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Abstract—With the recent development of faster and more 

complex Multiprocessor System-on-Chips (MPSoCs), a large 

number of different resources have become available on a single  

chip. For example, Xilinx's Zynq UltraScale+ is a powerful 

MPSoC with four ARM Cortex-A53 CPUs, two Cortex-R5 real-

time cores, an FPGA fabric and a Mali-400 GPU. Optimal 

process partitioning between CPUs, real-time cores, GPU and 

FPGA is therefore a challenge. 

For many scientific applications with high sampling rates and 

real-time signal analysis, an FFT needs to be calculated and 

analyzed directly in the measuring device. The goal of 

partitioning such an FFT in an MPSoC is to make best use of the 

available resources, to minimize latency and to optimize 

performance. The paper compares different partitioning designs 

and discusses their advantages and disadvantages. Measurement 

results with up to 250 MSamples per second are shown. 

Keywords—FPGA; UltraScale+ MPSoC; partitioning; ARM 

NEON; SIMD; asymmetric multi-processing; high performance 
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I.  INTRODUCTION 

The transition from field-programmable gate arrays 
(FPGAs) to System-on-Chips (SoCs) in 2011 was the 
unavoidable development when FPGAs needed to execute ever 
more complex software programs. The soft-core processors 
available for inclusion in the programmable logic were either 
not powerful enough or took up too many logic resources. The 
combination of hardware processors with the FPGA, 
interconnected through a high-performance bus showed the 
potential of this architecture.  

With the recent development of faster and more complex 
Multiprocessor System-on-Chips (MPSoCs), many different 
resources are available on one chip. For example, Xilinx's 
Zynq UltraScale+ MPSoC combines up to four ARM Cortex-
A53 application processor cores, two ARM Cortex-R5 real-
time cores, an ARM Mali-400 GPU as well as an FPGA fabric 
with programmable logic, on-chip memory, hardware 
multipliers (DSP slices) and many high-throughput I/Os. The 
challenge for the system architect has now become finding the 
optimal execution environment for your design's processes: the 

partitioning. The goal is to make best use of the available 
resources, minimizing latency and optimizing performance. 

In this paper, we use the Fast Fourier Transform as a 
computationally expensive algorithm that can be accelerated 
through several means: 

 multiprocessing on several cores of the same type 
(Symmetric Multiprocessing) 

 vector processing using a special instruction set 
for Single Instruction, Multiple Data (SIMD), 
available on most current processors 

 using additional, different processors than the ones 
the main software is run on (Asymmetric 
Multiprocessing) 

 generating accelerator functions that run in the 
FPGA fabric and using them as external functions 

 running the whole algorithm in the FPGA core, 
controlled by a CPU core 

 running the algorithm standalone in the FPGA 

For each method, we present the communication paths and 
software architecture, along with performance data. 

The FFT is a well-studied algorithm and many papers have 
been published on methods for efficient execution on specific 
multiprocessor architectures in [1], [2], [3], [4] and [5]. It is not 
the goal of this paper to improve on these methods, but to 
provide an overview and an understanding of the possibilities 
available in today's devices. 

The paper is organized as follows: 

Section II introduces the FFT algorithm and how it can be 
calculated on multiple processing devices. In Section III, we 
discuss the partitioning methods based on software, executing 
on processor cores. The FPGA-based methods are explored in 
Section IV. Section V elaborates on ways of collaboration 
between the FPGA and processors. Finally, in Section VI we 
sum up the advantages of the presented methods. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ZHAW digitalcollection

https://core.ac.uk/display/151537021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

II. FFT PARTITIONING 

The discrete Fourier Transform (DFT) is used to transform 
a sequence of samples from the time domain into the frequency 
domain to analyze the frequency components of the sampled 
signal. Spectral analysis, measuring and controlling, signal 
processing and quantum computing are but a few applications 
of the DFT. The DFT has a very high computational cost of  
O(N2). The Fast Fourier Transform (FFT) improves efficiency 
of the transform by reducing the number of redundant 
calculations. This is achieved by splitting the sequence into 
smaller parts and performing the Fourier Transform on these as 
shown in Fig. 1. In doing so, the computational cost can be 
reduced to O(N log N). Note that the splitting includes a 
reordering of the input values, effectively selecting every other 
input value for each subset. 

