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dsDNA   Double Stranded DNA 
bp   Base pairs 
kb   Kilobases 
nt   Nucleotides 
BMVC   3,6,-bis[2-(1-methypyridinium)vinyl] carbazole diiodide 
FRET   Fluorescence Resonance Energy Transfer 
SPR   Surface Plasmon Resonance 
H2TMPyP4  5,10,15,20-tetra(N-methyl-4-pyridyl)porphyrin 
LCAO   Linear combination of atomic orbitals 
HOMO   Highest occupied molecular orbital 
LUMO   Lowest unoccupied molecular orbital 
TPP   Tetraphenylporphyrin 
DDQ   2,3-Dichloro-5,6-Dicyanobenzoquinone 
H2TPyP4  5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphyrin 
DCM   Dichloromethane 
TFA   Trifluoroacetic acid 
PEI   poly(ethyleneimine) 
PVP   poly(vinylpyrolidine) 
TLC   Thin Layer Chromatography 
O.D.   Optical Density 
CHCl3   Chloroform 
CDCl3   Deuterated Chloroform 
PTFE   Polytetrafluoroethylene 
EDTA   Ethylenediaminetetraacetic acid 
1H NMR   Proton Nuclear Magnetic Resonance 
ESI-MS   Electrospray Ionization-Mass Spectrometry 
SN2   Bimolecular nucleophilic substitution reaction 
SN1   Unimolecular nucleophilic substitution reaction 
Et   Ethyl 
DMF   Dimethylformamide 
ddH2O   Double-distilled water 
mCPBA   meta-Chloroperbenzoic acid 
DCM   Dichloromethane 
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DMSO   Dimethyl sulfoxide 
BH3-THF  Borane tetrahydrofuran 
Ph3P   Triphenylphosphine 
CBr4   Carbon tetrabromide 
TEA   Triethylamine 
DMT-MM  4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride 
DCC   Dicyclohexylcarbodiimide 
EDC   N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 
HPLC   High Performance Liquid Chromatography 
RP   Reverse Phase 
SEC   Size Exclusion Chromatography 
CT-DNA   Calf Thymus DNA 
TBE   Tris-Borate-EDTA buffer 
DP   Degree of Polymerization 
MW   Molecular Weight 
Sulfo-NHS  N-Hydroxysulfosuccinimide 
KPBS   Potassium Phosphate Buffered Saline  
MWCO   Molecular Weight Cut Off 
CD   Circular Dichroism 
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Abstract 
Molecular recognition is vital to many biochemical processes and is at the heart of promising 

bio-medically related technologies. Molecular imprinting has a long-standing history as a successful 
method for mimicking the molecular recognition phenomena exhibited by nature, whereby artificial 
receptors are prepared for a given target molecule based on synthetic polymers. The molecularly 
imprinted polymer (MIP) contains a three dimensional network with a memorized cavity specific to 
the shape and functionality of the templated target molecule. The utility of traditional MIPs has been 
limited due to an inherent lack of solubility. We have worked toward developing a system that allows 
for the preparation of soluble MIPs targeting quadruplex DNA, specifically the human telomeric 
repeat (TTAGGG)4. To do so we have synthesized a series of meso-substituted, water soluble, 
tetracationic pyridinium porphyrins which we have successfully coupled to polyethyleneimine (PEI), 
forming a condensation polyamide. We have demonstrated that one of these porphyrins can be used 
as an efficient polymer cross-linker, which provides a unique quadruplex DNA binding site in the 
polymer network. Unfortunately, the high cationic charge density found on PEI has been found to 
elicit potential dilemmas in the utility of this method. Attempts have been made to reduce this 
charge by increasing the cross-linking agent and partially acetylating the PEI. While the network 
structure of this soluble cross-linked polymer still requires optimization, it has shown promise and 
demonstrates the opportunities for new soluble molecularly imprinted polymer designs that include 
quadruplex binding sites. 
 
Mohammed R. Elshaer 
Doctor of Philosophy in Chemistry 
Seton Hall University  
Dr. James E. Hanson, Mentor
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1. Introduction 

1.1. Molecular Recognition 

Molecular recognition events are ubiquitous and essential to many fundamental processes 

found in biology and chemistry.1 The remarkable recognition processes that allows for the ability to 

selectively recognize complementary target molecules in a vast pool of similar molecules are driven by 

non-covalent forces such as hydrogen bonding, electrostatic interactions, hydrophobic interactions, van 

der Waals forces, π-π interactions and conformational energy. Examples of these processes include the 

binding of an enzyme to its substrate, a protein to a receptor, a drug to a biological target, antibody-

antigen recognition, the hybridization of complementary nucleic acid oligomers, and the translation of 

DNA into mRNA.  

Clearly the molecular recognition phenomenon is one of the driving forces that allows for life 

processes to occur.2 The underlying mechanisms at the heart of molecular recognition are the chemical 

and geometrical complementarity between the interacting molecules.3 Extensive research efforts have 

been put forth in an attempt to develop synthetic material with similar recognition abilities that mimic 

these naturally occurring processes.    

1.2. Molecular Imprinting  

The technique of molecular imprinting has been regarded as one of the most promising 

strategies for creating materials with molecular recognition capabilities comparable to those found in 

natural systems. This technique allows for the formation of a three dimensional network which includes 

a memorized cavity that is specific to the shape and functionality of the template molecule. 

1.2.1. Historical perspective of Molecular Imprinting 

The origins of molecular imprinting can be traced back to the “lock and key” theory, proposed 

by Emil Fischer in 1894, where he attributed the specificity of an enzymes to its substrate based on 

sterics.4 He wrote “To use a picture, I would like to say that enzyme and glucoside have to fit to each 
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other like a lock and key in order to exert a chemical effect on each other.” Through evolution, enzymes 

have developed binding sites that are complementary and specific to the shape, size and electron 

distribution of their particular substrate(s). The binding sites also contain functional groups that co-

operatively interact non-covalently with the substrate.  

While the molecular recognition demonstrated by enzymes may have taken millennia to 

develop, the recognition generated by antibodies to an antigen occurs on a time scale of days. In 1932 

Mudd proposed his theories on how these antibodies were produced by the body in order to eliminate 

foreign molecules. He suggested that the formation of the antibody occurred on the surface of the 

antigen, where amino acids or peptides adapted physically and chemically to the antigen surface at the 

site of coupling. He stated that the specificity exhibited by the antibody was due to the stereochemcial 

correspondence with the antigen.5 In the 1940’s, Pauling further developed this theory by proposing a 

detailed mechanism for their formation, describing the induced folding of a polypeptide chain around an 

antigen.6 

Pauling’s theory inspired Frank Dickey to carry out experiments toward the development of 

synthetic antibodies with the aim of obtaining tailor made binding materials. He termed his devised 

technique “specific adsorption” which would later become known as molecular imprinting. Initially he 

was interested in the chiral separation of sugars using a silica polymer as the synthetic receptor. 

However, due to difficulties arising from the solubility of the sugars in the alcohol solvents used, he 

moved to the separation of dye molecules.7 He was successful at preparing a material that adsorbed 

methyl orange 1.4 times greater than ethyl orange.8  
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Figure 1. Specific Adsorption for selective binding of different dye molecules by silica polymers 

1.2.2. Molecularly Imprinted Polymers 

The modern strategy for molecular imprinting utilizes synthetic organic polymers as the 

imprinting material. This process allows for the preparation of organic polymers containing within them 

recognition sites for template small molecules.9 The technique is conceptually simple; it involves the 

pre-organization of functional monomers around the template molecule through covalent or non-

covalent interactions, which are subsequently polymerized in the presence of a cross-linking agent 

forming an inflexible polymer. After extraction of the template molecule, functional groups in the 

polymer matrix are arranged at defined positions that are in a spatial arrangement complementary to 

the template molecule.10   

Most of the initial imprinting following this modern method were performed using the covalent 

binding approach developed by Wulff and Sarhan.11 This approach uses a polymerizable derivative of 

the template molecule, which is obtained by forming covalent bonds between the template and suitable 

polymerizable monomers. Extraction of the template from the polymer is performed by chemically 

cleaving these covalent bonds, which are subsequently reformed during binding with the template 

molecule.  

The alternative approach introduced by Mosbach and co-workers relies on the formation of a 

pre-polymerization complex that allows monomers with suitable functional groups to self-assemble, 
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through non-covalent interactions, with the template molecule.12 After polymerization and cross-linking, 

the functional groups are held stationary in their position by the polymer matrix. The template can then 

be removed by simple extraction. The rebinding of the template to the molecularly imprinted polymer 

(MIP), as a result, will occur through non-covalent interactions.13  Since most biomolecules interact 

through non-covalent interactions, this “self-assembly” approach is similar to processes found in nature. 

A depiction of both approaches can be found in Figure 2.  It should be noted that both of these methods 

typically yield insoluble MIPs in powder or gel forms. Synthetic MIPs are capable of specific molecular 

recognition and have received much attention due to features such as excellent stability, ability to 

function in various media and their low cost of synthesis. They have found applications in 

chromatography, chiral separations, biomimetic sensors, analysis and catalysis. 
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Extraction Extraction by
chemical cleavage

PolymerizationPolymerization

Synthesis of
polymerizable

template
Self-assembly

BA

Figure 2. Schematic representation of molecular imprinting using the (A) non-covalent approach 
and (B) the covalent approach. In the non-covalent approach functional monomers are allowed 

to self-assemble around the template molecule via non-covalent interactions while in the 
covalent approach, a polymerizable derivative of the template is used. 
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1.3. Nucleic Acids 

Nucleic acids are natural polyphosphoester biopolymers composed of phosphoric acid and 

sugars, to each of which a heterocyclic amine, which is referred to as a base, is attached. There are two 

principal types of nucleic acids, those containing D-ribose are known as ribonucleic acids (RNA), and 

those containing 2-deoxy-D-ribose are known as deoxyribonucleic acids (DNA).14  

Each monomeric nucleotide unit contains a phosphate group coupled to the 5’-hydroxyl group 

on the ribose to yield a phosphate ester. The unit becomes distinct upon formation of a covalent bond, 

via hydrolysis, between C-1’ of the ribose and the heterocyclic amine base, at position N-1 for 

pyrimidines (Cytosine, Thymine or Uracil) and at position N-9 for purines (Adenine or Guanine) resulting 

in the creation of an N-β-glycosyl bond.  

The formation of DNA and RNA results from the polymerization of nucleotides through an 

esterification reaction between the 5’-phosphate group of one nucleotide and the 3’-hydroxyl group on 

the sugar of the adjacent nucleotide to form a 3’,5’-phosophodiester linkage, yielding the primary 

sequence of DNA or RNA biopolymer. The adduct contains a backbone of alternating sugar and 

phosphate groups, and since nucleic acids are acidic they are completely ionized at the near neutral pH 

that occurs in living organisms, which results with a net charge of -1 per phosphate, making DNA and 

RNA polyanionic. 
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Figure 3 Structures of the monomeric nucleotide units of DNA (A) Adenosine 5’-monophosphate, (B) 
Guanosine 5’-monophosphate, (C) Thymidine 5’-monophosphate (D) Cytidine 5’-monophosphate 

1.3.1. DNA Structure 

The Watson and Crick model proposed in 1953 was a historic event in science.15 Watson and 

Crick postulated that DNA was found as a helical duplex, two antiparallel polynucleotide chains 

complementary to each other held together by specific hydrogen bonding between base pairs of 

adenine (A) with thymine (T) and guanine (G) with cytosine (C). Two hydrogen bonds are formed 

between A and T and three between G and C, this is referred to as Watson-Crick base pairing. Figure 4 

illustrates the original Watson-Crick Model for the structure of DNA. The hydrophobic bases are located 

along the axis of the double helix with the sugar-phosphate hydrophilic backbone winding along the 

periphery. The distance between the bases is 3.4 Å. Ten bases are required to make a complete rotation 

about the helical axis, meaning that one complete rotation about the axis would require 34 Å. They 
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arrived at their 3-dimensional model of DNA with the assistance of x-ray diffraction data collected on 

DNA fibers by Franklin16 and the A=T and G=C base equivalence identified by Chargaff.17  

A. B.

 

Figure 4. Watson-Crick model for the structure of DNA (A) Schematic representation showing helix 
dimensions (B) The complimentary antiparallel strands exhibiting the base equivalence of A=T and G≡C 

and the hydrogen bonding between the bases.18 

1.3.2. Beyond Watson-Crick B-DNA 

Due to the polymorphic nature of DNA, variations of the Watson-Crick DNA structure, referred 

to as B-DNA, do exist. These variations are possible due to the different conformations that can be taken 

by the deoxyribose via its rotation about the bonds that make up the phosphodeoxyribose backbone 

and the free rotation about the C-1’-N-glycosyl bond. 

It is believed that most of the DNA in the human genome is present in the B-DNA form. 

However, DNA may form alternative non-B-DNA secondary structures within certain sequences, fueled 

by various dynamic molecular events.19 This is typically a function of the nucleic acid sequence, 

topology, environmental conditions i.e. ionic conditions, protein binding, methylation, carcinogen 
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binding and other modifications on DNA.20 Examples of these alternative secondary structures including 

Z-DNA, triplexes, cruciforms, and hairpins are shown in Figure 5. 

A. B. C. D.

 

Figure 5. Schematic representations of some non-B DNA conformations in the genome:  
(A) Cruiforms (B) Slipped Hairpin (C) Z-DNA (D) Triplex 21 

1.3.3. DNA Absorption Spectra 

DNA absorbs light in the UV region of the electromagnetic spectrum as a result of σ→σ*, π→π* and 

n→π* electronic transitions in the heterocyclic bases. The π→π* and n→π* lower energy transitions are 

more readily monitored because they are found at wavelengths that are removed from typical solvent 

absorptions. The electronic transitions of DNA bases have been well established and reviewed.22,23  A 

typical absorbance spectra of DNA has a λmax at approximately 260 nm, which can be used to calculate 

the concentration of DNA in solution or for monitoring chemical or physical perturbations to DNA 

structures that result with hypo- or hyperchromicity 

1.4. G-Quadruplexes 

G-quadruplexes, commonly referred to as G4 DNA, are yet another family of secondary nucleic 

acid structures that deviate from the Watson-Crick B-form dsDNA. They are formed within specific 

repetitive G-rich sequences that are widely distributed throughout the human genome. With the 

completion of the human genome project, scientists have been allowed to explore the occurrence and 

frequency of these unusual DNA secondary structures. One of the surprising conclusions from these 

studies is that only 1-2% of the human genome is believed to code for protein. This accounts for 

approximately 20,000-25,000 genes and raises questions to what the function of the remaining 98% of 

noncoding genomic DNA is.24,25 Algorithmic predictions estimate the probability of DNA sequences that 
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possess the ability to form G-quadruplex structures at 375,000, if not more.26,27,28 However, these 

sequences are not distributed evenly throughout the genome. Computational studies in various 

organisms have shown that G-quadruplexes tend to cluster in particular areas, specifically, certain 

functional regions such as telomeric regions and gene promoters, but apparently were not found to be 

widely present in the coding regions of DNA.29 This data, which demonstrates the nonrandom 

distribution of G4 motifs, supports the suggestion that G4 structures have an evolutionary conserved 

function in living cells that may include the regulation of gene expression and the preservation of 

chromosomal integrity.30,31  

The ability for guanosine and its derivatives to form self-assembled structures was originally 

report by Bang in 1910 when he discovered that concentrated solutions of guanylic acid formed gels.32 

The self-assembled tetrameric structure formed was resolved using X-ray diffraction by Gellert et al 

more than fifty years later in 1962.33   

1.4.1. G-Quartets 

G-quadruplexes are formed by the vertical stacking of G-quartets (also referred to as G-tetrads). 

Each G-quartet is comprised of 4 guanine bases that form a square planar array, considered as the basic 

building block of G4 structures. Hoogsteen hydrogen bonds between the N1, N7, O6 and N2 guanine 

bases associate each of the 4 guanines into a cyclic hydrogen bonding pattern that forms this planar 

structure.33,34 Each of the guanine bases is both the donor and acceptor of two hydrogen bonds. The 

self-assembled G-quartet structure is depicted in Figure 6. The structure is further stabilized by 

monovalent cations that occupy the central pore between the stacked G-quartets. This coordination 

neutralizes the electrostatic repulsive forces exhibited by the oxygens found on the 4 guanines that 

point inwards towards the central pore.35   
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Figure 6. Illustration of the Hoogsteen hydrogen bonding pattern in a G-quartet 

1.4.2. G4 Topology and Structure 

G4 structure can adopt a number of various topologies, which is in part a consequence of 

variations in their molecularity, number of stacked G-quartets (at least 2 are required), the nature of the 

binding cations, strand orientation, sequence and the location and length of their loops.36  

G4 DNA can be formed either by intramolecular folding of one DNA strand (unimolecular) or 

intermolecularly through the association of two (bimolecular) or four strands (tetramolecular). 

Technically, it is possible for a G4 DNA structure to form from three strands; however this occurrence is 

rare. Unimolecular G4 structures forming sequences can be described using the following37: 

𝑮𝒎𝑿𝒏𝑮𝒎𝑿𝒐𝑮𝒎𝑿𝒑𝑮𝒎 [1] 

Where m is the number of guanine nucleotide residues in each short G-tract, usually containing 

3-5 consecutive guanosines and Xn, Xo and Xp can be any combination of nucleotide residues (including 

guanines) that form the loops. It should be noted that the G-tracts themselves can vary in length. 

Guanines present in the G-tracts that do not participate in G-quartet interactions will be part of the loop 

region. 
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In theory, bimolecular and tetramolecular G4 structures can be formed from non-equivalent 

sequences. However, almost all bimolecular structures that have been reported in the literature are 

formed by the association of two identical nucleic acid sequences and can be described as: 

𝑿𝒏𝑮𝒎𝑿𝒐𝑮𝒎𝑿𝒑 [2] 

where both n and p can equal zero. Tetramolecular G4 structures are formed by the intermolecular 

association of four strands that can be described using either one of the following: 

𝑿𝒏𝑮𝒎𝑿𝒐 [3] 

𝑮𝒎𝑿𝒑𝑮𝒎 [4] 

Figure 7 illustrates a variety of G4 topologies that can form from varying strand stoichiometries. 

A number of folding patterns are shown for a given molecularity, demonstrating the variations in both 

the loop arrangement and the strand orientations. Each linear or curved line represents a nucleic acid 

sequence. Arrows located at the end of each line indicate strand polarity in the 5’→3’ direction. 
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B. Biomolecular

C. Tetramolecular
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Figure 7. Schematic representation of G4 structures formed from varying strand stoichiometries  

G4 structures, with the exception of the formation of tetramolecular quadruplexes, will have 

intervening DNA strands that form ssDNA loops with varying length and sequence composition. The loop 

length is typically between 1-7 nucleotides with shorter loops resulting in more stable structures.38 

There are three types of loop arrangements: (1) lateral loops which connect adjacent strands at one 

terminal G-quartet, (2) diagonal loops which span across the top of the G4 structure and (3) propeller 

loops which link the bottom G-quartet with the top G-quartet.37,39  Figure 8 illustrates G4 structures that 
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demonstrate these various types of loop arrangements. It should be noted that certain G4 structures 

possess multiple loop types. The unimolecular quadruplex in Figure 8 used to present the diagonal loop 

also contains two lateral loops protruding from the opposing terminal G-quartet.  

Diagonal Lateral

Propeller

 

Figure 8. G4 structures illustrating the various types of loop arrangements40 

Furthermore, the strand orientations (polarities) within the G4 can vary and as a result produce 

parallel, antiparallel or hybrid type structures. There are four fundamental strand orientations that are 

displayed in Figure 9.  

A B C D

 

Figure 9. Strand orientations in G4 structures (A) all parallel (B) three parallel one anti-parallel (c) 
adjacent parallel (d) alternating antiparallel41 

Investigations into the influence of loops on the folding and stability of G4 structures has 

provided some general trends (1) parallel structures are preferred by short loops (2) longer loops favor 

anti-parallel structures (3) loops formed from a single nucleotide residue have higher melting 
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temperatures i.e. are stable and (4) increasing the loop length decreases the melting temperatures i.e. 

decreases the structures stability.42 

As mentioned previously during the discussion on the polymorphic nature of nucleic acids, free 

rotation about the C-1’-N-glycosyl bond is possible and does in fact occur in certain G4 structures. As a 

result both the anti and syn conformations can be present. This is not the case with B-DNA which is 

found held entirely in the anti conformation. Figure 10 portrays both of these conformations and, 

demonstrates the rotation about the glycosidic bond showing their interconversion. It should also be 

noted that the sugar pucker in most quadruplexes is in the C2’-endo conformation.43 
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Figure 10. Rotation about the glycosidic bond allows guanine base to interconvert between the syn and 

anti conformations 

The strand orientation directly influences the conformational state of the glycosidic bonds which 

in turn has an effect on the four grooves present in the G4 structure. These grooves describe the cavities 

bounded by the phosphodiester backbones. G4 having all parallel strand orientations will have their 

guanine glycosidic bonds in the anti conformation with grooves between the phosphodiester 

backbone(s) that are of all equal size. This makes this structure C4 symmetric (see Figure 11A).  When 

any one of the strands is antiparallel the guanine bases in that strand must assume the syn 

conformation in order to facilitate the formation of the Hoogsteen hydrogen bonds. As a result the 

orientation of the backbone in respect to the G4 is altered and the grooves become unequal in size.  

