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Quinacridone is a five-ring hydrogen-bonded molecule analogous in structure and size to the

well-known organic semiconductor pentacene. Unlike pentacene, quinacridone has limited

intramolecular p-conjugation and becomes highly colored in the solid state due to strong

intermolecular electronic coupling. We found that quinacridone shows a field-effect mobility of

0.1 cm2/V�s, comparable to mobilities of pentacene in similarly prepared devices. Photoinduced

charge generation in single-layer quinacridone metal-insulator-metal diodes is more than a hundred

times more efficient than in pentacene devices. Photoinduced charge transfer from quinacridone to

C60 is not effective, as evidenced by measurements in heterojunctions with C60. Hydrogen-bonded

organic solids may provide new avenues for organic semiconductor design. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4736579]

Organic semiconductors differ in many respects from

inorganic ones. Small molecular organic semiconductors and

polymers form van der Waals solids, where the relatively

weak intermolecular interactions results in materials with

low dielectric constant (er). Inefficient electric field screening

and disorder in organic semiconductors lead to high exciton

binding energy, as well as to localization effects and hopping

transport.1

Molecules where intramolecular p-conjugation is inter-

rupted by functional groups such as carbonyl and secondary

amines are typically not considered for organic semiconduc-

tor applications.2,3 Recent work on hydrogen-bonded indi-

goids4,5 has shown that these small and ‘poorly’ conjugated

molecules show ambipolar charge transport with surprisingly

large mobilities between 0.01 and 0.4 cm2/V�s. This high

mobility is attributed to strong intermolecular interactions

reinforcing p-stacking and crystalline ordering. This moti-

vated us to look at a hydrogen-bonded analog of pentacene,

quinacridone, with respect to charge transport in organic

field-effect transistors (OFETs) and photogeneration in

single-layer organic diodes. Quinacridone is a well-known

commercial paint and cosmetic pigment.6 It shows field-

effect mobilities of 0.1 cm2/Vs, photocurrents in the mA/cm2

range under simulated solar illumination. Quinacridone thin

films show an intrinsic charge generation mechanism that is

unaffected by the presence of C60.

Figure 1(a) shows the chemical structures of both penta-

cene and quinacridone. Pentacene is a five ring p-conjugated

molecule, whereas in quinacridone, the intramolecular

p-conjugation is broken. The optically determined band gaps

of pentacene and quinacridone in solution and in films are

shown in Fig. 1(b). Whereas the weak intermolecular van

der Waals forces in pentacene cause only a slight decrease in

the band gap and change in color, the amine and carbonyl

groups in quinacridone participate in¼O…H-N intermolecu-

lar hydrogen bonds with two neighboring molecules. In

dilute solutions, quinacridone is pale yellow; only in the

solid state, it adopts its characteristic red color, signaling the

involvement of strong intermolecular interactions.7,8

FIG. 1. (a) The molecular structures of pentacene and quinacridone. (b) The

HOMO-LUMO band gap of pentacene and quinacridone, with the color of

the bars representing the color of the molecules in dilute solutions and in

solid state. The strong absorbance of green light resulting in red/violet col-

our of quinacridone occurs only in the solid state due to strong electronic

coupling between neighboring molecules mediated by hydrogen bonding.

a)Author to whom correspondence should be addressed. Electronic mail:

eric_daniel.glowacki@jku.at.
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For fabrication and measurement details of the devices,

see supplementary material.30 Highest-occupied molecular or-

bital (HOMO) and lowest-unoccupied molecular orbital

(LUMO) levels of pentacene and quinacridone were estimated

from cyclic voltammetry (CV),9 with thin-films evaporated on

indium tin oxide (ITO) functioning as the working electrode.

CV data are shown in the supplementary material.30 The

dielectric constant (er) was found from impedance measure-

ments of metal-insulator-metal structures at sufficiently high

frequencies (>0.1 MHz), and cross-checked by using different

organic layer thicknesses and different metals. Mobility of

quinacridone and pentacene was determined in OFET devices

(supplementary material30). With a width W over length L ra-

tio of W/L¼ 2 mm/75 lm, we obtained field-effect mobilities

of 0.1 cm2/V�s for holes. A comparison of output characteris-

tics of quinacridone and pentacene transistors is shown in Fig-

ure 2. Pentacene devices with the same W/L ratio also show a

hole mobility of �0.1 cm2/V�s, consistent with earlier reports

with similar device structures.10 Further details on quinacri-

done in OFETs will be reported in a forthcoming publication.

