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Abstract 

Dendritic cells (DCs) represent a population of innate immune cells that are 

highly efficient at promoting immune responses. DCs are capable of presenting antigens 

to both CD4 and CD8 T cells. DC presentation and interaction with T cells can result in 

either immune stimulation or tolerance. This study intends to phenotype a rare subset of 

DCs found in the human blood and is distinguishable by the expression of various surface 

markers including: lineage markers (Lin), HLADR, CD1c, and CD141 or BDCA-3. 

Stimulating BDCA-3 DCs with Poly I:C, a toll-like receptor (TLR) 3 agonist, resulted in 

the up-regulation of various canonical activation markers such as CD40, CD80, and 

CD86 as well as immunoglobulin-like transcript (ILT) 3 and 4 as measured by flow 

cytometry. ILTs are novel surface molecules with implicated inhibitory functions and are 

selectively expressed by APCs, such as DCs.  The surface induction of ILT3 and ILT4 

occurred in both time- and dose-dependent manner. The up-regulation of ILT3 and ILT4 

within the BDCA-3 subset of DCs resulted in the unexpected formation of various 

subsets of BDCA-3 DCs expressing: ILT3- ILT4-, ILT3- ILT4+, ILT3+ ILT4-, and ILT3+ 

ILT4+. Due to limited numbers of cells, we focused our efforts to determine the 

biological differences between ILT3---ILT4- and -ILT4+ BDCA-3 DCs after Poly I:C 

stimulation. This study will show that these two populations of BDCA-3 DCs differ in 

their cytokine secretion profile, genomic signature, and their ability to prime allogenic 

naïve T cells. 
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Introduction 

The immune system consists of an intricate network of cells that are capable of 

detecting both foreign and selfantigens.  The process of eliminating foreign antigens and 

the ability to tolerate self-antigens occur within both innate and adaptive immunity.  

Innate immunity is shared by all multi-cellular organisms and is considered to be a non-

specific first line of defense. Components of innate immunity include epithelial barriers, 

phagocytes, dendritic cells (DCs), natural killer (NK) cells, and the complement system. 

Detection of microbes through innate immunity is achieved by the use of pattern 

recognition receptors (PRRs) that detect pathogen-associated molecular patterns 

(PAMPs).  PRRs detect foreign substances, but may also detect self-components as 

danger signals in the presence of infection, inflammation, or other cellular stress 

(Mogensen, 2009). Adaptive immunity evolved in vertebrates as a means to detect and 

form a memory response against microbes that have evaded the innate response. There 

are two types of adaptive immunity, humoral and cell-mediated. Each type of adaptive 

immunity has the unique ability to achieve a memory of the response, thus subsequent re-

infections can be quickly eliminated. Cross-talk occurs between both branches of the 

immune system to orchestrate both the elimination of microbes as well as the induction of 

a memory response. This cross-talk is mediated through cells known as antigen 

presenting cells (APCs), which include B cells, monocytes, macrophages, and DCs. DCs 

are considered the primary APCs for the activation of naïve T cells. The discovery of 

human splenic DCs in 1973 by Ralph Steinman and Zanvil Cohn has led to an ever 

expanding identification of novel DC subsets (Steinman and Cohn, 1973).  APCs have 
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the unique ability to process both intracellular and internalized proteins and display 

peptides on major histocompatibility complex (MHC) molecules.  MHC molecules can 

be divided into two classes, MHC I and MHC II molecules. All nucleated cells express 

the MHC class I molecules whereas MHC class II molecules are only expressed by APCs 

(Ting and Trowsdale, 2002, Hewitt, 2003). T cells are capable of detecting peptides 

displayed on both MHC molecules through the T cell receptor (TCR).  Cytotoxic CD8+ T 

cells have a TCR that recognizes peptides presented on MHC class I molecules while 

CD4+ TCR recognizes peptides bound to MHC class II molecules (Ting and Trowsdale, 

2002, Hewitt, 2003). The extraordinary genetic diversity that contributes to the specificity 

of MHC molecules coupled with the numerous genetic rearrangements involved in the 

production of diverse TCR repertoires has enabled the immune system to keep up with 

the ever so changing microbial, viral and tumor environment (Robins et al., 2009). 

DCs have been identified to populate various organs including the skin, lung, 

intestinal tract, liver, kidney, and blood.  They can be sub-divided by their cellular 

precursors, migratory capacity, and whether or not they exhibit a DC phenotype in a 

steady-state condition.  In the broadest sense, one can classify DCs as conventional or 

non-conventional.  Conventional DCs exhibit classical DC function and are derived from 

a common DC progenitor (CDP) and can be further divided into migratory and lymphoid 

DCs.  On the other hand, non-conventional DCs, including plasmacytoid DCs (pDCs), 

are derived from a pre-DC population along with monocyte-derived DC subsets and are 

found in various peripheral organs (Kushwah and Hu, 2011). The identification of the 
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various DC populations is facilitated by the surface markers expressed on the cell 

membrane called clusters of differentiation (CD).   

This study focuses on human blood DC subsets. Blood DCs are rare leukocytes 

making up approximately 0.16-1.63% of total peripheral blood leukocytes (Haller 

Hasskamp et al., 2005). Human blood DCs consist of three distinct subsets characterized 

by their differential expression of three surface markers, termed blood dendritic cell 

antigens (BDCA), namely BDCA-1 (CD1c), BDCA-2 (CD303), and BDCA-3 (CD141). 

Each marker selectively identifies cDCs, pDCs, and CD141+ cDCs respectively. cDCs 

are primarily responsible for bacterial clearance and cross-presentation to CD8 T cells 

(Kushwah and Hu, 2011). pDCs are involved in viral elimination and upon stimulation 

produce large amounts of type I interferons (Swiecki and Colonna, 2010). 

Each subset of blood DCs expresses different levels of environment sensing 

receptors to detect PAMPs called Toll-like receptors (TLRs). Currently, through genomic 

analysis, ten human TLRs have been identified.  TLRs 1, 2, 4-6 and 11 physically reside 

on the surface of the cell membrane, while TLRs 3, 7-9 are localized to the endosomal 

compartments. All TLRs, except for TLR3, signal through the adaptor protein MyD88 or 

through a MyD88 independent pathway, which results in NF-κB activation. TLR3 and 

TLR4 signal through the TRIF-dependent pathway. The activation of NF-κB ultimately 

influences the genes encoding various cytokines. TLR signaling through different DC 

subsets results in a unique cytokine secretion profile (Kawai and Akira, 2010). TLR1 has 

been shown to be involved in detecting microbial lipoproteins potentially by associating 
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with TLR2 (Takeuchi et al., 2002). The natural ligand for TLR1 however still remains 

elusive. TLR2 has been shown to recognize a wide variety of bacterial cell wall 

components through heterodimerization with either TLR1 or TLR6 (Kadowaki et al., 

2001). TLR3 recognizes double-stranded RNA typically generated by actively replicating 

viruses and upon activation results in the production of type I Interferons (Alexopoulou et 

al., 2001). The natural ligand for TLR4 is lipopolysaccharide (LPS) from gram-negative 

bacteria which upon activation leads to the induction of pro-inflammatory cytokines (Lu 

et al., 2008). TLR5 has been shown to specifically interact with flagellin from both gram-

negative and gram-positive bacteria. Activation of TLR5 results in the production of 

TNF-α (Hayashi et al., 2001). TLR6 activation typically occurs when the receptor 

heterodimerizes with TLR2. Lipopeptides have been shown to heterodimerize TLR2 with 

TLR6 signaling through the MyD88 adaptor protein and activation of NF-κB (Takeuchi 

et al., 1999, Farhat et al., 2008). TLR7 activation was initially discovered through 

interactions with small anti-viral imidazoquinoline-derived compounds such as 

imiquimod and resiquimod (R-848). Further studies revealed that the natural ligand for 

TLR7 is single strand viral RNA. More recently, studies have shown that bacterial RNA 

can also be detected by TLR7 (Mancuso et al., 2009). TLR7 activation results in the 

secretion of type one interferons, IFN-α, by pDCs (Hemmi et al., 2002, Diebold et al., 

2004). TLR8 is both genetically and functionally similar to TLR7 as recent studies have 

shown that TLR7 can detect bacterial RNA. Similar studies have shown that TLR8 can 

detect bacterial RNA released within phagosomal vacuoles. Activation of TLR8 results in 

the release of type one interferons, specifically IFN-β (Cervantes et al., 2012). 
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Interestingly, TLR8 is involved in TLR to TLR cross-talk. Studies have shown that 

human TLR8 activation inhibits the activation of TLR7 and 9 (Wang et al., 2006). TLR9 

has been shown to selectively detect unmethylated CG dinucleotides present in microbial 

DNA. Un-methylated CG dinucleotides (CpG) are not common in the vertebrate genome 

and have been shown to be immunostimulatory through TLR9 recognition (Bauer et al., 

2001, Rutz et al., 2004).  

TLRs are mainly expressed on APCs including monocytes, dendritic cells, and B 

cells. In the blood, human BDCA-1 and BDCA-3 cDCs selectively express TLRs 2-6, 9 

and 3, respectively, and produce large amounts of IL-12 during antibacterial and antiviral 

responses (Jongbloed et al., 2010, Gupta et al., 2013).  In contrast, human BDCA-2 pDCs 

express TLR7 and TLR9 and have the ability to produce  a large amount of type 1 

interferons (IFNs) in antiviral immune responses (Colonna et al., 2004). There are 

species-specific differences in the expression of TLRs across human and murine 

leukocytes. Mouse pDCs express TLRs 3,4,7-9 while human pDCs mainly express TLRs 

7 and 9. Mouse myeloid DCs express TLR9 while human myeloid DCs do not (Ketloy et 

al., 2008). Due to the rarity of primary blood DCs, many studies rely on monocyte 

derived dendritic cells (moDCs), which can be generated in large quantities in vitro by 

exposing monocytes to various growth factors such as IL-4 and GM-CSF (Sallusto and 

Lanzavecchia, 1994). Although useful, moDCs are phenotypically and functionally 

distinct from freshly isolated primary DCs. MoDCs express TLR9 and CD209 while 

blood CD11c+ DCs do not. Blood DCs generate greater T lymphocyte proliferative 

responses as well as Th1 effectors compared to moDCs (Osugi et al., 2002, Hoene et al., 
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2006). Therefore, care must be taken interpreting data derived from moDCs and the 

translatability of those findings to primary blood DCs. 

DC TLR engagement by their respective ligands leads to the up-regulation of 

various canonical activation markers, including but not limited to CD40, CD80, and 

CD86. CD40 is a member of the TNF receptor family. Activation of CD40 by its receptor 

CD40 ligand (CD40L) results in DC cytokine secretion, co-stimulatory molecule 

migration to the cell surface, and enhanced antigen presentation (Elgueta et al., 2009). 

