hausdorff limit of
�Ssj
�j is the classical spread in F2.

We immediately get the following result, see the discussion before (3.1):

3.2 Corollary. For l > 1, the moduli space Jl�V� is not a T1-space.

This result proves Theorem A.
The subgroup fA 2 GL�V�jAS 2S for all S 2Sg is called the automorphism

group of a spread S on some vector space V . The automorphism group of a
compact spread S is of course a closed subgroup of GL�V� and thus is a Lie group.
In the example given in (3.1) the non-classical spreads Ss � fs�S� converge to the
classical spread. Therefore, the dimension of the automorphism group increases
when we pass to the limit, cp. [21], introduction to Chapter 8. In fact, this upper
semi-continuity holds in general.

3.3 Lemma. Let A and B be compact spreads on R2l having A and B as
automorphism groups. Let 'i 2 GL2lR with H-limi!1'i�A� � B. Then
dim A4dim B.

Proof. Let a and b be the Lie algebras of the Lie groups A and B, respectively.
Then the Lie algebra of the automorphism group of the spread 'i�A� is just
ai :� 'ia'ÿ1

i . In particular, we have dimai � dima � m for any i 2 N. Thus, the
sequence �ai�i has an accummulation point d in the Grassmannian Gm�gl2lR�. Of
course, the linear subspace d is a Lie subalgebra of gl2lR. We claim that the group
d�:� hexp di leaves invariant the spread B and thus is a subgroup of B. For R 2A
and � 2 exp d near the identity choose sequences �Ri�i with Ri 2 'i�A� and ��i�i
with �i 2 'iA'

ÿ1
i such that

lim
i!1

Ri � R and lim
i!1

�i � �:

Then the sequence ��i�Ri��i converges to ��R� in the Grassmannian Gl�R2l�. Since
the limit of this sequence is contained in the spread B, this proves the lemma.

Retain the notation of the previous lemma. We have seen that every
accumulation point d� of the sequence di� 'iA'i ÿ 1 (or, more precisely, the
group corresponding to an accumulation point of the Lie algebras ai � 'ia'ÿ1

i )
has the same dimension as A. However, the isomorphism types of A and d� may
differ extremely, as our next example shows.
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3.4 Theorem. There is a sequence of compact spreads �Si�i on R4 with the
following properties:

(1) For each i, the spread (Si�i is isomorphic to the singular spread S with
irreducible SL2R-action; see Betten [2] or [21, 73.17, 73.19 and 73.20]. In
particular, the automorphism group di of Si is isomorphic to GL2R.

(2) The spreads �Si�i converge to the classical complex spread SC in the
Hausdorff sense.

(3) The groups di converge to a solvable group d�� R� �R2 SO2R�. Here,
convergence is de®ned as convergence of the Lie algebras in the Grassmannian
G4�gl4R�.

Proof. (a) Let V � R4 and let S be the subspace S � f0g � R2 of V . For a, b, c,
d 2 R we de®ne subspaces

a b

c d

���� ���� � f�x; y; ax� by; cx� dy�tjx; y 2 Rg � V

in their Grassmann coordinates with respect to W � R2 � f0g and S. The set
S �S1 [S2 [S3, where

S1 � fSg [ ÿ3b2 2b

ÿ2b3 b2

���� ����� ����b 2 R

�
;

S2 � ÿ3b2 � d2 2b

ÿ2b3 ÿ 2bd2 b2 � d2

���� ����� ����b; d 2 R; d > 0

�
;

S3 � ÿ3b2 ÿ 3d2 2b

ÿ2b3 ÿ 2bd2 b2 ÿ d2=3

���� ����� ����b; d 2 R; d > 0

�
;

is a compact spread ([12], 73.19 and 73.20). Moreover, the image d of the
irreducible representation ! : GL2R! GL�V� with

a b

c d

� �!
�

a3 a2b ab2 b3

3a2c 2abc� a2d 2abd � b2c 3b2d

3ac2 2acd � bc2 2bcd � ad2 3bd2

c3 c2d cd2 d3

0BB@
1CCA

equals the full group of automorphisms of S, see [21], 73.19(b).
(b) We de®ne a one-parameter group of linear maps by

