
www.embedded-world.eu

 Partitioning of computationally intensive tasks

between FPGA and CPUs

Tobias Welti, MSc (Author)

Institute of Embedded Systems

Zurich University of Applied Sciences

Winterthur, Switzerland

tobias.welti@zhaw.ch

Matthias Rosenthal, PhD (Author)

Institute of Embedded Systems

Zurich University of Applied Sciences

Winterthur, Switzerland

matthias.rosenthal@zhaw.ch

Abstract—With the recent development of faster and more

complex Multiprocessor System-on-Chips (MPSoCs), a large

number of different resources have become available on a single

chip. For example, Xilinx's Zynq UltraScale+ is a powerful

MPSoC with four ARM Cortex-A53 CPUs, two Cortex-R5 real-

time cores, an FPGA fabric and a Mali-400 GPU. Optimal

process partitioning between CPUs, real-time cores, GPU and

FPGA is therefore a challenge.

For many scientific applications with high sampling rates and

real-time signal analysis, an FFT needs to be calculated and

analyzed directly in the measuring device. The goal of

partitioning such an FFT in an MPSoC is to make best use of the

available resources, to minimize latency and to optimize

performance. The paper compares different partitioning designs

and discusses their advantages and disadvantages. Measurement

results with up to 250 MSamples per second are shown.

Keywords—FPGA; UltraScale+ MPSoC; partitioning; ARM

NEON; SIMD; asymmetric multi-processing; high performance

FFT; low latency processing

I. INTRODUCTION

The transition from field-programmable gate arrays
(FPGAs) to System-on-Chips (SoCs) in 2011 was the
unavoidable development when FPGAs needed to execute ever
more complex software programs. The soft-core processors
available for inclusion in the programmable logic were either
not powerful enough or took up too many logic resources. The
combination of hardware processors with the FPGA,
interconnected through a high-performance bus showed the
potential of this architecture.

With the recent development of faster and more complex
Multiprocessor System-on-Chips (MPSoCs), many different
resources are available on one chip. For example, Xilinx's
Zynq UltraScale+ MPSoC combines up to four ARM Cortex-
A53 application processor cores, two ARM Cortex-R5 real-
time cores, an ARM Mali-400 GPU as well as an FPGA fabric
with programmable logic, on-chip memory, hardware
multipliers (DSP slices) and many high-throughput I/Os. The
challenge for the system architect has now become finding the
optimal execution environment for your design's processes: the

partitioning. The goal is to make best use of the available
resources, minimizing latency and optimizing performance.

In this paper, we use the Fast Fourier Transform as a
computationally expensive algorithm that can be accelerated
through several means:

 multiprocessing on several cores of the same type
(Symmetric Multiprocessing)

 vector processing using a special instruction set
for Single Instruction, Multiple Data (SIMD),
available on most current processors

 using additional, different processors than the ones
the main software is run on (Asymmetric
Multiprocessing)

 generating accelerator functions that run in the
FPGA fabric and using them as external functions

 running the whole algorithm in the FPGA core,
controlled by a CPU core

 running the algorithm standalone in the FPGA

For each method, we present the communication paths and
software architecture, along with performance data.

The FFT is a well-studied algorithm and many papers have
been published on methods for efficient execution on specific
multiprocessor architectures in [1], [2], [3], [4] and [5]. It is not
the goal of this paper to improve on these methods, but to
provide an overview and an understanding of the possibilities
available in today's devices.

The paper is organized as follows:

Section II introduces the FFT algorithm and how it can be
calculated on multiple processing devices. In Section III, we
discuss the partitioning methods based on software, executing
on processor cores. The FPGA-based methods are explored in
Section IV. Section V elaborates on ways of collaboration
between the FPGA and processors. Finally, in Section VI we
sum up the advantages of the presented methods.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ZHAW digitalcollection

https://core.ac.uk/display/151537021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. FFT PARTITIONING

The discrete Fourier Transform (DFT) is used to transform
a sequence of samples from the time domain into the frequency
domain to analyze the frequency components of the sampled
signal. Spectral analysis, measuring and controlling, signal
processing and quantum computing are but a few applications
of the DFT. The DFT has a very high computational cost of
O(N2). The Fast Fourier Transform (FFT) improves efficiency
of the transform by reducing the number of redundant
calculations. This is achieved by splitting the sequence into
smaller parts and performing the Fourier Transform on these as
shown in Fig. 1. In doing so, the computational cost can be
reduced to O(N log N). Note that the splitting includes a
reordering of the input values, effectively selecting every other
input value for each subset.