CD80 and CD86 provide co-stimulatory signals to T cells to enhance their proliferation, 

cytokine secretion, and maturation status (Lanier et al., 1995). Following DC activation, a 

naïve T cell that encounters a DC through TCR-MHCI/II interaction can be primed 

toward a particular phenotype. The outcome of such a priming event is dependent on the 

maturation status and the type of DC a naïve T cell encounters in the lymphoid tissue. 

CD4 T cell priming by DCs can yield various T helper (Th) phenotypes that exhibit a 

unique cytokine secretion profile. Th1 T cells predominately secrete IFN-ɣ and are 

typically involved in autoimmune disease pathogenesis and host defense against 

intracellular pathogens. Th2 T cells secrete IL-4 and IL-5 and are associated with atopic 

diseases and are involved in the expulsion of extracellular parasite elimination. Th17 

cells produce IL-21 and IL-17 and are involved in extracellular bacterial and fungi 

elimination, as well as certain autoimmune disease. Finally T regulatory cells secrete 

TGF-β and IL-10 and are involved in immune tolerance (Zhu and Paul, 2008).  
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Along with pro-inflammatory signals, DCs are also capable of promoting 

tolerogenic responses. cDCs and pDCs under certain environmental conditions have been 

reported to prime naïve T cells into T regulatory cells (Tregs) (Kushwah and Hu, 2011).  

Recently, a subset of DCs has been shown to express the immunoglobulin-like transcript 

(ILT) receptors. ILTs, such as ILT3 and ILT4, have been demonstrated to be expressed 

on monocytes and DCs. The cytoplasmic region of ILT molecules contains a putative 

immuno-receptor tyrosine-based inhibitory motif, suggesting an inhibitory function of 

ILT receptors. Consistent with the proposed inhibitory function, ILT3 has been shown to 

induce immunosuppression, including T cell anergy, regulatory T cell (Treg) induction, 

and reduced allo-stimulatory capacity (Chang et al., 2002, Manavalan et al., 2003). ILT4 

expression has also been implicated in the role of DCs to prime Tregs, however its 

prevalence within the literature is quite limited (Manavalan et al., 2003). 

The current study focuses on the phenotypic and functional characterization of the 

BDCA-3 subset of blood DCs. Each subset of blood DCs expresses different levels of 

TLRs. Transcriptional profiling of various TLR receptors within a particular DC subset 

and responsiveness to multiple TLR agonists suggests two hypotheses (A) on per cell 

basis BDCA-3 DCs express multiple TLRs or (B) there may exist various BDCA-3 DC 

subsets each with a unique TLR expression. The recent discovery of a human 

XCR1+CD141+ DC subset expressing TLR3 within the conventional DC population 

supports the latter hypothesis (Bachem et al., 2010). This discovery raises the possibility 

that multiple yet-to-be-identified populations of BDCA-3 DCs may exist. We intend to 

show that stimulating primary human blood BDCA-3 DCs with Poly I:C, a TLR3 
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agonist, results in the formation of various populations identifiable by inhibitory 

receptors ILT3 and ILT4. These populations will be phenotypically assessed for genomic 

differences as well as their ability to secrete cytokines and prime T cells. Finally, the 

current study contributes to the overall understanding of various human DC subsets. 
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Materials and Methods 

i. Isolation and Culture of Human Cells.  

Total blood leukapheresis from healthy anonymous donors was purchased from 

Research Blood Components LLC (Brighton, MA).  Total peripheral blood mononuclear 

cells (PBMCs) were isolated after lysis of red blood cells. Cells were first washed in PBS 

containing 0.5% human serum albumin. Next, red blood cells were lysed in ACK buffer 

at 37oC for 10 minutes. Cells were then spun down at 300g for 5 minutes and  

resuspended  in StemCell wash buffer.  Total DCs were first enriched using the Human 

Myeloid DC Enrichment Kit (StemCell Technologies, Vancouver, BC) according to the 

manufacturer’s instructions. Enriched DCs were then stained antibodies including lineage 

markers (Lin) (BD Bioscience, San Jose, CA), HLADR (BD Bioscience, San Jose, CA), 

CD1c (Biolegend, San Diego, CA), CD11c (Miltenyi, San Diego, CA), CD123 (BD 

Bioscience, San Jose, CA), and CD141 (Miltenyi, San Diego, CA). Labeled cells were 

sorted on a BD FACS ARIA II (BD Biosciences, San Jose, CA). pDCs were sorted based 

on the expression of cell surface markers, such as Lin-, CD123+, and HLADR+ . cDCs 

were sorted based on cell surface markers such as Lin-, CD123dim, HLADR+, CD1c+, 

and CD11c+. BDCA-3 DCs were sorted based on cell surface markers as Lin-, 

CD123dim, HLADR+, CD1c-, and CD141+. The purity of collected pDCs, cDCs, and 

BDCA-3 DCs was consistently greater than 98% based on post sort analysis. The post 

sort purity was determined by acquiring a sorted sample.  

ii. Real time polymerase chain reaction for TLR gene expression (mRNA). 
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Total RNA was extracted from a total of 1x106 freshly purified pDCs, cDCs and 

BDCA-3 DCs utilizing the RNeasy Plus Mini kit (Qiagen, Valencia, CA). The RNA was 

reversely transcribed to cDNA utilizing SuperScript VILO (Invitrogen, Grand Island, 

NY). TLRs 1-10 expression was analyzed using Applied Biosystem’s TaqMan Gene 

Expression Master Mix and primer/probes. PCR parameters were 50 oC for 2min, 

followed by 95 oC for 10min proceeding to 40 cycles of 95 oC for 15 s and 60 oC for 1 

min. RPLPO was used as an internal control. Taqman assays were performed on a 

BioRad Real-Time PCR System CFX384 (Biorad, Hercules, CA). To determine the 

relative expression of each gene, the 2−ΔΔCt approach (ΔCq method) was employed (Livak 

and Schmittgen, 2001). 

iii. Gene array experiments. 

Purified BDCA-3 DCs were cultured in complete XVIVO-15 (5% human serum 

(Sigma) + 1% Pen/Strep) (Invitrogen, Grand Island, NY) media containing 10 µg/mL 

Poly I:C at 37oC for 18 hours. Cells were washed and sorted by the expression of ILT3 

and ILT4 (R&D Systems, Minneapolis, MN). Total RNA was extracted from ILT3- ILT4-

, ILT3+ ILT4-, ILT3+ ILT4+ and ILT3- ILT4+ BDCA-3 DCs utilizing the RNeasy Plus 

Mini kit (Qiagen, Valencia, CA). RNA was frozen and sent to the Boston University 

MicroArray Core for further processing. Briefly, all procedures were performed at 

Boston University Microarray Resource Facility as described in GeneChip® Whole 

Transcript (WT) Sense Target Labeling Assay Manual (Affymetrix, Santa Clara, CA), 
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Nugen Ovation Pico WTA System User Guide, Nugen WT-Ovation ExonModule User 

Guide and Nugen Encore Biotin Module User Guide (Nugen, San Carlos, California).  

iv. Microarray Analysis. 

Affymetrix GeneChip Human Gene 1.0 ST CEL files were normalized to produce 

gene-level expression values using the implementation of the Robust Multiarray Average 

(RMA) (Irizarry et al., 2003) in the Affy package (version 1.36.1) (Gautier et al., 2004) 

included within in the Bioconductor software suite (version 2.12) (Gentleman et al., 

2004) and an Entrez Gene-specific probeset mapping (version 17.0.0) from the Molecular 

and Behavioral Neuroscience Institute (Brainarray) at the University of Michigan (Dai et 

al., 2005). Array quality was assessed by computing Relative Log Expression (RLE) and 

Normalized Unscaled Standard Error (NUSE) using the affyPLM Bioconductor package 

(version 1.34.0). Principal Component Analysis (PCA) was performed using the prcomp 

R function with expression values that were unadjusted or were adjusted for donor (by 

creating linear models using the lmFit function in the limma package (version 3.14.4), 

treating donor as a fixed effect) and had then been normalized across all samples to a 

mean of zero and a standard deviation of one. Linear mixed-effects modeling and the 

associated analysis of variance were carried out using the anova.lme function in the nlme 

package (version 3.1-97). Pairwise differential gene expression was assessed by 

performing Student t tests on the coefficients of linear models created using lmFit, 

correcting for donor as a fixed effect. Correction for multiple hypothesis testing was 

accomplished using the Benjamini-Hochberg false discovery rate (FDR). All microarray 
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analyses were performed using the R environment for statistical computing (version 

2.15.1). 

v. Identification of Differentially Expressed Genes (DEG).  

For comparative analysis, general linear models for microarray data were performed 

for probe sets present on the microarray to identify probe sets that were differentially 

expressed between the groups, based on moderated t-statistics.  Probe sets with a 1.5-fold 

change and a P value less than 0.05 were considered biologically significant. Principal 

Component Analysis (PCA) was then performed. PCA is a mathematical transform that 

collapses the variance between samples across a set of large set of variables (here, all 

~20,000 genes on the array) into a much smaller set of variables called Principal 

Components (PCs). These "meta-variables" are arranged such that PC1 explains the most 

variance in the data, followed by PC2, etc. PCA was performed using all genes across all 

samples, either before or after adjusting the expressions for donor (using a simple linear 

model), and plots were made of PC1 vs. PC2 

vi. Blood DC TLR activation assay and Poly I:C time course. 

After confirming the post sort purity of >98%, 1x105 BDCA-1, BDCA-2, and BDCA-

3 DCs were plated in 96 well v-bottom plates in complete X-VIVO 15 media (Lonza, 

Allendale, NJ). TLR agonists, PAM3CSK4, Poly I:C, LPS, Flagellin, Resiquimod, and 

CpG2216 (Invivogen, San Diego, CA) were added at a final concentration of 3µg/mL. 

Plates were incubated at 37oC for 18 hours. Cells were then prepared as stated in the 

Flow Cytometry section. Plots show the mean of the fold induction from unstimulated 
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cells calculated using PRISM v6.0, error bars represent SEM. Time course: 1x106 

Purified BDCA-3 DCs were added to a FACS tube in complete X-VIVO media. An 

aliquot of cells was removed and stained as stated in the Flow Cytometry section to 

acquire an unstimulated sample. Poly I:C was then added at a final concentration of 

10µg/mL and cells were incubated at 37oC. An aliquot of cells was removed every hour, 

stained, and acquired for the next 8 hours.  After 18 hours, a final aliquot was taken and 

cells were stained as stated in the Flow Cytometry section.  

vii. BDCA-3 DC activation assay followed by ILT4 sorting. 

After confirming the post sort purity of >98%, 1x105 BDCA-3 DCs were plated in 96 

well v-bottom plate in complete X-VIVO 15 media (Lonza, Allendale, NJ) (5% human 

serum, 2mM L glutamine and 1x penicillin/streptomycin). TLR agonists, Poly I:C and 

LPS, (Invivogen, San Diego, CA) were added at a final concentration of 10µg/mL. Plates 

were incubated at 37oC for 18hrs. Cells were then harvested and stained with ILT4 (R&D 

Systems, Minneapolis, MN). After staining, BDCA-3 DCs were sorted based on the 

expression of ILT4 for subsequent analysis. 

viii. Cytokine production assays. 