Fig. 1. Principle of the FFT algorithm. 

Since the FFT algorithm is a divide-and-conquer approach, 
it is well suited for parallel processing on multiple processors. 
Each core can perform the smaller FFT on its part of the data, 
independent of the remaining data.  However, as shown in Fig. 
1, there will be at least one step requiring data from other cores 
when combining the smaller FFTs into the complete spectrum. 
This all-to-all communication is a critical step because it 
requires synchronization of the cores. The optimization of this 
step has been the subject of several publications, i.e. [2] and 
[4]. 

The technique of calculating smaller FFTs and combining 
them into larger spectra allows to efficiently process FFTs 
larger than the memory of your processor, given that the 
currently unused data is stored in an efficient way. Refs. [2], 
[4] and [6] have published possible implementations. 

III. MULTICORE PROCESSING FOR FFT 

A. Available resources 

The Xilinx Zynq UltraScale+ MPSoC portfolio offers 
multiple ranges of SoCs with varying numbers of processor 
cores and FPGA fabric resources. In this paper, we use the 
XCZU9EG device, an SoC with the following resources: 

 four ARM Cortex-A53 application processing cores, 
running at 1100 MHz and featuring the NEON 
instruction set 

 two ARM Cortex-R5 real-time processing cores with 
tightly-coupled memory (TCM) for low-latency access, 
running at 500 MHz 

 an ARM Mali-400 GPU 

 an FPGA fabric with 600'000 System Logic Cells, 32 
Mbit of FPGA memory and 2520 hardware multipliers 
(DSP slices) 

Fig. 2 shows the block diagram of the available resources. 

The ARM Cortex-A53 core is a mid-range application 
processing core that balances power usage vs. performance. It 
is equipped with the ARMv8 instruction set, including 
NEONv2 SIMD instructions for vectorized execution on 
multiple data (up to 128 bit wide). Four A53 cores make up the 
Application Processing Unit (APU), in the bottom right of Fig. 
2. The ARM Cortex-R5 core is a real-time processor with a 
focus on fast reaction to events. Its 128 kB of TCM allow very 
fast memory accesses, but in turn limit the amount of data that 
can be worked on. Two R5 cores form the Real-time 
Processing Unit (RPU) in the top right of Fig. 2. The Level 3 
interconnect enables fast data transfers between the APU, the 
RPU and the FPGA fabric with on-chip memory, DSP slices 
and programmable logic. 

B. Executing the FFT in Software 

When executing an FFT in software, you have the choice of 
several FFT libraries, many of them capable of exploiting both 
multiprocessing and vector processing. 

ARM Ne10 [7] provides highly optimized ARM NEON 
intrinsics written in Assembler and its FFT algorithm makes 
use of these. However, it does not support multiprocessing. 
kissFFT [8] is a very lightweight library with the goal of being 
easy to use and moderately efficient while supporting 
multiprocessing. However, it makes use of NEON instructions 
only to execute four separate FFTs in parallel instead of 
accelerating one FFT transform.  

The fastest and most versatile FFT library that was tested in 
our work is FFTW3 [9], exploiting both multi-processing and 
NEON instructions and including a mechanism to optimize the 
algorithm for the available hardware. This mechanism will test 
many possible FFT optimization algorithms, measuring 
performance and selecting the fastest one as described in [10]. 
This is done in order to make the best possible use of first and 
second level caches, memory access speeds and other hardware 
characteristics. For our implementations, we used FFTW3 on 
the A53 and Ne10 on the R5. 

