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Abstract 

 The surface of most metal oxides is covered by hydroxyl groups which influence many 

surface phenomena such as adsorption and wetting, catalysis and surface reactions.  Surface 

chemistry of silica is a subject of exhaustive studies owing to a wide variety of practical 

applications of silica. In Chapter 1, a brief review of classification, synthesis and characterization 

of silica is provided. The hydroxylation of silica surface i.e the number of hydroxyl (-OH) groups 

on the surface is of utmost importance for its practical applications.  In Chapter 2, a brief 

introduction to surface hydration of silica is provided followed by the gas adsorption 

measurements and characterization. 

 Pore wetting is critical to many applications of mesoporous adsorbents, catalysts, and 

separation materials. In the work presented in Chapter 3, we employed the combined vapor 

adsorption study using nitrogen (77K) and water (293K) isotherms to evaluate the water contact 

angles for a series of ordered mesoporous silicas (ex:SBA-15). The proposed method of contact 

angle relies on the statistical film thickness (t-curve) of the adsorbed water. There were no t-

curves for water for dehydroxylated or hydrophobic surfaces in literature and we addressed this 

issue by measuring t-curves for a series of model surfaces with known and varying silanol 

coverage. Using the radius of menisci ((2ܱܪ)), statistical film thickness t(H2O) from water 

isotherm, and the true radius of pores ((2ܰ)݌ݎ), from nitrogen isotherms, the water contact angle 

inside pores were calculated. As it was anticipated, the results obtained showed that the silica 

pore contact angles were strongly influenced by the number of the surface silanol groups and, 

therefore, by the thermal and hydration treatments of silicas. 

 Phthalocyanines (Pcs) present an interesting class of catalytically active of molecules 

with unique spectroscopic, photoelectric, and sometimes magnetic properties. In the work 
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presented in Chapter 4, we have undertaken a systematic study to explore the possibility of 

preparing a supported catalyst material i.e loading fluorinated metal phthalocyanines onto metal 

oxide surfaces by two other techniques in addition to solution adsorption. Techniques or 

procedures that have been used to immobilize MPcs include: i) physical adsorption (from 

solution) onto metal oxide surface, ii) deposition by pore filling and encapsulation and iii) 

mesopore entrapment or confinement. The MPcs are loaded on to metal oxides with an aim to: a) 

maximize the surface area of the Pcs by distributing it over the support, b) immobilize the Pcs so 

that they do not leach into the solution environment, c) improve the thermal stability of the Pcs 

and d) attempt to achieve single-site catalysis. All the immobilization techniques were carried out 

with F64PcZn as the model MPc, acetone as the immobilization solvent and silica or alumina as 

adsorbents (solid support).  

An understanding of gas adsorption mechanisms on metal phthalocyanines (MPcs) is 

essential for their practical application in biological processes, gas sensing, and catalysis. In this 

work, the surface characteristics were probed by performing nitrogen and water adsorption on the 

free-form MPcs (without immobilization on solid support) and characterization of their physical 

properties. The combined vapor adsorption study (developed in Chapter 3) enabled in 

understanding the affinity of Pcs towards water vapor i.e number of water molecules adsorbed per 

phthalocyanine molecule was obtained. This information is very relevant towards using Pcs as 

catalyst since water vapor is guaranteed to be present in most of the catalytic reaction environment. 
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zm Number of sites per unit area 
p Vapor pressure 
v1 Frequency of oscillation  
c c-constant 

NA Avogadro constant 
am Adsorbate molecular area 
vm Volume of gas(reduced to STP)  
γ Surface tension of the liquid adsorptive 
rm Radius of menisci 

p/ po Relative vapor pressure 
rc Radius of the core 
rp Radius of the pore 
θ Contact angle 
VL Molar volume of the liquid adsorptive 
t Adsorbed film thickness or statistical thickness 
ρ Grafting density 

S or S BET or S(N2) BET surface area 
nc Number of carbon atoms  

%C Carbon weight percent 
nOH Amount of surface silanols 

Vads.liq. Amount of liquid water adsorbed in cm3/g ߁ Amount of water adsorbed in µmole/m2 
f1 Solid-liquid interface fraction 
f2 Air-liquid interface fraction 
h Average thickness of grafted layer 
Co Liquid phase concentration of Pc at initial condition 
Ce Liquid phase concentration of Pc at equilibrium condition 
V Volume of Pc solution 
W Mass of dry adsorbent 
R Absolute reflectance of the sampled layer 
k Molar absorption coefficient 
s Scattering coefficient 

 ω Cross-sectional area ߁max Maximum monolayer adsorption capacity in µmole/m2 
V(N2) Pore Volume by nitrogen adsorption 
r(N2) Radius by nitrogen adsorption 
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Chapter 1: Classification, Synthesis and Characterization of Silica 

1.1 Introduction to Silica 

Silicon dioxide (SiO2) or silica is the most abundant of all the oxide minerals in the earth’s 

crust. Besides being the abundant metal oxide, silica is very important to life. The human body 

consists of about half gram of silica that promotes the formation and growth of bones, hair and 

teeth. The solubility of silica in water is adequate enough to play important roles in many forms 

of life. The term silica encompasses silicon dioxide in its natural, synthetic, crystalline or 

amorphous and chemically combined forms in which the silicon atom is surrounded by four or six 

oxygen atoms1. Solid silica can be classified on the basis of four main attributes namely crystal 

structure, dispersity, surface composition and porosity2. 

1.1.1 Classification based on the crystal structure 

Silica is classified as crystalline or amorphous (non-crystalline). Crystalline silica is found 

in nature and also exist as synthetic forms. Quartz, tridymite, cristobalite are three main crystalline 

silicas found naturally and each have different polymorphic forms that are stable in different 

temperature ranges. The transformation between three silica forms and the vitreous silica glass at 

atmospheric pressure is show below: 

 

Keatite, coesite and stishovite are synthetic crystalline silicas with well-ordered structures2-3. The 

crystalline form involves a high degree of ordering and the surface area is limited to the external 

surface of the crystalline particles. With the exception of stishovite and coesite which has a six 

1700°C     
 

1470°C      
 

870°C      
 tridymite vitreous cristobalite quartz 
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fold octahedral coordination of the silicon, in all other silicas the silicon atom is surrounded by 

four oxygen atoms forming the [SiO4]4- tetrahedral unit1 as shown in Figure 1. 

Quartz glass (super cooled liquid silica) is an intermediate between crystalline and 

amorphous form. Opal (naturally occurring silica) and synthetic silicas such as silica gels, 

pyrogenic silicas and precipitated silica are some examples of amorphous silica. They lack regular 

ordered structure and exhibits higher degree of hydration as compared to crystalline silica2-3. 

Amorphous silica forms are porous and the porosity introduces a large surface area inside the 

particles4. In both amorphous and crystalline silicas, each silicon atom and each oxygen atom have 

essentially the same local surroundings, however, there is no long-range periodicity in the 

amorphous structure. 

 

Figure 1. Methods of representing the tetrahedral coordination of oxygen ions with silicon: (a) 
ball and stick model, (b) solid tetrahedron, (c) skeletal tetrahedron, and (d) space-filling model 

based on packed sphere. Adapted from ref. 1. 
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1.1.2 Classification based on dispersity 

Silica can be classified as soluble silica, silica sols, silica gels (hydrogels, xerogels, and 

aerogels), precipitated silica and pyrogenic silicas. Soluble silica is a molecular solution of silica 

(mainly monosilicic acid at low concentrations) formed when amorphous or crystalline silica 

comes in contact with water. It is neutral, hydrophilic, non-ionized and cannot be isolated from 

water2-3. Silica sols consists of discrete silica particles that are amorphous, non-porous and 

spherical in shape. Silica sols are made by partially neutralizing a dilute solution of soluble silicates 

with acid to a pH of 8-9. Under these conditions, polysilicic acids are formed by polycondensation 

and grows into colloidal silica particles2-3.The behavior of silica sols is greatly dependent on pH 

and a small change in pH converts the sol into a gel or a solution. 

Stabilization of silica sols to prevent aggregation, involves understanding of the surface 

chemistry of silica and the nature of interaction of silica and water over a wide pH range. If the 

silica sols are not stabilized, the dispersed silica particles will aggregate by one of the typical 

aggregation processes namely gelling, coagulation, flocculation or coacervation. When the 

aggregation happens via the process of gelling, the silica particles are linked to one another leading 

to three dimensional packing of silica and finally results in a gelatinous mass called silica gel. The 

gel is formed when two silica particles with sufficiently low charges collide with each other to 

form siloxane bonds, holding the particles irreversibly bonded. This gel is referred to as hydrogel 

or organogel if the continuous liquid phase is water or an organic solvent respectively. The rate of 

gel formation depends on pH, particle size, silica concentration, electrolytes, organic liquids and 

temperature. For example, the rate of gel formation (in the pH range 3-5) increases with pH and is 

proportional to the concentration of hydroxyl ions3. A xerogel is obtained when a gel is dried by 

evaporation under normal conditions and a xerogel is reduced in volume by factor of 5 to 10 



 

4 
 

compared to the original wet gel1. The reduction or shrinkage is a result of stresses exerted by 

capillary tension in the liquid during drying. An aerogel is obtained when a gel is dried by 

evaporation in an autoclave above the critical point of the liquid, so that there is no capillary 

pressure leading to minimal or no shrinkage of the gel structure. 

Precipitated silicas are obtained from a solution phase such as sodium silicate solution, 

fluoride solution, organic liquids and colloidal silica sols by the process of precipitation. The 

presence of a coagulant such as sodium ions, ammonium salts, calcium salts, polyvalent metal ions 

or organic materials is crucial for silica to precipitate from the solution phase1. 

Pyrogenic silicas are made at high temperatures by precipitation of silica from the vapor 

phase. They are colloidal dispersion of particles in the gas phase and can be referred to as aerosols. 

Pyrogenic silica can be obtained by one of the many processes such as vaporization of SiO2, 

oxidation of SiO vapor, oxidation and hydrolysis of SiCl4 vapor or silicon ester vapors, hydrolysis 

of SiF4 vapors1, 3. The most commonly used pyrogenic silicas or fumed silicas are made by the 

flame hydrolysis process which involves oxidation and hydrolysis of SiCl4 vapors5. Aerosil and 

Cab-O-Sil produced by Evonik industries and Cabot Corporation respectively are the most widely 

used fumed silicas. The preparation of fumed silica is discussed in detail in the section 1.2. Arc 

silicas are made by the reduction of high purity sand and plasma silicas are ultra-fine silica powders 

obtained by direct volatilization of sand in a plasma jet. 

Among the various silicas discussed above, there is variation in physical properties from 

one type to another due to the inherent differences in the process of making these silicas. The size 

of the primary particle, density and degree of agglomeration and aggregation decides the porosity 

and specific surface area of these silicas. For example, xerogels and aerogels have a porous 



 

5 
 

structure, while fumed silica has a non-porous structure. Table 1 illustrates the differences in the 

physical properties of silica obtained through different  methods4. 

Table 1. Physical properties of various silicas4. 

 
Characteristics 

 

 
Pyrogenic silicas 

 
Silicas made by wet method 

  fumed  
silica 

arc 
 silica 

precipitated 
silica 

xerogels aerogels 

Specific BET 
area 

m2/g 50 to 600 25 to 300 30 to 800 250 to 1000 250 to 400 

Size primary 
particles 

nm 5 to 50 5 to 500 5 to 100 3 to 20 3 to 20 

Size 
aggregation/ 
agglomeration 

µm NA 2 to 15 1 to 40 1 to 20 1 to 15 

Density g/cm3 2.2 2.2 1.9 to 2.1 2.0 2.0 
Volume ml/ 

100g 
1000 to 2000 500 to 1000 200 to 2000 100 to 200 800 to 2000 

Mean pore 
diameter 

nm non porous till 
ca. 300 m2/g 

non porous >30 2 to 20 > 25 

Pore diameter 
distribution 

 NA NA very broad narrow narrow 

Shape of 
interior 
surface 

 0 0 poor very much much 

Aggregation 
and 
agglomeration 
structure 

 Chain-like 
agglomeration 
(open surface) 

Dense 
spherical 
aggregates/ 
particles non-
agglomerated 

Slightly 
aggregated 
nearly 
spherical 
particles 

highly porous 
agglomerated 
particles 

macroporous 
agglomerated 
particles 

NA- not applicable 

 

1.1.3 Classification based on surface composition 

The hydrated silica surface without any surface modification consists of physically 

adsorbed surface water and hydroxyl groups (silanols) that are bonded to a silicon atom in different 

ways. The silanols (≡Si-OH) are involved in a temperature dependent dehydroxylation-

hydroxylation reaction written as 
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2 ≡Si-OH   ⇌  ≡Si-O-Si≡  + H2O 

As dehydroxylation occurs (by heating or annealing), silanols are converted to less polar siloxane 

groups (≡Si-O-Si≡). The number and type of surface silanols and surface siloxane groups varies 

from silica to silica depending on the synthesis process and post synthesis treatment procedures6. 

Based on the surface water, hydroxyl groups and siloxane linkages, silica can be broadly classified 

as hydroxylated or partially dehydroxylated or fully dehydroxylated silica. Generally, a completely 

hydroxylated silica can be considered as a hydrophilic surface and removal of hydroxyl groups by 

the process of dehydroxylation leads to surface with hydrophobic properties. In this research, 

chapter 3 is focused on obtaining well defined silica surfaces with various degree of surface 

hydroxylation. 

Chemical modification of a silica surface is described as covalent bonding of certain 

functional groups on to the silica surface as a result of chemical reaction between surface species 

and an appropriate surface modifier. Based on the bond by which functional groups are attached 

at the surface silicon atoms2, they can be categorized as:  (1)  ≡Si−O−C≡ (2) ≡Si−C≡ and (3) 

≡Si−N=.  In the history of silica chemistry, chemical modification is mainly performed to alter the 

wettability of silica products depending on the end use. Numerous types of silica are widely used 

as adsorbents in liquid chromatography, catalytic bed supports, fillers for polymeric systems, co-

binders in nonstick coatings, enhancers in paper manufacturing processes, stabilizers (for weave 

structures) in textiles, as well as dispersant in pigments and fillers, binding agents for molding 

materials etc6.  Hence, chemical modification of the surface of silica has gained significant 

attention in order to meet the technological demands for making several novel silica materials. 

 

(1-2)
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1.1.4 Classification based on porosity 

All solids can be classified in two categories: porous and non-porous solids. Solid silica 

with a pore system is defined as porous silica and solid silica without a pore system is non-porous 

silica. The presence or absence of a pore system depends on the process used to obtain the silica 

material. An assembly of smooth discrete particles or chain like agglomeration of primary silica 

particles results in non-porous structures. Fumed silicas such as aerosil are non-porous, possess no 

interior surface and specific surface area is simply the external surface of the particles. 

Porosity originates when dispersed silicas particles are compacted together. The pore space 

is being created by the interstices and voids between the particles. The three measure of a porous 

material are surface area, pore size and its distribution and pore volume7. As per IUPAC 

classification, pores are classified as below in Table 2. 

Table 2. Pores as per IUPAC classification. 

Type of Pores Width 

Micropores < 2 nm 

Mesopores 2- 50 nm 

Macropores > 50 nm 

 

Each pore size range corresponds to a characteristic adsorption mechanism and this forms the basis 

of this classification. The width would correspond to the diameter in case of the cylindrical pores 

and the distance between opposite walls in case of slit pores8. The specific surface area of porous 

silica is a combination of both exterior and interior surface with major contribution from the 

interior surface. 
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The type of pores7 can be further classified as open and closed as shown in Figure 2. Open 

pores are accessible whereas closed pores are inaccessible. Open pores can be inter-connected, 

passing or can form dead ends. The shape of pores7 in a silica material could be cylindrical, conical, 

spherical (ink bottle), interstices and slits as shown in Figure 3. 

 

 

 

 

 

Figure 2. Cross section of a hypothetical porous material showing various types of pores7 1) 
Open passing 2) Open interconnected 3) Open dead end and 4) Closed pores. 

 

 

 

 

 

 

 

 

 
Figure 3. Shapes of Pores7 a) Cylindrical b) Slit c) Conical d) Interstices 

e) Ink Bottle (Spherical). 
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Zeolites are a classic example of microporous materials. Zeolites are microporous inorganic 

crystalline materials containing Si, Al and O atoms in their framework.  Zeolites have well defined 

pore structures with large surface area and they are used in shape selective catalysis. With the 

advent of a wide variety of new zeolites (types A, X and Y) they were used in large scale for 

separation and purification of small molecules9. The small pore size of zeolites (0.4 nm in Zeolite 

A) were initially attractive for some commercial applications as they paved the way for selective 

adsorption of gas molecules based on small size differences. However, with the increased interest 

to use zeolites in applications like separation of heavy metal ions, separation and selective 

adsorption of large organic molecules from waste water, cracking activity in oil industry, the 

smaller pore size turned out to be a limiting factor. Research studies were done to expand the pore 

sizes of zeolites which eventually paved way to some ultra large pore zeolites (0.8–1.3 nm) like 

VPI-5, JDF-20 etc. However these large pore zeolites did not find any significant applications due 

to poor stability and weak acidity 9. 

In 1992, M41S family of silicate/aluminosilicate mesoporous molecular sieves with large 

uniform pores structures were discovered by researchers at Mobil Corporation10-11. The synthesis 

of M41S type materials is based on the combination of the sol-gel science and surfactant 

templating science. Unlike in zeolite synthesis where single molecules serve as templates, 

surfactant liquid-crystal structures serve as organic templates in the synthesis of these M41S type 

materials12. Using a self-assembled surfactant molecular array, a series of M41S materials namely 

MCM-41 (hexagonal), MCM-48 (cubic)  and MCM-50 (lamellar) were synthesized13. Figure 4 

shows the graphic representation of the M41S family type of silicas12. 
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Figure 4. Schematic representation12 of M41s family of materials. 

The hexagonal mesophase MCM-41 consists of highly regular arrays of uniformly sized 

channels with diameters ranging from 1.5-10 nm depending on the templates used. The pores of 

MCM-41 are larger than those present in conventional synthetic zeolites thereby offering new 

opportunities for applications such as adsorption, catalysis, sensing, and separation.  In 1998, a 

group of researchers at University of California, Santa Barbara produced another type of hexagonal 

array pores called the Santa Barbara Amorphous number 15 (SBA-15)14. SBA-15 was synthesized 

using amphiphilic triblock copolymers (Pluronic P-123) in strong acidic media. SBA-15 was found 

to possess larger pore size (4.6-30 nm) with thermal, mechanical and chemical resistance 

properties. SBA-16 was synthesized using the triblock copolymer Pluronic F-127 and has spherical 

pores arranged in body centered cubic structures14. In addition to MCM and SBA type silicas, there 

are many other families of mesoporous silicas such as MSU15, KIT16, FDU17, AMS18 synthesized 

by varying the synthesis conditions and type of surfactants. This breakthrough in the synthesis of 

mesoporous silica materials with controlled particle size, morphology, and porosity, along with 

their chemical stability, has made mesoporous silica matrices highly attractive for a wide variety 

of nanotechnological applications. One major limitation of mesoporous materials is their low 

thermal and hydrothermal stability owing to their amorphous morphology. 

Macroporous materials are prevalent in nature (e.g. opals) and they have also been 

synthesized by various laboratory techniques.  However, with the advent of meso micro and nano 

MCM-41      MCM-48     MCM-50 
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porous materials in the last few decades, macroporous solids lost their appeal for a while. However, 

inspired by the hierarchical structure of biological materials, mechanical performance as well as 

diffusion limits within micro and mesopores, the interest in macroporous materials has recently 

increased. Microporous catalysts are less suited for liquid-phase processes of large molecules. 

Mesoporous materials have walls that are only partially crystalline. On the other hand, 

macroporous structures would pave the way to catalysts with large, periodically ordered, 

connected, and uniform macropores. 

Macroporous solids with pore sizes in the range 100 nm to a few mm are being sought after 

as absorbents, catalytic supports for degradation of organic molecules and functionalized 

composites for controlled release systems. These materials are generally prepared by holding 

together small crystallites with an organic binder ensuring that particles do not pack densely. When 

this composite is calcined, the organic binder burns away leaving behind connected pores in an 

inorganic network. Macroporous materials including silica, titania and zirconia have been made 

by use of crystalline arrays of polystyrene or silica spheres19-20. The voids in the colloidal crystals 

are filled with inorganic materials and finally the colloidal template is removed by dissolution or 

calcination leaving behind a repeating macroporous structures. The emulsion-assisted approaches 

have been developed in order to fabricate spherical assemblies of colloidal particles or colloidal 

clusters using confined geometries of droplets. In a ground breaking work, Velev, Lenhoff, and 

Kaler (2000) demonstrated that microstructured particles can be synthesized by growing colloidal 

crystals in aqueous droplets suspended on fluorinated oil21. The results from this work opened the 

way to controllable formation of a wide variety of microstructures. Iskandar, Nandiyanto, 

Widiyastuti, Young, Okuyama and Gradon (2009) demonstrated that hyaluronic acid (HA) porous 

particles with controllable porosity and pore size, ranging from 100 to 300 nm, can be prepared 
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using a colloidal templating and spray-drying method22. Such relatively large particles in micron 

size with low apparent density can be used in dry powder inhalers. Lee, Gradon, Janeczko, Iskandar 

and Okuyama (2010)  demonstrated that ordered macroporous particles can be produced via spray 

drying process using an aerosol reactor, in which droplets with polymeric beads and inorganic 

nanoparticles were atomized, dried and annealed inside high-temperature tubular furnace23. Cho, 

Choi, Kim and Yi (2012) demonstrated the bulk synthesis of ordered mesopores silica particles by 

emulsion templating process24. In this process large polystyrene beads and small silica 

nanoparticles were assembled inside an emulsion, leading to composite structure particles during 

the evaporation of droplets. The polystyrene beads were burned away by calcination leading to 

macroporous solid film on the substrate. The macroporous particle film was further coated with 

fluorinated molecules, thereby imparting super hydrophobic property with multi-scale roughness. 

The macroporous structures obtained by the above methods have unique optical and thermal 

properties due to its high degree of order. These three dimensional colloidal crystals resemble 

naturally occurring opals, and  have excellent structure, periodicity, low density, a highly 

accessible surface, and compositional variety which make them ideal for wide variety of 

applications such as battery materials, thermal insulators, composite ceramic materials, photonic 

crystals, cosmetics and catalysis. 

1.2 Synthesis of Silica 

Different types of silica are available and they can be classified as crystalline or amorphous 

silica, silica gels or precipitated silica or pyrogenic silica, hydrophobic or hydrophilic silica, porous 

or non-porous silica. It is important to note that most of the silicas used in countless number of 

industrial applications are synthetic amorphous silicas (silica gels, pyrogenic or fumed silica, and 

precipitated silica). Each of these silica have different properties and used for different 
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applications, and the differences in the properties mainly arise from the preparation or synthetic 

procedures to obtain the silica material. Briefly, the synthetic process can be classified as wet 

process for silica gels and thermal or pyrogenic process for fumed silica. The most documented 

method for the preparation of silica gels through wet process is the sol-gel process and the heavily 

used method for industrial preparation of fumed silica is flame hydrolysis. All the silicas that were 

used to understand water adsorption behavior in chapter 3 of this dissertation were prepared either 

by sol-gel process or flame hydrolysis. Hence, in the following section, both continuous flame 

hydrolysis and sol-gel process will be discussed in detail. 

1.2.1 Continuous flame hydrolysis of fumed silica 

Fumed silicas are obtained by continuous flame hydrolysis of silicon tetrachloride (SiCl4) 

i.e burning of SiCl4 in the presence of oxygen and hydrogen under high temperature. SiCl4 is 

converted to the gas phase (using vaporizer) separately before it is mixed with oxygen and 

hydrogen and fed into the combustion chamber. A hydrogen flame containing SiCl4 burns 

continuously inside the reaction chamber. As water gets formed, it reacts spontaneously and 

quantitatively with SiCl4 inside the flame producing hydrochloric acid and the desired product 

silicon dioxide (SiO2). The chemical reactions are listed below and Figure 5 shows the production 

of fumed silica5. 

