
Discrete Applied Mathematics 157 (2009) 3643–3655

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

A new neighborhood and tabu search for the Blocking Job Shop
Heinz Gröflin a, Andreas Klinkert b,∗
a Department of Informatics, University of Fribourg, Switzerland
b Institute of Data Analysis and Process Design, Zurich University of Applied Sciences, Switzerland

a r t i c l e i n f o

Article history:
Received 29 November 2007
Received in revised form 9 February 2009
Accepted 19 February 2009
Available online 1 April 2009

Keywords:
Job shop scheduling
Blocking
Setup
Disjunctive graph
Tabu search

a b s t r a c t

The Blocking Job Shop is a version of the job shop scheduling problemwith no intermediate
buffers, where a job has to wait on a machine until being processed on the next machine.
We study a generalization of this problem which takes into account transfer operations
between machines and sequence-dependent setup times. After formulating the problem
in a generalized disjunctive graph, we develop a neighborhood for local search. In contrast
to the classical job shop, there is no easy mechanism for generating feasible neighbor
solutions. We establish two structural properties of the underlying disjunctive graph,
the concept of closures and a key result on short cycles, which enable us to construct
feasible neighbors by exchanging critical arcs together with some other arcs. Based on this
neighborhood, we devise a tabu search algorithm and report on extensive computational
experience, showing that our solutions improve most of the benchmark results found in
the literature.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The classical job shop has established itself as a standard problem in scheduling and a substantial body of knowledge
has accumulated, benefiting invaluably the scheduling field. However, scheduling problems in practice often cannot be
modeled as job shop problems, due to features such as generalized precedence constraints, storage-space and waiting-time
constraints,material-handling constraints, sequence-dependent setups, parallel use of resources andprocessing alternatives
(see for instance, Jain and Meeran [14], Pinedo and Chao [26], and Hall and Sriskandarajah [12]).
Several extensions of the classical job shop problem have been proposed in the literature, including the so-called job

shop with blocking constraints or Blocking Job Shop which arises for instance in manufacturing environments where there
are no intermediate buffers between machines. In the Blocking Job Shop, a number of jobs have to be processed, each job
involving a sequence of processing steps (operations) to be performed on some machines. An operation occupies a single
dedicatedmachine for some given duration; preemption of operations is not allowed and amachine can process atmost one
operation at a time. In contrast to the classical job shop, the absence of buffers implies blocking constraints in the sense that
a job has to stay on a machine (and is blocking it) until the next machine becomes available and the job can be transferred.
The problemconsideredhere is a generalization of the Blocking Job Shop (BJS) and shall be called theGeneralized Blocking

Job Shop (GBJS). It includes the following additional features: (i) it takes into account transfer times for moving a job from
one machine to the next machine, and (ii) it allows for sequence-dependent setup times between consecutive operations on
a machine. The need for taking into account transfer times arises from applications where transferring a job between two
machines requires some specific parallel handling on both machines, involving a hand-over step on the first machine and a
take-over step on the second machine, which have to be synchronized and are assumed to have the same duration.

∗ Corresponding address: Institute of Data Analysis and Process Design (IDP), Zurich University of Applied Sciences (ZHAW), Rosenstrasse 3, P.O. Box,
CH-8401 Winterthur, Switzerland. Tel.: +41 58 934 78 02; fax: +41 58 935 78 02.
E-mail address: andreas.klinkert@zhaw.ch (A. Klinkert).

0166-218X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2009.02.020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/151536891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:andreas.klinkert@zhaw.ch
http://dx.doi.org/10.1016/j.dam.2009.02.020

3644 H. Gröflin, A. Klinkert / Discrete Applied Mathematics 157 (2009) 3643–3655

In the GBJS, an operation of a job can therefore be viewed as a sequence of four consecutive steps (see also the example in
Section 2): (i) a take-over step where the job is taken over from themachine that performed the job’s previous operation (or
where the job is loaded onto themachine if the operation is the job’s first operation); (ii) a processing stepwhere somework
is performed on the job; (iii) a (possibly non-existent)waiting period duringwhich the jobwaits on themachine – and blocks
it – until being transferred; (iv) a hand-over step where the job is handed over to the machine performing the job’s next
operation (or where the job is unloaded, if the operation is the job’s last operation). On each machine, a setup occurs before
the first operation, between consecutive operations and after the last operation on that machine, and the durations of these
setups are sequence-dependent. The GBJS problem consists in finding a feasible schedule of all operations that minimizes
the makespan, i.e. the time by which all jobs are completed. Note that BJS is a special case of GBJS, where all transfer times
are zero and there are no setups between operations.
Problems of GBJS type arise in practice in complex manufacturing systems as well as in logistics. Indeed, the motivation

for the present work stems from the following application (see Klinkert [15]). Among the various types of storage
technologies available are so-called automated high-density warehouses. These systems handle and store a large number
of pallets. They comprise several floors, subdivided into corridors (where the pallets are stored), and perpendicular to them,
cross-aisles linking the corridors to elevators. Pallet movements are automated and computer-controlled, and are executed
by transfer carriages integrated in the corridors and cross-aisles, and elevators. As an example, the simplest sequence of
operations for a pallet to be retrieved from its storage location to a picking area is the following: the corridor carriagemoves
to the location where the pallet is stored, loads the pallet and moves to an adjacent cross-aisle. If the cross-aisle carriage is
there, the pallet is transferred from the corridor carriage to the cross-aisle carriage (synchronized hand-over/take-over step),
otherwise the pallet stays on the corridor carriage (and is blocking it) until the cross-aisle carriage arrives and the pallet can
be transferred. The cross-aisle carriage thenmoves to an elevator and (possibly after havingwaited for the elevator’s arrival)
hands the pallet over to the elevatorwhich takes the pallet and brings it to the picking areawhere it is unloaded. Such a pallet
retrieval corresponds to a job in the GBJSmodel. Its three consecutive operations, where the pallet is handled by the corridor
carriage, cross-aisle carriage and elevator, respectively, feature steps (i)–(iv) detailed above. Observe also that sequence-
dependent setups are essential in this application since the setup time between two consecutive operations represents the
travel time of the carriage’s idle move from the hand-over location of the first operation to the take-over location of the
next operation.
Job shopmodelswith blocking constraints (BJS) have been discussed by several authors. Hall and Sriskandarajah [12] give

a survey onmachine scheduling problemswith blocking andno-wait constraints. Candar [5] describes several applications of
machine scheduling with blocking and no-wait in process and reviews the computational complexity of a variety of related
problems.
Mascis and Pacciarelli [17,18] study several types of job shop problems including the ideal (classical) job shop, the

Blocking Job Shop (with and without ‘‘swaps’’) and the no-wait job shop, and formulate these problems by means of
alternative graphs; a generalization of the disjunctive graph concept similar to the one proposed by Klinkert [15]. They
develop three specialized dispatching heuristics for these job shop problems and present numerical results for a large
number of benchmark instances. They also solve eighteen of the smaller (10 × 10) instances to optimality by means of
a branch-and-bound method. Pacciarelli [24] uses alternative graphs to describe a complex scheduling problem in a steel-
making plant and devises a dispatching heuristic to solve this problem.
Meloni, Pacciarelli and Pranzo [21] present a rollout metaheuristic for the ideal, blocking and no-wait job shop which

is based on an alternative graph formulation. This rollout method basically corresponds to a constructive procedure which
iteratively extends a partial schedule, represented by a partial selection of alternative arcs, to a complete schedule. At each
extension step, all candidate arcs are evaluated according to a scoring function, and the arcwith the best score is added to the
partial selection. The basic idea for computing the scoring function is a look-ahead strategy based on dispatching procedures
(called subheuristics). Any candidate arc is tentatively added to the current partial selection and this new selection is
extended to a complete schedule using one or more subheuristics. The score of the candidate arc then corresponds to the
objective value of the best complete schedule found. The authors present promising numerical results for the eighteen
10× 10 benchmark instances solved to optimality by Mascis and Pacciarelli [18], showing substantial improvements of the
results found by the dispatching methods of [18].
Mati et al. [19] investigate scheduling of flexible manufacturing systems, study a multi-resource job shop problem with

blocking constraints, where every operation simultaneously requires several resources by a certain quantity, and propose a
tabu search based on a geometric approach. The extended abstract ofMati et al. [20] describes a tabu search algorithm for BJS
which applies classical permutationmoves (i.e. exchange of adjacent operations on amachine) until no further permutation
on the critical path leads to a feasible solution. A deadlock recovery move is then employed to emerge from the deadlock. It
corresponds to a job rescheduling algorithm that uses an extension of the geometric approach described in [19]. The authors
tested their algorithm on the 10× 10 benchmark instances provided by Mascis and Pacciarelli [18] and indicated favorable
results yielding an optimality gap ‘‘in the range [3%, 9%]’’, without giving detailed test data.
Brizuela et al. [3] develop a genetic algorithm for solving no-wait and Blocking Job Shop problems and show numerical

results for four selected benchmark problems.
Klinkert [15] and Gröflin and Klinkert [10] introduce a generalized disjunctive graph framework for modeling various

types of scheduling problems and develop a local search approach for the generalized Blocking Job Shop problem with
application in automated warehouses (see the previous paragraph).