Fig. 2. Block diagram of MPSoC. 
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C. Implementations 

The software-only implementations were run on the Xilinx 
PetaLinux operating system, using the FFTW3 library to 
calculate double precision floating-point complex FFTs. Using 
double precision limits the speed improvement for the NEON 
instruction set to a factor of two, because the NEON registers 
are 128 bit wide and can therefore accommodate only two 
double precision floating-point values. 

The following five scenarios were tested: 

a. Single-core A53 

b. Single-core A53 with NEON instructions 

c. Symmetric Multi-Processing (SMP) with four A53 

d. Symmetric Multi-Processing (SMP) with four A53 
with NEON instructions 

e. Asymmetric Multi-Processing (AMP) with the R5 as 
coprocessor 

Scenarios a-d require no special software stack except the 
pthread library for SMP. 

Scenario e requires additional frameworks and drivers for 
communication between the Master A53 core and the remote 
R5 core to enable AMP. Fig. 3 shows the software architecture. 
Two operating systems are required: Linux on the APU master 
CPU and FreeRTOS on the RPU slave CPU. First, the APU 
boots Linux and uses the OpenAMP framework to load the 
RPU firmware into the TCM via a DMA transfer. The RPU is 
then booted out of the TCM. The remoteproc driver handles the 
life cycle management, allocates the required resources and 
creates a virtual I/O (virtIO) device for each remote processor. 
RPMsg is the Remote Processor Messaging API to provide 
inter-process communication between processes on 
independent cores.  

Fig. 3. Software stack for Asymmetric Multi-Processing (as in [11]) 

The flow of OpenAMP booting and software execution is 
as follows (as in [11]): 

1. The remote processor is configured as a virtual IO 
device, shared memory for message passing is 
reserved. 

2. The Master loads the firmware for the remote 
processor into its memory, then boots the remote 
processor. 

3. After booting, the remote processor creates the virtIO 
and RPMsg channels and informs the master. 

4. The Master invokes the callback channel and 
acknowledges the remote processor and application. 

5. The remote processor invokes the RPMsg channel. 

6. The RPMsg channel is established, both Master and 
Slave can initiate communication via RPMsg calls. 

7. During operation, communication buffers in reserved 
shared DDR memory are used to pass messages 
between the Master and the Slave. Usually, these 
buffers are small. To load larger amounts of data, such 
as the FFT input and output data, the data is written to 
or read from on-chip memory (OCM) of the R5, and 
the pointers are passed via message buffer. 

Shutdown proceeds in the reverse sequence of the booting 
and initialization process. 

D. Performance 

To provide an overview of the performance, FFTs of three 
sizes (4’096, 16’384 and 65’536 data points) were calculated 
using the implementation scenarios a-d. The Cortex-R5 can 
only perform 4’096 point FFTs due to its limited amount of 
OCM 

 



 

 

Table I shows the achieved calculation times in 
microseconds, comprised of the times for loading the input 
data, executing the FFT and storing the result in memory. We 
also show the feasible sampling rates that would allow the 
CPUs to keep up a seamless processing of the input data. 

TABLE I.  SOFTWARE FFT PERFORMANCE 

Scenario 4’096 16’384 65’536 

time 

(µs) 

max. 

rate 

(MSa/s) 

time 

(µs) 

max. 

rate 

(MSa/s) 

time 

(µs) 

max. 

rate 

(MSa/s) 

a A53 320 12 1600 10 8670 7 

b A53NEON 290 14 1460 11 7760 8 

c 4xA53 120 33 511 32 2770 23 

d 4xA53NEON 114 35 434 37 2290 28 

e R5a 1455 3 -- -- -- -- 

a. R5 time includes OpenAMP communication overhead (approx.100 µs) 

It is evident from the data that the FFT scales well for 
multiprocessing. When using four A53 cores, a speed-up of up 
to factor 3.3 is observed. Scaling is better for large FFTs, 
because there are more calculation steps that don't require all-
to-all communication. 

