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ABSTRACT 

Spermatogenesis is a series of complex processes that leads to the development of 

sperm cells. It involves both mitotic and meiotic cell divisions followed by dramatic 

cytoskeletal reorganizations and cell growth. Previously our lab developed a culture 

system for in vitro study of spermatogenesis using isolated spermatogenic cysts from the 

testes of D. pseudoobscura (Njogu et al. 2010). The use of D. pseudoobscura is 

advantageous compared to the model organism D. rnelanogaster because: 1 )  survival of 

cysts to the elongated and motile form is easily achieved and repeatable and 2) minimal 

media is required for the growth of the spermatogenic cysts. 

Insulin-like peptides (ILPs) are known to play a role in the progression of 

Drosophila spermatogenesis in vivo. ILPs are involved in the signaling pathway 

responsible for the maintenance of spermatogenic stem cells in the testis stem cell niche. 

Specifically, ILPs are important for the growth of spermatogonia and maturation of these 

cells into primary spermatocytes (Ueishi et al. 2009). Glutathione (GSH) is a known 

antioxidant that plays an important role in both plant and animal culture systems (Meloni 

et al. 2003). The purpose of the current work was to determine the effects of exogenous 

insulin and glutathione on Drosophila spermatogenic cyst growth in vitro. Our results 

indicate that the addition of glutathione alone to our culture system has the strongest 

effect on spermatogenic cysts survival in vitro. Additionally, nuclear fluorescence 

staining with acridine orange and DAPI (diamidino-2-phenylindole) indicates that post- 

meiotic nuclear transformation occurs normally in our cultured cysts. 



INTRODUCTION 

Overview 

Over the past century, Drosophila melanogaster has been used as a model 

organism for genetic, developmental, and cell biological studies. These flies are an 

attractive system of study because of their short generation time, the availability of fully 

sequenced genome, and the accessibility to genetic manipulation. In addition, they can be 

cheaply maintained in the laboratory. With these advantages, Drosophila melanogaster is 

currently one of the most important model organisms utilized in biological investigations. 

Drosophila melanogaster has been the prevalent species in spermatogenesis studies in 

vitro and in viva (White-Cooper 2010; Fuller et al. 1993; Gregory et al. 2008; Cenci et 01. 

1994; Ueishi et al. 2009). 

Spermatogenesis in Drosoplda 

Sperm production continues throughout adulthood in most male animals. In both 

flies and mammals, regeneration of stem cells provides a continuous supply of precursor 

sperm cells, so spermatogenesis is maintained via a stem cell system (White-Cooper 

2009). 

Spermatogenesis in Drosophila proceeds within paired blind-ended tubular or 

ellipsoid testes made of muscle and pigmented cells. It begins with the division of diploid 

germline stem cells (GSCs) at the apical end of the testes, which progress to become 

individual highly specialized, motile sperm (Fig 1). The germinal proliferation center, 

otherwise known as the hub, is located apical end of the testes. It consists of three types 



of cells: GSCs, somatic stem cells, and hub cells (Hardy et al. 1979). The mitotic division 

of a GSC results in a gonialblast committed to differentiation and a GSC that remains in 

contact with the hub. In Drosophila, the somatic stem cells, or cyst progenitor cells 

(CPCs), produce the cyst cells that accompany the differentiated spermatogonia 

throughout spermatogenesis (Fuller et  al. 1993). To maintain their stem cell 

characteristics both stem cell populations, GSCs and CPCs, are arranged in a rosette 

around the hub cells, a population of approximately twenty post-mitotic cells also at the 

apical end of the testes (Hardy et al. 1979). The hub cells constitute a signaling center 

responsible for maintaining normal stem cells (White-Cooper 2010). 



Fig. 1. Diagrammatic representation of spermatogenesis in D. pseudoobscura. 
(a) Enlargement of the stem cell niche. The panel shows the progression of the 
encapsulation of a gonialblast, from left to right. H = hub cells; GSC = germline stem cell; 
SSC = somatic stem cell (cyst progenitor cell). (b) Enlargement, cut-away view of the 
testes showing the stages of cyst development. SG = spermatogonia; l o  SP = primary 
spermatocyte; 2O SP = secondary spermatocytes; RS = round spermatids; ES = elongating 
spermatids; MS = mature spermatozoa; CC = coiling cyst. (c) Illustration testes, with the 
accessory glands (AG) attached. Mature sperm are stored in the seminal vesicles (SV) 
until mating. T = testis. Illustration after Njogu et al. 2010, Cell and Tissue Research, in 
press. 