H. Gröflin, A. Klinkert / Discrete Applied Mathematics 157 (2009) 3643–3655 3645

More recently, some extensions of the BJS have been addressed, e.g. by Brucker and Kampmeyer [4] on cyclic scheduling
in the BJS and by Heitmann [13] on job shop scheduling with limited capacity buffers, and more applications related to the
job (or flow) shop with blocking have been reported in process industries and logistics. We mention here e.g. scheduling in
manufacturing of concrete blocks by Grabowski and Pempera [9], in steel-making by Pacciarelli and Pranzo [25], in chemical
batch production by Romero et al. [27], in container handling at a port by Chen et al. [6] and in railway networks by D’Ariano
et al. [7].
Most of the above authors emphasize that scheduling problems with blocking constraints (BJS) appear more difficult to

solve than the classical job shop (JS). To illustrate the differences, two structural properties of the BJS shall be mentioned
here, both being related to feasibility issues. First, in contrast to JS, a feasible partial schedule cannot always be extended to
a feasible complete schedule. In fact, Mascis and Pacciarelli [17,18] established that deciding whether this is possible is NP-
complete (this was also shown independently by Klinkert [15]). As a consequence, any heuristic that incrementally builds
up a solution (e.g. based on priority rules) risks the chance of running into infeasibility. Second, it is not straightforward
to construct feasible neighbor solutions in a local search approach as moves based on simple swaps of adjacent operations
typically yield infeasible schedules (while in the JS case, it is well known that swapping critical adjacent operations leads to
feasible neighbors).
A main part of the present paper is therefore dedicated to the construction of a new neighborhood for the GBJS providing

always feasible neighbors. Based on this neighborhood, a tabu search algorithm is developed that consistently provides
feasible solutions of competitive quality.
The paper is structured as follows. In the next section, we give a disjunctive programming formulation of the GBJS

problem and show how it can be represented as an optimization problem in an associated disjunctive graph. A detailed
example illustrates the formal problem description. In Section 3, we establish the theoretical tools and properties needed
for developing the neighborhood and illustrate the concepts in the example. We then devise a tabu search in Section 4 and
report on extensive computational experience in Section 5, before concluding with some remarks. The Appendix provides
a proof on connectivity.

2. Problem formulation

LetM be the set of machines, J the set of jobs and I the set of operations. σ and τ are dummy start and finish operations
of duration zero, having to be performed before, respectively after all operations. A job J ∈ J is identified with its set of
operations, i.e. J ⊆ I and J ⊆ 2I is a partition of I . For ease of notation, the operations of a job J are denoted by simply
indexing J with a subscript: the sequence of operations of job J is J1, J2, . . . , J|J|. For any job J ∈ J, the set of ordered pairs of
consecutive operations Jr and Jr+1 is denoted by AJ = {(Jr , Jr+1) : r = 1, . . . , |J| − 1}. For any machinem ∈ M , Im is the set
of operations usingm.
In the GBJS, an operation i ∈ I involves four consecutive steps: a take-over step with duration dti , a processing step with

duration di > 0, a waiting phase of unknown duration, and a hand-over step with duration dhi . For any operation i ∈ I , let
t(i) denote its take-over step and h(i) its hand-over step.
For any m ∈ M and i, j ∈ Im, i 6= j, dsij denotes the setup time when operation j immediately follows operation i on

machine m. Also, for any m ∈ M and i ∈ Im, dsσ i denotes the setup time before operation i if i is the first operation on
machinem, and dsiτ is the setup time after operation i if i is the last operation onm. We assume that these setup times satisfy
the triangle inequality (see the remark at the end of the section), i.e. dsij + d

s
jk ≥ d

s
ik for any distinct i, j, k ∈ Im, as well as for

i = σ and j, k ∈ Im, j 6= k, respectively i, j ∈ Im, i 6= j and k = τ .
Let xt(i) and xh(i) denote the starting time of the take-over step, respectively hand-over step of operation i ∈ I , and xσ ,xτ

the starting time of the dummy operations. The GBJS can now be formulated as the following disjunctive programming
problem:

Minimize xτ subject to: (1)
xt(j) − xh(i) ≥ dhi + d

s
ij

OR xt(i) − xh(j) ≥ dhj + d
s
ji for all {i, j} ⊆ Im,m ∈ M (2)

xt(j) − xh(i) ≥ 0,

xh(i) − xt(j) ≥ 0 for all (i, j) ∈ AJ , J ∈ J (3)

xh(i) − xt(i) ≥ dti + di for all i ∈ I (4)
xt(i) − xσ ≥ dsσ i,

xτ − xh(i) ≥ dhi + d
s
iτ for all i ∈ I (5)

xt(i), xh(i), xσ , xτ ≥ 0 for all i ∈ I. (6)

The objective function minimizes the makespan, given by the starting time of τ . The disjunctive constraints (2) ensure that
no two operations i and j on machinem overlap in time, and thatm is blocked during the execution of i and j: the hand-over
step of operation imust precede the take-over step of operation j or vice versa. The synchronization constraints (3) enforce

3646 H. Gröflin, A. Klinkert / Discrete Applied Mathematics 157 (2009) 3643–3655

the action that a job is handed over properly from operation i to operation j following i: the starting times xh(i) and xt(j) of
the hand-over step of i and the take-over step of jmust be equal (equality is expressed by two inequalities). The processing
constraints (4) ensure that for any operation i, the hand-over step of i takes place after the completion of the take-over and
processing step of i. The setup constraints (5) take into account initial and final setup times.
As is the case for the classical job shop (Roy and Sussman [28]), GBJS can be formulated as an optimization problem in

a (generalized) disjunctive graph G = 〈V , A, E, E, c〉. In this notation, G can be viewed as an ordinary directed graph with
node set V and arc set A ∪ E, where A and E are the conjunctive and disjunctive (directed) arcs, respectively, and c ∈ RA∪E

defines the arc weights. In addition, the family E ⊆ 2E of disjunctive sets is given which represents the disjunctive structure
of G. Any disjunctive set D ∈ E contains exactly two disjunctive arcs, i.e. D = {e, e} where e is called the mate of e (and
vice versa), and any disjunctive arc e ∈ E is assumed to be in exactly one disjunctive set. Note that generalized disjunctive
graphs differ from classical disjunctive graphs in that a disjunctive set may contain two arbitrary arcs, while in the classical
case it contains two reverse arcs e = (v,w) and e = (w, v) for some v,w ∈ V .
Similarly to classical disjunctive graphs, a subset of disjunctive arcs S ⊆ E is called a selection in G. The subgraph G(S)

associated to S is the (ordinary) directed graph obtained from G by adding the disjunctive arcs of S to the conjunctive arcs
A, i.e. G(S) = (V , A∪ S, c). (For ease of notation, we write c instead of the restriction of c to A∪ S.) A selection S is complete
in G if it intersects each disjunctive set in E , and positive acyclic in G if G(S) contains no cycle of positive weight. A selection
is feasible in G if it is complete and positive acyclic in G.
The disjunctive graph associated to a GBJS instance is now defined as follows (see the example below). The node set

V contains two nodes for each operation i, a take-over node ti and a hand-over node hi, so that V = V I ∪ {σ , τ } where
V I = {ti, hi : i ∈ I}. The set A of conjunctive arcs is given by A = A0 ∪ A1 ∪ Aσ ,τ , where A0 is the set of synchronization
arcs, linking for each job J consecutive operations (i, j) ∈ AJ by a pair of opposite arcs (with weight zero), i.e. A0 =
{(hi, tj), (tj, hi) : (i, j) ∈ AJ , J ∈ J}, A1 is the set of processing arcs, joining the take-over node to the hand-over node of
each operation, i.e. A1 = {(ti, hi) : i ∈ I}, and Aσ ,τ joins the dummy nodes σ and τ to all operations, i.e. Aσ ,τ = {(σ , ti) :
i ∈ I} ∪ {(hi, τ) : i ∈ I}. The set E of disjunctive arcs contains for any two operations i, j ∈ Im on a machine m two arcs
joining the hand-over node of i to the take-over node of j and vice versa, i.e. E = {(hi, tj), (hj, ti) : i, j ∈ Im, i 6= j,m ∈ M},
a disjunctive set D consists of a pair {(hi, tj), (hj, ti)} for some distinct i, j ∈ Im and the family E ⊆ 2E of disjunctive sets is
E = {{(hi, tj), (hj, ti)} : i, j ∈ Im, i 6= j,m ∈ M}. Finally, the arcs e ∈ A ∪ E have weight ce defined as follows: ce = 0 for
e ∈ A0, ce = dti + di for e = (ti, hi) ∈ A