A comparison of the HOMO and LUMO levels, the band gap,

and the field-effect charge mobilities of the two semiconduc-

tor molecules are shown in Table I. These results clearly show

the competitive performance of quinacridone in OFETs. Its

mass-availability, low cost, and stability4 suggest it as an

alternative to expensive and less-stable pentacene. Quinacri-

done crystallizes in the c polymorph when sublimed, with a

relatively tight p-stacking distance of 3.4 Å.11,12 This packing

is unlike the detrimental herringbone pattern in pentacene.13

From x-ray diffraction of our thin films (supplementary mate-

rial30), we see only the [002] peak in the growth direction,

indicating a “standing-up” conformation of quinacridone mol-

ecules with p-stacking parallel to the substrate and thus favor-

able for charge transport in transistor geometry.

The promising charge transport properties of quinacri-

done motivated us to look at photogeneration in such

hydrogen-bonded dyes in single-layer diodes. It is known

that strong intermolecular interactions result in the domi-

nance of excimeric effects dictating the optical properties of

hydrogen-bonded dyes such as diketopyrrolopyrroles14 and

quinacridones.8 Single-layer organic photovoltaic devices

typically show poor performance because the high exciton

binding energy in organic materials results in very low pho-

tocurrent densities not exceeding the lA/cm2 range under so-

lar illumination, corresponding to monochromatic quantum

efficiencies of <1%. This obstacle was overcome in organic

materials by using heterojunctions between electron-donor

and electron-acceptor materials. The offset of molecular or-

bital energies of neighboring molecules allows efficient

polarization of excitons generated by light absorption and

photocurrent yields are enhanced by several orders of magni-

tude.15,16 The donor-acceptor concept is at the heart of all or-

ganic solar cells at present, currently achieving efficiencies

close to 10%.17,18 However, the energetic offset between do-

nor and acceptor results in a potential energy loss.19,20 This

decreases the photovoltage produced by such cells. Also,

obtaining optimum nanomorphology between donor and

acceptor domains is challenging and often demixing of the

two components leads to stability problems in devices.21

In the performance of single-layer photovoltaic devices,

quinacridone shows substantial advantage over pentacene. Fig-

ure 3 shows the J-V characteristics of pentacene and

quinacridone metal-insulator-metal (MIM) diodes. Devices con-

sisted of ITO coated with poly(3,4-ethylenedioxythiophene):

poly(styrenesulfonate) (PEDOT:PSS) as the substrate, 100 nm

of vacuum-evaporated organic semiconductor, and an evapo-

rated aluminum top electrode. Quinacridone diodes show re-

markable photocurrents in the mA/cm2 range under 1.5 AM

illumination, while pentacene produced only�10 lA/cm2. Qui-

nacridone MIM devices showed open-circuit voltage (Voc) scal-

ing with the top contact metal work function (inset of Figure

3(b)) and fill factors of 30%–35%. These observations are con-

sistent with reported organic MIM devices.22 Importantly, the

short circuit current was independent of metal work function.

The external quantum efficiency (EQE) of quinacridone was

between 1% and 10% over the range where the dye absorbs.

FIG. 2. OFET output characteristics for a pentacene device (a) and a quina-

cridone device (b).

TABLE I. Comparison of properties of pentacene and quinacridone. OFET

devices with pentacene and quinacridone were prepared identically, using a

W/L of 2 mm/75 lm. Pentacene mobility is consistent with previous reports

for such channel geometries, see Ref. 10.

Material

HOMO

(eV)

LUMO

(eV)

Eg

(CV)

Eg

(optical) er

OFET lh

(cm2/V�s)

Pentacene �5.5 �3.3 2.2 1.7 3.9 0.1

Quinacridone �5.4 �2.9 2.5 2 4.2 0.1

023305-2 Głowacki et al. Appl. Phys. Lett. 101, 023305 (2012)
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The EQE overlaid with the absorption coefficient for both dyes

is plotted in Figure 4. We found that the external quantum effi-

ciency of pentacene devices was 10�3 to 10�2%. This is con-

sistent with earlier reports of photogeneration in pentacene

diodes.23 These values are similar to single-layer devices with

semiconducting polymers such as poly(phenylene vinylene)24

and poly(thiophene),25 where quantum efficiencies remain

<1%. We conclude that the larger photocurrent yield of quina-

cridone versus pentacene is explained by the more efficient

polarization of excitons into free carriers in quinacridone.