'�r��x; y; u; v�t � �rx; ry; �r ÿ 1�x� u; �r ÿ 1�y� v�t;
where r 2 R; r > 0. The action of '�r� on SnfSg is given by

a b

c d

���� ����'�r�� 1� �aÿ 1�=r b=r

c=r 1� �d ÿ 1�=r

���� ����:
Thus, '�r� leaves invariant the subspace

E � 1 0

0 1

���� ���� 2S2:

�
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Moreover, '�r� ®xes S pointwise. We denote by S�r� the image of S under the
map '�r�.

(c) Let �ri�i be a monotone decreasing sequence with ri 2 R>0 and
limi!1 ri � 0 and let �L�ri��i with L�ri� 2S�ri� be a sequence which converges
in Gl�V� to some 2-dimensional subspace K of V . We will prove in part (d) that K
is an element of the classical complex spread

SC : fSg [ a ÿb

b a

���� ����� ����a; b 2 R

�
on V , and, conversely, that every element of SC is the limit of such a sequence.

This implies that SC is the Hausdorff limit H-limr!0S
�r� of the family

fS�r�gr>0. In particular, this shows assertion (2) of the theorem.
(d) We retain the notation of (c) and set Li :� '�ri�ÿ1�L�ri��. Since Li is an

element of the compact spread S for every i, the sequence �Li�i has an
accumulation point L 2S and by passing to an appropriate subsequence we may
assume that limi!1Li � L in G2�R4�. Consider the case L 6� E ®rst. Then
L \ E � f0g (since L;E 2S) and thus Li \ E � f0g holds for almost all i,
because limi!1Li � L. For suf®ciently large i we thus may express Li in its
Grassmann coordinates Ai with respect to the decomposition V � S� E. (This
means that Li � f�u;Aiu�ju 2 Sg4S� E; the matrices Ai are considered as linear
maps Ai : S! E, cf. [21, 64.3].) Observe that the Grassman coordinates A�ri� of
L�ri� satisfy A�ri� � ri � Ai. Moreover, the entries of Ai are bounded, because
limi!1Ai � A, where A is the matrix of Grassmann coordinates of L. This implies
limi!1A�ri� � 0 (since limi!1ri � 0� and thus limi!1L�ri� � S. Hence, K � S
indeed in an element of SC.

Therefore, we may assume limi!1Li � E. This implies that Li is contained in
the open subset S2 for S for almost all i. For this reason there exist sequences
�bi�i and �di�i of real numbers with di > 0 such that

Li � ÿ3b2
i � d2

i 2bi

ÿ2b3
i ÿ 2bid

2
i b2

i � d2
i

���� ����:
From limi!1Li � E we derive limi!1bi � 0 and limi!1di � 1. Moreover, we get

L�ri� � '�ri��Li� �
1� d2

i ÿ1

ri
ÿ 3 bi

ri
bi 2 bi

ri

ÿ2 bi

ri
�b2

i � d2
i � 1� d2

i ÿ1

ri
� bi

ri
bi

������
������

� 1� yi ÿ 3xibi 2xi

ÿ2xi�b2
i � d2

i � 1� yi � xibi

���� ����;
where xi � bi=ri and yi � �d2

i ÿ 1�=ri. Notice that the limit K of �L�ri��i is skew to
S if and only if the Grassmann coordinates of L�ri� (with respect to W and S)
converge. In this case, both limits � :� limi!1xi and � :� limi!1yi exist. This
implies that

K � lim
i!1

L�ri� � 1� � 2�
ÿ2� 1� �
���� ���� 2SC:
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Indeed, these arguments also show that every classical line L 2 SC can be written
as limi!0L�r� with L�r� 2S�r�.