1, ce = dsσ i for e = (σ , ti) ∈ A
σ ,τ , ce = dhi + d

s
iτ for e = (hi, τ) ∈ A

σ ,τ and ce = dhi + d
s
ij

for e = (hi, tj) ∈ E.
It is easy to show that GBJS is equivalent to the following problem inG: ‘‘Among all feasible selections inG, find a selection

S that minimizes the length of a longest path from σ to τ in G(S).’’
Observe that any disjunctive set D = {(hi, tj), (hj, ti)} is a positive cyclic selection, since (hi, tj), (hj, ti) together with arcs

(ti, hi), (tj, hj) ∈ A1 form a positive cycle in G (D). Therefore, in any feasible selection, exactly one arc of each disjunctive set
must be chosen. Note also that the disjunctive graph for the GBJS differs from a classical job shop graph in several features.
Most importantly, each operation is represented by two nodes, a take-over and a hand-over node, and the constraint that
no two operations on a machine may overlap, leads to disjunctive sets consisting of a pair of arcs with different extremities.
Before illustrating the GBJS in an example, two remarks on the formulations and on sequence-dependent setup times are

in order.
First, formulation (1)–(6) as well as the disjunctive graph could be given in a more compact form. Clearly, (3) could be

used to eliminate variables in (1)–(6). In parallel, in the disjunctive graph, any cycle formed by a pair of synchronization
arcs (of length 0) can be contracted to a single node and the arc of any last operation of a job can be contracted to a single
node (updating appropriately the weights of the arcs leaving it). This transformation leads to themore compact formulation
via alternative graphs proposed by Mascis and Pacciarelli [17]. We believe that both the given graph formulation and the
compact version are useful. The first is easy to derive and interpret (see also the example below). As in the classical job
shop, any disjunctive pair of arcs occurs between two operations on the same machine, and making a selection amounts to
deciding on how to sequence operations on machines. Synchronization arcs express constraints of synchronicity between
events, here between the moments a job is handed over by a machine and taken over by its next machine. On the other
hand, the compact formulation is better suited for implementation, since the contractions mentioned above make for more
efficient longest path computation. The data structure implemented in our tabu search is such that the needed procedures
(longest path and so-called closure computations) are performed in (subgraphs of) the compact formulation.
Second, sequence-dependent setup times should satisfy the triangle inequality for the disjunctive programming

formulation to be valid. Otherwise, arcs from e ∈ E ∪ Aσ ,τ between non-consecutive operations may become active when
computing longest paths in G (S), yielding a wrong makespan since setups take place only between consecutive operations
on a machine. However, the disjunctive graph model and the tabu search developed later can easily be adapted to handle
arbitrary setup times, simply by ignoring all arcs from E∪Aσ ,τ that link non-consecutive operations,when computing longest
paths and critical arcs in G (S).

Example. We consider a GBJS instance with 3 machines M = {m1,m2,m3}, 3 jobs J = {J, K , L} and 7 operations
I = {1, 2, . . . , 7}. The jobs are identified with their set of operations J = {1, 2}, K = {3, 4} and L = {5, 6, 7}, where
the sequence of operations for job L, for instance, is L1 = 5, L2 = 6 and L3 = 7 and the set of pairs of consecutive operations

H. Gröflin, A. Klinkert / Discrete Applied Mathematics 157 (2009) 3643–3655 3647

Fig. 1. Gantt diagram for the GBJS example.

Fig. 2. Disjunctive graph for the GBJS example.

is AL = {(5, 6), (6, 7)}. The operations processed on each machine are Im1 = {1, 5}, Im2 = {3, 6} and Im3 = {2, 4, 7}, i.e. job
L for instance is first processed onm1, then onm2 and finally onm3.

The numerical data are as follows: Durations di of processing steps i ∈ I are (d1, . . . , d7) = (42, 47, 47, 42, 89, 102, 36),
durations of take-over and hand-over steps are dti = d

h
i = 29 for i ∈ I , and setup times to be taken into account are d

s
15 = 72,

ds36 = 54, d
s
24 = 30, d

s
47 = 113, d

s
42 = 59, d

s
27 = 19 and d

s
51 = 25.

Fig. 1 shows theGantt diagramof a (semi-active) schedule for this GBJS instance. Each operation involves four consecutive
steps: considering for instance job K = {3, 4}, its first operation 3 comprises (i) an initial loading step of duration dt3 where
the job is loaded onto machinem2, (ii) a processing step of duration d3, (iii) a waiting phase (drawn as a thin bar) where the
job is blocking machine m2 until it can be transferred to machine m3, and (iv) a hand-over step of duration dh3 where the
job is transferred from m2 to m3. Operation 4 comprises a take-over step, a processing step, an empty waiting phase and a
final unloading step. Note that the hand-over step of operation 3 is synchronized with the take-over step of operation 4. The
duration of the (sequence-dependent) setup times between consecutive operations on amachine is indicated as arrows. For
instance, the setup between operations 4 and 7 on machinem3 ends before the processing step of operation 6 is completed
on machinem2; hence the waiting phase of operation 6 is empty.
The disjunctive graph G = (V , A, E, E, c) associated to this GBJS instance is shown in Fig. 2. For clarity, numerical data

and dummy nodes σ , τ have been omitted, pairs of reverse (zero-weighted) synchronization arcs A0 are drawn as undirected
edges, and disjunctive arcs E are dashed. G is defined as follows: its node set is V = {ti, hi : i = 1, 2, . . . , 7} ∪ {σ , τ },
and its set of conjunctive arcs is A = A0 ∪ A1 ∪ Aσ ,τ where the zero-weighted synchronization arcs are given by
A0 = {(h1, t2) , (t2, h1) , (h3, t4) , (t4, h3) , (h5, t6) , (t6, h5) , (h6, t7) , (t7, h6)}, the positive-weighted processing arcs by
A1 = {(ti, hi) : i = 1, 2, . . . , 7} and the σ , τ arcs by Aσ ,τ = {(σ , ti) , (hi, τ) : i = 1, 2, . . . , 7}. The family of
disjunctive sets is E = {{(h1, t5), (h5, t1)}, {(h3, t6), (h6, t3)}, {(h2, t4), (h4, t2)}, {(h4, t7) , (h7, t4)}, {(h2, t7), (h7, t2)}} and
the set of disjunctive arcs is E =

⋃
D∈E D. The schedule shown in Fig. 1 corresponds to the feasible selection S =

{(h1, t5) , (h3, t6) , (h2, t4) , (h4, t7) , (h2, t7)}.

3. A neighborhood for local search

We develop a local search approach for the GBJS where in a generic step, a feasible selection S is given and feasible
neighbor selections are generated by exchanging some disjunctive arc e ∈ Swith itsmate e, usually togetherwith exchanges
of some other arcs in order to recover feasibility. We shall need the concept of closure of a selection as well as a key result
on short cycles in the disjunctive graph, in order to construct a neighbor selection and prove its feasibility.
Let S ⊆ E be an arbitrary selection in G. The arcs implied by S are all disjunctive arcs that must be in any feasible selection

containing S. Given e ∈ E, clearly, if G(S ∪ e) contains a positive cycle passing through e, then e is implied by S. Thus, we
define

ϕ(S) = S ∪ {e ∈ E : G(S ∪ e) contains a positive cycle through e} .

Definition 1. Let S ⊆ E be a selection in G. (i) S is said to be closed in G if ϕ(S) = S. (ii) The closure Φ(S) of S in G is the
smallest closed selection in G containing S.