Each mitotic division of a cyst progenitor cell (CPC) produces a CPC and 

produces a cyst cell. Two cyst cells, analogous to the Sertoli cells of the mammalian 

testis, encapsulate each gonialblast. The cyst cells terminally differentiate by completing 

mitosis while the encapsulated gonialblast continues to differentiate. The 

spermatogenesis process continues within the cysts. The gonialblast undergoes a series of 

incomplete mitotic divisions to produce spermatogonia, followed by a growth phase that 

gives rise to primary spermatocytes in syncytium within the cyst. Cytokinesis is 

incomplete during these divisions, which leaves the spermatogonial cells connected by 

stable intercellular bridges called ring canals (Fuller 1998). Intercellular cytoplasmic 

bridges are important to maintain developmental synchrony among the spermatogonial 

cells. In D. melanogaster, there are four mitotic divisions that result in a cyst with 16 

primary spermatocytes, while in D. pseudoobscura there are five mitotic divisions that 

give rise to cysts with 32 primary spermatocytes (Scharer et al. 2008). 

Many of the processes of spermatogenesis in mammals are conserved in 

Drosophila. As in mammalian spermatogenesis, the primary spermatocyte stage is 

characterized by incomplete cytokinesis, extensive cell growth, and an increase in gene 

expression (White-Cooper 2009). The primary spermatocytes rapidly progress through 

pre-meiotic S-phase, and then enter an extended G2 cell cycle phase in which they grow 

up to 25 times in volume. The conventional stages of meiotic prophase are not visible in 

Drosophila males, which indicates that meiotic recombination of chromosomes does not 

occur in the cells (Fuller 1998). At the end of the primary spermatocyte stage gene 

expression ceases, and the cells progress through two meiotic divisions which yield a cyst 



with interconnected haploid spermatids. In D. pseudoobscura, meiosis yields 128 haploid 

spermatids that progress towards the sperm maturation process termed spermiogenesis 

(Fig. 1). 

As in mammals, spermiogenesis in Drosophila occurs by a series of drastic 

morphological changes. The spermatids grow a long flagellum containing an axoneme, a 

microtubule-based organelle, for motility. In addition, change in nuclear structure and 

DNA condensation occurs (Fuller 1998). During elongation, sperm nuclei transform from 

a spherical shape to an elongated "needle-shape" that is condensed. As in mammalian 

spermatogenesis, a switch in structure from nucelosomal-based to protamine-based 

chromatin takes place in Drosophila. It is well established that in mammals nucleosomal 

confirmation is lost after meiosis due to multiple modifications of histones proteins 

(Clermont et al. 1993). Rathke et al. (2007) reported similar modifications of histones in 

Drosophila prior to their degradation, and the presence of protamines around sperm 

nucleus. Histones are removed from chromosomes of spermatids and replaced initially by 

transition proteins, then protamines. This process results in a highly condensed state of 

the chromatin, which is essential for the transmission of the male genome to the oocyte 

(Rathke et al. 2007; Oliva 2006). Previous studies have reported that a knockout of only 

one protamine allele, PI or P2, in mice was sufficient to cause infertility (Cho et al. 

2001). 

Fully elongated cysts in Drosophila proceed to the next phase of spermiogenesis 

known as individualization, where each sperm cell becomes invested in an individual 

plasma membrane. This process involves the formation of an individualization complex, 



which is dependent on apoptotic pathway activation. According to the findings of Arama 

et al. (2003) caspases are apoptotic proteins important during individualization in 

Drosophila melanogaster. Caspase activity was inhibited in both cultured testes and in 

vivo, which caused the individualization process to become aberrant. The 

individualization complex is a coordinated array of actin cones which move 

synchronously along the cyst, with each spermatid being individualized by a single 

investment cone. This cytoskeletal-membrane complex assembles at the nuclear end of 

the cyst and progresses to the tails investing each spermatid in its own plasma membrane, 

while simultaneously expelling excess syncytial cytoplasm and organelles (Tokuyasu et 

al. 1972; Farizio et al. 1998). Movement of the complex along the spermatogenic cyst is 

observed by the presence of an enlarged region known as the cystic bulge. Noguchi and 

Miller (2003) reported that actin polymerization is responsible for cystic bulge movement 

during individualization. The cystic bulge consists of accumulated cytoplasmic material 

and degrading organelles. The bulge is detached from the mature individualized cyst 

when it reaches the tail end, where it is referred to as a waste bag (Tokuyasu et al. 1972). 