2H2 + O2    →        2H2O 

SiCl4 +  2H2O       →        SiO2  + 4HCl 
2H2 +  O2 +  SiCl4 →        SiO2  + 4HCl (1-3)
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The flame hydrolysis process and eventually the properties of fumed silica can be explained using 

the droplet model of particle genesis5 which is schematically illustrated in Figure 6.  Some key 

points of the droplet model5 is listed below: 

1. Reaction gases first pass through the base of the flame and minute droplets (nuclides) of 

SiO2 are formed. Droplets collide with one another and merge to form bigger and heavier 

droplets. This process continues as long as the flame is hot enough to keep the droplets in 

the liquid state. 

2. As these bigger droplets enter the relatively cold region of the flame, they partially solidify. 

When they collide with each other they do not merge and coalesce completely to form 

spherical droplets, instead they partially merge to form aggregates. 

3. As they go through the colder parts of the flame, the aggregates become fully solidified. 

When these aggregates collide, they are unable to merge, but instead attach to each other 

forming agglomerates. 

The particle size, particle size distribution, the specific surface and surface properties can be 

controlled by varying the concentration of the reactants, the flame temperature, and the residence 

(dwell) time of the silica in the combustion chamber. The specific surface increases as the particle 

diameter increases and this fundamental correlation is shown in Figure 7. The hydrophilic fumed 

silica can be further treated with functional silanes to obtain modified silicas (hydrophobic silicas, 

aminated silicas) for various applications. 
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Figure 5. Flowchart depicting the production of Aerosil® fumed silica. Adapted from ref.5. 

 

 

 

 

 

 

 

 

Figure 6. Schematic representation of droplet model of particles genesis in the flame. Adapted 
from ref. 5. 
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Figure 7. Specific surface area as a function of particle diameter. Adapted from ref. 5. 

1.2.2 Sol-gel process of silica gels 

A sol is a colloidal dispersion of small solid particles in a liquid, while a gel is a non-fluid 

three dimensional network that extends through a fluid phase.  The origin of sol-gel chemistry can 

be traced back to an observation made in 1846 where an alkoxide prepared from SiCl4 formed into 

a gel when exposed to air25-26.  For almost a century, it remained as an interest only among few 

chemists and finally in 1930 it was recognized that alkoxides can be used in the preparation of 

oxide films. In the 1930s various competing theories of gel structures (solid network with 

continuous porosity, coagulated sol with each particles surrounded by a layer of water, emulsion 

etc ) were proposed27. In 1932, the process of supercritical drying to produce aerogels was invented 

by Kistler28 and the existence of solid skeleton of the gel was later demonstrated. Later around 

1935 to 1950, mineralogists showed interest in the use of sols and gels for preparation of 

homogenous powders, which was further adopted and popularized by the researchers in the field 

of ceramics27, 29. In the 1970s much more sophisticated technological work was accomplished by 



 

17 
 

researchers in the nuclear-fuel industry to prepare small spheres of radioactive oxides to be packed 

into fuel cells for reactors27. From the 1970s onward, sol-gel chemistry has been studied and 

investigated extensively since it has the ability to produce a solid-state material from a chemically 

homogeneous precursor. Additionally sol-gel chemistry enables greater control over particle 

morphology and size. The term sol-gel is now used for a diverse range of chemistries involving 

materials synthesis and as of April 2016, a Scifinder™ search of the word “sol-gel” yielded 

134,230 references. 

The sol-gel process describes the number of processes through which a sol undergoes a 

sol-gel transition leading to a rigid porous mass. The required precursors, chemistry, mechanisms 

involved in the chemistry and the process of making silicate gels are detailed into simple sections 

as below: 

1. Precursors: In the sol-gel process, the term precursor refers to the starting compound that 

consists of a metal or metalloid elements surrounded by various ligands. The precursors for making 

metal oxides could be inorganic salts (e.g. Al(NO3)3 for aluminum oxide) or organic compounds 

(e.g. Al(OC4H9)3 for aluminum oxide). Metal alkoxides belong to the family of metalorganic 

compounds, which have an organic ligand (an alkoxy group) attached to a metal or metalloid atom. 

Metal alkoxides are popular precursors owing to their ability to react instantly with water. The 

suitability of various alkoxides for sol-gel chemistry heavily depends on; a) Ionic character of the 

M-O bond (arising from electronegativity differences) b) electron donating or withdrawing ability 

of the alkyl chain on the stability of alkoxy groups26. Although sol-gel science involves solution 

chemistry of inorganic precursors (in aqueous solution) and metal alkoxide precursors (in mixed 

solvents) of various metals (transition metals such as Ti, V, Zr and Group IIIB metals like B, Al) 

the main focus of this section will be on silica gels made from silicon alkoxides. One common 
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example of a sol-gel process related to preparation of silica gel involves the system of 

tetraethoxyorthosilane (TEOS, Si(OC2H5)4), ethanol and water. The one phase solution of the 

above three component undergoes a sol-gel transition to a rigid two-phase system of solid silica 

(SiO2) and solvent-filled pores30. 

2. Hydrolysis and Condensation of Alkoxides: The key step to sol-gel process is the series of 

hydrolysis and condensation reactions of alkoxides. Hydrolysis and condensation occur almost 

simultaneously, in the aqueous alkoxide solution. The sol-gel general reaction scheme can be 

understood by the example of silica gel synthesis using the system of tetraalkoxysilanes 

(Si(OR)4), ethanol and water. At the functional group level, the following reactions can be used 

to understand the sol-gel process. The R in the reaction scheme can be CH3, C2H5, n-C3H7 or n-

C4H9 etc. 

a) Hydrolysis: The hydrolysis reaction replaces –OR (alkaoxide) groups with –OH (hydroxyl) 

groups. ≡ ܵ݅ − ܱܴ + ≡                 ⇌              2ܱܪ ܵ݅ − + ܪܱ  ܪܱܴ 

                                                                 (Hydrolysis) 

b) Condensation: Condensation may occur either between two silanols or a silanol and an ethoxy 

group to form a siloxane group (Si-O-Si) 

≡ ܵ݅ − ܱܴ + ܱܪ − ܵ݅ ≡             ⇌                 ≡ ܵ݅ − ܱ − ܵ݅ ≡  ܪܱܴ +

                                                          (Alcohol condensation) 

≡ ܵ݅ − ܪܱ + ܱܪ − ܵ݅ ≡             ⇌                 ≡ ܵ݅ − ܱ − ܵ݅ ≡  2ܱܪ +

                                                           (Water condensation) 

(1-4)

(1-5)

(1-6)
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c) Mechanism of acid and base catalyzed hydrolysis: The structure of the resulting gel depends 

on the rate of hydrolysis and condensation reactions which in turn depends upon the catalyst 

used26, 30. The sol-gel chemistry is driven by acid or base catalyst as neutral reactions are generally 

slow. The rate of each hydrolysis step depends on the transition state stability which consecutively 

depends on the electron withdrawing or donation power of the –OH versus –OR groups26. In acid 

catalyzed reactions, the alkoxide group is protonated in a rapid first step and leads to withdrawal 

of electron density from the Si atom. The Si atom becomes more electrophilic and prone to attack 

by water. The water molecule attacks the Si, acquires a partial positive charge and weakens the 

positive charge of the protonated alkoxide, making the alcohol a better leaving group. The 

transition state decays due to the leaving of the alcohol group and inversion of silicon’s 

tetrahedron geometry. Under acidic conditions, the hydrolysis rate decreases with each 

subsequent hydrolysis step3-4, 26-27. In base catalyzed reactions, water dissociates to produce 

nucleophilic hydroxyl anions in a raid first step. The hydroxyl anions attacks the silicon atom and 

displaces the OR with inversion of silicon’s tetrahedron geometry. Under basic conditions the 

hydrolysis rate increases with each subsequent hydrolysis step. In both acid and base catalyzed 

hydrolysis, it is believed that mechanism is affected by both steric and inductive factors. However, 

steric factors seems to be more important since Si acquires little charge in the transition state 3-4, 

26-27. Figure 8a illustrates the mechanism of acid and base catalyzed hydrolysis. It is to be noted 

that the mechanism mentioned here is just one possible pathway for hydrolysis and several other 

mechanisms are also proposed in the literature27. Essentially the process of hydrolysis is affected 

or governed by the acid or base catalysts, H2O:Si ratio, solvent, steric and inductive factors on the 

mechanism of hydrolysis of silicon alkoxides and the reverse reaction esterification. 
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Figure 8a. Mechanism of acid and base catalyzed hydrolysis of silicon alkoxides27. 

 

d) Mechanism of acid and base catalyzed condensation: Since at least one silanol group is a 

requirement for the condensation reaction to occur, the progress of condensation depends on the 

degree of hydrolysis. Under acidic conditions, the first hydrolysis step is faster, but the 

progressive steps of hydrolysis is slower and hence condensation begins even before hydrolysis 

is completed. Hence, condensation often occurs on terminal silanols leading to chain like 

structures in the sol which further leads to gel-type networks.  In acid catalyzed condensation, the 

mechanism involves protonation of silanol species and the protonated silanol make the silicon 

electrophilic and susceptible to nucleophilic attack. Under basic conditions, successive hydrolysis 

steps are faster and hence hydrolysis is complete before condensation begins. Completion of 

hydrolysis results in a product ((OH)3Si-O-Si-(OH)3) that has 6 sites for subsequent condensation. 

Hence, multiple condensation steps lead to small highly branched agglomerates in the sol which 

further crosslinks leading to a colloidal gel26-27, 30. In base catalyzed condensation, the most widely 
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accepted mechanism is the attack of the nucleophilic deprotonated silanol on a neutral silicate 

species. Essentially the process of condensation is affected or governed by catalyst, solvent, steric 

and inductive factors on the mechanism of condensation of silanols and the reverse reactions 

(hydrolysis or alcoholysis) 3-4, 26-27. Figure 8b illustrates the mechanism of acid and base catalyzed 

condensation. 

 

 

 

 

 

 

 

 

 

Figure 8b. Mechanism of acid and base catalyzed condensation of silicon alkoxides27. 

3. Gelation: The relative rates of hydrolysis and condensation determine the structure of the gel 

and it is established at the time of this gelation step. Gel formation (gelation) occurs when the sol 

particles undergo adequate condensation reactions leading to formation of a network (gel). At 

gelation, the viscosity increases sharply leading to a solid object taking the shape of its container30-

31. 

4. Aging: During the aging process, four processes namely polycondensation, syneresis, and 

coarsening can occur. Polycondensation reactions continue to occur within the gel network as long 

as neighboring silanols are close to each other. Syneresis is the shrinkage of gel network leading 
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to expulsion of solvent from the pores. The rate of syneresis depends on the composition of the 

liquid inside the pores27, 31. The process of shrinking will continue as long as there is flexibility in 

the gel. Coarsening is the irreversible decrease in surface area through dissolution and re-

precipitation process. 

5. Drying:  At first the gel shrinks by the amount equal to the volume of liquid that evaporates 

from the structure and the liquid-vapor interface remains at the exterior surface of the body.  

Secondly, the gel becomes rigid to shrink and the liquid recedes into the interior resulting in air-

filled pores near the surface and evaporation rate drops. Eventually, the liquid becomes isolated 

into pockets and drying proceeds by evaporation of liquid within the gel and diffusion of the vapor 

to the outside27, 31. 

1.2.3 Templated sol-gel process of ordered mesoporous silica 

Zeolites or microporous materials were not able to meet the demands of growing 

applications such as adsorption, separation, catalysis, drug delivery photonics, energy storage & 

conversion and chemical sensors. However, mesoporous materials with structural capabilities at 

the scale of few nanometers and high surface areas shows great potential for the above mentioned 

applications. However the mesoporous materials developed since the 1980s were amorphous with 

disordered pore systems and broad pore size distributions9, 13, 32-33. The necessity to obtain 

mesoporous materials with controllable structures (uniformity within the pore size, shape and 

volume) and tunable pore architecture led to the fast expansion of mesoporous materials leveraging 

the technical advances in the fields of chemistry, material science and engineering. Besides, the 

design and synthesis of novel mesoporous materials with ordered and well-defined pore structure 

are important for academic research work. Regardless of the synthetic process to obtain ordered 

mesoporous materials, the common element is the use of a ‘template’ to obtain mesoporous 
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materials with controllable structures32, 34. Table 3 list some of the important milestones in the 

development of ordered mesoporous materials using template synthesis. 

Table 3. Key milestones in the evolution of ordered mesoporous materials via templating 

method. 

Year Milestones 

1969 Vincent and his co-workers (1971)  had prepared MCM-41 analogues in the presence of 

a cationic surface active agent but they claimed low-bulk density silica due to the lack of 

detailed characterizations35. 

1990 Japanese scientists reported the synthesis of alkyltrimethylammonium-kanemtie 

complexes with a mixed phase36. Nitrogen sorption isotherms showed narrow pore size 

distribution at 2-4 nm, but authors did not characterize the material as  mesopores. 

1992 Mobil scientists reported the synthesis of ordered mesoporous molecular sieves (M41S) 

from liquid crystal templates10-11. This is the first time the term “mesoporous molecular 

sieves” showed up in a publication. 

1993 Inagaki, Fukushima and Kuroda optimized the synthesis conditions and obtained a pure 

ordered mesoporous silicate37. 

1994 Using a self-assembled surfactant molecular array, a series of M41S materials namely 

MCM-41 (hexagonal), MCM-50(lamellar) and MCM-58 (cubic) were synthesized13. 

1998 Zhao, Huo, Feng, Chmelka and Stucky (1998) reported the preparation of large pore 

ordered mesoporous silica (SBA-15 silica) with a 2D hexagonal structure by using 

triblock copolymers as templates14. 
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The template synthesis involves building a material around some molecule, 

macromolecules or liquid crystal. One of the commonly employed templating methods for 

mesoporous materials is soft templating method. Soft templating method involves two synthetic 

strategies namely a) cooperative self-assembly and b) true liquid crystal templating processes. 

As illustrated in Figure 8b, the cooperative self-assembly strategy38 involves the following 

steps: i) driven by coulomb forces, covalent bonding or hydrogen bonding, inorganic species 

interact with surfactants, polymerize at the interface, crosslink and cooperatively assemble with 

the surfactants. ii) As the reaction proceeds, cooperative arrangements between surfactants and the 

charge density between inorganic and organic species influence each other leading to varied 

compositions of inorganic-organic hybrids.  iii) The cooperative assembly process is governed by 

the balance of charge density at the surfactant/inorganic interfaces, resulting in phase separation 

and reorganization and finally leading to formation of ordered 3-D arrangement with the lowest 

energy10, 12, 32, 38. 

The term liquid crystal is used to describe the fourth state of matter, which exists between 

the liquid and solid phases. Liquid crystals possess both long-range orientation order of solids and 

the fluidity and viscosity of liquids. As illustrated in Figure 9, the true liquid crystal templating 

process38 involves the following steps: i) formation of semi liquid crystal mesophase micelles from 

high concentration surfactants that act as templates. ii) Condensation of inorganic precursors and 

confined growth around surfactants leading to ceramic-like frameworks and iii) removal of organic 

templates leading to mesoporous frameworks10, 12, 32, 38. 

Considering the very fast proliferation of synthetic strategies to obtain ordered mesoporous 

materials, it is important to understand the influence of the choice of method and surfactants on 

the final mesostructures (pore structure, symmetry, connectivity) and pore sizes of mesoporous 
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materials. The final mesostructure is influenced by surfactant concentration, temperature and 

hydrophilic/hydrophobic volume ratio of the template molecule. The pore sizes of the mesoporous 

materials mainly depend on the hydrophobic groups in surfactants. Table 4 illustrates the pore 

sizes of ordered mesostructure38 obtained by various methods. 

 

Figure 9. Two synthetic strategies of soft templating synthesis of mesoporous materials: (A) 
cooperative self- assembly; (B) true liquid-crystal templating process. Adapted from ref.38. 

 

Table 4. Pore sizes of ordered mesostructures obtained by various method.38. 

pore size (nm) method 
2-5 surfactants with different chain lengths including long-chain quaternary 

cationic salts and neutral organoamines 
4-7 long-chain quaternary cationic salts as surfactants 

high-temperature hydrothermal treatment 
5-8 charged surfactants with the addition of organic swelling agents such as 

TMB and midchain amines 
2-8 nonionic surfactants 

4-20 triblock copolymer surfactants 
4-11 secondary synthesis, for example, water-amine post synthesis 

10-27 high molecular weight block copolymers, such as PI-b-PEO, PIB-b-PEO and 
PS-b-PEO triblock copolymers with the addition of swelling agents TMB 
and inorganic salts low-temperature synthesis. 
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1.3. Characterization of the Silica Surface 

Many of the adsorption, chemical and catalytic properties of a silica material depends on 

the surface chemistry and pore geometry of the silica surfaces. Hence, a comprehensive 

characterization study of the silica surface includes surface area (m2/g), pore volume (porosity), 

pore size distribution (based on pore volume and pore area) and surface silanols is required to 

properly define the complex material of interest and  to optimize the performance of these silica 

materials for many industrial applications33, 39. In this study gas adsorption is used as an 

experimental method for surface area, pore volume, pore diameter & pore size characterization of 

silica materials and thermogravimetric analysis for obtaining the number of surface silanols. A 

brief introduction of the two techniques, namely gas adsorption, and thermogravimetric analysis 

is provided. A more detailed description with calculation procedures is presented in Chapter 2. 

1.3.1 Surface area, pore volume, pore diameter and pore size distribution 

Gas adsorption is a widely used technique for surface area, pore volume, pore diameter and 

pore size distribution since it allows assessment of a wide range of pore sizes (0.4 nm to 100 nm) 

namely, micropores and mesopores. Surface area and pore volume play complementary roles in 

adsorption phenomena and hence measurements of adsorption of gases on a solid surface can be 

used to understand the surface area and pore structure of that solid material. Adsorption simply 

denotes to the condensation of gases on free surfaces. This includes, the accumulation of molecular 

species at the surface rather than in the bulk of a solid or liquid is termed adsorption. The gas is 

referred to as the adsorbate and the solid (surface) is referred to as adsorbent. 

Adsorption arises due to surface particles of the adsorbent not in the same environment as 

the particles inside the bulk. The unbalanced or residual attractive forces on the surface of the 

adsorbent are responsible for attracting the adsorbate particles to its surface. The extent of 
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adsorption increases with the increase of surface area per unit mass of the adsorbent at a given 

temperature and pressure. During adsorption, there is always a decrease in residual forces of the 

surface, i.e there is a decrease in surface energy which appears a heat.  Hence, adsorption is always 

an exothermic process (∆H is negative). When a gas is adsorbed, the freedom of movement of its 

molecules is reduced, i.e there is decrease in entropy (∆S is negative). Hence, adsorption is 

accompanied by decreases in enthalpy and entropy of the system. For any process to be 

spontaneous, the thermodynamic requirement is that Gibbs energy ∆G (= ∆H-T∆S) should be 

negative. In the adsorption process, ∆G can be negative only if ∆H has high negative value since 

-T∆S is positive due to negative entropy. In spontaneous adsorption, ∆H is highly negative to begin 

with and as the adsorption proceeds ∆H becomes less and less negative until ∆H becomes equal to 

T∆S and ∆G becomes zero (equilibrium state is attained). 

The adsorption is brought about by the forces acting between solid and gas molecules and 

the acting forces can be of two types, namely physical (van der Waals) and chemical, leading to 

physisorption and chemisorption respectively. Chemisorption occurs through chemical bonding, 

site specific, mostly irreversible and accompanied with heats of adsorption. On the other hand, 

physisorption occurs through van der Waals forces, not site specific, reversible and accompanied 

with low heats of adsorption. It is to be noted that these two processes (physisorption and 

chemisorption) can also occur simultaneously and it is not easy to ascertain the type of adsorption. 

However, gas adsorption must be a physisorption process to ensure accurate measurements.  

Physisorption is most suitable for surface area determinations and the forces involved in 

physisorption van der Waals forces including the long range London dispersion forces and short 

range intermolecular repulsion. It is important to note that physisorption is fully reversible, 

enabling both the adsorption and desorption process to be studied8, 40. 



 

28 
 

In gas adsorption, the amount of gas adsorbed on a given surface (adsorbent) is measured 

as a function of the equilibrium partial pressure at constant temperature. The quantity of gas 

adsorbed on an adsorbent maintained at a fixed temperature (T) is expressed as: 

݊ =  ௚௔௦,௦௢௟௜ௗ,்(௢݌/݌)݂

where, n is the quantity of gas adsorbed in moles per gram of adsorbent, p is vapor pressure and 

po
 
 is the saturation vapor pressure of the adsorptive8. An adsorption isotherm is a curve obtained 

by plotting adsorbed amount (n) as a function of relative pressure (p/po) at constant temperature. 

The majority of the isotherms resulting from physisorption will fall under one of the six isotherms 

as shown in Figure 10. The isotherms I to V was originally proposed by Brunauer, Deming, 

Deming and Teller (BDDT) and also referred to as the Brunauer, Emmett and Teller (BET) or 

simply Brunauer classification. Type 1 isotherms are obtained when adsorption is limited to a few 

molecular layers and seen in physical adsorption on microporous materials or observed in 

chemisorption. Type II isotherms are observed in non-porous or macroporous materials 

demonstrating unrestricted monolayer-multilayer adsorption. Type III isotherm is not common and 

it represents a very weak adsorbate-adsorbent interaction (e.g. nitrogen on polyethylene or water 

vapor on graphite). Type IV and V isotherms are characteristic of mesoporous materials and 

possess a hysteresis loop, the lower branch and upper branch obtained by adsorption (progressive 

addition of gas) and desorption (progressive withdrawal of gas) respectively. The hysteresis loop 

is associated with pore condensation and the plateau in isotherm at high p/po indicates pore filling. 

The initial part of type IV depicts monolayer-multilayer adsorption as seen in type II and the initial 

part of type V indicates weak adsorbate-adsorbent interaction as seen in type III. The stepped 

isotherm as seen in type VI is of rare occurrence and is seen with argon or krypton adsorption on 

graphitized carbons at liquid nitrogen temperature4, 8, 39-40. 

(1-7)
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Figure 10. IUPAC classification of sorption isotherms. Adapted from ref.40. 

 

Gravimetric and volumetric methods are the two most commonly employed techniques for 

making adsorption measurements. Gravimetric method is preferred for the study of vapor 

adsorption at temperatures close to room temperature while volumetric method is the method of 

choice for study of vapor adsorption at cryogenic temperatures. Nitrogen at 77K is the gold 

standard for surface area and pore size analysis, however alternative probe molecules such as 

krypton, argon, carbon dioxide are being used in several studies such as krytpon for low surface 

area analysis, argon for assessing microporous systems (zeolites) and carbon dioxide for 

ultramicropores in carbonaceous materials8, 39-40. 
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While several probe molecules (adsorbates) are being studied and used currently for 

characterization of various surfaces, it is important to note that a classification of adsorbents and 

adsorbates based on their capacity for non-specific and specific molecular interaction has been 

discussed by Kiselev41 as early as 1965. The non-specific interactions (predominantly dispersion 

interactions) are universal and exists almost in all cases, while the specific interactions exist 

wherever there is concentration of negative or positive charges leading to Coulomb interactions. 

As listed in Table 5, Kiselev schematically classified adsorbates and adsorbents based on their 

abilities for specific and non-specific interactions. 

Table 5. Classification of adsorbates and adsorbents based on their capacity for no-specific and 
specific interactions41. 

 

 
 
 
groups of adsorbate molecules 

types of adsorbents 
I. Carrying neither 

ions, nor active 
groups (graphitized 
carbon blacks, BN, 
surfaces carrying 

only saturated 
groups) 

II. Carrying 
concentrated 

positive charges 
(acid hydroxyls. 

exchange cations of 
small  radius) 

III. Carrying 
concentrated 

negative charges 
(ether, nitrile, 

carbonyl groups, 
exchange anions of 

small radius) 
(a) With spherical symmetrical 
shells or σ-bonds (noble gases, 
saturated hydrocarbons) 

 
non-specific interactions depending mainly on dispersion forces 

(b) With electron density locally 
concentrated on the peripheries of 
bonds and links: π-bonds (N2, 
unsaturated and aromatic 
hydrocarbons), and lone electron 
pairs (ethers, ketones, tertiary 
amines, nitriles, pyridine) 

non-specific 
interactions 

non-specific + specific 
interactions 

(c) With positive charges locally 
concentrated on the peripheries of 
links (e.g., certain organometallic 
compounds) 

non-specific 
interactions 

non-specific + specific 
interactions 

(d) With functional groups with 
both electron density and a positive 
charge concentrated on the 
peripheries of their individual links 
(molecules with OH or NH groups) 

non-specific 
interactions 

non-specific + specific 
interactions 
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This research will study the adsorption of nitrogen and water on well-defined dehydroxylated, 

partially hydroxylated, and fully hydroxylated silica surfaces. As per the classification in Table 5, 

the adsorbates nitrogen and water would fall under the molecules of type b and d respectively. The 

dehydroxylated silica would be a non-specific adsorbent (type I), the partially hydroxylated silica 

could be a mix of type I & II and the fully hydroxylated silicas would come under type II 

adsorbents. 