Immediately following sorting, total BDCA-3 DCs were added to a FACS tube 

containing Poly I:C at a final concentration of 10µg/mL in complete X-VIVO 15 media. 

BDCA-3 DCs were incubated at 37oC for 18 hours to allow for the formation of ILT4 

positive cells. Stimulated BDCA-3 DCs were then re-sorted by their expression of ILT4 

directly into complete X-VIVO 15 media without further stimulation. 2x104 cells in 
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200µL complete X-VIVO 15 media were added to a 96 well plate and incubated for 18 

hours at 37oC. Supernatants were harvested and cytokine profiles were assayed with the 

ProcartaPlex Human Cytokine/Chemokine/Growth Factor Panel (eBiosciences, San 

Diego, CA) on a Bioplex 200 System running Bioplex Manager Version 6. Statistics 

were performed by running a two-tailed paired student t-test in GraphPad Prism version 

6.0. Results with a p value < 0.05 were considered significant. Intracellular FACS 

staining of BDCA-3 DCs was performed as follows. Following sorting, total BDCA-3 

DCs were added to a FACS tube containing Poly I:C at a final concentration of 10µg/mL 

in complete X-VIVO 15 media. BDCA-3 DCs were incubated at 37oC for 18 hours to 

allow for the formation of ILT4 positive cells. Golgistop was then added for 6 hours.  

Cells were then washed and surface stained with ILT3, ILT4 (R&D Systems, 

Minneapolis, MN), CD141 (Miltenyi, San Diego, CA). Following surface staining, cells 

were stained with a viability stain that persists through fixation, Live/Dead (Life 

Technologies, Waltham, MA) as per the manufacturer’s protocol. Finally, cells were 

intracellularly stained with IFN-γ (BioLegend, San Diego, CA), IL-4 (eBiosciences, San 

Diego, CA), IL-10 (BD, San Jose, CA), IL-13 (BD, San Jose, CA), IL-5 (BioLegend, San 

Diego, CA), and TNF-α (BioLegend, San Diego, CA).  Data was collected using a BD 

LSRII and analysis was performed with FlowJo Software V9.7 (Treestar, Ashland, OR). 

ix. In vitro priming of naïve CD4+ and CD8+ T cells.  

An aliquot of total PBMC was enriched using Human Pan T cell Pre-Enrichment Kit 

(StemCell Technologies, Vancouver, BC) for the preparation of allogenic naïve CD4+ 



23 
 

and CD8+ T cells. Total CD4+ and CD8+ T cells were stained and FACS sorted on a BD 

FACS ARIA II. Naïve T cells were designated as CD25-, CD127+, CD62L+, and 

CD49dlow.  BDCA-2 and BDCA-3 DCs were isolated as stated previously. Bulk BDCA-

2 and BDCA-3 DCs were incubated at 37oC for 18 hours with 3µg/mL CpG2216 or 

10µg/mL Poly I:C respectively. After TLR stimulation, BDCA-3 DCs were sorted into 

pure populations of ILT4+ and ILT4-. BDCA-2 DCs were washed of CpG2216 prior to 

the addition of allogenic T cells. Allogenic naïve CD4+ and CD8+ T cells were incubated 

with allogenic BDCA-2 and BDCA-3 DCs (ILT4+ and ILT4-) at a 1:5 DC to T cell ratio 

at 37oC in complete X-VIVO 15 media. After 7 days, primed T cells were harvested and 

analyzed for cell surface phenotype as well as intracellular staining. 

x. Flow Cytometry. 

BDCA-1, BDCA-2, and BDCA-3 DC activation status was assessed using surface 

stain markers CD40, CD80, CD86, CCR7, ILT3, and ILT4 from BD Biosciences and 

R&D Systems. Cells were stained with fluorescent antibodies for 30 minutes on ice, 

washed twice with BD FACS staining buffer (DPBS contains 2% FBS and 0.09% sodium 

azide) and then acquired on a BD LSR II. Mean fluorescence intensity and cell 

percentages were determined by FlowJo V9.7 (Treestar, Ashland, OR). Cytokine 

production by day 7 primed T cells was assessed by intracellular cytokine staining after 

initial staining with Cell Trace violet to detect proliferation (Life Technologies, Waltham, 

MA).  Day 7 primed T cells were stimulated with PMA (50ng/mL; EMD Millipore, 

Billerica, MA) and Ionomycin (1µM; Sigma, St. Louis, MO) in the presence of Golgi 
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Stop (1 µl/mL; BD Bioscience, San Jose, CA) for 6 hours. After incubation, cells were 

first surface stained with antibodies to CD25 (BD, San Jose, CA) and HLAG 

(BioLegend, San Diego, CA), 30 minutes on ice. Next, cells were cultured using 

Live/Dead stain (Life Technologies, Waltham, MA) according to manufacturer’s 

protocol.  Finally, cells were stained intracellularly with antibodies against IL-4 

(eBiosciences, San Diego, CA), IL-5 (eBiosciences, San Diego, CA), IL-10 

(eBiosciences, San Diego, CA), IL-13 (BD, San Jose, CA) and IFN-γ (BD, San Jose, 

CA). Data was collected using BD LSRII and analysis was performed with FlowJo 

Software V9.7 (Treestar, Ashland, OR). 

xi. EC50 calculations. 

All reported EC50 were calculated using the following: 

The 4-parameters logistic model has been chosen to fit standard dose-response curves:  

 

a is the lower asymptote; can be constrained by the user (Bottom).  

b is the slope at the inflexion point of the curve (Slope) (eg: Hill’s Slope or n-Hill).  

c is the difference between upper and lower asymptote (Delta) ; cannot be constrained 

directly but via the constraint on upper asymptote (Top) which is “a+c”.   
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d is the logarithm of the concentration estimated at inflexion point (CE50 relative); this 

parameter cannot be constrained. 

Results were obtained using the 4-parameter logistic model according to Ratkovsky and 

Reedy (Ratkowsky and Reedy, 1986). The adjustment was obtained by non-linear 

regression using the Levenberg-Marquardt algorithm in SAS v9.2 software. 
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Results 

i. Blood dendritic cells express a wide range of TLRs 

Isolating sufficient numbers of highly enriched pDCs and cDCs for functional assays 

requires a large number of input PBMCs. pDCs and cDCs only make up approximately 

0.1-0.3% of total PBMCs in healthy individuals, respectively (Rovati et al., 2008). A 

two-step enrichment process was devised to facilitate the isolation of sufficient quantities 

of both cDCs and pDCs from a leukapheresis pack.  First, total blood DCs were enriched 

by negative selection, followed by flow cytometry sorting of the enriched DC fractions 

for pDCs (Lin-, CD123+, HLADR+), cDCs (Lin-, CD123-, HLADR+, CD1c+, CD11c+), 

and BDCA-3 cDCs (Lin-, CD123-, HLADR+, CD1c-, CD141+),  (Fig. 1).  

Previous studies suggested that primary cDCs and pDCs exhibit distinct patterns of 

toll-like receptor (TLR) expression (Kadowaki et al., 2001) as compared to in vitro 

moDCs (Chang et al., 2000, Osugi et al., 2002).  We therefore wanted to confirm, as 

previously reported, the TLR expression profile of highly purified pDC and cDC 

populations to ascertain their phenotype prior to TLR agonist profiling. qPCR on the 

sorted primary blood DCs revealed that cDCs expressed a wide range of TLRs including 

TLR1, TLR2, TLR4, and TLR10.  In contrast, pDCs mainly expressed TLRs 7 and 9, and 

BDCA-3 cDCs expressed mainly TLR1, TLR3, and TLR10 (Fig. 2).  Given that BDCA-3 

cDCs expressed a limited repertoire of TLRs, we focused our initial efforts to 

characterize the BDCA-3 cDC response to Poly I:C, a TLR3 agonist. 
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Figure 1: Blood DC gating strategy for FACS sorting.      Leukapheresis packs were 
lysed of red blood cells and then depleted for DC enrichment. pDCs were sorted based on 
the expression of cell surface markers Lin-, CD123+, HLADR+. cDCs were sorted based 
on cell surface markers as Lin-, CD123dim, HLADR+, CD1c+, and CD11c+. BDCA-3 DCs 
were sorted based on cell surface markers as Lin-, CD123dim, HLADR+, CD1c-, and 
CD141+. Figure is representative of one donor out of four. (Colletti et al., 2016) 
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Figure 2: Blood DC subsets express different levels of TLRs.                                  
RNA extracted from sorted pDCs, cDCs, and BDCA-3 DCs was reverse transcribed for 
qPCR.  To determine the relative expression of each gene of interest, genes were 
normalized to RPLPO, and the 2−ΔΔCt approach (ΔCq method) was utilized. Data 
represent four donors. Error bars represent SEM. (Colletti et al., 2016) 
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ii. Blood DCs are activated by TLR agonists: 

Blood DCs were stimulated with various TLR agonists and assessed for activation by 

flow cytometry. DC activation with TLR agonists as measured by activation markers 

CD40, CD80, and CD86 correlated with the corresponding TLR transcript profile of each 

DC. To normalize the magnitude of activation, we calculated fold induction from 

baseline. The mean fluorescence intensity (MFI) from stimulated cells was divided by the 

MFI of unstimulated cells to yield a fold induction of activation. BDCA-1 DCs were 

activated by Poly I:C (TLR3) and Resiquimod (TLR7/8), BDCA-2 DCs were activated 

by Resiquimod and CpG2216 (TLR9), and BDCA-3 DCs were activated by Pam3CSK4 

(TLR1/2), Poly I:C, and Resiquimod (Fig. 3).  

We decided to further evaluate the response of BDCA-3 cDCs following Poly I:C, 

stimulation. Stimulation of BDCA-3 cDCs with Poly I:C resulted in activation of these 

DCs as indicated by the induction of canonical DC-maturation markers, such as CD40 

and CD80/86 as well as inhibitory receptors ILT3 and ILT4 (Fig. 4A) after 18 hours.  

CD40, CD80, and CD86 after stimulation with Poly I:C are uniformly upregulated. 

Unlike other blood DC subsets (e.g. pDCs), ILT3 and ILT4 up-regulation revealed 

several populations of BDCA-3 DCs (Fig. 4B). The appearance of these populations 

(ILT3- ILT4-, ILT3- ILT4+, ILT3+ ILT4-, and ILT3+ ILT4+) of BDCA-3 cDCs prompted 

us to further investigate their biology. 
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Figure 3: Blood DCs activated by TLR agonists up-regulate activation markers. 
BDCA-1, BDCA-2, and BDCA-3 DCs were stimulated with TLR 1-10 agonists at 
3µg/mL for 18 hours. DC activation status was assessed using surface stain markers 
CD40, CD80, CD86, CCR7, ILT3, and ILT4. Values represent a fold of the unstimulated 
MFI. Data represents the average of three single donors, error bars represent SEM. 



