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Abstract The control of compliant robots is, due to their
often nonlinear and complex dynamics, inherently difficult.
The vision of morphological computation proposes to view
these aspects not only as problems, but rather also as parts
of the solution. Non-rigid body parts are not seen any-
more as imperfect realizations of rigid body parts, but rather
as potential computational resources. The applicability of
this vision has already been demonstrated for a variety of
complex robot control problems. Nevertheless, a theoreti-
cal basis for understanding the capabilities and limitations
of morphological computation has been missing so far. We
present a model for morphological computation with compli-
ant bodies, where a precise mathematical characterization of
the potential computational contribution of a complex phys-
ical body is feasible. The theory suggests that complexity
and nonlinearity, typically unwanted properties of robots, are
desired features in order to provide computational power. We
demonstrate that simple generic models of physical bodies,
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based on mass-spring systems, can be used to implement
complex nonlinear operators. By adding a simple readout
(which is static and linear) to the morphology, such devices
are able to emulate complex mappings of input to output
streams in continuous time. Hence, by outsourcing parts of
the computation to the physical body, the difficult problem
of learning to control a complex body, could be reduced to
a simple and perspicuous learning task, which can not get
stuck in local minima of an error function.
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1 Introduction

Most classical robot designs are based on rigid body parts
connected by high torque servos and a central controller to
coordinate them. This approach follows the view that the
physical body is some complex (dynamic) system, which
has to be dominated by a cleverly designed central controller.
Although this is the standard approach, the resulting robots
typically perform poorly compared to their biological role
models. They are rather inflexible, exhibit jerky movements
and tend to have a high energy consumption, see for example,
Collins et al. (2005). On the other hand, the vision of mor-
phological computation proposes a radical different point of
view, see Pfeifer and Bongard (2007). Instead of suppressing
the complex dynamics introduced by the compliant physical
body, which is the reason why classical robots are built of
rigid parts, the body could be potentially employed as a com-
putational resource. This suggests that at least a part of the
computations, which are needed during interaction, could be
outsourced to the physical body itself. Hence, the body is
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not seen anymore as a device, which is deemed to merely
drag the brain around, but rather that it is highly involved in
computational tasks. As a result, the remaining learning or
control task and its implementation is less complex, than it
would be without the aid of the physical body.

The term morphological computation is rather general. It
not only includes a broad range of different levels of com-
plexity regarding computation but also embraces a huge vari-
ety of different morphologies (e.g., on the molecular level as
well on the level of biological organisms).1 The theoreti-
cal framework, which we will present, is not able to cover
all these possible types of morphological computation. We
will use the term in the context of generic models (based on
mass-spring systems) of muscle–skeleton systems of biolog-
ical systems and the corresponding compliant structures in
robots. We address morphological computation in the context
where it is possible to outsource relevant parts of the com-
putation to the morphology (i.e., to the compliant physical
body). As a consequence, the morphology will allow us to
reduce the complex task of emulating nonlinear computation
to the much simpler task to adapt some linear parameters for
an additional readout. Regarding the type of computation, we
consider mathematical models, which can be characterized as
complex mappings of input to output streams in continuous
time.

There are a lot of cases of biological systems, which sug-
gest that the concept of morphological computation is of
value for real-world applications. For a number of examples
and a general discussion of morphological computation, we
refer to Pfeifer and Bongard (2007). Inspired by that idea, dif-
ferent robots have been designed. A rigorous implementation
of this concept are passive walkers. The first of a series was
developed by McGeer (1990). Typically, such a robot has
no active controller at all. Only its passive physical struc-
ture maintains the balance in a robust fashion, while it walks
down a slope. Therefore, one could argue that the computa-
tion, which is needed in order to balance the robot robustly,
is “computed” by the physical body itself. A further develop-
ment are passive walkers with attached (active) controllers in
order to enable the robots to walk even on flat ground, e.g.,
Wisse and Frankenhuyzen (2003). The used controllers are
remarkably simple, since most of the “computational work”
is done by the physical body. A clever design does not only
simplify the controlling task but also the task to learn to con-
trol. For example, Tedrake et al. (2005) showed that the com-
plexity of the task to learn to walk was drastically reduced by
the use of a passive walker. Due to the design of the physical

1 It is also closely related to the concept of embodiment, which is the
dynamic and reciprocal coupling among brain (control), body, and envi-
ronment as defined in Pfeifer et al. (2007).

structure of the robot, the system was able to explore online
different walking strategies without loosing balance.

Next to the two-legged walking robots, there exist also a
number of biologically inspired robots, which mimic a range
of species by simultaneously implementing the concept of
morphological computation. For example, the simple quad-
ruped robot by Iida and Pfeifer (2006) with a mixture of
active and passive joints exhibits a surprisingly robust behav-
ior, although no explicit control feedback is used. Another
successful implementation is the artificial fish “Wanda” by
Ziegler et al. (2006). It exploits the dynamics between its
physical body and its environment. In the physically more
complex field of flying has also been demonstrated that
morphological computation can play an important role, for
example, to stabilize flight, e.g., Wood (2007) and Shim and
Husbands (2007).

Another more abstract implementation of the idea of mor-
phological computation are tensegrity robots, see Paul et al.
(2006). These robots are built of a special combination of
rigid struts and compliant strings. Already simple control-
lers (found by genetic algorithms) were able to induce loco-
motion by indirectly exploiting the dynamics of the physical
body.

Despite the large body of evidence, which suggests that
morphology plays an important role in the successful inter-
action of complex bodies with their environment, so far
there has been no rigorous theoretical basis for this phe-
nomenon. As far as the authors know, there has been only
one attempt by Paul (2006). Her line of argumentation,
based on real-world and thought experiments, resulted in
the heuristic that a physical body with a greater amount
of “dynamic coupling” (complexity) has a higher possi-
bility of a reduced control requirement. While her state-
ment is correct, as we see later, it is rather vague. On
the other hand, we will provide a precise mathematical
model to describe the computational power of physical
bodies. This will not only enable us to grasp the capa-
bilities and limitations of morphological computation but
also will give us insight of how to construct physical bod-
ies in order to be computationally more versatile than
others.

This raises the question: What type of computation is use-
ful for biological systems and, therefore, for biologically
inspired robots? Classical computation models, such as Tur-
ing machines, simply map a batch of input numbers in an off-
line computation onto output numbers. However, this type of
computation is far from the needs of a robot, which should
act in a real environment. It has to integrate continuously
information from various continuous input streams (sensory
information) and map them onto multiple output streams
(motor control). Typically, such streams are mathematically
encoded as functions of time. Computations, which map from
such continuous input streams to a continuous output stream,

123



Biol Cybern (2011) 105:355–370 357

A

B

C

D

Fig. 1 From abstract theoretical models for morphological computa-
tion to real physical bodies (consisting of mass-spring systems). a The
morphology (represented here by an array of randomly chosen, time-
invariant, fading memory filters B1, . . . , Bk ) contributes all temporal
integration that is required to approximate a given filter F . The read-
out f is here some memoryless, continuous function and provides the
necessary nonlinear combination. Our theory provides evidence for a
surprisingly large computational power of this simple architecture. b A
possible implementation of (a) with a physical body. The filter array is
built of an array of linear mass-spring systems and the readout is imple-
mented by a feedforward artificial neural network (ANN). c In this

architecture, the morphology contributes, in addition to the temporal
integration via fading memory filters, generic nonlinear preprocessing
in the form of some arbitrary kernel (i.e., nonlinear projection of x(t)
into a higher dimensional space). In this case, only a linear readout
(instead of e.g., an feedforward ANN) has to be added externally. d A
possible physical realization of (c). The array of filters and the kernel
are both implemented by a randomly connected network of nonlinear
springs and masses. In the resulting computational device, the output
weights [wout,1, . . . , wout,l ] are the only parameters, which are adapted
in order to approximate a given complex filter F

are referred to operators or filters. We will use here the
expression filter,2 denoted by F . In principle, the compu-
tation of a filter F involves two nontrivial computational
processes. First temporal integration of information (which
is needed if the current output y(t) does not depend only on
the actual input u(t) but also on the values u(s) for some
time points s < t), and, second, the nonlinear combination
of such temporally integrated information.