When consecutive guanines, starting with the one contributing N1 and N2, are both in same 

conformation (anti or syn) then the grove is of medium size. If the first guanine is anti and the second 
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guanine is syn then the groove is wide. If the first is syn and the second is anti then the grove is 

narrow.44 

Therefore, if we consider a G4 structure that has alternating antiparallel strand orientation, then 

the corresponding glycosidic bond conformational states would be anti-syn-anti-syn. Following the 

guidelines previously stated this structure would have grooves that were wide, narrow, wide and 

narrow. In comparison, an adjacent antiparallel structure corresponds to an anti-syn-syn-anti 

conformation resulting with grooves that are wide, medium, narrow and medium. Both of these G4 

structures are depicted in Figure 11.  

A B C  
Figure 11. Relationship between conformational state of glycosidic bond, S=syn A=anti, and strand 

orientation (A) all parallel (B) alternating parallel (C) adjacent antiparallel45 

Finally, G4 structures exhibit a significant dependence on cations for their formation and 

stability. K+ and Na+ both bind to and stabilize many G4 structures.46 However, a higher ion binding 

preference is exhibited towards K+ ions.47 This has been attributed to the ability of K+ to reside between 

two stacked G-quartets and coordinate with the eight carbonyl oxygens atoms that are present.48 G4 

structures depend on the cation identity and can form altered structures in the presence of K+ or Na+. 

Physiological conditions are favorable for the formation of G4 structures since the predominant ions 

16 
 



found in cells are K+ and Na+ and are present at intracellular concentration levels of 140 mM and 5-15 

mM respectively.49  

1.5. Biological Relevance of G4 DNA 

1.5.1. Telomeres 

Telomeres are nucleoprotein structures found at the end of linear eukaryotic chromosomes. 

They play an essential role in maintaining genomic stability by protecting chromosomes from 

degradation, recombination, end to end fusion, and from being recognized by cellular machinery as 

double stranded breaks.50  

Other functions include preventing the loss of coding sequences at the end of chromosomes 

upon the completion of DNA replication. Dividing cells have been shown to lose base pairs (bp) following 

each round of cell division.51 Instead, of losing vital coding sequences, non-coding telomeric DNA is lost. 

This loss of DNA bp is a direct consequence of the “end replication problem” inherent to DNA-

polymerase (the inability of the enzyme to replicate the very end of linear DNA).52 Telomeres as a result 

are progressively shorter after each round of cell division. After a certain number of cellular divisions the 

telomere will reach a critical length where it no longer can maintain its replicative capacity. This triggers 

the cell to halt the cell cycle and enter non-replicative senescence. This process is proposed to function 

as a biological clock, limiting the life span of somatic cells.50  

Telomeric DNA contains a double stranded region and a single stranded 3’ G-rich overhang. The 

dsDNA region is comprised of short tandem repeats of a DNA sequence. The distribution of guanine and 

cytosine is disproportionate between the two strands and are called the G and C strands accordingly. 

The G-strand runs in the 5’→3’ direction and terminates with the 3’ overhang.  The tandem repeats 

appear to be highly conserved sequences because all vertebrates, including humans, have the same 

hexanucleotide sequence of (TTAGGG)n. Table 1 shows some of the known telomeric DNA sequences.  
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Table 1. Some known telomeric DNA sequences of various species 
Group Organism Telomeric Repeat 
Vertebrates Human, mouse, Xenopus TTAGGG 
Filamentous fungii Neurospora crassa TTAGGG 
Slime moulds Physarum, Didymium, TTAGGG 
 Dictyostelium AG1-8 
Kinetoplastid protozoa Trypanosoma, Crithidia TTAGGG 
Ciliate protozoa Tetrahymena, Glaucoma TTGGGG 
 Paramecium Oxytricha TTGGG(T/G) 
 Stylonychia, Euplotes TTTTGGGG 
Apicomplexan protozoa Plasmodium TTAGGG(T/C) 
Higher plants Arabidopsis thaliana TTTAGGG 
Green algae Chlamydomonas TTTTAGGG 
Insects Bombyx mori TTAGG 
Roundworms Ascaris lumbricoides TTAGGC 
Fission yeasts Schizosaccharomyces pombe TTAC(A)(C)G1–8 
Budding yeasts Saccharomyces cerevisiae TG1-3 
 Candida glabrata GGGGTCTGGGTGCTG 
 Candida albicans GGTGTACGGATGTCTAACTTCTT 
 Candida tropicalis GGTGTA[C/A]GGATGTCACGATCATT 
 Candida maltosa GGTGTACGGATGCAGACTCGCTT 
 Candida guillermondii GGTGTAC 
 Candida pseudotropicalis GGTGTACGGATTTGATTAGTTATGT 
 Kluyveromyces lactis GGTGTACGGATTTGATTAGGTATGT 

The human telomeric DNA sequence repeat of 5’-TTAGGG-3’ has a length, at birth, typically 

between 10-15 kilobases (kb) and ranges from 2-20 kb in adult cells. The 3’ overhang is between 50-500 

nucleotides (nt) and can fold back to pair with the complementary sequence on the C-strand forming 

what is known as the t-loop. The location where the G-strand overhang invades and displaces the G-

strand in the duplex regime is known as the D-loop (displacement loop).53  Figure 12 presents a 

schematic representation of the telomeric region of human chromosomes.  
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Figure 12. Structure of human telomeres (A) Chromosome end showing dsDNA region of TTAGGG 
repeats and the 3’ overhang. (B) T-loop and D-Loop structures resulting from the interaction of the 

overhang with the dsDNA regime.53 

There is a continuously growing number of proteins discovered that bind to telomeric DNA, 

including a six membered protein complex known as shelterin.54 Its components include Telomeric 

Repeat binding Factor 1 and 2 (TRF1 and TRF2), Repressor/Activator 1 (Rap 1), TRF2- and TRF1- 

Interacting protein 2 (TIN2), Tripeptidyl peptase 1 (TPP1) and Protection of Telomeres (POT1). 

Additionally, a ribonucleoprotein composed of a reverse transcriptase protein and an RNA template, 

known as Telomerase, is responsible for telomere elongation. The activity of this enzyme in most cells is 

strongly regulated and typically will not interfere with the incremental shortening of telomeric DNA 

during each round of cell division.55 

Telomeric sequences have been shown to form stable G4 structure in vitro. The human 

telomeric sequence, 5’-TTAGGG-3’, folds spontaneously into an intramolecular G4 structure where the 

GGG nt participate in the formation of G-quartets while the TTA nt form the intervening loops.56 This 

structure has been found to be stable under physiological condition and has a melting temperature of 

approximately 65 °C.  Therefore, it has been frequently suggested that the 3’-overhang G-strand of 

telomeres form G4 structures in vivo and are physiological relevant.  
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1.5.2. Structure of Human Telomeric G4 

Dai and coworkers reported the NMR solution structure of the intramolecular G4 formed by 

human telomeric DNA repeats, under physiological condition, in K+ solution.57 They investigated the 

folding of a 26 nt sequence, d[AGGG(TTAGGG)3], composed of a 22-mer of four human telomeric 

repeats with flanking AA added to each end. Their studies reveal that the quadruplex, consisting of 3 

stacked G-quartets, adopts a hybrid-type mixed parallel-antiparallel structure, where the third strand is 

antiparallel to the other three. The first two strands are linked via a TTA propeller-type loop and the 

other three strands are linked via TTA lateral loops. The lower 2 G-quartets are arranged in an anti-anti-

syn-anti conformation and the top G-quartet is in a syn-syn-anti-syn conformation. A schematic 

representation of the folding topology is shown in Figure 13. A superimposition of the 10 lowest energy 

structures as determined by NOE-restrained structure calculation is presented in Figure 14 (PDB ID 

2HY9). It is important to note that this hybrid-type G4 is the predominant form under physiologically 

relevant conditions; however, other conformations are possible, including the formation of higher order 

multimers.58  

 

Figure 13. Folding topology of the unimolecular human Telomeric G4 
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Figure 14. Superimposed 10 lowest energy structures of telomeric G4 in K+ solution by NOE-restrained 

structure refinement (g = orange, a = red, t = blue) 

1.5.3. Evidence of G4 Structures in vivo at Telomeres 

It is widely believed that G4 structures do in fact form in vivo. Demonstrating this, however, has 

proven to be a difficult task for researchers. The strongest supporting and most direct evidence of their 

in vivo formation comes from studies on ciliated protozoa specifically, Stylonychia lemnae. These 

organisms contain high concentrations of telomeric DNA in their macronucleus, approximately 108 

telomeres, possessing the repeat sequence d(TTTTGGGG)2.59 The studies performed on these organisms 

utilize developed antibodies, raised by ribosome, that display high binding specificity between parallel 

and antiparallel telomeric G4T4 structures.60 The presence of in vivo G4 structures at telomeres was 

directly observed by in situ immunostaining. Only antibodies raised specific for antiparallel G4 structures 

were found to bind. This indicates that only the antiparallel and not the parallel G4 structures are 

present in vivo.61 This data is consistent with previous observations that determined the G-strand 
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overhang would fold intermolecularly into an antiparallel structure. Furthermore, control experiments 

demonstrated that the antibodies themselves do not induce the formation of G4. Therefore, it was 

concluded that the staining of the Stylonchia lemnae telomeres with the antiparallel specific G4 

antibodies was dependent on the natural expression of the in vivo G4 structure. One of the difficulties 

for applying this immunostaining technique used on Stylonchia lemnae to vertebrate cells is due to their 

low concentration of telomeres. Also, thus far, there have been no antibodies against human telomeric 

G4 DNA that have been isolated. 

There does however, exist some less direct evidence for the formation of G4 structures at 

telomeres in human cells. 3,6,-bis[2-(1-methypyridinium)vinyl] carbazole diiodide (BMVC), a highly 

fluorescent biomarker that is known to bind and stabilize G4 structures in vitro, has been found to stain 

metaphase chromosomes in human lung adenocarcinoma cells in vivo.62,63 This suggests that the BMVC 

is binding to the telomeres. However, it is unclear whether the BMVC is responsible for inducing the G4 

formation. Research into finding more direct evidence for the presence of G4 structures at telomeres in 

organisms other than ciliates is ongoing.    

1.5.4. Effects of G4 on DNA Replication 

During DNA replication in eukaryotic cells the DNA double helix of the parent strand is unwound 

by a helicase creating two replication forks, one functions as a leading strand the other as a lagging 

strand. The leading strand is synthesized, by polymerases, in the 5’→3’ direction continuously without 

interruption while the lagging strand is replicated discontinuously forming short single strands, known as 

Okazaki fragments, that are subsequently ligated together. The single stranded nature adopted by DNA 

during this process provides an opportunity for G4 structures to form. Some of these structures may 

have relevant functions in cellular processes while others may be simply a result of interactions between 

residues in the unwound strand sequence. Regardless of their origin, in order for replication to continue 
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these structures must be disrupted. The formation of these G4 structures influence DNA replication by 

slowing down or inhibiting the replication process.64  

Helicases are most likely responsible for the unwinding of these G4 structures formed during the 

replication process. In vitro studies have shown that many helicases non-specifically bind or unwind G4 

structures. WRN65, BLM66, FANCJ67, PIF168 are all human helicases that have demonstrated this activity 

and have been associated with human diseases. (See section  1.5.6)   

1.5.5. Effects of G4 on Transcription 

Computational studies focusing on protein coding genes in humans suggest that more than 40% 

of these genes have at least one G4 motif within 1 kb upstream of their transcription start site.69  

Additionally, other studies reveal that the G4 motifs are proximal to or overlapping transcription factor 

recognition sites.70 This data suggests that G4 structures may perhaps influence the transcriptional 

activity of the proximal gene in both a positive or negative manner. One theory postulates that the 

effect of the G4 is associated directly with the DNA strand on which it forms. If the G4 is found on the 

template strand, the structure will prevent the transcription machinery from proceeding and as a result 

inhibit the transcriptional process. Conversely, if the G4 is found on the non-template strand it can 

increase transcription level by maintaining the single stranded-ness of the template.  Another theory 

suggests that G4 structures regulate transcription through the recruitment of proteins that either, one, 

encourage transcription by stimulating or initiating polymerase or, two, inhibit transcription by 

recruiting proteins that suppress the process. Figure 15 illustrates these presumed functions of G4 

structures during transcription. 
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A.

B.

C.

D.

G4 on template strand, inhibiting transcription

G4 on non-template strand, encouraging transcription

Protein binding to G4, stimulating transcription

Protien binding to G4, suppressing transcription

 

Figure 15. Presumed functions of G4 structures during transcription 

1.5.6. G4 Structures and Disease 

The instability of human telomere structures is associated with a number of human diseases. 

Most notably, G4 forming sequences have been implicated in cancer cell proliferation and as a result 

have attracted much interest over the years. Shorter telomere length is a risk factor for the 

development of cancer and telomerase is activated in approximately 90% of cancer cells.  Furthermore 

different forms of anemia, hypertension, coronary heart diseases, chronic human immunodeficiency 

virus infection, ulcerative colitis and chronic liver disease have also been shown to relate to defects in 

telomerase or telomere stability.71,72   

Less discussed G4 associated human diseases do exist. For example Werner syndrome, Fanconi 

anemia and Bloom’s syndrome are diseases caused by genetic mutations that result in non-functional 
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WRN, FANCJ and RecQ helicases, respectively. The normal function of these helicases is to unwind G4 

DNA.73  

1.6. G4 Binding Ligands 

Ligands that bind G4 structures efficiently frequently contain a large planar aromatic surface 

that is capable of participating in π-stacking interactions with the G-quartet motif. The larger this surface 

the greater the resulting aromatic-aromatic overlap becomes, resulting in improved selectivity of the 

ligand for G4 structures vs. duplex DNA. These ligands also usually carry positive charges that participate 

in electrostatic interaction with the polyanionic backbone(s) and grooves of the G4 structure. Known 

binding ligands have been classified according to their cationic state: (1) upon in situ protonation (2) via 

N-alkylation (3) due to the presence of a metal center or (4) non-cationic.74  

G4 binding ligands usually exhibit both hydrophobic and hydrophilic character, as a result of 

their planar aromatic surface and their cationic charges, respectively. The hydrophilicity assists in 

increasing the water solubility of the ligand which is essential when targeting aqueous biological 

molecules such as these nucleic acids. The design of G4 binding ligands typically follows this assembly 

since it was first introduced by Neidle, Hurley and coworkers who demonstrated the binding and 

telomerase inhibition activity of a 2,6-diamidoanthraquinone.75 The selectivity of this compound for G4 

structures vs. duplex DNA was insufficient and the compound was found to be cytotoxic which deterred 

the researchers from further pursuing its biological application. However, the beneficial features 

possessed by this compound became mainstays in the future development of G4 binding ligands. 
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Figure 16. 2,6-diamidoanthaquinine prepared by Neidle and Hurley 

1.6.1. In Situ protonated Ligands 

Neidle continued his development of G4 binding ligands, initially, by modifying the planar 

aromatic core using fluorenone,76 acridone77 and acridine78 in place of the anthraquinone. Of particular 

interest was a 3,6-disubstituted acridine, known as BSU6039 which contained two amine appendages 

that were protonable in situ. The acridine core was found to participate in π-stacking interactions with 

two of the guanine residues on the terminal G-quartet and the two appendages interacted 

electrostatically with two of the G4 grooves. Further optimization of this compound was achieved by 

increasing the number of protonable appendages to three which permitted electrostatic interactions to 

occur with three of the grooves. This structure, known as BRACO-19, was found to stabilize the G4 

structure by FRET-melting assay (ΔT1/2 = 27°C)79,80 and exhibited a 31-fold binding preference for G4 

structures vs. duplex DNA as shown by SPR studies.81 This compound also demonstrated a significant 

therapeutic efficacy as an inhibitor for cancer cell proliferation.82 Figure 17 shows the structure of the 

BSU6039 and BRACO-19 acridine derivatives. 
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Figure 17. Substituted acridine derivatives 

Hurley and coworkers focused on the expansion of the aromatic core of the ligand, preparing 

perylenediimide compounds that possessed two protonable appendages. These included a compound 

known as PIPER which was found to be less effective as a telomerase inhibitor than BRACO-19, however, 

demonstrated an increase in selectivity, preferring G4 structures 42-fold more than duplex DNA.  

 

NN

O

O O

O
N

N
 

Figure 18. Structure of the perylene diimide derivative PIPER 

Teulade-Fichou and coworkers developed ligands using pentacyclic quinacridines that are 

believed to maximize the π-π stacking interactions with the guanines of the G-quartet due to their 

crescent-like shape. Figure 19 shows their most promising compound, MMQ3. This ligand has been 

shown to exhibit high G4 stabilization (ΔT1/2 = 20°C) and high telomerase inhibition activity.83 NMR 

structural studies performed on MMQ1, a dipropylamino derivative of this compound, indicates that the 

pentacylic quinacridine experiences aromatic overlap with three of the guanine residues in the G-

quartet motif.84 Other G4 binding ligands that similarly possess this crescent-like shape have also been 

studied and include indoloquinolines,85 cryptolepine86 and quindolines.87  
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Figure 19. Structure of MMQ3 

A dimeric macrocylic quinacridine, BOQ1, that was subsequently prepared by this group, showed 

an enhanced G4 stabilization (ΔT1/2 = 28°C) coupled with a 10-fold increase in G4 structure selectivity.88 

The expanded aromatic surface of this molecule, shown in Figure 20, demonstrates that with increased 

π-π stacking interactions, G4 stability is promoted and the large size of the aromatic surface sterically 

hinders duplex binding and as a result increases selectivity towards G4 structures. The binding efficiency 

of dimeric macrocylces, however, has been shown to be dependent on the aromatic unit which they 

contain. Dimers derived from quinacridine or acridines are efficient G4 binders while those containing 

phenanthroline of naphthalene demonstrate poor binding ability.84  
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Figure 20. Structure of the dimeric macrocylcic quiancridine BOQ1 

In an attempt to further increase G4 selectivity Teulade-Fichou and coworkers focused on 

introducing new structural elements to known binding ligands that increase the recognition of G4 loops 

and grooves. NCQ is a neomycin capped quinacridine that has been designed following this principle and 
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does in fact show a preference towards loop-containing G4 structures vs. non-loop containing ones.89 

This finding along with its G4 stabilization ability (ΔT1/2 = 14°C) and telomerase inhibition activity 

validated and propelled the design of G4 binding ligands to contain moieties that possess recognition 

capability for both G-quartets and grooves. The structure of NCQ is shown in Figure 21.  
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Figure 21. Structure of neomycin capped quinacridine, NCQ 

Furthermore, groove interacting scaffolds can allow for the selectivity of particular G4 

structures. This has been demonstrated by the efficiency in which tri-oxazole macrocycles containing 

three protruding amine appendages cis to one another exhibit a binding preference for G4 structures 

formed by the c-kit sequence vs. the human telomeric sequence.90  
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Figure 22. Tri-oxazole macrocycle scaffold containing three protruding cis amine appendages 
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1.6.2. N-alkylated Ligands  

As an alternative to the protonation of amine side-chains in situ, the cationic charge found on 

the ligand can be introduced by the quaternization of aromatic nitrogens via alkylation. This approach 

affords two advantages; it produces a water soluble ligand with no need for cationic appendages and 

increases the π-stacking ability of the ligand by reducing the electron density of the aromatic moiety.91   

Cationic porphyrins are found within this class of ligands and have been some of the most 

extensively studied, specifically, 5,10,15,20-tetra(N-methyl-4-pyridyl)porphyrin (TMPyP4), shown in 

Figure 23.92  
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Figure 23. Structure of 5,10,15,20-tetra(N-methyl-4-pyridyl)porphyrin (H2TMPyP4) 

This tetracationic porphyrin has demonstrated a high affinity for G4 DNA (ΔT1/2 = 17°C), 

inhibition of telomerase activity and the ability to downregulate the expression of oncogenes by 

inducing G4 formation.93 However, the compounds selectivity for G4 structures is poor, in part due to 

the various G4 binding modes it can participate in, ranging from intercalation94 to the more expected 

external stacking95 and mixtures thereof. A more in-depth discussion of porphyrins can be found in 

section 1.7.  
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Structurally similar compounds to TMPyP4 have also been identified and include for example 

TQMP, a porphyrin in which the N-methylpyridinium substituents were replaced with 

(trimethylammonium)methylphenol arms as shown in Figure 24.96  
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Figure 24. Structure of TQMP 

Structural variations of the porphyrin macrocycle have also demonstrated efficient binding to G4 

structures. These analogues differ by the nature and number of their quaternizing appendage as well as 

their ring-size. Figure 25 illustrates various polyheterocyclic macrocyclic cores used in the preparation of 

these analogues.  
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Figure 25. Polyheterocyclic cores used in the design of G4 ligands 

Analogues that have been shown to bind efficiently with high selectivity for G4 structures 

include a diselenosapphyrin known as Se2SAP which has demonstrated a 50-fold selectivity for G4 DNA 

over duplex DNA. This compound has also been shown to have higher affinity for G4 structures found at 

promoters over those at telomeres. It should be noted that the synthesis of this molecule is challenging 

and low-yielding. The structure of Se2SAP is shown in Figure 26 along with the structure of 3,4-TMPyPZ, 

a porphyrazine derivative that demonstrated a 100-fold increase in affinity to G4 structures coupled 

with a 30 fold preference for G4 over duplex DNA.  
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Figure 26. Structure of Se2SAP (left) and 3,4-TMPyPz (right)  

Aside from cationic macrocycles there are a number of N-alkylated small molecules that are 

known to bind G4 DNA. These include ethidium bromide as well as less toxic derivatives of this 

compound. Their selectivity for G4 structures is typically poor, mainly due to their preferred 

intercalative binding mode which does not substantially participate in distinguishing between G4 and 

duplex DNA.  