31 
 

 

Figure 4: BDCA-3 DC stimulation with Poly I:C up-regulates inhibitory receptors 
ILT3 and ILT4. A) BDCA-3 DCs were stimulated with Poly I:C and LPS at 10μg/mL 
for 18 h. Expression of CD80, CD86, CCR7,CD40, ILT3, and ILT4 comparing pre- and 
post-stimulation, blue dots represent unstimulated cells and red dots identify cells 
stimulated with TLR agonist, with values representing mean fluorescent intensity (MFI). 
B) pDCs stimulated with CpG2216 at 3µg/mL and BDCA-3 DCs stimulated with Poly 
I:C at 10µg/mL for 18 hours results in a DC subset specific pattern of the up-regulation 
of ILT3 and ILT4 (Colletti et al., 2016).  
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iii. Poly I:C activation of BDCA-3 DCs occurs in a dose dependent manner: 

The induction of activation markers measured on BDCA-3 DCs after stimulation with 

Poly I:C occurred in a dose dependent manner. DCs were considered activated when they 

achieved an MFI that was two-fold above the unstimulated value at 18 hours post 

stimulation. Two-fold induction for each of the activation markers was calculated: CD40 

[3.2µg/mL], CD80 [0.12µg/mL], CD86 [0.17µg/mL], ILT4 [4.3µg/mL], while ILT3 did 

not achieve two fold inductions at 18 hours at all doses of Poly I:C tested (Fig. 5). 

Measurable cytokine production by BDCA-3 DCs after stimulation with Poly I:C was 

detected at higher concentrations than those required to induce activation marker 

detection by flow cytometry (Fig. 6). 
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Figure 5: Poly I:C dose response stimulation of BDCA-3 DC activation markers. 
BDCA-3 DCs were isolated and then stimulated with varying doses of Poly I:C for 18 hrs 
at 37 oC. Cells were the stained with the corresponding activation marker and acquired on 
an FACS Fortessa. Fold of the unstimulated values were calculated by dividing the 
concentration of interest’s MFI by the unstimulated MFI.  EC50 curves and the 
concentrations at which 2 fold inductions occurred were calculated as stated in Materials 
and Methods section. Data represents the mean of three single donors, error bars 
represent SEM. 
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Figure 6: Poly I:C dose response on BDCA-3 DC cytokine secretion.                
BDCA-3 DCs were isolated and then stimulated with varying doses of Poly I:C for 18hrs 
at 37o C. DC cell supernatants were analyzed for cytokine levels using the human 
ProcartaPlex Human Cytokine/Chemokine/Growth Factor Panel from eBioscience. EC50 
curves were calculated as stated in Materials and Methods section. Data represents three 
single donors, error bars show SEM. TNF-α and IL13 EC50’s were not calculated as they 
did not fit the curve fitting software. 
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iv. Poly I:C activation of BDCA-3 DCs occurs in a time dependent manner : 

BDCA-3 DCs stimulated with Poly I:C at 3µg/mL resulted in minimal up-regulation 

of both ILT3 and ILT4 after 18 hours, in order to detect a robust induction of the 

activation markers of interest, we used a dose of 10µg/mL for further experimentation. 

10µg/mL required several hours of stimulation prior to the detection of activation 

markers to occur (Fig. 7). CD40, CD80, and CD86 achieve detectable two-fold activation 

at 4.1, 3.2, and 2.5 hours respectively. The detection of ILT4 was further delayed, 

achieving a two-fold activation measurement after 5.7 hours. ILT3 induction was also 

delayed as compared to the activation marker induction,. ILT3 up-regulation was 

detectable only after 8 hours of stimulation. The detection of activation markers occurred 

prior to the detection of the inhibitory receptors ILT3 and ILT4 as demonstrated by the 

time required to induce a two-fold activation from baseline.  
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Figure 7: Poly I:C time course of BDCA-3 DC activation marker up-regulation.  
Purified BDCA-3 DCs were added to a FACS tube in complete X-VIVO media. An 
aliquot of unstimulated cells was removed and stained as stated in the Flow Cytometry 
section prior to the addition of Poly I:C.  Poly I:C was then added at a final concentration 
of 10µg/mL and cells were incubated at 37oC. An aliquot of cells was removed every 
hour, stained, and then acquired. Cells were stained as stated in the Flow Cytometry 
Materials and Methods section. Data represents the mean of 3 single donors, error bars 
show SEM. ILT3 EC50 and 2 fold activation was not calculated, curves did not fit  the 
software. 
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v.  ILT3 and ILT4 BDCA-3 DC populations exhibit similar activation 

marker induction: 

To discount the possibility that the various ILT populations (ILT3-ILT4-; ILT3+ILT4-; 

ILT3-ILT4+; ILT3+ILT4+) arose due to differential levels and/or threshold of activation, 

the maturation status of each of the ILT populations was examined.  As shown in Figure 

8A, all ILT populations had similar surface expression of DC-maturation associated 

markers.  To address the specificity of the inductive signal for generating these various 

populations of BDCA-3 cDCs, the TLR4 agonist LPS, was added to purified BDCA-3 

cDC cultures for 18 hours.  As shown in Figure 8B and consistent with the lack of TLR4 

transcripts in BDCA-3 cDCs, TLR4 triggering did not promote the up-regulation of ILT3 

and ILT4. These data suggests that the inductive signal driving the development of these 

populations, designated by the expression of ILT3 and ILT4 on BDCA-3 cDCs is not due 

to the in-vitro culturing conditions but rather specific to TLR3-mediated signaling.   
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Figure 8: Poly I:C stimulated BDCA-3 DC ILT3 and ILT4 populations are similar 
in their expression of activation markers CD40, CD80, and CD86. A) BDCA-3 DCs 
were stimulated with 10µg/mL Poly I:C or B) 3µg/mL LPS for 18 hours at 37oC. ILT3 
and ILT4 population’s CD40, CD80, and CD86 expression was compared by MFI. Plots 
representative of one donor of 4 (Colletti et al., 2016).  
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vi. ILT4+ and ILT4- BDCA-3 DCs have unique cytokine profiles: 

Following stimulation of BDCA-3 DCs with Poly I:C, the emergence of several 

populations designated by their expression of ILT3 and ILT4 receptors (ILT3- ILT4-, 

ILT3+ ILT4-, ILT3+ ILT4+, ILT3- ILT4+), which have suggested inhibitory effects, 

prompted us to investigate whether these populations of the TLR3-induced DCs also 

exhibit differential cytokine production.  Due to limited cell numbers in the ILT3+ILT4+ 

population, we focused our initial investigative efforts on the cytokine secretion profile of 

the ILT4-expressing DCs (Fig. 9). To determine the level of cytokine secretion amongst 

the ILT4- vs ILT4+ populations, bulk-sorted BDCA-3 DCs were stimulated with Poly I:C 

for the induction of ILT4+/- cells.  After 18 hours, ILT4- and ILT4+ populations were 

FACs-sorted and re-cultured overnight in the absence of further TLR stimulation.  As 

demonstrated in Figure 10, multiplex cytokine analysis of the cultured supernatant 

revealed quantitative and qualitative differences in the cytokine secretion potential 

between the ILT4+ and ILT4- populations. ILT4- cells are unique in their capacity to 

produce IFN-ɣ and IP-10, while ILT4+ cells are poised for TNF-α, IL-12p70, and IL-6 

production. To confirm the unique cytokine-secreting profiles between ILT4+ and ILT4- 

cells, we performed intracellular cytokine staining (ICS) by stimulating BDCA-3 DCs for 

18 hours with Poly I:C and assessed cytokine secretion by each population (Fig. 11).  

Consistent with the cytokine analysis, ICS analysis reveal that ILT4- BDCA-3 DCs are 

capable of producing IFN-ɣ and low levels of TNF-α, conversely, ILT4+ BDCA-3 DCs 

produced exclusively high levels of TNF-α and undetectable levels of IFN-ɣ (Fig. 11).  
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Taken together, the data thus far suggested that ILT4- and ILT4+ BDCA-3 DCs are 

phenotypically and functionally unique. 
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Figure 9: Experimental design of BDCA-3 DC phenotyping.                              
Purified BDCA-3 DCs were stimulated with 10µg/mL Poly I:C for 18 hours at 37oC. DCs 
were then stained with ILT3 and ILT4 and sorted. Purified cells were phenotyped by 
various cellular and molecular assays. Data were representative of one donor (Colletti et 
al., 2016).  

Post  Post 
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Figure 10: Multiplex cytokine analysis of ILT4- vs ILT4+ BDCA-3 DCs.             
BDCA-3 cDCs were cultured with Poly I:C for 18 h and then sorted into ILT4− and ILT4+ 

populations. Cells were then plated without further stimulation for 18 hours. Supernatants 
were assayed for cytokine and chemokine content by luminex analysis. P-values 
generated using two-tailed student’s paired t-test (95% confidence interval). Graphs 
represent four single donors. Error bars represented SEM (Colletti et al., 2016).  
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Figure 11: Intracellular cytokine analysis of ILT4- vs ILT4+ BDCA-3 DCs.             
BDCA-3 cDCs were stimulated with Poly I:C for 18 h, Golgistop was then added for 6 
hours. Cells were surface stained with ILT3, ILT4, and CD141 and then intracellularly 
stained with IFN-γ and TNF-α. Data showing intracellular staining were representative of 
one donor out of four (Colletti et al., 2016).  
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vii. ILT4+ and ILT4- BDCA-3 DCs have unique genomic signatures: 

To better understand whether the ILT4+ and ILT4- populations represent DC 

populations with unique characteristics, transcriptional profiling was performed on ILT4+ 

vs ILT4- BDCA-3 DCs after Poly I:C stimulation. General linear models for microarray 

data were performed for probe sets present on the microarray to identify probe sets that 

are differentially expressed between the groups, based on moderated t-statistics.  Probe 

sets with a 1.5-fold change and a P value less than 0.05 were considered significant. 

Although our analysis revealed unique gene signatures for the ILT4+ vs ILT4- 

populations following stimulation, we were not able to identify unique surface markers to 

faithfully distinguish between the two populations. A 3D plot generated by principle 

component analysis (PCA) with OmicSoft ArrayStudio across all probe sets revealed that 

ILT4+ cells are most dissimilar from ILT4- cells (Fig. 12A). The ILT4- population 

revealed up-regulated genes involved in T cell stimulation, in particular IFN-ɣ, which 

was consistent with multiplex cytokine and ICS analysis (Fig. 10-11). Finally, the ILT4+ 

population revealed the up-regulation of two inhibitory receptors, ILT4 and ILT6. The 

ILT4 expression of the ILT4+ population was confirmed by real-time PCR analysis (Fig. 