Fig. 1. Principle of the FFT algorithm.

Since the FFT algorithm is a divide-and-conquer approach,
it is well suited for parallel processing on multiple processors.
Each core can perform the smaller FFT on its part of the data,
independent of the remaining data. However, as shown in Fig.
1, there will be at least one step requiring data from other cores
when combining the smaller FFTs into the complete spectrum.
This all-to-all communication is a critical step because it
requires synchronization of the cores. The optimization of this
step has been the subject of several publications, i.e. [2] and
[4].

The technique of calculating smaller FFTs and combining
them into larger spectra allows to efficiently process FFTs
larger than the memory of your processor, given that the
currently unused data is stored in an efficient way. Refs. [2],
[4] and [6] have published possible implementations.

III. MULTICORE PROCESSING FOR FFT

A. Available resources

The Xilinx Zynq UltraScale+ MPSoC portfolio offers
multiple ranges of SoCs with varying numbers of processor
cores and FPGA fabric resources. In this paper, we use the
XCZU9EG device, an SoC with the following resources:

 four ARM Cortex-A53 application processing cores,
running at 1100 MHz and featuring the NEON
instruction set

 two ARM Cortex-R5 real-time processing cores with
tightly-coupled memory (TCM) for low-latency access,
running at 500 MHz

 an ARM Mali-400 GPU

 an FPGA fabric with 600'000 System Logic Cells, 32
Mbit of FPGA memory and 2520 hardware multipliers
(DSP slices)

Fig. 2 shows the block diagram of the available resources.

The ARM Cortex-A53 core is a mid-range application
processing core that balances power usage vs. performance. It
is equipped with the ARMv8 instruction set, including
NEONv2 SIMD instructions for vectorized execution on
multiple data (up to 128 bit wide). Four A53 cores make up the
Application Processing Unit (APU), in the bottom right of Fig.
2. The ARM Cortex-R5 core is a real-time processor with a
focus on fast reaction to events. Its 128 kB of TCM allow very
fast memory accesses, but in turn limit the amount of data that
can be worked on. Two R5 cores form the Real-time
Processing Unit (RPU) in the top right of Fig. 2. The Level 3
interconnect enables fast data transfers between the APU, the
RPU and the FPGA fabric with on-chip memory, DSP slices
and programmable logic.

B. Executing the FFT in Software

When executing an FFT in software, you have the choice of
several FFT libraries, many of them capable of exploiting both
multiprocessing and vector processing.

ARM Ne10 [7] provides highly optimized ARM NEON
intrinsics written in Assembler and its FFT algorithm makes
use of these. However, it does not support multiprocessing.
kissFFT [8] is a very lightweight library with the goal of being
easy to use and moderately efficient while supporting
multiprocessing. However, it makes use of NEON instructions
only to execute four separate FFTs in parallel instead of
accelerating one FFT transform.

The fastest and most versatile FFT library that was tested in
our work is FFTW3 [9], exploiting both multi-processing and
NEON instructions and including a mechanism to optimize the
algorithm for the available hardware. This mechanism will test
many possible FFT optimization algorithms, measuring
performance and selecting the fastest one as described in [10].
This is done in order to make the best possible use of first and
second level caches, memory access speeds and other hardware
characteristics. For our implementations, we used FFTW3 on
the A53 and Ne10 on the R5.

Fig. 2. Block diagram of MPSoC.

www.embedded-world.eu

C. Implementations

The software-only implementations were run on the Xilinx
PetaLinux operating system, using the FFTW3 library to
calculate double precision floating-point complex FFTs. Using
double precision limits the speed improvement for the NEON
instruction set to a factor of two, because the NEON registers
are 128 bit wide and can therefore accommodate only two
double precision floating-point values.