We will provide two theoretical models, each of which is
able to represent both computational processes.

The considered models are depicted in Fig. 1a, c. We
will demonstrate that both of them can be implemented
with the help of generic physical bodies, provided that they
are sufficiently complex, i.e., non-rigid and diverse. Fig-
ure 1b, d depicts two proposed corresponding real phys-
ical implementations of these models with mass-spring
systems. Note that physical bodies of biological systems
as well of compliant robots can be described by such
mass-spring systems. We will provide proofs that such
physical realizations tend to represent the two theoret-

2 Note that although the term filter is often associated with somewhat
trivial signal processing or preprocessing devices one should not fall
into the trap of identifying the general term of a filter, as we use it here,
with special classes of filters, like, for example, linear filters.

ical models and, therefore, emulate their computational
powers. Furthermore, we will present a number of simula-
tions to support this view.

For both models, we are able to demonstrate (with sim-
ulations) the contribution of the morphological structure to
the computation. In the first setup (Fig. 1a, b), the morpho-
logical structure contributes only the temporal integration.
Therefore, in order to complete the computation, a nonlin-
ear, but static readout has to be added. In the second setup
(Fig. 1c, d), the morphology provides both necessary com-
putational processes (i.e., temporal integration and nonlinear
combination). As a consequence, only a linear, static readout
is needed. The corresponding linear “weights” can be calcu-
lated by some simple, supervised algorithms, such as linear
regression (LR), but our setup also offers the potential use
of some reward based (as in Legenstein et al. 2010) or even
completely unsupervised learning rules, such as Slow Fea-
ture Analysis as proposed in Wiskott and Sejnowski (2002).
To put it in other words, the learning of complex, nonlin-
ear dynamic filters can be reduced, through the help of the
physical body (morphology), to the much simpler task of
learning some static, linear weights. This perspective points
to a particularly interesting feature of morphological com-
putation, namely that it facilitates the learning of complex
filters. Usually the learning of such filters requires nonlinear
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optimization procedures, which often get stuck in local min-
ima of the error function and, which also tend to generalize
not too well to new inputs. However, since the morphologi-
cal computation reduces this learning problem to the learning
of some static output weights, it is guaranteed that learning
can not get stuck in local minima of the mean squared error
(mse) function and has arguably optimal generalization capa-
bilities,3 see Bartlett and Maass (2003).

In addition, we demonstrate in our simulations that a rather
arbitrarily given (or“found”) physical body can be employed
for such morphological computations, since the parameters
of the simulated physical bodies were not optimized for the
approximation of a given filter F , but rather randomly chosen
from a given probability distribution.4 This implies that the
same physical body can in principle be used for carrying out
many morphological computations simultaneously by using
a corresponding number of readouts from this physical body.
In other words, multitasking of morphological computations
is an inherent property of the setups that we describe in this
article.

In the next section, we provide the theoretical foundations
for morphological computations and prove that our proposed
physical implementations with mass-spring systems are valid
physical realizations of the theoretical models. In Sects. 3 and
4, we present various simulations to support the results of the
theoretical analysis. Finally, we conclude with a discussion.

2 Theoretical foundations

In this section, we present the theoretical foundations for
morphological computation. We will show that certain
(generic) types of physical bodies (i.e., which consist of
mass-spring systems) can be exploited as computational
resources. Enhanced only by a static (memoryless) readout
they can be used to approximate uniformly any given filter
F (linear or nonlinear) from the class of time-invariant fil-
ters with fading memory. The restriction to time-invariant,
fading memory filters is requested by the theory we provide.
However, such a restriction is not a drawback at all, since all

3 Results from statistical learning theory, see Vapnik (1998), imply that
the test error of any classifier from a hypothesis class H can be bounded
from above by the error on the set of training examples (drawn from
the same distribution D as the test set), plus a term that grows with the
VC-dimension of H. This upper bound holds for any distribution D,
hence, also if there are correlations among different coordinates of
examples (therefore, this upper bound can also be applied to read-
outs from a reservoir). The hypothesis class H of linear classifiers over
examples of dimension n has VC-dimension n + 1 (see Bartlett and
Maass 2003), which is the smallest VC-dimension of any nontrivial
class H of classifiers (that allows that classifiers take all n coordinates
into account).
4 Note that the optimization of the readout is a convex optimization
problem, however, “optimizing” the body (i.e., its parameters) is not.

physical systems are time-invariant and a lot of practically
interesting filters have the property of fading memory.

Preliminary let us clarify the notation we use. We are con-
sidering computations, which map from functions (or vec-
tor of functions) to functions. We we will refer to them as
filters F . The input is denoted by u : R → R

n and the output
by y. The argument t of u(t) and y(t) is interpreted as the
time point t . The input domain is denoted by U . Therefore,
we write for the filter F : U → R

R, where R
R is the class of

all functions from R to R. In order to express that the output
y(t) at time t is the result of applying the filter F to an input
u, we write y(t) = (Fu)(t).

Now we are ready to define the desired properties of time
invariance and fading memory for the considered filters.

Fading memory is a continuity property of filters. It
requires that for any input function u(·) ∈ U , the output
(Fu)(0) can be approximated by the outputs (Fv)(0) for
any other input function v(·) ∈ U that approximated u(·) on
a sufficiently long time interval [−T, 0] in the past.5 Thus,
in order to approximate (Fu)(0), it is not necessary to know
the precise value of the input function u(s) for any time s,
and it is also not necessary to have knowledge about values
of u(·) for more than a finite time interval back into the past.

Time-invariant filters are filters, which can be computed
by devices that are input-driven, in the sense that the output
does not depend on any absolute internal clock of the compu-
tational device. Formally one says, a filter F is time-invari-
ant, if any temporal shift of the input function u(·) by some
amount t0 causes a temporal shift of the output function by
the same amount t0, i.e., (Fut0)(t) = (Fu)(t + t0) for all
t, t0 ∈ R, where ut0 is the function defined by ut0(t) :=
u(t + t0). Note that if the domain U of input functions u(·) is
closed under temporal shifts, then a time-invariant filter F :
U → R

R is characterized uniquely by the values y(0) =
(Fu)(0) of its output functions y(·) at time 0. In other words,
in order to characterize a time-invariant filter F , we just have
to observe its output values at time 0, while its input varies
over all functions u(·) ∈ U .

Another way to characterize nonlinear, time-invariant fil-
ters with fading memory is to describe them with Volter-
ra series.6 A Volterra series is a finite or infinite sum (with
d = 0, 1, . . .) of terms of the form

∞∫

0

. . .

∞∫

0

hd(τ1, . . . , τd) ·u(t −τ1) · . . . ·u(t −τd)dτ1 . . . dτd ,

5 Formally one defines: A filter F : U → R
R has fading memory, if

for every u ∈ U and every ε > 0 there exist δ > 0 and T > 0 so that
|(Fv)(0) − (Fu)(0)| < ε for all v ∈ U with ‖u(t) − v(t)‖ < δ for all
t ∈ [−T, 0].
6 In fact, under some mild conditions on the domain U of input streams,
the class of time-invariant, fading memory filters coincides with the
class of filters, which can be characterized by Volterra series.
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where some integral kernel hd is applied to products of degree
d of the input stream u(·) at various time points t − τi back
in the past.

