
Seton Hall University
eRepository @ Seton Hall
Seton Hall University Dissertations and Theses
(ETDs) Seton Hall University Dissertations and Theses

6-2009

Music and Language: Exploring an Artificial Music
Grammar
Erica R. Knowles
Seton Hall University

Follow this and additional works at: https://scholarship.shu.edu/dissertations

Part of the Music Theory Commons, Other Linguistics Commons, and the Syntax Commons

Recommended Citation
Knowles, Erica R., "Music and Language: Exploring an Artificial Music Grammar" (2009). Seton Hall University Dissertations and
Theses (ETDs). 2383.
https://scholarship.shu.edu/dissertations/2383

https://scholarship.shu.edu?utm_source=scholarship.shu.edu%2Fdissertations%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.shu.edu/dissertations?utm_source=scholarship.shu.edu%2Fdissertations%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.shu.edu/dissertations?utm_source=scholarship.shu.edu%2Fdissertations%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.shu.edu/etds?utm_source=scholarship.shu.edu%2Fdissertations%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.shu.edu/dissertations?utm_source=scholarship.shu.edu%2Fdissertations%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/522?utm_source=scholarship.shu.edu%2Fdissertations%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/385?utm_source=scholarship.shu.edu%2Fdissertations%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/384?utm_source=scholarship.shu.edu%2Fdissertations%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.shu.edu/dissertations/2383?utm_source=scholarship.shu.edu%2Fdissertations%2F2383&utm_medium=PDF&utm_campaign=PDFCoverPages


MUSIC AND LANGUAGE: 

EXPLORING AN ARTIFICIAL MUSIC GRAMMAR 

By 

Erica R. Knowles 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science in Experimental Psychology with a concentration in Behavioral Neuroscience. 

Department of Psychology 
Seton Hall University 

June,2009 



Approved By: 

Dr. Janine Buckner, 
Director of Graduate Studies and Committee Member 

II 



For Mom and Dad 

Thank you for always letting me follow my own path 
no matter how many turns it has taken. 

iii 



Acknowledgements 

I would like to sincerely thank Dr. Marianne Lloyd for her guidance and support 

throughout my two years at Seton Hall. I am extremely grateful to her for allowing me to 

explore and develop a research project that was truly my own despite the fact that it was 

outside her realm of expertise. I could not have asked for a better mentor. I would also 

like to thank the other members ofmy committee, Dr. Kelly Goedert and Dr. Janine 

Buckner, for their support and assistance in completing this project. In these three 

individuals I have found exemplars of the kind of researcher and teacher I hope to 

become. 

I am extremely grateful towards my fellow graduate students in whom I have 

found great friendships and to the members of the Memory Lab for their assistance with 

this project. I would also like to express my gratitude to Dr. Robert Sieve, who was kind 

enough to allow me to use his sentence stimuli for this project. 

My family has supported me throughout my life and without their love I would 

not be the person I am today. I am extremely grateful for their encouragement and their 

continued interest in my research. I would also like to thank my friends who have 

supplied me with distractions and kept me grounded throughout this process. 

Finally, I would like to thank my loving husband Ian. He has been incredibly 

patient and has constantly reminded me that the most important things in life are often 

outside of school. 

iv 



Table of Contents 

APPROVED BY .ii 

DEDICATION iii 

ACKNOWLEDGEMENTS iv 

LIST OF FIGURES vi 

LIST OF TABLES vii 

ABSTRACT viii 

I. INTRODUCTION I 

i. Grammatical Structures of Music and Language I 

ii. Music Grammar: Experimental Evidence 6 

iii. Neuropsychology Evidence: Domain-Specificity 9 

iv. Challenging Domain-Specificity 1 1  

v. Theoretical Motivation: SS/RH and Statistical Learning 16 

II. METHODS 27 

i. Participants 27 

ii. Materials 27 

iii. Procedure 29 

iv. Design and Analysis 31 

III. RES UL TS 35 

IV. DISCUSSION 43 

V. REFERENCES 48 

VI. APPENDIX .54 

v 



List of Figures 

Figure I 3 

Figure 2 3 

Figure 3 .4 

Figure 4 5 

Figure 5 16 

Figure 6 19 

Figure 7 22 

Figure 8 23 

Figure 9 23 

Figure IO 35 

Figure 1 1  36 

vi 



List of Tables 

Table I .38 

vii 



Abstract 

Research regarding the brain mechanisms that underlie music and language 

processing supports two main interpretations: domain-specificity and domain-generality. 

Evidence from neuropsychology literature, specifically from amusia research, supports 

domain-specific mechanisms (Peretz & Coltheart, 2003) but recent neuroimaging and 

behavioral evidence supports overlapping mechanisms, especially for syntax processing 

(Patel, 2008). The present study used an artificial music grammar in order to test 

participants' ability to learn a new music grammar as well as to observe a possible 

interaction between music and language syntax processing. Although participants were 

able to learn the artificial music grammar, a language task was not affected by errors in 

the new grammar as has been found with Western music-syntax errors (Sieve, Rosenberg, 

& Patel, 2009). Future research should consider extending exposure to the artificial 

grammar to allow for better learning in order for errors in the new grammar to affect the 

processing of language syntax. 
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Introduction 

Two major organized sound systems are found throughout human culture, 

language and music. While these systems have many obvious differences, they also share 

some major similarities. One of these similarities is the use of rule-based combinatorial 

sequences. Both music and language are created through the combination of discrete 

elements, notes and chords in music and words in language. These elements form 

sequences based on hierarchical principles and are therefore both syntactic systems. New 

evidence from neuroimaging and behavioral research points to a possible overlap in the 

processing, including syntactic processing, of music and language (Patel, 2003, 2007). 

This research challenges the long held belief that language and music processing relies on 

domain specific neural systems (Peretz & Coltheart, 2003). 

Grammatical Structures in Music and Language 

Syntax ( a.k.a. grammar) is the organization of discrete elements ( e.g. words in 

language and pitches in music) through a set of principles which govern how these 

elements are combined to form sequences ( e.g. sentences in language and melodies in 

music: Jackendoff, 2002). Both language and musical sequences are not created through 

the random combination of these basic elements but rather their organization is governed 

by a set of combinatorial principles. These principles act to govern the formation of 

words, phrases, and sentences in language, and of chords, progressions, and keys in 

music (Patel, 2003). 

The majority of research on music uses Western tonal music as stimuli and an 

introduction to this idiom may prove helpful for the following discussion. There is a large 

body of research on the structure and perception of Western tonal music and it is one of 
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the most widely practiced musical systems of the developed world (Patel, 2003). Another 

reason for the use of Western tonal music is that there are enough structural norms in how 

the music is composed to enable researchers to study the grammar of music (Patel et al., 

1998). This musical idiom consists ofa finite set of pitches (a.k.a. tones), which can be 

represented by those found on a piano keyboard, with note names A through G. These 12 

tones (A-A#-B-C-C#-0-D#-E-F-G-G#-A) are then combined into subsets of seven 

tones, the scales (Tillman, Janata, & Bharucha, 2003). These scales consist of seven notes 

and are the building blocks of musical pieces (Peretz, 1993). These scales also define 

musical keys which are important elements of musical syntax (Sieve, Rosenberg, & Patel, 

2009). 

Within a key, scale tones (the pitches that make up the scale) are organized 

around a central pitch known as the tonic (Figure 1 ). This central tone defines the key, 

that is, in the key of G major the pitch G is the tonic. The other scale tones within the key 

are arranged into a hierarchy of importance or stability (Krumhansl, 1990). The fifth and 

the third tones of the scale are considered to be the most clearly related to the tonic and 

therefore the most stable. The remaining scale tones are considered to be less related to 

the tonic. Tones from outside a specific key are the least related and often sound like 

'foreign' or 'alien' tones within the context of that key (Peretz & Coltheart, 2003). An 

easy way to think of this is that the seven tones that make up the scale (and therefore key) 

are the in-key tones and therefore those remaining five tones are the out-of-key tones 

(Tillman, Janata, & Bharucha, 2003). For example, the key of C major contains the 

pitches C-D-E-F--G-A-B. These tones are the in-key tones and C#, D#, F#, G#, and A# 
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are the out-of-key tones (See Figure I). It is the way in which these tones are arranged to 

form an "event hierarchy" that defines the musical syntax of a piece (Patel, 2007). 

D Major 
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Figure I. Western Tonal Scale. The top of the figure represents the key of D major. Listed are the scale 
tones of that key. The bottom of the figure shows the tones that would out-of-key in the context ofD major. 
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Figure 2 (Patel, 1998). The top portion of the figure shows the circle of fifths, a way in 
which the Western tonal keys are organized. A nearby key is one that is close in 
proximity to the target chord on the circle of fifths and therefore contains tones that may 
overlap with the target key. The distant keys are much further away from the target key 
on the circle of fifths. Distant keys would share very few tones with the target key. The 
bottom on the figure shows a chord from a nearby key and a chord from a distant key. As 
you can see, the nearby chord shares a tone with the target chord while the distant chord 
does not. 
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Musical keys also have a systematic organization among themselves (Figure 2). 