12B). The microarray analysis of the ILT4+ population showed up-regulation of the TNF-

α gene, these results were all consistent with both multiplex cytokine analysis and FACS 

intracellular staining (Fig. 10-11). Collectively, the functional and genomic analysis of 

ILT4+ and ILT4- cells suggested that these cells are distinct DC populations found within 

the broader BDCA-3 DC subset. 
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Figure 12: Microarray analysis of ILT4+ vs ILT4- BDCA-3 DCs.                           
Genomic profiling of ILT4− vs. ILT4+ was performed using GeneChip Human Gene 1.0 
ST arrays. Principal component analysis (PCA) was computed using OmicSoft 
ArrayStudio, and a plot was generated to show the relative clustering of ILT4− and 
ILT4+. ILT4− and ILT4+ populations were compared to each other by t-test with a 
threshold set for a fold change >1.5 and a P-value <0.05. ILT4 gene expression was 
confirmed by qPCR. (Data shown are one representative donor out of four, error bars 
represented SEM) (Colletti et al., 2016).  
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viii. BDCA-3 DCs prime naïve CD4 T cells towards a Th1 phenotype: 

To characterize the ability for BDCA-3 DCs to prime naïve T cells, we compared 

their priming potential with pDCs (BDCA-2 DCs). To this end, BDCA-2 and BDCA-3 

DCs were stimulated with CpG2216, a TLR9 agonist, and Poly I:C,  respectively. 

Following stimulation, both activated DC subsets were co-cultured with allogenic sorted 

naïve CD4+ T cells at a DC to T cell ratio of 1 to 5. On day 7 post priming, the phenotype 

of the resultant CD4+ T cells was assessed by flow-cytometry for the secretion of 

prototypic Th1- and Th2-associated cytokines. Interestingly, both DC subsets primed 

naïve CD4 T cells towards different Th phenotypes. pDCs stimulated with a TLR9 

agonist resulted in the priming of T cells towards a Th2 phenotype, mainly secreting IL-4 

(6%) and IL-10 (33%). BDCA-3 DCs stimulated with Poly I:C resulted in the priming of 

T cells towards a Th1 phenotype, secreting mostly IFN-ɣ (75%) (Fig. 13). To further 

investigate the ability for BDCA-3 DCs to prime naïve T cells, we decided to compare 

the priming capabilities of ILT4- vs ILT4+ BDCA-3-DCs following Poly I:C stimulation.  
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Figure 13: BDCA-2 and BDCA-3 DC priming of naïve CD4 T cell outcomes.        
Bulk BDCA-2 and BDCA-3 DCs were incubated at 37oC for 18 hours with 3µg/mL 
CpG2216 or 10µg/mL Poly I:C respectively. After TLR stimulation, BDCA-3 DCs were 
sorted into pure populations of ILT4+ and ILT4-. BDCA-2 DCs were washed of CpG2216 
prior to the addition of allogenic T cells. Allogenic naïve CD4+ and CD8+ T cells were 
incubated with allogenic BDCA-2 and BDCA-3 DCs (ILT4+ and ILT4-) at a 1:5 DC to T 
cell ratio at 37oC in complete X-VIVO 15 media. After 7 days, primed T cells were 
harvested and analyzed for intracellular cytokine staining. Data represented one donor out 
of three. 
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ix. ILT4- and ILT4+ BDCA-3 DCs differ in their ability to prime allogenic 

naïve T cells: 

The differences in cytokine secretion and transcriptional profiles of ILT4- and ILT4+ 

BDCA-3 DCs implied that these DC populations may have distinct T cell priming 

potential.  To address this possibility we assessed the ability of each ILT4 population to 

prime naïve CD4+ and CD8+ T cells.  To this end, BDCA-3 DCs were first stimulated 

with Poly I:C and subsequently sorted to high purity into ILT4- and ILT4+ populations.  

The sorted ILT4 populations were then co-cultured with allogenic sorted naïve CD4+ and 

CD8+ T cells at a DC to T cell ratio of 1 to 5.  T cells were then stained with Cell Trace 

prior to the mixed lymphocyte reaction (MLR) to assess the level of their proliferation. 

Proliferation with Cell Trace is detected by a dilution of the incorporated dye within the 

cell membrane following subsequent cellular divisions. On day 7 post priming, the 

phenotype of the resultant CD4+ and CD8+ T cells was assessed by flow-cytometry for 

the secretion of prototypic Th1- and Th2-associated cytokines, such as IFN-ɣ and IL-4, 

respectively. Both ILT4+ and ILT4- DCs demonstrated the capacity to prime both naïve 

CD4+ and CD8+ T cells as demonstrated by the dilution of Cell Trace dye (Figs. 14-15).  

More importantly, both DC populations preferentially primed naïve CD4+ and CD8+ T 

cells towards IFN-ɣ Th1 cells (Fig. 14-15). IL-4 producing cells were also observed, but 

at a much lower frequency than IFN-ɣ producing cells.  Despite the ability to prime naïve 

CD4+ and CD8+ T cells towards a Th1 phenotype, ILT4+ DCs appeared to be less 

efficient at promoting Th1 induction as compared to ILT4- DCs (Figs. 14-15). CD4+ T 
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cell activation remained largely intact, while the priming of CD8+ T cells was impaired 

by as much as 53% when co-cultured with ILT4+ DCs (Figs. 14-15). 
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Figure 14: ILT4- and ILT4+ BDCA-3 DC mixed lymphocyte reactions (MLRs). 
BDCA-3 cDCs were cultured with Poly I:C for 18 h. Cells were then sorted into ILT4− 
and ILT4+ populations and incubated with naïve CD4 allogenic T cells (CD25−, CD127+, 
CD62L+, CD49dlow). After 7 days, the resultant T cells were assessed for surface marker 
and intracellular cytokine expression. Dot plots are gated on live CD3+ and CD4+ T cells. 
Data shown were one representative donor out of four (Colletti et al., 2016).  
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Figure 15: ILT4- and ILT4+ BDCA-3 DC mixed lymphocyte reactions (MLRs). 
BDCA-3 cDCs were cultured with Poly I:C for 18 h. Cells were then sorted into ILT4− 
and ILT4+ populations and incubated with naïve CD8 allogenic T cells (CD25−, CD127+, 
CD62L+, CD49dlow). After 7 days, the resultant T cells were assessed for surface marker 
and intracellular cytokine expression. Dot plots are gated on live CD3+ and CD8+ T cells. 
Data shown were one representative donor out of four (Colletti et al., 2016).  
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x. ILT4+ BDCA-3 DCs impaired T cell priming is IL-10 independent: 

To examine the ILT4+ DC impaired T cell priming, we examined the expression of 

HLA-G, a known ligand for the ILT4 receptor (Ristich et al., 2005). Cell surface 

expression of HLA-G has been implicated in the induction of tolerogenic functions in 

various physiological and pathological settings (Jurisicova et al., 1996, Rouas-Freiss et 

al., 1997, Paul et al., 1998, Braud et al., 1999). Assessment of the T cell expression of 

HLA-G after priming with ILT4+ and ILT4- DCs revealed that CD8+ T cells primed in the 

presence of ILT4+ DCs showed an approximately 9 fold increase in HLA-G expression as 

compared to CD8+ T cells co-cultured with ILT4- DCs (Fig. 16A). On the other hand, 

there was no observable induction of HLA-G expression on CD4+ T cells co-cultured 

with either ILT4+ or ILT4- DCs. The observed impaired T cell priming ability of ILT4+ 

DCs could be the result of active inhibition by suppressor CD8+ T cells expressing HLA-

G. To this end, we investigated the level of IL-10, a known anti-inflammatory cytokine 

secreted by various cell types, including T regulatory cells (O'Garra et al., 2004), in our 

DC primed T cell cultures. As shown in Figure 16B, we found similar levels of T cell-

derived IL-10 in both ILT4-positive and –negative DCs primed T cell cultures. Taken 

together this data suggests a potential IL-10-independent mechanism of dampening DC 

priming capabilities. 
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Figure 16: ILT4- and ILT4+ BDCA-3 DC MLR CD8 T cell HLAG expression and 
IL-10 supernatant levels.                                                                                                  
A) MLR CD8 T cells were stained with HLAG after 7 days of ILT4- or ILT4+ BDCA-3 
DC priming. B) CD4 and CD8 T cell MLR supernatants were harvested after 7 days and 
assessed for the level of IL-10. Error bars show SEM. (Colletti et al., 2016) 
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Discussion: 

Prior to profiling human blood DC stimulation with TLR agonists, we 

characterized their TLR expression pattern. Genomic transcript analysis of human blood 

DC TLR expression revealed that different DC subsets expressed different levels of TLRs 

(Fig. 2). BDCA-1 DCs expressed a wide range of TLRs while BDCA-2 expression was 

restricted to mainly TLR 7 and 9. BDCA-3 DCs mainly expressed TLR3 which is 

consistent with previous studies (Hornung et al., 2002).  We also observed that BDCA-3 

DCs expressed high levels of TLR10, which suggests functional TLR10 protein. The role 

that TLR10 plays in the immune response as well as the ligand remains to be elucidated.  

Transcript expression of various TLR receptors and responsiveness to multiple TLR 

agonists suggests two hypotheses (A) on per cell basis BDCA-3 DCs express multiple 

TLRs or (B) there may exist various BDCA-3 DC subsets each with a unique TLR 

expression. The recent discovery of a human XCR1+CD141+ DC subset expressing TLR3 

within the conventional DC population supports the latter hypothesis (Bachem et al., 

2010). This discovery raises the possibility that multiple yet-to-be-identified populations 

of BDCA-3 DCs may exist. 

Currently, human blood DCs can be identified and purified based on various 

surface expression markers. BDCA-1 DCs can be isolated by the absence of lineage 

marker expression (Lin-), HLADR+, CD1c+, and CD11c+. BDCA-2 DCs identified by 

Lin-, HLADR+, and CD123+. BDCA-3 DCs identified by Lin-, HLADR+, CD1c-, and 

CD141+. In the present study, we demonstrated that stimulation of BDCA-1, 2, and 3 
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with various TLR agonists induced the expression of canonical markers associated with 

DC activation/maturation, such as CD40, CD80, and CD86 (Fig. 3). This activation with 

TLR agonists correlated with the TLR transcript profile of each DC subset, for example, 

BDCA-2 DCs showed high levels of TLR 7 and 9 gene expression and upon stimulation 

with CpG2216 (TLR9 agonist) showed a 10 fold increase in CD40 and a 3 fold increase 

in CD86 (Figs. 2-3). Poly I:C stimulation of BDCA-3 DCs induced the expression of 

CD40, CD80, CD86, ILT3, and ILT4 as detected by flow cytometry (Fig. 4A). The 

induction of BDCA-3 activation markers occurred in a dose dependent manner and was 

specific for each activation marker. CD80 achieved a 2 fold increase in MFI at 

concentrations as low as 0.12ug/mL of Poly I:C, while CD40 required approximately 

3.18 µg/ml Poly I:C (Fig. 5). Multiplex cytokine analysis revealed that BDCA-3 DCs 

secrete cytokines at higher concentrations of Poly I:C than is required for the up-

regulation of activation markers (Fig. 5-6). Measurable levels of IFN-ɣ and TNF-α were 

detectable after stimulation of BDCA-3 DCs with 0.1µg/mL Poly I:C (Fig. 6) whereas 

CD86 up-regulation occurs after stimulation with 0.01µg/mL Poly I:C (Fig. 5).  