Another notable series of ligands are bisquinolinium compounds that contain 

pyridodicarboxamide cores. One of the most favorable ligand identified from this series is known as 

360A, shown in Figure 27. This compound has exhibited a high degree of G4 stabilization (ΔT1/2 = 21°C), a 

150-fold selectivity of G4 DNA over duplex DNA and high inhibition of telomerase activity.97 

Interestingly, this compound has also demonstrated the ability to actively induce the formation of 

tetramolecular G4 structures, acting as a chaperone for the association of the four strands.98  
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Figure 27. (A) Structure of 360A (B) Induced formation of tetramolecular quadruplex 

Finally, expansion of the central 2,6-disubstituted pyridine to a 1,10-disubstituted 

phenanthroline results in a family of compounds known as Phen-DC, which have been shown to 

geometrically match G-quartets and as a result exhibit exceptional stabilization (ΔT1/2 = 29.7°C) along 

with a 150-fold binding preference for G4 DNA.99  
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Figure 28. (A) Structure of a bisquinolinium pyridodicarboxamide compound with a central 
phenanthroline core, known as Phen-DC3 (B) Superposition of Phen-DC3 and G-quartet depicting their 

geometrical match 

34 
 



1.6.3. Ligands with Metal Center 

Organometallic complexes have also been shown to have a stabilizing effect on G4 structures. 

The underlying principle behind their affinity is the substitution of the cationic charge of the normally 

coordinated, centrally positioned cation (potassium or sodium) with partial charges found on the 

organometallic complex induced by the metal. According to molecular modeling predictions the 

complex is thought to coordinate its metal directly above the cation channel.100 Furthermore, the 

cationic or polarized state of the complex promotes binding with anionic DNA.  

The insertion of a metal in the central cavity of TMPyP4 increases its selectivity towards G4 DNA, 

specifically when coordinated with Cu(II),101 Ni(II) and Mn(III).102,103 In fact, Dixon and coworkers 

demonstrated that the pentacationic manganesen(III)-porphyrin complex, shown in Figure 29, had a 

remarkable 10,000-fold selectivity towards G4 structures over duplex DNA and is considered to be one 

of the most effective ligands for G4 binding.104 This increase in G4 selectivity is also evident in a number 

of other organometallic ligands that contain Ru(II), Fe(III), Zn(II) and Pt(II), and Ni(II) transition metals. 
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Figure 29. Structure of the pentacationic organometallic G4 ligand Mn(III) porphyrin 
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1.6.4. Non Cationic Ligands 

Almost all compounds found within this classification of G4 ligands can be considered as 

telomestatin-like macrocycles. Telomestatin itself is a naturally occurring, 8-ring 24 membered 

macroheterocycle, isolated from Streptomyces annulatus 3533-SV4.105  This polycyclic compound, 

shown in Figure 30, is comprised of five oxazole, two methyloxazole and one thiazoline rings. It has 

attracted much attention since it is considered to be one of the most selective G4 ligands, possessing 

high binding affinity for G4 DNA and none for duplex DNA. This was made evident by competitive FRET 

studies showing that the stabilization of G4 structures by telomestatin (ΔT1/2 = 24°C) was unchanged 

with the addition of 50 equivalents of competitive duplex DNA. This lack of affinity towards duplex DNA 

can be attributed to its neutral state and large shape. Telomestatin has also been shown to have the 

ability to inhibit telomerase activity and exhibits antiproliferative activity against a number of cancers.93 

The drawback to telomestatin, is that its synthesis which has been reported by Doi and 

coworkers,106 is complex and difficult to scale-up. However, there have been a few telomestatin-like 

synthetic analogues prepared by Rice and co-workers that exhibit G4 affinity and telomerase inhibition 

activity. 107 
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Figure 30. Structure of telomestatin 
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1.7. Porphyrins 

1.7.1. Basic Structure 

Porphyrins are a class of naturally occurring macrocyclic compounds involved in a wide range of 

vital biological processes, and include the well-known heme and chlorophyll compounds. The common 

feature found in all porphyrins is their planar aromatic tetrapyrrolic macrocyclic core, comprised of four 

pyrrolic subunits connected via four methine bridges as shown in Figure 31.  
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Figure 31. The structure of the Porphyrin macrocylic core 

There are two distinct regions in these macrocycles. The β positions, which consist of the 

outermost pyrrolic carbons, eight in total, numbered 2, 3, 7, 8, 12, 13, 17 and 18; and the meso-

positions, the central carbons in the methine bridges, four in total, numbered 5, 10, 15 and 20. The 

resulting aromatic macrocycle contains a total of 22 π electrons, 18 of which are delocalized within the 

system following Huckels 4n+2 rule for aromaticity. Four of these delocalized electrons are donated by 

two of the pyrroles found in the -3 oxidation state, with their lone pair electrons facing in towards the 

center of the macrocycle.  

1.7.2. UV-Visible Absorption Properties 

Porphyrins are highly chromophoric compounds that are known for their intense colors. This is 

an expected consequence of their extensively conjugated macrocyclic system. The UV-Vis spectra of free 

base porphyrins typically consist of an intense absorbance band in the near UV-region (370-430 nm), 

commonly referred to as the Soret band, with a molar extinction coefficient usually on the order of 105 
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M-1 cm-1; and four less intense absorption bands in the visible region (500-700 nm), known as the Q 

bands, with molar extinction coefficients usually on the order of 104 M-1 cm-1. The resulting UV-Vis 

spectra of porphyrins have been explained using the Gouterman’s 4-orbital LCAO model, which 

considers the possible excitation transitions between the two π-bonding HOMO orbitals (a1u and a2u) 

and the two degenerate π* antibonding LUMO orbitals (egx and egy).108 The a1u and a2u orbitals are close 

enough in energy that they can be considered as equivalent, making their excitation energy to the eg 

orbitals nearly identical.  Excitation states based on the transition from a1u → egy and a2u → egx are X-axis 

polarized, while those between a1u → egx and a2u → egy are Y-axis polarized. Electron-electron 

interactions are mixed and split in energy by configuration interaction, resulting in constructive 

interference that forms the high intensity allowed Soret band (combination of Bx and By) and destructive 

interference that results in the low intensity forbidden Q bands. Free base porphyrins are D2h 

symmetrical which results in further destructive splitting of the Qx and Qy bands leading to the four Q 

bands that are identified in order of increasing energy as Qx(0,0), Qx(1,0), Qy(0,0) and Qy(1,0).109 The 

intensity and absorption wavelengths of a given porphyrin is concentration and solvent dependent. Also, 

the absorption properties vary according to the nature of the functional groups present at the β and 

meso positions. 
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Figure 32. Left:  Drawing representing the X and Y polarization of D2h free base porphyrin Middle: 
depiction of the four Gouterman orbitals Right: illustration of the excitations from the HOMOs to the 

LUMOs and their ensuing bands 
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Figure 33. UV-Vis spectrum of a meso-substituted porphyrin (H2mTPyP) displaying the intensity of the 

Soret band and Q bands. The four Q bands are expanded in the insert. 
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1.7.3. Synthesis of Symmetrical meso-substituted Porphyrins from Monopyrroles  

The common objective in the synthesis and design of porphyrins usually centers on the 

preparation of porphyrin macrocycles possessing substituents specifically arranged around their 

periphery. The ability to control the substitution pattern allows for customizable porphyrins that can be 

prepared for specific applications. Figure 33 shows the retro-synthesis of porphyrins and illustrates how 

the macrocycle can be broken down into its primary building blocks of four pyrroles and four aldehyde 

bridging units. Substituents introduced at the β and meso position are bound to the pyrrole and 

aldehyde, respectively. Synthetic β substituted porphyrins resemble those that are naturally occurring; 

however, meso-substituted compounds are more readily synthesized and have found their way into a 

wide range of applications.  
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Figure 34. Retrosynthesis of porphyrin illustrating the 4 pyrrole and 4 aldehyde building blocks. X and Y 
represent substituents in the meso and β position, respectively, and are shown to originate from their 

aldehyde and pyrrole building blocks.   

Rothemund reported the synthesis of symmetrical meso-substituted porphyrins via the 

condensation reaction between pyrrole and a number of aldehydes.110 The reaction was carried out at 

high temperatures, under nitrogen, in a sealed tube with pyridine used as solvent. One of the products 

prepared was meso-substituted tetraphenylporphyrin (TPP) resulting from the reaction of pyrrole with 

benzaldehyde. These harsh reaction conditions typically resulted with very low yields (<10%).  
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1.7.4. Adler-Longo Synthesis 

Adler and Longo later re-examined the preparation of porphyrins using the synthesis of TPP as 

their model. They successfully developed an optimized synthetic method by modifying the reaction 

conditions through adjustments to the acidity, solvent, temperature, initial concentrations of the 

starting reagents and the availability of atmospheric oxygen. 111    

Adler and Longo experimented by reacting pyrrole and benzaldehyde under various acidic 

conditions, and found propionic acid to be the most favorable solvent. It should be noted that while the 

use of acetic acid (bp 118 °C) typically resulted with higher yields (30-40%), propionic acid (bp 141 °C) 

allowed for easier purification since the resulting porphyrin crystallized out of the reaction mixture 

when cooled.112 Furthermore,  the reactions were performed under atmospheric oxygen, specifically 

using a Dean-Stark apparatus, which not only validated that the porphyrin was a result of condensation 

reactions, but also suggested that there was an apparent need for atmospheric oxygen, implying that 

oxidation reactions were also occurring. Other findings included: (1) the reaction preferred higher 

temperatures, (2) the use of equimolar initial concentrations of starting materials gave the highest yield, 

(3) reactions carried out under nitrogen gave a yield of 5% and (4) the reaction was faster in propionic 

acid than acetic acid however the yields were reduced by half.113  

The mechanism proposed by Adler contained four chemical steps: (1) an addition step that 

results with a carbinol intermediate, (2) a condensation step between the carbinol and another pyrrole 

molecule, (3) the closure of the open-chain tetrapyrrole to form the cyclic porphyrinogen and (d) the 

oxidation of the porphyrinogen to the porphyrin.114  

Dolphin further examined the role atmospheric oxygen plays in the preparation of porphyrins by 

performing the reactions under anaerobic conditions.115 His findings proved that porphyrins were a 

product of the oxidation of porphyrinogen, which he determined to be an intermediate formed by the 

condensation of aldehyde with pyrrole. It was concluded that the presence of atmospheric oxygen was 
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necessary for this oxidation step to occur and in turn give the desired porphyrin compound. This finding 

assisted in determining the overall reaction stoichiometry for the synthesis of TPP following the Adler-

Longo, as shown in Scheme 1.  

H
N +

O

+ 3/2 O2

N

NH N

HN
+ 7 H2O44

O
OH

Reflux, 30min
20%

 

Scheme 1. Synthesis of TPP using the Adler-Longo Method 

The primary disadvantage of the Adler-Longo method is the formation of chlorin byproducts. 

This impurity, however, can be easily oxidized to the porphyrin by treatment with 2,3-Dichloro-5,6-

Dicyanobenzoquinone (DDQ) in refluxing toluene112 or can be removed by column chromatography.116  

A large number of symmetrical meso-substituted porphyrins have been synthesized following 

this method, including the 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphyrin (H2TPyP4) which can be 

subsequently methylated to afford the N-quaternized G4 binding ligand H2TMPyP4.  

1.7.5. Lindsey Method 

Unlike the Adler-Longo method, the preparation of porphyrins using the Lindsey method is a 

two-step reaction between aldehydes and pyrroles, catalyzed by a Lewis or protic acid. This method is 

typically performed by reacting pyrrole and aldehyde, at dilute equimolar concentrations (10-2 M), in 

DCM at room temperature using TFA, BCl3 or BF3 as the acid catalyst. Originally, triethyl orthoacetate 

was added to the reaction mixture to function as a water scavenger, however, this is not required but 
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did slightly increase the percent yield. The first-step of the reaction results in the formation of a 

colorless porphyrinogen that is subsequently oxidized to the porphyrin in the following step by the 

stoichiometric addition of DDQ or p-chloranil. Lindsey and coworkers’ strategy in developing their 

method centered around the following ideas: (1) that the porphyrinogen is the thermodynamically 

favored product, meaning that reaction conditions that favor reaching equilibrium prior to the oxidation 

step should afford porphyrins at a higher yield, (2) benzaldehyde and pyrrole are reactive starting 

reagents and do not require high temperatures in order for them to react and (3) the synthetic 

conditions should allow for the use of aldehydes that contain sensitive functional groups.117 This 

synthetic method afforded TPP at yields of 45-50%, furthermore it allows for the preparation of 

symmetrical meso-substituted porphyrins using aldehydes that cannot withstand the harsh acidic and 

high temperature conditions of the Adler-Longo method.  

1.7.6. Alternative Porphyrin Syntheses 

The synthesis of meso-substituted porphyrins bearing up to four distinct substituents was 

recently reviewed by Lindsey.118 One of the primary synthetic routes for their preparation is known as 

the [2+2] method, the condensation reaction of a dipyrromethane and a dipyrromethane-1,9-dicarbinol. 

The overall substitution pattern is governed by the functional groups introduced via acylation at the α-

pyrrolic positions of a dipyrromethane. For a porphyrin bearing four different substituents a 

dipyrromethane containing one substituent, A, is acylated to give the 1-acyldipyrromethane now 

bearing substituents A-B. The subsequent acylation at positions 9 gives the 1-acyl-9-

acyldipyrromethane, now containing the A-B-C substituents. This compound is then reduced to give the 

dipyrromethane-dicarbinol, followed by condensation with a dipyrromethane containing substituent D 

to give the porphyrinogen with an A-B-C-D substitution pattern. Subsequent oxidation of this compound 

affords the porphyrin.  
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Scheme 2. ABCD-Porphrin prepared via the [2+2] method. The ABC dipyrromethan-1,9-carbinol, reacts 
with the D dipyrromethane to form the porphyrinogen. Oxidation affords the ABCD substituted 

porphyrin. 

1.8. Research Purpose 

In this era of genomics and nanomedicines, a huge demand exists for the development of 

systems that allow for the manipulation of biological organisms through modifications to their genetic 

material, accomplished by chemical or biochemical means. These techniques could prove to be powerful 

tools for molecular biology, biochemistry and nanomedicine. Ongoing efforts in our research group 

focus on employing polymers for this purpose, and studying their interactions with nucleic acids in 

hopes of gaining a better understanding on how they can participate in the development of such 

systems. Polymers represent a class of compounds that can be extensively modified to meet the needs 

for novel biotechnology methods including the manipulation, recognition and delivery of nucleic 

acids.119  Polymer-based systems offer enhanced biosafety, biocompatibility, and high flexibility 

regarding the size of the delivered or targeted nucleic acids in comparison to other DNA interacting 

materials.120  They currently serve as important vectors for a number of nucleic acid technologies, such 

as transfection, gene therapy, RNAi therapies, and we believe they have the potential to assist in the 

preparation of soluble molecularly imprinted nucleic acid recognition domains. 

Spivak and Shea reported the synthesis of MIP receptors for DNA and RNA nucleotide bases in 

1998, using ethylene glycol dimethacrylate/methacrylic acid copolymer as the imprinted material.121 The 
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synthesis was performed in an organic medium using the covalent molecular imprinting approach. This 

afforded insoluble MIPs which exhibited binding affinity and selectivity to nucleotide bases. 

Unfortunately, most biomolecules are insoluble in organic solvents and because biological interactions 

are mainly based on non-covalent forces, there is a large focus on artificial recognition systems that use 

such interactions in aqueous solutions. Soluble MIP nanoparticles with affinities for specific nucleic acid 

sequences and their corresponding structures would be a much more useful biochemical reagent. These 

polymer nanoparticles may eventually act as a scaffold for artificial restriction enzymes for any arbitrary 

DNA sequence and as artificial transcription factors. 

The interactions between DNA and polymers are of a rather complex nature involving numerous 

types of non-covalent interactions including van der Waals forces, hydrophobic interactions, hydrogen 

bonding, dipole-dipole interactions, charge transfer interactions, and electrostatic interactions.122 In 

order to achieve the desired highly selective recognition by the MIP the design of the binding site to 

incorporate intermolecular interactions between template molecule and the functional groups on the 

imprinting polymer matrix is critical. Orientation in space of the functional groups participating in these 

non-covalent interactions facilitates a highly cooperative combination of the aforementioned non-

covalent forces and improves selectivity by having a complementary fit between the two.  

The use of the non-covalent molecular imprinting approach for creating MIPs is analogous to 

naturally occurring nucleic acid interactions and allows for the use of several different monomer units to 

simultaneously interact with the nucleic acid pre-polymerization by self-assembly. The greater the 

variety of non-covalent interactions between the DNA and polymer, the more efficient the artificial 

binding site becomes. This in turn should lead to a higher degree of selectivity by the imprinted 

recognition site.  Therefore, a combination of monomers may be the best approach for designing 

artificial binding sites in MIPs. Also, it should be noted that in order to achieve sequence and structure 

specific nucleic acid recognition by a MIP, the non-covalent interactions should not be limited to the 
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sugar-phosphate backbone of the nucleic acid but should also encompass the nucleotide bases. 

Otherwise nucleic acids that form similar structures may exhibit the same binding properties to 

imprinted recognition sites. Finally, the polymer(s) must also have the potential for cross-linking. Some 

polymers are readily cross-linked while other may require synthetic alterations to allow for their cross-

linking.  

This research focuses primarily towards developing a method for generating soluble imprinted 

polymer nanoparticles possessing affinities for G4 structures formed by specific nucleic acid sequences. 

Work previously done by our group examined interactions between polymers known to bind DNA, such 

as poly(ethyleneimine) (PEI) and poly(vinylpyrrolidone) (PVP), with (T4G4)4 tetramolecular G4 structures. 

Early findings suggested that strongly cationic polymers cause a disruption to the DNA structure while 

neutral polymers do not. We believed that this disruption is caused by strong electrostatic interactions 

between the polyanionic DNA and the polycationic polymer, resulting with the denaturation of the G4 

structure. Later findings suggested that the cationic polymers may be inducing a conformational change 

to the G4 by altering strand orientations. The electrostatic interactions between cationic polymers and 

anionic nucleic acids are the primary interactions that results in the observed binding of the two species. 