It remains to consider the case that K intersects nontrivially with S. Then at
least one of the sequence �jxij�i and �jyij�i is not bounded. Assume ®rst that there
are in®nitely many indices i with jxij4jyij. By passing to subsequences again, we
may assume the following situation:

(a) jxij4jyij holds for every i.
(b) limi!1jyij � 1, and
(c) limi!1xi=yi � � 2 R.

Then we may write

L�ri� � R �
yÿ1

i

0
1
yi
� 1ÿ 3 xi

yi
bi

ÿ2 xi

yi
�b2

i � d2
i �

0BB@
1CCA� R

0

yÿ1
i

2 xi

yi

1
yi
� 1� xi

yi
bi

0BB@
1CCA

and end up with

K � limi!1L�ri� � R �
0

0

1

ÿ2�

0BB@
1CCA� R �

0

0

2�
1

0BB@
1CCA � S:

The same arguments show that limi!1L�ri� � S if jxij5jyij holds for almost all i.
Summing up we have shown that limi!1L�ri� is a classical line. This ®nishes the
proof of the assertion stated in (c).

(e) It remains to show part (3), i.e. we have to determine the limit group d� of
the automorphism groups d�r�� '�r�d'�r�ÿ1

of the spreads S�r�. Obviously, it
suf®ces to compute the limit group �� of the groups Sd�r�� f 2 d�r�jdet � 1g,
since d� is generated by �� � Sd�� f 2 d�jdet � 1g together with the real
multiples of the unit matrix. We claim that

�� �
cos t

sin t

x

y

ÿsin t

cos t

ÿy

x

cos 3t

sin 3t

ÿsin 3t

cos 3t

0BB@
1CCA
�����t; x; y 2 R

8>><>>:
9>>=>>; � SO2R R2:

The Lie algebra of Sd is the subalgebra g � Te�Sd� � R � X � R � Y � R � Z of
sl4R, where

X �
0 1

ÿ3 0 2

ÿ2 0 3

ÿ1 0

0BB@
1CCA; Y �

0 1

0 2

0 3

0

0BB@
1CCA; Z �

3

1

ÿ1

ÿ3

0BB@
1CCA:

�

Smooth Stable Planes and the Moduli Spaces of Locally Compact Translation Planes 311



In order to prove the assertion, we show that the Hausdorff limit H-
limr!0'�r�g'�r�ÿ1

is just

h :�
0 a

ÿa 0

b c 0 ÿ3a

ÿc b ÿ3a 0

0BB@
1CCA
�����a; b; c 2 R

8>><>>:
9>>=>>;:

Computing the limits of the one-dimensional subalgebras

r�r� � R � '�r�X'�r�ÿ1 � R �

0 1 0 0

ÿ1ÿ 2r 0 2r 0

0 ÿ2 0 3

2ÿ 2r 0 ÿ3� 2r 0

0BBB@
1CCCA

n�r� � R � '�r�Y'�r�ÿ1 � R �

0 r 0 0

ÿ2r2 � 2r 0 2r2 0

0 2ÿ 2r 0 3r

ÿ2�r ÿ 1�2 0 2r2 ÿ 2r 0

0BBB@
1CCCA

z�r� � R � '�r�Z'�r�ÿ1 � R �

3r 0

0 r

4r ÿ 4 0 ÿr 0

0 4r ÿ 4 0 ÿ3r

0BBB@
1CCCA

we eventually obtain

H- lim
r!0

r�r� � R �

0 1

ÿ1 0

0 ÿ2 0 3

2 0 ÿ3 0

0BBB@
1CCCA;

H- lim
r!0

n�r� � R �

0 0

0 0

0 2 0 0

ÿ2 0 0 0

0BBB@
1CCCA;

H- lim
r!0

z�r� � R �

0 0

0 0

ÿ4 0 0 0

0 ÿ4 0 0

0BBB@
1CCCA:

Consequently, every accumulation point of the three-dimensional subspaces g'�r�
equals h. This completes the proof of the theorem.
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4. Proof of Theorem B

In this section, let S � �P;L;F� be a 2l-dimensional smooth stable plane
with tangent bundle �TP;P; �P� and associated Grassman bundle �GP;P; g�. For
p 2 P, let KpP � Kl�TpP� be the set of compact subsets of the Grassmannian
Gl�TpP� and let SpP � SlTpP� be the set of compact spreads on TpP.