More detailed tests have been run with one to four cores, 
but for the sake of brevity, the data is not shown here. In 
summary, the speedup corresponds almost directly to the 
number of cores as long as there remains at least one core for 
execution of the processes of the operating system. When all 
cores are used for multi-processing, the speedup is capped. A 
reasonable explanation is that the FFT is competing with the 
other processes, resulting in many context switches. 

Using the NEON instruction set, a speedup of roughly 10% 
is observed for single-processing. For multi-processing, 
enabling NEON yields a speed gain of 5-20%. This is nowhere 
near a factor of two that could be expected since two values 
can be processed at the same time. Among the possible 
reasons, we suspect the fact that the NEON instructions have 
their own execution pipeline and registers. If the algorithm can 
not be optimized to 100% NEON instructions, there will be 
data transfers between NEON and standard registers. 

The R5 is clearly not designed for computationally heavy 
tasks, its target assignment is to react to events in real-time. It 
has to be noted that the communication overhead of the 
OpenAMP framework contributes approximately 100 µs to the 
execution time, but even if this overhead could be avoided, the 
R5 would be no competition for the A53s. 

IV. ACCELERATORS IN FPGA 

Traditionally, bringing an algorithm to programmable logic 
means writing HDL code or using an existing IP core. Today, 
there are tools to generate HDL code from software code. 
Xilinx provides the SDSoC (Software Defined System on 
Chip) toolchain that generates logic blocks from your C-code 
along with the required data transfer logic. To allow your 
software to interface with this computation block, SDSoC 
compiles a software library with the required function for 
configuring the FFT core, loading and storing data as well as 
the necessary interrupt service functions. 

We have compared the performance of the following 
scenarios: 

f. SDSoC-Accelerator controlled by A53 

g. FFT IP-core controlled by A53 

h. FFT IP-core working standalone 

Scenario f: An SDSoC accelerator core can only be 
implemented for a fixed FFT size. Therefore, three accelerators 
were implemented in the programmable logic, clocked at 
300 MHz. The big advantage of performing the FFT in 
programmable logic is that the processor core can perform 
other tasks in the meantime. The processor will still be required 
for loading and storing the data. Fig. 4 shows the block 
diagram of this setup. 

Scenario g: The Xilinx FFT IP-core can be configured for 
different FFT sizes at runtime. One instance of the FFT core is 
therefore sufficient for our tests. The processor will load the 
input data into on-chip memory in the FPGA fabric, then start 
the FFT core and finally transfer the processed data back to 
DDR memory. These transfers can be done by DMA, leaving 
the CPU free for other tasks. This setup is shown in Fig. 5. 

Scenario h: If the input data is acquired in the FPGA fabric, 
there is no sense in transferring the data to DDR memory first, 
then loading it to FPGA on-chip memory for the FFT. Instead, 
the FFT core is configured for constant, standalone operation 
on the input data stream and a DMA stream is set up for 
transfer of the output data to a range of reserved DDR memory, 
where the APU can retrieve the processed data for analysis 
(See Fig. 6). 

Fig. 4. SDSoC accelerators in FPGA. 

Fig. 5. FFT IP block, controlled by A53 
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Fig. 6. FFT IP block, self-controlled 

Table II shows the achieved execution times for FPGA-
accelerated FFT on the Zynq UltraScale+ MPSoC. Scenarios f 
and g have similar performance, showing that the SDSoC-
generated HDL code is efficient and compares well to 
manually optimized HDL code of the FFT IP. 

TABLE II.  FPGA FFT PERFORMANCE 

Scenario 4’096 16’384 65’536 

time 

(µs) 

max. 

rate 

(MSa/s) 

time 

(µs) 
 time 

(µs) 

max. 

rate 

(MSa/s) 

f SDSoC 108 38 410 38 1720 38 

g IP-A53 101 41 400 41 1680 39 

h IP-standalone 51 250 202 250 807 250 

 

The more efficient data path in scenario h can easily 
explain the difference in performance between scenarios g and 
h, omitting the transfer of the input data from DDR to on-chip 
memory. In fact, the limiting factor for the sampling rate is the 
DMA transfer rate from FPGA fabric into DDR memory. 