In the presence of caspase inhibitors the individualization complex remains in the vicinity 

of the sperm nuclei, which gives indicate a defect in its translocation along the cyst 

(Arama el al. 2003). Individualization of spermatids is followed by the coiling of the 

mature spermatids towards the basal end of the testes, where mature sperm are then 

transported into the seminal vesicle for storage (Tokuyasu el al. 1972). 

Previously, Cross and Sang (1978) used an in vitro culture system to compare the 

development potential of cell types of normal and mutant embryos in a condition where 



they are relatively isolated. Since then, there have been several attempts to culture 

Drosophila germline cells in vitro. In vitro culture of isolated cysts from D hydei has 

been achieved by Fowler (1973), Fowler and Johannison (1976) and Liebrich (1981 and 

1982). Fowler (1973) maintained the testes from pupae of D. hydei in culture. In that 

study, there were minimal degenerative changes in primary spermatocytes after two days 

in culture, which gave evidence that the testes were being maintained normally. However, 

after two days development of late spermatids and the process of spermiogenesis was not 

observed in vitro. Liebrich (1981) reported elongated and coiled cysts in culture; however 

the process of individualization was not seen as in D. melanogaster. He also reported that 

D hydei cysts isolated when their spermatocytes were in prophase I differentiated for 2-3 

days at 22'C in vitro. However, at lower temperatures, differentiation was prolonged to 

approximately 5 days. He further reported that spermatogonial cysts were difficult to 

cultivate for longer than 3 days. Cross and Shellengarger (1979) successfully cultured 

isolated cysts in vitro from wild-type testes of D. melanogaster. The development of late 

cysts from meiosis to the coiling stage was observed in culture. However, motility was 

never observed, cysts only elongated to 113 their normal length, and maturation success 

rate was low. In more recent studies, in vitro culture of D. melanogaster adult (Noguchi 

and Miller 2003) and larval testes (Kawamoto et al. 2008) has been successfully achieved. 

Adult cyst culture investigated the mechanism of sperm individualization, while in larval 

cyst culture sperm motility was consistently achieved in vitro. 

In our previous study, we successfully isolated and cultured spermatogenic cysts 

from the pupal-stage testes of D. pseudoobscura (Njogu et al. 2010). The testes of D. 



pseudoobscura can be easily distinguished in the later pupal stages due to intense 

pigmentation, and are easily handled due to their ellipsoid morphology (Fig. 2). The 

survival of cysts to the elongated and motile form was consistently achieved in vitro. 

However, the degeneration of early spermatogenic cysts as well as primary spermatocytes 

was frequently observed in the culture system. Previously, Niki et al. (2006) established 

an in vitro system to analyze factors that regulate the division and differentiation of GSCs 

in Drosophila ovaries. They tested various culture conditions by adding insulin, GSH, 

and fly extract. Kawamoto et al. (2008) reported the differentiation of primary 

spermatocytes and dissociated spermatogonia into motile spermatids in vitro. Exogenous 

insulin and glutathione (GSH) was incorporated in their culture system. Insulin is known 

for its role in stimulating the uptake of glucose into cells. However it can also act as a 

mitogen for various cell types in culture (Femandez et al. 1995). An insulin receptor and 

its signaling cascade are well conserved in Drosophila (Femandez et 01. 1995). 

Drosophila insulin-like peptides are known to promote the proliferation and growth of 

somatic cells, and the division of GSCs in females (Ueishi et al. 2009). In mammals GSH 

is involved in the protection of both males and female gametes against oxidative damage 

(Luberda 2005). 



Fig. 2. D. pseudoobscura pupae and testes. Isolated testes indicated by the white arrows. 
Pigmented testes can be observed through the abdominal wall of the fly (black arrow). 