Note that the Volterra series presentation is rather general
and, therefore, is able to describe a number of interesting fil-
ters. For example, it is possible to express a simple integra-
tion of information over time, i.e., memory. However, more
interestingly in the context of robotics, a Volterra series is
also able to represent any continuous, nonlinear dynamical
system with a single exponentially stable equilibrium point,
for a proof please refer to Boyd (1985). Since our proof will
take the Volterra series presentation as a basis, as a conse-
quence, our morphological computation devices, which will
introduce here, are in principle able to emulate the same class
of complex filters.

In order to show that such complex filters F can be approx-
imated with the help of certain types of physical bodies
(which consist of mass-spring systems), we use a theoret-
ical result from Boyd and Chua (1985). This result builds on
the Stone–Weierstrass approximation theorem and it implies
that arbitrary time-invariant filters with fading memory can
be uniformly approximated by computational devices, which
consist of two stages:

– an array or filter bank of finitely many “basis filters”
B1, . . . , Bk in parallel that all receive the same input func-
tion u : R → R

n , and which are all assumed to be time-
invariant with fading memory

– a memoryless (i.e., static) readout function f : R
k → R

that maps the vector of outputs x(t) = 〈(B1u)(t)
. . . , (Bku)(t)〉 of the first stage at time t onto some output
y(t).

Figure 1a reflects this setup. A remarkable fact, which pro-
vides the basis for our theoretical analysis of morphological
computation, is that the basis filters B1, . . . , Bk of the fil-
ter bank are not required to be of a particular form. Rather,
they can be chosen from any pool of time-invariant, fading
memory filters,7 which satisfies the following pointwise sep-
aration property.

Definition A class B of basis filters has the pointwise sep-
aration property, if there exists for any two input functions
u(·), v(·) with u(s) �= v(s) for some s ≤ t a basis filter
B ∈ B with (Bu)(t) �= (Bv)(t).

This pointwise separation property is satisfied by simple,
explicitly defined classes B, such as the class of tapped delay
lines. However, it tends to be satisfied also by classes B of
“found” physical realizations of linear and nonlinear filters.

7 Note that the class of nonlinear filters F , which we want to approx-
imate by our computational device, is much richer than the class of
filters, which can be used to build the filter bank.

We will show that linear mass-spring systems are one type
of such physically realizable filters, which form a class B,
which has the pointwise separation property. An interesting
fact is that, although no conditions are imposed on partic-
ular filters of B, a substantial diversity among the filters in
B is required. A remarkable consequence is that a physical
implementation of such a filter bank (in form of a morpholog-
ical structure) has to exhibit this substantial diversity. While
classical approaches to control robots try to avoid such com-
plexity, or at least try to reduce it, our theoretical model of
morphological computation demands it and, therefore, pro-
vides potentially an explanation of the complexity of biolog-
ical systems.8

Based on the definition of the pointwise separation prop-
erty and the theorem and proof provided by Boyd and Chua
(1985), we can state the following theorem:

Theorem Any time-invariant filter F with fading memory
that maps some n-dimensional input stream u ∈ U onto an
output stream y can be approximated with any desired degree
of precision by the simple computational model shown in
Fig.1a,

1. if there is a rich enough pool B of basis filters (time-
invariant, with fading memory), from which the basis fil-
ters B1, . . . , Bk in the filter bank can be chosen (B needs
to have the pointwise separation property) and

2. if there is a rich enough pool R from which the readout
functions f can be chosen (R needs to have the universal
approximation property, i.e., any continuous function on a
compact domain can be uniformly approximated by func-
tions from R).

For a detailed proof, we refer to Theorem 1 in Maass et al.
(2002) and Theorem 3.1 in Maass and Sontag (2000) and
their corresponding proofs. They applied this theory to arti-
ficial and spiking neural networks. However, we are going
to use this mathematical framework in the context of mor-
phological computation. Hence, we will employ models
of compliant bodies of biological systems and real robots
instead of neural networks. In order to apply the presented
theory to a morphological computation setup, we have to
decide on how to implement the basis filters and the read-
out function as depicted in Fig. 1a. One possibility is to use
real physical linear mass-spring systems to build the filter
bank and a feedforward artificial neural network (ANN)
as readout function. In order to show that this choice is
consistent with the previously stated theorem, we have to
demonstrate that linear mass-spring systems are time-invari-
ant, have fading memory and that a pool of such sys-
tems has the pointwise separation property. Regarding the

8 Note that Paul (2006) came to a similar conclusion.
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readout, we have to demonstrate that a pool of ANNs has the
universal approximation property. However, the latter one
has already been proven by Hornik et al. (1989), demon-
strating that already feedforward networks with one hidden
layer exhibit this property. Note that in a biological system
the nonlinear readout might be implemented by a biological
neural network.

This leaves us with the task to prove the validity of using
linear mass-spring systems to build the filter bank. A sin-
gle linear mass-spring system can be described by following
equations:

ẋ1 = x2

ẋ2 = − k

m
x1 − d

m
x2 + 1

m
u (1)

y = x1,

where x1 is the displacement relative to the resting length
l0 of the spring, x2 the rate of change of x1 (velocity ẋ1),
k ∈ R

+ the linear spring constant, d ∈ R
+ the linear damp-

ing constant, m the mass of the endpoint, and u the sum of
all external forces acting on the mass. First, it can be eas-
ily seen that the dynamic system of Eq. 1 is time-invariant.
Second, we have to show that the system has the property
of fading memory. Since it is finite-dimensional and linear,
it is sufficient to demonstrate that it is exponentially stable,
see Sect. 5.1 in Boyd and Chua (1985). The eigenvalues of
the system are s1,2 = −d/2m ± √

(d/2m)2 − (k/m). Since
in real physical realizations of such systems k, m ∈ R>0,
the real part −d/2m is negative for any values of k and m.
Hence, the system is exponentially stable and, therefore, has
the property of fading memory. Third, the pointwise sepa-
ration property of a pool of similar systems was discussed
in Sect. 5.2 of Boyd and Chua (1985), where it was shown
that this property holds for a special class of systems, i.e.,
Wiener’s Laguerre systems. It can be shown that not only
this special subset has the pointwise separation property, but
any class of finite-dimensional, linear dynamic systems, see
Boyd and Chua (1985), to which the system of Eq. 1 also
belongs to. Hence, real physical linear mass-spring systems
can be used as basis filters B1, . . . , Bk in the setup with feed-
forward 9 mass-spring systems as depicted in Fig. 1b.

Of course there exist a number of other possible imple-
mentations. A closely related morphology in a biological sys-
tem is the structure of the wings of a bird. A number of
diverse feathers receive the same input (i.e., air pressure) and
mechanoreceptors measure the distortions. This could repre-
sent a biological implementation of the filter bank of our
proposed theoretical model. Remarkably, the resulting mor-
phological computation has already been considered in Shim
and Husbands (2007). They used nonlinear angular springs to
simulate the distortions of the feathers and combined it with

9 As opposed to the recurrent networks as sketched in Fig. 1c,d.

simulated mechanoreceptors and a neural network (i.e., non-
linear readout). The network weights were found by genetic
algorithms. While their design was inspired by the biological
system itself, we provide here a theoretical model, which is
able to explain their results.