Neutral polymers, however, lack the ability to partake in similar interactions. We originally assumed that 

the identification of polymers that interact non-covalently with template nucleic acids in aqueous media 

would be sufficient for the development of soluble MIPs that exhibit recognition capabilities under 

physiological conditions. However, early in our investigation, the screening of commercially available 

polymers, ranging from neutral to highly cationic, led us to conclude that constructing a MIP solely 

based on polymer-DNA interactions may prove to be problematic. As a result, the alternative approach 

we adopted modifies known binding ligands, specifically tetracationic porphyrins, in an attempt to 

incorporate these structures into the imprinting process. The logic behind this approach is based on our 

perception that binding ligands can introduce a number of beneficial characteristics to the MIP. (1) They 
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can act as stabilizing factors for the G4 structure, potentially overcoming the destabilization or 

conformational changes the polymer may induce on the G4 structure and (2) they can increase the types 

of non-covalent interactions between the imprinting material and the G4 structure by targeting the 

nucleotide bases, specifically the G-quartet through external stacking, and as a result significantly 

increase the material’s selectivity. 
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2. Synthesis of cationic meso-substituted porphyrins 

2.1. Materials and Methods 

All starting reagents were purchased from Sigma-Aldrich or Alfa-Aesar and used without any 

further purification. Glassware was washed using dilute nitric acid and methanol prior to being rinsed 

with ddH2O and oven dried. The nitric acid wash is essential for removing any remaining porphyrin that 

adheres to the glass during previous use. Thin-layer chromatography was performed on aluminum 

plates that had been pre-coated with silica gel F254. Column chromatography was performed on Fisher 

60 mesh alumina. Size exclusion chromatography was performed using Sephadex LH-20 purchased from 

GE Healthcare. Lyophilization was performed using a Labconco FreeZone Freeze Dry System by placing 

the water soluble compounds in a 20 mL scintillation vial and freeze drying overnight. Porphyrin salts 

were dried further in an oven to constant weight. UV-Vis spectra were collected on an HP 8452A Diode 

Array Spectrophotometer using 1 cm pathlength quartz cuvettes in chloroform or ddH2O. 1H NMR 

spectra were acquired on a Varian Inova AS500 (500 MHz) spectrometer in CDCl3 or CD3OD. High 

resolution ESI-MS was performed at the CUNY Mass Spectrometry Facility at Hunter College on an 

Agilent 6520 Q-TOF. MS samples were prepared in chloroform or methanol. All needles and syringes 

used were sterile. Samples were filtered using PTFE syringe filters or fritted glass filters with medium 

pore size. Reactions were performed under atmospheric conditions unless otherwise specified. 

Anhydrous DMF solvent packaged under argon was employed and transferred using an inert 

atmosphere syringe for syntheses performed under an inert atmosphere of nitrogen. Porphyrins were 

shielded from light during their synthesis and when stored thereafter.   
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2.2.  Synthesis of 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphyrin (H2mTPyP4) 
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Scheme 3. Adler-Longo Synthesis of H2mTPyP4 

2.2.1. Experimental  

The synthesis of the free base H2mTPyP4 was carried out following the Adler-Longo method of 

condensation. Pyrrole (9.9 g, 0.15 mol) was added with 4-pyridinecarboxaldehyde (16.1 g, 0.15 mol) to 

800 mL of propionic acid in a 2000 mL round bottom flask fitted with a condenser and refluxed for 1.5 h. 

The solution was then allowed to cool to room temperature and the reaction mixture was vacuum 

filtered. The filter cake was washed thoroughly with methanol and then hot water affording brilliant 

purple crystals that were collected and dried in a vacuum oven for 24 h. The crude product was purified 

on a 60 mesh alumina column using 5:95 methanol in chloroform as eluent. Collected fractions were 

analyzed by TLC using the same mobile phase. Fractions found to contain pure product, giving one spot 

on TLC, were combined and concentrated in vacuo affording (2.29 g, 3.7 mmol) a 12% yield. 

2.2.2. Results and Discussion 

The formation of the H2TPyP4 was clearly demonstrated by the fluorescence it exhibits when 

dissolved in chloroform and exposed to long-wave UV light. Figure 35 displays the resulting red 

fluorescence of a prepared low concentration solution. This property allowed for the monitoring of the 
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compound as it traveled down the alumina column and was found to be a generally useful practice for 

detecting the presence of porphyrins. 

 

Figure 35. H2mTPyP4 chloroform solution exhibiting fluorescence under long-wave UV 

The appearance of the intense Soret band and less intense Q-bands was evident in UV-Vis 

absorption data collected, and were found to be in agreement with the literature.123,124 Figure 36 

provides the spectrum of a 1 O.D. solution of H2mTPyP4 prepared in chloroform. The absorption spectra 

of all porphyrins were collected at this optical density and below to avoid Soret splitting, which was 

commonly observed in solutions with higher porphyrin concentrations, which promote the formation of 

aggregates.125  It should also be noted that the product did not readily dissolve in CHCl3, rather it 

required a significant amount of agitation for complete dissolution.  
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Figure 36. Free base H2mTPyP4 UV-Visible spectrum collected in chloroform. 
Q bands are shown expanded in the insert. 

As is observed in Figure 36, the spectrum of H2TPyP4 collected in CHCl3 displayed a λmax for the 

Soret band at 418 nm and for the Q bands at 512 nm for Qy(1,0), 546 nm for Qy(0,0), 588 nm for Qx(1,0) 

and 642 nm for Qx(0,0). 

Further spectroscopic characterization was performed by 1H NMR. The analyzed sample was 

prepared by dissolving 15 mg of the column-purified product in 2 mL of CDCl3 and filtering the resulting 

solution through a 45 μm PTFE filter. The collected spectrum of H2mTPyP4, displayed in Figure 37, 

contained the anticipated characteristic peaks. There are two sets of equivalent protons on each of the 

meso-substituent pyridine rings, labeled HA and HB, found para and ortho to the nitrogen, respectively. 

Each one of these sets contains a total of eight protons resulting in the observed low field signals at 9.08 

ppm and 8.18 ppm. The 1H-pyrrole and 2H-pyrrole rings each contain two external protons, in respect 

to the macrocycle, at the β positions. In total they account for eight protons, labeled as Hc, with a 

corresponding signal found at 8.88 ppm. In principle these are nonequivalent protons, however, rapid 

transformations occur at room temperature and the signals for these eight β-protons is averaged.126 It 
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should be noted that the two different signals that correspond to the pyrrole isomers can be resolved at 

low temperatures. The internal protons of the NH groups are shielded by the overall macrocyclic current 

and their resulting proton signals are generally weak and observed at very high field (δ from -1.4 to -4.4 

ppm). As is the case with the collected spectrum for H2mTPyP4, we rarely obtained signals for any of 

these internal protons.  

 

Figure 37. 1H NMR spectrum of H2mTPyP4. The structure is shown with the protons and their 
corresponding peaks labeled. 

Mass spectrometry was also used to further confirm the successful synthesis of H2TPyP4. Figure 

38 below presents the ESI-MS full spectrum collected. Figure 39 is a zoomed spectrum focusing on the 

(M+H)+ and (M+2H)+2 peaks which were found to have masses of  619.2354 and 310.1220, respectively. 
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The target mass of the analyte was calculated to be 618.228 (exact mass calculated by ChemBioDraw 

Ultra 12.0). A collection of zoomed spectra displaying the isotope patterns is presented in the appendix. 

 
Figure 38. MS spectrum of H2mTPyP4 

 
Figure 39. MS zoomed spectrum of H2mTPyP4 

The subsequent step towards the preparation of tetracationic porphyrins, which exhibit binding 

affinity towards G4 DNA in a similar manner to H2TMPyP4, result from introducing positive charges 

through the N-alkylation of the pyridine meso-substitutents. This is typically accomplished via an SN2 

reaction, known as the Menschutkin reaction, carried out between tertiary amines and alkyl halides.127 

The tertiary amines on the H2TPyP4 pyridines are nucleophilic and react with the alkyl halide to yield the 

desired quaternary pyridinium salt. This is the most common method for their preparation. The reaction 

of substituted pyridines is shown in Figure 40.128  
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Figure 40. Menschutkin reaction of substituted pyridines 

Interestingly, this reaction is considered to be an unusual SN2 reaction where the reactants are 

uncharged and the product is charged, in contrast to the more conventional SN2 reactions where both 

the reactants and products are charged. Furthermore, the solvent effect is the opposite of typical SN2 

reactions. Charge delocalization at the transition state, resulting from solvent interactions, slows down 

the reaction in usual SN2, while in the Menschutkin reaction this solvent effect is favored due to the 

charge separation it provides.129  It should be noted that some of the literature suggests an SN1 and SN2 

mechanism duality.130 

2.3.  Synthesis of cationic tetra-aldehyde functionalized porphyrin 

Branched PEI contains primary amines that are cross-linkable. Aldehydes are commonly used as 

cross-linking agents. Research conducted previously in our lab has employed isophthalaldehyde for this 

purpose. The cross-linking process is simple and straightforward, primarily due to the amine’s high 

nucleophilicity, it is performed at room temperature by simply adding the cross-linking agent to the PEI. 

The reaction between amine and aldehyde results in the formation of an aldimine, as shown in Figure 

41. Initially, nucleophilic addition results in a carbinolamine intermediate that is subsequently 

dehydrated to the product. Bifunctional aldehyde cross-linkers, such as isophthalaldehyde, react with 

two primary amines forming the cross-link. This can occur either inter or intra molecularly with respect 

to the PEI polymeric chain(s).  
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Figure 41. Preparation of aldimine from the reaction between aldehyde and primary amine 

In an effort to prepare cationic porphyrin cross-linkers we attempted to synthesize a tetra-

functionalized porphyrin bearing four aldehyde groups. We imagine that a structure functionalized in 

this manner can participate in several approaches in the design and development of soluble G4 MIPs. 

Theoretically, it can be employed as the cross-linking agent for primary amine containing polymers that 

have already self-assembled about the G4 structure, and thus holding the polymer chains in 

complementary spatial arrangement. More importantly, it will contribute to enhancement in selectivity 

by providing a G4 binding ligand. Furthermore, the adduct’s dimensions should direct the cationic 

porphyrin to interact with the G4 structure via an end-stacking binding mode, providing specificity and 

preventing the porphyrins from intercalation into duplex DNA. Alternatively, the aldehyde functionalized 

cationic porphyrin can be used in conjunction with other cross-linking agents. Addition of the porphyrin 

to the G4 DNA should provide stabilization that can deter conformational changes induced by the 

subsequent addition of the polymer. Once the polymer has covalently reacted with the porphyrin and 

non-covalently oriented itself around the G4, the polymer itself can be cross-linked using another cross-

linking agent, generating the imprinted material.  

Our strategy in the preparation of this porphyrin involved the N-alkylation of the H2mTPyP4 by 

the Menschutkin reaction using a protected haloaldehyde, bromoacetaldehyde diethyl acetal, followed 

by deprotection, via hydrolysis to yield the meso-substituted tetraaldehyde pyridinium porphyrin salt as 

presented in Scheme 4. To our displeasure, we were unable to successfully prepare this compound in 

this manner and to the best of our knowledge, there have been no N-aldehyde functionalized meso-

substituted cationic porphyrins reported to date in the literature. Reactions between H2TMPyP4 and 

bromoacetaldehyde were attempted under various conditions; changes in temperature (40 °C, 70 °C, 
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100 °C, reflux), time (3 h, 6 h, 24 h, 72 h), and changes in molar ratios of starting material all proved 

futile. Analysis of the reaction mixtures, by TLC, UV-Vis and MS, showed no reaction was transpiring and 

the starting material remained intact. 
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Scheme 4. Attempted synthesis of meso-tetra(4-pyridyl(N-acetaldehyde))-21H,23H-porphyrin 
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2.4. Synthesis of 5,10,15,20-Tetra(4-pyridyl(N-prop-2’-ene))-21H,23H-porphyrin (H2mTAlPyP4) 

Since our initial attempts at preparing an aldehyde functionalized cross-linking porphyrin failed, 

we shifted our attention towards synthesizing a porphyrin bearing allyl functional groups. Commercially 

available allyl monomers are commonly used in the preparation of highly cross-linked allyl resins and as 

cross-linking agents for other polymers.131 Furthermore the allyl groups have the potential to act as 

initiation sites for polymerization. Unlike the porphyrin cross-linking approach, which centered on the 

idea of the porphyrin reacting with an already formed polymer, here, the porphyrin derivative can act as 

a point of origin for polymerization for other DNA-interactive monomers, forming a tentacle porphyrin 

or a polymer network containing cationic porphyrin moieties. This of course, depends on the degree of 

polymerization. Initially, we synthesized the allyl functionalized porphyrin by alkylating the H2mTPyP4 

using allyl bromide (3-bromopropene) to yield the tetracationic pyridinium porphyrin H2mTAlPyP4. 

Thereafter, we focused on further optimizing this structure for our purposes by attempting to react at 

the introduced allyl groups. Scheme 5 illustrates the synthesis of H2mTAlPyP4. 

2.4.1. Experimental 

The synthesis of 5,10,15,20-Tetra(4-pyridyl(N-prop-2’-ene))-21H,23H-porphyrin (H2mTAlPyP4) 

was carried out in a slightly modified fashion to previously reported methods found in the literature.132 

100 mg of H2mTPyP4 (161 μmol) and 140 μL of allyl bromide (10X molar excess), measured using a 

micropipette, was added to 50 mL of DMF in an oven dried 3-neck 100 mL round bottom flask, fixed 

with a condenser, thermometer and rubber septum. The reaction mixture was shielded from light and 

heated to 60 °C for 16 h while being magnetically stirred. The progress of the reaction was monitored by 

UV-Vis, with small aliquots being removed by syringe and analyzed, as well as by TLC using 6:1 CHCl3-

MeOH as eluent. Upon completion, the solution was allowed to cool to room temperature and 

precipitated by adding dropwise into 100 mL of stirred anhydrous diethyl ether. The precipitate was 

collected by vacuum filtration on a medium size (10-15 μm) glass frit and the filter cake was washed 
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thoroughly with diethyl ether and chloroform. Five mL of ddH2O was added to the residue in 1 mL 

aliquots, agitated, and the water soluble salt product, taken up in water, was collected, transferred into 

an 8 dram vial and lyophilized. The resulting highly electrostatic, low density material was dried in the 

oven overnight to remove any remaining water affording an 84% yield.  
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Scheme 5. Synthesis of H2mTAlPyP4 

2.4.2. Results and Discussion 

One of the most facile techniques for testing the formation of the cationic porphyrins is by 

examining the solubility of the product in water. The starting H2mTPyP4 exhibits no water solubility; 

however, the pyridinium salt product is highly soluble. Therefore, by taking an aliquot of the reaction 

mixture and adding it to a minimal amount of water, filtering the mixture through a 45 μM PTFE filter 

and checking the filtrate for fluorescent activity under long-wave UV light, the presence of the 

quaternized porphyrin species could be observed. An alternative technique, following the same premise, 

is to examine the partition of the reaction mixture between water and chloroform phases, looking for 

the aqueous phase to exhibit color. An indication that the reaction is complete is by observing a lack of 

color in the chloroform. Analysis by TLC also proved to be valuable. Using 6:1 CHCl3-MeOH as eluent, the 
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polar H2mTAlPyP4 was found to adhere strongly to silica, while the starting material demonstrated 

significant mobility. The gradual disappearance of the starting material spot was evident as the reaction 

proceeded. 

Spectroscopically, the UV-Vis spectra collected on reaction mixture aliquots also allowed for the 

monitoring of reaction progress. As the pyridinium cations are progressively formed a gradual 

bathochromic shift to the λmax of the Soret band is observed. Complete N-alkylation is confirmed when 

the λmax becomes static. Figure 42 displays the UV-Vis spectrum of H2mTAlPyP4 collected in ddH2O; the 

λmax absorption bands for the Soret band is found at 424 nm, 520 nm for Qy(1,0), 556 nm for Qy(0,0), 586 

nm for Qx(1,0) and 642 nm for Qx(0,0). An overlay of the absorption spectra of H2mTAlpyP4 and 

H2mTPyP4 is presented in Figure 43, demonstrating the characteristic bathochromic shift observed. 

59 
 



300 400 500 600

0.0

0.5

1.0

A
bs

or
ba

nc
e

Wavelength (nm)

 

Figure 42. UV-Vis absorption spectrum of H2mTAlPyP4 
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Figure 43. Overlaid UV-Vis spectrum demonstrating the observed bathochromic shift induced by the N-
quaternization of pyridyl rings (i.e. formation of pyridiniums) 

The collected MS spectrum of H2mTAlPyP4 is shown in Figure 44. The target mass of the analyte 

is 782.358. The base peak is the triply charged species, (M+3H)+3, with a m/z ratio of 260.4592. The 

doubly charged species was also detected with a m/z ration of 390.1844. Furthermore, inspection of the 
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full spectrum presented in Figure 45 reveals that none of the starting porphyrin material was present in 

the sample. 

 

Figure 44. MS zoomed spectrum of H2mTAlPyP4 

 

Figure 45. MS spectrum of H2mTAlPyP4 

The NMR sample was prepared by dissolving 10 mg of the compound in methanol-d4 and 

filtering through a 45 μM PTFE filter prior to analysis. The resulting spectrum indicated the presence of 

twenty additional protons associated with the four quaternizing allyl groups. This includes a convincing 

multiplet resulting from the C2 proton found at 6.56 ppm. Further inspection of the spectrum reveals 

significant broadening of the peak correlating to the pyrrolic protons. Integration of this peak, however, 
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does in fact give the expected area under the curve corresponding to eight protons. Figure 46 shows a 

zoomed spectrum displaying the aforementioned peaks. 

 

Figure 46. Zoomed NMR spectrum of H2mTAlPyP4 

2.5. Attempted epoxidation of H2mTAlPyP4 

While the direct addition of amines to alkenes is possible through metal catalyzed 

hydroamination reactions, and may have proven to be sufficient for binding the allyl bearing porphyrin 

to PEI, we were more inclined to prepare epoxides from the allyl groups due to their expanded scope of 

reactivity. For example, epoxidation could be followed by nucleophilic substitution reactions, with any 

polymer of our choosing containing nucleophilic moieties, not necessarily limited to just the amines of 

PEI. Furthermore, epoxides are more readily polymerizable than allyl groups and would enhance the 
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initiation sites for polymerization. We attempted the synthesis of a tetra-epoxide functionalized 

porphyrin by reacting H2mTAlPyP4 with the peroxyacid mCPBA as shown in Scheme 6. This reaction is 

known as the Prilezhaez reaction. 
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Scheme 6. Attempted epoxidation of H2mTAlPyP4 

We found that the main impediment to the epoxidation was the lack of solubility demonstrated 

by the cationic porphyrin in nonpolar organic solvents. Typically this reaction readily occurs in nonpolar 

solvents, where the formation of ions is inhibited. However, H2mTAlPyP4 only exhibited solubility in 

methanol and water. We experimented with different solvent systems hoping to find a balance between 

the nonpolar solvent and solubility requirement of the reaction and the starting material, respectively. 

Reactions were performed in chloroform, DCM, benzene, acetone, DMSO and DMF following 

adaptations of procedures found in the literature.133,134  Variation in the concentration of the starting 

materials, their stoichiometry, reaction temperature (0 °C and RT), as well as reaction time (24 h to 7 

days), all proved to be ineffective as indicated by 1H NMR and ESI-MS analysis. 

2.6. Synthesis of N-hydoxy pyridinium porphyrins  
 

As a result of the failed epoxidation of H2mTAlPyP4, we were forced to adopt an alternative 

scheme for the functionalization of the cationic porphyrin’s meso-substituents to allow for nucleophilic 
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substitution. We elected then to attempt the synthesis of a cationic tetra-brominated porphyrin. Since 

bromines are good leaving groups, we assumed, they would be suitable for our purposes. Initially, we 

attempted anti-Markovikov hydroboration-oxidation of H2mTAlPyP4 using BH3-THF and H2O2 to convert 

the allyl groups into primary alcohols, subsequently reacting them via the Appel reaction, using Ph3P and 

CBr4, to give the alkyl bromides. It was presumed that this would yield the tetra N-hydroxypropyl 

pyridinium porphyrin, as shown in Scheme 7. However, all attempts at this synthesis were unsuccessful. 