We are going to de®ne topological locally trivial bundles �KP;P; k� and
�SP;P; s�. Set KP � [p2PKpP and let k : KP! P be the canonical projection. We
topologize KP by constructing charts kÿ1�U� ! U � Kl�R2l� for any chart
� fG;U� : gÿ1�U� ! U� Gl�R2l� : x 7! � f 1

G�x�; f 2
G�x�� � �g�x�; f 2

G�x�� of the Grass-
mann bundle �GP;P; g� : we take � fK ;U� : kÿ1�U� ! U � Kl�R2l� : X 7!� f 1

K�X�;
f 2
K�X�� :� �k�X�; f 2

G�X�� as a bundle chart for �KP;P; k�. Clearly, for charts
� fK ;U� and � f 0K ;U0� the transition map fK � f 0ÿ1

K is continuous. Thus, the family

f� fK ;U�j� fG;U� is a bundle chart of �GP;P; g�g
de®nes a bundle atlas for �KP;P; k�, which turns �KP;P; k� into a locally trivial
topological bundle with ®bres homeomorphic to Kl�R2l�. Finally, we may consider
�SP;P; s� as a subbundle of �KP;P; k�, since the transition maps are induced by
linear mappings. From the description of convergence with respect to the
Hausdorff topology, see section 2, we immediately get the following lemma.

4.1 Lemma. A sequence �Xn�n2N in KP converges to X 2 KP if and only if the
sequence �k�Xn��n converges to k�X� in P and H-limi!1 f 2

G�Xn� � f 2
G�X� for some

chart � fG;U� of �KP;P; k� with k�X� 2 U.

We proceed with the following lemma, which is the key to the proof of
Theorem B. We denote by �VP;P; v� the frame bundle over P, see [10, §7].

4.2 Lemma. The map !1 : F! GP : �p; L� 7!TpL is smooth.

Proof. Let �p;L� be some ¯ag. The projections �P : F! P and �L : F!L
are submersions by [3, p. 308]. Thus the kernel K :� kerD�L is a locally trivial
subbundle of the tangent bundle TF, see Husemoller, [10, Th. 8.2], and there is an
open neighborhood U of �p; L� in F such that the restriction of K to U is a trivial
bundle. Hence we can choose a family X � �Xi�li�1 of linearly independent vector
®elds on U having values in K. Let �r

2l;l : Vl�TrP� ! Gl�TrP� : �v1; . . . ; vl�7!
hv1 . . . ; vli be the (smooth) projection from the Stiefel manifold Vl�TrP� of
l-frames in TrP onto the Grassmannian Gl�TrP�. The projection �r

2l;l induces in the
natural way a smooth bundle projection �2l;l : VP! GP, where �VP;P; v�
denotes the frame bundle over P and �GP;P; g� is the Grassmann bundle over P.
By [3], (3.2), the composition

!U : U!X
Yl

i�1

K ÿÿÿÿ!
Ql

i�1
D�P

VPÿÿÿÿ!�2l;l

GP

is a smooth map which maps each ¯ag �r;K� 2 U to the tangent subspace
TrK 2 Gl�TrP�. In particular, we have !1jU � !U , i.e. the map !1 is smooth
around �p; L�. This proves the lemma.
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The map !1 induces another map

!2 : P! KP : r 7!!1�r;Lr� � fTrKjK 2Lrg �Sr:

We claim that !2 is continuous on P. To see this, choose r 2 P and a compact
neighborhood U of r. Let �ri�i2N be some sequence in U converging to r.
By Lemma (4.1) we have to show that the sequence �Sri