So far, we have only considered a setup with a clear sep-
aration of the temporal integration (implemented by a filter
bank of linear mass-spring systems) and the nonlinear com-
bination (implemented by an ANN). However, one could also
consider to merge both stages into one morphological struc-
ture. As a consequence, the physical body would be then not
only responsible for the temporal integration (as in the fil-
ter bank setup) but also for the nonlinear combination (see
Fig. 1c). In this context, one could choose for R a pool of
functions consisting of a fixed nonlinear kernel. The notion of
a kernel10 that we use here is closely related to the notion of a
kernel for Support Vector Machines in machine learning as in
Vapnik (1998). However, whereas a kernel for a Support Vec-
tor Machine is a virtual mathematical concept, we are con-
sidering here concrete physical implementations of a kernel.
As a consequence, such a kernel can only satisfy the kernel
property for a fixed finite range. However, sufficiently large
and randomly connected analog circuit of sufficiently many
and diverse nonlinear components tend to map a large class
of pairwise different inputs onto linear independent outputs.
Therefore, a particularly tempting option for morphological
computation is to let both, the filter bank and the kernel, be
realized by a single physical body. We will demonstrate with
the help of simulations that random, recurrently connected
networks of nonlinear springs and masses tend to have this
“kernel property.” In other words, such a physical body tends
to carry out temporal integration and nonlinear combination
at once. Note that in contrast to the setup with feedforward
mass-spring systems, where the readout was an ANN, in this
case only an additional linear readout is required. Hence,
learning to approximate a given nonlinear (time-invariant,
fading memory) filter F is reduced to the simpler task of
learning some weights, providing a number of advantages
as already discussed in the introduction. Figure 1c depicts
this idea of combing both computational processes in one
physical body. Figure 1d depicts the corresponding proposed
physical implementation as a random, recurrent network of
nonlinear springs and masses. In the context of biological

10 A kernel (in the sense of machine learning) is a nonlinear projection
Q of k input variables u1, . . . , uk into some high-dimensional space.
For example, all products ui ·u j could be added as further components to
the k-dimensional input vector 〈u1, . . . , uk〉. Such nonlinear projection
Q boosts the power of any linear readout applied to Q(u). For exam-
ple, in the case where Q(u) contains all products ui · u j , a subsequent
linear readout has the same expressive capability as quadratic readouts
f applied to the original input variables u1, . . . , uk . More abstractly, Q
should map all inputs u that need to be separated by a readout onto a
set of linearly independent vectors Q(u).
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systems, such networks can serve as a model to describe the
complex and compliant properties of their muscle–skeleton
systems. Moreover, such generic structures can be employed
to model compliant body parts of a robot.

Note that it is not possible to conclude from our proposed
theory anything about the performances of the proposed mor-
phological computation devices (neither for the feedforward
structure of Fig. 1a nor for the recurrent network of Fig. 1c).
The theory only states that sufficiently large morphological
computation systems of the proposed types will provide sat-
isfactory approximation capabilities, as long as the morphol-
ogy is dynamic and sufficiently diverse. However, for a given
filter F , the theory does not provide bounds for the required
size of the approximating system. Neither is it possible to
conclude directly11 from the theory, which mass-spring sys-
tems (i.e., which physical properties) are needed for a well
performing morphological computation device, except that
a diversity of network components is desirable. Hence, we
employ mass-spring systems with a diversity of masses and
spring parameters in order to construct our generic models
for compliant bodies.

We present a number of simulations of the proposed
physical implementations (Fig. 1b, d) applied to real-world
computational tasks (which are of interest for robotics) and
demonstrate that already relatively small generic structures
can be used to emulate complex, nonlinear filters F .

3 Morphological computation with feedforward
mass-spring systems

In this section, we present simulations of the proposed phys-
ical realization of the morphological computation setup with
feedforward mass-spring systems (Fig. 1b). The simulations
consisted of an array of parallel linear mass-spring systems
(each of them described by Eq. 1). All static, but nonlinear
readouts were implemented as feedforward neural networks,
each of them with one hidden layer of sigmoidal neurons and
one linear gate as output. In the simulation, we used a generic
morphological structure, i.e., the values, which defined the
properties of the involved mass-spring systems (i.e., spring
constants k and damping constants d) were drawn randomly
from a defined range. The simulations were implemented in
Matlab and simulated at a time step of 1 ms.

We demonstrate that our proposed morphological com-
putation device with feedforward mass-spring systems is in
principle able to emulate a Volterra series operator. In order
to have a clear, but nontrivial example, we chose a Volterra
series consisting of a quadratic term with a Gaussian kernel.

11 However, it might be possible to find well performing physical bodies
for a given filter F by optimization schemes (e.g., with genetic algo-
rithms).

Fig. 2 Quadratic kernel h2(τ1, τ2) used to define a Volterra series oper-
ator V , which should be approximated by our morphological structure
with feedforward mass-spring systems in combination with a nonlinear
readout (i.e., as depicted in Fig. 1b)

The chosen Volterra series operator V is of the form

y(t) = Vu(t)

=
∫ ∫

τ1,τ2∈R
+
0

h2(τ1, τ2)u(t − τ1)u(t − τ2)dτ1dτ2, (2)

where u(t) is the input and h2 is a Gaussian kernel with
μ1 = μ2 = 0.1, and σ1 = σ2 = 0.05 (in seconds), i.e.,
h2(τ1, τ2) = exp

(
(τ1 − μ1)

2/2σ 2
1 + (τ2 − μ2)

2/2σ 2
2

)
,

which is defined for τ1, τ2 ∈ [0, 0.2] s. A plot of the kernel
can be seen in Fig. 2.

For the simulations, we used a discretized version of the
kernel with a discretization step of 1 ms. Note that this com-
putation is not only a simple memorization of past event, but
it is more complex. Any computational model, which should
approximate this Volterra series operator V , must provide
temporal integration (the delays τ1 and τ2) and nonlinearity
(the quadratic term u(t − τ1)u(t − τ2)).

For the input, we chose a product of three sinusoidal
functions with different frequencies: u(t) = sin(2π f1t) ·
sin(2π f2t) · sin(2π f3t) with f1 = 2.11, f2 = 3.73, and
f3 = 4.33 Hz. The resulting signal has a period of 100 s.
After some transitional setting time to get rid of the initial
conditions of the mass-spring systems, we used 30 s for learn-
ing, the subsequent 10 s for validation, and the consecutive
10 s for testing. The first 5 s of the testing data can be seen
in Fig. 3a. The result from applying the given Volterra series
operator V to this input signal u(t) is used as target output
for the computational device. The first 5 s of the target output
for the testing data can be seen in Fig. 3c, red line.

The input signal u(t) was applied to ten linear mass-spring
systems (filter bank). They all had different, random spring
and damping constants. The values were randomly drawn
from a log-uniform distribution from the interval [0.1, 150].
The responses of all linear mass-spring systems to the input
can be seen in Fig. 3b. They served as inputs to the ANN,
which consisted of ten hidden sigmoidal nodes and one lin-
ear gate as output. The weights of the ANN were adapted via
BFGS quasi-Newton algorithm. The learning process was
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Fig. 3 Applying a feedforward morphological computation device to
approximate the Volterra series operator V (defined by Eq. 2) and the
pendulum (Eq. 3) simultaneously with one morphological structure (i.e.,
multitasking). a The used input signal u(t), which consisted of a prod-
uct of three different sinusoidal functions ( f1 = 2.11, f2 = 3.73, and
f3 = 4.33 Hz). b The responses of all ten mass-spring systems to this
input (for a better readability the outputs were normalized to zero mean
and a standard deviation of one). c The performance of the proposed
morphological computation device for the Volterra task. The red line is
the target (applying the Volterra series operator to the input, i.e., Vu(t))
and the blue line shows the output of the morphological computation
device. The green line shows the performance of the device, when no
morphological structure was available, i.e., only the nonlinear readout
of the ANN was applied to the raw input data. Clearly this approach
fails, since the ANN is only a static readout and is not able to represent
the necessary temporal integration, which was contributed in the previ-
ous case by the morphological structure. d The pendulum task: the red
line is the target, the blue line the output of the morphological compu-
tation device and the green line, when no morphological structure was
available

terminated, when the error of the validation data started to
increase. For more details, please refer to the supplementary
material. Figure 3c shows the performance after learning.
The red line is the target signal, i.e., Vu(t), and the blue line
is the output of our morphological computational device. The
achieved mse was 6.83 × 10−3 on the testing data.