The following five scenarios were tested:

a. Single-core A53

b. Single-core A53 with NEON instructions

c. Symmetric Multi-Processing (SMP) with four A53

d. Symmetric Multi-Processing (SMP) with four A53
with NEON instructions

e. Asymmetric Multi-Processing (AMP) with the R5 as
coprocessor

Scenarios a-d require no special software stack except the
pthread library for SMP.

Scenario e requires additional frameworks and drivers for
communication between the Master A53 core and the remote
R5 core to enable AMP. Fig. 3 shows the software architecture.
Two operating systems are required: Linux on the APU master
CPU and FreeRTOS on the RPU slave CPU. First, the APU
boots Linux and uses the OpenAMP framework to load the
RPU firmware into the TCM via a DMA transfer. The RPU is
then booted out of the TCM. The remoteproc driver handles the
life cycle management, allocates the required resources and
creates a virtual I/O (virtIO) device for each remote processor.
RPMsg is the Remote Processor Messaging API to provide
inter-process communication between processes on
independent cores.

Fig. 3. Software stack for Asymmetric Multi-Processing (as in [11])

The flow of OpenAMP booting and software execution is
as follows (as in [11]):

1. The remote processor is configured as a virtual IO
device, shared memory for message passing is
reserved.

2. The Master loads the firmware for the remote
processor into its memory, then boots the remote
processor.

3. After booting, the remote processor creates the virtIO
and RPMsg channels and informs the master.

4. The Master invokes the callback channel and
acknowledges the remote processor and application.

5. The remote processor invokes the RPMsg channel.

6. The RPMsg channel is established, both Master and
Slave can initiate communication via RPMsg calls.

7. During operation, communication buffers in reserved
shared DDR memory are used to pass messages
between the Master and the Slave. Usually, these
buffers are small. To load larger amounts of data, such
as the FFT input and output data, the data is written to
or read from on-chip memory (OCM) of the R5, and
the pointers are passed via message buffer.

Shutdown proceeds in the reverse sequence of the booting
and initialization process.

D. Performance

To provide an overview of the performance, FFTs of three
sizes (4’096, 16’384 and 65’536 data points) were calculated
using the implementation scenarios a-d. The Cortex-R5 can
only perform 4’096 point FFTs due to its limited amount of
OCM

Table I shows the achieved calculation times in
microseconds, comprised of the times for loading the input
data, executing the FFT and storing the result in memory. We
also show the feasible sampling rates that would allow the
CPUs to keep up a seamless processing of the input data.

TABLE I. SOFTWARE FFT PERFORMANCE

Scenario 4’096 16’384 65’536

time

(µs)

max.

rate

(MSa/s)

time

(µs)

max.

rate

(MSa/s)

time

(µs)

max.

rate

(MSa/s)

a A53 320 12 1600 10 8670 7

b A53NEON 290 14 1460 11 7760 8

c 4xA53 120 33 511 32 2770 23

d 4xA53NEON 114 35 434 37 2290 28

e R5a 1455 3 -- -- -- --

a. R5 time includes OpenAMP communication overhead (approx.100 µs)

It is evident from the data that the FFT scales well for
multiprocessing. When using four A53 cores, a speed-up of up
to factor 3.3 is observed. Scaling is better for large FFTs,
because there are more calculation steps that don't require all-
to-all communication.

More detailed tests have been run with one to four cores,
but for the sake of brevity, the data is not shown here. In
summary, the speedup corresponds almost directly to the
number of cores as long as there remains at least one core for
execution of the processes of the operating system. When all
cores are used for multi-processing, the speedup is capped. A
reasonable explanation is that the FFT is competing with the
other processes, resulting in many context switches.

Using the NEON instruction set, a speedup of roughly 10%
is observed for single-processing. For multi-processing,
enabling NEON yields a speed gain of 5-20%. This is nowhere
near a factor of two that could be expected since two values
can be processed at the same time. Among the possible
reasons, we suspect the fact that the NEON instructions have
their own execution pipeline and registers. If the algorithm can
not be optimized to 100% NEON instructions, there will be
data transfers between NEON and standard registers.