Surface area is an important parameter for optimizing the use of porous materials in many 

applications. Nitrogen is the preferred standard adsorptive for determining surface area through 

adsorption. A number of theories have been outlined periodically to interpret the isotherm in 

quantitative terms, none with complete success. Out of all, the most useful and highly used model 

for surface area determination is the Brunauer, Emmett and Teller (BET) theory or model.  Details 

of the BET model or equation and calculation of surface area from adsorption isotherms using 

BET equation is discussed in chapter 2 of this work.  

The study of pore structure of any porous solid involves the interpretation of the adsorption 

and desorption branches of the full isotherm (Type IV for mesoporous). A characteristic feature of 

type IV isotherm is the hysteresis loop and it is attributed to the concept or phenomenon of 

capillary condensation that happens within the pores during adsorption process. The theory of 

capillary condensation and its quantitative expression Kelvin equation for calculation of pore size 

distribution is discussed in Chapter 2 of this thesis. 

Nitrogen adsorption–desorption isotherms (77 K) were measured using an Autosorb-1 and 

Autosorb IQ analyzer (Quantachrome Instruments, Boynton Beach, FL, USA). The surface area 

(using aN2 = 16.2 Å2) was calculated via the Brunauer–Emmett–Teller (BET) method in the range 

of relative pressure from 0.05 to 0.25. The cumulative volume of the pores was determined from 
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adsorption at 0.98 p/p0. The pore size distribution and average pore diameter was calculated with 

the Barrett–Joyner–Halenda (BJH) algorithm using the adsorption branch of the adsorption–

desorption hysteresis. Water adsorption-desorption isotherms (293K) were measured using an 

Autosorb-1 analyzer (Quantachrome Instruments, Boynton Beach, FL, USA) and IGASORP , 

dynamic vapor sorption analyzer (Hiden Isochema, Warrington, UK). 

1.3.2 Surface silanols 

The existence of silanol groups (hydroxyls) was postulated as early as 1934 and various 

analytical techniques have been used to confirm and expand the view of silica surface group in 

terms of silanol groups, siloxane bridges and hydrogen-bonded water1. The silanol groups are 

formed on the surface of silica by two main processes: a) during the condensation-polymerization 

of Si(OH)4 in the course of synthesis of silica and b) rehydroxylation of dehydroxylated silica when 

exposed to water or aqueous solutions. Silanols are found not only on the surface of silica but also 

within the structure of silica particles, referred to as internal silanols. Silanols on the surface of 

silica can be classified according to their nature, multiplicity of sites and type of association and 

this classification is discussed in detail in Chapter 2. The silanols on the surface of silica are the 

main centers of adsorption of water molecules. The surface silanols can be increased or decreased 

by the procedures of hydroxylation (exposure to water) and dehydroxylation (thermal treatment) 

respectively. The concentration of hydroxyl groups, the procedures of hydroxylation & 

dehydroxylation and the nature of structurally bound water has been well studied 1, 3, 6, 8, 41-42 . The 

concentration of silanols on the surface of silica is expressed in number of OH groups per square 

nanometers. It is denoted as  αOH and is often called as the silanol number. Zhuravlev42 obtained a 

value of  αOH = 4.6 OH groups per square nanometer and it is very close the number obtained 

various researchers. 
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Hockey and Pethica (1961) studied the dehydration and hydration of silica powders by 

infrared, water adsorption and gravimetric methods43. Smith and Kellum (1966) determined the 

OH surface density of silica samples using both thermo gravimetric analysis (TGA) and a modified 

Karl Fischer reagent44.  The Karl Fischer titration technique provided the physically adsorbed 

water content while TGA gave the total weight loss from physically adsorbed and chemically 

bound water. Mueller, Kammler, Wegner and Pratsinis (2003) and Wisser et al (2012) studied the 

surface hydroxyl content of silica and other oxides using thermo gravimetric analysis and lithium 

alanate method45-46. In this work, we will be using the thermo gravimetric analysis to determine 

the surface hydroxyl content of silica. Thermal analyses of the adsorbents were performed using a 

Q500 Thermogravimetric Analyzer (TA Instruments, USA). Samples were analyzed using a 

temperature program from 25°C to 1000°C at a heating rate of 10°C/min. The -OH groups were 

calculated based the formula: 

No of − OH groups =  (% ܹ݁݅݃ℎݏݏ݋݈ ݐ × 667)ܵேమ  

where % Weight loss is the weight loss from TGA for the temperature range 200°C to 1000°C and ܵேమ is the BET surface area obtained from nitrogen sorption measurements. 

 

 

 

 

 

(1-8) 
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Chapter 2: Surface Hydration and Physical Characterization of Silica 

2.1 Introduction 

Silica continues to receive great attention in surface and material sciences with prominent 

applications in catalysis, nanocomposites, separations, drug delivery etc. All the above mentioned 

applications of silica are decisively influenced by the properties of the silica surface. Silica surfaces 

are often covered with hydroxyl groups and even physically adsorbed water, under ambient 

conditions. The presence of hydroxyl groups and physically adsorbed water influences the 

reactivity and performance of silica and hence understanding the silica-water system is of utmost 

importance6, 42-43, 47-48. The formation of hydroxyl groups on silica surface, type of hydroxyls 

present on the silica surface and the process of surface hydroxylation and dehydroxylation 

reactions will be discussed. In addition, the characterization of hydroxyl groups by thermo 

gravimetric method and adsorption measurements will be discussed. These studies will eventually 

lead to the experimental work described in Chapter 3, in which water adsorption on a wide variety 

of silica surfaces will be presented with results and conclusions. 

2.2 Surface Hydration 

2.2.1 Formation of surface hydroxyls (silanols) 

Silanol groups are formed on the surface of silica by two main processes namely: a)during 

silica synthesis the supersaturated solution of the silicic acid gets converted to polymeric form, 

which eventually changes to spherical colloidal particles with ≡Si-OH groups on the surface upon 

drying. b) Surface silanols are also formed when fully or partially dehydroxylated silica surface 

(with siloxanes) is hydroxylated upon treatment with water or aqueous solutions. Figure 11 

illustrates the formation of silanol groups on the surface6, 42. 
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Figure 11. The formation of silanol groups on the silica surface: (a) Condensation 
polymerization; (b) rehydroxylation. Adapted from ref.6. 

 

2.2.2 Type of surface hydroxyls (silanols) 

The silanol groups on the surface of silica are classified according to their nature, 

multiplicity of sites and type of association. Surface silanols are categorized as below: 

(i) isolated free (single silanols), ≡Si-OH: these include an OH groups located at a distance 

sufficiently far from neighboring hydroxyl groups and hence hydrogen bonding is prevented. The 

isolated silanol exhibits a sharp band at around 3750 cm-1 in the infrared spectrum. 

(ii) geminal free (geminal silanols or silanediols), =Si-(OH)2: these include silanediols i.e two 

hydroxyl groups attached to the same silicon atom. 

(iii) vicinal, or bridged, or OH groups bound through the hydrogen bond (H-bonded single silanols, 

H-bonded geminals, and their H-bonded combinations):  these are Si-OH groups in which the OH 
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to O distance is sufficiently small that hydrogen bonding occurs. The vicinal OHs exhibit a 

characteristic band at around 3660 cm-1 in the infrared spectrum. 

Silanol groups are found not only on the surface but also within the structure of silica 

colloidal particles and are called internal silanols. These internal silanols are sometimes classified 

as structurally bound water whose concentration levels depend upon the synthesis, temperature 

and other variables. Additionally, surface and internal silanols will condense to form siloxane 

groups (≡Si-O-Si≡) with oxygen atoms on the surface accompanied by loss of water. Figure 12 

illustrates the type of silanol groups and siloxane bridges on the surface of silica. 

 

Figure 12. Type of silanols and siloxane bridges on the surface of amorphous silica. Qn  

terminology is used in NMR; n indicates the number of bridging oxygens (-O-Si) bonded to the 
central, silicon (n = 0-4) Adapted from ref.6. 
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The silica surface silanols are the main centers of adsorption of water molecules. Water 

can be associated through hydrogen bonding to any type of surface silanols and this water adsorbed 

on the surface is referred to as physically adsorbed water. By performing molecular dynamics 

calculations Grivtsov, Zhuravlev, Gerasimova and Khazin(1988)49 showed that mutual orientation 

of water molecules and hydroxyl groups prevents the adsorption of two water molecules 

simultaneously and hence one molecule of water is adsorbed per silanol group on average. The 

water can be adsorbed to the surface silanols via two different pathways as shown in Figure 13. In 

the first pathway (most probable), the hydrogen atom in the water molecule is bonded to the 

oxygen atom of the ≡Si-OH group. In the second pathway, the oxygen atom in the water molecule 

is bonded to the hydrogen atom of the ≡Si-OH group49. 

 

 

 

 

 

 

 

 

 

 

Figure 13. Two types of physically adsorbed water (a) the hydrogen atom in the water molecule 
is bonded to the oxygen atom of the ≡Si-OH group (b) the oxygen atom in the water molecule is 

bonded to the hydrogen atom of the ≡Si-OH group42, 49. 
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2.2.3 Dehydration, dehydroxylation and rehydroxylation of silica 

The amount of water (physically adsorbed), concentration of surface silanol groups and 

siloxanes are all dependent on various factors including but not limited to silica synthesis 

conditions, storage conditions (extent of exposure to environment) and specific pretreatment 

(thermal heating or hydroxylation) of the silica.. At sufficient concentrations of hydroxyl groups, 

the silica surface is hydrophilic and the removal of hydroxyl groups makes the surface 

hydrophobic. The scale of hydrophilic or hydrophobicity of surface, chemical reactivity of the 

silica surface are all very crucial in deciding the final application of the silica material. Since 

surface hydroxyl groups play an active role in determining the applications of silica material, it is 

necessary to obtain both qualitative and quantitative information on the surface concentration of 

silanol groups. To obtain this information, several silica samples with varying amounts of surface 

silanols are required and to obtain such samples, understanding of dehydration, dehyroxylation 

and rehydroxylation procedures are very important. It is to be noted that much of the nature of 

hydroxyl groups on silica surfaces were obtained earlier by the Infra-Red (IR) spectroscopic 

investigations48 and later by thermal gravimetric and titration methods. 

2.2.3.1 Dehydration of silica surface 

It is important that a distinction is made between surface silanols and physically adsorbed 

water and the process of removal of physically adsorbed water from the surface of silica is referred 

to as dehydration of silica surface. In the absence of micropores, most of the physically adsorbed 

water can be removed by heating up to 120°C but all the surface hydroxyls will be retained 

according to Boer and Vleeskens. Lange50 suggested that strongly adsorbed water, especially 

retained in micropores can be removed only at 180°C.  By combined use of thermogravimetric 
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measurements, deuterium exchange and mass spectral analysis, it has been established that the 

physically adsorbed water can be removed from the surface of silica by heating the silica sample 

from room temperature to 200°C under vacuum42. The physically adsorbed water (weakly held) 

can be removed by solvent extraction and determined by Karl Fischer titration. Smith and Kellum 

(1966)  determined the OH surface density of silica samples using both thermogravimetric analysis 

(TGA) and a modified Karl Fischer reagent44. The Karl Fischer titration technique provided the 

physically adsorbed water content (the Karl Fisher reagent reacts only with adsorbed water and 

not with the silanol groups), while TGA gave the total weight loss from physically adsorbed and 

chemically bound water. Mueller et al and Wisser et al studied the surface hydroxyl content of 

silica and other oxides using thermo gravimetric analysis and lithium alanate method45-46. 

However, the most common prevailing view is that physically adsorbed water is completely 

removed by heating the silica sample from room temperature to 200°C under vacuum6, 42. Figure 

14 shows a typical thermogram of hydroxylated silica with physically adsorbed water on the 

surface.  

 

 

 

 

 

 

 

 

Figure 14. Thermogravimetric analysis of a hydroxylated silica with physically adsorbed water 
on the surface (mesoporous silica gel) (1) DTG curve, (2) TGA curve) Adapted from ref.4, 6. 
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The profiles of curve 1 (differential thermogravimetric analysis curve (DTG)) and curve 2 (TGA 

curve) indicate the loss of physically adsorbed water and is completed around ~150 - 200°C.  It is 

important to keep in mind that storage conditions contribute the maximum to the physically 

adsorbed water. Chemical modification of the surface of silica continue to receive great interest 

and hence the physically adsorbed water should be removed in order to obtain reaction with the 

surface silanol groups for any type of silica surface modification. 

2.2.3.2 Dehydroxylation of silica surface 

The dehyroxylation of a silica surface refers to the removal of silanol groups by thermal 

pretreatment in vacuo (i.e treating silica at various temperatures). Pretreatment of silica at 

temperatures ranging from 200°C to 1100°C leads to various extent of dehydroxylation and the 

dehyroxylation is quantified by measuring the number of silanol groups per unit area (silanol 

number, αOH) after thermal pretreatment up to a particular temperature. Figure 15 shows silanol 

number as a function of pretreatment temperature for different samples of silica with knows surface 

area. The total silanol number(αOH, T) decrease considerably in the pretreatment temperature range 

of 200 to 400°C and the decrease in αOH becomes notably smaller in the pretreatment temperature 

range of 400 to 1100°C. Table 6 lists the different types of silanols that are present after thermal 

pretreatment at a particular temperature. It is to be noted that the initial state (temperature treatment 

of 180-200°C, i.e after removing only physically adsorbed water) corresponds to the maximum 

degree of surface hydroxylation (first row in Table 6). During the transition (thermal treatment) 

range of 200 to 400°C, all different types of silanol groups (isolated, geminals, vicinals) are 

present. At 400°C, all vicinal groups are gone and only isolated and vicinal groups remain on the 

surface. During the transition from 400 to 900°C, isolated silanols and geminals continue to 
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remain, but their concentration continues to decrease. At 900°C, there is complete removal of 

geminals and isolated silanols remain on the surface. During the transition from 900 to 1200°C, 

concentration of isolated silanols continue to decrease. At 1200°C, there are no silanols present on 

the surface and the surface is covered with SiOSi groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Silanol as a function of the temperature of pretreatment in vacuo for different samples 
of silica. The broken lines delimit the range of experimental data (16 samples with different 
surface area from 11 to 905 m2/g). The sub regions of dehydroxylation are: IIa from 200 to 

~400°C, and IIb from 400 to 1100°C. Adapted from ref.6. 
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Table 6. Surface concentration of the different types of OH groups as a function of pretreatment 
temperature in vacuo, with the initial state corresponding to the maximum degree of surface 

hydroxylation (first row)6. 

 
Temperature of 

vacuum 
pretreatment, 

T (°C) 
 

 
Total OH 

groups, αOH, T 
(OH nm-2) 

 
Isolated OH 

groups, αOH, I 

(OH nm-2) 

 
Geminal OH 

groups, αOH, G
b

 

(OH nm-2) 

 
Vicinal OH 

groups, αOH, V 

(OH nm-2) 

180-200 4.60 1.20 0.60 2.80 
300 3.55 1.65 0.50 1.40 
400 2.35 2.05 0.30 0 
500 1.80 1.55 0.25 0 
600 1.50 1.30 0.20 0 
700 1.15 0.90 0.25 0 
800 0.70 0.60 0.10 0 
900 0.40 0.40 0 0 
1000 0.25 0.25 0 0 
1100 0.15 0.15 0 0 
1200 0 0 0 0 

 

There is a lot of ambiguity in the literature with regards to the use of the terms dehydration 

(section 2.2.3.1) and dehyroxylation (section 2.2.3.2). With an intent to sort out the ambiguity in 

all future references to the two terms in this work, the two processes are defined as: a) dehydration 

referring to the loss of physically adsorbed water due to increases in temperature and b) 

dehydroxylation refers to the condensation of silanols to form siloxane bonds. Figure 16 illustrates 

the process of dehydration and dehydroxylation both resulting in the elimination of water. 

 

Figure 16. Process of dehydration and dehydroxylation. Adapted from ref.4. 
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2.2.3.3 Rehydroxylation of silica surface 

When the dehydroxylated silica surface reacts with water in a vapor or liquid state, silanols 

groups are formed again and this process is referred to as rehydroxylation (the term rehydration is 

also used). Young51 pointed out that complete rehydroxylation of surface can be achieved  for only 

surfaces that has been subjected to thermal pretreatment at temperatures below 400°C. The rate of 

rehydroxylation is also faster with silica surface subjected to calcination (thermal treatment) less 

than 400°C due to the fact that the concentration of siloxane bridges is low and each ≡ ܵ݅ − ܱ −ܵ݅ ≡   is surrounded by OH groups.  It was also stated that any silica surface that has been subjected 

to calcination in the range of 400- 1100°C can only be partially rehydroxylated and the rate of 

rehydroxylation is also slower51-52. The rate of rehydroxylation is slower because of the increased 

concentration of siloxane bridges (hydrophobic regions) and decreased concentration of -OH 

groups. However Agzamkhodzhaev, Zhuravlev, Kiselev and Shengeliya (1969) showed that silica 

dehydroxylated in the range of 673-1373K can be completely restored to the maximum 

hydroxylated state (4.6 OH groups per nm2) by treating with water at room temperature53. It was 

also shown by Agzamkhodzhaev et al53 that the more surface was dehydroxylated, the longer it 

took for rehydroxylation and that rehydroxylation can be accelerated by subjecting the silica 

surface to hydrothermal treatment at 100°C.  The reaction that takes place during rehydroxylation 

is the opposite of condensation reaction and involves the breaking of surface siloxane bonds as 

shown in Figure 11. It is postulated that rehydration occurs only next to a hydroxyl group and the 

hydroxylated area grows in certain areas as the hydration proceeds along the boundary between 

hydrophilic (hydroxylated) and hydrophobic (siloxane) regions3. 

2.2.4 Infrared studies of the silica surface 
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The discussion of dehydration, dehydroxylation and rehydroxylation is not complete without 

mentioning the role of IR spectroscopic studies in understanding these processes. Figure 17 shows 

the IR spectrum of a cabosil sample. The spectrum “a” is that of a sample exposed to laboratory 

atmosphere and three bands via 3450, 3660 and 3747 cm-1 are apparent. The spectrum “b” is that 

of the same sample after being degassed to remove physically adsorbed water. In this “b” the band 

3450 cm-1
 has disappeared, the intensity of 3660 cm-1 has increased and 3747 cm-1 is unchanged. 

As the sample is being calcined (thermal treatment), the band at 3660 cm-1 continues to diminish 

(spectrum “c” is after exposure to 500°C) and finally at 800°C (spectrum “d”) only the band 3747 

cm-1 remains48, 54.  Table 7 lists all the type of hydroxyl groups and the infrared absorption peaks 

associated with particular hydroxyl groups3, 48, 54. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Infrared spectrum of Cabosil. (a) original, (b) after degassing at room temperature, 
(c)after heating to 500°C, (d) after heating to 800°C Adapted from ref.48. 
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Table 7. Absorption peaks of various hydroxyl groups3. 

Type of OH group Peak (cm-1) 

Isolated, single SiOH or “free hydroxyl groups 3745-3750 

Isolated pairs of adjacent SiOH group (vicinal) mutual 
hydrogen bonded 

3650-3660 

Adjacent pairs of SiOH groups with hydrogen bonded to 
each other 

3450-3550 

Water molecule adsorbed on the above 3400-3500 

 

2.2.5 Quantification of the silanol number by thermogravimetric analysis 

Traditionally IR spectroscopy has been most commonly used for monitoring the surface 

hydroxylation of silica. However, it is difficult to distinguish between adsorbed water and actual 

surface hydroxyl groups. It is also challenging to quantify the number of surface hydroxyl groups 

per unit surface area (silanol number) using IR analysis. Hence, to determine the physically 

adsorbed water and the silanol number, thermogravimetric analysis (TGA) will be used in this 

work. TGA offers simple sample preparation, relatively fast analysis and a reasonably accurate 

quantification of the total silanol number. Figure 18 shows a typical thermo gravimetric analysis 

of a silica sample. The weight loss within each temperature range can be correlated with loss of 

one or more particular type of silanols.  The content of -OH groups is calculated based on the 

following formula: 

2݉݊ ݎ݁݌ ݏ݌ݑ݋ݎ݃ ݈ݕݔ݋ݎ݀ݕℎ ݂݋ ݋ܰ = 2 2ܱܪܯܣܰ × ݐℎ݃݅݁ݓ% 2ܰܵݏݏ݋݈ × 10−21018 
 

(2-1)
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where % weight  loss is the TGA weight loss for a selected temperature range, ஺ܰ is the Avogadro 

constant, ܯுమை is the molecular weight of water and ܵேమ is the BET surface area obtained from 

nitrogen sorption measurements. 

 

 

Figure 18. Typical thermogram of thermogravimetric analysis of a silica sample. 

 

Figure 19 shows the distribution of surface groups as a function of thermal pretreatment. 

Curves 1, 2, 3 and 4 indicates the number of total silanols, number of isolated silanols, number of 

vicinal silanols and number of Si atoms that are part of siloxane bridges respectively.  Figure 14 

also indicates that the dehydroxylation proceeds through two stages via subregion IIa (ambient to 

400°C and subregion IIb (400°C to 1100°C). 
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Figure 19. Distribution of the surface groups as a function of the temperature of pretreatment in 

vacuo (Zhuravlev model-1). Adapted from ref.6. 
 
 
2.3 Gas Adsorption Measurements and Characterization 

Gas adsorption plays an important role in characterization of wide range of porous 

materials and amidst all gases and vapors that could be used as adsorptive, nitrogen has remained 

the most universal adsorptive. With the commercial instrumentation now available, it is relatively 

easy to determine nitrogen adsorption-desorption isotherms at 77K over a wide range of relative 

pressures55.  

2.3.1 Determination of surface area 

Langmuir’s classic work on monolayer adsorption56 has led to the interpretation of 

adsorption data for more useful applications. Langmuir regarded the surface as an array of 
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adsorption sites and according to Langmuir model, the amount adsorbed at the plateau of a Type 

1 isotherm (refer Figure 10) corresponds to complete monolayer coverage. When adsorption is 

confined to monolayer the below Langmuir equation is used ݊݊௠  = 1݌ܤ  +  ݌ܤ

 

where                                              ܤ =  ௔భ௞௭೘ ௩భ ݁௤భ/ோ் 

where ݊ is the amount adsorbed on 1 g of adsorbent, ݊௠ is the monolayer capacity, ݌ is the 

pressure, ܽଵ is the condensation coefficient, ݇  is a constant given by kinetic theory of gases, ݍଵ is 

the isoteric heat of adsorption, ܴ is gas constant, ܶ is the temperature, ݖ௠is the number of sites per 

unit area and ݒଵ is the frequency of oscillation of the molecule in a direction normal to the surface8, 

55.  

In 1931 Benton and White57 measured the isothermal sorptions of nitrogen, carbon 

monoxide and hydrogen by reduced iron, at pressures up to one atmosphere and over a range of 

temperatures, including 78 K. This work prompted Brunauer and Emmett58 to adopt gas adsorption 

for surface area determination and they found that adsorption of isotherms of nitrogen and several 

other gases were all of sigmoidal shape (Type II isotherm). Figure 20 shows a typical Type II 

isotherm showing “Point A” and “Point B”.  The point at which the linear portion of the isotherm 

begins termed as “Point B” indicates the completion of the monolayer capacity and the adsorption 

at Point B should be equal to the monolayer capacity.  Point A, which is the extrapolated linear 

branch cutting the adsorption axis was previously thought to represent the monolayer capacity but 

was later discarded in favor of Point B.   