Consequently, we resorted to quaternizing H2mTPyP4 with 2-bromoethanol to afford 5,10,15,20-

Tetra(4-pyridyl(N-hydoxyethyl))-21H,23H-porphyrin (H2mTOEtPyP4) as shown in Scheme 8. Various 

procedures found in the literature were performed and evaluated for their efficiency. We found the 

most successful to be the method reported by Igarashi,135 where the reaction is performed in DMF at 

fairly dilute concentrations, in contrast to other reported procedures, and with a large excess of the 

alkylating agent. This method proved successful and was employed in the preparation of N-hydroxy 

pyridinium porphyrin with ethyl, propyl, and butyl alcohol meso-substituents. 
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Scheme 7. Attempted hydroboration oxidation of H2mTAlPyP4 
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Scheme 8. Synthesis of H2mTOEtPyP4 

2.6.1. Experimental 

5,10,15,20-Tetra(4-pyridyl(N-2-hydoxyethyl))-21H,23H porphyrin (H2mTOEtPyP4), the 

hydroxypropyl pyridinium porphyrin (H2mTOPrPyP4) and the butoxypropyl pyridinium porphyrin 

(H2mTOBuPyP4), were synthesized by refluxing 200 mg of H2mTPyP4 (323 μmol) with 71 mmol of the 

alkylating agent (5 mL of 2-bromoethanol, 6.4 mL of 3-bromo-1-propanol, 6.5 mL 4-bromo-1-butanol, 

respectively) in 50 mL of DMF. The reactions were carried out in an oven-dried, 3-neck, 100 mL round 

bottom flasks each fixed with a condenser, thermometer and rubber septum. Reaction mixtures were 

shielded from light and refluxed for 24 h while being magnetically stirred. The progress of the reaction 

was monitored by UV-Vis, with small aliquots being removed by syringe and analyzed, as well as by TLC 

using 6:1 CHCl3-MeOH as eluent. Upon completion, the solution was allowed to cool to room 

temperature and precipitated by adding dropwise into 100 mL of stirred anhydrous diethyl ether. The 

precipitate was collected by vacuum filtration on a medium size (10-15 μm) glass frit and the filter cake 

was washed thoroughly with diethyl ether and chloroform. Five mL of ddH2O was added to the residue 

in 1 mL aliquots, it was agitated, and the water soluble salt product, taken up in water, was collected, 

transferred into an 8 dram vial and lyophilized. The products were then purified on an alumina column. 
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Fractions that gave one spot on TLC were combined, concentrated in vacuo and dried in the oven 

overnight. 

2.6.2. Results and Discussion 

UV-Vis spectra collected in ddH2O of the prepared N-hydroxy pyridinium porphyrins are shown 

in Figure 47-49. The expected characteristic bathochromic shift associated with the quaternization of 

the pyridyl groups, i.e. the formation of the pyridinium salts, is clearly observed for the three 

compounds. All of the N-hydroxy pyridinum porphyrins were found to exhibit a Soret band λmax at 424 

nm and to have similar absorption values for their Q bands as show in Table 2. 

Table 2. Absorption spectra of N-hydroxy pyridinium porphyrins 
 λmax (nm) 

Porphyrin Soret Qy(1,0) Qy(0,0) Qx(1,0) Qx(0,0) 
H2mTOEtPyP4 424 520 554 584 648 
H2mTOPrPyP4 424 522 552 584 646 
H2mTOBuPyP4 424 520 558 586 646 
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Figure 47. UV-Vis spectrum of H2mTOEtPyP4 in ddH2O 
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Figure 48. UV-Vis spectrum of H2mTOPrPyP4 in ddH2O 
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Figure 49. UV-Vis spectrum of H2mTOBuPyP4 in ddH2O 

TLC analysis was found to be appropriate for monitoring the consumption of the porphyrin starting 

material. However, it proved insufficient for distinguishing between the alkylated species (i.e. mono to 

tetraalkylated) that are successively formed as the reaction proceeds. This is due to the lack of mobility 

equally exhibited by all of the alkylated species on polar silica plates. MS analysis played an essential 
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role for distinguishing between these species and in turn for evaluating the usefulness of the various 

methods. The first procedure employed in our synthesis, reported by Tovmasyan and coworkers136, 

suggested a 98.6% yield, however, we were unable to reproduce these results. Their method used very 

minimal amounts of solvent, short reaction times and a large excess of the alkylating agent. MS analysis 

indicated that the crude product recovered, following their protocol, was mainly composed of the 

monoalkylated species with a small presence of the dialkylated species (approximately 8% dialkylated). 

Extending the reaction time did not further enable the degree of alkylation. Furthermore, a substantial 

amount of the starting H2mTPyP4 remained. The MS spectrum collected on the crude product is shown 

in Figure 50. It clearly indicates the presence of starting material at 619.2353 m/z, the singly charged 

and doubly charged monoalkylated species at 663.2616 and 332.1356 m/z, respectively. 

 

Figure 50. Partial N- hydroxyethyl alkylation of H2mTPyP4 

The alternative method we employed, reported by Igarashi, proved more successful at 

generating the tetraalkylated product. MS analysis revealed that the collected crude product consisted 

of 65% tetralkylated and 35% trialkylated pyridinium porphyrins. None of the monoalkylated or 

dialkylated species were detected. Figure 51 shows the spectrum collected with the peaks 

corresponding to the tetralkylated product labeled. Figure 52 shows the identical spectrum with the 

peaks associated with the trialkylated product labelled.  
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Figure 51. ESI-MS spectrum of H2mTOEtPyP4 

 

Figure 52. ESI-MS spectrum of the 5,10,15-trisubstituted N-hydroxyethyl pyridinium porphyrin 

We identified a downside to this method, which is the presence of side product contaminants 

we believe result from reactions occurring between the 2-bromoethanol and DMF. This might be an 

explanation to Tovmasyan’s decision to use minimal amounts of solvent. Purification of the crude 

product by column chromatography, using alumina, was sufficient for removing these contaminants. 

Their presence was not observed during the preparation of H2mTAlPyP4, and may very well be 

attributed to the elevated temperatures at which the alkylation with the hydroxyethanols require in 

comparison to the allylbromide. 

Characterization of H2mTOEtPyP4 was further accomplished via 1H NMR. The collected spectrum 

shown in Figure 53 is in agreement with the literature. Sixteen total protons corresponding to the -
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OCH2- and -NCH2- exhibited chemical shifts of 4.39 (8H) and 5.15 ppm (8H), respectively. The unlabeled 

peaks are signals resulting from the Methanol-d4 solvent and residual water. Hydroxyl protons were not 

detected due to rapid proton exchange with the solvent. The integrated spectra of the prepared N-

hydroxy pyridinium porphyrins are provided in the appendix.  
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Figure 53. 1H NMR spectrum of H2mTOEtPyP4 

2.7. Attempted Synthesis of N-alkyl bromide pyridinium porphyrins 

Following the preparation of the N-hydroxy pyridinium porphyrins we attempted to convert the 

hydroxyl substituents to the corresponding alkyl bromides. Originally we anticipated that this would be 
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achieved by treating the alcohol with HBr, resulting in nucleophilic substitution reactions occurring at 

the hydroxyl groups, generating the alkyl bromides.  

    [5] 

While primary alcohols are the least reactive, they have been shown to undergo substitution in 

this manner via SN2, especially with a reactive hydrogen halide such as HBr. Nevertheless, treatment of 

mTOEtPyP4 with either dilute or concentrated 48% HBr(aq) did not give the desired product. Reactions 

were attempted by stirring the porphyrin in aqueous solutions of HBr at room temperature and 

subsequently refluxing the mixture to no avail. Upon addition of HBr the reaction mixtures underwent 

halochromism, changing from dark purple to green, signifying the protonation of the internal pyrrolic 

nitrogens. An appropriate concentration of acid, however, was present which was sufficient to allow for 

the protonation of the hydroxyl groups as well, with the objective of forming the hydronium leaving 

groups that allows for nucleophilic attack by the bromines. Furthermore, attempts at treating the N-

hydroxy porphyrins with NaBr and H2SO4 to generate the HBr in situ also proved futile. 

Formation of alkyl halides from alcohols is also achievable using Appel reaction reagents, Ph3P 

and CBr4.137 The reaction proceeds through an oxyphosphonium intermediate that converts the alcohol 

into a leaving group that subsequently undergoes SN2 by a bromine ion generated in situ.  

[6] 

Originally we were hesitant to attempt this reaction since it has been shown that the reaction 

between Ph3P and quaternary salts of nitrogen heterocycles results in the dealkylation of the 

heterocycles.138 Interestingly, neither halogenation nor dealkylation was observed in our attempts at 

this reaction. 

R-OH + H-X R-X + H2O

R-OH + Ph3P R-Br + Ph3PO+ CBr4 + HCBr3

71 
 



N R + Ph3P N Ph3P-R+
 

Figure 54. Dealkylation of quaternary nitrogen heterocycles by treatment with Ph3P 

These failed reactions, along with our previous attempts at the hydroboration-oxidation of 

mTAlPyP4, demonstrate the difficulties we encounter when reacting the porphyrins after their 

quaternization. Unexpectedly, well known and established methods seem to fail. At first, the solvent 

limitation was evident, as we encountered during epoxidation of mTAlPyP4. However, even reactions 

carried out in DMF and methanol were found to be ineffective. It is unclear whether this impediment is 

a direct result of the cationic charge on the nitrogens or inductive effects resulting from the aromatic 

pathway of the porphyrin macrocycle. Consequently, it was apparent that in order to prepare an N-alkyl 

bromide substituted pyridinium porphyrin we would be required to do so via alkylation and not by the 

conversion of the quaternizing functional groups to alkyl halides. Therefore, we investigated the 

quaternization of H2mTPyP4 with 1,2-dibromoethane. Understandably, modifications to previously 

adopted procedures would be required in order to prevent polymerization from occurring, since the 

alkylating agent contains two equally reactive leaving groups. As a result we chose to add a hot solution 

of dilute H2mTPyP4 dropwise into a concentrated solution of refluxing 1,2-dibromoethane, with both 

solutions prepared in DMF. The underlying reasoning behind this being that a dilute concentration of 

porphyrin in the reaction mixture should limit the alkylation of each porphyrin to react with one of the 

bromines on the dibromoethane and avoid the formation of dimers and so on. Unfortunately, we found 

this method to be inadequate and the results were identical to previous results obtained by simply 

refluxing the 1,2-dibromoethane with H2mTPyP4, that is the formation of an insoluble polymer. 
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Scheme 9. Polymerization of H2mTPyP4 with 1,2-dibromoethane  

Mesylates are better leaving groups than halides. Therefore, the mesylation of 2-bromoethanol 

provides an alkylating agent that contains two leaving groups that are unequal in their reactivity. We 

prepared 2-bromoethyl methanesulfonate with the belief that the N-alkylation can be controlled to 

selectively react with the mesylate, resulting in the formation of the tetra-alkybromide. The synthesis of 

2-bromoethyl methansulfonate was carried out following previously reported methods.139,140 Equimolar 

amounts of bromoethanol (12.5 g, 0.1 mol) and methanane sulfonylchloride (11.5 g, 0.1 mol) were 

mixed in 100 mL of diethylether and stirred at 0 °C. To this solution, triethylamine (10.6 g, .105 mol) was 

added dropwise, at this temperature, and then stirred for an additional 2 hours at room temp. The 

resulting suspension was poured into 50 mL of ddH2O and the organic phase was collected and 

subsequently washed with an additional 30 mL of ddH2O. The separated organic phase was dried over 

Na2SO4, filtered and then concentrated to afford the 2-bromoethyl methansulfonate in the form of an oil 

that was isolated with an 80% yield. 

Br OH + S
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CH3Cl
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Scheme 10. Synthesis of 2-bromoethyl methanesulfonate 
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Characterization of the product was performed via GC-MS analysis conducted by the Separation 

Science Research Group.* The collected spectrum is shown in Figure 55. Referencing MS databases, the 

software provided a 98% probability of positive identification of the analyte. Additionally, the gas 

chromatogram consisted of one single peak, which was indicative of a highly pure product that did not 

require any further purification.  

 

 
Figure 55. GC-MS spectrum of 2-bromoethyl methansulfonate 

Initially, we conducted the alkylation of H2mTPyP4 using our prepared mesylate ester, as we did 

previously with the allyl bromide, by adding the porphyrin and alkylating agent to DMF and heating at 60 

°C. We found that this temperature was insufficient for allowing this particular quaternization reaction 

to occur, leaving us with the starting reagents unreacted after 24 hours. Progressively, we increased the 

reaction temperature until quaternization was detected by TLC and UV analysis, which was found to 

transpire at 110 °C. This temperature, however, did not produce the desired selectivity we sought. 

Instead it created an insoluble polymer. Consequently, we attempted the reaction by adding a dilute 

solution of the porphyrin to a concentrated solution of the mesylate ester. Unfortunately, this also 

proved unsuccessful and we ultimately concluded that we were unable to selectively alkylate the 

porphyrin in this manner and thus, diverted our efforts away from further pursuing the preparation of 

an N-alkyl bromide substituted pyridinium porphyrin.  

* Snow N. H. and Barnes B.B. Separations Science Research Group, Seton Hall University, South Orange, NJ  
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2.8. Synthesis of 5,10,15,20-tetra(4-pyridyl(N-carboxypentylpyridinium))21H,23H-porphyrin  

Our inability to prepare an appropriately quaternized H2mTPyP4 with suitable functional groups, 

in order to generate a porphyrin cross-linker, forced us to explore alternative avenues. This led to the 

incorporation of carbodiimide coupling techniques into our strategy. This process is widely used in 

peptide coupling reactions where the carboxylic acid moiety of one amino acid is activated by a coupling 

reagent and then reacts with the amine moiety of a second amino acid to produce the desired peptide 

as illustrated in Scheme 11.141 
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Scheme 11. Peptide coupling reaction 

This technique, however, is not limited to the coupling of amino acid residues; rather, it has 

been commonly used in the formation of carboxamides and is considered as a method for the direct 

condensation between carboxylic acids and amines. Since PEI contains primary amines, preparing 

porphyrins functionalized with carboxylic acid groups would allow for the application of this coupling 

strategy for our intended purposes. Encouragingly, the conjugation of non-cationic porphyrins to 

peptides and proteins using peptide coupling regents has been previously reported.142,143 Furthermore, 

a Fluorescein-PEI coated nanoparticle has been prepared using this technique, which demonstrates PEI’s 

ability to be coupled.144  

Taking into account the unanticipated lack of reactivity exhibited by previously prepared 

cationic porphyrins, we were inclined to alkylate H2mTPyP4 with long carboxylic acid chains in order to 

minimize any of the inductive effects that may be caused by the porphyrin macrocycle and avoid any 

interactions with the cationic charge of the pyridiniums. In regards to the solvent limitations, resulting 

from the lack of solubility exhibited by the pyridinium salt in commonly used organic solvents, there are 
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a number of highly efficient, commercially available, carbodiimide coupling reagents that have been 

reported to prepare carboxamides in alcohol and water. These include 4-(4,6-dimethoxy-1,3,5-triazin-2-

yl)-4-methylmorpholinium chloride (DMT-MM), dicyclohexylcarbodiimide (DCC), and N-(3-

Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC).145,146 Accordingly, we decided that N-

alkylation using 6-bromohexanoic acid, as shown in Scheme 12, would be appropriate for yielding a 

cationic pyridinium porphyrin that satisfies the criteria for our subsequent coupling reactions.  
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Scheme 12. Synthesis of H2mTCAPyP4 

The synthesis of 5,10,15,20-Tetra(4-pyridyl(N-carboxypentylpyridinium))-21H,23H-porphyrin 

(H2mTCAPyP4) was carried out initially in a similar fashion to previous alkylations i.e. H2mTPyP4 and 

excess alkylating agent are mixed together and heated in DMF. Experimentation with reaction 

conditions, assessed using TLC and UV monitoring of the ongoing reaction, revealed the reactions 

preference for more concentrated reaction mixtures. This was contrary to our inclination since we had 

originally believed that dilute mixtures would more readily facilitate the formation of the tetra-N-

alkylated product. Our assumption was due to the gradual decrease in the solubility exhibited by the 

pyridinium porphyrin, in DMF, after each subsequent alkylation, leading us to postulate that more 

solvent is required to keep the charged alkylated species in solution. ESI-MS analysis on the crude 
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product, obtained from reactions using minimal solvent amounts, revealed the presence of a mixture of 

alkylated species. The di ,tri, and tetra N-alkyated porphyrins were detected with the trialkylated being 

the most prevalent. Only 10.3%, by abundance, of the H2mTPyP4 was found to have been fully 

quaternized as shown in Table 3. Figures 56 and 57 show the structures with their corresponding ESI-MS 

spectra and peak assignments, for the non-fully alkylated species. 

Table 3. Abundance of alkylated species in the preparation of  H2mTCAPyP4 
Compound Formula  % Abundance 

Tetraalkylated C64H70N8O8
4+ 10.3% 

Trialkylated C58H59N8O6
3+ 70% 

Dialkylated C52H48N8O4
2+ 22.7% 
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Figure 56. Structure and ESI-MS of 5,15-disubstituted N-carboxypentyl pyridinium porphyrin 
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Figure 57. Structure and ESI-MS of 5,10,15-trisubstituted N-carboxypentyl pyridinium porphyrin 
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In regards to the fully alkylated porphyrin, the MS detected four peaks corresponding to various 

protonation states possible for this compound. Complete deprotonation of all four carboxylic acid 

moieties results in a total of four negatively charged carboxylates. These cancel out the four pyridinium 

charges, resulting in an overall net charge of zero, making it essentially a zwitterion. Similarly mono-

deprotonated H2mTCAPyP4 would have an overall charge of +3. The different protonation states are 

depicted in Figure 58 along with the ESI-MS spectrum of H2mTCAPyP4, with their distinct peaks labeled. 
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Figure 58. Structures showing the various protonation states of H2mTCAPyP4 with the charges indicated 
below and ESI-MS displaying their associated peaks 

Optimization of the reaction conditions was required to push the reaction forward and increase 

the yield of the fully quaternized product. We performed the synthesis from this point forward using 

fresh, individually packaged, small bottles of anhydrous DMF packed under argon and the reaction itself 

was carried out under an inert atmosphere (N2). We found it advantageous to heat the H2mTPyP4 in 

DMF to 100 °C, as to completely solubilize the porphyrin, prior to the addition of the alkylating agent. It 
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was also determined experimentally that 40X excess of 6-bromoheaxanoic acid (by mole ratio, 10:1 by 

functionality) and a reaction time of 72 hours, to be the most favorable conditions. Furthermore, upon 

completion, the reaction was cooled to 0 °C, instead of room temperature, as was done during previous 

alkylations. These modifications afforded a crude product that was found to be 54.5% tetraalkylated.  

Isolation of the tetraalkylated species was a daunting task. Separation of the crude product 

components was possible by RP-HPLC, using previously reported conditions.147 However, the obtained 

chromatograms were highly convoluted, consisting of multiple peaks that were difficult to assign 

compounds to without the advantage of an MS detector. The multiple peaks correlate with the degree 

of alkylation, the various protonation states that each one of these species can assume and possibly 

atropisomerization, resulting from the interaction between a carboxylate folding back to associate with 

the charge on the pyridinium. Attempts at isolating the components by preparative HPLC were 

unsuccessful. As a result we resorted to size exclusion chromatography (SEC), which we found to be a 

rather sufficient technique for isolating the tetraalkylated product. Exhaustive SEC was performed on 

Sephadex LH-20 columns, isocratically, with methanol as the eluent. Analysis by ion exchange 

chromatography on the column purified product, performed by Frontier Scientific (Salt Lake City, Ut), 

revealed that the isolated material was composed of 90.1% tetraalkylated pyridinium porphyrin. 

The UV-Vis spectrum of H2TCAPyP4, collected in ddH2O, is shown in Figure 60. It exhibits the 

expected bathochromic shift associated with quaternization. The Soret band was found to have a λmax of 

424 nm, 520 nm for Qy(1,0), 556 nm for Qy(0,0), 584 nm for Qx(1,0) and 640 nm for Qx(0,0). 
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Figure 59. UV-Vis spectrum of H2mTCAPyP4 in ddH2O 

Characterization by 1H NMR was used to further confirm the successful synthesis of 

H2mTCAPyP4. The sample was prepared by dissolving 5 mg of the SEC-purified product in methanol-d4. 

The collected spectrum is shown in Figure 61. The compound contains 70 protons, 26 associated with 

the porphyrin macrocycle, 2 internal protons do not give signals and 44 associated with the four 

hexanoic acid substituents, with no signals detected for the 4 carboxylic acid protons. The integrated 

spectrum is provided in the appendix displaying the 66 detected protons. 
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Figure 60. 1H NMR spectrum of H2mTCAPyP4 

2.9. Summary 

In our pursuit of synthesizing cationic meso-substituted porphyrin cross-linkers for the 

preparation of a molecularly imprinted polymer specific for G4 DNA, we have made and explored the 

reactivity of a number of N-alkylated pyridinium porphyrins. The experimental results suggest that the 

potential for subsequent reactions involving prepared tetracationic compounds is challenging. 