Those keys that share multiple tones are heard by listeners as being more closely related 

to one another. The more distant keys are from one another, the perceived relatedness 

decreases. If a tone is structurally unexpected it results in a musical syntactic error and 

difficulty in processing occurs; in that, the listener's expectancies have been violated and 

therefore comprehension is disrupted because of the need to integrate the syntactically 

unexpected event within the preceding context. This processing difficulty is very similar 

to what occurs with a syntactic error in language (Sieve et al., 2009). 

p�pclEOr:.Gl .l?+if;::t:-·F.:.t·r-ET:/'fTI 
l!f&tJ ·· - J  ·  W  ,.·�JB:FJ-='-J...:;;;t¥-ffe=� 
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rdi»::--�-��-:- . . .  .  .- -- _=;:;;u 

Figure 3 (Patel, 2007). A time-span reduction of the first two phrases of the children's 
song "Hush little baby" (tree notation from Lerdahl & Jakendoff, 1983). Shorter 
branches terminate on less important pitches, while longer branches terminate on more 
important pitches. The lower staves show the dominant events at successively higher 
levels of tree structure. 

The structural hierarchy of music rests on the perceived stability of the basic 

elements ( either tones or chords). Those tones that are more stable are considered to be 

the structural elements of the piece such as the tonic and those closely related to it while 
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the other, less related elements work to form the overall sense of expectation which is 

central to the musical experience (Patel, 2008). Figure 3 shows an example of structural 

hierarchy of a musical phrase. 

Language, like music, is a syntactic system in that it has discrete elements ( e.g. 

words) that can be combined through governing principles into hierarchical sequences 

(e.g. sentences: Patel, 2007). Figure 4 shows an example of the hierarchical structure ofa 

sentence. Grammar is a finite set of combinatorial principles which is used to arrange a 

finite list of structural elements (Jackendoff, 2002). In language, words take the form of 

grammatical categories such as nouns and verbs, and these can take on grammatical 

functions such as subject, direct object, and indirect object within the structure of the 

sentence (Patel, 2003). Most native speakers are sensitive to and aware of the rules which 

govern the combination of these elements into structural form (Akmajian et al., 1984) as 

well as to violations of this grammar (Patel, 2003). 
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Figure 4 (Patel, 2007). A sentence of English, showing the hierarchical phrase structure 

Mental representations of language and music syntax are quite different in that 

details of each system cannot be directly compared. Language has grammatical categories 
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and functions which have no analog in music (Patel, 2007). Their similarities are found in 

the combinatorial rules that govern the hierarchical structure evident in both music and 

language (Patel, 2008). 

Music Grammar: Experimental Evidence 

Experienced perceivers, those who live in and are exposed to a culture's language 

and music, have implicit knowledge of the principles governing the grammatical structure 

of these two systems. They are able to detect violations within sequences, such as errors 

of agreement in language and sour notes in music. Most importantly, they are able to do 

so without training and within novel sequences (Patel, 2003). 

Ayotte and coUeagues (Ayotte, Peretz, & Hyde, 2002) used an anomalous pitch 

detection task in order to test participants' ability to detect "sour" notes within a melodic 

sequence. The task contained both familiar and novel melodies. Familiar melodies were 

well-known, cultural melodies such as folk songs while novel melodies were created by 

the experimenters. Half of the melodies presented contained a wrong note. The wrong 

note was created by modifying a note in the piece so that it no longer fit the harmonic 

context of the melody. Participants were asked to judge whether the melody contained a 

wrong note or not. Ayotte et al. found that participants were able to detect wrong notes at 

a level over 80%. Therefore, it was concluded that participants were sensitive to changes 

in the harmonic context. 

Janata and colleagues (Janata, Birk, Tillman, & Bharucha, 2003) attempted to test 

the same ability in listeners but using, what they considered to be, a more natural musical 

context. That is, the stimuli were not short melodic trials which are not representative of 

normal music listening but rather consisted of a continuously modulating melody that 

6 



lasted approximately 8 minutes. Within the melody were wrong notes that did not fit into 

the harmonic context. While the participants listened to the melody they were asked to 

press a key every time they heard a note that sounded "out-of place." Participants 

performed significantly above chance and were able to successfully respond when tones 

were unexpected within the harmonic context. The ability of the participants in these 

studies to detect notes that are unexpected within a harmonic context suggests that 

listeners have some implicit knowledge of the combinatorial rules of musical syntax and 

are sensitive to when this grammar is violated. 

Language research uses two main methods to test participants' sensitivity to 

violations of syntax rules: self-paced reading tasks and event-related potential (ERP) 

recordings (e.g. self-paced reading: Chen, Gibson, and Wolf, 2005; McKoon &Ratcliff, 

2007; Sieve et al., 2009; Vincenzi et al., 2003; ERP: Atchley et al., 2006; Eckstein & 

Friederici, 2006; Yamada & Neville, 2007; Vincenzi et al., 2003). Self-paced reading 

tasks typically consist of a sentence presented on a computer screen with one word or 

phrase bring presented at a time. These tasks are considered self-paced because the 

participant has control over the presentation rate of the words by pressing a key to 

advance to the next section of the sentence. The amount of time spent viewing each 

section is recorded and then a mean reading time for each section is calculated in order to 

look at the overall effect. In studies using self-paced reading time tasks to observe the 

effect of syntactic violations, a word is changed in order to create a syntactic anomaly. 

This word is known as the critical or target word of the sentence. Studies using this 

paradigm find that violations of grammar rules lead to increased reading times at the 

critical word (Ditman, Holcomb, & Kuperberg, 2007). 
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ERPs are on-line, continuous measures of brain electrical activity that occurs 

during a task, in this case language comprehension (Vincenzi et al., 2003). That is, while 

participants are reading sentences, ERPs are being derived from ongoing 

eletroencephalography (EEG) which are then correlated with behavioral data (Ditman et 

al., 2007). There are two main ERP components that have been indentified in relation to 

syntactic processing: an early left anterior negativity (ELAN) and a late centro-parietal 

positivity (P600) (Vincenzi et al., 2003). The ELAN has been proposed to be associated 

with the syntactic structure building process during which the structure of the sentence is 

being created based on word category information (Friederici & Meyer, 2004). The later 

P600 has been suggested to represent the processes associated with syntactic repair and 

reanalysis that occurs when a syntactic violation is present (Yamada & Neville, 2007). It 

has been suggested that the P600 may function in determining when the brain is 

processing a syntactic relation not predicted by the preceding structure (Patel et al., 

1998). This P600 has been shown to be elicited by a number of grammar anomalies, 

including subject-verb agreement, case violations, and garden-path sentences (Vincenzi 

et al., 2003). Brain imaging studies have suggested that this P600 is generated by activity 

in the inferior frontolateral cortex which corresponds to the area of the brain known as 

Broca's area and therefore suggests that this area is involved in syntactic processing 

(Koelsch, 2006). 

If music is also considered to have syntax which governs the combination of its 

basic elements, then violations of these rules should also elicit a P600. Patel and 

colleagues (1998) compared the ERP data of musicians during tasks involving language 

and music syntactic incongruities. The researchers found that the P600 elicited by 
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language and music syntactic violations were statistically indistinguishable, which 

strongly suggests that the process that causes the P600 is not language specific. To 

further support this evidence, studies have elicited the P600 during music syntactic 

violations in non-musicians as well as musicians which therefore allows for greater 

generalizability of this phenomenon ( e.g. Koelsch, Gunter, Friederici, &Schroger, 2000; 

Leino, Brattico, Tervaniemi, & Vuust, 2007). 

Neuropsycho/ogy Evidence: Domain-Specificity 

The general view in neuropsychology on the processing of music is one of 

domain-specificity; music is processed by a neural system that is separate from other 

auditory and language processing areas (e.g. Peretz & Coltheart, 2003). This domain 

specificity is supported by neuropsychological case studies of individuals with selective 

deficits of music cognition after focal brain damage, which is known as acquired arnusia, 

as well as individuals who suffer from congenital arnusia, which is a life-long deficit of 

music processing. Patients who suffer from arnusia perform at a normal level on speech 

and environmental sound tasks but not on tasks of music cognition (Poeppel, 200 I). It is 

this functional dissociation between performance on music tasks and performance on 

speech and other auditory tasks that implies a specialization of neural networks for the 

processing of music. 

Peretz and collegues (Peretz, 1993; Peretz et al., 1994) observed two patients in 

particular that exhibited this functional dissociation of music processing, C.N. and G.L.. 

C.N. suffered bilateral damage to the temporal lobe after two aneurysms, one of the right 

middle cerebral artery and one of the left middle cerebral artery. She complained of 

problems listening to music and that she could no longer recognized or remember 
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familiar tunes. Much like C.N., G.L. suffered bilateral temporal damage due to strokes 

and also reported not being able to recognize familiar music as well as a loss of 

enjoyment in listening to music. 