3648 H. Gröflin, A. Klinkert / Discrete Applied Mathematics 157 (2009) 3643–3655

The closureΦ(S) can easily be computed recursively as follows. The rth iteration of ϕ(S) is given by ϕr(S) = S for r = 0
and ϕr(S) = ϕ(ϕr−1(S)) for r ≥ 1. Obviously, there exists r ≤ |E| such that ϕr(S) = ϕr+1(S). ThenΦ(S) = ϕr(S).
We point out two properties which shall be used later. (i) If S ⊆ S ′, then Φ(S) ⊆ Φ(S ′). (ii) If S is a feasible selection, S

is closed, i.e. S = ϕ(S) = Φ(S). Indeed, for any e 6∈ S, e ∈ S since S is complete, and G(S ∪ e) = G(S) contains no positive
cycle since S is positive acyclic. Therefore ϕ(S)− S = ∅.
Besides closures, the second ingredient is the existence of ‘‘short’’ positive cycles in G. We shall need the following

notations. The extremities of an arc e = (v,w) are denoted by tail (e) = v and head (e) = w. For any job J ∈ J,
VJ = {ti, hi : i ∈ J} is the node set associated to J , E−J and E

+

J are the sets of disjunctive arcs entering and leaving J ,
respectively, i.e. E−J = {e ∈ E : head(e) = ti for some i ∈ J} and E

+

J = {e ∈ E : tail(e) = hi for some i ∈ J}, and
EJ = E−J ∪ E

+

J is the set of disjunctive arcs incident with J . Further, for any selection S and node setW ⊆ V in G (S), δ(W) is
the set of arcs with exactly one extremity inW and γ (W) is the set of arcs with both extremities inW .
Given a selection S ⊆ E, assume now that G(S) contains a positive cycle (with arc set) Z . Observe that for any job J ,

Z ∩ δ
(
VJ
)
⊆ EJ (i.e. Z enters and leaves J only through disjunctive arcs) since δ

(
VJ
)
⊆ E ∪ Aσ ,τ and arcs in Aσ ,τ cannot be

contained in any cycle. Furthermore,
∣∣Z ∩ E−J ∣∣ = ∣∣Z ∩ E+J ∣∣ since Z enters and leaves J the same number of times. Let∆(Z, J)

be this number, which can be seen as the number of times Z visits J . The following result asserts the existence of ‘‘short’’
positive cycles in G (S).

Theorem 2. For any positive cycle Z in G (S), there exists a ‘‘short’’ positive cycle Z ′ with Z ′ ∩ E ⊆ Z ∩ E and visiting each job at
most once.

Proof. Let Z be a positive cycle in G(S). If ∆(Z, J) ≤ 1 for all J ∈ J, we are done. Otherwise, let J ∈ J with ∆(Z, J) =
|Z ∩ E−J | > 1. We will construct a cycle Z

′ with Z ′ ∩ E ⊆ Z ∩ E and visiting J only once.
For any e ∈ E−J , define the rank r(e) to be the order of the operation of J to which e is incident, i.e. r(e) = s if head(e) = Js,

s ∈ {1, . . . , |J|}. Obviously, all e ∈ Z ∩ E−J have distinct ranks. Among them, let g be the arc of highest rank. Starting from
head(g) ∈ VJ , traverse Z until it enters the first time VJ through arc, say e ∈ Z ∩ E−J . The path traversed from head(g)
to head(e) can be written as the concatenation (P, f ,Q , e) where subpath P ⊆ γ (VJ) starts in head(g), f ∈ Z ∩ E+J , and
Q ⊆ γ (V − VJ) ends in tail(e). Now, since r(g) > r(e), there is a path R in γ (VJ) from head(e) to head(g), with the first arc
(ti, hi) if ti = head(e). Form the following cycle Z ′. Starting from head(e), traverse R until encountering a node of P , then
continue on P , f , Q and e. Since arc (ti, hi) in Z ′ has positive weight, Z ′ has positive length. Also, since Z ′ enters VJ (through
e), respectively leaves VJ (through f) exactly once, ∆(Z, J) = 1. Finally, by the construction of Z ′, Z ′ ∩ E ⊆ Z ∩ E, so that
∆(Z ′, J ′) ≤ ∆(Z, J ′) for all J ′ ∈ J, proving the theorem. �

Given now a feasible selection S in G, a neighbor is generated by selecting some arc e ∈ S, a job J ‘‘incident’’ with e, and
rescheduling job J (or a part of that job) in such a way that arc e is exchanged with e, possibly together with exchanges
of other arcs incident with J . Note that there are two jobs incident with e =

(
hi, tj

)
, denoted as Je,T and Je,H , where Je,T is

incident with the tail of e, i.e. i ∈ Je,T , and Je,H with the head of e, i.e. j ∈ Je,H .
Specifically, given e ∈ S and J ∈ {Je,T , Je,H}, let R = S − EJ be the set of selected disjunctive arcs not incident with J ,

and for any U ⊆ E, denote by E (U) = {e ∈ E : {e, e} ∩ U 6= ∅} the set of all disjunctive arcs contained in disjunctive sets
intersected by U . The following result whose proof relies on Theorem 2, shows how to construct a neighbor Se,J with e 6∈ Se,J
and e ∈ Se,J .

Theorem 3. Construct Q = Φ (R ∪ e). Then Se,J = Q ∪ (S − E(Q)) is a feasible neighbor selection of S.

Proof. Suppose J = Je,T , i.e. e ∈ E+J and e ∈ E
−

J (the proof for J = J
e,H is analogous). We first show that Q = Φ (R ∪ e) is

positive acyclic in G. Consider the (complete) selection R∪ E−J which corresponds to the solution where J is scheduled after
all other operations. Obviously, R ∪ E−J is positive acyclic. Indeed, suppose there is a positive cycle Z in G(R ∪ E

−

J). Since Z
is not contained in G (R), Z ∩ E−J 6= ∅, hence Z ∩ E

+

J 6= ∅, contradicting (R ∪ E
−

J) ∩ E
+

J = ∅. Thus R ∪ E
−

J is feasible and
therefore closed. From R ∪ e ⊆ R ∪ E−J , it follows thatΦ(R ∪ e) ⊆ Φ(R ∪ E

−

J) = R ∪ E
−

J , so thatΦ(R ∪ e) is positive acyclic.
Let Ŝ = S−E (Q). We now show that Q ∪ Ŝ is feasible. It is complete since Ŝ intersects all disjunctive sets not intersected

by Q . Suppose that G(Q ∪ Ŝ) contains a positive cycle Z . By Theorem 2, there exists a ‘‘short’’ positive cycle Z ′ visiting job
J at most once, i.e. ∆(Z ′, J) ≤ 1. Since Q is positive acyclic, Z ′ ∩ Ŝ 6= ∅, and since Ŝ ⊆ EJ , Z ′ visits J , hence ∆(Z ′, J) = 1,
i.e. |Z ′ ∩ EJ | = 2. Let Z ′ ∩ EJ = {f , g}, i.e. G (R ∪ {f , g}) contains Z ′. Since R ∪ Ŝ ⊆ S is positive acyclic, |̂S ∩ {f , g}| ≤ 1, and
since Q is positive acyclic and R ⊆ Q , |Q ∩{f , g}| ≤ 1. Thus, since {f , g} ⊆ Q ∪ Ŝ, f ∈ Ŝ and g ∈ Q . But then, since G (Q ∪ f)
contains the positive cycle Z ′ through f , f ∈ Φ (Q) = Q , hence {f , f } ⊆ E (Q), contradicting f ∈ Ŝ = S − E (Q). �

Neighbor Se,J of S is obtained by imposing the condition that some e ∈ S be replaced by itsmate e. If e = (hi, tj), e = (hj, ti)
and operation i, positioned in S before operation j on a processor, is positioned after j in Se,J . Disjunctive arcs besides emight
also be changed since all arcs ofΦ(R ∪ e) are implied by imposing e. Suppose J = Je,T so that i ∈ J andΦ(R ∪ e)− R ⊆ E−J .
Then i is moved to the ‘‘right’’, as well as possibly other operations of J . If J = Je,H , j ∈ J is moved to the ‘‘left’’, possibly with
other operations of J .

H. Gröflin, A. Klinkert / Discrete Applied Mathematics 157 (2009) 3643–3655 3649

Fig. 3. Graph G(Se,J) for neighbor selection Se,J .

Fig. 4. Gantt diagram for neighbor selection Se,J .

Observe that Se,J is a neighbor closest to S in the sense that Se,J − S ⊂ S ′ − S for any feasible selection S ′ containing
R ∪ e and distinct from Se,J . Hence, the number of exchanged arcs in Se,J isminimal among all neighbors obtained from S by
exchanging ewith e and allowing some rescheduling of job J .
Theorem 3 defines a non-empty neighborhoodN (S) of feasible neighbors defined for any feasible selection S:

N (S) = {Se,J : e ∈ S, J ∈ {Je,T , Je,H}}, where (7)

Se,J = Q ∪ (S − E(Q)) (8)

Q = Φ(e ∪ (S − EJ)) (9)

E(Q) = {e ∈ E : {e, e} ∩ Q 6= ∅}. (10)
In the Appendix, we show that this neighborhood is connected.

Example (Continued). Given the feasible selection S = {(h1, t5) , (h3, t6) , (h2, t4) , (h4, t7) , (h2, t7)} corresponding to the
schedule shown in Fig. 1, we shall now construct a feasible neighbor selection of S, based on Theorem 3. First, a critical
disjunctive arc e ∈ S is chosen to be exchanged with its mate e. Let e = (h1, t5). Replacing e by e = (h5, t1) corresponds to
a swap of operations 1 and 5. Observe that simply swapping these two operations leads to an infeasible schedule since the
resulting selection S − e ∪ e yields a positive cycle (with a node sequence) C = (t1, h1, t2, h2, t4, h3, t6, h5) in G (S).