(2-2) 

(2-3) 
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Figure 20. Typical Type II isotherm showing “Point A”and “Point B”8. 
 

Brunauer, Emmett and Teller59 in their 1938 work  derived the classical Brunauer, Emmett 

and Teller (BET) model or equation by adopting Langmuir mechanism and introducing a number 

of simplifying assumptions. BET model enables an experimental determination of the number of 

molecules required to form a monolayer, despite the fact that exactly one monomolecular layer is 

never actually formed. 

The BET equation obtained from the BET model or theory is listed below: 

݊݊௠  =  ܿ ቀ݌ ଴ൗ݌ ቁ(1 − ଴)(1݌/݌ + (ܿ − 1)  (଴݌݌

For convenience of plotting the above equation can be rewritten as 1݊(݌ ⁄଴݌ − 1)  = 1݊௠ܿ +  ܿ − 1݊௠ܿ  ଴݌݌ 

(2-4) 

(2-5) 
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where, ݌଴ is the saturation vapor pressure, c is known as c-constant and  given as ܿ = ݁(௤భି௤ಽ) ோ்⁄  

where (ݍଵ −  .௅) is  net heat of adsorption, R is gas constant and T is temperatureݍ

 

When  n/nm is plotted against p/po  BET equation provides a curve with the shape of type 

II isotherm as long as the value of c is greater than 2. Two major criticisms of the BET model 

include: 1) the model assumes all adsorption sites on the surface to be energetically identical (when 

in fact most surface are energetically heterogeneous), 2) the model considers only the vertical 

interactions (between adsorbent and adsorbate molecules) and ignores the horizontal interactions 

(between two neighboring adsorbate molecules). Irrespective of the few assumptions that draw 

criticisms, the BET equation is the mostly widely used for determination of surface area of 

adsorbents. In the region of relative pressures near completed monolayers (0.05 ≤ p/po ≤ 0.3) the 

BET model and experimental isotherms agree very well, leading to a reliable method of surface 

area determination. Surface area can be obtained using a single point BET method (only one point 

in the isotherm) or multi point BET method (at least 3 points up to 7 points or 11 points) in this 

lower p/po region. Figure 21 shows a typical BET (multi point) plot, which is linear plot of ଵ௡(௣ ௣బ⁄ ିଵ) against ݌ ⁄଴݌  as related in equation 2-5. From the BET plot, monolayer capacity nm is 

obtained as: 

݊௠ = ݁݌݋݈ݏ1 +  ݐ݌݁ܿݎ݁ݐ݊݅
 

where, slope  is equal to 
௖ିଵ௡೘௖ and intercept is equal to 

ଵ௡೘௖. 

(2-6) 

(2-7)
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Using the obtained nm, the monolayer capacity, and with reasonable estimate of adsorbate 

(nitrogen) molecular area am, the surface area of the porous material (A, m2/g) can be calculated 

using the equation below: ܣ = (݊௠ܽ௠ ஺ܰ)10ିଶ଴ 

where nm  is expressed in moles per gram (moles of adsorbate per gram of adsorbent), am  is in Å2  

per molecule and NA is the Avogadro constant. If the monolayer capacity nm is expressed as the 

volume of gas (reduced to STP) vm, the above equation becomes ܣ = ( ௩೘ଶଶସଵସ ܽ௠ ஺ܰ)10ିଶ଴ 

 

 

 

 

 

 

 

 

 

 
Figure 21. Typical BET plot40. 

 

The BET plot is dependent on the adsorption system (both adsorbent and adsorbate) and 

the operational temperature and hence the monolayer capacity, nm, should be obtained from the 

best linear fit for that region of the  isotherm which includes point B as shown in Figure 20. 

Brunauer, Emmett and Teller59 proposed that a value of 16.2 Å2 
 be used as the value of am  of 

(2-8)

(2-9)

૚ )࢔ ࢖࢖
૙ ⁄ −

૚) 

࢖ ⁄૙࢖  
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nitrogen independently of the nature of the surface. However the correctness of that value has been 

questioned by several researchers3, 8 leading to  several studies trying to understand the dependence 

of am on the nature of the surface. 

 Jelinek and Kovats (1994) demonstrated that on highly energetic surfaces, such as surface 

hydrated SiO2 or partially dehydrated silica, the orientation of N2 is upright with a cross-sectional 

area of 13.5 Å2. For a low energy surface, such as organic modified silicas (C8,C18 modified), a 

cross-sectional area of 16.2 Å2 is used because it will lay flat on the surface60. High c-constant 

value (which is associated with a sharp point B) indicates strong adsorbent-adsorbate interactions. 

Typical c-constant values are in the range of 80-150 for nitrogen at 77 K for well-defined 

monolayers on many non-porous and mesoporous adsorbents. To attain a value of am  that is 

characteristic of an adsorbate, two opposing requirements need to met: a) “c-constant shall be high 

enough to ensure adequate separation between monolayer and multilayer formation”8 and b) “c- 

constant must be low enough to avoid appreciable localization of the adsorbate”8. With nitrogen, 

these two requirements can be met on most of the adsorbents and use of am equal to 16.2 Å2 will 

lead to a surface area value that will fall within 20% of the true value. 

The monolayer formation occurs by the same mechanism whether the surface is wholly 

external (Type II isotherm as in non-porous or macroporous solids, see Figure 10) or is largely 

located on the walls of the mesopores (Type IV isotherm as in mesoporous solids, see Figure 10). 

Hence, the application of the BET procedure to determine surface area will be the same for non-

porous and mesoporous silica surfaces which were studied in this work. Even when nitrogen 

(preferred adsorbate) is being used as an adsorbate, a divergence of at least 10% in the surface area 

value must be must be reckoned with. The divergence could be traced to many factors but not 

limited to variations in outgassing conditions, variations in temperature of the sample during 
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experiment, inadequate monitoring of the saturation vapor pressure, instrument or apparatus leaks 

and the purity of nitrogen used. 

 
2.3.2 Pore size characterization 

The use of nitrogen adsorption for pore size analysis is based on the application of the Kelvin 

equation. This expression includes a correction for the multilayer thickness on the pore walls and 

this approach dates back to late 194061. The first computational procedure was proposed by 

Schull61, but the method devised by Barret, Joyner and Halenda (BJH) in 1951 continues to be the 

most widely used procedure of deriving the pore size distribution from nitrogen isotherm62. Prior 

to pore size characterization of the mesoporous solids, understanding and interpretation of the type 

IV isotherm is critical to characterize the pore structure of the mesoporous solids. Figure 22 

illustrates the typical type IV isotherm which are often seen with inorganic oxide xerogels and 

other porous solids.  

In the low-pressure region, both Type IV and Type II isotherm follows the same ABC path, 

however, after this point, Type IV begins to deviate upwards taking the path CDE (while Type II 

follows CN) until high pressure after which the slope decreases as seen in the path EFG. As the 

saturation vapor pressure is reached it will take the path FGH or FGH’. The hysteresis loop is 

characteristic of the Type IV and the loop varies from one adsorption system to another. However, 

at any given relative pressure, the amount adsorbed along the desorption branch FJD is always 

greater than the adsorption branch DEF. According to Zsigmondy, adsorption is limited to thin 

layer on the walls along the path ABC of Figure 22, until at D (starting of the hysteresis) capillary 

condensation commences in the finest pores. Wider pores get filled progressively as the pressure 

increases and at the saturation pressure, entire pore system is full of condensate8, 55, 63-64. 
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Figure 22. A Type IV isotherm characteristic of mesoporous solids. The corresponding Type II 
isotherm (dotted line) follows the course ABCN. Adapted from ref.8. 

 

2.3.2.1 Capillary condensation, hysteresis and the Kelvin equation 

The concept of capillary condensation and its quantitative expression in Kelvin equation 

holds a very important place in the study of mesoporous solids. This Kelvin equation is invariably 

the basis for all the various procedures for the calculation of pore size distribution from the Type 

IV isotherm. Using the Kelvin equation rightly helps in understanding the pore system of a 

mesoporous solid, however the limitations imposed by the thermodynamics of the equation need 

to be understood. The implicit assumptions involved in the Kelvin equation can be understood by 

deriving the Kelvin equation, which has been thoroughly discussed in the book chapter by Gregg 

and Sing8. Since capillary condensation is connected with the curvature of liquid meniscus, the 

discussion and the derivation starts from Young-Laplace equation which relates the pressures on 

opposite sides of a liquid-vapor interface. 
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To provide an interpretation for the hysteresis, Zsigmondy8, 64 put forward the theory of capillary 

condensation by making use of the principle established by Thomson63 (later Lord Kelvin) on 

thermodynamic grounds. Thomson established that the “equilibrium vapor pressure, p, over a 

concave meniscus of liquid, must be less than the saturation vapor pressure, po, at the same 

temperature, which implies that a vapor will be able to condense to a liquid in the pores of a solid, 

even when its relative pressure is less than unity”8. Thompson’s original equation was further 

customized to suit adsorption data and resulted in the “Kelvin equation” which is as follows: 

࢔࢒ ࢕࢖࢖ =  −૛ࢀࡾࡸࢂࢽ  ૚࢓࢘ 

where p/po
 is the relative pressure of vapor in equilibrium with a meniscus having a radius of 

curvature rm, γ is the surface tension of the liquid adsorptive, VL is the molar volume of the liquid 

adsorptive, R is gas constant and T is the temperature. 

It is to be noted that during the process of capillary condensation during adsorption, the 

pore walls are already covered with an adsorbed film, having a thickness t (referred to as statistical 

thickness). Hence, the capillary condensation does not happen directly in the pore itself but 

somewhat inside the inner core. The process of multilayer adsorption, pore condensation and 

hysteresis in a single cylindrical pore is schematically illustrated in Figure 23. At lower relative 

pressures, the adsorption process in mesopores is comparable to that on planar surfaces. After 

completion of monolayer formation (A) multilayer adsorption (B) commences and continues until 

a critical thickness (C) is reached. Capillary condensation then occurs inside the core of the pore 

(transition from C to D in the isotherm) and D (plateau region of the isotherm) reflects the state 

where the pore is completely filled with liquid and separated from the bulk gas phase by a 

hemispherical meniscus. At relative pressures corresponding to E (less than the pore condensation 

(2-10) 
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pressure corresponding to C), pore evaporation begins by a receding meniscus and continues until 

the hysteresis closes at relative pressure corresponding to F. The point F represents the situation 

of an adsorbed multilayer film which is in equilibrium with a vapor in the core of the pore and the 

bulk gas phase40. 

 

 

 

 

 

 

 

 

 

 

Figure 23. Schematic representation of multilayer adsorption, pore condensation and hysteresis 
in a single cylindrical pore. Adapted from ref.40. 

 

To obtain pore size using the conventional Kelvin equation, rm  needs to be converted to 

pore radius (rp), which involves resorting to a pore shape model (cylindrical pore and spherical 

meniscus). The contact angle (θ) between the capillary condensate and the adsorbed film on the 

walls is also required to correctly use the Kelvin equation to determine the pore size. Figure 24 

illustrates the relation between rm, rp, rc (core radius), t and θ.  
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Figure 24. Relation between rm of the Kelvin equation and the core radius rc   for a cylindrical 
pore with hemispherical meniscus. θ is the angle of contact, t is the statistical thickness and rp is 

the pore radius (sum of rc and t). 

 

From the relation shown in Figure 24, we can obtain: 

࢓࢘ =  ࢙࢕ࢉࢉ࢘

Hence Kelvin equation can be rewritten as 

࢔࢒ ࢕࢖࢖ =  −૛ࢀࡾࡸࢂࢽ  ૚ࢉ࢘  ࢙࢕ࢉ 

௣ݎ = ௖ݎ + t 
Hysteresis loops, which appear in the multilayer range of physisorption isotherms, are 

generally associated with the filling and emptying of mesopores. The region of the Type IV 

isotherm involved in performing calculations of pore size using the Kelvin equation is the 

hysteresis loop, where the capillary condensation occurs. IUPAC provides an empirical 

classification of hysteresis loops65 as shown in Figure 25. There is a correlation between the shape 

of the hysteresis loop and the surface (pore size distribution, pore geometry and connectivity) of a 

(2-11) 

(2-13) 

rm 

rp 

t 

rc 

θ

(2-12) 



 

58 
 

mesopore adsorbent. As shown in Figure 25, type H1 is associated with porous materials consisting 

of well-defined cylindrical-like pore channels. Type H2 is associated with materials that does not 

have a well-defined pore shape and pore size distribution. Type H3 (no limiting adsorption at high 

p/po) is observed in aggregates that has slit-shape pores. Type H4 is associated with narrow slit 

pores and in pores in the micropore region39-40, 65-66. The origin and mechanism of hysteresis is a 

still a subject of discussion and the book chapters in Gregg and Sing (1982)8 and Lowell, Shields, 

Thomas and Thommes (2006)40 presents a great discussion on this topic by considering simple 

pore models such as the cylinder, the parallel-sided slit, the wedge-shape and the cavity between 

spheres in contact. In all the discussions, a simplifying assumption that the contact angle θ  is zero 

(cos θ =1) is made. 

 

 

 

 

 

 

 

 

 

 

Figure 25. IUPAC classification of hysteresis loops. Adapted from ref.65. 

Briefly, in the independent single pore model where the pores are cylindrical and the cylinder 

closed at one end B as shown in Figure 26 (a), the condensation and evaporation occur at same 
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relative pressures leading to no hysteresis. In the case of a cylinder closed at one end, the meniscus 

is hemispherical (leading to rm=rc) during both capillary condensation and evaporation and the 

Kelvin equation in its further simplified exponential form listed as below, provides relative 

pressure at which both condensation and evaporation takes place8. ࢕࢖࢖ = ࢉ࢘ࡷ൬ −૛ ܘܠ܍ ൰ 

where  ܭ = ିଶఊ௏ಽோ்  

 

 

 

 

 

 

 

 

 

 

Figure 26. Capillary condensation in cylindrical pores. (a) Cylinder closed at one end, B. The 
meniscus is hemispherical during both capillary condensation and capillary evaporation.  (b) & 
(c) Cylinder open at both ends. The meniscus is cylindrical during capillary condensation and 

hemispherical during capillary evaporation. Dotted lines denote the adsorbed film.                   
Adapted from ref.8. 

 
In the independent single pore model where the pores are cylindrical and the cylinder open at both 

ends as shown in Figure 26 (b), the condensation and evaporation occur at different relative 

pressures leading to hysteresis. In this case of the cylinder open at both ends, the meniscus is 

(2-14)
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cylindrical (leading to rm=2rc) during capillary condensation and hemispherical ((leading to rm=rc) 

during capillary evaporation. The Kelvin equation in its further simplified exponential form listed 

as below, provides relative pressure at which condensation and evaporation takes place8. The 

values of rc obtained by either using the adsorption branch (using the relative pressure from 

condensation) or desorption branch (using the relative pressure from evaporation) should be the 

same ideally, but in practice this rarely happens. 

൬      ݊݋݅ݐܽݏ݊݁݀݊݋ܿ ݎ݋ܨ  ௢൰௔ௗ௦݌݌ = exp ൬ −ݎܭ௖ ൰ 

൬          ݊݋݅ݐܽݎ݋݌ܽݒ݁ ݎ݋ܨ ௢൰ௗ௘௦݌݌ = exp ൬ −2ݎܭ௖ ൰ 

The value of the contact angle θ (=0) is subject to a great deal of uncertainty. It has to be 

kept in mind that in principle the contact angle θ during capillary condensation can differ from 

zero (can be anything between 0° and 180°). Presently there exists no means for direct evaluation 

of contact angle for a liquid present in a pore having measurements in the mesopore range. Hence 

the possible divergence of  θ  is ignored and θ is assumed as zero in all pore size calculations using 

capillary condensation data. This assumption of complete wetting of the pores by liquid nitrogen 

(cos θ = 1) is assumed for all practical purposes and this assumption has raised attention from 

theoreticians. 

It is important to remember that contact angle θ varies according to the thickness t 

(statistical thickness) of the adsorbed layer lining the pore walls.  Contact angle θ decreases as t 

increases and approaches zero when t reaches close to 3 or 4 molecular diameters7-8, 65. 

2.3.2.2 Pore size distribution, statistical thickness (t) and Kelvin equation 

The computation of mesopore size distribution of a porous solid from the capillary 

condensation is valid only if the isotherm is of Type IV. Some of the implicit assumptions that are 

(2-15) 

(2-16) 
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made in the calculations of pore size distribution are that: (a) the pores are rigid and of a regular 

shape (e.g. cylindrical capillaries or parallel-sided slits), (b) micropores are absent, and (c) the size 

distribution does not extend continuously from the mesopore into the macropore range7-8, 65.  An 

important question to be addressed while obtaining pore size distribution is the selection of 

adsorption or desorption branch. Mathematically, the procedure used for pore size distribution is 

equally valid for both adsorption and desorption branches8. But in practice, the pore size 

distribution obtained on different materials by different researchers indicate that the distribution 

could have good agreement in some cases and disagreement in other cases as noted in the following 

discussion. One such reason for the variability between sorption branches is the effect of pore 

networks. i.e for example if pore blocking occurs, the pore size distribution from the desorption 

branch will lead to a distorted picture of the pore structure8, 40. The IUPAC classification of 

hysteresis loops (Figure 25) could be used as a guidance in determining the choice of sorption 

branch for pore size distribution. As an example, for materials (ordered mesoporous systems like 

SBA-15) that exhibits H1 type hysteresis loop, the desorption branch would be the best choice for 

pore size analysis, while for materials (disordered mesoporous systems) that exhibit H2 or H3 type 

hysteresis loops, the adsorption branch would be the best choice39-40, 66. Several mathematical 

models8, 40 have been proposed for the calculation of the pore size distribution ad one such 

commonly used  model or approach is the Barett-Joyner-Halenda (BJH approach).  BJH approach 

is a procedure for calculating pore size distributions from experimental isotherms using the Kelvin 

model of pore filling with applicability only to the mesopore and small macropore size range. It is 

also shown that a much more accurate pore size analysis and wider pore size analysis (complete 

micro/mesopore size range) is possible with the development and availability of advanced 
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theoretical procedures based on statistical mechanics (e.g., Non-Local Density Functional Theory 

(NLDFT)) and molecular simulation39. 

While obtaining pore size distribution (expressed as dvp/drp vs rp ), it is very important to 

take into consideration the amount adsorbed on the walls and account for the adsorbed film 

thickness or statistical thickness(t). By neglecting the adsorbed film thickness t, the results 

obtained would be a core size distribution and not pore size distribution. The values of t are derived 

from standard nitrogen isotherm using the below equation: 

࢚ = ૜. ૞૝ ቆ ૞࢔࢒ቀ࢖࢕࢖ ቁቇ૚ ૜ൗ
Å 

The Kelvin equation as expressed in equation 2-14 can be further reduced to  ܋ܚ = ૝.૙ૠૡ܏ܗܔቀܘܗܘ ቁ Å 

By using the t and rc  values, the pore radius rp can be obtained using equation 2-13. Table 

8 illustrates the values of rp and t at different p/po for nitrogen at 77.4 K. The set of values in this 

table may be considered as adequate for most practical purposes for nitrogen isotherm on 

hydroxylated silica. 

 

 

 

 

 

 

(2-17) 

(2-18) 



 

63 
 

Table 8. Values8 of  rp and t at different p/po for nitrogen at 77.4 K. 

A B 
 

p/po 
 

rp, Å 
 

t, Å 
 

p/po 
 

rp, Å 
 

t, Å 
 

0.40 15.60 5.35 0.439 17 5.5 
0.45 17.40 5.60 0.490 19 5.8 
0.50 19.45 5.85 0.555 21 6.2 
0.55 21.85 6.15 0.574 23 6.3 
0.60 24.9 6.5 0.605 25 6.6 
0.65 28.7 6.85 0.667 30 7.05 
0.70 33.7 7.35 0.711 35 7.5 
0.75 40.5 7.85 0.746 40 7.8 
0.80 50.7 8.6 0.800 50 8.6 
0.85 67.5 9.65 0.832 60 9.2 
0.90 101.9 12.75 0.856 70 9.8 
0.95 |199| |16| 0.875 80 10.5 

   0.889 90 11.7 
   0.899 100 12.75 

 

2.4 Water Adsorption 

Water vapor is present everywhere and profoundly influences material attributes thus 

making water adsorption studies important and interesting. Water provides many examples of 

Type III isotherms (see Figure 10) and Type III typically originate through the adsorption of 

non-polar or polar molecule accompanied with relative weak adsorbent-adsorbate forces. In 

Type III, the adsorbate-adsorbate interactions will play an important role. In water, the dispersion 

contribution to its overall interaction energy is very small compared with the polar contribution. 

The BET procedure for evaluation of monolayer capacity is not applicable to Type III and hence 

no surface area calculations are made using water as adsorbate7-8, 40, 55. In adsorbents that possess 

pore structures accessible by both nitrogen and water vapor, it would be valuable to compare 

pore structure curves obtained by both nitrogen and water vapor. 
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2.4.1 Water t-curves 

The methods proposed for complete pore structure analysis are just as applicable to water 

vapor adsorption as to nitrogen adsorption. However the knowledge of the statistical thickness 

(t) of the adsorbed water film as a function of relative pressures (t-curve) is critical for the 

accurate determination of the radius of cores and, therefore for the calculations of contact angles. 

A review of the t-curves for water adsorption reported in the literature varied significantly and, 

especially for dehydroxylated and hydrophobic surfaces, were scarce or unknown. At best, water 

t-curves were reported only for some non-porous adsorbents67 as shown in Figure 27. To address 

this issue, the water t-curves were measured for a series of model wide-pore silicas with known 

silanol content covering the wide range of silanol coverage. The selection of t-curves is of great 

importance for pore size analysis by water vapor adsorption and Hagymassy, Brunauer and 

Mikhail (1969)68 emphasized that that the t-curve should be categorized according to the BET c 

constant of the adsorbent.  The raw data and the equations for the t-curves on hydroxylated, 

dehydroxylated, and hydrophobic TMS silicas are reported (chapter 3) providing the reference 

data necessary for the quantitative analysis of water adsorption.  The proposed method of the 

contact angles determination by combining water and nitrogen adsorption in chapter 3 depend 

greatly on the statistical film thickness (t-curve) of the adsorbed water. 
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A: alumina, N2 BET area = 125 m2/g, 
Vm(H2O/nm2) = 7.7-7.9, BET c constant = 24-27. 

B: alumina, N2 BET area = 4 m2/g,                   
Vm(H2O/nm2) = 6.47, BET c constant = 28. 

C: silica (Aerosil 200), N2 BET area = 201 m2/g, 
Vm(H2O/nm2) = 3.52-3.58, BET c constant = 11. 

D: silica (Aerosil 200 calcined at 1000°C and 
rehydroxylated at 20°C), N2 BET area = 178 m2/g, 
Vm(H2O/nm2) = 1.54, BET c constant = 5. 

E: graphitized carbon black, N2 BET area = 83 
m2/g, Vm(H2O/nm2) = 0.03, BET c constant = 5. 

Adsorbents were pretreated in vacuo at 30°C for 
4h. 

 
 
 
 

 
Figure 27. Statistical thickness of adsorbed film of water as a function of relative pressure on 

non-porous adsorbents. Adapted from ref.67. 
 

2.4.2 Water Contact Angles 

 Due to the complexity of real porous solids, direct measurement of the contact angles in 

pores is hardly possible.  At the same time, the applicability of the contact angles measured for 

flat surfaces in pores is, generally unknown, which calls for the indirect evaluation methods of 

the pore wetting.  This research will employ the combined vapor adsorption study using nitrogen 

(77K) and water (293K) isotherms to evaluate the water contact angles for a series of ordered 

mesoporous silicas, including MCM-41 and SBA-15, as well as for conventional silica gels.  