�i converges to Sr in
KP. So take TrK 2Sr and choose a sequence �Ki�i of lines through ri with
limi!1Ki � K. Since !1 is continuous, we get

lim
i!1

Tri
Ki � lim

i!1
!1�ri;Ki� � !1�r;K� � TrK:

On the other hand, suppose that there is a sequence �Tri
Ki�i 2 Sri

, which has a
cluster point outside Sr. By passing to some subsequence we may assume that
limi!1�Tri

Ki�i exists and lies outside Sr. Since U and all line pencils are compact
and the space F of ¯ags is closed in the product P�L (see LoÈwen, [15, (1.17)]),
the set F \ �U �L� is compact as well. Thus we ®nd a subsequence �K 0i�i of
�Ki�i, which converges to some line K. This gives limi!1�r0i;K 0i� � �r;K� 2F
and continuity of !1 yields the contradiction

lim
i!1

Tr0
i
K 0i � lim

i!1
!1�r0i;K 0i� � !1�r;K� � TrK 2Sr;

which shows that �Sri
�i converges to Sr. By de®nition, the image of !2 is in fact

contained in SP. Hence, we have proved

4.3 Theorem. The map !2 : P! SP : r 7!!1�r;Lr� �Sr is a continuous
section of the bundle �SP;P; s�.

At this stage it would be natural to de®ne a moduli bundle JP as a quotient of
SP and pass from the section !2 to some section !3 of JP in order to prove
Theorem B. However, this step is not necessary, as the following construction
shows.

Let V be a real vector space of dimension 2l. For any point p 2 P we choose a
linear isomorphism from TpP to V . These isomorphisms induce homeomorphisms
#P from Gl�TpP� to Gl�V�. Now, consider the map ! : P! Jl�V� :
p 7! �#p�!2� p���, where square brackets denote the isomorphism type of a spread.
Since the isomorphism classes of spreads on V are invariant under linear
isomorphisms of V , the map ! is independent of the choice of the maps #p; p 2 P.
Take a local trivialization � fS;U� : sÿ1�U� ! U � Sl�V� : X 7! � f 1

S �X�; f 2
S �X�� of

�SP;P; s�, where f 2
S is induced by linear isomorphisms between the tangent spaces

TrP and V . Hence, we have !�r� � � f 2
S �!2�r��� � � f 2

S �Sr��, which shows that ! is
continuous on U and thus on P. In particular, the continuity of the map
! : P! Jl�V� exactly de®nes and proves the assertion of Theorem B.

5. Proof of Theorem C

In order to construct examples of smooth af®ne planes A with non-isomorphic
tangent translation planes at two points, we take a division algebra F 2 fC;H;Og.
Put l :� dimRF. Let A � F2 be the set of points of A. The lines of A (regarded as
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subsets of A) are described by

Lc :� f�x1; x2� 2 A j x1 � cg;
La:b :� f�x1; x2� 2 A j x2 � ax1 � b� th�x1; a�g;

where t 2 R and a, b, c 2 F, and h : F2 ! F denotes some ®xed smooth function
with compact support. This gives an incidence structure A :�A�h; t� � �A;K�.
For small values of jtj we get in fact an af®ne plane:

5.1 Lemma. There is a neighborhood I of 0 in R such that A �A�h; t� is an
af®ne plane for any t 2 I.

Proof. We start by showing that any two distinct points �x1; x2�, �y1; y2� 2 F2

lie on a unique line. This is obviously true if x1 � y1. So let x1 6� y1. We have to
verify that there are uniquely determined numbers a; b 2 F satisfying

x2 � ax1 � b� th�x1; a�;
y2 � ay1 � b� th�y1; a�:

This is eqivalent to showing that x2 ÿ y2 � a�x1 ÿ y1� � t�h�x1; a� ÿ h�y1; a�� has
a unique solution a 2 F and it suf®ces to prove that the maps

px1;y1
: F! F : a 7! a�x1 ÿ y1� � t�h�x1; a� ÿ h�y1; a��

are bijective for any x1; y1 2 F with x1 6� y1, if jtj is suf®ciently small. The
derivative of px1;y1

in a is given by

Dpx1;y1
�a� � jx1 ÿ y1j Cx1;y1

� t

jx1 ÿ y1j �D2h�x1; a� ÿ D2h�y1; a��
� �

;

where Cx1;y1
is the (real) matrix that describes the (orthogonal) R-linear map

F! F : a 7! a�x1 ÿ y1�jx1 ÿ y1jÿ1
. With m :� sup�x;d�2F2kD�D2h�x; d��k we get

t

jx1 ÿ y1j �D2h�x1; a� ÿ D2h�y1; a��
 4 jtj

jx1 ÿ y1jm � k�x1; a� ÿ �y1; a�k � jtj � m:

Let B � MatlR denote the closed ball around the origin with radius m. Since the
continuous map

g : �OlR� B� � R! MatlR : ��O;M�; t� 7!O� t �M
maps �OlR� B� � f0g on OlR � GLlR, the compactness of OlR� B implies that
there is an interval I � R centered at 0 such that g��OlR� � I� � GLlR. Note that
the interval I does not depend on the choices of x1; y1 2 F and of a 2 F. For the
rest of the proof let t 2 I. Then Dpx1;y1

�a� 2 GLlR for any a 2 F. Since the
function h has compact support, the map a 7!Dpx1;y1

�a� is constant outside a
compactum. Thus, according to the Hadamard criterion (see [21, 74.19]), the map
px1;y1

is a diffeomorphism for any distinct x1; y1 2 F. This shows that any two
distinct points are joined by a unique line (if t 2 I). Next, we verify that any two
non-parallel lines meet in exactly one point. Disregarding the trivial cases, this is
equivalent to showing that for t 2 I the system

x2 � ax1 � b� t � h�x1; a�
x2 � cx1 � d � t � h�x1; c�;
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where a, b, c, d 2 F with a 6� c, has a unique solution �x1; x2� 2 F2. As before it
suf®ces to check whether the map

qa;c : F! F : x1 7!�aÿ c�x1 � t�h�x1; a� ÿ h�x1; c��
is bijective. Since the veri®cation of this fact runs along the same lines as before,
we omit a proof. Due to what we have proved so far, it is also clear that A satis®es
the parallel axiom. Hence, we have shown that A is an af®ne plane.

Remark. In [18], Otte constructs non-classical smooth af®ne translation planes
by disturbing the multiplication of the classical division algebras by some smooth
map with compact support.

We are going to show that the af®ne planes A�h; t� just de®ned are even
smooth af®ne planes, i.e. joining, interesecting, and drawing parallels are smooth
maps. For the set A � F2 of points we take the ordinary real smooth structure and
we endow the set K of lines with a smooth structure simply by identifying each
line of A with the `̀ classical'' line (of A2F� with which it coincides outside a
compact set. In the proof of the following theorem we will omit the veri®cation of
the smoothness of drawing parallels, since we are mainly interested in the
underlying structure of a smooth stable plane.

5.2 Proposition. The af®ne planes A�t; h� are smooth af®ne planes.

Proof. 1) We show that the join map is smooth. Let �~x1;~x2�, �~y1;~y2� 2 F2. We
start by considering the case ~x1 6� ~y1. Choose two disjoint neighborhoods U and V
of �~x1;~x2� and �~y1;~y2� 2 F2, respectively, such that x1 6� y1 for any �x1; x2� 2 U
and �y1; y2� 2 V . This guarantees that the line L � L�x1; x2; y1; y2� joining the
point �x1; x2� with �y1; y2� is not a vertical line. Hence, the line L is determined by
the following equations

x2 � ax1 � b� t � h�x1; a�
y2 � ay1 � b� t � h�x1; a�:

We have to show that the coef®cients a, b 2 F depend smoothly on the points
�x1; x2� and �y1; y2�. It is suf®cient to prove that the parameter a 2 F de®ned by

x2 ÿ y2 � a�x1 ÿ y1� � t�h�x1; a� ÿ h�y1; a��
is a smooth function in �x1; x2; y1; y2� on U � V . In order to apply the implicit
function theorem we consider the smooth map