C.N, and G.L. participated along with a group of age, sex, musical background, 

and education matched controls in a series of experiments led by Peretz et al. (1994). 

Both C.N. and G.L. preformed at less than chance on most tasks of melody recognition 

and pitch discrimination and they were well below the range of the normal controls. Both 

patients were found to have severe deficits in music processing in relation to their 

performance on tasks concerning the processing of speech and environmental sounds. It 

was concluded that both C.N. and G.L. suffered from amusia without aphasia. That is, 

these individuals had severe deficits in music processing but their language production 

and comprehension abilities were unaffected. These findings support the notion that C.N. 

and G.L. sustained damage to the neural network which holds the domain-specific 

knowledge necessary for the processing of music and that music processing is neurally 

distinct from language processing (Peretz & Coltheart, 2003). 

Research with congenital amusiacs also suggests this dissociation between music 

and language processing. Congenital amusia is a life-long deficit in music processing and 

it thought to affect approximately 4-5% of the population (Hyde & Peretz, 2004). 

Individuals who suffer from this disorder are unable to discriminate between pitches and 

cannot recognize familiar or popular songs along with many other music comprehension 

and production deficits. Ayotte and colleagues (Ayotte, Peretz, & Hyde, 2002) conducted 

a study with patients who suffer from congenital amusia in order to compare their 
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functioning to normal controls on tasks involving not only music but language and 

environmental sounds as well. 

On an anomalous pitch detection task, which tests patients' ability to detect a 

wrong note in both familiar and unfamiliar melodies, Ayotte et al. (2002) found that 

amusiacs performed close to chance and well below controls. On a recognition task 

involving familiar and unfamiliar melodies, lyrics, and environmental sounds those who 

suffered form congenital amusia performed at a level consistent with the normal controls 

for lyrics and environmental sounds. When asked to judge whether they recognized 

melodies however, amusiacs performed well below their matched controls and only 

slightly better than chance. In this manner, Ayotte et al. were able to demonstrate the 

selective musical deficits seen in congenital amusia as well as highlighting the 

dissociation between their performance on musical tasks and their performance on tasks 

involving language and environmental sounds. 

While the cases ofC.N. and G.L. and the congenital amusiacs involved musical 

processing deficits, other neuropsychological cases exhibit deficits of language 

processing at the phonological level. Poeppel (2001) reports on the phenomenon of pure 

word deafness (PWD). Those who suffer from PWD can no longer comprehend spoken 

material but they are able to process other sounds, including music. This deficit provides 

further evidence for a music-language dissociation. 

Challenging Domain-Specificity 

Although the neuropsychological evidence convincingly supports the theory of 

music and language as being independent and separate cognitive functions that are 

processed by domain-specific neural networks, neuroimaging research has challenged 
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this view. Neuroimaging has shown a significant overlap in certain areas of music and 

language processing, especially syntactic processing, in normal individuals. The 

combined findings of ERP, EEG, MEG, PET, and fMRI studies suggest that music 

syntactic information is processed in areas once through! to be domain-specific to the 

processing oflanguage ( e.g. Brown, Martinez, & Parsons, 2006; Koelsch, 2006; Koelsch 

et al., 2002; Maess, Koelsch, Gunter, & Friederici, 2001; Patel et al., 1998). 

This overlap of music and language processing was first demonstrated in an ERP 

study carried out by Patel et al. (1998). The researchers created both linguistic and 

musical stimuli which contained grammatical incongruities in the attempt to elicit the 

P600 in both music and language tasks. The P600, as discussed above, is normally related 

only to language syntactic processing. The musical stimuli consisted of musical phrases, 

some of which were manipulated to contain a target chord that was either from within the 

key of the phrase or from an outside key. As discussed previously, a chord from within 

the phrase of the key will be expected and therefore sound correct, while a chord from an 

outside key will be unexpected and will sound "alien" due to violating the grammar put 

forth by the earlier phrase structure (See Figures 1 and 2). The researchers found that the 

out of key chord elicited a P600 and that this P600 was statistically indistinguishable 

from the P600 which is generated by linguistic syntactic incongruities in sentences. These 

results suggest that there is some overlap in the processing of syntax in language and 

music. 

Maess, Koelsch, Gunter, and Friederici (2001) used magnetoencephalography 

(MEG) in order to localize the neural areas associated with the processing of syntactic 

incongruities of music. The researchers presented participants with chord sequences, 
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some of which contained harmonically unexpected chords. These harmonically 

unexpected chords represent a violation of music syntactic structure. Maess et al. found 

bilateral activation of the inferior part ofBroadmann's area (BA) 44 when listeners were 

exposed to unexpected chords. Within the left hemisphere, this area is known as Broca' s 

area. It has been proposed that language syntactic information is processed fast and 

automatically in Broca' s area and its right homologue and, from the results reported by 

Maess et al., music syntax seems to be processed in a similar fashion in these brain areas. 

An fMRI study carried out by Koelsch et al. (2002) investigated the brain areas 

activated during music processing. As in the studies described above, participants were 

presented with chord sequences, some of which contained unexpected musical events that 

violated musical syntax. These events activated a number of brain areas considered to be 

part of the neural network for language processing, including Broca and Wemicke's 

areas, the superior temporal sulcus, Hesch!' s gyrus, the anterior superior insular cortices, 

and both the planum polare and planum temporale. These findings support an overlap of 

music and language syntactic processing and further suggest that these areas are not as 

domain-specific as researchers had concluded based upon previous neuropsychology 

studies. 

Patel and colleagues (Patel, 2005; Patel & Iverson, 2008) further support this 

overlap in processing through a study observing the musical syntactic processing abilities 

in agrammatic aphasia. Patel suggests that individuals who suffer from amusia-without 

aphasia or aphasia-without-arnusia have suffered damage to the areas of the brain that are 

related to the storage of domain-specific knowledge and representations but that the 

processing center remains intact (Patel, 1998). However, if this processing center is 
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compromised, it is thought that these individuals will exhibit parallel deficits in linguistic 

and musical syntactic processing (Patel & Iverson, 2008). 

Prior to the experimental tasks, participants were given a language pretest to 

assess their syntactic comprehension deficit as well as a music pretest in order to rule out 

any basic pitch perception or memory problems. The language pretest consisted of a 

sentence-picture matching task, of increasing syntactic complexity, in which participants 

were asked to listen to a sentence and then point to the corresponding picture. It was 

found that aphasic participants performed significantly worse than controls, with the 

difference increasing as the syntactic complexity of the sentences increased. Therefore, it 

was concluded that the aphasic individuals had a language syntactic comprehension 

deficit (Patel, 2005). The music pretest consisted of subtest from the Montreal Battery of 

Evaluation of Amusia. This item tests basic pitch perception and memory through a 

forced-choice, same-different task in which participants had to say that a pair of melodies 

were either the same or different from one another. The two groups did not differ in their 

basic pitch perception and memory performance. 

Two experimental tasks were used to assess musical syntactic abilities of the 

aphasic participants. The first was both a linguistic and musical syntactic processing task. 

Participants were asked to listen to the presented sentences or melodies and to state 

whether the sequence was correct or ifit contained an error. Half of the sentences 

contained either a semantic violation or a syntactic violation of subject-verb number 

agreement and half of the musical stimuli contained an out-of-key, harmonically 

unexpected chord. Aphasic participants performed worse than controls on both the 

linguistic syntactic task and in detecting harmonic anomalies in the musical sequences. 
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Also, performance on the musical syntax task was found to be a significant predictor of 

both aphasic and control participants' performance on the linguistic syntactic task. On the 

other hand, aphasic performed only marginally below controls on the linguistic semantic 

task and performance on the musical syntax task did not predict participants' 

performance on the linguistic semantic task. 

The second task used was a harmonic priming task. This task tests music syntactic 

comprehension by observing the influence of a preceding harmonic context ( e.g. the 

prime) on the processing of a target chord. That is, participants are first presented with a 

chord sequence and are then presented with a single chord ( e.g. the target chord) and 

asked to judge if target is tuned or mistuned. Previous research suggests that the target 

chord is more easily and rapidly processed if it is close to the key implied by the prime. 

This ability reflects the implicit knowledge of the harmonic rules of musical syntax. The 

harmonic priming task showed a significant difference between aphasics and controls, in 

that controls showed normal harmonic priming while the aphasics failed to show a 

priming effect. This lack of a priming effect in aphasics suggests that they cannot activate 

the implicit knowledge of harmonic rules. 