The purpose of our current study was to: 1) study the effects of exogenous insulin 

and glutathione on spermatogenic cyst maturation in vitro and, 2 )  compare the integrity 

of the chromatin in cultured sperm to the chromatin of sperm cells in vivo using nuclear 

fluorescent staining techniques. In non-treated cultures as well as those treated with 

insulin only, glutathione only, and insulin + glutathione the survival of cysts to the 

elongated, motile form was consistently achieved. Quantitative analysis showed that 

spermatogenic cysts in cultures treated with glutathione only and insulin only out- 

performed the non-treated cultures after 96 hours in vitro, while spermatogenic cysts in 

cultures treated with insulin + glutathione performed comparable to those in non-treated 

cultures after 96 hours in vitro. Additionally, no difference in chromatin integrity was 

detected in cultured sperm nuclei compared to sperm nuclei produced in vivo. 



MATERIALS AND METHODS 

I. Fly Stock and Cultures. 

Fly stocks were obtained from the University of California San Diego Drosophila 

Species Stock Center. All flies were cultured in our laboratory on Jazz Mix 

Drosophila medium (Fisher) at 2YC. 

11. Culture Media 

The culture media used was based on previous studies by Cross and Shellenbarger 

(1979). Powdered Shields and Sang M3 Insect medium without bicarbonate (Sigma- 

Aldrich, St. Louis MO), was reconstituted according to manufacturer's instructions, and 

supplemented with 10% fetal calf serum (Sigma-Aldrich) and 1% penicillin/streptomycin 

cocktail (Sigma-Aldrich) according to previous studies Viki  et al. 2006; Kawamoto et al. 

2008). The serum was heat-inactivated at 50°C for 30 minutes. Treated cultures were 

supplemented with either 10 pglml insulin from bovine pancreas (Sigma-Aldrich; 

Freshney 1994.), 0.6 mg/ml glutathione (Sigma-Aldrich), or both insulin and GSH. 

Culture media was prepared with glutathione-only, insulin-only, and insulin + glutathione 

on the day of culture. Untreated control cultures were grown in supplemented medium 

that lacked insulin and glutathione. 



111. In vitro culture of isolated cysts 

Pupae were harvested five to seven days after pupation began. They were soaked 

in 70% alcohol for 15 minutes, and dissected in 1X phosphate buffered saline (PBS) with 

1% penicillidstreptomycin (Sigma-Aldrich) on a sterilized bench. After dissection, three 

testes were washed twice in 1X PBS and once in 50 ~1 supplemented culture media. The 

testes were then ruptured in supplemented culture media with forceps. The released cysts 

were dissociated by gently pipetting several times. The dissociated cysts were then 

transferred, using a pipette, into a sterile 24-well culture plate with fresh culture media 

under the laminar flow hood. Each well contained 950 p1 of supplemented M3 media, and 

50p1 of cysts. The cysts were cultured at room temperature (22°C) without COz. 

Cysts cells were monitored daily and images collected using an inverted, phase 

contrast Leica DMIL microscope equipped with a Leica DFC 300 CCD camera. After 48 

hours in culture, 200p1 of supplemented media was added to each culture system. 

IV. Quantification of cyst growth 

Cysts were quantified by manually counting viable cysts present at each stage of 

development over the course of 96 hours in culture. Normal cysts were defined as those 

that had normal morphology and lacked any kind of degeneration such as bursting of 

cysts. The cysts were categorized in developmental stages based on the number of cells 

per cyst, morphology, and size of the cysts. A total of three experiments was performed 

for glutathione-only, insulin-only, and insulin + glutathione cultures. A total of six 



experiments was performed for non-treated cultures. The duration of manual counting of 

cysts for quantification for treated and non-treated cultures was approximately thirty 

minutes. This time was kept as short as possible to minimize the exposure of cysts to 

light. Data collected from experiments for each treatment condition was pooled and 

statistically analyzed using the software package Tableau and Graphpad. 

V. Fluorescence staining of in viiro culture with isolated cysts with DAPI 

For florescence staining with DAPI, the testes and isolated cysts were obtained as 

described in section 111 above. However instead of culturing isolated cysts in 24-well 

plates, cysts were cultured in Culturewell chambered cover-glasses (Electron Microscopy 

Sciences). Dissociated cysts were transferred, using a pipette, into a chamber with fresh 

culture media under the laminar flow hood. Each well on the cover slip contained 300 p1 

of supplemented M3 media, and 50 pI of cysts. After 72 hours in culture 3.5 p1 of 1 

mglml DAPI fluorescent nuclear stain (Invitrogen, USA) was added to the cover slip 

under the laminar flow hood, and incubated at room temperature for 10 mins. A 25 pl 

drop of the stained cysts from the chamber was added to a glass slide, and a single cover- 

slip was gently placed on top of the drop. 