In order to obtain a feasible neighbor selection, one of the two jobs Je,T and Je,H incident to e is chosen to be rescheduled.
Let J = Je,T be the chosen job. First, all arcs incident to J are removed from S, yielding R = S − EJ = {(h3, t6) , (h4, t7)},
and the mate e is added, yielding R ∪ e = {(h3, t6) , (h4, t7) , (h5, t1)}. Then the closure Q = Φ (R ∪ e) is constructed in
order to determine additional disjunctive arcs implied by R ∪ e. Since the disjunctive arc f = (h2, t4) together with R ∪ e
forms a positive cycle in G(R ∪ {e, f }) (corresponding to the cycle C mentioned above), f = (h4, t2) is contained in the
closure. No other arcs forming a positive cycle with R ∪ {e, f } can be found and the closure is therefore given by Q =
Φ(R∪e) = {(h3, t6) , (h4, t7) , (h5, t1) , (h4, t2)}. Finally, theneighbor selection Se,J = Q∪(S−E (Q)) is obtained. By definition,
E (Q) = {e ∈ E : {e, e}∩Q 6= ∅}, hence E (Q) = {(h3, t6), (h6, t3) , (h4, t7) , (h7, t4) , (h5, t1) , (h1, t5), (h4, t2) , (h2, t4)} and
S−E (Q) = {(h2, t7)}. Thus, Se,J is given by Se,J = {(h3, t6) , (h4, t7) , (h5, t1) , (h4, t2) , (h2, t7)}. Fig. 3 shows the conjunctive
graph G

(
Se,J
)
associated to the neighbor selection Se,J , and the corresponding (semi-active) schedule is drawn in Fig. 4.

Observe that operations 1 and 5 are swapped together with operations 2 and 4, corresponding to the exchange of e, e
and f , f .
Note that a different feasible neighbor selection Se,J can be constructed by choosing job J = Je,H to be rescheduled

instead of Je,T . Then R = {(h2, t4)}, R ∪ e = {(h2, t4) , (h5, t1)}, Q = Φ(R ∪ e) = {(h2, t4) , (h5, t1) , (h6, t3) , (h7, t4)},
S − E (Q) = (h2, t7) and Se,J = Q ∪ (h2, t7). The corresponding schedule contains three swaps, namely operations 1 and 5,
3 and 6, as well as 4 and 7.

4. Tabu search algorithm

General features of our tabu search for GBJS are similar to the approach proposed by Nowicki and Smutnicki [23] for the
classical job shop, although the moves are different and more involved than those in the job shop case, as detailed in the
previous section. For a general introduction to tabu search, see for instance Glover and Laguna [8].

3650 H. Gröflin, A. Klinkert / Discrete Applied Mathematics 157 (2009) 3643–3655

Our tabu search algorithm is based on the neighborhood N defined in (7)–(10), but moves are restricted to neighbors
associated to critical arcs. More precisely, the following restricted neighborhood N c(S) = {Se,J : e ∈ Λ(S), J ∈ {Je,T , Je,H}}
has been implemented, where Λ(S) denotes the set of all critical arcs in a feasible selection S, and arc e ∈ S is said to
be critical if it is on a longest path from σ to τ in G(S). N c has been proven to be computationally adequate, based on
extensive numerical experience, but we do not knowwhetherN c(S) is opt-connected (see the Appendix for the definitions
of connectivity and opt-connectivity). Numerical tests have also shown that it is sufficient to consider only selections
Se,J ∈ N c(S) for which J = Je,H , i.e. J is incident with the head of e.
At any iteration of the tabu search, a set (or list) of candidate solutions N ′(S) ⊆ N c(S) is evaluated. The candidate list

strategy is as follows: Determine a longest path P from σ to τ in G(S) and let ΛP(S) be the set of all disjunctive arcs on P .
Then the candidate set is given byN ′(S) = {Se,J : e ∈ ΛP(S), J ∈ {Je,T , Je,H}}.
A tabu list of fixed length maxt is maintained to keep track of the last moves executed. After the execution of a move

defined by (e, J)with J ∈ {Je,T , Je,H}, i.e. after a move to neighbor Se,J , arc e is appended to the tabu list and the first list entry
is dropped. The presence of arc e in the tabu list means that both moves associated to e, i.e. (e, Je,T) and (e, Je,H), are tabu.
The idea behind is that a move (e, J)with e = (ti, hj) swaps the two operations i and j, and swapping them back soon after
by a move (e, J) should be avoided.
Evaluation of the candidate set comprises the following steps: For all candidates Se,J ⊆ N ′(S), calculate the makespan

λ(Se,J). If e is contained in the tabu list and λ(Se,J) does not improve the best makespan found so far (‘‘improved-best
aspiration criterion’’), remove candidate Se,J from the candidate set. Take the best of the remaining candidates as the next
selection. If all candidates have been removed (i.e. all candidates are tabu and not globally improving), take the candidate
corresponding to the oldest tabu move as the next selection.
In addition to this short termmemory tabu search, an intensification strategy based on longer termmemory is used. A list

of bounded lengthmaxl containing historically found elite solutions is kept, and new solutions encountered during the search
are appended to the list if they are better than any previously encountered. If the tabu search runs for a specified number
of iterations (maxiter) without improving the best solution (or if a cycle is detected), the current search path is terminated
and the search is resumed with the last elite solution in the list. An elite solution is stored together with its associated tabu
list and the moves already taken from the solution. When resuming search from an elite solution, its associated tabu list is
restored and the moves previously taken are removed from the candidate set. An elite solution is dropped from the list if its
candidate set is empty, i.e. all search paths starting from this solution have been explored.
Finally, a cycle detection procedure (similar to Nowicki and Smutnicki [23]) is used that keeps track of the sequence of

makespans encountered during the iterations and scans this sequence for cycles (i.e. repeated subsequences of values).

5. Computational results

Extensive computational tests on a set of 81 benchmark instances have been performed for both the classical Blocking Job
Shop (BJS) and GBJS. The instances for BJS are obtained from the following standard job shop benchmark problems: abz5-9
proposed by Adams et al. [1], ft06/10/20 by Fisher and Thompson (in Muth and Thompson [22]), la01-40 by Lawrence [16],
orb01-06/08-10 by Applegate and Cook [2], swv01-20 by Storer et al. [29], and yn1-4 by Yamada and Nakano [30]. Since GBJS
has not yet been considered in the literature, we created a new collection of benchmark instances for this problem, based on
the instances for BJS. We added to each instance randomly generated transfer times and sequence-dependent setup times,
uniformly distributed in the intervals [1, 20] and [0, 50], respectively.
The tabu search has been implemented in C++ and tested underMicrosoftWindows XP on an Intel Pentium IV - 2.8 GHz

platform with 512 MB of physical memory.
Starting solutions for BJS are obtained by a randomized dispatching heuristic of Brizuela et al. [3]. For GBJS, this heuristic

almost always runs into infeasibility; therefore random permutation schedules are used as starting solutions.
The tabu search parameters have been set identical for all numerical experiments: maxt = 8,maxl = 300 and

1000 ≤ maxiter ≤2500, where maxiter decreases with increasing length of the elite solution list. For each instance, five
independent runs have been executed with different starting solutions, and the time limit for each run was 1800 s.
The numerical results for BJS have been compared to the results of Mascis and Pacciarelli [17,18], Meloni, Pacciarelli

and Pranzo [21] and Brizuela et al. [3] which, to the best of our knowledge, are the only contributions containing explicit
computational results for BJS. Mascis and Pacciarelli (MP) presented results for 59 BJS problems (a subset of our 81
benchmark instances). They applied three specialized dispatching heuristics that often – but not always – find a feasible
solution. Using all three heuristics, they found solutions for 53 of the 59 instances. For eighteen of the smaller (10 × 10)
instances, they also computed the optimal solution with a branch-and-bound algorithm. Meloni, Pacciarelli and Pranzo
(MPP) tested their rolloutmetaheuristic on the eighteen 10×10 instances provided byMP. They found feasible solutions for
seventeen of the eighteen instances, showing substantial improvements of the heuristic results given byMP. Unfortunately,
MPP do not mention how their algorithm performs on larger instances and whether the method is able to construct feasible
solutions for larger instances.
Brizuela et al. [3] proposed a genetic algorithm for BJS. They offer however very sparse computational results on only 4

instances (on which our tabu search performs better). For this reason, only a comparison with the results of MP and MPP is
reported.

H. Gröflin, A. Klinkert / Discrete Applied Mathematics 157 (2009) 3643–3655 3651

Table 1
Summary of tabu search results for BJS and GBJS.