Patel and colleagues concluded that aphasics who have linguistic syntax 

comprehension problems may also have musical syntactic deficits. These results lend 

further evidence to the idea of a common process between language and music syntax 

comprehension and possibly a shared brain area that functions in syntax processing for 

both domains. 
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Theoretical Motivations: SSJRH and Statistical Learning 

These results, along with neuroimaging findings, led Patel (2007) to create and 

define a model of resource sharing between language and music. He proposed that 

language and music share the neural resource that allows for the activation of networks 

that store domain-specific knowledge representations. This has been termed the "shared 

syntactic integration resource hypothesis" (SSIRH: Patel, 2007). This hypothesis predicts 

that simultaneous activation of the syntactic processing areas for both language and 

music stimuli should interfere with one another. That is, attention resources should be 

stretched between the two domains. This prediction has been supported through both 

neural and behavioral research (Koelsch, Gunter, Wittfoth, & Sammler, 2005; Sieve et 

al., 2009) Figure 5 shows a visual representation of SSIRH. 

(activate representations 
during syntactic processing} 

"Representation networks" 

(store long-term 
syntactic representations) 

Figure 5 (Patel, 2007). Schematic diagram of the functional relationship between 
linguistic and musical syntactic processing. L - language, M - music. 

Koelsch et al. (2005) observed an interaction between the processing of language 

syntax and the processing of music syntax using ERP data. They focused on the left 

anterior negativity (LAN) elicited by syntactic violations and the N400 elicited by 

semantically unexpected words. If language and music processing occur separately then 
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the LAN and N400 should be unaffected by the presence of music-syntactic irregularities. 

Three types of sentence manipulations were used: syntactically expected/ semantically 

expected; syntactically expected/ semantically unexpected; and syntactically unexpected/ 

semantically expected. The target word was always the last word of each sentence. The 

musical stimuli consisted of musical sequences, half of which contained a music 

syntactically irregular or unexpected final chord. The sentences and music stimuli were 

paired together so that half of each sentence manipulation type was paired with an 

irregular musical sequence and that errors in both would simultaneously occur. 

Koelsch et al. found that there is an interaction between language and music 

syntactic processing. When a linguistic-syntactically unexpected word was presented 

simultaneously with a music-syntactically irregular chord there was a reduction in the 

LAN. This interaction was not seen between semantic processing and music-syntactic 

processing. These results strongly support the assumption of a neural overlap between 

language and music syntax processing and therefore the SSIRH. 

Sieve et al. (2009) used a behavioral measure, in the form of a self-paced reading 

task, in order to investigate the interaction between music and language processing. As 

previously described, self-paced reading tasks typically consist of small segments of a 

sentence being presented on the screen one at a time. Participants must press a key in 

order to move to the next segment and the amount of time spent looking at each segment 

is recorded. Sentences often contain a critical point, where a syntactic, semantic, or other 

language error may appear, and it is at this point where differences between 

manipulations were expected to be. 
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Sieve and colleagues (2009) used both semantic and syntactic violations within 

their language stimuli. Semantic violations were created by including a word that was 

inconsistent with the sentence context. For example: The boss warned the mailman to 

watch for angry pigs when delivering the mail. The semantically inconsistent word (pigs) 

leads to a semantic violation due to the unexpected nature of the word based on the 

preceding sentence context. In reading tasks, semantic violations generally appear as a 

disruption of or an increase in reading time (Vincenzi, et al, 2003 ). 

Syntactic errors were created through the use of garden-path sentences. These 

sentences are considered temporarily ambiguous, in that readers adopt an analysis only to 

later find that analysis to be ungrammatical, which in turn leads to processing difficulty 

(van Gompel, Pickering, Pearson, & Jacob, 2006). An example of a garden-path sentence 

used by Sieve et al. (2009) is: The scientist wearing thick glasses confirmed the 

hypothesis was being studied in his lab. In these garden-path sentences the word that is 

omitted and this omission causes a violation of syntactic expectancy. The sentence 

including the word that is much simpler to read: The scientist wearing thick glasses 

confirmed that the hypothesis was being studied in his lab. Previous studies have shown 

that the processing of this type of sentence is more difficult as evidenced in longer 

reading times for that-less sentences in comparison to those which contain that 

(Trueswell, Tanenhaus, & Kello, 1993; van Gompel et al., 2006). 

Music stimuli consisted of simple Western tonal chord sequences. Half of these 

melodies contained an unexpected chord that did not fit the harmonic context and 

therefore violated musical grammar. These melodies were then paired with both language 

manipulations so that the critical points of the sentence were paired with the critical point 
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(where the unexpected chord would occur) of the musical sequences. Figure 6 is a visual 

representation of the experimental procedure used by Sieve et al. 

Sieve et al. found a significant three-way interaction between linguistic 

manipulation (syntactic or semantic), language expectancy (expected or unexpected), and 

music expectancy ( expected or unexpected). Those words that were either syntactically or 

semantically unexpected were read more slowly that their expected counterparts. Hearing 

a simultaneous unexpected chord caused even greater slowing when combined with 

syntactically unexpected words, but not when paired with semantically unexpected 

words. Therefore, the processing of music-syntactic errors interfered with the processing 

of syntactic, but not semantic, elements of language. These results further support the 

SSIRH in that is seems that neural resources were being shared between language and 

music syntactic processing. 

Linguistic lxp«tancy Manipulatiom: syntactic or s«'montk 

• svnt.ict1c expectancy manipulation 

� .. . .  

•  semantic: expectancy mantoutatlon 

·------- -·------ ' - - - - .  

�- ; 

- i :,,, .... · ............. 1  ....... � . •  

..... 

pip - - ---- ------ '---·----· 

.Musical syntactic manipulation (harmonjc �XJJ«tancy): 

•. 

:rr···- - r· 

Figure 6 (Sieve el al., 2009). The top portion of the figure represents the procedure for displaying the 
segments of sentences on the screen during the self-paced reading task. The bottom shows an example of a 
chord sequence that would be paired with the sentences. 
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In the SSIRH, violations of syntactic expectancy in both language and music are 

used in order to observe interference between the processing of the two. Syntax can be 

defined as the principles governing the combination of discrete structural elements 

(Jackendotf, 2002). In music the structural elements are tones and in language, words 

(Patel, 2003). These combinatorial principles define the way in which these elements are 

combined into larger structures: phrases and sentences in language and keys and melodies 

in music (Patel, 2003). These structures, both in music and in language, are generated 

hierarchically starting from the basic units (Brown, Martinez, & Parsons, 2006). 

Research discussed earlier supports the idea that an individual does not have to be 

a trained musician in order to have knowledge of the rules that govern musical syntax, 

just as one does not need to be a linguist in order to have knowledge of the rules that 

govern language syntax (Koelsch et al., 2000). The implicit knowledge of both language 

and music syntax is acquired early in development without explicit tutoring but through 

exposure and experience with a specific culture's rules (Peretz, I 993). 

The ability of humans to acquire this knowledge implicitly has been studied using 

a statistical learning approach in which participants are exposed to a novel grammar ( e.g. 

Creel, Newport, & Aslin, 2004; Loui & Wesssel, 2006; Saffran, 200 I, 2002; Saffran et 

al., I 999, 2008; Thompson & Newport, 2007). Statistical learning is the process of 

detecting patterns and using these patterns to discover the underlying structure. Both 

music and language contain a number of cross-cultural statistical regularities including 

the use of a hierarchical phrase structure (Saffran, 2003). The research with statistical 

learning focuses on human' s ability to pick up on these structural regularities and use 
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them to create an implicit knowledge of the governing principles of the grammar which 

they are exposed to (Saffran, 2002). 

Saffian (2001, 2002) has tested both children and adults in their ability to acquire 

the basic knowledge of an artificial language using a statistical learning approach. Saffran 

used an artificial grammar which contained predictive dependencies; that is, the presence 

of some word categories relies on the presence of others (Saffran, 2002). This is similar 

to the underlying structure of natural languages. Saffran suggests that through these 

predictive dependencies, knowledge of hierarchical phrase structure is formed. Adults 

and children were exposed to this type of artificial grammar and then during the test 

phase were asked to judge pairs of sentences on the basis of which sounded more like the 

exposed grammar (Saffran, 2001, 2002). Overall, Saffran found that both adults and 

children are able to learn the grammar rules of the artificial languages that contained 

predictive dependencies. 

Music, like language, contains statistical regularities that form a hierarchical 

phrase structure and therefore music syntax may also be acquired through the use of 

statistical learning. Saffran and colleagues (McMullen & Saffran, 2004; Saffran, 2003; 

Saffran et al., 1999) have considered the possibility of an overlap in mechanisms for the 

learning of syntactical knowledge in both language and music due to the similarity of 

their culture specific rules and their combinatorial nature. Saffran et al. (1999) developed 

a tone-language based on an earlier artificial language grammar, in that tones replaced 

each syllable of the language grammar. Participants were exposed to the tone-language 

and were then given a forced-choice task during which they had to select the tone 

sequence that sounded the most familiar. Participants were able to correctly identify the 
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tone sequences from the artificial tone-language grammar. This suggests that the same 

statistical learning mechanism may be in use for both language and music. However, 

there were a few limitations to this study. One is that they used Western scale tones 

which may interfere with learning due to the fact that participants most likely have some 

implicit knowledge defining the organization of these tones. Another possible limitation 

is the lack of musicality of the tone sequences (Saffran, 2003 ). 