Fluorescence staining of cysts obtained from pupae (24-48 hrs before eclosion) with 

DAPI (Invitrogen) was also performed as a control. Three pupae were dissected in 1X 

phosphate buffered saline (PBS) with 1% penicillinlstreptomycin (Sigma-Aldrich) on a 

sterilized bench. After dissection, the three testes were washed twice in 1X PBS. The 

testes were ruptured in 100 p1 of 1X PBS with forceps. The released cysts were stained 

13 



with 10 pg/ml of DAPI. The mixture was gently stirred with a pipette and incubated for 

10 minutes. A cover-slip was gently placed on top of the drop. 

Images were collected using an Olympus BX40 epifluorescence microscope and an 

inverted, phase contrast Leica DMIL microscope equipped with a Leica DFC 300 CCD 

camera. 

VI. Fluorescence staining of in viiro culture with isolated cysts with acridiue 

orange 

For fluorescence staining with acridine orange, the testes and isolated cysts were 

obtained and cultured as described above for DAPI. After 72 hours in culture, 20 p1 of 

the culture media with cysts and 5 p1 of 100pg/ml acridine orange (Sigma-Aldrich) were 

transferred to a glass slide for a final concentration of 20 pg/rnl. The mixture was gently 

stirred with a pipette, and a cover slip was gently placed on top of the drop. 

Fluorescence staining of adult flies with acridine orange was also performed as a 

control. Three adult flies were dissected in 1X phosphate buffered saline (PBS) with 1% 

penicillin/streptomycin (Sigma-Aldrich) on a sterilized bench. After dissection, the three 

testes were washed twice in 1X PBS. The testes were ruptured in 20 p1 of 1X PBS with 

forceps. The released cysts were stained with 5p1 of acridine orange (Sigma-Aldrich). 

The mixture was gently stirred with a pipette, and a cover-slip was gently placed on top 

of the drop. 



Images were collected using Olympus Fluoview 1000 confocal laser scanning 

microscope (CLSM) and an Olympus BX40 epifluorescence microscope. 



RESULTS 

I. Culture of isolated of cysts 

i. Glutathione only 

Cysts from pupal testes were isolated and cultured with exogenous glutathione. 

This agent was used to investigate whether its anti-oxidant properties might rescue the 

degradation of early stage cysts noted in our previous study. Staging of cultured cysts 

was done using cyst size, number of germ cells within the cysts, the shape and size of the 

germ cell nucleus, as well as the general morphology of the cyst. When initially isolated 

from testes, cysts in advanced post-elongation stages of differentiation (individualization 

and coiling), were never observed. Qualitatively, both development and degradation of 

the cysts was apparent over four days in the cultures treated with GSH and non-treated 

cultures (Figs. 3d and 4d). Cyst maturation was observed after 24 hours in both cultures, 

indicated by the presence of the cystic bulge along a number of cyst cells and initial 

coiling of cysts (Figs. 3a and 4a). By day four in culture cysts were fully developed and 

motility was observed in treated and untreated cultures. 



Figure 3. Isolated cysts after 24 hours and 96 hours in culture medium supplemented 
with GSH. (a) Cysts after 24 hours in culture, note the appearance of a coiled cyst (black 
arrow) and a cyst undergoing individualization (white arrow). (b) Cysts after 96 hours in 
culture. Note more elongating cysts have a cystic bulge, indicative of individualization 
(black arrows). In addition an increase in coiling cysts was apparent (white arrows). (c) 
Phase contrast micrograph of cysts after 24 hours in culture. Note the appearance of 
degenerating cysts (black arrows) as well as early elongating cysts (white arrows). (d) 
Phase contrast micrograph of isolated cysts after 96 hours in culture. Note most early 
cysts have degenerated. Fully coiled cyst was also apparent (black arrow). Scale bars = 

100 pn in all panels. 



Figure 4. Isolated cysts at 24 hour and 96 hours in culture with no treatment. (a) Cysts 
after 24 hours in culture, note the appearance of initial coiling of cyst (black arrow). (b) 
Cysts after 96 hours in culture. White arrows indicate coiled cysts. In addition an increase 
in coiling cysts was apparent (black arrows). (c) Phase contrast micrograph of cysts after 
24 hours in culture. Note the appearance of early elongating cysts (black arrow) as well 
as cyst beginning to coil (white arrow). (d) Phase contrast micrograph of isolated cysts 
after 96 hours in culture. Note most early cysts have degenerated. Cysts at the 
individualization stage (white arrows) and initial coiling stage (red arrow) were apparent. 
Scale bars = 100 pm in all panels. 