Instances BJS GBJS
Size #inst #bench %bench iter 300 s 600 s 1200 s %init iter 300 s 600 s 1200 s

6× 6 1 1 1.59 14755 0.00 0.00 0.00 29.14 3724 0.00 0.00 0.00
10× 5 5 5 40.30 53914 0.55 0.07 0.00 82.41 19352 0.00 0.00 0.00
15× 5 5 5 42.30 99344 2.38 1.40 0.69 86.06 55924 0.00 0.00 0.00
20× 5 6 6 44.88 59571 2.95 1.31 0.40 79.52 91325 0.35 0.00 0.00
10× 10 17 16(17) 2.11 63154 2.93 1.55 0.35 130.61 74716 0.28 0.03 0.00
15× 10 5 5 80.10 24636 5.67 3.08 1.67 168.72 90085 4.17 1.06 0.30
20× 10 10 4(5) 64.76 12967 4.95 2.92 1.12 112.46 51461 5.59 2.66 0.90
30× 10 5 1(5) 42.31 4416 5.69 4.17 1.77 142.23 23814 10.67 7.47 3.35
50× 10 10 0 – 1302 5.05 2.62 0.63 79.01 8019 3.66 2.41 1.06
15× 15 5 5 71.58 9768 6.92 4.24 1.44 224.67 49448 5.03 2.12 0.73
20× 15 8 1(3) 59.52 4951 7.05 4.17 1.85 116.08 27286 6.97 4.23 1.79
20× 20 4 0 – 1877 10.65 6.58 1.69 174.84 17494 12.49 7.25 2.75

Table 1 summarizes our numerical results for BJS and GBJS. Each line corresponds to a group of test instances of the same
dimension n×m, where n andm are the numbers of jobs and machines, respectively. Column ‘#inst ’ shows the number of
instances in the group. The values in each line are averaged over the 5 independent tabu runs for each instance and over all
instances of the group.
The results for BJS are compared to the best solutions found by MP or MPP: column ‘#bench’ shows the number of

instances in the group that MP could solve, and in parenthesis (if different) the number of instances they tried to solve.
Column ‘%bench’ gives the mean relative gap between the best solution found by MP or MPP (‘bench’) and our best tabu
solution (‘best’), i.e. ‘(bench− best)/best ∗ 100’. Column ‘iter ’ indicates the average number of iterations of the tabu search.
Columns ‘300 s’, ‘600 s’ and ‘1200 s’ show intermediate tabu results after 300, 600 and 1200 s, respectively: the value in
column ‘300 s’ for instance corresponds to the mean relative gap between the best tabu solution found after 300 s and the
final tabu solution, i.e. ‘(300s− tabu)/tabu ∗ 100’.
The results for GBJS are presented similarly. Since there are no benchmark results available for comparison, the tabu

results are compared to the makespan of the initial solution: column ‘%init ’ shows the mean relative gap between the initial
solution (‘init’) and the tabu solution, i.e. ‘(init − tabu)/tabu ∗ 100’.
In summary, our solutions for BJS are about 40%–80% better than MP’s solutions (see ‘%bench’), and for the 10 × 10

instances, they are of similar quality as MPP’s solutions. Furthermore, the table shows that most of the improvement in
the tabu search is already achieved before the set time limit of 1800 s (see ‘300 s’, ‘600 s’, ‘1200 s’). For GBJS, the mean
improvement of the initial solution is around 80%–220%.
Tables 2 and 3 give detailed results for the BJS and GBJS instances, respectively. Columns ‘init ’ and ‘final’ show for each

instance the mean initial and final makespan of our tabu search, averaged over the five independent runs (with different
starting solutions). Column ‘best ’ gives the best makespan found among these five tabu solutions. For BJS, column ‘bench’
shows the best makespan found by MP or MPP (results obtained by MPP are flagged with an asterisk, and ‘ns’ indicates
that the instance could not be solved by MP), and column ‘opt ’ gives the optimal solutions provided by MP for the eighteen
10× 10 instances.
Comparing our tabu solutions for these 10 × 10 instances to the optimal solutions provided by MP, the mean relative

gap from the optimum, given by ‘(best − opt)/opt ∗ 100’, is 6.48% for our solutions, while this gap is 5.99% and 70.79% for
MPP’s and MP’s solutions, respectively.

6. Concluding remarks

Solving job shop problems with blocking constraints is a challenge since approaches developed for the classical job
shop do not seem to easily extend to this problem. Constructive heuristics risk the chance of running into infeasibility.
Local search procedures based on simple swaps of operations produce infeasible solutions. Also, bottleneck approaches
appear problematic since sequencing a single machine while fixing operation sequences on other machines typically yields
infeasible schedules.
We developed a neighborhood for the Generalized Blocking Job Shop that always generates feasible neighbors, based on

the exchange of critical arcs, closures and job reinsertion. In order to prove feasibility of these neighbors,we established a key
theorem on short cycles in the disjunctive graph. We integrated the neighborhood in a tabu search method and presented
numerical results that compare quite favorably with benchmark results, when available. In addition, the constructive
heuristics establishing these benchmarks fail sometimes, although infrequently, to terminate with a feasible solution while
our method always maintains feasibility.
The structural results of this paper are also useful in other contexts. We used for instance in Gröflin and Klinkert [11]

the short cycle property in deriving polyhedral descriptions of the feasible job and block insertions for various extensions
of the job shop model. Furthermore, in view of the general nature of the tools used, the approach presented for designing a
neighborhood for local search is applicable to other complex scheduling problems.

3652 H. Gröflin, A. Klinkert / Discrete Applied Mathematics 157 (2009) 3643–3655

Table 2
Detailed tabu search results for BJS.

Instances Tabu MP, MPP* Instances Tabu MP, MPP*
Inst Size init final best bench opt Inst Size init final best bench opt

abz5 10× 10 2393 1639 1626 *1595 1468 la34 30× 10 4809 3354 3205 4561 –
abz6 10× 10 2109 1287 1241 *1222 1145 la35 30× 10 4833 3445 3311 ns –
abz7 20× 15 1924 1273 1224 ns – la36 15× 15 3178 1974 1932 3369 –
abz8 20× 15 2034 1263 1226 ns – la37 15× 15 3314 2133 2053 3009 –
abz9 20× 15 1827 1290 1166 1860 – la38 15× 15 3123 1939 1875 3187 –
ft06 6× 6 92 63 63 64 – la39 15× 15 3099 1987 1950 3787 –
ft10 10× 10 1821 1136 1103 *1144 1068 la40 15× 15 3273 1982 1936 3345 –
ft20 20× 5 2239 1527 1495 2047 – orb01 10× 10 2015 1300 1268 *1287 1175
la01 10× 5 1272 836 832 1137 – orb02 10× 10 1836 1128 1092 *1110 1041
la02 10× 5 1142 824 793 1055 – orb03 10× 10 1996 1226 1203 *1188 1160
la03 10× 5 1152 765 747 1088 – orb04 10× 10 2489 1237 1203 *1223 1146
la04 10× 5 1233 774 769 971 – orb05 10× 10 1688 1102 1083 *1083 995
la05 10× 5 1009 711 698 1116 – orb06 10× 10 2275 1302 1265 *1278 1199
la06 15× 5 1815 1191 1180 1493 – orb08 10× 10 1671 1063 1028 1496 995
la07 15× 5 1582 1119 1091 1737 – orb09 10× 10 2182 1138 1127 *1046 1039
la08 15× 5 1758 1161 1125 1569 – orb10 10× 10 1921 1214 1181 *1153 1146
la09 15× 5 1814 1269 1223 1943 – swv01 20× 10 3439 2050 2001 – –
la10 15× 5 1910 1222 1203 1533 – swv02 20× 10 3283 2159 2069 – –
la11 20× 5 2378 1615 1584 2189 – swv03 20× 10 3358 2099 2029 – –
la12 20× 5 2052 1433 1391 2122 – swv04 20× 10 3606 2183 2156 – –
la13 20× 5 2180 1576 1548 2296 – swv05 20× 10 3359 2177 2108 – –
la14 20× 5 2340 1648 1620 2423 – swv06 20× 15 4557 2762 2612 – –
la15 20× 5 2303 1667 1650 2371 – swv07 20× 15 4332 2643 2610 – –
la16 10× 10 1797 1175 1142 *1109 1060 swv08 20× 15 4502 2995 2878 – –
la17 10× 10 1662 1040 1026 *982 929 swv09 20× 15 4210 2743 2669 – –
la18 10× 10 1683 1112 1078 *1114 1025 swv10 20× 15 4348 2881 2675 – –
la19 10× 10 1797 1124 1093 *1115 1043 swv11 50× 10 8120 5425 5215 – –
la20 10× 10 1960 1184 1154 *1118 1060 swv12 50× 10 7977 5778 5623 – –
la21 15× 10 2645 1617 1545 2701 – swv13 50× 10 8193 5414 5256 – –
la22 15× 10 2456 1525 1458 2566 – swv14 50× 10 7965 5335 5231 – –
la23 15× 10 2524 1645 1611 3044 – swv15 50× 10 7749 5384 5061 – –
la24 15× 10 2592 1623 1571 3350 – swv16 50× 10 8055 5614 5376 – –
la25 15× 10 2505 1541 1499 2211 – swv17 50× 10 7860 5677 5368 – –
la26 20× 10 3294 2182 2162 4024 – swv18 50× 10 7823 5685 5544 – –
la27 20× 10 3449 2258 2175 ns – swv19 50× 10 7679 6041 5830 – –
la28 20× 10 3369 2186 2071 3070 – swv20 50× 10 7683 5782 5545 – –
la29 20× 10 3200 2161 2124 3792 – yn1 20× 20 2609 1855 1699 – –
la30 20× 10 3494 2199 2171 3173 – yn2 20× 20 2514 1800 1697 – –
la31 30× 10 4845 3266 3167 ns – yn3 20× 20 2640 1813 1688 – –
la32 30× 10 5139 3549 3418 ns – yn4 20× 20 2852 1938 1777 – –
la33 30× 10 4617 3225 3131 ns –

The present paper is a substantial expansion of the unpublished report ‘‘The Synchronized Job Shop Problem: Local Search
in Generalized Disjunctive Graphs’’, presented at the Integer Programming Conference in honor of Egon Balas, Pittsburgh,
2002. In particular, the tabu approach presented here replaces the descent method used initially.