In order to extend the statistical learning approach to music acquisition, an 

artificial grammar must be created without the use of the Western music idiom. A 

possible means through which to develop an artificial musical grammar is proposed in a 

study by Loui and Wessel (2006). The researchers defined two new musical grammars 

using the Bohlen-Pierce (BP) scale. The BP scale is a microtonal tuning system which 

contains 13 tones and creates a tritave scale (Figure 7). This scale differs from the 

Western tonal scale system in a number of ways. The most obvious is that the Western 

system contains 12 tones while the BP system contains 13 .  The other difference is that 

the Western system has a 2:1 frequency ratio while the BP system has a 3:1 frequency 

ratio. This ratio difference is what causes the BP scale system to sound so distinct and 

completely unlike the Western tonal system. 

- 8-P �- Western 

roor-· ---·· ·----- - - ··-· .. -· .... -· ---·. 

F = 220• 311'11 

0 2 3 • 5 6 7 8 9 10 11 12 13 

ln--(n) 

Figure 7 (Loui & Wessel, 2006). Frequencies along the Bohlen-Pierce scale and the 
Western scale. 
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Using this scale, Loui and Wessel (2006) were able to compose two different 

chord progressions which each consisted of four chords with three notes per chord 

(Figure 8). Each chord progression defined a grammar, each with its own set of 

grammatical rules based on predictive dependencies. Sets of melodies were composed 

using the chord progressions as a basis (Figure 9). Each melody ranged from four to eight 

notes and was unique to its grammar. 

Pitch number 

10 7 10 10 

Grammar I 6 4 7 6 

0 0 3 0 

10 10 7 IO 

Grammar II 6 7 4 6 

0 3 0 0 

Figure 8 (Loui & Wessel, 2006). These chord progressions formed the bases of the two 
sets of grammatical rules which were used to form the stimuli in Loui and Wessel 
(2006). By applying these rules in the fashion of a finite-state grammar, they composed 
sets of melodies from the above chord progressions. 

Grammar I 

Melody: 1 0 ,  1 0 ,  4  7  7  7  6  7  10 

Figure 9 (Loui & Wessel, 2006). An illustration of applying a finite-state grammar as a 
set of rules to compose one melody based on finite-state Grammar I. Dark arrows 
illustrate the paths taken, whereas light arrows illustrate the other possible paths that are 
legal in the grammar. The resultant melody is shown at the bottom of the figure. 
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Loui and Wessel (2006) ran three experiments in order to observe the extent to 

which participants would learn the presented grammar with the third experiment being 

the most pertinent to this research. In this experiment, 24 undergraduate students with at 

least five years of musical experience were randomly assigned to one of the two 

grammars. Five-hundred melodies, each eight notes in length, were composed using the 

two grammars. The participants were first asked to complete a pre-exposure probe-tone 

task in which they heard a melody followed by a single tone. There were asked to rate 

how well that tone fit the presented melody. Next, participants were exposed to 400 

melodies which were presented at random with no repeats for 30 minutes while 

participants completed a drawing task used to alleviate boredom. 

After exposure, participants were given a forced-choice recognition and 

generalization task. During this task participants heard two melodies and were asked to 

select which melody sounded more familiar. The recognition task consisted of two 

melodics, one from the exposed grammar and one from the unexposed grammar. The 

generalization task used a novel melodies composed using the exposed grammar paired 

with a melody from the unexposed grammar. A post-exposure probe-tone task was then 

given, which was identical to the pre-exposure task. 

Overall, Loui and Wessel (2006) found that when participants were exposed to a 

large number (400) of melodies that they were able to learn that statistical regularities of 

the grammar. Participants performed significantly above chance on the recognition and 

generalization forced-choice task. That is, participants were not only able to recognize 

previously heard melodies but they were also able to use their knowledge of the grammar 

to generalize to other novel melodies from that grammar. Participants also performed 
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significant! y better on the probe-tone task after being exposed to the granunar than before 

exposure. The results suggest that participants were able to learn the grammar and were 

sensitive to the underlying statistics of the grammar. This research supports the use of 

this artificial musical grammar as a means through which to study the implicit learning of 

new music-grammatical structures. 

These results relate back to the idea proposed by McMullen and Saffran (2004) of 

a possible shared mechanism for the learning of both music and language. The parallel 

findings of Loui and Wessel (2006) and linguistic statistical learning studies (Saffran 

2001, 2002) show that humans are able to use statistical regularities to learn the rules of 

artificial granunars. These shared learning mechanisms further support the hypothesis of 

an overlap in the syntactical processing of music and language. 

The present study attempted to replicate and extend the findings of both Loui & 

Wessel (2006) and Sieve et al. (2009). Participants were exposed to an artificial music 

grammar similar to that used by Loui & Wessel (2006) in order to investigate the ability 

of non-musicians to acquire the new grammar in comparison to musicians. Participants 

were expected to learn the new grammar and this learning was not expected be dependent 

on their prior musical knowledge; that is, no difference in performance was expected 

between musicians and non-musicians on tasks that test their learning of the artificial 

music grammar. 

In this study, the artificial grammar was implemented into the SSIRH procedure 

used by Sieve et al. (2009) along with the original Western grammar and a random 

control grammar. An interaction between language syntactic-unexpectancy and music 

syntactic-unexpectancy was expected for the Western condition such that an increase in 
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reading time when these violations was predicted when these violations were paired. This 

interaction was also expected in the Acquired condition if participants were able to 

successfully learn the artificial grammar. Such results would provide further evidence for 

the SSIRH and for the use of the artificial grammar in studying music acquisition. 

Overall, there were two main research goals for the present study: I) Observe 

non-musicians' ability to learn the artificial music grammar; 2) By using a SSIRH 

paradigm, further test the learning of the new music grammar as well as explore the 

possibility that shared resources between music and language extend to the processing of 

novel music grammars. 

26 



Methods 

Participants 

One hundred fifty-one Seton Hall University undergraduates (95 female) 

participated in exchange for course credit. Close to ninety percent (89.4%) reported 

receiving less than 5 years of musical training, with 61.6% receiving a year or less. The 

other 10.6% received 6+ years of training and only one participant identified themselves 

as majoring in music. Therefore, the majority of participants were classified as non 

musicians. Each of the participants was randomly assigned to one of the three musical 

grammar conditions. 

Materials 

Twenty-four critical sentences, in which either the syntactic or semantic 

expectancy were manipulated, were adapted from Sieve et al (2009). Twelve sentences 

contained syntactic expectancy manipulations which were achieved through the use of 

garden path sentence structures. Sentences with syntactic errors contained a reduced 

sentence complement (the word that is omitted) while those without the errors included a 

full sentence complement ( contains the word that). The syntactic interpretation of the 

sentences was therefore either unexpected or expected, respectively, at the critical word 

(underlined below). The other 12 sentences contained semantic expectancy 

manipulations. These manipulations were achieved through the use of either a 

semantically inconsistent or consistent word (underlined below). Depending on the 

consistency of the word used, the semantic interpretation was either unexpected or 

expected at the critical word (underlined below). An additional 24 sentences were used as 
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filler sentences and contained neither syntactic nor semantic errors. These filler sentences 

were not used in the analyses. 

Syntactic expectancy manipulation example: 

The scientist confirmed (that) the hypothesis was being studied in his lab. 

Semantic expectancy manipulation example: 

The farmer went to the barn to milk the large (cows/cats) before dawn. 

Filler sentence example: 

When the monster suddenly appeared, the audience shrieked 

A separate musical sequence was paired with each sentence. Musical stimuli 

consisted of three musical grammars: Western, Acquired, and Random. The Western 

music grammar was created through the use of a compositional style known as 

counterpoint. This style creates simple, single note melodies. The melodies ranged in 

length from 5 notes to 1 1  notes in order to correspond to the sentence lengths. They were 

recorded using a piano timbre. Twenty-four of the melodic sequences were manipulated 

to contain a note from a distant key which created music syntax errors. These music 

syntax errors were occurred simultaneously with the critical point in the sentences. 

The Acquired grammar consisted of 500 melodies created from the Grammar I 

defined by Loui & Wessel (2006). Like the Western melodies, the acquired melodies 

range in length from 5 notes to 1 1  notes and were recorded using a piano timbre. There 

were no constraints on interval size within the melodies which follows the methods 

presented by Loui and Wessel (2006). To create syntactic violations, an out of grammar 

tone that violates the dependent phrase structure was inserted at a point that matched with 

the critical word in the sentences. This insertion should be heard as being similar to 
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inserting an out-of-key tone into a Western tonal sequence. Overall 48 melodies were 

manipulated, with 24 containing music-syntactic manipulations, to be used in the test 

phase. 