In cultures treated with GSH, consistently after 24 hours, quantitative analysis 

showed a rapid increase in meiotic cysts and cysts at the elongation stage of development 

compared to non-treated cultures (Table 1). However, there was a significant decrease in 

the number of mitotic cysts, which include spermatogonia and primary spermatocytes 

(Tables 1 and 4). After 48 hours, the number of mitotic cysts continued to decrease but 

the number of meiotic and late stage cysts increased. Interestingly, after 48 hours the 

percentage of coiling cysts was significantly higher in the non-treated cultures as 

compared to the treated cultures (Figs. 4 and 11). This trend continued up to 96 hours. 

By day four of culture, a higher percentage of early cysts was observed in cultures 

treated with GSH compared to non-treated cultures. Even though there was a significant 

decrease in mitotic cysts in both cultures, their survival rate was higher in the cultures 

treated with GSH over the non-treated cultures. A ratio of GSH performance on cyst 

survival in the cultures went from a factor of 1.78 at 48 hours to 1.96 by 96 hours, which 

further suggests GSH has a significant effect on pre-meiotic cyst survival over time (Fig. 

10). 
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Figure 5. Percentage of viable cysts at different stages of development in cultures treated 
with GSH compared to non-treated over 96 hours. (1) Spermatogonia (in purple) (2) 
Primary spermatocytes (in dark blue) (3) Secondary spermatocytes/Round spermatids (in 
light blue) (4) Elongating and individualizing cysts (orange) (5) Coiling cysts (red). Data 
from a series of experiments were pooled. 



ii. Insulin 

Insulin was added independently to the cultures to investigate whether it can act 

to rescue the degradation of early stage cysts noted in our previous study. As mentioned 

previously, staging of cultured cysts was done using cyst size, number of germ cells 

within the cysts, the shape and size of the germ cell nucleus, as well as the general 

morphology of the cyst. As with GSH-only treated cultures, post-elongation development 

and early cyst degradation was apparent after 24 hours (Figs. 4 and 6). 

After 24 hours, quantitative analysis showed an increase in meiotic cysts, and 

cysts at the elongation stage of development in cultures treated with insulin compared to 

non-treated cultures. In addition, there was a decrease in the number of primary 

spermatocytes (Table 2). After 48 hours the number of meiotic cysts in the treated 

cultures continued to increase, however in the non-treated cultures only a slight increase 

was observed. The non-treated cultures had a greater number of cysts at the coiling stage 

compared to treated cultures (Tables 2 and 4). Both cultures, treated and non-treated, had 

a comparable number of cysts at the coiling stage between 24 and 48 hours. However 

after 72 hours the non-treated cultures had 17.9% of coiled cysts and the treated cultures 

had 13.2% (Fig. 1 I). By day four, the non-treated cultures out-performed the treated 

cultures by 10% (Fig. 11). For the survival of mitotic cysts, the ratio of insulin 

performance in the treated cultures over the non-treated cultures went from a factor of 

1.27 at 48 hours to 1.89 by 96 hours (Fig. 10). These results indicated that insulin had an 

effect on early cyst survival over time. 



Figure 6 .  Isolated cysts over after 24 hours and 96 hours in culture supplemented with 
insulin. (a) Cysts after 24 hours in culture, note the appearance of a coiling cyst (black 
arrow). (b) Cysts after 96 hours in culture. Note more elongating cysts have a cystic 
bulge (white arrow). In addition coiling cysts were apparent (black arrows). (c) Phase 
contrast micrograph of cysts after 24 hours in culture. Note the appearance of 
degenerating cysts (black arrow) as well as early elongating cysts (white arrows). (d) 
Phase contrast micrograph of isolated cysts after 96 hours in culture. Note most early 
cysts have degenerated. Only post meiotic cysts are still visible (black arrows). Scale bars 
= 100 pm in all panels. 



Insulin only vs. Control 
HOW I Treatment SbOe 

0 24 48 72 % m s  

sum ofpercentage for each Treatmmtbrokcn down by Hour. Color r h o w  dctalls about Stage. Thevie* 1s filtered an Sage 
and TreatmenlThc Stagcfilterh.r, mulhple membersselected TheTrcatmmtflllerkccps Control and Insulin. 