Acknowledgements

We thank the anonymous referees for their helpful comments and constructive suggestions.

Appendix

In a local search approach, a neighborhood N is defined which associates to a solution S a subset of neighbor solutions
N (S). A transition from S to a neighbor S ′ ∈ N (S) is a move. N is said to be connected if, given two arbitrary solutions S
and T , it is possible to proceed from S to T through a sequence of moves in N , i.e. there exists a sequence S0, . . . , S l such
that S0 := S, Sk ∈ N (Sk−1), 1 ≤ k ≤ l, and S l = T . A neighborhood N is opt-connected if, given an arbitrary solution S,
it is possible, starting from S, to reach some optimal solution through a sequence of moves in N , i.e. there is a sequence
S0, . . . , S l such that S0 := S, Sk ∈ N (Sk−1), 1 ≤ k ≤ l, and S l is optimal.
In what follows, we show that the neighborhood N defined in Section 3 is connected. Whether N c is opt-connected or

not, remains however an open question.
Theorem 4. The neighborhoodN defined by (7)–(10) is connected, and for any pair of feasible selections S, T , at most |E|moves
are necessary to proceed from S to T .
The proof is based on two lemmas. Given two feasible selections S and T , the first lemma shows how to proceed from S

to a feasible selection S ′ that is closer to T than S by rescheduling some job. The second lemma ensures that the transition
from S to S ′ can be done with moves inN .

H. Gröflin, A. Klinkert / Discrete Applied Mathematics 157 (2009) 3643–3655 3653

Table 3
Detailed tabu search results for GBJS.

Instances Tabu Instances Tabu
Inst Size init final best Inst Size init final best

abz5 10× 10 7480 2562 2462 la34 30× 10 15304 6618 6242
abz6 10× 10 5963 2117 2075 la35 30× 10 15424 6312 5990
abz7 20× 15 9387 3669 3393 la36 15× 15 11569 3696 3458
abz8 20× 15 9312 3713 3431 la37 15× 15 12457 3808 3533
abz9 20× 15 9331 3606 3229 la38 15× 15 11544 3571 3392
ft06 6× 6 740 573 565 la39 15× 15 11458 3587 3400
ft10 10× 10 4172 2380 2290 la40 15× 15 11743 3496 3307
ft20 20× 5 4506 2989 2906 orb01 10× 10 3640 2239 2170
la01 10× 5 3075 1570 1494 orb02 10× 10 5374 2096 2030
la02 10× 5 2812 1579 1531 orb03 10× 10 3479 2301 2135
la03 10× 5 2530 1497 1467 orb04 10× 10 5455 2222 2154
la04 10× 5 2602 1470 1439 orb05 10× 10 5071 2125 2021
la05 10× 5 2680 1399 1342 orb06 10× 10 4323 2310 2245
la06 15× 5 4288 2259 2232 orb08 10× 10 2953 1995 1925
la07 15× 5 3873 2274 2156 orb09 10× 10 4930 2046 2004
la08 15× 5 4292 2201 2040 orb10 10× 10 5254 2303 2233
la09 15× 5 4652 2341 2293 swv01 20× 10 6330 3825 3520
la10 15× 5 4122 2349 2271 swv02 20× 10 6369 3886 3772
la11 20× 5 5599 3121 3081 swv03 20× 10 6625 3891 3783
la12 20× 5 5095 2873 2793 swv04 20× 10 6383 3986 3906
la13 20× 5 5581 2858 2756 swv05 20× 10 6570 4030 3830
la14 20× 5 5630 2935 2813 swv06 20× 15 9152 4693 4550
la15 20× 5 5415 2981 2866 swv07 20× 15 9143 4815 4469
la16 10× 10 5240 2066 1994 swv08 20× 15 9607 4928 4559
la17 10× 10 5085 1960 1938 swv09 20× 15 9276 4995 4704
la18 10× 10 5479 2068 1963 swv10 20× 15 9269 4800 4647
la19 10× 10 5396 1966 1786 swv11 50× 10 15471 10244 9888
la20 10× 10 5415 2119 2041 swv12 50× 10 15506 10094 9660
la21 15× 10 8019 2987 2792 swv13 50× 10 15765 10504 10160
la22 15× 10 7376 2875 2771 swv14 50× 10 15131 10199 9547
la23 15× 10 8069 2979 2921 swv15 50× 10 15095 9964 9748
la24 15× 10 8252 3019 2979 swv16 50× 10 25169 12196 10985
la25 15× 10 7909 2890 2754 swv17 50× 10 24526 12319 12041
la26 20× 10 10263 4013 3716 swv18 50× 10 24283 12330 11763
la27 20× 10 10828 4110 4057 swv19 50× 10 26054 11905 11080
la28 20× 10 10697 4017 3869 swv20 50× 10 24906 11741 11189
la29 20× 10 10263 4029 3957 yn1 20× 20 13225 4858 4485
la30 20× 10 10682 4126 4076 yn2 20× 20 13556 5340 4440
la31 30× 10 14976 6506 6172 yn3 20× 20 13639 4777 4613
la32 30× 10 16615 6404 6117 yn4 20× 20 13346 4761 4239
la33 30× 10 15667 6423 6116

We shall need the following notations and definitions. For any two disjoint subsets Ja,Jbof job set J, γ (Ja) denotes the
set of all arcs with one extremity in a job K and the other in a job L, K , L ∈ Ja, and δ(Ja,Jb) the set of all arcs with tails in a
job K ∈ Ja and heads in a job L ∈ Jb.

Definition 5. Given a partition of J into two sets Ja, Jb, a feasible selection S schedules Ja before Jb if S ∩ δ(Jb,Ja) = ∅.

Definition 6. Given a subset Jb of J and a feasible selection T , a feasible selection S agrees with T on Jb if S ∩ γ (Jb) =
T ∩ γ (Jb).

Now let the setJ of all jobs be partitioned into two setsJa andJb and let J be an arbitrary job ofJa. The sets of disjunctive
arcs E−J , E

+

J and EJ entering J , leaving J and incident with J can be partitioned according to whether they are arcs incident to
jobs of Ja or Jb: E−J = E

−

aJ ∪ E
−

bJ , E
+

J = E
+

aJ ∪ E
+

bJ and EJ = EaJ ∪ EbJ , where E
−

aJ = E
−

J ∩ δ(J
a
− J, J), E+aJ = E

+

J ∩ δ(J,J
a
− J),

E−bJ = E
−

J ∩ δ(J
b, J), E+bJ = E

+

J ∩ δ(J,J
b) and EaJ = E−aJ ∪ E

+

aJ , EbJ = E
−

bJ ∪ E
+

bJ .

Lemma 7. Let S and T be feasible selections such that S schedules Ja before Jb and agrees with T on Jb. Then S ′ defined by

S ′ − EJ = S − EJ (11)

S ′ ∩ EaJ = E−aJ (12)

S ′ ∩ EbJ = T ∩ EbJ (13)

is a feasible selection, and, letting J′a = Ja − J and J′b = Jb ∪ J , S ′ schedules J′a before J′b and agrees with T on J′b.