V. COMBINING FPGA AND PROCESSING SYSTEM 

The results in Sections III and IV show clearly that the 
FPGA easily outperforms the pure software implementations. 
Nevertheless, there are limits to the size of FFT than can be 
executed in the FPGA. The FFT IP core can process up to 
65’536 points for one FFT. The SDSoC toolchain would allow 
to create accelerator functions for larger FFT sizes, but the 
available FPGA resources (DSP slices and on-chip memory) 
would be exhausted quickly. 

We have explored ways for the FPGA and processing 
system to collaborate in processing the FFT. The goal was a 
65’536 point FFT, using fewer resources in the FPGA while 
still maintaining good performance. 

As shown in Fig. 1, the FFT algorithm is divided in clearly 
defined steps that can be processed in separate units. Our idea 
was to process the first steps of the FFT in the FPGA grid, then 
transfer the data into processor memory and do the remaining 
steps in software, as shown in Fig. 7. The FFT would be split 
into four 16’384 point FFTs in the FPGA. These smaller FFTs 
can be processed either in parallel or in series.  

Parallel processing requires four FFT cores with four times 
the resource usage. For serial processing (Fig. 8), only one FFT 
core is implemented, but the data of the three remaining FFTs 
must be stored until the core is ready for processing. For 

efficiency reasons, this is best done in on-chip memory 
(BRAM). 

Fig. 7. Partitioning FFT, parallel processing in FPGA 

Fig. 8. Partitioning FFT, serial processing in FPGA 

We found that the amount of BRAM resources used is 
similar for both the parallel and the serial approach. Table III 
shows the number of BRAM blocks and DSP slices used. 
Values in parentheses show the percentage of all available 
resources. Because the amount of data to be stored or 
processed is the same as for a 65’536 point FFT, our approach 
even uses roughly the same amount of BRAM as the full 
65’536 point FFT core. With BRAM being the most limited 
FPGA resource for this application, there is no gain from 
partitioning the FFT between FPGA and processing system. 

Furthermore, the FFT calculation needs to be finished in the 
processing system, adding more latency and resource usage to 
the bill. 



TABLE III.  RESOURCE REQUIREMENTS OF PARTITIONED FFT 

Scenario BRAM DSP 

Parallel FFT 4x 16k FFT 232 (27%) 180 (7%) 

Serial FFT 1x 16k FFT & BRAM 244 (25%) 45 (2%) 

Full FFT 1x 64k FFT 238 (27%) 54 (2%) 

 

VI. DISCUSSION 

For the FFT, we have shown that the FPGA fabric is able to 
perform several times faster than the complete processing 
system of the Zynq UltraScale+ MPSoC. This power can be 
harvested in several ways, be it as stand-alone FFT processor 
or as an external accelerator function. 

Depending on the amount of processing to be done apart 
from the FFT, doing the whole transform in the processing 
system can also be an option, leaving more room in your 
FPGA. 

The decision where to execute an algorithm depends on 
many factors, such as: 

 Where does your data originate? Try to keep it local, 
reducing the amount of data transfer. 

 What are the required data rates? Can the amount of 
data be transferred over the L3 interconnect without 
interfering with the remaining processes? 

 How well can your algorithm be split up and be 
processed in parallel? The more an algorithm can be 
parallelized, the better the FPGA will perform in 
comparison to the processing system. 

 How many FPGA resources can you spare for your 
algorithm? 

In the end, it remains the challenge of the system architect 
to choose where and how the data is to be processed. A deep 
understanding of the algorithm and both processing system and 
FPGA hardware is required. 
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