In order to demonstrate the contribution of the morpho-
logical structure to the computation, we compared the results
to the case when no physical body (no array of mass-spring
systems) was available and only the nonlinear readout (i.e.,
ANN) on the raw input signal remained. In order to have the

same number of weights, the ANN was resized accordingly.
The results can be seen in Fig. 3c. The green line is the output
of the plain ANN after learning. One can see clearly that this
approach failed to emulate the given Volterra series operator.
The reason is that the ANN is only a static readout and is not
able to represent the necessary temporal integration, which
was contributed in the previous case by the morphological
structure. As already argued in the introduction, the setup
offers the possibility of multitasking, i.e., the same fixed12

morphological structure can potentially be used for a number
of different tasks. Note that the ability of multitasking is a
beneficial feature, since the morphological structures of real
robots (and biological systems) are to a high degree fixed.13

In order to demonstrate multitasking, we used the same mor-
phological structure (same filter bank) and the same input
of the previous task and applied it to a new task by simply
adding a new readout (i.e., an additional ANN).

For the additional task, we chose from an interesting sub-
class of nonlinear filters, which can be described by Volterra
series, namely the class of nonlinear dynamical system with
fading memory.14 An example of such a dynamical system
is the damped pendulum, which can be described by the fol-
lowing equations (taken from Khalil 2002):

α̇ = ω

ω̇ = −g

l
sin(α) − μ

m
ω + 1

ml2 Aτ (3)

y = α,

where α is the angle, ω the angular velocity, g = 9.81 m/s2

the gravitational acceleration, l the length, m the mass of the
bob, and μ the friction coefficient. The constant A is a pro-
portional factor, which was set to A = 40 in order to drive
the system into the nonlinear domain of the state space. For
the same reason, we set in the simulations l = 0.5, m = 0.1
and d = 1. The input to the system was the torque τ and the
output was the angle α. In order to obtain suitable targets,
we simulated the system of Eq. 3 at a time step of 1 ms with
Matlab’s internal ordinary differential equation solver. The
input u(t), now interpreted as torque τ(t), was the same as
in the previous task (Fig. 3a). The red line in Fig. 3d shows
the corresponding output (i.e., target).

Since we used the same morphological structure (the same
filter bank array) and the same input u(t), consequently, the
responses of the mass-spring systems were the same as before

12 Note that “fixed” is used in the sense of fixing the parameters, which
describe the physical models of the springs. The mass-spring systems
themselves have to be dynamic.
13 However, for the biological case exists experimental evidence, that
the stiffness can change in order to adapt to different environments (e.g.,
Ferris et al. 1988).
14 Boyd and Chua (1985) have pointed out that fading memory for
(time-invariant) dynamical systems is related to the unique steady-state
property. For a discussion, we refer to Boyd (1985).
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(Fig. 3b). Based on these responses as inputs, an ANN with
ten hidden sigmoidal neurons and one linear output gate was
trained (with the BFGS quasi-Newton algorithm) to approx-
imate the desired targets. The performance can be seen in
Fig. 3d. The resulting mse was 1.29 × 10−4. Thus, the fixed
generic morphological structure in conjunction with two dif-
ferent readouts was able to represent the two different non-
linear filters very well.

Again, in order to make the contribution of the morpho-
logical structure to the computation explicit, we compared
the results to the case when no physical body (array of mass-
spring systems) was available and only the ANN remained.
The performance can be seen in Fig. 3d, where the green
line represents the output of the ANN. As before, the ANN
applied to the raw input stream failed to represent the desired
nonlinear filter (i.e., the pendulum equations).

As previously argued, the morphological structure has to
be diverse in order to be computationally powerful. In order
to show that this is true, we set the properties of all the mass-
spring systems in the filter bank to the same values (k and
d were the same). The best resulting mse for the Volter-
ra task in this case was 0.960, which was more than 140
times higher than with the previously used heterogeneous
filterbank.

4 Morphological computation with recurrent networks
of nonlinear springs and masses

In the previous simulations, we used the approach with a
strict feedforward structure (Fig. 1a). It implemented a spatial
separation between a linear but dynamic part (implemented
as an array of linear mass-spring systems), which provided
temporal integration, and the nonlinear, static readout (imple-
mented as a feedforward ANN), which provided the nonlin-
earity. However, as we have already argued in Sect. 2, there
could exist physical realizations which have the property to
combine both computational aspects in a single body. We
will demonstrate in the following simulations, that random,
recurrent networks of nonlinear springs and masses tend to be
such physical realizations. A particular interesting property
of this setup is that in contrast to the setup with feedforward
mass-spring systems, where a nonlinear readout (e.g., ANN)
was needed, in this case only a simple linear readout has
to be added in order to complete the morphological compu-
tation (compare Fig. 1b, d). In addition, such networks can
serve as generic models to describe the complex and nonlin-
ear dynamics of the compliant bodies of robots and biological
systems (i.e., muscle–skeleton system).

We continue with a description of the implementation of
the simulation of such networks followed by a number of
example tasks.

4.1 Implementation of recurrent networks of nonlinear
springs and masses

We considered an implementation of random, recurrent net-
works of nonlinear springs and masses, to which we refer as
mass-spring networks or simple as networks. In the next sec-
tions, we describe how we constructed such networks, how
we simulated them, and how we implemented the learning
process for the linear readout.

4.1.1 Constructing mass-spring networks

The construction of the mass-spring networks was based on
the following two principles. First, the final network should
be realizable as a real physical system, and second, it should
be generic, i.e., not constructed for any specific task.

A chosen number of N nodes (mass points) were randomly
positioned (uniformly distributed) within a defined range of
a two-dimensional plane. Subsequently, we connected these
mass points by nonlinear springs. In order to find reasonable,
non-crossing spring connections, we calculated a Delaunay
triangulation on this set of points, resulting in L non-crossing
spring connections. A schematic example of such a mass-
spring network can be seen in Fig. 4. Every single nonlinear
spring of such a network can be described by the following
nonlinear dynamic system:

ẋ1 = x2

ẋ2 = −p(x1) − q(x2) + u, (4)

where x1 = l − l0 is the difference between the actual length
l and the resting length l0, x2 ∈ R is the rate of change of
x1 (velocity ẋ1), and u the sum of all external forces acting
on it. At the beginning of the simulation, we assumed the
mass-spring network to be at rest (i.e., all springs were at
their point of equilibrium xi = [0, 0]T for i = 1, . . . , N and
therefore all masses were at rest). In order to accomplish this
we set as per definition the resting lengths l0 of all nonlinear
springs to the distances (at the start of the simulation) between
the mass nodes they connected, hence l0 := l(t = 0). The
functions p and q were nonlinear and, in order to have a
stable and physically reasonable system, had to be mono-
tonically increasing and fulfill p(0) = 0 and q(0) = 0.15

Typically nonlinear springs are modeled by 3rd order polyno-
mials, e.g., as described in Palm (1999). Therefore, we imple-
mented the nonlinear functions as p(x1) = k3x3

1 + k1x1 and
q(x2) = d3x3

2 + d1x2, where k1, d1 ∈ R>0 and k3, d3 ∈ R
+

defined the properties of the spring. In order to get a rich
kernel, as argued in Sect. 2, the springs should be diverse.

15 A proof for that is based on the Lyapunov function V (x) =∫ x1
0 p(ζ )dζ + 1

2 x2
2 , its derivative V̇ (x) = −x2q(x2) and the use of

a corollary of La Salle’s Theorem (see Theorem 4.4 and Corollary 4.2
in Khalil (2002)).
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Fig. 4 Schematic example of a generic mass-spring network. The
nodes (masses) are connected by nonlinear springs. The red nodes are
fixed in order to hold the network in place. The green nodes are ran-
domly chosen inputs nodes, which receive the input in form of horizontal
forces scaled by randomly initiated weights

Hence, the parameters describing the spring properties (i.e.,
k1, k3, d1, and d3) were randomly drawn from a defined range,
assigned to the connections and subsequently fixed. The left
most and the right most mass nodes were fixed in order to
keep the network in place (red squares in Fig. 4).