F : F5 ! F : �x1; x2; y1; y2; a� 7! y2 ÿ x2 � a�x1 ÿ y1� � t�h�x1; a� ÿ h�y1; a��:
The partial derivative D5F is given by

D5F�x1; x2; y1; y2; a� � jx1 ÿ y1j Cx1;y1
ÿ t

jx1 ÿ y1j �D2h�x1; a� ÿ D2h�y1; a��
� �

;

which is regular for t 2 I according to the proof of the preceding lemma. Thus, the
values a and b depend smoothly on �x1; x2; y1; y2�.
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Now we turn to the case where ~x1 � ~y1. Then we have ~x2 6� ~y2. We choose the
disjoint neighborhoods U and V in such a way that every line joining a point of U
with a point of V is given by

cz2 � z1 � b� cth�z1; c
ÿ1� if c 6� 0

0 if c � 0:

�
The parameters b and c of a line joining �x1; x2� 2 U and �y1; y2� 2 V are
determined by the equations

cx2 � x1 � b� cth�x1; c
ÿ1� if c 6� 0

0 if c � 0;

�
cy2 � y1 � b� cth�y1; c

ÿ1� if c 6� 0

0 if c � 0:

�
Since c tends to zero as x1 tends to ~x1 and y1 tends to ~y1, we may make U and V so
small such that �x1; c

ÿ1� and �y1; c
ÿ1) are not contained in the support of h for any

possible �x1; x2� 2 U and any �y1; y2� 2 V. Hence, the equations above reduce to

cx2 � x1 � b; cy2 � y1 � b;

and, trivially, b and c depend smoothly on x1, x2, y1, y2. This shows the smoothness
of the join map.

2) The smoothness of the intersection map at some pair �K; L� of lines can be
checked in much the same way as in the ®rst part of this proof by using again the
implicit function theorem. As before, we have to distinguish between two cases
�K; L� � �La;b;Lc;d� with a 6� b and �K;L� � �La;b; Lc�. This ®nishes the proof.

Remark. It is quite natural to ask whether or not there exist smooth structures
on the point space and on the line space of the projective closure P � �P;L� of
A such that P becomes a smooth projective plane. It seems likely that the answer
is negative. However, removing the point �1� at in®nity which corresponds to the
vertical lines, we do get a smooth punctured projective plane P0: as each line of A
coincides outside a compactum with a line of A2F, it is possible to describe P by
introducing homogeneous coordinates if F � C;H. In the case F � O homo-
geneous coordinates do not work any more, but still one can use af®ne charts for
describing P2O. In this way one gets smooth structures on P and on
L �K [ fL1g such that P0 becomes a smooth punctured projective plane.
Obviously, the tangent translation planes at points p 6� �1� on the line L1 at
in®nity are isomorphic to the classical af®ne plane A2F.

Now we want to study the tangent translation plane A�y1;y2� at some point
�y1; y2� 2 A. Except for the vertical line, every point row through �y1; y2� is given
by some equation

x2 � Fa�x1� :� ax1 � th�x1; a� � y2 ÿ ay1 ÿ th�y1; a�; a 2 F:

In order to describe the tangent spread S�y1;y2�, which de®nes A�y1;y2�, in terms of
Grassmann coordinates, we have to determine R-linear maps whose graphs are
the non-vertical elements of S�y1;y2�. These mappings are the derivatives DFa�y1�
for any a 2 F. Let A�a� denote the real �l� l�-matrix that corresponds to the
R-linear map x 7! ax : F! F. Then

DFa�y1� � A�a� � tD1h�y1; a�:
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5.3 Proposition. The af®ne planes A�t; h� have smooth tangent translation
planes at any point.