Therefore, alternative methods were adopted in order to functionalize cationic porphyrins with 

carboxylic acid moieties to allow for the use of coupling reagents to facilitate their ensuing reactions 

with amine containing polymers. 
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mTPyP4 was synthesized using the Adler-Longo method. N-alkylation was achieved using the 

Menschutkin reaction. The synthesis of mTAlPyP4 was performed as previously described in the 

literature.132 Attempts at the hydroboration-oxidation of this compound and its epoxidation proved 

futile. Consequentially, we synthesized a series of N-hydroxy porphyrins, with oxyethyl (mTOEtPyP4), 

oxypropyl (mTOPrPyP4) and oxybutyl (mTOBuPyP4) substituents. Attempt to convert the alcohols to 

alkyl bromides by treatment with HBr or via the Appel reaction failed. As a result, we tried to alkylate 

using 1,2-dibromoethane. We found that we were unable to control this reaction in a manner that 

prevented polymerization from occurring. The preparation and use of 2-bromoethyl methanesulfonate 

as an alkylating agent did not exhibit the desired selectivity we sought and also resulted in an insoluble 

polymer. The only unsuccessful quaternization reaction we encountered was the alkylation of H2mTPyP4 

using bromoacetaldehyde diethyl acetal. 

The alternative strategy employing amide coupling agents required us to prepare the carboxylic 

acid functionalized, mTCAPyP4. The initial reaction conditions were found to be insufficient and required 

optimization, which we were able to achieve, resulting in a significant increase in the formation of the 

tetralkylated product from 10.3% to 54.5%. Isolation of the product was accomplished by exhaustive SEC 

using Sephadex LH-20. 

All reactions were adequately monitored by TLC and UV-Vis analysis. Characterization was 

accomplished by 1H NMR and ESI-MS. The prepared meso-substituted cationic porphyrins were 

prepared for subsequent use in DNA binding studies and the mTCAPyP4 would be specifically examined 

for its cross-linking ability. 
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3. Polymer Cross-Linking 

3.1. Screening of Polymers 

At the onset of this research we recognized the importance of identifying polymers that interact 

favorably with nucleic acids, as to not induce conformational changes in the higher order structures and 

allow for the construction of an accurate imprint. Through our initial screening of commercially available 

polymers, we quickly accepted that polymers that bind DNA are cationic and interact primarily, non-

covalently, through electrostatic interactions with anionic DNA. Consequentially, one of the perceived 

benefits to using cationic porphyrin cross-linkers is its ability to stabilize G4 structures and perhaps 

overcome the destabilizing effects of the polymer employed in the imprinting process. Table 5 below 

gives the list of polymers examined for their affinity towards DNA.  

Table 4. Polymers screened for their affinity towards DNA 

Polymer  MW 

Polyethylenimine  50,000 
Poly(4-vinylpyridine N-oxide)  200,000 
Polyvinylpyrrolidone  40,000 
Poly(2-vinylpyridine N-oxide)  300,000-400,000 
Poly(N-Isopropyl acrylamide)  40,000 
Poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino)propyl]urea] N/A 
Poly(diallydimethylammonium chloride)  100,000-200,000 
Polyacrylamide  10,000 
Poly(ethylene glycol) diglycidyl ether  526 
Polyethylenimine  1,200 
Polyethylenimine  25,000 
Poly(acrylamide-co-diallyldimethylammonium chloride)  232.75 
Poly(2-vinylpyridine)  50,000 
Poly(4-vinylpyridine)  60,000 
Chitosan  100,000-300,000 
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3.1.1. Materials and Methods 

Agarose Gel Electrophoresis 

0.5% agarose gel was prepared by adding 0.5 g SeaKem LE Agarose, purchased from Cambrex, to 100mL 

of 0.5X TBE buffer. Mixture was swirled and heated for 70 seconds in a microwave, allowed to slightly 

cool, and 10μL ethidium bromide was added. Gel was poured and solidified before samples were 

pipetted into the wells. Polyplex samples were prepared by adding 50 μL of 100 ng/μL CT DNA with 100 

μL of 100 ng/μL of polymer. Samples were incubated for 30 minutes, mixed with loading buffer, and 10 

μL were loaded onto the gel.  

UV-Vis Spectroscopy 

Hypo- and hyperchromicity studies were performed on a Cary Varian 3E UV-Vis spectrophotometer. 10 

μL of  1 mg/mL polymer was added to 1 mL of 33 μg/mL DNA in a quart cuvette. A spectrum was 

obtained for each polymer-DNA solution ranging from 220-320 nm at 25 °C.  

3.1.2. Results and Discussion 

One of the most telling pieces of data collected during the screening of these polymers came 

from gel electorophoretic experiments that clearly demonstrated the hindered mobility of DNA resulting 

from polymer binding interactions. A picture of a 0.5% agarose gel, placed on a UV transilluminator, 

resulted in the gel mobility bands shown in Figure 61. Lane 1 contains 10 μL of 10 ng/μL CT-DNA (100 ng) 

in 0.5X TBE. Lane 2-15 contain 10 μL of 10 ng/μL CT-DNA with 1 μL of 100 ng/μL solution, prepared in 

the same buffer, of a given polymer added. Lanes 2, 9, 10, 13 and 15 demonstrate how polymers that 

bind DNA completely restricted its mobility. The DNA in these samples bound to the polymer so strongly 

they forced the DNA to remain within the well. The polymers corresponding to these lanes are PEIs of 

varying molecular weights in lanes 2, 9 and 10, poly(diallydimethylammonium chloride) in lane 10 and 

Poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino)propyl]urea] in lane 15. These three polymers 

are all cationic. Their structures are given in Figure 62. None of the neutral polymers exhibited this same 
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effect or showed any detectable disruption to the mobility of DNA. Their bands were found to migrate 

similarly to the control DNA sample in lane 1.  

 

Figure 61. 0.5% agarose gel used to detect DNA-polymer binding  

A.

B. C.

 

Figure 62. Structure of (A) Poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino)propyl]urea]  
(B) PEI (C) poly(diallydimethylammonium chloride) 

UV-Vis experiments revealed that these three cationic polymers have a hyperchromic effect on 

CT-DNA, which is indicative of duplex denaturation. Even though this data suggests that the polymers 

are participating in the destabilization of the structure, it does confirm the occurrence of DNA-polymer 

interactions.  
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Figure 63. Hyperchromicity induced by cationic polymers on CT-DNA 

Figure 64 provides the change in absorbance at 260 nm resulting from the addition of 10 μL of 1 

mg/mL, of an investigated polymer, to 1 mL of 33 μg/mL CT-DNA. The data clearly reveals that neutral 

polymers have a hypochromic effect, which suggests contraction of the DNA helix. Whether this is due 

to repulsive forces exhibited on the duplex by the polymer or external stacking interactions is unclear. 

However, the prior scenario is more likely. Nevertheless, cationic PEI clearly has the most pronounced 

effect, indicating that it has the greatest amount of interaction with the DNA. 
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Figure 64. DNA and polymer difference spectra at 260 nm 

From the cationic polymers that have been found to bind DNA, PEI is the only one that contains 

amines that are available to react. The cationic nature of PEI results from the protonation of its amines 

in aqueous media, while the cationic charge found on the other two polymers is due to their prior N-

quaternization, preventing the ability to react these amines further. 

3.1.3. Poly(ethylenimine) 

PEI can be synthesized in different lengths, branched or linear, and undergo functionalized 

group substitution or addition.148 Branched PEI is prepared either by the cationic polymerization of 

aziridine (ethylene imine) at high temperatures in aqueous or alcoholic solvents or at low temperatures 

by acid catalyzed polymerization, in bulk, as shown in Scheme 13.149  
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Scheme 13. Acid catalyzed bulk polymerization of ethylene imine in aqueous solutions 

The resulting polymer contains primary, secondary and tertiary amines in approximately 1:2:1 

ratio. Linear PEI is prepared by the hydrolysis of poly(2-ethyl-2-oxazoline) and as a result is composed 

predominantly of secondary amines, with at most two terminal primary amines.150 Accordingly, we 

employed branched PEI for its primary amines and their potential for cross-linking via coupling 

reactions, with the carboxylic acid moieties found on H2mTCAPyP4. 

PEI has been widely used as a non-viral vector for gene delivery and is known to successfully 

complex DNA molecules. Boussif and coworkers demonstrated that PEI could be used to successfully 

deliver DNA in vitro and in vivo.151 It was chosen for this use primarily due to its high cationic charge 

density, which condenses DNA to form a compact polyplex structure that shields the DNA from non-

specific interactions with other molecules.152,153 Furthermore, non-protonated amines on the PEI 

provide a buffering effect, a property that allows for its participation in the “proton sponge” mechanism, 

which has been postulated to facilitate and enhance transfection efficiency.154 It should be noted that 

the basicity of amines in aqueous solutions follows the order: 2°>1°>3. The literature is inconsistent in 

regards to the reported protonation sates of PEI.155 Suh and coworkers156 suggested that 10-20% of 

branched PEI is protonated at the physiological pH of 7.4, while Nagaya and coworkers157 later proposed 
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protonation of 30% of the amines. Choosakoonkriang158 and von Harpe159 report the chain length 

dependent pKa’s for a series of PEIs is in the range of 8.2 to 9.5, which suggests that most of the amines 

(~90%) would be protonated at physiological pH, while other studies suggest that all forms of PEI have 

approximately 50% of their amines protonated. This uncertainty in the actual PEI protonation state 

causes difficulty in estimating the overall charge of PEI, which is an important factor to consider when 

determining the optimal conditions for binding with anionic DNA without causing a disruption to its 

native confirmation. Interestingly, Sun and coworkers160 have demonstrated that PEI effectively induced 

and stabilized G4 structures through the condensation effect. However, the topologies of the induced 

G4 structures differed from the topology of the G4 structure formed without being under the influence 

of PEI. This observation suggests that the G4 structure readjusts in a manner to adapt to the surrounding 

conditions i.e. the condensation effect of PEI. 

The degree of polymerization (DP) is defined as the total number of monomeric units in a 

macromolecule. It can be calculated with respect to Mw or Mn as shown in Equations 6 and 7, 

respectively. Where Mw is the weight average molecular weight, Mn is the number average molecular 

weight and M0 is the molecular weight of the monomeric unit. In polydispersed polymers the Mw is 

always greater than the Mn. Accordingly, the calculated DPw indicates a greater number of monomers 

than DPn..  

𝑫𝑷𝑾 ≡ 𝑿𝒘 = 𝑴𝒘
𝑴𝟎

  [7] 

 

𝑫𝑷𝒏 ≡ 𝑿𝒏 = 𝑴𝒏
𝑴𝟎

  [8] 

The PEI used in our studies were classified according to their MWs, therefore, calculations are 

based on DPw. The molecular weight of aziridine is 43.07 g/mol. A 10,000 MW branched PEI polymer is 

calculated to have a DPw of approximately 232 monomers. Each monomeric unit contains one nitrogen 

atom which corresponds to a total of 232 nitrogens per polymer chain, distributed appropriately 

between classifications as shown in Table 5. 
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Table 5. Amine distribution in 10,000 MW PEI 
Class of Amine % of Total Amines # of Amines 

1° 25 58 
2° 50 116 
3° 25 58 

 

3.2. Cross-linking 

Cross-linking is a process by which polymer chains are linked together through covalent or ionic 

bonds. This mechanism decreases molecular freedom, forming a network polymer with an increased 

molecular weight. Cross-linking can be accomplished through numerous processes, all of which can be 

classified as either (1) cross-linking during the polymerization process by employing polyfunctional 

instead of bifunctional monomers or (2) cross-linking in a subsequent post-polymerization process using 

preformed polymers. Typically, the former process contains cross-links that possess the same structural 

features as the main chain, while the latter process may introduce entirely new structural elements. The 

cross-linking is usually accompanied by changes to the properties of the polymeric material, including 

altered solubility and flow properties. These characteristics correlate to the cross-link density, 𝜞, which 

is the number of cross-linked monomer units per polymer chain, as described in Equation 9, where 

(𝑀�𝑛)0 is the number average MW of uncross-linked polymer and (𝑀�𝑛)𝑐 is the number average MW 

between cross-links. 

𝜞 =  (𝑴� 𝒏)𝟎
(𝑴� 𝒏)𝒄

  [9] 

The higher the cross-link density the more rigid the material becomes, with very highly cross-

linking densities leading to embrittlement. On the other hand, elastomers have a very low cross-link 

density which permits flexibility of the main polymer chains to allow for deformation.  

3.2.1. Carbodiimide-mediated coupling using EDC and Sulfo-NHS 

EDC is a water soluble carbodiimide, zero-length cross-linker, commonly used to couple 

carboxylates to primary amines. EDC reacts with carboxylic acids to form a highly reactive O-acylisourea 
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intermediate. This activated species can then react with a nucleophile, such as a primary amine to form 

an amide bond.161 The O-acylisourea intermediate is susceptible to hydrolysis in aqueous solutions; 

therefore, activated groups that do not react rapidly with amines can be hydrolyzed back to carboxylate 

groups accompanied with the release of isourea. In order to prevent this competing reaction from 

occurring, N-hydroxysulfosuccinimide (sulfo-NHS) is often included in aqueous EDC coupling 

protocols.162 Sulfo-NHS is a water soluble compound that improves the coupling efficiency by forming a 

more stable intermediate that is significantly less susceptible towards hydrolysis. This stable 

intermediate is formed from the reaction of the hydroxyl group on the sulfo-NHS with the O-acylisourea 

species resulting with a sulfo-NHS ester intermediate, which is yet another activated carboxylate 

species. This species reacts with primary amines to give the amide linkages and regenerates the sulfo-

NHS. The sulfo-NHS ester intermediate has an extended half-life measured in hours instead of a 

hydrolysis rate constant measured in seconds for the EDC activated ester.163 Furthermore, another 

advantage of adding sulfo-NHS is to maintain or increase the water solubility of the compound bearing 

the activated functional groups. EDC and EDC/sulfo-NHS cross-linking reaction schemes illustrating the 

coupling of carboxylates to primary amines are provided in Scheme 14. It should be noted that the 

isourea byproducts and the regenerated sulfo-NHS are not shown.   
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Figure 65. Structures of EDC (N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride) and Sulfo-
NHS (N-hydroxysulfosuccinimide sodium salt)  
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Scheme 14. EDC and EDC/Sulfo-NHS coupling of carboxylic acids to amines resulting with amide bond 

formation. The hydrolysis of the O-acylisourea reactive intermediate is a competing reaction when using 
EDC alone, as shown in the top-most pathway. 

3.3. Cross-linking of PEI with H2mTCAPyP4 using EDC/Sulfo-NHS 

The human telomeric repeat (TTAGG)4 has a MW of 7575. Each H2mTCAPyP4 cross-linker 

contains four carboxylic acids moieties positioned directly above each of the grooves, assuming an end-

stacking binding mode as shown in Figure 66. This provides the most π-stacking overlap between the 

porphyrin macrocycle and the terminal G-quartet. Taking these aspects into account, we rationalized 

that a 10,000 MW PEI would be the most appropriate polymer size for interaction with each of the four 

G4 grooves. Smaller PEI chains would not be sufficient for fully interacting with the entire groove, while 

larger PEI chains introduce an excess of cationic charges that result with a more profound condensation 

effect on the G4 structure.  
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Figure 66. Interaction of cationic H2mTMPyP4 and a G-quartet; the meso-substituents are located 
directly above the grooves.93  

In theory, each H2mTCAPyP4 cross-linker can intramolecularly cross-link a maximum of four PEI 

chains. The more likely scenario would be a combination of both inter- and intramolecular crosslinking 

due to the surplus of cross-linkable primary amines on each PEI chain. Initially, we performed the cross-

linking reactions in 4:1 and 1:4 PEI to H2mTCAPyP4 ratios. The former ratio representing all 

intermolecular cross-linking while the later would provide four porphyrin cross-linkers for each PEI 

chain, which would promote a greater possibility for intramolecular cross-linking. The cross-linking was 

accomplished using modified protocols from those found in the literature. It should be noted that while 

it has been shown that EDTA interferes with cross-linking using EDC alone and not with EDC/Sulfo-NHS, 

we chose to perform the reactions in EDTA free KPBS.164 Furthermore, the concentration of coupling 

reagents used for the activation of the carboxylic acids was performed in respect to functionality i.e. the 

molar ratio is four times the functionality ratio.  

The cross-linking was performed by dissolving 50 mg of 10,000 MW PEI in 1 mL of pH 7.2 EDTA 

free KPBS. To this solution 4X and .25X moles of H2mTCAPyP were added to achieve the 4:1 and 1:4 PEI 

to cross-linker ratios, respectively. 4X sulfo-NHS with respect to carboxylic acid functionality, was added 

and the solution was shaken vigorously for 15 min. Then, a 10X  EDC solution was added. The mixture 
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was vortexed intermittently for 2 hours and allowed to react further for 24 hours to ensure completion. 

The solution was then dialyzed using a 1000 MWCO dialysis membrane against two changes of 1 L 

ddH2O in 48 hours. Dialyzed solutions were then collected and concentrated by lyophilization. 

3.3.1. Results and Discussion 

Dialysis of the reaction mixture was initially intended for removal of isourea byproducts and 

unreacted coupling reagents. Interestingly, it was visibly evident that the dialysate of the 1:4 reaction 

contained porphyrin cross-linker. Its presence indicates PEIs inability to encompass all of the cross-

linking molecules at this ratio, resulting in the excess unincorporated cross-linker diffusing across the 

dialysis membrane. This implies that, on average, each polymer chain coupled to less than 4 cross-

linkers, despite the fact that there are approximately 58 primary amines available for coupling per 

polymer chain. Furthermore, prior to lyophilization, mild centrifugation of the collected 1:4 dialyzed 

reaction mixture revealed the presence of a precipitate. This is undoubtedly a direct result of PEI cross-

linking and an indication of the preparation of a highly cross-linked insoluble material. In regards to the 

4:1 reaction, the presence of H2mTCAPyP4 cross-linker was undetectable in the dialysate, visibly or by 

UV-Vis spectroscopy. Also, the dialyzed solution did not contain any precipitate. Figure 67 shows photos 

comparing the results of the dialysis and centrifugation for both reaction mixtures. It should be noted 

that while H2mTCAPyP4 has an MW of 1079.29 (solvated state), which is greater than the 1000 MWCO 

of the dialysis tube, MWCO is determined as the solute size that is retained by at least 90%. 

Furthermore, the permeability of a solute is dependent on molecular shape, degree of hydration, 

polarity and ionic charge. It is typically recommended for the MWCO used to have half the size of the 

MW of the species to be retained.165 Therefore, it is not surprising to find the unincorporated cross-

linker diffusing out of the dialysis membrane. 
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Figure 67. (A) Dialysis of the coupling reaction mixtures: The 4:1 reaction (excess porphyrin) 
demonstrates the presence of the porphyrin cross-linker in the dialysate (B) Centrifuged dialyzed 

solutions: The 4:1 reaction affords an insoluble highly cross-linked polymer precipitate 

The lack of detectable porphyrin cross-linker in the 1:4 reaction dialysate suggests that all of the 

cross-linkers were successfully coupled to the PEI. However, unlike the 4:1 excess porphyrin reaction, 

the cross-linking was not so extensive as to cause the insolubility of the cross-linked polymer. ESI-MS 

analysis was required to confirm the successful preparation of this soluble cationic porphyrin cross-

linked PEI. Small amounts of the lyophilized products were reconstituted in methanol, filtered through 

22 μm PTFE filters and submitted for analysis. The resulting spectra obtained are shown in Figures 68.  
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Figure 68. ESI-MS spectra of PEI, H2mTCAPyP4 cross-linker, cross-linked 1:4 and 4:1 PEI to H2mTCAPyP4 
polymer solutions 
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The number of charges on a polymer in ESI depends on the MW and the potential charge sites, 

including those for protonation. While low MW polymers exhibit only a singly charged ion species, 

polymers with high MW can form multiply charged species. Therefore, the spectra of these high MW 

polymers contain superimposed peaks corresponding to the various species present, resulting with 

highly convoluted spectra. Nevertheless, ESI-MS analysis proved to be insightful. The spectrum of 10,000 

MW branched PEI exhibited an average mass difference of 43 between individual polymer molecules, 

which corresponds to the MW of an ethylenimine monomer. The spectra of the soluble 1:4 porphyrin 

cross-linked PEI has mass differences between molecules that are significantly greater than 43 and the 

differences are inconsistent. This indicates that the polymer molecules differ by more than just an 

ethylenimine monomeric unit i.e. the cross-linker has been coupled to the polymer and incorporated 

into the mass. The inconsistency in mass differences from one molecule to the next is expected 

considering that each polymer chain is not necessarily cross-linked to the same extent, with some 

polymers being coupled to more cross-linkers than others in addition to the various combinations of 

inter- and intramolecular cross-linking possibilities. Furthermore, examination of the 4:1 PEI spectrum 

indicates that no PEI was present in the supernatant. The spectrum for this excess porphyrin reaction 

resembles the spectrum collected for the free H2mTCAPyP4 cross-linker. This data suggests that the 

precipitate formed during this reaction, resulting with the insoluble highly cross-linking PEI, reacted 

completely with all of the PEI, dropping it out of solution and leaving behind only excess cross-linker. 