A certain percentage of all nodes were randomly chosen
to be input nodes (green nodes in Fig. 4). During simulation,
they received a linearly scaled version of the current input
in form of a horizontal force. Before the simulation started,
the input scaling factors (weights win = [win,1, win,2, . . .]T )
had been randomly drawn from a certain range and had been
fixed subsequently.

The linear readout of the network was defined as the
weighted sum of all actual spring lengths y(t) := ∑L

i=1
wout,i li (t). The output weights (wout = [wout,1, wout,2, . . . ,

wout,L ]T ), in contrast the rest of the network parameters, were
adapted in the learning process.

4.1.2 Simulating mass-spring networks

We simulated every single mass points (of a total number of
N ) at a time step of 1 ms by the following equations:

m p̈x = Fx + winu (5)

m p̈y = Fy, (6)

where p̈x and p̈y were the accelerations of the mass point rel-
ative to a global reference frame split up into its two spatial
dimensions, Fx and Fy were the forces acting on the mass
in the corresponding spacial dimensions, and winu was the
weighted input. Note that the input was defined as a hori-
zontal force (see Fig. 5a) and if the mass point was no input
node winu := 0. We chose forces as input form, since for
a real compliant robot any interaction with its environment
results in forces acting on it.16 For the sake of simplicity,17 all

16 We chose the forces to be horizontal for the sake of simplicity, how-
ever, the proposed setup works for other force directions too.
17 Note that the masses are only linear scaling factors and, since the
properties of the springs were randomly drawn, could be set to 1 for all
masses without the loss of generality. Nevertheless, in a real biological

A B C

Fig. 5 Implementation of input, linear readout, and simulation of
forces of the mass-spring networks. a The input is applied to an input
node as a horizontal force Fx proportional to the input signal u (scaled
by a randomly initialized weight win for this input node). b The read-
out from the network is the weighted sum of all L spring lengths
y(t) = ∑L

i=1 wout,i li (t). In general, the input as well as the output
can be multidimensional. c All the spring forces act along their spring
axis. The resulting force Fsum is the sum of all forces acting on the node
and is found by the summation of the force vectors

masses were set to m = 1. The forces Fx and Fy resulted from
the nonlinear springs, which were connected to this mass
point. The forces they applied to the mass point depended on
the states of the nonlinear springs, i.e., x1 and x2 in Eq. 4.
The value of x1 was calculated by the actual length l(t)
(Euclidean distance between the two masses which the spring
connected) and the resting length l0. The velocity x2 was
approximated by (x1(t) − x1(t − 
t))/
t with a time step
of 
t = 1 ms. The resulting forces were calculated by the
nonlinear functions p(x1) and q(x2). This procedure was
repeated for all springs connected to the mass. We assumed
that these forces acted along their corresponding spring axes.
Finally, all spring forces acting on the regarding mass node
were summed up vectorially (see Fig. 5c). Subsequently, the
resulting force Fsum was split up into its two spatial dimen-
sions and added as forces Fx and Fy to Eqs. 5 and 6. If
the mass point was an input node, the current input u(t)
was added in form of a scaled horizontal force (see Eq. 5
and Fig. 5a). The new position and velocity of the mass
were found by integrating Eqs. 5 and 6 numerically with the
fourth-order Runge–Kutta method. The same procedure was
repeated for all masses. At the end of the simulation step,
the current output was calculated by a linear combination of
the actual lengths of all springs, i.e., y(t) = ∑L

i=1 wout,i li (t)
(see Fig. 5b).

4.1.3 Learning the linear readout of mass-spring networks.

The structure of the mass-spring networks, as well as the
parameters, which defined the physical behavior, were ran-
domly initialized and subsequently fixed. Only the linear
readout was adapted during the learning process, i.e., the
weights wout = [wout,1, wout,2, . . . , wout,L ]T were adapted.
For learning, we considered a networks of N nodes con-
nected by L springs. During the simulation, we collected the
current lengths of every single spring li (t) for i = 1, . . . , L

body (or robot) a diversity of masses is natural and it contributes further
diversity.
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Fig. 6 Setup for the robot arm task. The blue line is the desired trajec-
tory for the end-effector

at every time step t = 1, . . . , M in a L × M matrix L. We
dismissed data from an initial period of time (washout time)
to get rid of initial transients. The target signal was also col-
lected over time in a matrix T. Finally, the optimal values
for the output weights were calculated by w∗

out = L†T , with
L† being the (Moore–Penrose) pseudoinverse, since in gen-
eral L was not a square matrix. Note that the same procedure
can be applied in the case of multiple inputs and/or multiple
outputs.

4.2 Representing inverse dynamics by a recurrent
mass-spring network

As a first task, we will demonstrate that a generic mass-spring
network can be used to learn the complex mapping of the
end-effector trajectory of a robot arm in Cartesian space to
its corresponding torques for a given trajectory (i.e., it is able
to represent the inverse dynamics for a given trajectory and
velocity). Note that we do not try to learn the full model of
the inverse dynamics, but rather we demonstrate that mass-
spring systems can be used to learn directly a given mapping.
This is somewhat less complex than emulating a nonlinear
filter, nevertheless, it is a relevant task for a number of pos-
sible applications for our proposed setup.

We used a full dynamic model of a two link robot arm from
Slotine and Li (1991), which was assumed to move in a hor-
izontal plane. Hence, the gravitational forces were ignored.
We refer to the supplementary material for further details on
the robot model. Figure 6 shows the setup of the task.

The end-effector of the robot arm had to move along
the blue trajectory. The corresponding trajectories in Carte-
sian space, i.e., x and y positions, are plotted in Fig. 8a.
The corresponding targets torques, which allowed the robot
arm to move along these trajectories, can be seen in Fig. 8c
(red lines). These torques were found by the following
process: We chose an arbitrary starting posture. Based on
the x- and y-trajectories (which defined the Fig. 8 trajectory
in Cartesian space) and the Jacobian of the robot arm we
calculated the corresponding trajectories of the joint angles.
Subsequently, the corresponding torques were found by the

Fig. 7 Generic mass-spring network used for the robot arm task and
subsequently for the multitasking task in Sect. 4.3. The red nodes are
globally fixed and the green nodes are the randomly chosen input nodes.
The network consisted of 30 masses and 78 nonlinear springs

use of PD-controllers 18 in order to follow those joint angle
trajectories.

We constructed a generic mass-spring network based on
the previously described process (Sect. 4.1.1). The param-
eters of the springs (i.e., k1, k3, d1, and d3 as defined in
Sect. 4.1.1) were randomly drawn from the range [1, 100]
(log-uniform distribution) for the values k1 and d1, and from
[100, 200] (uniform distribution) for the values k3 and d3.
We chose randomly 20% of all nodes to be input nodes for
the first input (i.e., input signal x) and also 20% of all nodes
for the second input (i.e., y). For more details, please refer to
the supplementary material. One of the obtained mass-spring
networks can be seen in Fig. 7. It consisted of 30 masses and
78 nonlinear springs.