Figure 7. Percentage of viable cysts at different stages of development in cultures treated 
with insulin compared to non-treated over 96 hours. (1)  Spermatogonia (in purple) (2) 
Primary spermatocytes (in dark blue) (3) Secondary spermatocyteslRound spermatids (in 
light blue) (4) Elongating and individualizing cysts (orange) (5) Coiling cysts (red). Data 
from a series of experiments were pooled. 



iii. Insulin + Glutathione 

Cultures treated with GSH + insulin showed similar qualitative results as those 

treated with each reagent independently. When initially isolated, cysts in advanced stages 

of differentiation were not observed. Cyst maturation was observed by the appearance of 

cystic bulge along elongated cysts and cysts at the coiling stage (Figs. 8a and 8b). Motile 

sperm was also apparent in GSH + insulin cultures. 

After 24 hours the number of meiotic and post-meiotic cysts increased, whereas 

the number of mitotic cysts continued to decrease (Table 3 and Fig. 9). By day four, there 

was no significant difference in the percentage of mitotic cysts in treated vs. non-treated 

cultures (Fig. 9). In the normalized data, the ratio of early cysts in treated cultures to 

those in non-treated cultures was less than 1.0 after 24 hours. Even though the ratio of 

treatedlnon-treated was 1.3 after 48 hours, it decreased to 1.1 by day four (Fig. 10 bottom 

panel). Furthermore, in comparison to the nou-treated cultures (Table 4), the number of 

meiotic cysts continued to decrease after 48 hours (Table 3). A greater number of cysts at 

the coiling stage were observed in the non-treated cultures compared to cultures treated 

with GSH + insulin after 48 hours (Tables 1 and 4). After 48 hours, the non-treated 

cultures had 10.5% of cysts at the coiling stage, while only 6.5% of cysts were at the 

coiling stage in the treated cultures (Fig. 11). Interestingly, this trend did not continue up 

to 96 hours. The percentage of cysts at the coiling stage in both treated and non-treated 

cultures were similar by day four (Fig. 9). These results suggest that cysts at all stages of 

development in treated cultures performed comparable to those in the non-treated 

cultures after 96 hours. 
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Figure 8. Isolated cysts after 24 hours and 96 hours in culture supplemented with GSH + 
insulin. (a) Cysts after 24 hours in culture, note the appearance of a coiling cyst (white 
arrow) and a cyst with a cystic bulge, indicative of individualization (black arrow). (b) 
Cysts &r 96 hours in culture. Note increase in cell debris due to cyst degeneration. 
Coiling cysts were apparent (black arrows). (c) Phase contrast micrograph of cysts after 
24 hours in culture. (d) Phase contrast micrograph of isolated cysts after 96 hours in 
culture. Note most early cysts have degenerated. Scale bars = 100 pn in all panels. 
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Figure 9. Percentage of viable cysts at different stages of development in cultures treated 
with GSH + insulin compared to non-treated over 96 hours. ( 1 )  Spermatogonia (in purple) 
(2) Primary spermatocytes (in dark blue) (3) Secondary spermatocytes/round spermatids 
(in light blue) (4) Elongating and individualizing cysts (orange) (5) Coiling cysts (red). 
Data from a series of experiments were pooled. 



Figure 10. Performance of mitotic cysts in cultures over 96 hours treated with GSH only, 
insulin only, and GSH+insulin compared to non-treated cultures. Top panel raw data. 
Bottom panel normalized data. 



Figure 11. Coiling cyst performance between 24 hours and 96 hours in treated and non- 
treated cultures. GSH only (top), insulin only (middle), GSH + insulin (bottom). 



iv. Quantification and statistical analysis of cyst growth 

Cyst maturation was defined as development of the cyst up to the 

individualization stage which has the characteristic cystic bulge along the length of the 

cyst (Fig. 12b). The survival rates of the cysts were quantified based on how many viable 

cysts were present in culture per experiment each day; Spermatogonia (SG), primary 

spermatocytes (PS), secondary spermatocytes/round spermatids (RS), individualizing (IC) 

and coiling stage (CC) (Fig. 12). Spermatogonia that were undergoing mitotic divisions 

were identifiable based on the number of spermatogonia cells per cyst. Cyst cells at the 8- 

cell and 16-cell stage were counted as spermatogonia, but those at the 1-4 cell stage were 

not quantified in this study because they were difficult to distinguish morphologically. 