The Random, non-grammar musical stimuli consisted of 500 randomly generated 

sequences created using the 13 tones of the Bohlen-Pierce tuning. These sequences 

ranged in length from 5 notes to 1 1  notes and were recorded using a piano timbre. Forty 

eight of these sequences were used in conjunction with the sentences and 24 had a note 

changed at the critical point. Because these sequences had no grammar, a change was not 

considered to be a syntactic manipulation. 

Procedure 

Each participant was tested individually. They were seated in front of a computer 

and asked to wear a pair of headphones during the experiment. Participants began with a 

pre-exposure probe-tone task during which they heard a melody followed by a single 

tone. They were asked to rate how well that tone fit the melody using a 7 point scale, with 

1 being the least fitting and 7 being the best fitting. Following the probe-tone task 

participants were exposed to one of the three grammars. Four hundred melodies were 

presented in random order with no repeats and were heard for approximately 30 minutes. 

While listening to these melodies, participants were given the option of sitting quietly or 

completely a coloring task in order to alleviate boredom. 

Foil owing exposure, participants were asked to complete a forced-choice 

recognition and generalization task. A total of 20 trials were given to each participant, 10 

were the recognition task and the other 10 were the generalization task. The recognition 

task contained 10 melodies taken from the exposed grammar paired with 10 melodies 
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taken from an unexposed grammar of the same type (i.e. Western exposed melodies were 

paired with Western unexposed melodies). The generalization task consisted of IO novel 

melodies from the exposed grammar paired with 10 melodies from the unexposed 

grammar. The participants were asked to indicate which melody (I or 2) sounded more 

familiar to them based on what they had heard during the exposure phase. This phase was 

followed by a post-exposure probe-tone task which was exactly the same in procedure to 

the pre-exposure probe-tone task. 

Participants then completed a sentence-reading task. Short segments of each 

sentence appeared in the middle of the computer screen and participants were instructed 

to press a key in order to move on to the next segment. The tone sequence was played 

over headphones and each segment of the sentence was accompanied by a tone. The 

complete sentence formed a complete musical sequence. The tone began with the 

appearance of the segment and ended when the participant pressed the key to move on. If 

the participant did not hit the key the tone decayed over 1.5 seconds. Each complete 

sentence was followed by a comprehension question with a yes/no response (e.g. Did the 

farmer get up early?). Correct responses to the questions caused a screen with Correct! to 

appear while an incorrect response elicited Incorrect], both of which remained on the 

screen for I 500ms followed by the start of the next sentence. The participants were asked 

to read the sentences as quickly as possible while retaining accuracy on the 

comprehension questions. They were told that they would hear a tone with the 

presentation of each sentence segment but to focus on the sentences not the melodies. 

Response times, time spent looking at each segment, were recorded. Each participant 

completed a total of 48 trials. 
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The session concluded with a survey containing some demographic questions as 

well as questions about their music experience (see Appendix). 

Design and Analysis 

The sentence-reading task experimental design consisted of one between 

participant factor with 3 levels (music exposure type: Western, Acquired, and Random) 

and three within-participant factors with two levels each (language expectancy: expected 

or unexpected), language type: syntactic or semantic, and music expectancy: expected or 

unexpected). Each participant saw a given sentence only once. The conditions were 

counterbalanced so that the manipulation of a sentence was rotated; in that, for a given 

sentence each condition contained a different within-item manipulation of language and 

music expectancy of that sentence. The items were presented in a pseudo-random order 

provided by Sieve et al. (2009) in which critical and filler sentences were presented on 

alternate trials. 

The sentence-reading data were cleaned following the procedure outlined by 

Sieve et al. (2009). Reading times (RTs) below 50ms or above 2500ms per segment were 

discarded along with RTs that were above or below 2.5 standard deviations from each 

participant's mean reaction time. These criteria led to exclusion of 1.3% of critical point 

observations. It is at the critical point where violations in both language and music could 

occur. RTs were logarithmically transformed. These reading times were analyzed using a 

mixed between-within subjects analysis of variance (ANOV A). Three sections of the 

sentences were analyzed: the critical point, the section immediately pre-ceding the critical 

point (pre-critical) and the section immediately following the critical point (post-critical). 

Separate analyses were performed for each of these three sections. 
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These analyses were performed on just the Western grammar in order to look for 

a possible replication of' Slevc et al.'s findings. It was expected that errors in Western 

music-syntax would interact with language-syntax errors but not with language-semantic 

errors. Specifically, this interaction between simultaneous music- and language-syntax 

errors was predicted to cause an increase in reading times greater than those seen with 

errors in language-syntax alone. 

These analyses were then performed again on the Acquired and Random 

grammars together in order to isolate the effects of the Acquired grammar on reading 

times. Similar results to those expected with the Western music grammar were 

anticipated for the Acquired group if participants were able to learn the grammar. No 

interaction was expected between language-errors and music-errors in the Random 

condition due to the lack of syntactical regularities within these sequences. 

The music tasks were also analyzed in order to look for the rate of performance 

across grammars and also to determine possible learning of the Acquired grammar. The 

forced-choice task was analyzed using a one-way between-groups ANOV A for the 

recognition pairs and again for the generalization pairs. It was expected that participants 

in the Western music group would perform above chance on all tasks because of their 

life-time experience with the Western music-syntax. If participants were able to learn the 

artificial music grammar, it was expected that their performance on the forced-choice 

tasks would be similar to those seen in the Western music group. Participants in the 

random condition were expected to perform at chance on the forced-choice task because 

of the lack of syntactical regularities with in the tone sequences. Data from the probe 

tone tasks were not analyzed due to observations that this task was too difficult for 
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participants, in that, participants expressed confusion about the task and this confusion 

was displayed through the inconsistency of their responses. 

The effects of gender were considered for both the ability to learn the newly 

acquired grammar and for performance on the sentence-reading task. Gender was 

considered based on previous research that suggests differences between males and 

females in both language and music processing. Females have been found to perform 

better on language performance tasks and also show better first-language acquisition 

early in life than their male counterparts (Burman, Bitan, & Booth, 2008; Wallentin, 

2009). Evidence has also suggested that gender plays a role in second-language learning; 

females perform better than males on both syntactic and semantic tasks in the second 

language (Andreou, Vlachos, & Andreou, 2005). There are also differences in brain 

activation for language processing between males and females. Neuroimaging studies 

have observed left lateralized activation in males during language tasks while females 

show a more bilateral pattern of activation (Shaywitz et al., 1995). 

Few studies have examined at gender differences in music processing, despite its 

similarity to language processing. However, a recent brain imaging study by Koelsch and 

colleagues (Koelsch, Maess, Grossman, & Friederici, 2003) found brain activation 

differences during music processing tasks. It was observed that males showed a clear 

right hemispheric pattern of activation while females showed a bilateral pattern of 

activation. 

Based on this previous research, it was anticipated that music processing may be 

influenced by similar sex differences. Therefore, gender was expected to affect both the 

ability to learn the new grammar and performance on the sentence reading task. Due to 
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observations that females are better at learning a second language, it was expected that 

females would perform above their male counterparts on the tasks which test their 

learning of the new music grammar. Gender was predicted to possibly affect the sentence 

reading task in two ways: 1) If females were in fact able to better learn the new grammar, 

they would be more sensitive to errors within the new music grammar and therefore 

would show greater reading times when simultaneous music- and language-syntax 

violations occurred; 2) Since the SSIRH paradigm explored the possible overlap of 

syntax processing mechanisms between music and language, it was possible that results 

would be affected by the differences in brain areas activated during music and language 

processing observed between the genders. It would follow, then, that if females processed 

both music and language bilaterally, there would be a greater chance of processing 

mechanisms overlapping and therefore a greater chance of an interaction between music 

and language-syntax processing for women in the study. 

Also, the possible relationship between ability to learn the Acquired grammar and 

the performance on the reading task was examined. Participants in the Acquired group 

that performed well above chance on both of the forced-choice task are assumed to have 

more completely learned the syntactical regularities of the new music grammar. Because 

of their more precise representation of these regularities, it was possible that these 

participants would possibly be more sensitive to violations of the new music grammar. 

Therefore violations of the new music grammar would lead to greater interaction with 

language-syntax violations in the sentence-reading task. 
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Results 

Figures IO and 1 1  show results from the recognition and generalization tasks, 

respectively. It was predicted that participants in the Western condition should perform 

above chance on these tasks due to their life-long exposure to the Western music 

grammar. Also expected were similar results for the Acquired group if they had 

successfully learned the regularities of the new music grammar during the exposure 

phase. Those in the Random group were expected to perform below chance because of 

the lack of syntactical regularities within the tone sequences. 
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Figure JO. The Number of Recognition pairs correct, with the chance level marked at 500/a. 
Note: • significantly above chance at the p<.05 level and t significantly different from the 
Random condition at the p<.05 level. 

Forced-choice recognition tests demonstrated that participants in the Western and 

Acquired conditions were able to successfully recognize previously presented melodies. 