To interpret this phenomenon, we propose two explana-

tions based on hydrogen bonding: (1) The larger strength of

hydrogen bonds in intermolecular interactions relative to van

der Waals bonds causes the high dielectric constant of quina-

cridone (er¼ 4.2 vs. 3.9 in pentacene). A large dielectric

coefficient er leads to a lower exciton binding energy.1 How-

ever, the difference between the estimated values of the exci-

ton binding based on a dielectric constant difference of �0.3

is not enough to account for the large discrepancy in the pho-

togeneration of carriers. (2) Efficient formation of intermo-

lecular charge transfer (CT) complexes that easily polarize

into free-charges. We measured the photoluminescence of

quinacridone films in comparison to quinacridone solutions

(Figure 5). Relative to solutions, in films we found a

100–200 nm red-shifted and very broad emission peak sug-

gesting the role of a CT state in dominating luminescence.

Time-resolved photoluminescence and electroabsorption

studies reported by Kalinowski et al. showed that in the solid

state of quinacridone, an initially formed singlet state self-

traps into an excimeric CT state within 5 ps.26,27 Optical

studies of quinacridone in solution and solid state show that

the transition dipole for the lowest-energy absorption aligns

along the hydrogen bonding of neighboring molecules and

that blocking the hydrogen bonding chemically will elimi-

nate this absorption, supporting the idea of CT excitons

delocalizing effectively between molecules due to hydrogen

bonding.8 To provide a preliminary estimate of the effective

exciton binding energy in the quinacridone film, we meas-

ured the temperature dependence of photocurrent in a lateral

geometry.28 From the thermal activation of photocurrent, we

estimate an exciton binding energy of �12 6 5 meV (supple-

mentary material30). In an attempt to enhance photogenera-

tion of carriers, C60/quinacridone heterojunctions were

FIG. 3. Current-voltage (J-V) characteristics of ITOjPEDOT:PSS(40 nm)j
semiconductor (100 nm)jAl (150 nm) diodes (a) pentacene, and (b) quinacri-

done in the dark and under simulated AM 1.5 illumination. The Voc of qui-

nacridone diodes with different top-contact metals is plotted versus metal

work function in the inset of (b).

FIG. 4. External quantum efficiency (left axis) of ITOjPEDOT:

PSSjsemiconductor(100 nm)jAl diodes quinacridone (*, open circles) and

pentacene (!, filled triangles). Absorption coefficient (right axis) of evapo-

rated thin films of quinacridone (pink) and pentacene (blue).

FIG. 5. (a) Room temperature photoluminescence of quinacridone in

DMSO solutions and deposited as a thin-film on glass. The red-shifted and

broad emission peak from quinacridone in the solid state is consistent with

emission from dissociative states reported previously for hydrogen-bonded

dyes, see Refs. 8, 12, 14, and 27.
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prepared. Both pentacene and quinacridone, by virtue of the

position of their respective HOMO and LUMO levels,

should afford photoinduced charge transfer to C60. The pen-

tacene/C60 donor-acceptor system is well-characterized and

shows electron transfer.29 We found, in contrast, that the

diodes with C60/quinacridone showed no enhancement of

photocurrent/EQE relative to quinacridone alone. This indi-

cates that the mechanism responsible for generation of free

charge carriers in quinacridone occurs faster than the photo-

induced charge transfer to fullerene.

In conclusion, though lacking the intramolecular conju-

gation normally considered requisite for organic semicon-

ductors, quinacridone in OFETs performs similarly to its

analog pentacene. As such quinacridone presents itself as a

stable and mass-available alternative to pentacene in organic

electronics. Photogeneration in quinacridone occurs with at

least a hundred times higher efficiency than in pentacene, an

observation we attribute to excimeric effects known to occur

in hydrogen-bonded organic dyes. Molecules with intermo-

lecular hydrogen bonds have not been explored in organic

photovoltaic applications; this preliminary research suggests

this materials class for further exploration.
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