Proof. We identify the tangent space T�y1;y2�A with F2. According to Otte [18,
5.14], the translation plane A�y1;y2� is a smooth af®ne plane if and only if the map
� : F2nf�0; 0�g ! Gl�F2�, which assigns to any non-zero vector v the unique
spread element that contains v, is smooth. On a suf®ciently small neighborhood U
of some point �0;~x2� 2 F2 with ~x2 6� 0 the parameter a given by x2 � DFa�y1�x1

(for �x1; x2� 2 U with x1 6� 0) is not contained in the (compact) support of the map
a 7!D1h�y1; a� : F! F, since a!1 if �x1; x2� tends to �0;~x2�. Hence, in this
case the parameter a is simply given by x2 � A�a�x1 � ax1 as in the classical plane
A2F. Thus � is smooth on U. It remains to check that � is smooth on the set
O :� f�x1; x2� 2 F2jx1 6� 0g. Since a7!DFa�y1� � A�a� � tD1h�y1; a� : F! F is
smooth, it suf®ces to show that the parameter a de®ned by x2 � A�a�x1�
tD1h�y1; a�x1 depends smoothly on �x1; x2� 2 O. This is shown quite similarly to
the proof of the foregoing proposition by using again the implicit function
theorem.

Moreover, if we choose y1 in the preceding proof large enough such that �y1; a�
lies outside the support of h for any a 2 F, then the tangent translation plane
A�y1;y2� is obviously just A2F. Thus, in order to verify Theorem C, it suf®ces to
prove the following proposition.

5.4 Proposition. There exists a smooth map h : F! F with compact support
such that the tangent translation plane A�y1;y2� is non-classical at some point
�y1; y2� of the smooth af®ne plane A�t; h�; t 6� 0:

Proof. Let h1; h2 : F! F be two real-valued smooth functions with compact
support such that h : �y; a�7!h1�y� � h2�a� : F2 ! F is not identically zero. Clearly,
the map h has compact support. Assume that the tangent spread S�y1;y2� of A�t; h�
is isomorphic to the classical spread SF for any �y1; y2� 2 F2. We will show that
then even SF � S�y1;y2�. Of course, it suf®ces to check that SF is contained in
S�y1;y2�. Since D1h�y1; a� � 0 for suf®ciently large a 2 F, there exists a non-empty

open set U � Gl�F�2 such that S�y1;y2� \ U �SF \ U. We choose distinct
elements X, Y 2 SF \ U and introduce Grassmann coordinates with respect to X
and Y . The Grassmann coordinates of any S 2SF are given by a real l� l-matrix
MS. By [21, 64.8 (b)], the set fMSjS 2SFg is an af®ne subspace of Rl�l, and it is
even a linear subspace because of MX � 0. Hence �MS represents an element of
SF for any � 2 R. Since U is a neighborhood of X, the matrix �MS corresponds to
an element of SF \ U � S�y1;y2� for j�j suf®ciently small. For any such � 6� 0, the
matrix MS � �ÿ1��MS� represents an element of S�y1;y2�, because S�y1;y2� is
isomorphic to the classical spread and contains X and Y . Thus we have
SF � S�y1;y2� for any �y1; y2� 2 F2. Identifying F with Rl in the natural way, we
have D1h�y1; a� � Dh1�y1�h2�a�. Now choose a 2 F with h2�a� 6� 0. Since
SF � S�y1;y2� for any �y1; y2� 2 F2, the matrix

DFa�y1� � A�a� � tDh1�y1�h2�a�
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and hence Dh1�y1�, too, are of the form

u1 ÿu2 ÿul

u2 u1 . . .

..

. . .
.

ul u1

0BBB@
1CCCA:

Because the function h1 : F! F only takes real values, we have on the other hand

Dh1�y1� �
� . . . �
0 . . . 0

..

. . .
. ..

.

0 . . . 0

0BB@
1CCA

This implies that Dh1�y1� � 0 for any y1 2 F. Since h1 has compact support, this
forces h1 to be identically zero, which is a contradiction. This shows that the
tangent translation plane A�y1;y2� is not classical at some point �y1; y2� 2 F2.
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