The R5 is clearly not designed for computationally heavy
tasks, its target assignment is to react to events in real-time. It
has to be noted that the communication overhead of the
OpenAMP framework contributes approximately 100 µs to the
execution time, but even if this overhead could be avoided, the
R5 would be no competition for the A53s.

IV. ACCELERATORS IN FPGA

Traditionally, bringing an algorithm to programmable logic
means writing HDL code or using an existing IP core. Today,
there are tools to generate HDL code from software code.
Xilinx provides the SDSoC (Software Defined System on
Chip) toolchain that generates logic blocks from your C-code
along with the required data transfer logic. To allow your
software to interface with this computation block, SDSoC
compiles a software library with the required function for
configuring the FFT core, loading and storing data as well as
the necessary interrupt service functions.

We have compared the performance of the following
scenarios:

f. SDSoC-Accelerator controlled by A53

g. FFT IP-core controlled by A53

h. FFT IP-core working standalone

Scenario f: An SDSoC accelerator core can only be
implemented for a fixed FFT size. Therefore, three accelerators
were implemented in the programmable logic, clocked at
300 MHz. The big advantage of performing the FFT in
programmable logic is that the processor core can perform
other tasks in the meantime. The processor will still be required
for loading and storing the data. Fig. 4 shows the block
diagram of this setup.

Scenario g: The Xilinx FFT IP-core can be configured for
different FFT sizes at runtime. One instance of the FFT core is
therefore sufficient for our tests. The processor will load the
input data into on-chip memory in the FPGA fabric, then start
the FFT core and finally transfer the processed data back to
DDR memory. These transfers can be done by DMA, leaving
the CPU free for other tasks. This setup is shown in Fig. 5.

Scenario h: If the input data is acquired in the FPGA fabric,
there is no sense in transferring the data to DDR memory first,
then loading it to FPGA on-chip memory for the FFT. Instead,
the FFT core is configured for constant, standalone operation
on the input data stream and a DMA stream is set up for
transfer of the output data to a range of reserved DDR memory,
where the APU can retrieve the processed data for analysis
(See Fig. 6).

Fig. 4. SDSoC accelerators in FPGA.

Fig. 5. FFT IP block, controlled by A53

www.embedded-world.eu

Fig. 6. FFT IP block, self-controlled

Table II shows the achieved execution times for FPGA-
accelerated FFT on the Zynq UltraScale+ MPSoC. Scenarios f
and g have similar performance, showing that the SDSoC-
generated HDL code is efficient and compares well to
manually optimized HDL code of the FFT IP.

TABLE II. FPGA FFT PERFORMANCE

Scenario 4’096 16’384 65’536

time

(µs)

max.

rate

(MSa/s)

time

(µs)
 time

(µs)

max.

rate

(MSa/s)

f SDSoC 108 38 410 38 1720 38

g IP-A53 101 41 400 41 1680 39

h IP-standalone 51 250 202 250 807 250

The more efficient data path in scenario h can easily
explain the difference in performance between scenarios g and
h, omitting the transfer of the input data from DDR to on-chip
memory. In fact, the limiting factor for the sampling rate is the
DMA transfer rate from FPGA fabric into DDR memory.

V. COMBINING FPGA AND PROCESSING SYSTEM

The results in Sections III and IV show clearly that the
FPGA easily outperforms the pure software implementations.
Nevertheless, there are limits to the size of FFT than can be
executed in the FPGA. The FFT IP core can process up to
65’536 points for one FFT. The SDSoC toolchain would allow
to create accelerator functions for larger FFT sizes, but the
available FPGA resources (DSP slices and on-chip memory)
would be exhausted quickly.

We have explored ways for the FPGA and processing
system to collaborate in processing the FFT. The goal was a
65’536 point FFT, using fewer resources in the FPGA while
still maintaining good performance.

As shown in Fig. 1, the FFT algorithm is divided in clearly
defined steps that can be processed in separate units. Our idea
was to process the first steps of the FFT in the FPGA grid, then
transfer the data into processor memory and do the remaining
steps in software, as shown in Fig. 7. The FFT would be split
into four 16’384 point FFTs in the FPGA. These smaller FFTs
can be processed either in parallel or in series.