Figure 28 shows an illustration of nitrogen and water adsorption inside a cylindrical pore showing 

the extent of wetting and the contact angle. Specifically, the water isotherms were used to 

determine the most probable Kelvin radius of menisci (ݎ௠(ܪଶܱ)) during evaporation of liquid 

water from pores.  Then, ݎ௠(ܪଶܱ) was compared with the true radius of pores as assessed from 
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nitrogen isotherms (ݎ௣( ଶܰ)).  For incomplete wetting, the radius of meniscus ݎ௠, radius of pore ݎ௣, and statistical film thickness t(H2O) were related through the known equation below, which 

was used to calculate the water contact angles (θ>0) in pores. ݎ௣( ଶܰ) − (ଶܱܪ)ݐ = (ଶܱܪ)௠ݎ ∙  ߠݏ݋ܿ

  

 

  

 

 

 

 

 

 

 

 

Figure 28. Illustration of nitrogen and water adsorption in a cylindrical pore showing wetting 
and contact angle. rc  is the radius of the core, rp is the radius of the pore, rm  is the evaporating 

water meniscus, t(H2O) is the statistical water adsorption thickness, θ is the contact angle. 
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Chapter 3: Water Contact Angles in Silica Mesopores: The Results of 

Combined Adsorption Study 

3.1 Introduction 

 Despite the large body of existing research on water adsorption, the deficiencies are 

apparent. Present work attempts to fill the voids by establishing the dependence between water 

adsorption and total number of hydroxyls. The surface of most metal oxides is covered by hydroxyl 

groups which influence many surface phenomena such as adsorption and wetting, catalysis and 

surface reactions.  Surface chemistry of silica is a subject of exhaustive studies owing to a wide 

variety of practical applications of silica6. 

 The hydroxylation of silica surface i.e the number of hydroxyl (-OH) groups on the surface 

is of utmost importance for its practical applications. Several Infra-Red (IR) gravimetric adsorption 

studies support that the major adsorption sites on a silica surface are surface hydroxyl groups6, 43, 

48, 51.  At an adequate number of -OH groups the silica surface is hydrophilic and the -OH groups 

act a site of adsorption while interacting with adsorbate (e.g. water).  By the process of dehydration 

(exposure to high temperature), the -OH groups can be removed and the silica becomes 

hydrophobic.  The hydroxyl groups can be restored again by the process of rehydration (exposure 

to aqueous environment).  Using IR and adsorption studies, Young demonstrated that water vapor 

physically adsorbs only on the silanol sites for the silica.  Young also showed that rehydration 

from the vapor phase was completely reversible up to 400°C (673K) and the rehydration of silanol 

sites above 400°C (673K) was not completely reversible51. 

 A range of analytical techniques have been used by material scientists to characterize the 

silica surface in terms of hydroxyl groups, surface area and pore structure6, 43-46.  Hockey and 
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Pethica (1961) studied the dehydration and rehydration of silica powders by infrared, water 

adsorption and gravimetric methods43. Smith and Kellum (1966) determined the OH surface 

density of silica samples using both thermo gravimetric analysis (TGA) and a modified Karl 

Fischer reagent44. The Karl Fischer titration technique provided the physically adsorbed water 

content while TGA gave the total weight loss from physically adsorbed and chemically bound 

water.  Mueller et al and Wisser et al studied the surface hydroxyl content of silica and other oxides 

using thermo gravimetric analysis45-46. 

 Adsorption methods are sought after for analyzing the porous texture of porous 

materials51, 67-70. The most commonly employed adsorption methods are based on adsorption-

desorption isotherms of nitrogen at the boiling point of nitrogen which is 77K. Young determined 

the surface area of silicas using nitrogen adsorption data and compared these surface areas with 

gravimetric water vapor adsorption data. The surface areas obtained by water vapor adsorption 

were only 16% to 25% of the surface area from nitrogen adsorption and hence Young concluded 

that major portion of the silica is hydrophobic51. However, it is to be noted that these experiments 

were performed on limited non porous silicas. 

 Use of t curves (graphical comparison of two isotherms obtained from non-porous 

reference adsorbent and the porous material under investigation) has been adopted to understand 

the surface character of adsorbents. Hagymassay, Brunauer and Mikhail (1969)68 and Naono and 

Hakuman (1991)67 previously reported nitrogen and water t curves for various non-porous 

adsorbents. Using the above reported standard t curves for water and nitrogen Naono and Hakuman 

later characterized a set of porous silica gels69. Naono and Hakuman determined pore size 

distribution curves for various adsorbents from the isotherms of both water vapor and nitrogen 

gas67, 69. It was shown that when water isotherms were used for analysis of porous structure, pore 
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size distribution can be calculated to a 0.9 - 1.1 nm in pore radius as opposed to only 1.7 nm when 

nitrogen isotherms were used. For some adsorbents no hysteresis was seen in the nitrogen isotherm 

while a definite hysteresis was seen in water isotherm indicating that capillary condensation of 

water vapor takes places in the smaller pores whose radii are less than 1.7nm.  This illustrates that 

water vapor can see pores that are not seen by nitrogen and hence water vapor isotherms give more 

fruitful information of the porous texture69. Even for practical applications, such as using silica 

adsorbent as a dehumidifier, it would be more valuable to have the adsorption of water vapor on 

silica rather than adsorption of nitrogen on silica. 

 Water vapor adsorption work performed by Young51 focused only on non-porous silica 

and by Naono and Hakuman67, 69 focused only on very limited adsorbents.  Previously in the 

literature, it was suggested that there exists a universal t-curve and this was independent of the 

nature of the sample. Later, this idea was revised and t-curves or t-curves were devised as a 

function of the physiochemical and thermodynamical nature of the adsorbent. Hagymassay68 et al 

proposed five t-curves in the low pressure region (p/p0
 = 0 to 0.5)  and two t-curves in the high 

pressure region (p/p0 = 0.5 to 0.9). The t-curves were categorized according to a range of values of 

the c constant of the BET equation.  Raoof, Guilbaud, Van Damme, Porion and Levitz (1998)70 

demonstrated that porous t-curve for water coincided with the t-curve of non-porous adsorbents 

provided that their BET constants were similar 

 Most of the t-curves or t-curves available in the literature are based on non-porous 

adsorbents and their applicability to porous adsorbents largely depends on the similarity in their 

chemical surfaces and pore sizes.  For adsorbents with wide pores, the applicability of non-porous 

t-curve may be more suitable.  However for adsorbents with narrow pores, there is always a 

possibility of overlapping surface forces from the pore walls70 and hence the applicability of t-
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curves measure on non-porous adsorbents can be challenged.  The present research work proposes 

set of reference water t-curves for a wide variety of porous adsorbents that is primarily based on 

the number of surface hydroxyl groups on the adsorbent. 

 In this work, we report the results of systematic study of the water vapor adsorption (room 

temperature) on surfaces of well-defined chemical composition that included fully hydroxylated 

silicas, silicas dehydrated at different temperatures, and silicas functionalized through the covalent 

attachment of organosilanes. 

3.2 Experiment 

General Information.  All chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA) 

except where noted. 

3.2.1 Silicas: Preparation, Hydroxylation, Calcination, Silanol determination, and Grafting with 
TMS. 

Bare SBA-15 silicas were prepared following to the procedures published elsewehere14, 71.  Three 

different batches of SBA-15 were made (under similar conditions), their structural characteristics 

determined by the adsorption of nitrogen are given in Table 9.  The hydroxylation of silicas was 

accomplished by placing ~0.2-0.5 g of silica in ~10 mL liquid water (HPLC grade) in presence of 

catalytic amount of acid (H2SO4).  The container was sealed and placed in an oven at 100°C for 

24 h.  After cooling to room temperature, silica was transferred to glass filter, rinsed with excess 

of water, and dried at 343K overnight.  To reduce silanol population, silicas were calcined at 

desired temperature (293K - 1273K ) overnight.  To minimize the exposure of the samples, silicas 

were placed directly in the adsorption quartz vials.  After the calcination, the vial was cooled to 

room temperature in a flow of nitrogen and immediately used for the adsorption measurements.  

The amount of surface silanol groups (silanol number6) was determined from the TGA weight loss 
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of silicas in the range 473K -1273K°C at a rate of 10°/min (Q500 Thermogravimetric Analyzer, 

TA Instruments, USA).  The amount of surface silanols was calculated as follows:72 

݊ைு [݃݌ݑ݋ݎ ݊݉ଶ]⁄ = 667 ∗ ܮܹ ܵேଶ⁄  

where WL was the TGA weight loss (mass %) at 200-1000°C SN2 was the BET surface area 

obtained by nitrogen adsorption. 

The TMS (trimethylsilyl)-modified silicas were prepared by the reaction of hydroxylated silicas 

with (N,N-dimethyl-amino)-trimethylsilane as described elsewhere71. The progress of the TMS 

surface reactions was monitored by the chemical analysis made by Schwarzkopf Microanalytical 

Lab. (Woodside, NY).  The grafting density of TMS groups [TMS/nm2] was obtained as follows:2 

2

5 1

)](%1200[

)(%106

SiOC SCMWn

C ⋅
×−⋅

×=ρ  

where MW is the molecular weight of the (CH3)3SiO group (89 g/mole), nC = 3, the number of 

carbon atoms in the grafted TMS group, SSiO2 is the BET surface area of bare silica by nitrogen 

[m2/g], and %C is the carbon weight percent in the sample. 

3.2.2 Nitrogen adsorption isotherms 

The adsorption-desorption isotherms of nitrogen (77K) were obtained with a Quantachrome 

Autosorb-1 analyzer (Boynton Beach, FL, USA) and with a Micromeritics ASAP analyzer 

(Norcross, GA, USA).  The isotherms were measured over a relative pressure p/po range from 

~0.005 to 0.995 and, on average, consisted of 80-130 adsorption-desorption points.  Prior to the 

adsorption measurements, the silicas were outgassed at 200°C (473K) overnight.  The TMS-

modified silicas were outgassed at 100°C to avoid the damage of organic groups.  Specific surface 

(3-1) 

(3-2)
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areas were calculated via the BET method using the range of relative pressure from ~0.06 to 0.27 

and the value for nitrogen cross-section 0.162 nm2.  The total pore volume was obtained from the 

amount adsorbed at p/p0~0.99.  The micropore volume was determined using the t-plot and alpha-

s methods.  The pore size distribution and the average (most probable) pore radius ݎ௣( ଶܰ) was 

calculated by the BJH method from the desorption branch of the isotherm.  Complete wetting of 

the pores by liquid nitrogen (cos θ = 1) was assumed.  All the calculations were performed using 

vendor’s software. 

3.2.3 Water adsorption isotherms 

The adsorption-desorption isotherms of water (293K) were obtained using a Quantachrome 

Autosorb-1 analyzer (Boynton Beach, FL, USA).  The isotherms were measured over a relative 

pressure p/po range from ~0.02 to 0.99 and consisted of 78 adsorption-desorption points.  Unless 

specified otherwise, silicas were outgassed at 200°C (473K) overnight. The statistical thickness of 

the adsorbed water films (t-curves) were determined for the reference silica gel Davisil 1000.  Due 

to the large pore size (rp~50 nm), capillary condensation of water did not occur (up to p/p0~0.99) 

and its contribution to the adsorption was negligible.  The thickness of the adsorbed films was 

calculated by equation:8 

[݉݊]ݐ = 0.001 ∗ ௔ܸௗ௦.௟௜௤.(2ܱܪ)ܵ஻ா்(( ଶܰ)  

where Vads.liq. (H2O) is amount of liquid water adsorbed (cm3/g), SBET(N2) surface area of silica 

determined by N2 (39 m2/g).  In the literature, some of the water adsorption data was reported not 

as t-curves, but as the amount of water adsorbed (Γ) expressed in µmole/m2 or #H2O 

molecules/nm2 vs. p/p0.  To compare the data, the conversion between these units was done as 

follows: 

(3-3)
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[݉݊]ݐ = 0.018 ∗ Γ ൤݈݉݁݋݉ߤଶ ൨ = 0.03 ∗  Γ ൤ܪଶܱ݊݉ଶ൨ 

3.2.4 Contact angles by water 

The distribution of radii of water menisci and the most probable radius rm was calculated 

by the BJH method from the desorption branch of the water adsorption isotherms.  At the 

temperature of the experiment 293K, surface tension of water was 72.8 mJ/m2 and its molar 

volume 18.05 cm3/mol, respectively73.  Using these parameters, the Kelvin equation was: 

(ଶܱܪ)௠ݎ = 1.078ln (݌଴ ⁄(݌  [݊݉] 
The contact angles were calculated by equation 2-19 using the most probable values of rm(H2O) 

and rp(N2).  The values of statistical thickness t(H2O) were taken at the relative pressure that 

corresponded to rm(H2O).  The standard error for the determination of cos θ by equation 2-19 was 

assessed for two silica samples (hydroxylated SBA-15 and SBA-15 grafted with 25%TMS) from 

three separate measurements of water and nitrogen adsorption performed for each sample 

respectively.  The highest standard error for cos θ (±0.009) was determined for hydroxylated SBA-

15, which was used for all standard error calculations in the text. 

3.3 Results and Discussion 

 The main focus of this work was to evaluate contact angles and surface energy of SBA-

15 silica mesopores using the combined water and nitrogen adsorption isotherms.  This task, 

however, was complicated by the fact that the pore structure and the surface chemistry of the 

freshly made SBA-15 was altered after its exposure to water vapors during the course of the water 

adsorption experiment74-76.  Thus, as a first point of this work, we began with (1) the evaluation of 

(3-4) 

(3-5)
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the changes of the SBA-15 caused by the adsorption of water and (2) the optimization of the 

hydrothermal treatment aimed to prepare pure SBA-15 silica stable to water. 

3.3.1 Structural changes to SBA-15 on exposure to water 

 To quantify the changes caused by the adsorption of water, we conducted a series of 

sequential water adsorption-desorption cycles, each followed by the nitrogen adsorption 

measurements.  The representative sequence of water isotherms and the corresponding nitrogen 

isotherms are shown in Figure 29. As assessed by nitrogen, the surface area and the pore volume 

of SBA-15 showed a notable ~8-10% decrease after the completion of the very first water 

adsorption-desorption cycle.  The more prolonged exposure of SBA-15 to water vapors resulted 

in further reduction of the surface area and the pore volume.  Overall, six cycles of water 

adsorption-desorption were conducted for the same SBA-15 silica and the reduction in surface 

area and pore volume (by nitrogen) was noted after each water cycle, though the magnitude of the 

changes was gradually decreasing.  In addition to the structural changes observed, the adsorption 

of water also lead to the notable changes of the SBA-15 surface, making it more and more 

hydrophilic after each completed water adsorption-desorption cycle.  Qualitatively, this was 

demonstrated by the gradual changes in the shape of the isotherm from the convex, Type V – 

typically observed for hydrophobic surfaces to concave, Type IV – indicating polar surfaces with 

higher affinity to water8. In agreement with previous works74-75, these changes were attributed to 

the reaction of the adsorbed water with the hydrophobic siloxane groups producing hydrophilic 

silanols. 

 Indeed, the radii of the evaporating water menisci used for the calculation of the contact 

angles (Table 9) were obtained from the desorption branch of the isotherm.  By the time the 

desorption began, the SBA-15 silica had been in contact with liquid water condensate for many 
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hours.  On average, water adsorption-desorption isotherms were completed in ~70-90 h.  We 

estimated that at least half of this time was spent on the capillary condensation loop, i.e. when 

liquid water condensate was present in pores. It was, therefore, highly possible that the 

hydroxylation and surface reconstruction via dissolution/redeposition74-75, 77-80 of silica was taking 

place before the system had reached the desorption equilibrium. 

 SBA-15 silica (as prepared) is inherently hydrophobic and unstable towards water vapor. 

The improvement of the surface hydrophilicity for the SBA-15 after the exposure to water was 

also demonstrated by the water pore filling at saturation.  In the first water adsorption cycle, the 

pore volume by water was 0.75 of that by nitrogen.  In the second and the third cycles it was 0.78 

and 0.80 respectively.  We noted, however, that even for the fully hydroxylated hydrophilic silicas 

(see Figure 29) the pore volume by water was ~0.85, i.e. notably lower than by nitrogen. Similar 

observations regarding the pore volumes differences by nitrogen and by water were also reported80-

81.  Authors81, attributed this to the microscopic heterogeneity of the pore surface and the presence 

of hydrophobic patches. In the following sections of this work, the hydrophobicity and the 

incomplete wetting of pores of these silicas will be further validated and characterized. 

. 
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Figure 29. Top:  (1-3) - first, second, and sixth consecutive water adsorption isotherms for 
freshly made SBA-15.  (4-6) – first three consecutive water adsorption isotherms for SBA-15 
after hydroxylation in liquid water.  Bottom: Nitrogen adsorption isotherms for the samples 

described above.  For ease of comparison, each isotherm is shifted by 0.3 p/p0 units in respect 
to the isotherm to its left. 
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Table 9. Water contact angles and structural parameters for three batches of freshly made SBA-
15 & two batches of MCM-41 silicas and for the same silicas after hydroxylation 

 

 
*cosθ was calculated using equation 3-8 

§The range of θ was evaluated from the standard error of cosθ. 

 

 

Sample 

 

S(N2) 

m2/g 

 

V(N2) 

cm3/g 

 

r(N2) 

nm 

 

rc(H2O) 

nm 

 

rm(H2O) 

nm 

 

t(H2O) 

nm 

 

Cos θ* 

 

θ§ 

deg 

SBA-15-I, 
freshly made 

790 1.04 3.30 3.12 4.05 0.18 0.770±0.009 39-40 

SBA-15-I after 
hydroxylation 

558 0.84 3.03 2.78 2.80 0.25 0.993±0.009 0-10 

SBA-15-II, 
freshly made 

745 1.05 3.25 3.07 3.60 0.18 0.853±0.009 30-32 

SBA-15-II after 
hydroxylation 

565 0.84 2.92 2.67 2.70 0.25 0.989±0.009 4-11 

SBA-15-III, 
freshly made 

718 0.98 3.21 3.03 4.06 0.18 0.746±0.009 41-43 

SBA-15-III, after 
hydroxylation 

587 0.86 3.05 2.80 2.80 0.25 0.993±0.009 0-10 

MCM-41-I, 
freshly made 

958 0.77 1.52 1.32 1.32 0.20 1.00±0.008 0-8 

MCM-41-I , 
After 

hydroxylation 

859 0.65 1.50 1.30 1.32 0.20 0.985±0.008 5-12 

MCM-41-II, 
freshly made 

974 0.77 1.48   0.20 0.844±0.009 31-33 

MCM-41-II , 
after 

hydroxylation 

863 0.68 1.47   0.20 0.988±0.009 4-12 
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3.3.2 Hydrothermal treatment as a means to improve hydrolytic stability of SBA-15 

 To facilitate the surface hydration and to “complete” the structural changes induced by 

water, the SBA-15 silicas were subjected to the hydroxylation, the hydrothermal treatment2, 

involving the reaction of silica with liquid water at elevated temperature (373K).  Three different 

batches of SBA-15 (Table 9) were tested and, on average, the hydroxylation resulted in ~17% 

reduction in the pore volume and ~25% reduction in the surface area respectively (Table 9).  Also, 

while the micropore volume for bare SBA-15 was typically ~0.05 cm3/g, after the hydroxylation 

it was down to 0.01 cm3/g or less.  Since in presence of the micropores the BET surface area was 

overestimated8, the larger relative reduction in the surface area vs. the reduction in pore volumes 

was consistent with the disappearance of the micropores. 

In the literature, the hydrothermal stability of SBA-15 silicas has been studied extensively.  

Although SBA-15 was reported to retained the pore order under severe conditions like prolonged 

treatment in boiling water14, and 600oC (873K) steam79 most researchers noted that the pore 

structure of freshly prepared SBA-15 showed dramatic changes within the first hours of contact 

with water.  According to Gouze, Cambedouzou, Parrès-Maynadié and Rébiscoul (2014)78 as soon 

as SBA-15 is in contact with water, the silica started to dissolve and re-condense forming an altered 

silica layer at the pore surface.  The redistribution of silica in the matrix resulted in widening of 

the micropores, smoothening the pore walls, and hydroxylation of the surface74-75, 77.  The results 

of this work confirmed previous findings and demonstrated that the native structure of the freshly 

made SBA-15 suffered major changes upon exposure to water vapors at room temperature.  These 

changes were irreversible as the calcination did not restore the original structure. To conclude this 

section, we recommend hydroxylation in liquid water as a simple and effective treatment to obtain 

SBA-15 silicas with improved hydrolytic stability and reproducible properties.  After the 
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hydroxylation, the SBA-15 silicas showed no changes in pore structure after extended period (over 

a year) of storage under ambient humidity, exposure to saturated water vapor, contact with liquid 

water, and subsequent hydroxylations. In addition to being hydrolytically stable, the hydroxylated 

SBA-15 silicas have high number of silanol groups. The average value of cosines of these angles 

(0.991) was less than 1% smaller than the cosine of zero (cos0o=1), the value of water contact 

angle attributed to clean fully hydroxylated silica surface3, 82. 

3.3.3 Radius of pores, Radius of water menisci, and Water contact angles 

 As shown in Figure 30, for bare SBA-15 silica the pore size distributions (PSD) by water 

was off considerably as compared to the PSD by nitrogen indicating a different type of interaction 

by water and nitrogen with the silica surface. Next, while the PSDs by nitrogen were nearly 

unchanged, the position of maximums as well as the width of the PSDs by water were strongly 

influenced by the exposure of silica to water.  After each completed water adsorption-desorption 

cycle, the difference between the PSDs by nitrogen and water was diminishing.  However, only 

for the hydroxylated SBA-15, the PSDs by water and by nitrogen were in close agreement, Figure 

30. 

This behavior suggested that, unlike nitrogen, water did not completely wet the surface of the 

pores.  For incomplete wetting (θ>0), the radius of evaporating water meniscus (during the 

desorption process) exceeded the radius of the core and were related through the equation8: 

(ଶܱܪ)௖ݎ = (ଶܱܪ)௠ݎ ∙  ߠݏ݋ܿ

The radius of the water cores was obtained from the true pore radius (assessed by nitrogen) and 

statistical water adsorption thickness t(H2O): 

(ଶܱܪ)௖ݎ = )௣ݎ ଶܰ) −  (ଶܱܪ)ݐ

(3-6) 

(3-7) 
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Figure 30.  Pore size distributions by nitrogen and by water for the SBA-15 silicas with 
different exposure to water.  From top to bottom: freshly made SBA-15 after the first water 

adsorption cycle; same silica after four sequential water adsorption cycles; same silica after 
hydroxylation in liquid water. 
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After combining equations (3-6) and (3-7), the cosines of water contact angles were calculated as: 

ߠݏ݋ܿ = )௣ݎ ଶܰ) − (ଶܱܪ)௠ݎ(ଶܱܪ)ݐ  

 To obtain the parameters needed for the calculation by equation 3-8, water and nitrogen 

adsorption isotherms were measured for each sample.  The pore radius ݎ௣( ଶܰ) was determined 

from the nitrogen isotherms, the radius of water menisci (ݎ௠(ܪଶܱ)) - from the water isotherms 

respectively.  The statistical water film thickness t(H2O) was obtained from the water adsorption 

data collected for reference silicas. 

 In the following sections, we use the above described method and report the water contact 

angles for (1) SBA-15 freshly-made, hydroxylated, and calcined at different temperatures and (2) 

hydroxylated SBA-15 silicas that were functionalized with hydrophobic trimethylsilyl groups at 

different surface concentrations. 

3.3.4 SBA-15 freshly made, hydroxylated, and calcined at different temperatures. 

 Table 9 summarizes the contact angles and the parameters used for their calculations for 

three different batches of freshly made SBA-15 silicas and for the same silicas after the 

hydroxylation.  The water contact angles for bare, freshly made SBA-15 silicas were in the range 

~30-43o, with the average value of 38o, demonstrating fairly hydrophobic surfaces.  This was 

consistent with the fact that preparation of the SBA-15 included11 calcination at 550oC (823K) in 

order to remove the polymer template and open the pore space.  Treatment at such high temperature 

resulted in substantial reduction of surface silanols (dehydroxylation) rendering surfaces with the 

increased amount of non-polar siloxanes at the expense of polar silanols. To assess the 

(3-8) 
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contributions of different surface functionalities to wettability, we used the Israelachvili-Gee 

equation83: 

(1+cosθ)2 = f1(1+cosθ1)2 + f2(1+cosθ2)2 

f1 + f2 = 1 

 We treated SBA-15 surface as a mixture of silanol and siloxane groups.  Using the water 

contact angle 0° for a silanol surface (θ1) and 44° for a siloxane surface (θ2)82, we found that the 

observed average water contact angle of 38o corresponded to a surface mixture of 23% silanols 

and 77% siloxanes.  The actual number of silanols in these SBA-15 silicas, as evaluated by TGA, 

was in the range 1.3-1.4 OH/nm2.  This was ~30% from the average value of 4.6 OH/nm2 suggested 

for fully hydroxylated silica surface6.  The use of the equation 3-9 and 3-10 for the surface 

consisting of 30% silanols and 70% siloxanes gave 36o, which was well within the range of the 

contact angles obtained from the isotherms. 