Unlike the activation markers CD40, CD80, and CD86, the expression pattern of 

the ILT receptors allowed for the distinction of various populations, namely ILT3- ILT4-, 

ILT3+ ILT4-, ILT3- ILT4+, and ILT3+ ILT4+, within the total BDCA-3 DC population. 

The various ILT populations observed after Poly I:C stimulation of BDCA-3 DCs is 

unique to this particular blood DC subset. Stimulation of BDCA-2 DCs with CpG2216, a 

TLR9 agonist, resulted in the uniform up-regulation of ILT3 and ILT4 (Fig. 4B). ILT3 

and ILT4 are surface proteins of the immunoglobulin superfamily, which have been 
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demonstrated to be expressed on monocytes and DCs. The cytoplasmic region of ILT 

molecules contains a putative immunoreceptor tyrosine-based inhibitory motif, 

suggesting an inhibitory function of ILT receptors. Consistent with the proposed 

inhibitory function, ILT3 has been shown to induce immunosuppression, including T cell 

anergy, regulatory T cell (Treg) induction, and reduced allo-stimulatory capacity (Chang 

et al., 2002, Manavalan et al., 2003). We further investigated the expression of activation 

markers within each ILT sub-population as well as the time required for receptor up-

regulation. CD40, CD80, and CD86 are rapidly up-regulated and detectable after just 2 

hours of stimulation with 10µg/mL Poly I:C. The inhibitory receptor ILT4 was further 

delayed in its up-regulation and was measurable by flow cytometry after 5 hours of 

stimulation with 10µg/mL Poly I:C (Fig. 7), ILT3 detectable only after 8 hours of 

stimulation. This delay in inhibitory receptor expression may contribute to an immune 

dampening process after a rapidly occurring immune response. Each described ILT 

population shows similar expression of CD40, CD80, and CD86, this lead us to 

hypothesize the potential for functional differences among these various ILT expressing 

DC populations (Fig. 8). 

Previous studies have generated BDCA-3 DCs from monocytes in the presence of 

various growth factors and cytokines. In the presence of IL-10, these DCs, termed DC-

IL10, expressed high levels of ILT receptors, namely ILT2 and ILT3 (Velten et al., 

2004).  These in vitro derived DCs retained immunosuppressive functions, including 

IL10 production and the ability to generate CD4+ Tregs (Velten et al., 2004). BDCA-3 

DCs have also been found outside of the blood. ILT3+ expressing BDCA-3 DCs have 
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been identified in the dermis of the human skin. These dermal DCs were shown to 

produce IL-10, induce T cell hyporesponsiveness, and were able to inhibit skin 

inflammation by inducing Tregs (Chu et al., 2012). In addition to ILT3 expression on 

BDCA-3 DCs, ILT4 was detected by gene array analysis following Poly I:C stimulation 

(Balan et al., 2014). The various ILT populations we detected after Poly I:C stimulation 

on primary BDCA-3 DCs occur in varying cell frequencies. ILT4-ILT3+ and ILT4+ILT3+ 

cell numbers post Poly I:C stimulation cell were consistently limited so we focused our 

studies on profiling ILT4+/- ILT3- BDCA-3 DCs. We first sorted ILT4- and ILT4+ 

BDCA-3 DCs after Poly I:C stimulation and compared their transcriptional profiles by 

microarray. Complementing the detection of ILT4 by flow cytometry, the expression of 

ILT4 transcript was increased in the ILT4+ BDCA-3 DC microarray samples. To further 

validate this ILT4 expression, we performed Taqman analysis on ILT4+ BDCA-3 DCs 

after sorting. ILT4+ DCs expression of ILT4 was 5 fold higher than the ILT4- isolated 

DCs (Fig. 12B). ILT6 expression was also highest in the ILT4+ expressing DCs (Fig. 

12A). ILT6, unlike other ILT members, lacks a transmembrane domain and is a soluble 

receptor (Torkar et al., 2000). As immune modulators, the heightened expression of ILT4 

and ILT6 may work in synergy to modulate T cell priming in ILT4+ DC MLR reactions 

(Fig. 14-15). ILT6 has been implicated as both an immune-stimulatory or anti-

inflammatory protein with a reduced affinity for HLA-G as compared to ILT4 (An et al., 

2010, Ryu et al., 2011, Low et al., 2013). ILT6 may compete with ILT4 to maintain an 

ongoing immune response in the presence of HLA-G. The ILT4+ BDCA-3 DCs also 

expressed higher levels of transcripts for interleukin-12 beta-subunit (IL-12b/IL-12p40) 
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and tumor necrosis factor α (TNF-α) (Fig. 12A). IL-12b, a shared subunit for both 

bioactive IL-12p70 and IL-23, may promote the generation of either T-helper 1 (Th1) 

and/or Th17 cells. IL-12p70 was also greater in expression within the ILT4+ BDCA-3 

DCs. TNF-α is a well-studied pro-inflammatory cytokine. TNF-α is known for its ability 

to induce systemic inflammation and the acute phase reaction. TNF-α regulates the 

expansion and survival of CD4+ and CD8+ T cells and has been implicated in the 

progression of various diseases (Beutler et al., 1985, Locksley et al., 2001, Gaur and 

Aggarwal, 2003). A migratory chemokine, CCL3, was also produced exclusively by the 

ILT4+ BDCA-3 DCs (Fig. 16A). CCL3 has been shown to enhance the differentiation, 

migration, and effector functions of CD8+ T cells (Trifilo et al., 2003). Based upon the 

ILT4+ BDCA-3 DC cytokine profile detected by microarray analysis, they may function 

to provide a link between innate and adaptive immunity. On the contrary, the ILT4- 

BDCA-3 DCs showed mostly type II interferon (IFN-ɣ) (Fig. 12A). The microarray 

genomic expression of IFN-ɣ was further confirmed at the protein level by both 

intracellular FCS and multiplex cytokine analysis (Fig. 10-11). IFN-ɣ plays several roles 

in both the innate and adaptive immune response. Studies show that it is involved in anti-

viral, -bacterial, and -tumor biology (Ikeda et al., 2002, Perry et al., 2005, Hermant and 

Michiels, 2014).  IP-10 levels were also elevated in the supernatant of cultured ILT4- 

BDCA-3 DCs. IP-10 secretion is intricately linked to the output levels of IFN-ɣ 

production. As a migratory chemokine, IP-10 is known to induce chemotaxis of 

numerous leukocytes (Taub et al., 1993, Jinquan et al., 2000). Along with cytokines, the 

ILT4- BDCA-3 DCs also express various surface marker immune activators including 
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CD48, CD84, and CD74 (Fig. 12A). CD84 is expressed mainly on monocytes, 

macrophages, granulocytes, and DCs and is involved in leukocyte activation (Sintes et 

al., 2010). CD74 regulates the class II major histocompatibility complex (MHC) proteins 

in APCs. The induction of such activation markers may partially contribute to their 

ability to more efficiently prime naïve CD4+ T cells (Fig. 14) (Beswick and Reyes, 2009). 

The discovery of various populations of BDCA3+ DCs after stimulation with a TLR3 

agonist lead us to hypothesize that these populations could be delineated by a newly 

discovered subset expressing XCR1 (Bachem et al., 2010). XCR1+ BDCA3+ DCs have 

been shown to have a high capacity for cross-presentation and have the ability to both 

acquire and present necrotic antigens (Bachem et al., 2010, Balan et al., 2014). Our 

microarray analysis did not reveal any differences in the expression of XCR1 within the 

ILT4- and ILT4+ populations, suggesting that their expression is independent of the 

expression of XCR1. Through genomic profiling of these two different ILT expressing 

DCs, we have shown that they express different immunological surface markers as well 

as have unique cytokine transcript profiles.  

  DCs have the ability to prime naïve T cells towards various T-helper cell 

phenotypes. The outcome of T cell priming is influenced by many factors.  The DC 

subset as well as the maturation status of the DC during the priming event can lead to 

different T helper outcomes (Langenkamp et al., 2000, Kushwah and Hu, 2011). We have 

shown that BDCA-2 DCs stimulated with a TLR9 agonist results in the priming of naïve 

CD4 T cells towards a Th2 phenotype, while BDCA-3 DCs simulated with a TLR3 

agonist primes naive CD4 T cells towards a Th1 profile (Fig. 13). DCs of the same 
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lineage may also differ in their priming capacity based upon their physical location. 

Studies have shown that skin BDCA-3 DCs secrete high levels of IL-10 and induce T 

regulatory cells (Chu et al., 2012). High ILT3 expression on BDCA-3 DCs has been 

previously shown to be involved in the impairment of allo-stimulatory priming of naïve T 

cells (Velten et al., 2004). We have shown in our study that BDCA-3 DCs expressing 

high levels of ILT4 also have a reduced allo-stimulatory capacity that is more prominent 

for CD8+ T cells (Fig. 15).  The difference in the capacity of the ILT expressing BDCA-3 

DCs to prime T cells might be linked to the activity of the ILT4 receptor. A natural ligand 

of the ILT4 receptor is a non-classical class I heavy chain MHC molecule, HLA-G 

(Colonna et al., 1998). HLA-G has been previously shown to inhibit in vitro allogenic 

MLRs and can be expressed on T cells (Riteau et al., 1999, Le Friec et al., 2003). We 

tested for the expression of HLA-G on primed T cells after the MLR with BDCA-3 DCs. 

ILT4+ DCs that primed CD8+ T cells skewed their polarization towards a Th1 phenotype 

and induced the expression of HLA-G (Fig. 20).  HLA-G has been associated with the 

induction of IL-10 producing T suppressor cells (Carosella et al., 2011, Raker et al., 

2015). We tested the levels of IL-10 in the resulting supernatants of our allogenic MLRs 

and did not detect any differences between the cultures containing ILT4- or ILT4+ DCs 

(Fig. 16B), suggesting an IL-10 independent means of attenuation. These results are 

consistent with a previous study indicating that HLAG+ T cells present within whole 

PBMCs do not mediate suppression through IL-10 secretion (Feger et al., 2007). The 

induction of HLA-G on primed T cells with a distinct DC population may suggest an 
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immuno-suppressive mechanism that could potentially prevent the overstimulation of the 

adaptive branch of the response. 

In the present study, we have shown that a purified population of BDCA-3 DCs 

upon stimulation with Poly I:C, rapidly up-regulates canonical activation markers CD40, 

CD80, and CD86 which leads to the secretion of various cytokines. This up-regulation of 

activation markers occurs in both a dose and time dependent manner. Stimulating 

purified BDCA-3 DCs with 10µg/mL Poly I:C for 18 hours resulted in the expression of 

inhibitory receptors ILT3 and ILT4. The increased expression of ILT3 and ILT4 was not 

uniform as was detected with various activation markers and does not correlate to the 

recently discovered expression of XCR1.  ILT4 expressing BDCA-3 DCs have a unique 

cytokine secreting and genomic profile as compared to ILT4 negative BDCA-3 DCs. 