Both of these groups performed significantly above chance: Western, 1(51)=3.25,p<.01 

and Acquired, t(51)=5.5,p<.001. However, those in the Random condition performed at 

chance on this task. There was a statistically significant difference between the three 
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music grammar groups on this task (F(2, 148)=8.7,p=.OO). Post-hoc comparisons using 

the Tukey HSD test indicated that there was no difference between the Western (,\/;5.8, 

SD= 1.8) and Acquired (M=6.2, SD= 1.6) conditions mean scores but those two 

conditions' mean scores were significantly different from the Random condition's 

(M=4.8, SD=l .6). 
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Figure I I. The Number of Generaliz.ation pairs correct, with the chance level marked at 50%. 
Note: • significantly above chance at the p<.05 level and t significantly different from the 
Acquired and Random conditions at the p<.05 level. 

The results for the forced-choice generalization tests showed a different pattern of 

results in that only those in the Western condition performed significantly above chance 

on this task: t(51)=6.92,p<.OOI. Again, there was a statistically significant difference 

between the three music grammar groups (F(2, 148)= 19.8, p=.00). Post-hoc comparisons 

using the Tukey HSD test demonstrated that there was no difference between the mean 

scores of the Acquired (M=5.l, SD=l.5) and Random (M=5.0, SD=l.4) conditions. 

However, mean scores for both the Acquired and Random conditions were significantly 
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different from the mean scores of the Western condition (M=6.8, SD=l .9). These forced 

choice tests showed that participants in the Acquired condition were able to recognize 

those melodies presented during exposure but were unable to generalize their familiarity 

to novel melodies from the exposed grammar. 

Gender was found to have no affect on participants' performance on the forced 

choice tasks for the Acquired music grammar (Recognition: F(2, 51 )=.24, p=. 78; 

Generalization: F(2, 51 )=2.16, p=.13). It had been expected that, due to their superior 

performance on second-language learning tests, females would better learn the new music 

grammar and therefore perform above than their male counterpoints on the music tasks. 

However, the results found may be based on the skewed number of females (34) to males 

(17) in the Acquired group. 

The RTs from the sentence reading task were analyzed using separate ANOVAs 

for the three sentence regions being considered: pre-critical, critical, and post-critical. 

These analyses were performed for the Western grammar condition and again for the 

Acquired and Random conditions together. Increases in reading time at the critical points 

when simultaneous music- and language-syntax violations occurred were expected for the 

Western and Acquired conditions. These results were expected for the Western condition 

because participant should have a complete syntactical knowledge of the regularities of 

this musical system because oflife-long exposure and should therefore be sensitive to 

violations of the Western music grammar. Similar results should be seen with the 

Acquired group if they were able to learn and form a representation of the syntactical 

regularities of the new music grammar. No increase was expected at the critical point 

when simultaneous music- and language-syntax errors occurred for the Random 
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condition due to the lack of syntactical regularities and therefore no learning of the syntax 

and no Random music-syntax errors within the music sequences could occur 

Table I. Mean reaction times (in milliseconds, with standard errors in parenthesis) by sentence region and 
by condition. Pre-Critical region is defined as the sentence segment directly preceding the critical point and 
the post-critical region is the sentence segment directly following the critical region. The critical region of 
the sentence is where the language or music manipulations could occur. 

Pn-Critical Region 

SyntacticaUy ScmantltaHy 

expected unexpected difference expected unexpected difference 

Wesu:m Expected 639 (33) 603 (29) -36 478 (17) 479 (23) I 

W estem Unexpected 626 (32) 555 (28) -71 483 (22) 478 (21) -5 

Acquired Expected 617 (39) 622 (39) 5 516(31) 506 (28) -10 

Acquired Unexpected 646 (41) 604 (38) -42 505 (30) 501 (25) -4 

Random Expected 604 (41) 588 (41) -16 488 (32) 492 (29) 4 

Random Unexpected 606 (43) 571 (40) -35 497 (32) 472 (26) -25 

Critical Region 

SyntacticaUy Semantically 

expected unexpected difference expected unexpected difference 

Western Expected 515 (22) 524 (26) 9 481 (20) 509 (26) 28 

Western Unexpected 498 (18) 519 (27) 21 488 (26) 515 (26) 27 

Acquired Expected 525 (33) 577 (40) 52 515 (31) 556 (40) 41 

Acquired Unexpected 535 (36) 570 (35) 35 526 (32) 556 (38) 30 

Random Expected 506 (35) 530 (42) 24 452 (33) 524 (42) 72 

Random Unexpected 513 (38) 524 (37) 11 468 (34) 478 (39) IO 

Post-Critical Region 

SyntacticaUy Semantically 

expected unexpected difference expected unexpected difference 

Western Expected 512 (24) 527 (24) 15 506 (20) 583 (30) 77 

Western Unexpected 520 (23) 541 (31) 21 515(25) 565 (21) 50 

Acquired Expected 527 (33) 576 (41) 49 533 (30) 606 (36) 73 

Acquired Unexpected 536 (37) 566 (32) 30 531 (29) 594 (35) 63 

Random Expected 491 (35) 523 (43) 32 477(31) 571 (38) 94 

Random Unexpected 503 (39) 512 (34) 9 486(30) 555 (37) 69 

The analysis for the Western grammar condition consisted of a 2 

(language type) X 2 (language expectancy) X 2 (music expectancy) within-participant 

ANOV A. The Acquired and Random analysis was the same except for the addition of a 

between-subject factor (music type). Table I shows the mean RTs for each condition by 
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sentence region. For the sake of brevity, only significant and marginally significant 

results of the ANOV As are reported. The results from the Western condition will be 

considered first. 

In the pre-critical region, RTs were longer for the syntactically-manipulated 

sentences than for the semantically-manipulated sentences (a main effect oflanguage 

type: F(I, 51)=214.42,p<.OOI, r,1P =.81). Also, RTs were longer for linguistically 

expected conditions than for unexpected conditions ( a main effect of language 

expectancy: F(I, 51)=8.90,p<.OI, r,1P =.15).Slevc et al. (2009) also found this main effect 

oflanguage expectancy. Sieve et al. explained this difference in RTs between the 

expected and unexpected conditions as being representative of earlier differences in the 

sentences (e.g., the presence or absence of that). Overall, the expected conditions for 

syntactically-manipulated sentences had the longest RTs (an interaction between 

language type and language expectancy: F(I, 51)=3.98,p =.05, r,2p = .07). There was also 

a main effect of music expectancy (F(I, 51)=6.l 9,p<.05, ,,2P =.1 1)  in that expected music 

conditions had longer RTs than unexpected music conditions. 

In the critical region, RTs were longer for syntactically-manipulated sentences 

than for semantically manipulated sentences (a main effect oflanguage type: F(l, 

51)=9.64,p<.05, r,1µ=.16). No other effects reached significance. 

In the post critical region, RTs were longer for semantically-manipulated 

conditions than for syntactically-manipulated ( a main effect of language type: F( I, 

5!)=7.57,p<.01, ,,2P = .13) . Also, RTs were slowed by both syntactic and semantic 

unexpectancy (a main effect oflinguistic expectancy: F(I, 51) = 9.47,p<.OI, ,,ZP = .16). 

This was especially true for semantically manipulated sentences (an interaction between 
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language type and language expectancy: F(I, 51)=5.70,p<.05, ,/P =.10). No other effects 

reached significance. 

The pre-critical, critical, and post-critical regions of the Acquired and Random 

conditions were then considered. In the pre-critical regions, syntactically-manipulated 

sentences had longer RTs than the semantically-manipulated sentences (a main effect of 

language type: F(I, 97)=249.67,p<.OOI, 712
p =.72). No other effects were found to be 

significant. 

In the critical region, RTs were longer for syntactically-manipulated sentences 

than for semantically manipulated sentences (amain effect of language type: 

F(l,  97)=28.8,p<.OOI, ,/p =.23 ). This was especially true in Acquired grammar 

conditions (an interaction of music type and language type: F(I, 97)=4.92,p<.05, ,,2P = 

.05). Also, RTs were longer for linguistically unexpected conditions (a main effect of 

language expectancy: F(I, 97)=13.98,p<.OOI, ,/p =.13). There was also a trend towards a 

significant three-way interaction between music type, language type and language 

expectancy (F{I, 97)=3.53,p=.06, ,/p =.04) in that unexpected syntactic manipulations in 

the Acquired grammar conditions had the longest RTs. No other effects reached 

significance. 