 As we mentioned earlier, the freshly made SBA-15 surface had been altered 

(hydroxylated) during the water adsorption experiment, which was also evident by the contact 

angles inside the mesopores.  Over six sequential water adsorption-desorption cycles the water 

contact angles decreased after each cycle and, after the cycle #6, they leveled off ~14±3o, 

approaching the values observed for the hydroxylated SBA-15.  The data is shown in Figure 31 

and Table 9.  We noted that these contact angles were not truly equilibrium as they dependent on 

the time of contact of silica with water.  They should be interpreted as metastable contact angles 

characterizing the progression of the hydroxylation process of SBA-15.  For SBA-15 hydroxylated 

in liquid water, the water contact angles showed a decrease down to 0-11o, indicating silica surface 

rich in silanol groups3, 82.  The number of silanol groups in the hydroxylated SBA-15 silicas by 

TGA averaged around 5 silanols/nm2 indicating fully hydroxylated silica surface.  After 

(3-9) 

(3-10) 
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hydroxylation, the isotherms (by nitrogen and water) and, hence the contact angles were not 

influenced by the further exposure of SBA-15 to water. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 31. Water contact angles for freshly-made SBA-15 after the first six sequential water 
adsorption-desorption cycles (closed symbols).  Open symbol – data for three sequential water 

adsorption-desorption cycles for the hydroxylated SBA-15. 
 

 The next group of experiments focused on the effect of the SBA-15 calcination 

temperature on the water contact angles.  The starting SBA-15 silica was hydroxylated in liquid 

water and the calcination was performed at temperatures ranging from 293 to 1073K.  The number 

of surface silanols for calcined samples was monitored by TGA.  The results are shown in Figure 

32 and Table 10.  As assessed by nitrogen, the surface area, pore volume, and pore size distribution 

of SBA-15 remained nearly unchanged up to calcination temperature of 873K.  At higher 
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temperature (1073K), the surface area, pore volume, and pore size started to show some decrease 

which was attributed to sintering of silica. 

Table 10. Water contact angles and structural parameters for the hydroxylated SBA-15 silicas 
calcined at different temperatures. 

 

T, K 

 

S(N2), 

m2/g 

V(N2), 

cm3/g 

r(N2), nm

rc(H2O), 

nm 

rm(H2O), 

nm 

t(H2O), 

nm 

cosθ θ, deg 

293 558 0.84 3.03 2.78 2.80 0.25 0.993±0.009 0-10 

373 558 0.84 3.03 2.78 2.80 0.25 0.993±0.009 0-10 

473 552 0.84 3.03 2.78 2.81 0.25 0.989±0.009 4-11 

673 544 0.86 3.02 2.84 3.22 0.18 0.882±0.009 27-29 

873 536 0.83 2.71 2.59 3.05 0.12 0.849±0.009 31-33 

1073 488 0.81 2.55 2.45 3.24 0.10 0.756±0.009 40-42 

§The range of θ was evaluated from the standard error of cosθ. 

 
As it was anticipated, the contact angles showed a strong dependence on the temperature of silica 

treatment.  The changes in the contact angles observed were consistent with the changes in silanol 

population with temperature as outlined in Zhuravlev’s model of silica surface6.  According to 

Zhuravlev6  the process of dehydroxylation did not start until ~473K  and the silicas maintained 

fully hydroxylated surfaces covered with isolated, geminal, and vicinal silanols with the total 

number close to its maximum.  For silicas calcined at 373K and 473K, the contact angles were ~0-
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11o, the same as for fully hydroxylated surface.  At ~400°C, most of vicinal silanols were removed 

producing surfaces that consisted of ~50% of isolated and geminal silanols (from the maximum) 

and ~50% of siloxane groups.  At higher temperatures (873K), the populations of silanols 

continued to shrink and that for siloxanes to grow respectively. For these silicas, the contact angles 

showed an increase to ~27-33o indicating replacement of polar silanols by the nonpolar siloxanes 

occurring in this temperature range.  At ~1073K silica surfaces largely consisted of siloxane groups 

with a small amount of isolated silanols6. The contact angle for this sample was ~40o demonstrating 

 
 
 
 
 
 

 
 

 

 

 

 

 

 

 
 

Figure 32.  Water contact angles (closed symbols, left axis) and surface silanols per sq-nm (stars, 
right axis) for the hydroxylated SBA-15 silicas calcined at different temperatures. 
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hydrophobic surfaces rich in siloxane groups.  Using the equation 3-9 with these contact angles, 

the silanol-siloxane surface composition of the SBA-15 surfaces calcined at different temperatures 

was calculated, Table 11. 

Table 11. Water contact angles and surface composition for the hydroxylated SBA-15 silicas 
prepared via calcination at different temperatures. 

 

T, K θ, deg 

 
Surface composition by 

equation 3-9 
 

#SiOH by 
TGA, nm-2 

 
Fraction SiOH from max 

(in parenthesis 
Zhuravlev’s model of 

silica surface6) f1(SiOH) f2(SiOSi) 

293-473 0-11 0.90-1.0 0-0.10 5.50 1.0 (1.0) 

673 27-29 0.50-0.60 0.40-0.50 2.55 0.51 (0.5) 

873 31-33 0.45-0.47 0.53-0.55 1.55 0.31 (0.32) 

1073 40-42 0.10-0.15 0.85-0.90 0.80 0.15 (0.16) 

§The range of θ was evaluated from the standard error of cosθ. 

 

 The results are summarized in Figure 33, which presents an overlay of the contact angles 

obtained from the isotherms with the fraction of surface silanols (% from max) for SBA-15 silicas 

calcined at different temperatures.  The fraction of surface silanols was (i) determined 

experimentally by TGA, (ii) calculated by equation 3-9 using the experimental contact angles, and 

(iii) taken from the literature6.  A good agreement between these three sets of data was considered 

as a validation of the method for the contact angle determination described in this work. 

Representative nitrogen and water isotherms from which all parameters required for contact angle 

data calculations were obtained are shown in Figure 34. 
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Figure 33.  Water contact angles (closed symbols, left axis) and fraction of surface silanols, from 
maximum value (triangles, right axis) for the hydroxylated SBA-15 silicas calcined at different 

temperatures.  Fraction of surface silanols calculated using equation 3-9 (circles).  Shaded strip is 
the average fraction of surface silanol according to Zhuravlev’s model of silica6. 
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Figure 34.  The adsorption isotherms by nitrogen (77K, open symbols) and by water (293K, 
closed symbols) for hydroxylated SBA-15 silicas calcined at different temperatures. 

Note : The isotherms above show volume of liquid adsorbate on the y-axis.  The pore volume 
(at p/po=1) by water was consistently lower than that by nitrogen.  It is known from the 
literature, that the adsorption of water (at low p/po) is primarily controlled by the amount of 
accessible silanols rather than by the surface area.  For this reason, the adsorption of water 
can be used to estimate the amount of accessible silanols and not for the surface area 
determination. 
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3.3.5. SBA-15 with chemically grafted hydrophobic TMS groups 

 Hydrophobic SBA-15 silicas were prepared via the reaction of (CH3)3SiN(CH3)2 with 

hydroxylated SBA-15.  As a result of this reaction, polar silanols were replaced (and partially 

screened) by the trimethylsilyl (TMS) groups producing hydrophobic surfaces.  By using the dilute 

solutions of trimethylsilane and limiting the reaction time, a series of silica surfaces with the TMS 

surface coverage ranging from 0.31 to 2.88 TMS group/nm2 was prepared.  Using the cross-

sectional area of TMS groups84 at 0.35 nm2, these values corresponded to ~11-100% of TMS 

surface coverage (by area).  The sample characteristics are summarized in Table 12.  The nitrogen 

and water adsorption isotherms are shown in Figure 35. 

As assessed by nitrogen, the uniform mesoporous structure of parental SBA-15 was 

preserved, however the pore volume, surface area, and pore size showed a natural decrease with 

an increase of the TMS coverage.  The decrease in the pore volume and the average pore size was 

consistent with the attachment of TMS groups on the surface of the pores.  Average thickness (h) 

of the TMS grafted layers was calculated from the pore volume decrease (cm3/g, corrected per 

gram of silica) and the surface area of bare SBA-15 (m2/g) as follows: 

ℎ [݊݉] = 1000 × ∆ܸ/ ௌܵ௜ைଶ 

The thickness values ranged from 0.1 to 0.39 nm for 11 and 100% TMS surface coverage 

respectively.  The value 0.39 nm was in a good agreement with the thickness of a single layer of 

TMS (0.35 nm) demonstrating closely packed monolayer of TMS groups.  The decrease in the 

surface area observed for the TMS silicas was less obvious.  To a certain degree, the decrease in 

the surface area could be attributed to the micropore blockage by the TMS groups.  Although the 

amount of micropores in the hydroxylated SBA-15 was small by volume (Vµ<0.01 cm3/g), in their 

(3-11) 
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presence the surface area of bare silica would be overestimated.  Thus, closure of the micropores 

would result in an apparent reduction of the surface area of the TMS-modified silicas.  As another 

possible reason that complicated the analysis of the surface area, we pointed out the uncertainty of 

the nitrogen cross-section for the modified surfaces.  The value of the cross-sectional area of 

nitrogen for the TMS silicas was probably larger than the standard value 0.162 nm2 which was 

used for the calculations.  On hydrophobic surfaces, the nitrogen cross section is ~20% greater as 

the molecules packed more loosely than on silica.  So, the use of the same value of the nitrogen 

cross-section would result in ~20% underestimation of the surface area of the TMS-silicas. 

 Unlike nitrogen isotherms, the effect of the TMS surface coverage on the water adsorption 

isotherms was dramatic (Figure 35).  The overall shape of the isotherm, the presence of the 

hysteresis loop and its position, and the total amount of the adsorption was strongly influenced by 

the TMS coverage.  For silicas with high TMS coverage (77, 85 and 100%), the adsorption of 

water was low over the entire range of pressures, the isotherms were pressed down to the x-axis 

and no capillary condensation was observed.  For the intermediate and low TMS surface coverage 

(11, 20, 26, and 50%), the capillary condensation was observed yet the amount of water adsorbed 

at the saturation decreased as the surface coverage of the TMS increased.  For the 11% TMS silica, 

water occupied 72% of the available pore volume (by nitrogen), while for the 50% TMS silica 

only 20% of the available pore volume was filled by water at saturation.  Even at saturation the 

amounts of water adsorbed were below the theoretical monolayer. Using 0.106 nm2 for the water 

cross section, the adsorbed amounts at saturation corresponded to ~25-30% of the monolayer 

capacity demonstrating high quality hydrophobic surfaces of the pores. Figure 36 shows the initial 

parts of the water adsorption isotherms for the hydroxylated SBA-15 silicas with different TMS 

coverage.  
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Table 12. Water contact angles and structural parameters for the hydroxylated SBA-15 silica 
modified with TMS. 

 

&TMS grafting density (group/nm2) is shown in parenthesis 

*Pore volume and surface area were calculated per gram of silica.  The corrections were made to account for different 
mass of TMS in the samples 

 

 

TMS 

% 

by area& 

 

V(N2)

*cm3/

g 

 

S(N2)

*m2/g 

 

r(N2) 

nm 

 

CBET

(N2) 

 

rc(H2O) 

nm 

 

rm(H2O) 

nm 

 

t(H2O) 

nm 

 

cosθ 

 

θ 

deg 

0 (0) 0.84 565 2.92 142 2.67 2.70 0.25 0.989±0.009 4-11 

11 (0.31) 0.82 442 2.67 65 2.48 2.73 0.21 0.908±0.009 24-26 

20 (0.56) 0.78 420 2.67 57 2.49 2.92 0.18 0.853±0.009 30-32 

26 (0.75) 0.72 413 2.55 41 2.42 3.19 0.13 0.759±0.009 40-42 

50 (1.43) 0.70 375 2.48 25 2.41 4.45 0.07 0.542±0.009 57-58 

77 (2.22) 0.68 363 2.46 20 
No condensation of water in 

pores 
  

85 (2.45) 0.66 350 2.42 15 __”__   

100 (2.88) 0.62 353 2.35 11 __”__   
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Figure 35.  Nitrogen (Top) and water (Bottom) adsorption isotherms for series of SBA-15 silicas 
hydrophobized with TMS.  The fraction of surface coverage is shown in the legends.  To account 

for different mass of TMS in the samples, the adsorption was corrected per gram of silica. 
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Figure 36.  Water adsorption isotherms (initial parts) for the hydroxylated SBA-15 silicas with 
different TMS coverage. 

  The pore sizes of the TMS-functionalized silicas were found to decrease due to the 

attachment of the TMS groups to silica surface.  This was clearly demonstrated by the nitrogen 

adsorption: the hysteresis shifted to lower pressures in accord with the Kelvin equation (Figure 

35).  On the contrary, the water hysteresis loop was shifting not to the lower but to the higher 

relative pressure.  The magnitude of the shift was higher for silicas with higher TMS surface 
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coverage, i.e. higher hydrophobicity of the pores.  The water contact angles and the structural 

parameters of the TMS silicas used for their calculations are summarized in Table 12.  To evaluate 

the surface composition of the TMS surfaces we used equation 3-9.  Silicas with fractional 

coverage were treated as a mixture of SiOH (θ1=0o) and TMS (θ2=108o)85 functionalities.  The 

surface compositions calculated from the water contact angles by equation 3-9 were compared 

with the surface composition determined by the chemical analysis (TMS grafting density), which 

is shown in Figure 37.  The agreement between the grafting density obtained by chemical analysis  

and the surface compositions calculated using equation 3-9 was remarkable providing further 

validation of the method. 

 
 

Figure 37.  Water contact angles for the hydroxylated SBA-15 modified with TMS groups.  
Dashed line contact angles calculated by equation 3-9. 
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3.3.6 Statistical thickness for water adsorption.   

The knowledge of the statistical thickness of the adsorbed water film as a function of 

relative pressures (t-curve) is critical for the accurate determination of the radius of cores 

(equation 3-7) and, therefore, for the calculations of contact angles described in this work.  In 

the literature, the adsorption of water has been studied extensively and a number of water t-

curves have been reported68-69, 86.  The representative data is compiled in Figure 38.  The water 

t-curves show strong dependence to the nature of silica (water born silica gel68, 86 or pyrogenic 

fumed silica69) and to its preparation conditions (calcination temperature)86.  The data presented 

in Figure 38 serves as a good illustration of the great sensitivity of water adsorption to the 

surface chemistry of silica, specifically, to the extent of its surface hydroxylation, i.e. the number 

of silanol groups.  For example, the statistical thickness decreased more than 10-fold passing 

from fully hydroxylated silica to dehydroxylated silica prepared by calcination at high 

temperatures86. Clearly, for the pore size determination and for the calculations by equation 3-

6 through 3-8, one should use the t-curve obtained for the reference silica with the similar extent 

of hydration (silanol number) to the silica under analysis. 

Unfortunately, most of the water t-curves available in the literature were reported 

without the silanol density data.  The authors68 suggested to use the BET c constants as a 

measure of intensity of the adsorption interactions and reported several water t-curves for the 

adsorbents with different c constants.  The use of the BET c constants, however, seems dubious 

since the adsorption of water involves strong cooperative interactions (hydrogen bonding) and 

hardly fits the BET model. To the best of our knowledge, the t-curves for the surfaces of low 

silanol numbers and for the hydrophobic silicas were not available.  To investigate further and 
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to generate the appropriate t-curves, we have measured the water adsorption for a series of silica 

surfaces with known amount of surface hydroxyls as listed in Table 13. 

Figure 38.  The statistical thickness for water adsorption (t-curves):  (1) Hydroxylated silica 
gel41, (2) Averaged data for silica gels, quartz, rutile, and zirconium silicate68, (3) 

Hydroxylated silica gel Davisil 1000 (this work) (4) Non porous fumed silica67, (5) Averaged 
for 11 silica gels87, (6) Silica gel calcined at 1173K41, (7) Silica gel Davisil 1000 calcined at 

1273K (this work). 
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Table 13. Series of silica surfaces with known amount of surface hydroxyls and surface area measure 
by nitrogen isotherm. Water adsorption was performed on all these surfaces to generate t-curves. 

 

# 
Adsorbent Treatment 

# OH groups 

nm-2 

SBET(N2) 

m2/g 

1 Silica gel Davisil 1000 
Calcined at 1073K, 

1273K 
0.2 41 

2 
Ordered mesoporous silica 

MCM41 
Calcined at 823K 0.8 958 

3 Aerosilogel S120 Calcined at 1073K 2.0 39 

4 Silica gel Davisil 1000 Calcined at 873K 2.3 41 

5 Fumed silica CabOSil M5 As received 2.5 176 

6 
Ordered mesoporous silica 

MCM41 
Hydroxylated 3.1 859 

7 Silica gel Davisil 1000 Hydroxylated 5.0 39 

8 Silica gel Davisil 250 Hydroxylated 5.5 302 

9 Silica gel Davisil 150 Hydroxylated 5.7 292 

10 Silica gel Prodigy Hydroxylated 6.6 326 

11 Silica gel Davisil 100 Hydroxylated 7.5 172 

12 Titania P25 As received 8.0 62 

13 Titania Alfa Aesar As received 8.5 258 

14 Alumina NanoTeck As received 10.5 52 

15 Alumina ASM As received 11.5 103 

16 Silica Gel modified with TMS -NA- ~0 30 

17 Teflon Spheres -NA- ~0 8 

Note: All silica gels (#1, #3, #4, #7, #8, #9, #10, #11) are porous silica gels with various particle 
diameters. # 2 and # 6 are mesoporous silicas. #5 is fumed non-porous silica gel. #12 and #13 are 
Titanium metal oxides. #14 and #15 are aluminum metal oxides. #16 is silica gel modified with 
hydrophobic TMS. #17 is teflon material (Poly(tetrafluoroethylene) 
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As a reference silica, a high-purity grade, wide-pore silica gel Davisil 1000 was chosen.  

Due to the large pore size (rpore~50 nm), capillary condensation of water was not observed up to 

nearly saturation (p/p0~0.99) thus providing a data for the t-curve over wide range of pressures.  

Prior to the measurements, Davisil 1000 was hydroxylated in liquid water at 100oC (373K).  As 

assessed by nitrogen, the hydroxylated Davisil 1000 had surface area 39 m2/g, average pore 

radius ~50 nm, pore volume 0.95 cm3/g, and no micropores (by alpha-s and t-plot methods).  By 

calcination of the hydroxylated Davisil 1000 at selected temperatures (up to 1273K), a range of 

dehydroxylated silicas was prepared and their silanol numbers were determined by the TGA.  

The complete structural and silanol data for the Davisil 1000 silicas prepared at different 

temperatures is given in Table 14. 

Table 14. Structural and silanol data for Davisil 1000 hydroxylated and calcined at different 
temperatures. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

T, K 

(calcination 

temperature) 

S(N2), 

m2/g 

V(N2), 

cm3/g 

r(N2), 

nm 

# OH 

groups 

nm-2 

298 (hydroxylated) 39 1.0 50 5.1 

473 40 1.2 48 5.0 

673 40 1.2 48 3.7 

873 39 1.2 48 1.1 

1073 40 1.2 47 0.4 

1273 26 0.7 31 0.2 
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The t-curves obtained are shown in Figure 39 (hydroxylated silicas), Figure 40 (partially 

dehydroxylated silicas) and Figure 41 (fully dehydroxylated silicas).  Based on the behavior of the 

water isotherms, at least three groups of silica surfaces (and the corresponding t-curves) could be 

identified.  Conditionally, these groups were named (1) fully hydroxylated, (2) partially 

hydroxylated, and (3) rigorously dehydroxylated silica respectively.  The t-curve for the 

hydroxylated silica was fitted by the following equation: 

[݉݊]ு௬ௗ௥௢௫ݐ = 0.1 ∗ ඩ 0.9190.00037 − ݃݋݈ ቀ  ଴ቁ݌݌

The t-curve by equation 3-11 was in good agreement with the data previously reported for the 

hydroxylated silica gel86 (available only up to 0.4 p/p0) and it was used for the calculations of 

the contact angles of fully hydroxylated silica surfaces. 

The second group was formed by the partially hydroxylated silicas prepared at 673-

873K. The water adsorption isotherms for this group of silicas were not reversible: the 

desorption did not coincide with the adsorption demonstrating notable residual adsorption at 

low pressure.  The low pressure hysteresis, a common feature observed for the water adsorption 

on partially dehydroxylated silicas7, was attributed to rehydroxylation – the chemical reaction 

between the adsorbed water and a siloxane group yielding two surface silanols.  Since the 

composition of these surface was modified by the water adsorption measurement, establishing 

the characteristic t-curve for this group of silicas was somewhat problematic.  Here, we offer 

two t-curves (desorption) that were used for the calculations of contact angles for silicas 

prepared at this temperature range: 

[݉݊]଺଻ଷ௄ݐ = 0.217 ∗ ଴݌݌ + 0.02 

(3-12) 

(3-13) 
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[݉݊]଻ଷ௄଼ݐ == 0.122 ∗ ଴݌݌ + 0.007 

The 873K t-curve was used for the calculations of contact angles for bare freshly made SBA-

15. The third group of surfaces was formed by rigorously dehydroxylated silicas that were 

prepared at 1073 and 1073K.  As evidenced by the near absence of the adsorption hysteresis, 

the rehydroxylation of these deeply dehydroxylated surfaces over the course of the water 

adsorption measurements was negligible.  The t-curve for these silicas surfaces were fitted with 

the equation: 

[݉݊]஽௘௛௬ௗ௥௢௫ݐ = 0.074 ∗ ଴݌݌ + 0.004 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 39.  The statistical thickness for water adsorption (t-curves) for hydroxylated silica 
surfaces. See Table 13 for silanol numbers for all silicas. For non-porous fumed silica used in 

ref.67 see ref.67. 

(3-14) 

(3-15) 
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Figure 40.  The statistical thickness for water adsorption (t-curves) for partially 
dehydroxylated silica surfaces. See Table 14 for silanol numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41.  The statistical thickness for water adsorption (t-curves) for fully dehydroxylated 
silica surfaces. See Table 14 for silanol numbers. For silica gel calcined at 1173K used in 

ref.41 see ref.41. 
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To generate the water t-curves for hydrophobic silica surfaces, the reference samples were 

obtained by the reaction of hydroxylated Davisil 1000 with (N,N-dimethylamino)-

trimethylsilane (TMS).  By varying the reaction time, surfaces ranging in the concentration of 

TMS groups were prepared.  As assessed by chemical analysis (%C), the TMS grafting 

densities were 0.75, 1.45, and 2.81 TMS/nm2 for 1 min, 15 min, and 72 h reaction time 

respectively.  Using the cross-sectional area of TMS groups84 at 0.35 nm2, these values 

corresponded to ~25, 50 and 100% surface coverage by TMS (by area).  The water t-curve data 

was fitted with the following equations: 

[݉݊]଴.ଶହ ்ெௌݐ = 0.129 ∗ ଴݌݌ + 0.048 

[݉݊]଴.ହ ்ெௌݐ = 0.037 ∗ ଴݌݌ + 0.032 

[݉݊]ெௌ்ݐ = 0.027 ∗ ௣௣బ + 0.008. 

We noted that for silicas modified with hydrophobic TMS groups, the large fraction of silanols 

was still present on the surface.  For the surfaces with 25, 50%, and 100% TMS coverages (by 

area), respectively ~85, ~71%, and 44% of the original silanols remained intact.  These residual 

silanols are accessible to water molecules and serve as primary adsorption centers on the TMS-

modified silicas88-91. 

3.3.7 Water adsorbed per silanol group 

 To compare the water adsorption on surfaces of different composition (different silanol 

numbers) the amount of water adsorbed per silanol group was calculated and plotted as a function 

of relative pressure for silicas of different degree of hydroxylation (Figure 42). More specifically 

to relate the average number of water molecules adsorbed to the number of surface silanols, the 

(3-16) 

(3-17) 

(3-18) 
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adsorbed amounts of water were plotted vs. the number of OH groups present on the surface.  