Allogenic CD8 T cell priming is attenuated upon co-culture with ILT4+ BDCA-3 DCs as 

compared to ILT4- BDCA-3 DCs. CD8 T cells primed by ILT4+ BDCA-3 DCs showed 

expression of HLA-G which could account for the impaired priming during the MLR. 

Taken together, these populations of BDCA-3 DCs may work to mediate various aspects 

of an immunological response. 

 

 

 

 

 



62 
 

References 

Alexopoulou, L., A. C. Holt, R. Medzhitov and R. A. Flavell (2001). "Recognition of 
double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3." Nature 
413(6857): 732-738. 

 

An, H., V. Chandra, B. Piraino, L. Borges, C. Geczy, H. P. McNeil, K. Bryant and N. 
Tedla (2010). "Soluble LILRA3, a potential natural antiinflammatory protein, is 
increased in patients with rheumatoid arthritis and is tightly regulated by interleukin 10, 
tumor necrosis factor-alpha, and interferon-gamma." J Rheumatol 37(8): 1596-1606. 

 

Bachem, A., S. Guttler, E. Hartung, F. Ebstein, M. Schaefer, A. Tannert, A. Salama, K. 
Movassaghi, C. Opitz, H. W. Mages, V. Henn, P. M. Kloetzel, S. Gurka and R. A. 
Kroczek (2010). "Superior antigen cross-presentation and XCR1 expression define 
human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells." J Exp Med 
207(6): 1273-1281. 

 

Balan, S., V. Ollion, N. Colletti, R. Chelbi, F. Montanana-Sanchis, H. Liu, T. P. Vu 
Manh, C. Sanchez, J. Savoret, I. Perrot, A. C. Doffin, E. Fossum, D. Bechlian, C. 
Chabannon, B. Bogen, C. Asselin-Paturel, M. Shaw, T. Soos, C. Caux, J. Valladeau-
Guilemond and M. Dalod (2014). "Human XCR1+ dendritic cells derived in vitro from 
CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant 
responsiveness, contrary to monocyte-derived dendritic cells." J Immunol 193(4): 1622-
1635. 

 

Bauer, S., C. J. Kirschning, H. Hacker, V. Redecke, S. Hausmann, S. Akira, H. Wagner 
and G. B. Lipford (2001). "Human TLR9 confers responsiveness to bacterial DNA via 
species-specific CpG motif recognition." Proc Natl Acad Sci U S A 98(16): 9237-9242. 

 

Beswick, E. J. and V. E. Reyes (2009). "CD74 in antigen presentation, inflammation, and 
cancers of the gastrointestinal tract." World J Gastroenterol 15(23): 2855-2861. 

 

Beutler, B., D. Greenwald, J. D. Hulmes, M. Chang, Y. C. Pan, J. Mathison, R. Ulevitch 
and A. Cerami (1985). "Identity of tumour necrosis factor and the macrophage-secreted 
factor cachectin." Nature 316(6028): 552-554. 

 

Braud, V. M., D. S. Allan and A. J. McMichael (1999). "Functions of nonclassical MHC 
and non-MHC-encoded class I molecules." Curr Opin Immunol 11(1): 100-108. 

 



63 
 

Carosella, E. D., S. Gregori and J. LeMaoult (2011). "The tolerogenic interplay(s) among 
HLA-G, myeloid APCs, and regulatory cells." Blood 118(25): 6499-6505. 

 

Cervantes, J. L., B. Weinerman, C. Basole and J. C. Salazar (2012). "TLR8: the forgotten 
relative revindicated." Cell Mol Immunol 9(6): 434-438. 

 

Chang, C. C., R. Ciubotariu, J. S. Manavalan, J. Yuan, A. I. Colovai, F. Piazza, S. 
Lederman, M. Colonna, R. Cortesini, R. Dalla-Favera and N. Suciu-Foca (2002). 
"Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 
and ILT4." Nat Immunol 3(3): 237-243. 

 

Chang, C. C., A. Wright and J. Punnonen (2000). "Monocyte-derived CD1a+ and CD1a- 
dendritic cell subsets differ in their cytokine production profiles, susceptibilities to 
transfection, and capacities to direct Th cell differentiation." J Immunol 165(7): 3584-
3591. 

 

Chu, C. C., N. Ali, P. Karagiannis, P. Di Meglio, A. Skowera, L. Napolitano, G. 
Barinaga, K. Grys, E. Sharif-Paghaleh, S. N. Karagiannis, M. Peakman, G. Lombardi and 
F. O. Nestle (2012). "Resident CD141 (BDCA3)+ dendritic cells in human skin produce 
IL-10 and induce regulatory T cells that suppress skin inflammation." J Exp Med 209(5): 
935-945. 

 

Colletti, N. J., H. Liu, A. C. Gower, Y. O. Alekseyev, C. W. Arendt and M. H. Shaw 
(2016). "TLR3 Signaling Promotes the Induction of Unique Human BDCA-3 Dendritic 
Cell Populations." Front Immunol 7: 88. 

 

Colonna, M., J. Samaridis, M. Cella, L. Angman, R. L. Allen, C. A. O'Callaghan, R. 
Dunbar, G. S. Ogg, V. Cerundolo and A. Rolink (1998). "Human myelomonocytic cells 
express an inhibitory receptor for classical and nonclassical MHC class I molecules." J 
Immunol 160(7): 3096-3100. 

 

Colonna, M., G. Trinchieri and Y. J. Liu (2004). "Plasmacytoid dendritic cells in 
immunity." Nat Immunol 5(12): 1219-1226. 

 

Dai, M., P. Wang, A. D. Boyd, G. Kostov, B. Athey, E. G. Jones, W. E. Bunney, R. M. 
Myers, T. P. Speed, H. Akil, S. J. Watson and F. Meng (2005). "Evolving gene/transcript 
definitions significantly alter the interpretation of GeneChip data." Nucleic Acids Res 
33(20): e175. 



64 
 

 

Diebold, S. S., T. Kaisho, H. Hemmi, S. Akira and C. Reis e Sousa (2004). "Innate 
antiviral responses by means of TLR7-mediated recognition of single-stranded RNA." 
Science 303(5663): 1529-1531. 

 

Elgueta, R., M. J. Benson, V. C. de Vries, A. Wasiuk, Y. Guo and R. J. Noelle (2009). 
"Molecular mechanism and function of CD40/CD40L engagement in the immune 
system." Immunol Rev 229(1): 152-172. 

 

Farhat, K., S. Riekenberg, H. Heine, J. Debarry, R. Lang, J. Mages, U. Buwitt-
Beckmann, K. Roschmann, G. Jung, K. H. Wiesmuller and A. J. Ulmer (2008). 
"Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does 
not lead to differential signaling." J Leukoc Biol 83(3): 692-701. 

 

Feger, U., E. Tolosa, Y. H. Huang, A. Waschbisch, T. Biedermann, A. Melms and H. 
Wiendl (2007). "HLA-G expression defines a novel regulatory T-cell subset present in 
human peripheral blood and sites of inflammation." Blood 110(2): 568-577. 

 

Gaur, U. and B. B. Aggarwal (2003). "Regulation of proliferation, survival and apoptosis 
by members of the TNF superfamily." Biochem Pharmacol 66(8): 1403-1408. 

 

Gautier, L., L. Cope, B. M. Bolstad and R. A. Irizarry (2004). "affy--analysis of 
Affymetrix GeneChip data at the probe level." Bioinformatics 20(3): 307-315. 

 

Gentleman, R. C., V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, 
L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. 
Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J. 
Y. Yang and J. Zhang (2004). "Bioconductor: open software development for 
computational biology and bioinformatics." Genome Biol 5(10): R80. 

 

Gupta, M. R., D. Kolli and R. P. Garofalo (2013). "Differential response of BDCA-1+ 
and BDCA-3+ myeloid dendritic cells to respiratory syncytial virus infection." Respir 
Res 14: 71. 

 

Haller Hasskamp, J., J. L. Zapas and E. G. Elias (2005). "Dendritic cell counts in the 
peripheral blood of healthy adults." Am J Hematol 78(4): 314-315. 

 



65 
 

Hayashi, F., K. D. Smith, A. Ozinsky, T. R. Hawn, E. C. Yi, D. R. Goodlett, J. K. Eng, S. 
Akira, D. M. Underhill and A. Aderem (2001). "The innate immune response to bacterial 
flagellin is mediated by Toll-like receptor 5." Nature 410(6832): 1099-1103. 

 

Hemmi, H., T. Kaisho, O. Takeuchi, S. Sato, H. Sanjo, K. Hoshino, T. Horiuchi, H. 
Tomizawa, K. Takeda and S. Akira (2002). "Small anti-viral compounds activate immune 
cells via the TLR7 MyD88-dependent signaling pathway." Nat Immunol 3(2): 196-200. 

 

Hermant, P. and T. Michiels (2014). "Interferon-lambda in the context of viral infections: 
production, response and therapeutic implications." J Innate Immun 6(5): 563-574. 

 

Hewitt, E. W. (2003). "The MHC class I antigen presentation pathway: strategies for viral 
immune evasion." Immunology 110(2): 163-169. 

 

Hoene, V., M. Peiser and R. Wanner (2006). "Human monocyte-derived dendritic cells 
express TLR9 and react directly to the CpG-A oligonucleotide D19." J Leukoc Biol 
80(6): 1328-1336. 

 

Hornung, V., S. Rothenfusser, S. Britsch, A. Krug, B. Jahrsdorfer, T. Giese, S. Endres 
and G. Hartmann (2002). "Quantitative expression of toll-like receptor 1-10 mRNA in 
cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG 
oligodeoxynucleotides." J Immunol 168(9): 4531-4537. 

 

Ikeda, H., L. J. Old and R. D. Schreiber (2002). "The roles of IFN gamma in protection 
against tumor development and cancer immunoediting." Cytokine Growth Factor Rev 
13(2): 95-109. 

 

Irizarry, R. A., B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf and 
T. P. Speed (2003). "Exploration, normalization, and summaries of high density 
oligonucleotide array probe level data." Biostatistics 4(2): 249-264. 

 

Jinquan, T., C. Jing, H. H. Jacobi, C. M. Reimert, A. Millner, S. Quan, J. B. Hansen, S. 
Dissing, H. J. Malling, P. S. Skov and L. K. Poulsen (2000). "CXCR3 expression and 
activation of eosinophils: role of IFN-gamma-inducible protein-10 and monokine induced 
by IFN-gamma." J Immunol 165(3): 1548-1556. 

 

Jongbloed, S. L., A. J. Kassianos, K. J. McDonald, G. J. Clark, X. Ju, C. E. Angel, C. J. 
Chen, P. R. Dunbar, R. B. Wadley, V. Jeet, A. J. Vulink, D. N. Hart and K. J. Radford 



66 
 

(2010). "Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid 
DC subset that cross-presents necrotic cell antigens." J Exp Med 207(6): 1247-1260. 