In the post-critical region, RTs were longer for semantically-manipulated than for 

syntactically manipulated sentences (a main effect oflanguage type: F(I, 97)=6.37, 

p<.05, ,,2P =.06). Also, RTs were slowed by linguistic unexpectancy (a main effect of 

linguistic expectancy: F(I, 97)=46.59,p<.OOI, ,/P =.32). Overall, the unexpected 

semantically-manipulated sentences had the longest RTs (an interaction oflanguage type 

and language expectancy: F(I, 97)=9.14,p<.OI, ,,2P =.09). 
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Performance on the forced-choice recognition and generalization task, where 

participants were asked to select the most familiar melody out of two presented melodies, 

was found to have no effect on the sentence reading task for both the Western and 

Acquired conditions (F(I, 149)=.89,p=.35, ,,2µ=.017). It had been predicted that those 

who performed well above chance on these music tasks may have a more complete 

representation of the syntactical regularities of the music grammar and may be more 

sensitive to violations of the music grammar which would result in a greater increase in 

response time at the critical point of the sentence. However, these results could be due to 

the small number of participants with greater than 60% correct on those tasks (Western N 

= 22, Acquired N=l8). 

Gender was expected to affect performance on the sentence-reading task. It was 

predicted that females may show a greater interaction between music-syntax and 

language-syntax violations. This prediction was considered because of the bilateral brain 

activation seen during both music and language processing tasks in contrast to males 

more hemispheric-specific activation. Gender did not affect the findings for the sentence 

reading task when looking at the Acquired and Random conditions. However, gender did 

affect the findings at the critical point for the Western conditions. 

There was a significant four-way interaction between gender, language type, 

language expectancy, and music expectancy (F(I, 50)=4.6,p<.05, ,,2P =.08). Females had 

overall longer RTs for all conditions. Most interesting was that females had longer RTs 

for syntactically unexpected conditions paired with an unexpected music-manipulation 

(M=575.48, SE=33.7) than for syntactically unexpected conditions paired with an 

expected music-manipulation (M=542.93, SE=33.75). This is consistent with findings of 
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Sieve at al. (2009) in that the longest RTs in the sentence-reading task occurred at the 

critical point during which simultaneous errors in music- and language-syntax occurred. 

Males on the other hand, showed the opposite direction ofRTs (syntactically unexpected 

and music unexpected: M=441.47, SE=39.35 and syntactically unexpected and music 

expected: M=498.91, SE=39.42). 
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Discussion 

The present study tested the ability of participants to learn an artificial music 

grammar as well as implementing this grammar into a SSIRH procedure in order to 

explore a possible interaction with language processing. During the first phase of the 

experiment, participants were exposed to a novel musical grammar and were given a 

series of tasks to test their ability to learn the new grammar. Participants were able to 

recognize melodies they had heard during the exposure phase but were unable to 

generalize their learning to novel melodies from that grammar. 

The second phase of the experiment consisted of a self-paced sentence reading 

task accompanied by musical sequences from one of three musical grammars: Western, 

Acquired, and Random. Standard garden-path and semantic anomaly results were found 

in that those sentences that contained an unexpected linguistic event were more difficult 

to process as evident in increased reading times at the critical points of the sentences. No 

interaction between language-syntactic unexpectancy and music-syntactic unexpectancy 

was found. These results were consistent across all musical grammar conditions. 

The results of the first phase of the experiment, where participants were exposed 

to the artificial grammar, support and extend the findings of Loui & Wessel (2006). The 

results found in the present study did not replicate those seen in the experiment 

(Experiment 3) which the present procedure is based upon. However, they do replicate 

those results found by Loui & Wessel in their Experiment 1 during which participants 

were exposed to fewer melodies for a shorter amount of time; participants were able to 

recognize previously heard melodies but were unable to generalize what they had learned 

to novel melodies. 
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The difference in results despite using a similar procedure may be due to the 

population used. Loui and Wessel's participants were musicians (i.e., had over 5 years of 

musical training) while the majority (89.4%) of the participants in the present study were 

non-musicians (i.e. had less than 5 years of musical training). Non-musicians may need 

more exposure time in order to gain enough knowledge of the grammar to generalize to 

novel melodies. Research has shown the musicians have a better learning and memory for 

novel melodies than non-musicians (Korenrnan, 2007). This may be related to changes 

how auditory information is processed in the brain; that is, musicians show earlier and 

larger brain responses to auditory information (Musacchia, Sams, Skoe, & Kraus, 2007). 

The results of the second phase of the experiment, the sentence-reading task, did 

not replicate Sieve et al.' s (2009) findings of an interaction between linguistic-syntactic 

unexpectancy and music-syntactic unexpectancy for the Western condition. The present 

results were also unable to extend Sieve et al. 's findings to an artificial grammar. 

However, there were gender differences seen in the sentence-reading task for the Western 

music condition. Females showed a pattern ofRTs consistent with Sieve et al.'s results in 

that there was an increase in reading time when simultaneous music- and language-syntax 

errors occurred. 

There are a number of reasons why the present study was unable to support the 

results of Sieve et al (2009). For one, the difference in the number of non-musicians 

versus musicians differed between the two studies. The present study had only I 0% 

musicians while 50% ofSlevc et al.'s participants were considered musicians. Non 

musicians may not be as sensitive as musicians to violations of music grammar and 

therefore may not be as affected by those violations (Koelsch et al., 2003). Musicians are 
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considered to have more specific representations of music-syntactical regularities and 

therefore have more precise expectations for musical grammar than non-musicians due to 

their greater exposure to and more explicit training of these tonal relationships (Koelsch, 

Schmidt, & Kansok, 2002). 

Another reason could be the difference in sample size. The present study has 144 

participants, which breaks down to 12 in each condition. Sieve et al. had twice as many 

participants in each condition. Due to the small effects associated with self-paced reading 

studies, a larger sample size may be needed to find significant results. Also, the 

difference in study procedures may have affected the results of the present study. Sieve et 

al' s experiment consisted of only the sentence-reading task which lasts approximately IO 

minutes. The present study took around 60 minutes to complete due to the addition of the 

grammar exposure phase and musical tasks. Since the sentence-reading task was the last 

phase of the present study, participants may have been fatigued after completing the first 

phase of the experiment. Gender differences were not discussed by Sieve et al. nor are 

they often discussed in the music cognition literature. 

Overall, the present study was able to show that participants were able to learn an 

artificial grammar but were unable to form a precise representation of the new grammar 

which would have allowed them to generalize to novel melodies. However, the present 

study was unable to show an interaction between music and language processing for 

either the Western or Acquired grammar. 

The present results support the future use of this artificial grammar as means to 

study music acquisition but future research should take into account the abilities of 

musicians versus non-musicians. Future research should also explore the differences 
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between musicians and non-musicians on tasks of music acquisition and how musical 

expertise affects the syntactical representations formed during the learning of a new 

music grammar. At this point in time, studies have either considered one group or the 

other (Musicians: Loui & Wessel, 2006; Non-musicians: Creel, Newport, & Aslin, 2004; 

Saffran et al., I 999) and a comparison of the two groups may prove to be useful in the 

discussion of differences between the two. 

However, the way in which participants are categorized as musicians or non 

musicians should be reconsidered for future research. At this time individuals are 

considered a musician if they have received a pre-determined number of years of private 

musical instruction. Yet, this may not prove to be the most exact method for defining 

musical expertise. A music expertise scale should be created that is able to test 

participants' performance on a number of musical tasks in order to quantitatively 

determine the musicianship of the individual. This would enable researchers to better 

explore the differences between musicians and non-musicians. 

Music acquisition using this grammar should also be explored in other 

populations including children, bilingual individuals, and those with pervasive 

developmental disorders and brain damage that affect language learning, comprehension, 

and production. Studies looking at these populations may prove useful in further 

discussing the similarities and differences between music and language processing. 

Gender's role in music processing should also be further explored. Research has 

shown differences between males and females in the structure and function of the brain 

during language processing. Despite the similarities between language and music, there 

has been relatively little research observing gender differences in music perception and 
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cognition (Koelsch et al., 2003). Gender should be reported and considered in current 

research in the area of music cognition. 

The present study used an artificial music grammar (Loui & Wessel, 2006) in 

order to test the ability of non-musician participants to learn a new music grammar as 

well as to observe a possible interaction between music and language syntax processing. 

Although participants were able to learn the artificial music grammar, a language task 

was not affected by errors in the new music grammar as has been found with Western 

music-syntax errors (Sieve, Rosenberg, & Patel, 2009). The results support the possibility 

of a shared learning mechanism between music and language using statistical 

probabilities to acquire the syntactical regularities of a grammar. However, the results of 

the present study were unable to provide evidence for the SSIRH using a self-paced 

reading task. 
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Appendix 

Musical Expertise Questionnaire: 

I) Are you male or female?: Male I Female I No Response 

2) What year are you in school?: Freshman I Sophomore I Junior I Senior I Other 

3) Are you a music major?: Yes I No 

4) Do you play an instrument or sing?: Yes I No 

5) Can you read music notation?: Yes I No 

6) Have you received private music instruction?: Yes I No 

7) If so, how many years of instruction have you had?: 0-1 year I 2-3 years I 4-5 years I 6- 

7 years I 8 or more years 

8) Do you consider yourself a musician?: Yes I No 

9) Do you have perfect pitch (a.k.a. absolute pitch)?: Yes I No 
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