3654 H. Gröflin, A. Klinkert / Discrete Applied Mathematics 157 (2009) 3643–3655

Proof. Observe that by (11), changing S to S ′ corresponds to a rescheduling of job J . We show that S ′ is feasible. First, S ′ is
complete, as it is easy to verify |S ′| = |E|/2. S ′ is also positive acyclic. Suppose the contrary, i.e. G(S ′) contains a positive
cycle, and hence a short positive cycle Z visiting J exactly once. (Note that Z must visit J since by (11),G(S ′−EJ) = G(S−EJ) is
positive acyclic.) Let Z∩S ′∩Ej = {f , g}with f ∈ E−J ∩S

′ and g ∈ E+J ∩S
′. Z consists of the concatenation (f , P, g,Q), where P

is a path of conjunctive arcs in γ (J), andQ a path in γ (V−J). By (12), S ′∩E+aJ = ∅, and therefore g ∈ E
+

bJ and the starting node
head(g) ofQ is in

⋃
J ′∈Jb J

′. By (11),Q is a path inG(S−EJ). Since S schedulesJa beforeJb, i.e. S∩δ(Jb,Ja) = ∅, not only the
starting nodehead(g), but all nodes ofQ are in

⋃
J ′∈Jb J

′ and therefore, interpretingQ as its arc set,Q∩S ′ = Q∩S ⊆ γ (Jb)∩S.
But then, since S agrees with T on Jb, i.e. S ∩ γ (Jb) = T ∩ γ (Jb), Q is a path in G(T − EJ). Since S ′ ∩ EbJ = T ∩ EbJ and both
f and g ∈ EbJ , Z itself is contained in G(T), a contradiction to T being a feasible selection.
Finally, since S schedules Jb before Ja and (12) holds, and S agrees with T on Jb and (13) holds, S ′ schedules J′a before

J′b and agrees with T on J′b, where J′a = Ja − J and J′b = Jb ∪ J . �

Lemma 8. Let S and S ′ be two feasible selections differing only in the way job J is scheduled, i.e. S − EJ = S ′ − EJ and define the
neighborhoodNJ(S) = {Se,J : e ∈ EJ} ⊆ N (S). There exists a sequence of selections S0, S1, S l such that S0 := S, Sk ∈ NJ(Sk−1),
1 ≤ k ≤ l, and S l = S ′. Moreover l ≤ |EJ |/2.

Proof. It is enough to show that if S 6= S ′, taking any e ∈ S − S ′ and exchanging ewith e yield Se,J with |Se,J ∩ S ′| > |S ∩ S ′|.
Since S − EJ = S ′ − EJ and e ∈ S − S ′, (S − EJ)∪ e ⊆ S ′, and since S ′ is feasible and hence closed, Q = Φ((S − EJ)∪ e) ⊆ S ′.
Now, S = (S ∩ E(Q)) ∪ (S − E(Q)) and Se,J = (Se,J ∩ E(Q)) ∪ (S − E(Q)) = Q ∪ (S − E(Q)) are bipartitions of S and Se,J
and |S| = |Se,J |, hence |S ∩ E(Q)| = |Q |. Then |S ∩ S ′| − |Se,J ∩ S ′| = |S ∩ E(Q) ∩ S ′| − |Q |, and since e ∈ (S ∩ E(Q))− S ′,
|S ∩ E(Q) ∩ S ′| < |S ∩ E(Q)| = |Q |, hence |S ∩ S ′| − |Se,J ∩ S ′| < 0. �

Proof of Theorem 4. Start with selection S and job set partitions Ja = J and Jb = ∅, and perform repeatedly the following
steps while Ja 6= ∅. Choose J ∈ Ja, construct S ′ as specified in Lemma 7, with at most |EJ |/2 moves (Lemma 8), and set
S := S ′, J′a := Ja− J and J′b := Jb∪ J . At termination, S ′ = T . The total number of moves is bounded by

∑
J∈J |EJ |/2 = |E|,

each e ∈ E appearing exactly in two EJ ’s. �

References

[1] J. Adams, E. Balas, D. Zawack, The shifting bottleneck procedure for job shop scheduling, Management Science 34 (3) (1988) 391–401.
[2] D. Applegate, W. Cook, A computational study of the job shop scheduling problem, ORSA Journal on Computing 3 (2) (1991) 149–156.
[3] C.A. Brizuela, Y. Zhao, N. Sannomiya, No-wait and blocking job-shops: Challenging problems for GA’s, IEEE 0-7803-77-2/ 01 (2001) 2349–2354.
[4] P. Brucker, T. Kampmeyer, Cyclic job shop scheduling problems with blocking, Annals of Operations Research 159 (2008) 161–181.
[5] O. Candar, Machine scheduling problems with blocking and no-wait in process, Working Paper [April-99], Department of Industrial Engineering,
Bilkent University, Ankara, Turkey, 1999.

[6] L. Chen, N. Bostel, P. Dejax, J. Cai, L. Xi, A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime
terminal, European Journal of Operational Research 181 (2007) 40–58.

[7] A. D’Ariano, D. Pacciarelli, M. Pranzo, A branch and bound algorithm for scheduling trains in a railway network, European Journal of Operational
Research 183 (2007) 643–657.

[8] F. Glover, M. Laguna, Tabu Search, Kluwer, Boston, 1997.
[9] J. Grabowski, J. Pempera, Sequencing of jobs in some production system, European Journal of Operational Research 125 (2000) 535–550.
[10] H. Gröflin, A. Klinkert, Local search in job shop schedulingwith synchronization and blocking constraints, Internalworking paper [04–06], Department

of Informatics, University of Fribourg, Switzerland, 2004.
[11] H. Gröflin, A. Klinkert, Feasible insertions in job shop scheduling short cycles and stable sets, European Journal of Operational Research 177 (2007)

763–785.
[12] N.G. Hall, C. Sriskandarajah, A survey of machine scheduling problems with blocking and no-wait in process, Operations Research 44 (3) (1996)

510–525.
[13] S. Heitmann, Job-shop scheduling with limited buffer capacities, Doctoral Thesis, University of Osnabrück, Germany, 2007.
[14] A.S. Jain, S. Meeran, Deterministic job-shop scheduling: Past present and future, European Journal of Operational Research 113 (1999) 390–434.
[15] A. Klinkert, Optimization in design and control of automated high-density warehouses, Doctoral Thesis No. 1353, University of Fribourg, Switzerland,

2001.
[16] S. Lawrence, Supplement to Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques, GSIA,

Carnegie Mellon University, Pittsburgh, PA, 1984.
[17] A. Mascis, D. Pacciarelli, Machine scheduling via alternative graphs, Research Report, RT-DIA-46-2000, Italy, 2000.
[18] A. Mascis, D. Pacciarelli, Job-shop scheduling with blocking and no-wait constraints, European Journal of Operational Research 143 (2002) 498–517.
[19] Y. Mati, N. Rezg, X. Xie, Geometric approach and taboo search for scheduling flexible manufacturing systems, IEEE Transactions on Robotics and

Automation 17 (6) (2001) 805–818.
[20] Y. Mati, N. Rezg, X. Xie, Scheduling problem of job-shop with blocking: A taboo search approach, Extended Abstracts, MIC 2001-4th Metaheuristics

International Conference, Portugal, 2001, pp. 643–648.
[21] C. Meloni, D. Pacciarelli, M. Pranzo, A rollout metaheuristic for job shop scheduling problems, Annals of Operations Research 131 (2004) 215–235.
[22] J.F. Muth, G.L. Thompson (Eds.), Industrial Scheduling, Kluwer, Dordrecht, 1963.
[23] E. Nowicki, C. Smutnicki, A fast taboo search algorithm for the job shop problem, Management Science 42 (6) (1996) 797–812.
[24] D. Pacciarelli, Alternative graph formulation for solving complex factory-scheduling problems, International Journal of Production Research 40 (15)

(2002) 3641–3653.
[25] D. Pacciarelli, M. Pranzo, Production scheduling in a steelmaking-continuous casting plant, Computers and Chemical Engineering 28 (2004)

2823–2835.
[26] M. Pinedo, X. Chao, Operations Scheduling with Applications in Manufacturing and Services, Irwin/McGraw-Hill, Boston, 1999.

H. Gröflin, A. Klinkert / Discrete Applied Mathematics 157 (2009) 3643–3655 3655

[27] J. Romero, L. Puigjaner, T. Holczinger, F. Friedler, Scheduling intermediate storage multipurpose batch plants using the s-graph, AIChE Journal 50
(2004) 403–417.

[28] B. Roy, B. Sussman, Les problèmes d’ordonnancement avec contraintes disjonctives, Note DS No. 9 bsi, SEMA, Paris, France, 1964.
[29] R.H. Storer, S.D. Wu, R. Vaccari, New search spaces for sequencing problems with application to job shop scheduling, Management Science 38 (10)

(1992) 1495–1509.
[30] T. Yamada, R. Nakano, A genetic algorithm applicable to large-scale job-shop problems, in: Proceedings of the 2nd Parallel Problem Solving from

Nature, PPSN ’92, 1992, pp. 281–290.

	A new neighborhood and tabu search for the Blocking Job Shop
	Introduction
	Problem formulation
	A neighborhood for local search
	Tabu search algorithm
	Computational results
	Concluding remarks
	Acknowledgements
	Appendix
	References