NMR analysis was used to further confirm the successful cross-linking of PEI. The collected 1H 

NMR spectra of both PEI and cross-linked PEI from the 1:4 reaction are shown in Figures 69 and 70, 

respectively. NMR bandwidths are sensitive to cross-linking. Analyses of cross-linked polymers usually 

yield a characteristic peak broadening effect as a direct result of the cross-linking polymer having 

restricted motion in solution at the segmental level.166  Examination of the collected spectra clearly 

exhibited this peak broadening effect confirming success of our cross-linking reaction.  
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Figure 69. 1H NMR of 10,000 MW branched PEI 
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Figure 70. 1H NMR of H2mTPyP4 cross-linked PEI  

Results from these initial coupling reactions were very pleasing. The EDC/sulfo-NHS coupling 

strategy allowed us to successfully react a cationic porphyrin at its quaternizing groups, a feat that was 

previously elusive. Furthermore, it allowed for the cross-linking of PEI with the tetracarboxylic acid 

functionalized cationic porphyrin, H2mTCAPyP4. The cross-linking reactions also demonstrated that at 

lower cross-linking densities the cross-linked polymer maintained its water solubility, which is an 

essential property for the material to possess in hopes of generating a soluble MIP. A schematic 

representation of the cross-linked PEI polymer is shown in Figure 71. 

Peak Broadening 
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Figure 71. Schematic representation of H2mTPyP4 cross-linked PEI. The H2mTPyP4 cross-linker (green 
circles) forms amide bonds (red circles) via EDC/sulfo-NHS coupling with primary amines of the PEI (red 

lines). 

We proceeded by experimenting with varying the degree of cross-linking using the 1:4 porphyrin 

H2mTCAPyP4 to PEI as our benchmark. We gradually decreased the cross-linking density from 3.5% by 

mass to 0.35%. Table 6 provides information on the reagent stoichiometries used in the four cross-

linking reactions we performed. 

Table 6. Reaction stoichiometries varying the degree of cross-linking density 

RXN mTCAPyP: PEI 
(mol ratio) 

PEI 
(μM) 

mTCAPyP 
(μM) 

Carboxcylic Acid 
(μM) 

EDC 10X 
(μM) 

NHS 4x 
(μM) 

mTCAPyP 
(mg) 

Cross-Linking 
by Mass (%) 

1 1:40 5 0.125 0.50 5.0 2.0 0.17 0.350 
2 1:10 5 0.500 2.00 20.0 8.0 0.70 1.40 
3 1:7 5 0.714 2.86 28.6 11.4 1.00 2.00 
4 1:4 5 1.25 5.00 50.0 20.0 1.75 3.50 

In these cross-linking reactions the concentration of PEI was kept constant, while the 

concentration of the H2mTPyP4 and coupling reagents were varied accordingly. As anticipated, the 

cross-linking performed at these densities all provided soluble products, forming no precipitates. 

Furthermore, no porphyrin was detectable by UV in the dialysate. 

The mobilities of the resulting cross-linked PEI products were examined on a .5% agarose gel. 

Increasing the cross-linking density is expected to promote more intermolecular cross-linking and thus 

increasing the overall MW of the product. As a result higher cross-linking density results in decreased 
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mobility. Due to the overall cationic charge of the cross-linked PEI, electrophoresis was performed with 

the wells being placed at the positive electrode in order to facilitate the polymers migration towards the 

negative electrode. A constant voltage of 90 mA was applied to the gel, which was visualized on a UV 

transilluminator. This resulted in the following electrophoretic mobilities shown in Figure 72. Lane 1 

contains PEI and lanes 2, 3, 4, and 5 contains .35% (1:40), 1.4% (1:10), 2.0% (1:7) and 3.5% (1:4) cross-

linked PEI, respectively. The gel did not require any staining since the porphyrin cross-linker is UV active. 

The PEI alone in lane 1 produced no detectable bands. However, the lanes containing cross-linked PEIs 

were found to each produce a smear. This should be expected considering the polydispersity of the 

original polymer and the various combinations of inter- and intramolecular cross-links possible. The gel 

clearly demonstrated that the cross-linking density has a direct effect on the polymers mobility with the 

smears in each lane decreasing in length as a function of increasing cross-linking. 

Increasing cross-linking density

Decreasing mobility

+

-

 

Figure 72. 0.5% agarose gel showing the different mobilities of cross-linked PEI resulting from varying 
the cross-linking density. 
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3.4. Summary 

     Screening of commercially available polymer for their affinity towards nucleic acids indicated that 

electrostatic interactions with cationic polymers are the most achievable way to elicit binding events. 

The three polymers that were found to induce DNA hyperchromicity were poly[bis(2-chloroethyl) ether-

alt-1,3-bis[3-(dimethylamino)propyl]urea], poly(ethylenimine) and poly(diallydimethylammonium 

chloride), two of which carry cationic charges by previous N-quaternization. The cationic charge of PEI 

results from the protonation of its primary and secondary amines in aqueous solutions. The presence of 

primary amines in the PEI structure provides functionality that allows for coupling. Furthermore, PEI 

resulted in the greatest net change to DNA UV absorbance, indicating the highest degree of interaction. 

Carbodiimide chemistry using EDC/sulfo-NHS coupling reagents allowed for the coupling of our 

previously prepared cationic porphyrin H2mTCAPyP4. The carboxylic acid moieties were activated using 

these coupling reagents to from activated NHS-esters that allowed for nucleophilic attack by the primary 

amines of PEI, forming amide bonds. Since each cationic porphyrin contains four carboxylic acids where 

coupling can occur, this reaction provides a method to achieve the cross-linking of the PEI polymer by 

forming four amide bond cross-links intra- or intermolecularly. Highly cross-linked PEI resulted with an 

insoluble polymer while PEI cross-linked at a 1:4 H2mTCAPyP4 to PEI produced a soluble product. The 

cross-linking was confirmed by ESI-MS which exhibited changes to the mass difference between polymer 

molecules that did not correlate to the ethyleinimine monomeric molecular weight. Furthermore, 1H 

NMR analysis of the cross-linked PEI exhibited characteristic peak broadening, signifying the restricted 

motion of the material in solution prompted by the cross-linking. Variations to the cross-linking density 

also produced soluble cross-linked PEIs that demonstrated different electrophoretic mobilities on 

agarose gels, correlating to the increase in effective size with increase in cross-link density. The 

complete pathway to achieving the H2mTCAPyP4y cross-linked PEI is shown in Scheme 15. An example 

of intermolecularly cross-linked PEI is shown in the ball and stick model presented in Figure 73. 
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Scheme 15. Pathway to achieving cationic porphyrin cross-linked PEI 
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Figure 73. Ball and stick model illustrating H2mTCAPyP4 intermolecularly cross-linked PEI. Porphyrin 
carbons are shown in yellow, the cross-linking amide bond oxygens in red, nitrogen atoms in blue and 

lone pair electrons in pink. 
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4. DNA Binding Studies 

We investigated the DNA-binding properties of our prepared water-soluble cationic porphyrins 

and cross-linked PEI-porphyrin conjugates by employing UV-Vis and circular dichroism (CD) 

spectroscopy. These techniques are commonly used in thermodynamic studies and for determining the 

binding modes in porphyrin-nucleic acid interactions. We employed these methods to determine 

whether or not our prepared cationic porphyrins, primarily our porphyrin cross-linker, have affinities 

toward G4 structures. Specifically, we studied the interactions of H2mTAlPyP4, H2mTOEtPyP4, 

H2mTOPrPyP4, H2mTCAPyP4 and the H2mTCAPyP4 cross-linked PEI with the human telomeric repeat G4 

forming oligonucleotide (TTAGGG)4.  

4.1. Materials and Methods 

Preparation of Quadruplex (TTAGGG)4 

The HPLC purified unquadruplexed 5’-(TTAGGG)4 24mer was purchased from Sigma and used 

without any further purification. DNA was quadruplexed by reconstituting the dry oligonucleotide in 150 

mM KPBS buffer (1.001g K2HPO4, .5716g KH2PO4, .0405g K2EDTA in 1L ddH2O). The DNA was vortexed, to 

ensure complete dissolution, and was then heated to 95 °C where it was held at this temperature for 5 

minutes. The heating block was then turned off and the sample was allowed to equilibrate to room 

temperature, a process that takes approximately 2.5 hours. The sample was then incubated at 5 °C for 

48 hours. Verification of successful quadruplex formation was performed by CD spectroscopy. 

DNA concentrations were determined by UV spectroscopy on a Cary 3E spectrophotometer. An 

extinction coefficient of 244,6000 M-1 cm-1 was used to quantify DNA concentrations using optical 

density measurements at 260 nm. This ε value was determined using Equation 10 which utilizes the 

extinction coefficients of the individual 5’-monophosphates at 260 nm and 25 °C. This formula equates 

the extinction coefficient of the strand to the sum of the products of the extinction coefficients of single 
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5’-monophosphate by the number of bases found in the DNA strand, where N is the number of bases of 

the specific base denoted in the subscript. 

𝜺𝟐𝟔𝟎(𝒔𝒕𝒓𝒂𝒏𝒅) = (𝟏𝟓𝟒𝟎𝟎 × 𝑵𝑨) + (𝟕𝟒𝟎𝟎 ×  𝑵𝑪) + (𝟏𝟏𝟓𝟎𝟎 × 𝑵𝑮) + (𝟖𝟕𝟎𝟎 × 𝑵𝑻) [10] 

The concentration of the stock quadruplex solution was determined at 95 °C using a 1:100 dilution. 

This elevated temperature causes the denaturation of the quadruplex structure resulting with a 

hyperchromic effect that provides an accurate optical density measurement suitable for DNA 

quantification. The stock solution was prepared at a concentration of 8.81 x 10-4 M and stored at 4 °C. 

The DNA was allowed to equilibrate to room temperature prior to use.  

Porphyrin Solutions 

The extinction coefficients used for porphyrin quantification were determined by producing 

Beer’s Law plots. 1 mg of porphyrin was weighed out and dissolving into 100 mL of ddH2O. A series of 

dilutions provided the linear relationship between absorbance and concentration. The value of the 

resulting slopes allowed for the determination of the molar absorptivity using the Beer-Lambert 

equation. The measurements were performed on an HP 8452A Diode Array spectrophotometer using 1 

cm disposable cuvettes, as to prevent any residual porphyrin from the previous dilution interfering with 

the subsequent absorbance measurements. Data was collected via scan mode from 250 to 800 nm, 

averaging 10 repeated scans, using Olis Spectral Works version 4.4. After an absorbance measurement 

was collected on the original solution, 800 μL were pipetted with 200 μL of ddH2O into a new cuvette 

and a subsequent scan was taken; this process was repeated until an absorbance reading of 

approximately .01 was obtained. Collected data was exported to Origin 9.0 for plotting and analysis. 

Accordingly, 100 mL of porphyrin stock solutions were prepared at 10 OD in KPBS, and were stored 

shielded from light at room temperature.  
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UV-Vis Titrations 

Titrations were performed on an HP 8452A Diode Array spectrophotometer using 1 cm 

pathlength quartz cuvettes. Prior to each use, cuvettes were rinsed thoroughly using dilute nitric acid, 

methanol and then ddH2O. All absorption titration experiments were carried out by the stepwise 

addition of aliquots of titrant solution to a cuvette containing 1 mL of a porphyrin solution with an OD of 

1 (100 μL stock porphyrin solution in 900 μL KPBS) or .5 (50 μL stock porphyrin solution in 950 μL). For 

titrations with quadruplexed (TTAGGG)4, a 200 μL titrant solution was prepared in 150 mM KPBS by 

adding 20 μL of porphyrin stock solution to 8X DNA concentration, determined accordingly from the 

initial absorbance measurement of the porphyrin solution to be titrated. Addition of 2.5 μL of titrant 

was followed by 30 seconds of vortexing and 5 minutes of incubation time prior to each measurement 

being recorded. Each spectrum is an average of 5 scans collected between 200-800 nm using Olis 

Spectral Works 4.4. Data was subsequently exported for analysis and plotting using Origin 9.0 software. 

Titration of H2mTAlPyP4 with CT-DNA was performed by adding 20 μL aliquots of 33 mg/mL CT-DNA to a 

5 μM solution of H2mTAlPyP4. 

CD Spectroscopy 

CD spectra for evaluation of conformations of quadruplex structure were recorded at 25 °C 

using an Aviv Associates CD Spectropolarimeter. After 5 min equilibration at the sample temperature, 

the instrument collected spectral data in the 220-320 nm range every 0.5 nm, with an averaging time of 

3 sec and bandwidth of 1. The data was exported to Origin 6.1 software for buffer blank subtraction and 

3 point adjacent averaging filter smoothing. Induced CD spectra were performed at the Keck Biophysics 

Facility at Northwestern University on a Jasco J-815 Spectrometer. Spectra were collected in the range 

of 200-600 nm with 1 nm data intervals, integration time of 1 sec and a bandwidth of 2. The porphyrin-

DNA titrations were performed by adding eight 12.5 μL aliquots (100 μL total) of the titrant solution (~2 

x 10-6 M porphyrin and ~7.7 x 10-5 DNA) to 1 mL of a 0.5 OD porphyrin solution (~2 x 10-6 M) in a 5 mm 
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cuvette with 20 minute incubation times between additions. The experiment was prepared so that a 

DNA to porphyrin ratio of 4:1 was achieved after the addition of 100 μL of titrant solution. In a control 

experiment, a DNA only sample was scanned; this solution was prepared by diluting the stock DNA (8.81 

x 10-4 M) such that the final DNA concentration in this sample matches the DNA concentration in the 

end of the titration point. All data was corrected for buffer absorbance and smoothed using the 

Savitzky-Golay filter, convolution width 13, using Origin 9.0 software.  

4.2. Results and Discussion 

The preparation of quadruplexed (TTAGG)4 was confirmed by CD spectroscopy at 25°C in 150  

mM KPBS buffer. The collected spectrum displayed in Figure 74 shows a peak at 287 nm, a shoulder at 

273 nm and a trough at 236 nm. This CD spectrum is consistent with intramolecular quadruplex 

structures reported in the literature.167  
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Figure 74. CD spectrum of [(TTAGGG)4] = 4.6 x 10-7 M in 150 mM KPBS at 25°C 

Figure 75 provides the UV spectrum collected on the same (TTAGG)4 sample. The quadruplex 

exhibits a λmax at 257 nm. As with common practice, DNA concentrations were calculated using the 

measured absorbance at 260 nm. 
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Figure 75. UV absorption spectrum of [(TTAGGG)4] = 4.6 x 10-7 M in 150 mM KPBS at 25 °C 

The absorption peaks of DNA and porphyrins are distinct, as demonstrated in Figure 76, which provides 

overlaid spectra of (TTAGGG)4 and mTAlPyP4 from 220 nm to 475 nm.  
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Figure 76. Overlaid absorbance spectra demonstrating the distinct absorption peaks of quadruplexed 
(TTAGGG)4 and cationic porphyrin H2mTAlPyP4, both at a concentration of 1.9 x 10-6 M. 

Cationic porphyrin concentrations were calculated using molar extinction coefficients derived 

from the Beer’s law plots shown in Figures 77-80. Table 7 provides the extinction coefficients calculated 
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using the Beer-Lambert law shown in Equation 11, where A is the measured absorbance, ε is the molar 

extinction coefficient, b is the path length and c is the concentration.  

𝑨 = 𝜺𝒃𝒄 [11] 
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Figure 77. Beer's law plot of H2mTAlPyP4 in ddH20 
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Figure 78. Beer's law plot of H2mTOEtPyP4 in ddH2O 
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Figure 79. Beer's Law Plot of H2mTOPrPyP4 in ddH2O 
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Figure 80. Beer's law plot of H2mTCAPyP4 in ddH2O 

Table 7. Extinction coefficients of cationic porphyrins 
Porphyrin ε (M-1 cm-1) R2 

H2mTAlPyP4 257,852 .99613 
H2mTOEtPyP4 228,906 .99987 
H2mTOPrPyP4 228,933 .99987 
H2mTCAPyP4 264,430 .99918 

 
The extinction coefficient calculated for mTOBuPyP4 deviated significantly from molar absorptivity 

values expected for a porphyrin compound and was therefore excluded from any further studies.  
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The interactions of these porphyrins with quadruplex DNA were monitored from changes in the 

Soret region of the absorbance spectra. We recorded UV-Vis absorbance spectra for porphyrins in the 

presence and absence of (TTAGGG)4 at room temperature by performing the titration of porphyrins with 

G4 DNA. The titrant solutions were prepared in a manner to provide a 4:1 molar ratio of (TTAGGG)4 to 

porphyrin at the conclusion of the titration. Furthermore, in order to maintain a constant porphyrin 

concentration throughout the experiment, an identical concentration of porphyrin was added 

accordingly to the titrant solution to match the concentration of the solution to be titrated.  

The 3D plot resulted from the titration of mTAlPyP4 with (TTAGGG)4 is shown in Figure 77  and 

demonstrates the changes to the UV-Vis spectra at both the Soret band and DNA absorbance peak at 

260 nm upon each aliquot addition. The plot clearly exhibits that with each addition there is an increase 

in DNA absorbance and a corresponding decrease in the intensity of the Soret maximum.  

  

Figure 81. 3D plot of the titration of H2mTAlPyP4 with (TTAGGG)4 in 150 mM KPBS 

Closer examination of the data focusing solely on the Soret band, as shown in Figure 82, reveals 

that with each G4-porphyrin binding event a substantial bathochromic shift is coupled to the 
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hypochromicity of the Soret λmax. An arrow indicates the decrease in absorbance as a result of increasing 

G4 DNA concentration. The Soret  λmax of free H2mTAlPyP4 found at 424 and the new red shifted λmax of 

the fully bound H2mTAlPyP4 found at 436 nm are labeled. Furthermore, the presence of an isosbestic 

point at 435 nm is indicative of a two-state system (free and fully bound). Figure 83 shows these two 

states and indicates the hypochromicity, ΔA, and change in the Soret λmax, Δλ. The titration was deemed 

complete when the addition of titrant no longer resulted in bathochromic shift or hyperchromism. 
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Figure 82. Titration of H2mTAlPyP4 with (TTAGGG)4  in 150 mM KPBS 
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Figure 83. Free and fully bound H2mTAlPyP4 in 150 mM KPBS 
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The percent hypochromicity is calculated using Equation 12 where εF and εB are the extinction 

coefficients of the free and fully bound states, respectively.  

%𝑯 = �𝜺𝑩−𝜺𝑭
𝜺𝑭

� × 𝟏𝟎𝟎  [12] 

The shift in the Soret band is calculated using Equation 13 where λB and λF are the λmax values of the free 

and fully bound states, using the same subscript notation as the previous equation. 

𝜟𝝀 = 𝝀𝑩 − 𝝀𝑭  [13] 

Results from the titration of mTAlPyP4 with (TTAGGG)4 reveal a 12 nm red shift coupled with a 

34% hypochromicity. These changes observed in the visible absorption spectra indicate that our 

prepared cationic porphyrin is binding to (TTAGGG)4. The lack of specificity exhibited by mTAlPyP4 for 

G4 structures is demonstrated in Figure 84, which shows comparable changes to the Soret band when 

binding to non-quadruplex DNA through a titration carried out with CT-DNA. This result is as expected 

for a cationic porphyrin N-quaternized with a sterically non-hindering group. Similarly, the data indicates 

a 12 nm red shift, however, a more profound 45% hypochromicity is observed. 
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Figure 84. Titration of H2mTAlPyP4 with CT-DNA in 150 mM KPBS 
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The spectra for the titrations performed using the remaining cationic porphyrins with (TTAGGG)4 are 

presented in Figures 84-91. The data from these experiments are summarized in Table 8. 
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Figure 85. Titration of H2mTOEtPyP4 with (TTAGGG)4  in 150 mM KPBS  
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Figure 86. Free and fully bound H2mTOEtPyP4 in 150 mM KPBS 
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Figure 87. Titration of H2mTOPrPyP4with (TTAGGG)4  in 150 mM KPBS  
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Figure 88. Free and fully bound H2mTOPrPyP4 in 150 mM KPBS 
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Figure 89. 3D plot of the titration of H2mTCAPyP4 with (TTAGGG)4 in 150 mM KPBS 
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Figure 90. Titration of H2mTCAPyP4with (TTAGGG)4  in 150 mM KPBS 
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Figure 91. Free and fully bound H2mTCAPyP4 in 150 mM KPBS 

Table 8. Porphyrin hypochromicities and bathochromic shifts from titration experiments with G4 DNA 
Porphyrin λF λB Δλ εF εB %H 

H2mTAlPyP4 424 436 12 257,852 161,188 34 
H2mTOEtPyP4 424 430 6 228,906 134,319 41 
H2mTOPrPyP4 424 432 8 228,933 146,494 36 
H2mTCAPyP4 424 424 0 264,430 237,898 10 

 

Data from the UV titration experiments clearly demonstrated both bathochromic shifts and 

hypochromicities of Soret maximum resulting from the titration of (TTAGGG)4 with the allyl and hydroxy 

N-quaternized porphyrins. H2mTCAPyP4, on the other hand, only resulted with a 10% hypochromicity 

with no detectable shift to the λmax of the Soret band. H2mTAlPyP4 produced the largest bathochromic 

shift of 12 nm, followed by H2mTOPrPyP4 with 8 nm and H2mTOEtPyP4 with 6 nm. While H2mTOEtPyP4 

had the least red shifted Soret band, it experienced the most hypochromism, with an observed 

hypochromicity of 41%. H2mTOPrPyP4 and H2mTAlPyP4 followed with hypochromicities of 36% and 

34%, respectively.  