 

Jurisicova, A., R. F. Casper, N. J. MacLusky, G. B. Mills and C. L. Librach (1996). 
"HLA-G expression during preimplantation human embryo development." Proc Natl 
Acad Sci U S A 93(1): 161-165. 

 

Kadowaki, N., S. Ho, S. Antonenko, R. W. Malefyt, R. A. Kastelein, F. Bazan and Y. J. 
Liu (2001). "Subsets of human dendritic cell precursors express different toll-like 
receptors and respond to different microbial antigens." J Exp Med 194(6): 863-869. 

 

Kawai, T. and S. Akira (2010). "The role of pattern-recognition receptors in innate 
immunity: update on Toll-like receptors." Nat Immunol 11(5): 373-384. 

 

Ketloy, C., A. Engering, U. Srichairatanakul, A. Limsalakpetch, K. Yongvanitchit, S. 
Pichyangkul and K. Ruxrungtham (2008). "Expression and function of Toll-like receptors 
on dendritic cells and other antigen presenting cells from non-human primates." Vet 
Immunol Immunopathol 125(1-2): 18-30. 

 

Kushwah, R. and J. Hu (2011). "Complexity of dendritic cell subsets and their function in 
the host immune system." Immunology 133(4): 409-419. 

 

Kushwah, R. and J. Hu (2011). "Role of dendritic cells in the induction of regulatory T 
cells." Cell Biosci 1(1): 20. 

 

Langenkamp, A., M. Messi, A. Lanzavecchia and F. Sallusto (2000). "Kinetics of 
dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells." Nat 
Immunol 1(4): 311-316. 

 

Lanier, L. L., S. O'Fallon, C. Somoza, J. H. Phillips, P. S. Linsley, K. Okumura, D. Ito 
and M. Azuma (1995). "CD80 (B7) and CD86 (B70) provide similar costimulatory 
signals for T cell proliferation, cytokine production, and generation of CTL." J Immunol 
154(1): 97-105. 

 

Le Friec, G., B. Laupeze, O. Fardel, Y. Sebti, C. Pangault, V. Guilloux, A. Beauplet, R. 
Fauchet and L. Amiot (2003). "Soluble HLA-G inhibits human dendritic cell-triggered 
allogeneic T-cell proliferation without altering dendritic differentiation and maturation 
processes." Hum Immunol 64(8): 752-761. 



67 
 

 

Livak, K. J. and T. D. Schmittgen (2001). "Analysis of relative gene expression data 
using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method." Methods 25(4): 
402-408. 

 

Locksley, R. M., N. Killeen and M. J. Lenardo (2001). "The TNF and TNF receptor 
superfamilies: integrating mammalian biology." Cell 104(4): 487-501. 

 

Low, H. Z., S. Reuter, M. Topperwien, N. Dankenbrink, D. Peest, G. Kabalak, R. 
Stripecke, R. E. Schmidt, T. Matthias and T. Witte (2013). "Association of the LILRA3 
deletion with B-NHL and functional characterization of the immunostimulatory 
molecule." PLoS One 8(12): e81360. 

 

Lu, Y. C., W. C. Yeh and P. S. Ohashi (2008). "LPS/TLR4 signal transduction pathway." 
Cytokine 42(2): 145-151. 

 

Manavalan, J. S., P. C. Rossi, G. Vlad, F. Piazza, A. Yarilina, R. Cortesini, D. Mancini 
and N. Suciu-Foca (2003). "High expression of ILT3 and ILT4 is a general feature of 
tolerogenic dendritic cells." Transpl Immunol 11(3-4): 245-258. 

 

Mancuso, G., M. Gambuzza, A. Midiri, C. Biondo, S. Papasergi, S. Akira, G. Teti and C. 
Beninati (2009). "Bacterial recognition by TLR7 in the lysosomes of conventional 
dendritic cells." Nat Immunol 10(6): 587-594. 

 

Mogensen, T. H. (2009). "Pathogen recognition and inflammatory signaling in innate 
immune defenses." Clin Microbiol Rev 22(2): 240-273, Table of Contents. 

 

O'Garra, A., P. L. Vieira, P. Vieira and A. E. Goldfeld (2004). "IL-10-producing and 
naturally occurring CD4+ Tregs: limiting collateral damage." J Clin Invest 114(10): 
1372-1378. 

 

Osugi, Y., S. Vuckovic and D. N. Hart (2002). "Myeloid blood CD11c(+) dendritic cells 
and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes." 
Blood 100(8): 2858-2866. 

 

Paul, P., N. Rouas-Freiss, I. Khalil-Daher, P. Moreau, B. Riteau, F. A. Le Gal, M. F. 
Avril, J. Dausset, J. G. Guillet and E. D. Carosella (1998). "HLA-G expression in 



68 
 

melanoma: a way for tumor cells to escape from immunosurveillance." Proc Natl Acad 
Sci U S A 95(8): 4510-4515. 

 

Perry, A. K., G. Chen, D. Zheng, H. Tang and G. Cheng (2005). "The host type I 
interferon response to viral and bacterial infections." Cell Res 15(6): 407-422. 

 

Raker, V. K., M. P. Domogalla and K. Steinbrink (2015). "Tolerogenic Dendritic Cells 
for Regulatory T Cell Induction in Man." Front Immunol 6: 569. 

 

Ratkowsky, D. A. and T. J. Reedy (1986). "Choosing near-linear parameters in the four-
parameter logistic model for radioligand and related assays." Biometrics 42(3): 575-582. 

 

Ristich, V., S. Liang, W. Zhang, J. Wu and A. Horuzsko (2005). "Tolerization of 
dendritic cells by HLA-G." Eur J Immunol 35(4): 1133-1142. 

 

Riteau, B., C. Menier, I. Khalil-Daher, C. Sedlik, J. Dausset, N. Rouas-Freiss and E. D. 
Carosella (1999). "HLA-G inhibits the allogeneic proliferative response." J Reprod 
Immunol 43(2): 203-211. 

 

Robins, H. S., P. V. Campregher, S. K. Srivastava, A. Wacher, C. J. Turtle, O. Kahsai, S. 
R. Riddell, E. H. Warren and C. S. Carlson (2009). "Comprehensive assessment of T-cell 
receptor beta-chain diversity in alphabeta T cells." Blood 114(19): 4099-4107. 

 

Rouas-Freiss, N., R. M. Goncalves, C. Menier, J. Dausset and E. D. Carosella (1997). 
"Direct evidence to support the role of HLA-G in protecting the fetus from maternal 
uterine natural killer cytolysis." Proc Natl Acad Sci U S A 94(21): 11520-11525. 

 

Rovati, B., S. Mariucci, M. Manzoni, K. Bencardino and M. Danova (2008). "Flow 
cytometric detection of circulating dendritic cells in healthy subjects." Eur J Histochem 
52(1): 45-52. 

 

Rutz, M., J. Metzger, T. Gellert, P. Luppa, G. B. Lipford, H. Wagner and S. Bauer 
(2004). "Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-
dependent manner." Eur J Immunol 34(9): 2541-2550. 

 



69 
 

Ryu, M., Y. Chen, J. Qi, J. Liu, Z. Fan, G. Nam, Y. Shi, H. Cheng and G. F. Gao (2011). 
"LILRA3 binds both classical and non-classical HLA class I molecules but with reduced 
affinities compared to LILRB1/LILRB2: structural evidence." PLoS One 6(4): e19245. 

 

Sallusto, F. and A. Lanzavecchia (1994). "Efficient presentation of soluble antigen by 
cultured human dendritic cells is maintained by granulocyte/macrophage colony-
stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha." J 
Exp Med 179(4): 1109-1118. 

 

Sintes, J., X. Romero, J. de Salort, C. Terhorst and P. Engel (2010). "Mouse CD84 is a 
pan-leukocyte cell-surface molecule that modulates LPS-induced cytokine secretion by 
macrophages." J Leukoc Biol 88(4): 687-697. 

 

Steinman, R. M. and Z. A. Cohn (1973). "Identification of a novel cell type in peripheral 
lymphoid organs of mice. I. Morphology, quantitation, tissue distribution." J Exp Med 
137(5): 1142-1162. 

 

Swiecki, M. and M. Colonna (2010). "Unraveling the functions of plasmacytoid dendritic 
cells during viral infections, autoimmunity, and tolerance." Immunol Rev 234(1): 142-
162. 

 

Takeuchi, O., T. Kawai, H. Sanjo, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, K. 
Takeda and S. Akira (1999). "TLR6: A novel member of an expanding toll-like receptor 
family." Gene 231(1-2): 59-65. 

 

Takeuchi, O., S. Sato, T. Horiuchi, K. Hoshino, K. Takeda, Z. Dong, R. L. Modlin and S. 
Akira (2002). "Cutting edge: role of Toll-like receptor 1 in mediating immune response 
to microbial lipoproteins." J Immunol 169(1): 10-14. 

 

Taub, D. D., A. R. Lloyd, K. Conlon, J. M. Wang, J. R. Ortaldo, A. Harada, K. 
Matsushima, D. J. Kelvin and J. J. Oppenheim (1993). "Recombinant human interferon-
inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and 
promotes T cell adhesion to endothelial cells." J Exp Med 177(6): 1809-1814. 

 

Ting, J. P. and J. Trowsdale (2002). "Genetic control of MHC class II expression." Cell 
109 Suppl: S21-33. 

 



70 
 

Torkar, M., A. Haude, S. Milne, S. Beck, J. Trowsdale and M. J. Wilson (2000). 
"Arrangement of the ILT gene cluster: a common null allele of the ILT6 gene results 
from a 6.7-kbp deletion." Eur J Immunol 30(12): 3655-3662. 

 

Trifilo, M. J., C. C. Bergmann, W. A. Kuziel and T. E. Lane (2003). "CC chemokine 
ligand 3 (CCL3) regulates CD8(+)-T-cell effector function and migration following viral 
infection." J Virol 77(7): 4004-4014. 

 

Velten, F. W., K. Duperrier, J. Bohlender, P. Metharom and S. Goerdt (2004). "A gene 
signature of inhibitory MHC receptors identifies a BDCA3(+) subset of IL-10-induced 
dendritic cells with reduced allostimulatory capacity in vitro." Eur J Immunol 34(10): 
2800-2811. 

 

Wang, J., Y. Shao, T. A. Bennett, R. A. Shankar, P. D. Wightman and L. G. Reddy 
(2006). "The functional effects of physical interactions among Toll-like receptors 7, 8, 
and 9." J Biol Chem 281(49): 37427-37434. 

 

Zhu, J. and W. E. Paul (2008). "CD4 T cells: fates, functions, and faults." Blood 112(5): 
1557-1569. 

 

 


	Seton Hall University
	eRepository @ Seton Hall
	Summer 8-1-2016

	TLR3 Signaling in Human BDCA-3 Dendritic Cells Results in the Formation of Several ILT3 and ILT4 Populations
	Nicholas J. Colletti
	Recommended Citation


	Microsoft Word - NicholasCollettiThesis