Figure 43 shows these plots for two relative water pressures 0.2 and 0.5 p/po respectively.  Figure 

43 also includes the data from works8, 41, 67, which was recalculated using the reported silanol 

numbers. The results in Figure 43 showed that for hydroxylated, dehydroxylated, and hydrophobic 

silicas, the amount of adsorbed water was directly proportional to the number of OH groups present 

on the surface. This was remarkable as these plots suggested a simple, approximately linear 

relationship between the water adsorption and the silanol number regardless of the nature of the 

surface.  At relative pressure 0.2 the ratio between the adsorbed water molecules and the silanol 

groups was ~1:2, while at 0.5 this ratio was close to 1:1, in agreement with the earlier works8, 67-

68.  We point out that these ratios do not reflect the true adsorption stoichiometry, which is more 

complicated according to IR and modeling.  These ratios, however, may be useful as empirical 

rules to evaluate the number of silanols from the water adsorption data or, alternatively, to predict 

the amount of water adsorption for a surface with known silanol number.  It is important to point 

out, however, that the approximately linear relationship between the amount of water adsorbed 

and the number of silanols is valid only up to a certain relative pressure, perhaps up to ~0.5 p/po 

or so.  At higher relative pressures, when the adsorption of water increasingly occur on the 

previously adsorbed molecules and involve cooperative hydrogen bonding and clustering, the 

adsorption become influenced more by the local environment and spacing between the growing 

water clusters than by the number of primary adsorption centers lying underneath (silanols).  The 

difference in the adsorption behavior at high relative pressures was clearly seen upon comparison 

of the water isotherms for TMS-modified silicas.  For silicas with low TMS coverage (<25% by 

area), the adsorption progressively increased with the relative pressure leading to a multilayer 

adsorption and, eventually, capillary condensation of water in pores.  For more hydrophobic 
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surfaces (>50% TMS by area), no capillary condensation was observed and the adsorption at high 

relative pressures was nearly constant indicating that growth of water clusters was inhibited on 

extended hydrophobic surfaces. Considering surface hydrophobicity, it was remarkable however 

that the shape of the initial part of the isotherm was convex (Figure 36) indicating positive 

interactions between water and the surface, thereby suggesting the presence of the hydrophilic 

adsorption centers albeit at a small amount.  We believed that the adsorption centers were residual 

silanol groups.  The water adsorption data suggested that the residual silanols were not fully 

screened by the TMS groups and were available to water vapors. 
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Figure 42.  Water adsorption per silanol group for silicas of different degree of hydroxylation.  
Silica: large pore Davisil 1000, temperature of calcination is shown in the label.  Top – initial 

parts, bottom – full isotherms. 
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Figure 43.  Water adsorption per silanol group as a function of number of silanols for silicas of 
different degree of hydroxylation.  Top – at p/po= 0.2, bottom – at p/po= 0.5 
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3.4 Conclusions 

 

 In this work, we employed the combined vapor adsorption study using nitrogen (77K) 

and water (293K) isotherms to evaluate the water contact angles for a series of ordered 

mesoporous silicas, including MCM-41 and SBA-15, as well as for conventional silica gels.  

Specifically, the water isotherms were used to determine the most probable Kelvin radius of 

menisci (ݎ௠(ܪଶܱ)) during evaporation of liquid water from pores.  Then, ݎ௠(ܪଶܱ) was compared 

with the true radius of pores as assessed from nitrogen isotherms (ݎ௣( ଶܰ)).  For incomplete 

wetting, the radius of meniscus, radius of pore, and statistical film thickness t(H2O) were related 

through the known equation:  ݎ௣( ଶܰ) − (ଶܱܪ)ݐ = (ଶܱܪ)௠ݎ ∙  which was used to calculate ,ߠݏ݋ܿ

the water contact angles (θ>0) in pores. 

 As it was anticipated, the results obtained showed that the silica pore contact angles were 

strongly influenced by the number of the surface silanol groups and, therefore, by the thermal and 

hydration treatments of silicas.  Freshly made MCM-41 and SBA-15 silicas calcined at 550oC 

(standard treatment to remove surfactant from the pores) demonstrated partly dehydroxylated, 

moderately hydrophobic surfaces with the water contact angles θ ~30-40o.  Exposure of these 

silicas to water vapors at room temperature gradually restored the hydroxyl coverage and reduced 

the water contact angles down to ~15-20o.  However, silicas with fully hydrophilic surfaces 

wettable by water were obtained only after the hydroxylation, the hydrothermal treatment by liquid 

water at 100oC (373K) for 24 h.  Thus hydroxylated silicas showed pore surfaces with water 

contact angles θ ~0-12o.  The changes in the pore structure of SBA-15 caused by liquid water were 

attributed to the dissolution/ redistribution of silica resulting in smoothening the pore walls and 

reduction of the micropores74. Depending on the preparation conditions used for the SBA-15 

synthesis74, the reflux in water for 4 h showed ~5-20% decrease in the pore volume and ~10-50% 
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decrease in the surface area compared to bare SBA-15, in good agreement with the results reported 

here. 

 Along with the thermal treatment, chemical substitution of silanols was a powerful method 

to control the pore wetting.  For example, the reactions of SBA-15 with trimethyl-(N,N-

dimethylamino)-silane produced a series of silicas with the increasing pore hydrophobicity as 

characterized by the water contact angles 26, 31, 41, and 62o for 10, 35, 50, and 60% of the TMS 

surface coverage respectively. 

 The proposed method of the contact angles determination relies on the statistical film 

thickness (t-curve) of the adsorbed water.  We noted that the t-curves for water adsorption reported 

in the literature varied significantly and, especially for dehydroxylated and hydrophobic surfaces, 

were scarce or unknown.  To address this issue, the water t-curves were measured for a series of 

model wide-pore silicas with known silanol content covering the wide range of silanol coverage.  

The raw data and the equations for the t-curves on hydroxylated, dehydroxylated, and hydrophobic 

TMS silicas were reported providing the reference data necessary for the quantitative analysis of 

water adsorption. 
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Chapter 4: Fluorinated Metal Phthalocyanine Encapsulated in Metal Oxides 

4.1 Introduction 

 

Phthalocyanines (Pcs) are an interesting class of molecules due to their remarkable 

electronic and physicochemical characteristics, their ability to be organized into different 

condensed systems, and their numerous applications as a functional material (dyes, gas sensors, 

catalysts, optoelectronic devices)92-95. Phthalocyanines are planar aromatic macrocycles 

constituted by four isoindole units linked together through azo nitrogen atoms. Pcs are intensely 

colored blue-green heterocyclic compounds and are structurally similar to porphyrins and their 

useful properties are attributed to their efficient electron transfer abilities. Pcs have been 

extensively studied in industry and academia, in a variety of applications ranging from 

conventional dyes to catalysis, coatings for read/write CD-ROM's and as anti-cancer agents92-93, 

96. The majority of applications use the metal-substituted form of the Pc molecule. Figure 44 shows 

the structure of metal free and metallo phthalocyanine (MPc) as well as the numbering scheme 

traditionally used for their nomenclature97. The hydrogen atoms of the central cavity can be 

replaced by more than 70 different elements, generating the metallophthalocyanines (MPcs)98.  

 

 

 

 

 

 

 

Figure 44.  a) Free-base phthalocyanine b) metallophthalocyanine. Adapted from ref.97. 
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MPcs are very attractive as catalysts due to their structural analogy with porphyrin 

complexes (catalytic properties of metalloporphyrins has been well studied) and due to the 

convenience of MPcs in terms of cost and direct preparation on a large scale. Porphyrin complexes 

are widely encountered in  nature in the active sites of enzymes responsible for catalytic aerobic 

oxidations, reduction and transport of dioxygen, and destruction of peroxides. Figure 45 compares 

porphyrin and phthalocyanine complexes highlighting the structural analogy92.  

 

Synthetic porphyrin complexes 
 

Phthalocyanine metal complexes 

Costly preparation not available in large 
amounts 

Readily accessible in a large scale (worldwide 
annual production > 80000 t), economical, 
stable 

Too expensive for large scale industrial 
applications 

Viable candidates for industrial catalysis 

 
Figure 45.  Structure of porphyrin and phthalocyanine complexes. Adapted from ref.92. 

 

The catalytic properties of MPcs depend on the metal and complex structures and can be 

further tuned by appropriate structural modifications92.  Major modifications of the Pc structure 

performed by changing the central metal atom and/or the axial coordination ligands and peripheral 

modifications. Figure 46 illustrates the numbering scheme widely used to demonstrate substituents 

positions on MPc. 
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Figure 46. Numbering scheme and labeling of outer-ring positions (α, β) of the phthalocyanine 
molecule core. Note the 16 C-H bonds present in an unsubstituted molecule. 

 Adapted from ref.94, 98. 
 

All 16 sites (16 C-H bonds, 8α and 8β) in a Pc have been subjected to a variety of 

modifications resulting in Pcs with dramatically improved physical and chemical properties. 

Peripheral substituents play a key role in the catalytic chemistry of MPcs and hence peripheral 

substituents have been used to tune the steric and electronic features of phthalocyanines, to yield 

both electron-rich and electron-poor species, the latter including the important class of halogenated 

phthalocyanines95. Additionally, the substituents play a critical role in the solubility of the MPcs. 

Addition of fluorinated substituents into the MPc molecule increases their stability to nucleophilic, 

electrophilic, and radical attacks. In addition to MPcF16 (M = Ru,99Fe,100 Co, and Cu,101), all-

fluorinated phthalocyanines bearing perfluoroalkyl groups such as ZnPcF8(i-C3F7)8
95 and 

CoPcF8(i-C3F7)8
102 have been prepared and reported92. A change in the central metal will impact 

the catalytic activity and electronic, spectroscopic, and physical properties of the MPcs. The most 

interesting and potential MPcs for catalysis92 contain Fe, Co, Cu, Ru, Mn, Cr, Al, and Zn. A wide 
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range of several transformations including reduction, preparation of nitrogen-containing 

compounds, and various C−C bond formation reactions can be efficiently catalyzed by MPcs. The 

catalytic properties of MPcs can be used in large-scale processes for the preparation of bulk 

chemicals and synthesis of elaborated fine chemicals92. The focus of Dr.Gorun and his 

collaborators’ work94, 98 has been the replacement of outer-ring hydrogens with fluorine and i-C3F7 

groups to increase the relative stability and catalytic activity of MPcs.  

Homogeneous catalysts have some attractive properties, such as high selectivity and 

accessibility to all catalytically active sites. However, the use of homogeneous catalysts is being 

challenged because of inherent problems, such as corrosion, toxicity, difficulty in catalyst handling 

and separation from the reaction system, high cost, and the creation of solid waste. A thorough 

review of homogenous and heterogeneous catalytic reactions using various MPcs has been 

published by Sorokin92. In general, unsubstituted MPcs have been often used as catalysts 

(homogeneous) in a variety of reactions. Due to their poor solubility in common organic solvents, 

the solubility of these MPcs under reaction conditions has always remained an issue.  

One approach is to immobilize the homogeneous catalyst on an insoluble support92, 103, 

forming a heterogeneous catalyst. Heterogeneous catalysts are highly preferred due to their easy 

separation from the reaction mixture and their reuse for successive reactions provided that catalysts 

retain their catalytic properties104. In general organic polymers and inorganic materials are used as 

supports for the catalyst molecule. However the stability of the support under reaction conditions, 

non-involvement of the support itself in the reaction, capacity of the support to introduce 

functionality for covalent anchoring, availability and cost of the support are various considerations.  

Porous materials with high surface area e.g., mesoporous silicas generally provide a good catalyst 

loading and a possibility to use confinement effects i.e entrapment of the catalyst molecule inside 
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the support. The distribution of the active sites (MPc) on the surface of the adsorbent (solid 

support), accessibility to the active site and the state of the adsorbent-MPc complex are heavily 

influenced by the method or procedure of preparation of these supported catalysts.  

 In the thesis completed by Graffius98 a systematic study of the solution adsorption was 

performed on several substrates, including : (1) Zinc phthalocyanines with an increasingly 

fluorinated periphery and electron deficiency, and (2) F64PcM where the central metal was changed 

from Zn to Cu, Co, Ru, Fe, and VO. Adsorption of each series from acetone and methylene chloride 

was compared on several unique adsorbents. Solution adsorption of phthalocyanines was 

demonstrated as an effective means of producing uniform catalytically active solid surfaces. The 

end-goal of the research performed by Graffius98 work was to obtain stable phthalocyanine thin 

films for use as recyclable, solid-supported heterogeneous catalysts.  

In this effort, we have undertaken a systematic study to explore the possibility of preparing 

a supported catalyst material i.e loading fluorinated metal phthalocyanines onto metal oxide 

surfaces by two other techniques in addition to solution adsorption demonstrated by Graffius98. 

Techniques or procedures that have been used to immobilize MPcs include: i) physical adsorption 

(from solution) onto metal oxide surface, ii) deposition by pore filling and encapsulation and iii) 

mesopore entrapment or confinement. The MPcs are loaded on to metal oxides with an aim to: a) 

maximize the surface area of the Pcs by distributing it over the support, b) immobilize the Pcs so 

that they do not leach into the solution environment, c) improve the thermal stability of the Pcs 

and d) attempt to achieve single-site catalysis. All the immobilization techniques were carried out 

with F64PcZn as the model MPc, acetone as the immobilization solvent and silica or alumina as 

adsorbents (solid support).  
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An understanding of gas adsorption mechanisms on metal phthalocyanines (MPcs)105 is 

essential for their practical application in biological processes, gas sensing, and catalysis. In this 

work, the surface characteristics were probed by performing nitrogen and water adsorption on the 

free-form MPcs (without immobilization on solid support) and characterization of their physical 

properties. Additionally probing into surface characteristics of MPcs facilitate the understanding 

of these complexes interact with or adsorb onto metal oxide pores.  

4.2 Experimental 

4.2.1 Chemicals  

All solvents and chemicals for the synthesis of the phthalocyanines were purchased from 

Thermo Fisher Scientific (Waltham, MA). Commercially available phthalocyanines were 

purchased from Sigma-Aldrich (St. Louis, MO).  

4.2.2 Metal oxides 

 Davisil 150 Silica (Pore Diameter: 150Å, Pore Volume: 0.5cc/g) was obtained from Grace 

(Columbia, MD). The pore structure of Davisil 150 was assessed by nitrogen adsorption (77 K) 

using a Quantachrome Autosorb-1 analyzer (Boynton Beach, FL, USA). Colloidal alumina 

(Aluminum oxide, 20% in H2O, colloidal dispersion) and mesoporous alumina (activated alumina, 

basic, Pore Diameter: 58Å) were obtained from Alfa Aesar (Tewksbury, MA).  

4.2.3 Synthesis of perfluorinated phthalocyanines 

Synthesis of the perfluorinated phthalonitrile precursor and phthalocyanines was completed by 

Erik Carrion from the Gorun research group at Seton Hall using a previously developed procedure 

(Figure 47) 94, 96, 106. Briefly, the fluorinated precursor, tetrafluorophthalonitrile, (A) was purchased 
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from TCI Co., Ltd. Perfluoro (4,5-diisopropyl)phthalonitrile (B) was synthesized from A by 

nucleophilic substitution as described in the literature106. The fluorinated phthalonitriles (A, B) at 

proper mole ratios were melted with a metal acetate using a microwave at 180 °C to yield a blue-

green solid106-107. Synthesis using only A yielded F16PcM. Synthesis using only B yielded F64PcM. 

Synthesis of fluorinated phthalocyanines using mixed starting materials could yield, in principle, 

four additional organic scaffolds: F28PcM, F40PcM (cis as the major) and F52PcM. 

Chromatographic separation of the products yielded purified blue-green materials. The structure 

and purity of the material was confirmed by 13C and 19F NMR spectra107. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47. General synthetic scheme for the preparation of fluorinated phthalocyanines. Varying 
the ratios of phthalonitrile reactants, A and B, preferentially targets production of one of the five 

products shown. A reaction with only A will produce F16PcZn. A reaction with only B will 
produce F64PcZn. Ratios for A to B of 3:1, 1:1, and 1:3 are used for the synthesis of F28PcZn, 

F40PcZn, F52PcZn, respectively. 

 In this work, H16PcZn, F16PcZn and F64PcZn are the three metal fluorinated 

phthalocyanines that has been used for all studies. 



 

116 
 

4.2.4 Deposition by pore filling 

The required amount of components (MPcs in the work) are introduced in the volume 

corresponding to the pore volume of the solid support. This method of deposition is suitable for 

species which interact weakly with the adsorbent surface and for deposition of quantities exceeding 

the number of adsorption sites on the surface. For example, one gram of silica (Davisil 150, pore 

volume: 0.5 cc/g) was weighed into a vial. F64PcZn (0.25 ml) phthalocyanine stock solution (1 

mg/mL in acetone) was added slowly and let to sit for 20 minutes. Again another 0.25 ml of 

F64PcZn phthalocyanine stock solution was added slowly and let to sit for 20 minutes. The sample 

was dried overnight at 50°C. The amount of stock solution (0.5 mL) added was equivalent to the 

pore volume of the material. Figure 48 illustrates the method of deposition by pore filling. 

 

 

 

Figure 48. Deposition by pore filling method. 

4.2.4.1 Encapsulation procedure 

Encapsulated materials can exhibit a higher stability to temperature and solvent compared 

to non-encapsulated materials. The silica loaded with F64PcZn by pore filling technique above was 

encapsulated with alumina. A few grams (~0.5 g) of F64PcZn loaded silica was weighed into a vial 

and 5mL of water (adjusted to pH 4) was added. An aliquot of colloidal alumina (pH = 4) dispersed 

in water (2mL of colloidal alumina in 5mL of water) was added slowly to the above silica mixture 

in water. The solution was vortexed and let to sit for at least 20 minutes. Excess alumina was 

removed (from supernatant) and the mixture was washed several times with water (~20 mL). The 

Drying 

(12 hrs at 
50°C) 

F64PcZn 

solution 
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sample was dried at 200°C for 5 hours. The colloidal alumina which is positively charged 

assembles around the silica particle which is negatively charged due to electrostatic attraction 

completes the encapsulation procedure. Figure 49 illustrates the procedure of encapsulating 

F64PcZn deposited silica with colloidal alumina. 

 

Figure 49. Encapsulation of F64PcZn deposited silica using colloidal alumina. 

4.2.5 Mesopore entrapment 

In the mesopore entrapment procedure, colloidal alumina was mixed with F64PcZn solution 

and the alumina was precipitated under certain conditions (high pH using sodium hydroxide) to 

obtain mesoporous alumina with F64PcZn entrapped inside the mesopores. An aliquot (5 mL) of 

F64PcZn phthalocyanine stock solution (1mg/mL) was added to an aliquot of colloidal alumina 

dispersed in water (2mL of colloidal alumina in 5mL/10mL of water). The mixture was mixed 

well, and vortexed. The pH was adjusted (by adding 200µL of 2M sodium hydroxide) to precipitate 

the colloidal alumina and mixed well. The sample mixture was centrifuged (4000 rpm for 10 min) 
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and the clear supernatant was removed. The sample was dried at 70°C for 12 hours. Figure 50 

illustrates the synthesis of mesoporous alumina with F64PcZn entrapped. 

 

Figure 50. Mesopore entrapment of F64PcZn using alumina. 

4.2.6 Solution adsorption 

In this technique of deposition by adsorption from excess solution, deposition of active 

species is less than quantitative and the quantity deposited depends on the solid/liquid ratio. 

Deposition is slow requiring several hours or days, but allows the distribution of species to be very 

well controlled. In the previous work by Graffius98 the Langmuir isotherm model56 was employed 

to describe the sorption behavior of phthalocyanines on surfaces. The Langmuir model is based on 

assumptions that monolayer coverage of adsorbate occurs over homogeneous sites and that a 

saturation point is reached when no further adsorption can occur98. An aliquot of colloidal alumina 

(2mL) was dispersed in 10mL of water, mixed well and vortexed. pH was adjusted (by adding 

200µL of 2M sodium hydroxide) to precipitate the colloidal alumina and mixed well. The sample 

mixture was centrifuged (4000 rpm for 10 minutes) and the clear supernatant was removed. The 
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sample was dried at 200°C for 12 hours to obtain bare mesoporous alumina. The obtained 

mesoporous alumina were immersed fully in phthalocyanine solution (acetone) to facilitate 

adsorption. Few milligrams (50mg) of mesoporous alumina was weighed into a vial. 4 ml of 

1mg/mL of F64PcZn phthalocyanine stock solution was added and let to sit for 2 days. After 2 

days, supernatant was removed. The sample was dried overnight at 60°C. UV/Vis analysis samples 

were collected by decanting to avoid evaporation during a filtration process. The dye concentration 

was determined on a Varian Cary 300 (Palo Alto, CA) double beam UV/Vis spectrometer by 

measuring absorbance maximum for the dye. The quantity of adsorption at equilibrium, Γ 

(μmol/m2), was calculated by the equation98:  

߁ =  ൬(ܥ଴ − ܹܸ(௘ܥ ൰ . 1ܵ஻ா் 

where C0 and Ce were the liquid phase concentrations of Pc at initial and equilibrium conditions, 

respectively.  V (L) was the volume of the Pc solution and W (g) was the mass of dry sorbent used.  

SBET (m2/g) is the surface area of the adsorbent as measured by nitrogen adsorption.  Figure 51 

illustrates the solution adsorption of F64PcZn on mesoporous alumina. 

Figure 51. Solution adsorption of F64PcZn on mesoporous alumina 

(4-1) 
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4.2.7 Solid state characterization 

Reflectance UV/Vis/NIR of the resulting solids was obtained on a Varian Cary 500 (Palo 

Alto, CA) UV/Vis/NIR spectrometer fit with a reflectance accessory DRA-CA-5500 (Labsphere, 

North Sutton, NH, USA). The reflectance data collected in the adsorbed solid state was used to 

compare the presence or absence of Pc on the solid support and also to qualitatively demonstrate 

the decrease of Pc during thermal stability studies. Samples were tightly packed into a custom built 

quartz analysis cell. As we were using large, non-uniform and porous materials, compensation for 

adsorption and scattering of the signal was required. Kubelka-Munk108-109 transformations were 

applied to the reflectance data as follows:  

݂(ܴ) = (1 − ܴ)ଶ2ܴ =  ݏ݇ 

where R is the absolute reflectance of the sampled layer, k is the molar absorption coefficient and 

s is the scattering coefficient. The SiO2 materials were more UV/Vis transparent than Al2O3, 

limiting the linear range (Γ) under which the analysis could be used98. 

4.2.8 Calculation of phthalocyanine dimensions and theoretical monolayer coverage98  

 The dimensions of F16PcZn and F64PcZn were calculated using a combination of 

ACD(Toronto, ON, Canada) and Mercury Software (Cambridge, UK) to obtain the cross-sectional 

area (ω). From the dimensions, a square/rectangular shape was assumed to obtain Γmax (maximum 

monolayer adsorption capacity in μmol/m2) of a tightly packed monolayer. Due to the generally 

planar shape of the molecule, the Γmax for densely packed molecules would be quite different for 

the vertical (edge on) versus the horizontal orientation (face on), as shown in Table 1598 and Figure 

5298. 

 

(4-2) 



 

121 
 

Table 15. Cross-sectional  area  (ω)  and  theoretical  monolayer  coverage  (Γmax)  for  
densely packed  fully symmetrical zinc phthalocyanines: F16PcZn and F64PcZn 

 

 Edge On Face On 

 ω (Å2/molecule)      Γmax (µmol/m2) ω (Å2/molecule)      Γmax (µmol/m2) 

F16PcZn 51 3.26 332 0.500 

F64PcZn 167 0.994 437 0.381 

 

 
 

 
 

 

 

 

 

 

 

 

 

Figure 52. 3D Space-Filling Model of F64PcZn at the ‘face on’ and ‘edge on’ orientation, 
demonstrating the difference in cross-section area at for each possible orientation.  