As described in Sect. 4, the randomly chosen input nodes
(green nodes) received a scaled horizontal force proportional
to the input. The scaling weights win were randomly (uniform
distribution) drawn from [−1,+1]. The mass-spring network
responded to this inputs by changing the mass positions and
the spring lengths. Figure 8b shows ten typical spring length
trajectories (out of all 78). For a better readability, the tra-
jectories in this plot were normalized to zero mean and a
standard deviation of one. Based on the targets, all 78 spring
length trajectories and the previously described learning pro-
cess we calculated the optimal output weights. Note that these
weights were static, i.e., did not provide temporal integration,
and that the resulting readout was linear, i.e., it did not pro-
vide any nonlinearity. Figure 8c shows the performance after
learning (using the network of Fig. 7). The red lines are the
target torques and the blue lines are the outputs of the mor-
phological computation device (solid blue for τ1 and dashed
blue for τ2). We can see that the setup was able to represent
the dynamic mapping from the Cartesian space to the robot
arm torques.

In order to demonstrate the contribution of the morpho-
logical structure to the computation, we compared the results
to the case when no physical body (i.e., no mass-spring net-
work) was available and only the linear readout remained.

18 The used P and D values were empirically found to have a reasonable
performance.
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In order to do so, we applied LR on the raw input signals.
Therefore, we defined the output at time t by τLR

1 (t) =
w1x(t) + w2 y(t) + wbias, where x and y were the inputs
(as in Fig. 8a) and wLR = [w1, w2, wbias]T were some sta-
tic weights, which were found by standard LR. Accordingly,
we calculated the three corresponding weights for the second
output τ2. Figure 8d shows the performance of this approach.
The red lines are the targets and the green lines are the out-
puts. The approach failed because it was no able to represent
the necessary temporal integration and nonlinear combina-
tion. In the previous case (with the physical body), the mor-
phological structure provided both of these computational
aspects.19

The network of Fig. 7 was chosen based on the fact that
it was the best performing network out of 400 networks
constructed with the same probability distribution, i.e., the
same construction parameters, which defined the ranges for
the random values used for the construction process. More
specifically, these construction parameters were the defined
ranges, from which the spring parameters were drawn from,
the percentage of all nodes, which received an input, the
range for the input weights win and the size of the area in
which we randomly placed all mass points. This raises the
question whether it is easy to find such a set of parame-
ters, which defines a pool of well performing networks. Note
that, for example, the range of possible values for the spring
parameters k1 and d1 went over two decades ([1, 100]—see
description above). This points to the fact that no tedious
parameter tuning was necessary. In order to demonstrate
that the used (rather broad ranged) construction parameters
defined a whole set of well performing networks, and the
presented network was not just a statistical outlier, we con-
structed 400 random networks using exactly these parame-
ters. Subsequently, we sorted the networks according to their
performances (i.e., by their averaged mean squared error over
both outputs; denoted here by mse). The results are presented
in Fig. 8f. We can see that even the worst performing network
had still a mse smaller than 10−3. Out of the 400 mass-spring
networks we chose the best network (blue line), the worst
(black dotted line), and the median network (green line).20

The table in Fig. 8 lists the mse of them. Figure 8c shows the
performance of the best network. Figure 8e shows the per-
formances of the worst network (black dotted line) and the
median network (green line). Similar results can be obtained
for other tasks and construction parameters. This suggests
that in general no tedious parameter search has to be done in
order to find probability distributions to define a successful
pool of networks. This means that the physical body does not

19 Note that in the setup used in the Sect. 3 the physical body only
provided the temporal integration.
20 By median, we mean that half of all networks had a better and the
other half had an equal or worse performance.
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Fig. 8 Representation of the inverse dynamics of a robot arm with
the help of morphological computation. a The desired end-effector tra-
jectory split up in its two Cartesian coordinates x and y (i.e., inputs).
b Ten typical responses (out of all 78) of the mass-spring network to this
input. For a better readability, each signal was normalized to zero mean
and a standard deviation of one. c The performance of the morpholog-
ical computation device. The red lines are the target torque trajectories
and the blue lines are the outputs of the computational device. d The
performance when no morphological structure was available, i.e., only
a LR on the actual values of the inputs remained. This approach failed
to represent the dynamic and nonlinear mapping. e, f Based on the
same construction parameters, we randomly generated 400 networks
and sorted them by their mean squared error (mse) over its two out-
puts. The table shows the performances of the best, the worst, and the
median network. The best network was used for the plot of (c). The
performances of the worst (black dotted line) and the median network
(green) are presented in (f)
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have to be tuned for a specific task in order to be a valid com-
putational resource, as long as it is sufficiently complex and
diverse. Therefore, the same morphological structure could
be potentially used for a number of different tasks simulta-
neously (i.e., multitasking).

We argued in the Sect. 2 that a diversity, i.e., different
physical parameters, is an important property of a compu-
tationally powerful physical body. In order to demonstrate
the validity of this assumption, we simulated the same net-
work structure (Fig. 7), but now with all spring having the
same physical parameters. We set all k1 values to the average
value of the previously used network. Accordingly, we set
the values for k3, d1, and d3. The averaged mse over both
outputs was 5.2 × 10−3, which was 7,600 times higher than
the best randomly found network and still about seven times
higher than the worst one.

4.3 Multitasking property of a mass-spring network

In the previous section, we demonstrated that mass-spring
networks can be employed to represent a direct mapping.
However, the theory suggests that the setup is more powerful
and that it even can be employed to emulate complex, non-
linear filters. In this context, we present here three different
tasks (i.e., filters to emulate) and, additionally, we demon-
strate that mass-spring networks have the desired property
of multitasking. By multitasking, we refer to the ability to
carry out various computations simultaneously—in our con-
text, employing the same physical body for different compu-
tational tasks at the same time. Note that in contrast to the
multitasking in the setup with feedforward mass-spring sys-
tems (Sect. 3), where we used different ANNs as readouts, in
the case of mass-spring networks only a corresponding num-
ber of linear readouts is sufficient. For the following simu-
lations, we used therefore one generic network, one input,
and three different linear readouts to emulate three different
nonlinear filters.

For the first target filter, we chose the previously defined
Volterra series operator V (Eq. 2). The second task was to
emulate following second-order nonlinear dynamic system

y[k + 1] = 0.4y[k] + 0.4y[k]y[k − 1] + 0.6u3[k] + 0.1

(7)

where u[k] was the input and y[k] the output at time step k.

The third task was to emulate following nonlinear tenth-order
system

y[k + 1] = 0.3y[k] + 0.05y[k]
(

9∑
i=0

y[k − i]
)

(8)

+1.5u[k − 9]u[k] + 0.1 .

Again u[k] was the input and y[k] was the output at time
step k. The systems 7 and 8 were both taken from Atiya and

Parlos (2000), where they were used in order to demonstrate
the performance of a new learning algorithm for recurrent
networks.

Note that nonlinear systems of the type of Eq. 8 are typi-
cally hard to emulate for recurrent networks due to their long-
term time dependencies, see Hochreiter and Schmidhuber
(1997). Note also that our proposed morphological compu-
tation device is an analog device, which is able to map contin-
uous input streams onto continuous output streams. However,
in the simulation of this analog device, we were restricted to
discrete time. The simulation time step and the time step of
Eqs. 7 and 8 were the same. A real physical (analog) imple-
mentation of the morphological computation device would
emulate the underlying continuous dynamic systems, which
correspond to the discrete Equations 7 and 8 and, which min-
imize the errors at the discretization time steps.