Over the past few decades numerous studies have investigated the interaction of porphyrins 

with nucleic acids and have documented that the primary modes of binding are intercalation, end 
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stacking and/or groove binding. The exact nature of the interaction is dependent on the G4 

molecularity, DNA base content and the ionic strength and pH of the media.168 It had previously been 

suggested that the modes of binding can be discriminated based on characteristic changes in the 

porphyrin Soret band. Intercalation is said to be indicated by large bathochromic shifts (≥ 15 nm) and 

substantial hypochromism (≥ 35%). Outside binding is characterized by smaller red shifts (≤ 8 nm) and 

small hypochromicity or even hyperchromicity. Interestingly, these values were determined for long 

pieces of duplex DNA,169 where end-stacking interactions are not significant, yet these values have been 

regularly used as benchmarks and applied towards the characterization of G4-porphyrin binding 

interactions. The changes in the Soret absorption band alone are insufficient for determining the binding 

mode. However, they are adequate for indicating whether binding events are occurring, which satisfies 

our primary purpose for conducting these titration experiments.  

The lack of a red shift during the titration of our cross-linking porphyrin, H2mTCAPyP4, was 

concerning and forced us to further examine the interaction between the cross-linker and G4 DNA by 

performing CD experiments. Our prepared porphyrins are symmetrical achiral molecules that do not 

produce CD signals alone. However, a signal can be induced from interactions with chiral asymmetrical 

G4 structures. An induced signal in the Soret region is indicative of porphyrin-G4 binding. 

Just as with the UV-Vis titrations, the titrant solutions were prepared in a manner to maintain a 

constant porphyrin concentration throughout the titration. CD scans were collected in 150 mM KPBS  at 

25 °C with 20 minute incubation time between each aliquot addition. The induced CD ellipticity spectra 

of the porphyrin-G4 DNA complexes are displayed in Figures 92-98. The first of these figure shows the 

resulting spectra collected from the titration of H2mTAlPyP4 with (TTAGGG)4,. An arrow is used to 

indicate the incremental increase in DNA concentration with each aliquot addition and the resulting 

induced CD signals in the Soret region is identified. 

118 
 



200 250 300 350 400 450 500 550 600 650

-2

0

2

4

6

8

C
D

 (m
de

g)

Wavelength (nm)

 

Figure 92. Induced CD spectra of H2mTAlPyP4 at 25 °C in 150 mM KPBS 
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Figure 93. CD spectra of free and fully bound H2mTAlPyP4  at 25 °C in 150 mM KPBS 
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Figure 94. Induced CD spectra of H2mTOEtPyP4 at 25 °C in 150 mM KPBS  
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Figure 95. CD spectra of free and fully bound H2mTOEtPyP4  at 25 °C in 150 mM KPBS 
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Figure 96. Induced CD spectra of H2mTOPrPyP4 at 25 °C in 150 mM KPBS 
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Figure 97. CD spectra of free and fully bound H2mTOPrPyP4  at 25 °C in 150 mM KPBS  
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Figure 98. CD titration of H2mTCAPyP4 at 25 °C in 150 mM KPBS 

As anticipated, spectra collected on porphyrins prior to the addition of the first aliquot of titrant 

did not produce any CD signals. The incremental addition of (TTAGG)4 was found to induce CD signals in 

the Soret region for the allyl and hydroxyl tetrasubstituted porphyrins at approximately 440 nm. The 

positive induced CD bands increase as the concentration of G4 DNA is increased. These results are 

consistent with findings published in the literature.170 However, the CD spectra for H2mTCAPyP4 

remained unchanged irrespective of the concentration of G4 DNA added. The lack of any induced 

spectral changes as a function of increasing G4 concentration indicates that the porphyrin cross-linker 

does not bind to the quadruplex structure. This result taken in conjunction with the UV-Vis titration data 

that produced no detectable bathochromic shift further confirms that H2mTCAPyP4 does not bind 

(TTAGGG)4.  

We speculate that this lack of binding is primarily due to electrostatic repulsion resulting from 

interactions between the deprotonated carboxylic acid moieties found on the H2mTCAPyP4 and anionic 

DNA. Assuming that the carboxylic acids on the porphyrin cross-linker have similar pKa values to that of 

hexanoic acid (pKa = 4.88), then in pH 7.2 KPBS buffer these carboxylic acids would be found completely 
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deprotonated. Therefore, while we have been considering H2mTCAPyP4 as being a tetracationic 

porphyrin, it in fact possesses an overall net charge of zero in our aqueous buffer solution, with the four 

carboxylates providing a -4 charge countering the +4 charge provided by the pyridiniums.  

Interestingly, previous studies using competitive dialysis experiments demonstrated the 

structural selectivity of an anionic porphyrin, N-methyl mesoporphyrin IX, for quadruplex DNA.171 This 

compound, shown in Figure 99, was found to selectively bind G4 DNA in the presence of ssDNA, dsDNA, 

DNA-RNA hybrids, Z-DNA and triplex DNA. While the level of absolute binding was low, it was not found 

to bind any form of nucleic acid except for quadruplexed G4 DNA. This suggests that binding to G4 

structures by non-cationic porphyrins, even anionic porphyrins carrying charges that repel nucleic acids, 

is viable and can most likely be attributed to π-stacking interactions, which explains the selectivity 

exhibited by this porphyrin for quadruplex structures. It should be noted that the competitive dialysis 

experiments were performed in an aqueous 200 mM Na+ phosphate buffer solution with a pH of 7.0. 

NH N

NN

O

HO OH

O

 

Figure 99. Structure of N-methyl mesoporphyrin IX 

Unlike our porphyrin cross-linker, however, this compound contains two carboxylic acid β-

substituents on adjacent pyrrole rings, leaving the opposite side of the porphyrin macrocycle free of any 

anionic charges. This provides a surface that can approach or be approached by the G4 structure 

without any ensuing repulsive forces. Since our porphyrin cross-linker is tetrasubstituted with an anionic 

charge emanating from a protruding arm on each side of the porphyrin macrocycle, we believe that 
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these deprotonated carboxylic acid appendages prevent the cross-linker from having any accessible 

surface. Thus, preventing the porphyrin and G4 structure from interacting as a result of the electrostatic 

repulsive forces encountered on all sides.  

Alternatively, the length and free rotation of the appendages make it possible for the 

carboxylates to associate with the pyridinium charges, which would in turn hinder the porphyrin 

macrocyclic core from π-stacking. This, however, does not account for the 10% hyperchromic effect 

detected in the UV-Vis titrations. The titration of H2mTCAPyP4 with (TTAGGG)4 was repeated in order to 

eliminate the possibility that the hypochromicity observed was an experimental artifact. We found that 

this effect transpired consistently during the repeated trials. The hypochromisim can most likely be 

attributed to the formation of aggregates brought on by the electrostatic repulsion forces that promote 

the self-stacking of the porphyrin. This suggests that it is probably the electrostatic forces and not the 

association of the carboxylates to the pyridiniums that primarily impede the binding with G4 DNA. 

While we were disappointed with the outcome of our binding studies and the realization that 

we would be unable to perform the EDC/Sulfo-NHS mediated crosslinking reaction in the presence of 

the G4 structure as we initially intended, we were optimistic that the cross-linked PEI would bind to the 

G4 structure. This would allow for us to perform a postcross-linking cross-linking, maintaining the spatial 

arrangement resulting from the interaction of the PEI and H2mTCAPyP4 adduct with the G4 structure. 

Since the cross-linking of PEI using H2mTCAPyP4 couples the carboxylic acids of the porphyrin cross-

linker to the primary amines of the PEI by forming amide bonds, there are no longer negatively charged 

carboxylates present on the porphyrin to repel DNA. Instead the porphyrin moieties at this point each 

carry a +4 charge.  

Upon examination of the binding of our cross-linked PEI with (TTAGGG)4 we found that no 

bathochromic shift or hypochromicity of the Soret band transpired. Rather, what we observed was a 

hyperchromic effect on the DNA absorbance peak which is similar to spectra collected when examining 
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the binding interaction of (TTAGGG)4 to uncross-linked branched PEI. Consequently, we decided to 

examine the effect the cross-linked PEI had on G4 DNA previously bound to cationic porphyrin. What we 

discovered was that the addition of the cross-linked PEI to G4 DNA bound to H2mTOEtPyP4 caused a 

disruption in the binding between the two species and results in the displacement of the H2mTOEtPyP4. 

This was evident with the hypsochromic shift of the Soret band back to its original absorbance 

maximum, from its fully bound state at 436 to it unbound state at a 424 nm. This effect is shown in 

Figure 100, where the spectrum for the cross-linked PEI addition is normalized.  
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Figure 100. Disruption of porphyrin binding to G4 DNA upon the addition of cross-linked PEI 

A similar result was observed when performing this assay using uncross-linked 10,000 MW PEI. 

Conversely, when adding neutral poly(2-ethyl-2-oxazoline), the unhydrolyzed precursor to linear PEI 

shown in Figure 101, which only contains tertiary amides, the bound porphryin was not displaced. 

Clearly, it can be deduced from these findings that the electrostatic interactions between PEI and DNA 

dominate the binding interaction and prevent the porphyrins from binding to the quadruplex. Ironically, 

PEI was chosen for its strong affinity towards nucleic acids. However, its high charge density does not 

provide an opportunity for the porphyrin moieties within the cross-linked PEI to bind with the G4 
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structure. Furthermore, the PEI interacts so strongly with G4 DNA that porphyrins previously associated 

with the quadruplex structure are displaced. 
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Figure 101. Structure of poly(2-ethyl-2-oxazoline) 

In an attempt to resolve this dilemma we proceeded by partially acetylating PEI in order to 

reduce the overall cationic charge of the polymer. By forming amides from primary and secondary 

amines on the PEI, the reacted amines will no longer be available for protonation, and as a result will not 

contribute any cationic charges. This reaction is shown in Scheme 16 and was performed following 

methods found in the literature, which affords PEIs with varying degrees of acetylation.172  
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Scheme 16. Partial acetylation of PEI 

Briefly, 500 mg of 10,000 MW PEI was added to 3 mL of anhydrous methanol in a scintillation 

vial. A sufficient amount of acetic anhydride required to achieve the desired degree of acetylation was 

added, assuming a 100% yield. The vial was sealed and the solution was stirred for 5 hours at 60 °C. The 

amount of PEI used for each reaction contained 8.7 mmol of primary and secondary amines. Table 9 

provides the amounts of acetic anhydride added accordingly, to each reaction mixture, to obtain the 

indicated percent of acetylation.  
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Table 9. Conditions for the partial acetylation of 500 mg 10,000 MW PEI 
Reaction Acetic Anhydride (mmol) % Acetylation 

1 0.7 8.0 
2 1.45 16.6 
3 2.90 33.3 
4 5.80 66.6 

 

Upon the addition of these acetylated PEI’s to fully porphyrin bound (TTAGGG)4, the Soret band 

returned to the λmax corresponding to the porphyrin in its unbound state. Clearly, these results suggest 

that the charge density of PEI remained high regardless of the partial acetylation of its primary and 

secondary amines. The electrostatic interactions between the polymer and the G4 structure prevent the 

porphyrin from maintaining its contact with the (TTAGGG)4. This can be either the result of the PEI 

denaturing the G4 structure or the preference of the G4 for the PEI over the cationic porphyrin. 

Irrespective of the cause, this simple modification performed to the branched PEI, intending to reduce 

the overall cationic charge density of the polymer, was found to be insufficient in preventing the 

displacement of bound cationic porphyrins.  
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5. Conclusion 

This research was originally intended for the development of a novel method for generating 

soluble molecularly imprinted polymers for G4 DNA. Our design focused primarily on employing a G4 

binding ligand, specifically a cationic porphyrin, as a monomeric unit in the formation of the MIP. We 

successfully synthesized water soluble cationic porphyrins, which were tetra-functionalized in a manner 

to provide sites for polymerization or for binding to preformed polymers. The screening of commercially 

available polymers for use in generating the MIP was performed by UV-Vis and gel electrophoretic 

studies. Polymers identified as nucleic acid interacting polymers were all found to be cationic. All of 

these contained quaternized amines, with the exception of PEI, which is cationic when protonated in 

solution. The strong affinity exhibited by PEI for DNA and the availability of reactive amine groups in its 

structure, led to its use for the purposes of generating a MIP.   

We successfully synthesized H2mTPyP4 using the Adler-Longo method and were able to 

introduce the cationic charge to the porphyrin via alkylation of the pyridyl groups, which formed the 

charged pyridinium species. Alkylation with allyl bromide yielded H2mTAlPyP4, while alkylation using the 

appropriate halohydrin allowed for the preparation of H2mTOEtPyP4, H2mTOPrPyP4 and H2mTOBuPyP4. 

All attempts at further reacting these cationic porphyrins, post-quaternization, were unsuccessful. These 

attempts included the epoxidation of mTAlPyP4 with mCPBA and the preparation of alkyl bromides from 

H2mTOEtPyP4 using PPh3 and CBr4.  

Consequently, we synthesized H2mTCAPyP4, a cationic porphyrin containing four carboxylic acid 

moieties that allows for carbodiimide-mediated coupling reactions. This porphyrin was prepared by 

quaternizing the H2mTPyP4 with 6-bromohexanoic acid. In order to increase the yield of the 

tetraalkylated product, optimization of the reaction conditions employed in previous alkylating 

procedures was required and was achieved by performing the reaction using fresh anhydrous DMF, 

under an inert atmosphere, with 40X excess of 6-bromoheaxanoic acid with a reaction time of 72 hours. 
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Also, the H2mTPyP4 was heated to 100 °C, in order to ensure complete dissolution of the porphyrin 

before the addition of the alkylating agent and cooled to 0 °C, in order to precipitate the product at 

completion. The prepared cationic porphyrins were characterized by 1H NMR, high resolution ESI-MS, 

and UV-Vis. 

The strategy behind the synthesis and use of H2mTCAPyP4 was based on the ability of the 

carboxylic acid functional groups to couple with the primary amines of PEI using the peptide coupling 

agent EDC. One of the main challenges in the preparation of the H2mTCAPyP4 was the isolation of the 

tetra-quaternized species, which we accomplished by performing exhaustive SEC using Sephadex LH-20, 

however, ion-exchange chromatography may have proven to be a superior method.  

The primary amines of PEI were successfully coupled to the carboxylic acid moieties of the 

H2mTCAPyP4 using EDC/sulfo-NHS mediated coupling reactions carried out in EDTA-free PBS at a pH of 

7.2. The incorporation of the sulfo-NHS in the reaction increases the coupling efficiency by converting 

the o-acylisourea intermediate to a more stable amine-reactive sulfo-NHS ester. In essence these 

coupling reactions are cross-linking reactions; hence, we successfully cross-linked PEI using a soluble 

cationic porphyrin cross-linker.  

Excess cross-linker produced insoluble products, while cross-linking with a 1:4 H2mTCAPyP4 to 

PEI ratio gave soluble cross-linked PEI. The successful cross-linking was demonstrated by gel 

electrophoresis, which correlated the cross-linked PEI’s electrophoretic mobility with the cross-linking 

density. Cross-linking was also confirmed by ESI-MS, which exhibited changes to the mass difference 

between polymer molecules that did not correlate to the ethyleinimine monomeric molecular weight. 

Furthermore, 1H NMR revealed peak broadening due to the restricted motion of the polymer in solution, 

at the segmental level, as a direct result of the cross-linking. With this novel cross-linking strategy in 

hand, which allows for the cross-linking of primary amine containing polymers, such as PEI, with a 
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cationic porphyrin cross-linker, we were eager to perform the cross-linking reaction in the presence of 

G4 DNA.  

DNA binding studies demonstrated that cationic porphyrins are not specific for quadruplex DNA 

and do bind duplex DNA. The most significant structural difference between these two nucleic acid 

structures is the G-quartet. Therefore, it is logical that the G-quartet be a key target for designing MIPs 

that can discriminate G4 structures from duplex DNA. Cationic porphyrins that contain sterically 

hindering bulky substituent groups would be more inclined to interact with G4 DNA via an external 

mode of binding rather than intercalation. We believe this to be the case for cationic porphyrin cross-

linkers intra- or intermolecularly bound to large macromolecules. With the reduction in the ability of the 

cationic porphyrin to intercalate, the ability to bind duplex DNA is dramatically hindered. Furthermore, 

in order to discriminate a specific G4 structure from a diverse group of G4s, it is necessary for the MIP to 

possess groove recognition ability. This offers the potential for enhanced selectivity among various G4 

structures. Therefore the MIP should simultaneously possess dual-site binding ligands, which can bind to 

both the terminal G-quartet and the grooves. This would most likely result with a highly specific 

material. 

The preparation of a MIP using the EDC/sulfo-NHS coupling strategy was designed in a manner 

where the polymer that interacts with the grooves is subsequently coupled to our cross-linking cationic 

porphyrin that has been previously bound to the G4 structure, presumably by external binding with the 

terminal G-quartet. Unfortunately, DNA binding studies performed on our prepared cross-linker 

revealed that the cross-linking porphyrin, H2mTCAPyP4, does not bind G4 DNA, specifically (TTAGGG)4. 

The allyl and hydroxyl functionalized porphyrins produced hypochromic and bathochromic shifts when 

titrated with (TTAGGG)4, which is indicative of porphyrin-G4 binding events. Conversely, H2mTCAPyP4, 

exhibited only 10% hypochroism with no red shift. Furthermore, CD experiments did not produce 

induced CD signal when examining the interaction of the cross-linker with G4 DNA. All other cationic 
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porphyrins examined did exhibit the expected induced CD signal in the Soret region. We speculate that 

this lack of binding is due to electrostatic repulsion forces between the deprotonated carboxylic acid 

moieties found on the cross-linker and anionic DNA. The hypochromism observed in the UV-Vis titration 

experiments is most likely a direct result of the formation of porphyrin aggregates. 

When examining the binding of the cross-linked PEI with G4 DNA, we found the interaction to 

be dominated by the PEI. UV-Vis data suggests that the porphyrin cross-linker is not provided the 

opportunity to associate with the G4 structure. The interaction of G4 DNA with cross-linked PEI appears 

to be similar to its interaction with uncross-linked PEI. Clearly, the high cationic charge density on PEI 

allows the polymer portion of the adduct to bind electrostatically with the G4 DNA, an interaction that is 

much stronger than the π-stacking interaction that the porphyrin is capable of partaking in. Attempts at 

reducing the cationic charge density of PEI by partial acetylation of its primary and secondary amines 

proved insufficient at resolving this dilemma. Furthermore, the cross-linked PEI was found to disrupt the 

binding interactions between cationic porphyrins previously bound to G4 DNA, specifically by displacing 

the ligand. This effect is also observed when examining uncross-linked PEI. However, the assessment of 

the neutral polymer, poly(2-ethyl-2-oxazoline), a linear PEI precursor, was found not to disrupt this 

binding interaction. 

We were successful at synthesizing a tetracationic pyridinium porphyrin capable of cross-linking 

amine functionalized polymers, which allowed for the preparation of water soluble cross-linked PEI, 

using carbodiimide chemistry that incorporated cationic porphyrin structures into the polymer matrix. 

However, we did not realize our overall objective of preparing a water soluble MIP for G4 DNA. The 

need to explore alternative polymers for achieving this is warranted. Such polymers should bind 

favorably to nucleic acids as to not disrupt the G4 structure and not compete or interrupt the binding of 

the porphyrin moieties. This most likely will be a weakly charged cationic polymer that can be cross-

linked with H2mTCAPyP4. These include polymers such as poly(allylamine) and poly(1,3,5-triazine-2,4-

131 
 



diamine). While the network structure of our prepared soluble cross-linked polymer still requires 

optimization, it has shown promise and demonstrates the opportunities for new soluble molecularly 

imprinted polymer designs that include quadruplex binding sites. 
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