Parallel processing requires four FFT cores with four times
the resource usage. For serial processing (Fig. 8), only one FFT
core is implemented, but the data of the three remaining FFTs
must be stored until the core is ready for processing. For

efficiency reasons, this is best done in on-chip memory
(BRAM).

Fig. 7. Partitioning FFT, parallel processing in FPGA

Fig. 8. Partitioning FFT, serial processing in FPGA

We found that the amount of BRAM resources used is
similar for both the parallel and the serial approach. Table III
shows the number of BRAM blocks and DSP slices used.
Values in parentheses show the percentage of all available
resources. Because the amount of data to be stored or
processed is the same as for a 65’536 point FFT, our approach
even uses roughly the same amount of BRAM as the full
65’536 point FFT core. With BRAM being the most limited
FPGA resource for this application, there is no gain from
partitioning the FFT between FPGA and processing system.

Furthermore, the FFT calculation needs to be finished in the
processing system, adding more latency and resource usage to
the bill.

TABLE III. RESOURCE REQUIREMENTS OF PARTITIONED FFT

Scenario BRAM DSP

Parallel FFT 4x 16k FFT 232 (27%) 180 (7%)

Serial FFT 1x 16k FFT & BRAM 244 (25%) 45 (2%)

Full FFT 1x 64k FFT 238 (27%) 54 (2%)

VI. DISCUSSION

For the FFT, we have shown that the FPGA fabric is able to
perform several times faster than the complete processing
system of the Zynq UltraScale+ MPSoC. This power can be
harvested in several ways, be it as stand-alone FFT processor
or as an external accelerator function.

Depending on the amount of processing to be done apart
from the FFT, doing the whole transform in the processing
system can also be an option, leaving more room in your
FPGA.

The decision where to execute an algorithm depends on
many factors, such as:

 Where does your data originate? Try to keep it local,
reducing the amount of data transfer.

 What are the required data rates? Can the amount of
data be transferred over the L3 interconnect without
interfering with the remaining processes?

 How well can your algorithm be split up and be
processed in parallel? The more an algorithm can be
parallelized, the better the FPGA will perform in
comparison to the processing system.

 How many FPGA resources can you spare for your
algorithm?

In the end, it remains the challenge of the system architect
to choose where and how the data is to be processed. A deep
understanding of the algorithm and both processing system and
FPGA hardware is required.

REFERENCES

[1] P. N. Swarztrauber, "Multiprocessor FFTs," Parallel Computing, Vol. 5,

Issues 1–2, pp. 197-210, 1987.

[2] J. Sánchez-Curto, P. Chamorro-Posada, "On a faster parallel
implementation of the split-step Fourier method," Parallel Computing,
Vol. 34, Issue 9, pp. 539-549, 2008.

[3] T. H. Cormen, D. M. Nicol, "Performing out-of-core FFTs on parallel
disk systems," Parallel Computing, Vol. 24, Issue 1, pp. 5-20, 1998.

[4] E. Chu, A. George, "FFT algorithms and their adaptation to parallel
processing," Linear Algebra and its Applications, Vol. 284, Issues 1–3,
pp. 95-124, 1998.

[5] S. Xue, J. Wang, Y. Li and Q. Peng, "Parallel FFT implementation
based on multi-core DSPs," 2011 International Conference on
Computational Problem-Solving (ICCP), Chengdu, pp. 426-430, 2011.

[6] R. Lyons, "Computing large DFTs using small FFTs", [Online]:
https://www.dsprelated.com/showarticle/63.php

[7] ARM Ne10 Project [Online]: https://projectne10.github.io/Ne10/

[8] kissFFT [Online]: https://sourceforge.net/projects/kissfft/

[9] FFTW3 [Online]: http://www.fftw.org/

[10] M. Frigo, S. G. Johnson, "The Design and Implementation of FFTW3,"
Proc. IEEE, vol. 93, no. 2, pp. 216-231, 2005.

[11] Xilinx User Guide UG1211, "Zynq UltraScale+ MPSoC Software
Acceleration Targeted Reference Design", [Online]:
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102
/2017_2/ug1211-zcu102-swaccel-trd.pdf. Xilinx, Inc. 2017