We used the same network as in the previous robot arm
task (Fig. 7). All previously chosen input nodes (in the robot
task assigned for two inputs) were now defined to receive the
single input u[k]. As input, we employed the same signal as
previously for the experiment in Sect. 3, where we used the
morphological computation device with feedforward mass-
spring systems. It was a product of three sinusoidal functions
and it is shown again in Fig. 9a. For learning, we used the first
95 s of the signal.21 The first 50 s were defined as washout
period and thrown away (see Sect. 4.1.3). Thus, we had 45 s
for learning. The subsequent 5 s were used for testing. Figure
9b shows ten typical trajectory (out of all 78) of the spring
lengths as responses of the mass-spring network to this input
in the testing phase. The output weights for the linear read-
outs were found as previously described. Figure 9c shows
the performance of our morphological computation device
for the Volterra task. The red line is the target and the blue
line is the output of the morphological computation device.
The mass-spring network with an additional linear readout
is able to emulate the nonlinear filter defined by the Volterra
series operator V . Note that, unlike to the previous Volter-
ra task of Subsect. 3 (with a filter bank), here the physical
body (i.e., mass-spring network) provided not only the tem-
poral integration but also the nonlinearity. Hence, in order to
learn to emulate the given nonlinear filter V , due to the use
of the nonlinear and dynamic morphological structure (as a
computational resource), we only had to calculate a simple
LR.

In order to show the explicit contribution of the mor-
phological structure to the computation, we compared the
results with the case when no physical body (no mass-spring
network) was available and only LR on the raw input data
remained. We used a LR with two weights, w1 for the actual
input u(t) and w2 to learn a bias. Hence, the resulting output
at time step t was yL R(t) = w1u(t) + w2. The performance

21 Note that the period of the input signal was 100 s.
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Fig. 9 Simultaneous morphological computation of the three nonlin-
ear filters with one generic recurrent mass-spring network (i.e., mul-
titasking). a The input u(t), which consisted of a product of three
sinusoidal functions. b The trajectories of ten typical (out of 78) indi-
vidual spring lengths l(t) as responses to this input. c The performance
for the Volterra task. The red line is the target function and the blue
line is the output of the morphological computation device. The green
line depicts the outputs of the device, when no morphological structure
was available, i.e., only the linear readout was applied to the raw input
data. Note that the result is simply a scaled version of the input with
some offset. d Performance of emulating system 7. e Performance for
the filter defined by the system 8

can be seen in Fig. 7c. The output yLR(t) is depicted by the
green line, which is simply a scaled version of the input (with
a very small amplitude) with an additional offset. Not sur-
prisingly, pure LR on the raw input stream failed to represent
the nonlinear filter V , since all the required temporal integra-
tion and nonlinearity was contributed before by the physical
body (mass-spring network).

Figure 9d, e shows the performances of the morphological
computation device in order to emulate the nonlinear systems
7 and 8 using the same morphological structure (mass-spring
network of Fig. 7). Again, the red lines are the targets and the
blue lines the outputs of the device. The green lines depict the
results, when no morphological structure was available and
only pure LR was applied to the input stream. One can see,

that also in these cases, the LR, which was static and linear,
failed to represent the necessary dynamics and nonlinearity.

In summary, we can see that one single mass-spring net-
work (i.e., one physical body) can be employed to emulate
a number of different nonlinear filters by simple adding a
corresponding number of linear and static readouts.

5 Discussion

We introduced two theoretical models, which provide a
potential explanation for the computational power of
compliant bodies. We applied a theoretical model for com-
putation, which allowed us to demonstrate, how body parts,
modeled by multiple mass-spring systems, can be employed
to emulate arbitrary, time-invariant, nonlinear filters with fad-
ing memory. Since the underlying theoretical framework is
not able to provide us with a precise guidance for construct-
ing a well performing morphology for a given computational
task, we demonstrated the applicability of the approach by
simulating a number of generic morphological structures.
These simulations also allowed us to indicate qualitatively
the contribution of the morphology to the computational task.

The proposed setups are formed by a dynamic morpho-
logical structure (i.e., the physical body with fixed param-
eters) and a static readout (which can be adapted). As we
have shown, the readout can be even linear if the morpholog-
ical structure is sufficiently rich. Remarkably, such simple
devices are in principle able to emulate any nonlinear, time-
invariant filter with fading memory by adapting a simple, lin-
ear readout. Hence, the complex task of learning to emulate
such complex filters can, due to the help of the morpholog-
ical structure (i.e., due to morphological computation), be
reduced to the task of finding suitable weights for the linear
readout. This suggests that physical bodies are potentially
able to boost the expressive power of attached linear learn-
ing systems (e.g., the brain or the controller of the robot).
Note that the possibility to restrict the readouts to linear ones
enables highly efficient learning, because the number of train-
ing examples required by a linear learning device is minimal
according to general results from learning theory (because
of its minimal VC-dimension, see Vapnik 1998). Further-
more, it guaranties that the optimization process does not get
stuck in a local minimum and it has optimal generalization
capabilities.

The proposed theory suggests that morphological struc-
tures, in order to be computationally powerful (in the context
of our proposed setups), should be diverse in their parameters
and that they should exhibit high dimensionality. Remark-
ably, both aspects are typical properties of compliant, bio-
logical body parts. However, in classical robot design, these
attributes are suppressed (by high torque servos and rigid
body parts) in order to have a more tractable model and an
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easier controllable robot. Our results point to the fact that the
consideration of these dynamic features are essential in order
to be able to outsource computational tasks to the morpholog-
ical structure and, therefore, simplify the control of the robot.
This perspective suggests that the development of novel high-
dimensional readouts from artificial limbs (e.g., acceleration
sensors at many locations inside the robot) is a possible way
to exploit the morphological structure. The morphologies of
biological systems might even be more suitable for this task,
since they provide naturally a high number of internal sensory
signals and a variety of interconnected dynamic structures.
More specifically, the muscle–skeleton system consists of a
high number of different parts (i.e., bones, muscles, tendons,
etc.), which have a variety of different physical properties. In
addition, the biological system senses the state of its body by
numerous sensors located all over the body (i.e, somatosen-
sory system). As our theory suggests, both parts are desired
for morphological computation.

Another interesting aspect of the approach is that real
physical bodies provide the necessary nonlinearities and the
temporal integration for free. The physical structure simple
reacts on its inputs. Actually, it is not even necessary to have
real physical interpretations of all the available internal sig-
nals in order to exploit them for morphological computa-
tion. Furthermore, the bodies of real biological systems are
not simply computational devices, but they fulfill real func-
tions. For example, they provide animals (and robots) with
the capability to locomote and to interact with their environ-
ments. Therefore, a next step will be to apply the proposed
theory to morphological structures of real robots. This would
also involve the step to move from our presented abstract net-
works, which were be chosen to demonstrate the applicability
of our presented theory, to more realistic simulations includ-
ing the simulation of the interaction between a robot and
its environment. In this context, one would have to investi-
gated the impact of real-world conditions on the performance
of the proposed setups. For example, typical cases for such
real-word conditions are the partial loss of the state of the
morphology and/or noisy readouts.

Another remarkably property of the proposed morpho-
logical computation devices is their multitasking capability.
One morphological structure is able to provide the neces-
sary signals for approximating several different nonlinear
filters—only a corresponding number of readouts has to be
added. While this multitasking ability is obviously benefi-
cial, since the physical bodies of biological system as well as
of robots are to high degree fixed, one would also assume that
the computational tasks for the physical body are limited to a
set of particular filters. This suggests that physical bodies or
different parts of the body could be optimized regarding to
their computational tasks. Note that this optimization, how-
ever, would not be a convex problem anymore. Nevertheless,
the combination of our presented morphological computa-

tion setups with nonlinear optimization schemes could lead
to interesting new types of compliant robot parts. The result-
ing structures would be inhomogeneous and asymmetric as
opposed to the examples presented here. This points to the
need for a new type of computational material science and
computational robotics, where the geometrical and statistical
properties of the fine structure of different materials are ana-
lyzed (and optimized) with regard to their suitability to sup-
port through morphological computation the computations
of a particular range of filters, e.g., filters that are needed to
control a robot for a particular range of tasks.

Obviously, these considerations will also open new per-
spectives for our understanding of the shape and structural
properties of the body of biological organisms and, conse-
quently, will lead to new types of biologically inspired robots.
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