4.2.9 Nitrogen adsorption isotherms 

The adsorption-desorption isotherms of nitrogen (77K) were obtained with a Quantachrome 

Autosorb-1 Analyzer (Boynton Beach, FL, USA) and with a Micromeritics ASAP Analyzer 

(Norcross, GA, USA).  The isotherms were measured over a relative pressure p/po range from 

~0.005 to 0.995 and, on average, consisted of 80-130 adsorption-desorption points.  Prior to the 
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adsorption measurements, the Pcs were outgassed at 200°C overnight.   Specific surface areas were 

calculated via the BET method using the range of relative pressure from ~0.06 to 0.27 and the 

value for nitrogen cross-section 0.162 nm2.  The pore size distribution and the average (most 

probable) pore radius ݎ௣( ଶܰ) was calculated by the BJH method from the desorption branch of the 

isotherm. Complete wetting of the pores by liquid nitrogen (cos θ = 1) was assumed.  All the 

calculations were performed using vendor’s (Quantachrome Instruments) software. The amount 

of nitrogen adsorbed (Γ) expressed in µmole/m2 is converted to number of nitrogen molecules per 

MPc molecule as per equation (4-3). 

݈݁ݑ݈ܿ݁݋݉ ܥܲܯ ݎ݁݌ ݏ݈݁ݑ݈ܿ݁݋݉ ݁ݐܾܽݎ݋ݏ݀ܽ ݂݋ ݎܾ݁݉ݑܰ = ( Γ ∗ 10ି଺) ∗ ( ߱ ∗ 10ିଶ଴) ∗ ஺ܰ 

 

where Γ is amount of nitrogen adsorbed in expressed in µmole/m2, ߱ is cross-sectional  area of 

the MPc molecule in Å2/molecule  and ஺ܰ is the Avogadro’s constant. 

4.2.10 Water adsorption isotherms  

The adsorption-desorption isotherms of water (293K) were obtained using a Quantachrome 

Autosorb-1 Analyzer (Boynton Beach, FL, USA).  The isotherms were measured over a relative 

pressure p/po range from ~0.02 to 0.99 and consisted of 78 adsorption-desorption points.  Unless 

specified otherwise, Pcs were outgassed at 100°C overnight. The thickness of the adsorbed films 

was calculated by equation (3-3). The value for water cross-section 0.105 nm2. At the temperature 

of the experiment 20°C, surface tension of water was 72.8 mJ/m2 and its molar volume is 18.05 

cm3/mol. The contact angles were calculated by equation 2-19 using the most probable values of 

rm(H2O) and rp(N2). The amount of water adsorbed (Γ) expressed in µmole/m2 is converted to 

number of water molecules per MPc molecule using equation (4-3). 

(4-3)
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4.2.11 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) was performed using a TA Instruments 

Thermogravimetric Analyzer operated between room temperature and 1000°C at a heating rate 

10°C/min with ambient (air exposure) or a flow of dry nitrogen (20 cm3/min). Stability of the 

adsorbed phthalocyanines was assessed by heating materials to set temperatures (200-400°C) and 

analyzing the TGA weight loss and solid state spectra. 

4.3 Results and Discussions 

The Zn containing Pcs have been utilized widely in developing electro and photo catalysts, 

thin films, infrared sensors, photovoltaic cells, light-emitting diodes, and field-effect transistors. 

The planar Pcs are known to aggregate through π−π interactions, there by hindering solubility and 

accessibility to the central metal ion which is believed to be important for catalytic activity. 

As demonstrated in the work by Patel94 and references there in the new class of 

perfluorometalphthalocyanines (F64PcZn) exhibit enhanced solubility and favorable electronic 

structure over planar Pcs. The replacement of sixteen aromatic C-H bonds of planar H16Pc by 

aromatic C-F bonds (F16Pc) enhances the thermal stability of Pcs, but did not improve the chemical 

stability due to nucleophilic attack94. In the research by Patel94 the aggregation propensity and 

chemical stability issues of the thermally stable F16Pc have been eliminated via replacement of 

eight peripheral aromatic C-F substituents with bulky aliphatic iso perfluoro groups (i-C3F7) 

resulting in F64Pc class. In the work by Graffius98, the solution adsorption and thermal stability of 

phthalocyanines: F16PcZn and F64PcZn in addition to other series of MPcs was studied on a variety 

of surfaces using acetone and methylene chloride as solvent. Graffius98 reported strong, 

irreversible adsorption of these molecules on the surface of Al2O3 and aminated silicas. Graffius98 

also indicated that adsorption was dominated by Lewis acid-base interactions between the electron 
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deficient phthalocyanine metal center and basic moieties on these surfaces. Graffius98  proposed a 

mechanism in which the phthalocyanine adsorption occurred face-down by axial coordination of 

the electron deficient central metal to the electron donating surfaces. To facilitate the use of MPcs 

in the field of catalysis immobilization of MPcs onto solid support is very crucial and the choice 

of solid support, solvent and method of immobilization will decide the surface coverage. Based on 

the report by Graffius98 alumina is selected as one choice of adsorbent to immobilize MPcs using 

various techniques. Even though aminated silica showed strong irreversible adsorption in the work 

by Graffius98, degradation (at ~150- 200°C) of the solid support (aminated silica) was observed 

during our preliminary thermal stability experiments and hence aminated silica was not further 

pursued as an adsorbent of choice.  Even though acetone would coordinate with the Pc resulting 

in steric hindrance and in direct competition to the adsorption of Pcs to the adsorbent surface, 

acetone was preferred over methylene chloride due to the higher solubility (5-10 times) of 

fluorinated Zinc Pcs in acetone. Graffius98 reported that based upon the surface concentration near 

to that of a monolayer and evidence of edge-to-edge packing, that the F64PcZn adsorbed as a 

uniform, closely packed monolayer oriented face-on. Hence as a model MPc, F64PcZn is used in 

the immobilization experiments. The success of a heterogeneous catalyst (MPcs immobilized on 

solid support through various techniques) is evaluated by surface coverage, thermal stability, 

solvent stability (minimal or no leaching into solvent) and catalytic activity. 

4.3.1 Surface coverage through various immobilization procedures 

Table 16 lists a typical monolayer surface coverage (µmol/m2) of fluorinated zinc 

phthalocyanine (F64PcZn) on metal oxide surfaces obtained using the three techniques used in this 

work. The material obtained using these techniques were tested for improved thermal stability and 

solvent stability (stability to leaching in organic solvents) as discussed in following sections. 
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Solution adsorption on mesoporous alumina provided the highest surface coverage, however there 

is poor solvent stability for the material obtained using this approach i.e the Pcs leach back into 

acetone almost immediately. Even though the mesopore entrapment technique did not offer any 

improved thermal stability, the solvent stability is much higher compared to the other two 

approaches. Deposition by pore filling followed by encapsulation offered the best improved 

thermal stability for few hours at 300C°.  

Table 16. Surface coverage of final material obtained by various immobilization techniques.  For 
monolayer coverage of F64PcZn (Face On) cross sectional area is 437 Å2/molecule i.e 0.381 

μmol/m2 

 

 

 

 

4.3.2 Solid state UV spectra demonstrating mesopore entrapment  

 The presence or absence of the F64PcZn within the mesopore structure of alumina is 

verified by the solid state UV reflectance spectra as shown in Figure 53. When the colloidal 

alumina precipitates and aggregates together to form larger particles, the phthalocyanine molecules 

gets entrapped resulting in mesoporous alumina with entrapped MPcs. General broadening and 

splitting of the Q band (600- 800 nm region) possibly indicates evidence of multilayer formation 

and aggregation98.  

 Additionally MPcs entrapped in mesoporous alumina exhibited catalytic activity. Figure 

54 show three samples of mesoporous alumina with varying surface coverage of F64PcZn showing 

catalytic activity during photo degradation studies. In general the catalytic activity is very low, 

Technique and Metal oxide Surface Coverage, µmol/m2 

Adsorption by Pore filling on Silica 0.01 

Mesopore (Alumina) Entrapment 0.01 

Solution adsorption on  
mesoporous alumina 0.17 
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however the maximum obtainable surface coverage for this material is only 0.008 µmol/m2
 which 

is only 2 % of the monolayer coverage (face on orientation). The true catalytic activity can be 

understood only with the materials that has improved surface coverage. The challenges in 

obtaining  higher surface coverage necessitates the study of bare (i.e not loaded on any solid 

support) MPcs and use that information to understand how these MPc interact with metal oxide 

pores. 

Figure 53. Comparison of the reflectance spectra for the entrapment of F64PcZn inside 
mesoporous alumina and bare alumina (no F64PcZn) 
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Figure 54. Mesoporous alumina with entrapped phthalocyanines showing catalytic activity 

4.3.3 Encapsulation as a means to improve thermal stability 

Deposition by pore filling technique alone did not improve thermal and solvent stability. However 

encapsulation of the material obtained by pore filling led to a final material with improved thermal 

stability. The F64PcZn loaded on to silica and encapsulated with colloidal alumina was stable at 

300°C for at least 5 hours while the non-encapsulated material lost all the MPc when exposed to 

300°C as shown in Figure 55. The resulting material possesses improved solvent stability, i.e 

leached into acetone at a slower rate as the compared with the material without encapsulation. The 

interaction of the MPcs with the metal oxide surfaces needs to be explored to understand the reason 

for low surface coverage and this in requires an understanding of how these bare MPcs interact or 

aggregate or stack. 

.  
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Figure 55. Comparison of the reflected spectra alumina encapsulated F64PcZn (deposited on 
silica) and non-encapsulated F64PcZn (deposited on silica) 

4.3.4 Adsorption measurements on bare fluorinated phthalocyanines 

 The term bare Pcs used in the following discussion refers to fluorinated Zn Pcs that are 

not immobilized on any adsorbents. The process of identifying a suitable adsorbent and a suitable 

immobilization technique to obtain MPc based heterogeneous catalyst support. This method was 

challenged by the behavior of Pcs with regards to self-aggregation and Pc interaction with metal 

oxide surfaces. To understand this behavior we measured the surface characteristics or properties 

of these bare Pcs (H16PcZn, F16PcZn and F64PcZn) by studying a) nitrogen adsorption110 to 

measure surface area and size of aggregates. b) water adsorption to understand the hydrophobicity 

of these Pcs and their possible behavior when exposed reaction conditions in aqueous environment.  
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4.3.4.1 Nitrogen adsorption measurements 

 The bare Pcs (H16PcZn, F16PcZn and F64PcZn) presented isotherms of the same type as 

assessed by nitrogen. However, the surface area showed a decrease with an increase of the 

fluorination.  Figure 56 shows the nitrogen adsorption-desorption data on the three bare Pcs.  Table 

17 shows the structural parameters for the three Pcs obtained using nitrogen adsorption 

measurements. The BET-nitrogen surface areas are in the range 16.9–40.8 m2/g, the lowest area 

being obtained with the F64PcZn and the highest area with H16PcZn. All the nitrogen isotherms 

exhibit some level of hysteresis down to low pressure, the low pressure hysteresis especially being 

pronounced with F64PcZn (low pressure hysteresis is higher for F64PcZn and lower for H16PcZn). 

Irrespective of the presence of hysteresis, all the nitrogen isotherms can be classified as Type II. 

The presence of low pressure hysteresis in the fluorinated Pcs can be associated with formation of 

some type of aggregates or stacking. The maximum intermolecular distance between any two Pc  

molecule in Å (Table 17) as calculated from the theoretical 3D space filling model with face on 

orientation is not significantly different from the non-fluorinated and fluorinated Pcs (relative 

difference is only between 2 to 17%). However the diameter of a Pc molecule (aggregate) as 

determined from the calculation using experimental nitrogen adsorption data is significantly 

different for the non-fluorinated and fluorinated Pcs (relative difference is between 39 to 109%). 

This suggests that the Pcs actually exists as aggregates in bulk and not as a single molecule and 

this aggregation will eventually impact the surface properties of these Pcs i.e adsorption of species 

on to Pcs and also adsorption of Pcs on to an adsorbent surface. This comparison of existence of 

these Pcs as a single molecule vs aggregate is illustrated as a cartoon in Figure 57.  
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Figure 56. Nitrogen adsorption-desorption isotherm of three bare fluorinated Pcs. Inset shows 
the BET region for surface area calculation. 

 

Table 17. Structural parameters of bare Pcs from nitrogen adsorption isotherm. Density was 
obtained from crystal structure data94.  Maximum intermolecular distance was obtained for each 

Pc using 3D space filling model at  face on orientation98.  

Sample 
Name 

Surface 
Area, 

m
2
/g 

Density 
(Calculated) 

g/cm
3
 

Maximum 
Intermolecular 

Distance or 
Diameter (Å) 

% 
Difference 
(H16PcZn 

as 
reference) 

Diameter 
(calculated) 

Å 

% 
Difference 
(H16PcZn 

as 
reference) 

H
16

PcZn 41 1.62 35.6 0 900 0 

F
16

PcZn 24 1.97 36.4 ~2 1250 ~39 

F
64

PcZn 17 1.89 41.8 ~17 1880 ~109 
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Figure 57. Cartoon comparing Pcs as a single molecule or an aggregate. For simplicity a Pc 
molecule in face on orientations is considered as a sphere. 

 

 If Pcs exists as aggregates in bulk solid, the size of aggregates as indicated in Table 17 

can be stated as F64PcZn > F16PcZn> H16PcZn. It can be further inferred that higher the size of the 

aggregates, higher the distance or separation between two molecules. One primary goal to 

incorporate bulky substituents on the periphery of Pc molecules is to provide a means to modify 

stacking aggregation which in turn is believed to improve electronic and optical properties of the 

Pcs. Dwyer, Vander Valk, Caltado, Demianicz and Kelty111 using molecular dynamics simulations 

investigated equilibrium stacking and orientational intermolecular interactions of this novel class 

of modified phthalocyanines. Dwyer et al111 observed significant stacking H16PcZn and F16PcZn 

molecules and they attribute this to the lack of bulky peripheral substituents that would induce 

steric hindrance as in the case of F64PcZn(less or no stacking). Given the same number of 

molecules, Pc that shows significant stacking aggregations would aggregate in a much tighter 
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fashion leading to aggregates with lesser size (diameter) i.e higher the stacking aggregation 

tendency, lower the size of the aggregate. This finding (stacking aggregation order: F64PcZn << 

F16PcZn< H16PcZn) by Dwyer et al111 is in agreement with the findings in this work (calculated 

diameter order : F64PcZn >>F16PcZn >H16PcZn) using nitrogen adsorption data.   

4.3.4.2 Water adsorption measurements 

 As assessed by water, the fluorinated and non-fluorinated bare Pcs (H16PcZn, F16PcZn and 

F64PcZn) presented different isotherms. Figure 58 shows the water adsorption data on the three 

bare Pcs.  Amount of water adsorbed is significantly lower in the non-fluorinated Pc (H16PcZn) as 

compared to the two fluorinated Pcs (F16PcZn and F64PcZn). This seems to defy the common 

perception about water adsorption on fluorinated surfaces i.e fluorinated silica would be more 

hydrophobic and hence water adsorption would be low.  

 

 

 

 

 

 

 

 

 

 

Figure 58. Water adsorption isotherm of three bare fluorinated Pcs.  
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 To obtain further understanding, we can compare the water adsorption on these bare Pcs 

with our model silica surfaces (hydrophilic and hydrophobic). Figure 59 shows the water 

adsorption on the three bare Pcs in comparison with hydroxylated silica. Interestingly, the 

fluorinated Pcs (F16PcZn and F64PcZn) shows significantly higher water adsorption as compared 

to hydroxylated silica and the non-fluorinated Pc (H16PcZn) shows low water adsorption than the 

hydroxylated silica.  

 

  

 

 

 

 

 

 

 

 

Figure 59. Water adsorption isotherm of three bare fluorinated Pcs in comparison with 
hydroxylated silica   

Figure 60 shows the water adsorption on H16PcZn in comparison with hydroxylated, 

dehydroxylated and hydrophobic silica. Again interestingly, the water adsorption on H16PcZn is 

very comparable to water adsorption on dehydroxylated and hydrophobic silica. In an effort to 

understand this behavior of Pcs with respect to water adsorption, the electronic deficiency of the 

metal (Zn) center in the three Pcs were compared and it follows as: H16PcZn < < F16PcZn < 
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F64PcZn. Due to the highly electron withdrawing tendency of fluorine atoms, the central metal 

becomes increasingly electron deficient, as the fluorination increases.  When the highly electron 

deficient metal center in F64PcZn and F16PcZn as compared to H16PcZn comes in contact with 

water, the metal is thirsty for electrons and hence tends to adsorb more water. Hence, the amount 

of water adsorbed by three different Pcs can be correlated to the electron deficiency of the metal 

center in the Pcs. 

 

 

 

 

 

 

   
 

 

Figure 60. Water adsorption isotherm of bare H16PcZn in comparison with hydroxylated silica, 
dehydroxylated and hydrophobic silica.  

4.3.4.3 Nitrogen and Water molecules per MPc 

In an effort to understand how the adsorbates (water or nitrogen) interact with MPcs or vice versa, 

the number of nitrogen and water molecules per MPc were calculated. Table 18 provides the 

number of nitrogen and water molecules per MPc at p/po = 0.3 for all the three Pcs. The number 

of nitrogen molecules per MPc is not that significantly different for the three Pcs while the number 
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of water molecules per MPc is significantly different for the three Pcs . It would be expected that 

with increase in perfluoro groups, hydrophobicity of Pc would increase resulting in decreased 

affinity to water. However, the number of water molecules per MPc increases significantly as 

fluorination increases (H16PcZn to F16PcZn to F64PcZn). This significant difference in water 

molecules per MPc further correlates with the theory that the metal center becomes increasingly 

electron deficient with increased fluorination. 

Table 18. Calculation of nitrogen and water molecules per MPc. MPcs are considered in face on 
orientation and equation 4-3 is used to calculate no of adsorbate molecules per MPc.  

Sample 
CSA of MPc 
(Å2/molecule) 

No of water  
molecules per MPc 

(p/po=0.3) 

No of nitrogen 
molecules per MPc 

(p/po =0.3) 

F64PcZn 437 55 22.5 

F16PcZn 332 39 26 

H16PcZn 317 3.5 14 

 

 Figure 61 shows the number of water molecules per MPc calculated at a range of relative 

pressures. In general fluorinated organic materials synthesized for electronic and optoelectronic 

applications are perceived to have enhanced hydrophobic properties. However form the water 

adsorption studies in this work and in specifically as shown in Figure 61, the number of water 

molecules per MPc is higher for heavily fluorinated F64PcZn. This higher adsorption of water by 

fluorinated Pcs led us to believe that that fluorinated MPcs are not hydrophobic and in fact they 

very much prefer to interact with water molecules through metal centers.  
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Figure 61. No of water molecules per MPc at various p/p0. No of water molecules at p/po = 0.3 is 
circled and value provided. 

Figure 62 provides an overlay of the number of nitrogen and water molecules per F64PcZn 

molecule. Since the area requirement of a nitrogen and water molecule are 16.2 Å2 and 10.5Å2 

respectively, the number of nitrogen and water molecules to obtain a monolayer coverage are 27 

and 42 molecules respectively. As shown in Figure 62, the monolayer coverage is achieved at p/p0 

of 0.375 for nitrogen and at a p/p0 of 0.175 for water adsorption. The number of nitrogen molecules 

adsorbed over a range of relative pressure depicts a linear fit suggesting a multilayer followed by 

monolayer, while the number of water molecules adsorbed over a range of relative pressure depicts 

an exponential fit suggesting a co-operative mechanism70. In the case of water adsorption, once a 

fixed number of water molecules are present on the surface, the adsorbate–adsorbate forces 

become dominant, and these forces promote the adsorption of additional molecules of water.  

55 

39 

3.5  
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Figure 62. Overlay of no of water molecules per F64PcZn and no of nitrogen molecules per 
F64PcZn at various p/p0. The red dotted lines indicate the monolayer coverage. 

4.3.5 Adsorption measurements on fluorinated phthalocyanines adsorbed on mesoporous alumina 

 With the understanding on the adsorption of nitrogen and water on bare fluorinated 

phthalocyanines, it would be worthwhile to look at the adsorption of water and nitrogen on Pcs 

that has been entrapped or encapsulated or adsorbed on to metal oxides. However, based on the 

discussion in section 4.3.1, solution adsorption on mesoporous alumina gave relatively the highest 

surface coverage and hence this sample was chosen to for nitrogen and water adsorption 

measurements. Figure 63 shows the nitrogen adsorption on bare mesoporous alumina and F64PcZn 

adsorbed on mesoporous alumina. The nitrogen isotherms exhibit hysteresis and the isotherms fit 

the Type IV that correspond to mesoporous adsorbents. The BET surface area are 175 m2/g and 
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167 m2/g for the bare mesoporous alumina and F64PcZn adsorbed mesoporous alumina 

respectively. The relatively small decrease in surface area between bare and loaded mesoporous 

alumina is attributed to the fact that the immobilization technique yielded  a low surface coverage. 

Due to the low surface coverage and the fact that nitrogen does not differentiate the surface 

chemistry (bare alumina surface and alumina with F64PcZn) the isotherms exactly overlay without 

any substantial difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 63. Nitrogen adsorption isotherms on bare mesoporous alumina and F64PcZn adsorbed 
mesoporous alumina.  

Figure 64 shows the water adsorption on bare mesoporous alumina and F64PcZn adsorbed 

on mesoporous alumina. The small difference in the shape of the hysteresis loop between bare and 
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F64PcZn adsorbed mesoporous alumina could be attributed to the presence of F64PcZn inside the 

mesopores. Using the combined vapor adsorption study to determine water contact angles inside 

mesopores in Chapter 3, contact angle of water in bare and F64PcZn adsorbed mesoporous alumina 

was obtained and shown in Table 19. Water contact angles for bare and F64PcZn adsorbed 

mesoporous alumina are 14.8 and 11.9 degree respectively.  Since bare F64PcZn has great affinity 

for water than even hydroxylated metal surfaces, it is not surprising to see similar contact angles 

for bare alumina and alumina with F64PcZn adsorbed on it. A slightly lower contact angle in the 

alumina with F64PcZn than the bare alumina further suggest that there is F64PcZn inside the 

mesopores .  

 

 

 

 

 

 

 

 

 

 

Figure 64. Water adsorption isotherms on bare mesoporous alumina and F64PcZn adsorbed 
mesoporous alumina.  
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Table 19. Water contact angles and structural parameters for the bare mesoporous alumina and 
F64PcZn adsorbed mesoporous alumina. 

Sample 
S(N2), 
m2/g 

V(N2), 
cm3/g 

r(N2), 
nm 

rm(H2O), 
nm 

t(H2O), 
nm 

cosθ 
θ, 

deg 

Mesoporous Alumina 
Bare 

175 0.42 4.4 3.75 0.78 0.967 
 

14.8 

F64PcZn adsorbed 
Mesoporous Alumina 

165 0.42 4.4 3.75 0.73 0.978 11.9 

 

4.3 Conclusions 

Replacement of C-H bonds in phthalocyanines with F and/or i-C3F7 groups produces 

catalytically active materials resistant to thermal and oxidative stress with increased solubility, 

reduced aggregation and an increasingly electron deficient metal center94, 98. Several 

immobilization techniques to load MPcs on metal oxides were investigated for and the advantages 

and limitations of each technique were understood. All the three desired outcomes (thermal 

stability, solvent leaching resistance and catalytic activity) were not achievable solely with a single 

immobilization technique. Solution adsorption on mesoporous alumina provided the highest 

surface coverage, mesopore entrapment technique provided higher solvent stability (leaching 

resistance) and deposition by pore filling followed by encapsulation offered the best improved 

thermal stability for few hours at 300C°. The importance of nitrogen and water adsorption studies 

on bare metal phthalocyanines was demonstrated. The fluorinated Pcs (F16PcZn and F64PcZn) 

showed significantly higher water adsorption as compared to hydroxylated silica and the non-

fluorinated Pc (H16PcZn) shows low water adsorption than the hydroxylated silica. The amount of 

water adsorbed by three different Pcs was correlated to the electron deficiency of the metal center 

in the Pcs. As a continuation of this work, fluorinated metal phthalocyanines could be entrapped 

onto ordered mesoporous alumina in a one-step synthesis and their surface characteristics, catalytic 
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activity, thermal stability and solvent stability could be studied. The technique of immobilization 

and characterization can be extended to other fluorinated phthalocyanines with different metals- 

fluorinated Ru phthalocyanines would be an excellent choice to pursue further studies. 
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