Once encapsulated within a cyst, the germ cell in D. pseudoobscura undergoes five 

synchronous mitotic divisions resulting in a cyst with 32 spermatogonial cells that are 

interconnected via cytoplasmic bridges (Sharer et al., 2008). The cysts then undergo a 

growth phase, where the cell increases in size. The nuclei of the germ cells become 

smaller in size in post-mitotic cysts (Fig. 12a: RS). The results for each series of 

experiments for cultures with glutathione only, insulin only, insulin + glutathione and 

non-treated are summarized in Table 1-4. 

A Student's t-test was performed comparing treated cultures to non-treated 

cultures (Table 5). In cultures treated with GSH, p values were statistically significant 

after 24 hours, with the exception of 72 and 96 hours. In cultures treated with insulin, p 

values were statistically significant only at 72 hours. Moreover cultures treated with GSH 

+ insulin showed no statistical significance over four days, indicating that there was no 



difference between non-treated cultures and cultures treated with GSH + insulin. Note 

that the cultures treated with GSH-only and insulin-only trend more closely towards a 

statistically significant difference from untreated cultures over insulin + GSH-treated 

cultures. 



Figure 12. Spermatogenic cysts at 72 hours in culture treated with glutathione (a-c). 
a) Cysts at different stages of differentiation were observed. Degeneration of cysts M 

apparent (black arrows). SG: spermatogonia, PS: primary spermatocyte, RS: round 
spermatid, ES: early elongating cysts b) Cyst at the individualization stage of 
development. IC: individualizing cyst. C) Coiled cysts (CC). Scale bars = 100 pn in 
panels. 
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POOLED DATA 

Spermatogonia 

Primary 
spermatocytes 

Secondary 
spermatocytes+Round 

spermatids 

Elongating Cysts 
. . . - . . - . . .. 

Coiling Cvsts - - 
Total 

Table 1,Quantification of cyst development into advance stages in vitro treated with 
glutathione. There were no individualizing or coiled cysts at the initiation of the cultures 

1 Insulin ONLY - POOLED i 1 i I 1 1 

I I I I I 
Soermatoeonia 172 137 70 56 35 

DATA 

Table 2,Quantification of cyst development into advance stages in vitro treated with 

Day 0 

.z I I 

insulin. There were no individualizing or coiled cysts at the initiation of the cultures. 

Primary spermatocytes I 328 

24 hours 

132 

48 hours 

73 

Secondarv 

72 hours 

93 73 

96 hours 

36 25 

153 58 54 



Spermatogonia 1 
Primary 

spennatocytes 

Secondary 
spermatocytes+Round 

spermatids 

Table 3.Quantification of cyst development into advance stages in vitro treated with 
insulin + glutathione. There were no individualizing or coiled cysts at the initiation of the 
cultures. 

Non-treated- POOLED 
DATA 

1 Spermatogonia 1 324 1 189 1 99 1 54 1 30~-1 

I I I I I 

I I I 

Total 1 1952 I 1659 I 1438 1204 790 

1 Day 0 

Tahle 4,Quantification of cyst development into advance stages in vibo with no 
treatment. There were no individualizing or coiled cysts at the initiation of the cultures. 

24 hours 1 48 hours 72 hours 96 hours 



Spennatogonia+Primary 
spermatocytes 

Table 5. Statistical analysis of treated cultures compared to non-treated cultures over 96 
hours. A p value less than or equal to 0.05 indicates statistical significance. 



11. Acridine orange and DAPI staining of cultured and adult cysts 

The integrity of the chromatin in cultured sperm as compared to sperm obtained from 

adult cysts was analyzed using acridine orange (AO) staining. Qualitatively, no 

difference was detected in the green fluorescence obtained from both cultured cysts and 

cysts from adult males (Figs. 1% and c). Green fluorescence indicates binding of acridine 

orange to double-stranded DNA. Two sperm morphologies were observed in both 

cultured cysts and cysts obtained from adult males- a long sperm morph termed eusperm 

and a short sperm morph termed parasperm. The short sperm shown in Fig 13b averaged 

84.6 +I- 3pm in total length, while their nuclei averaged 11.3 +I- 2 pm in length. The 

nuclei of the parasperm stained more intensely with acridine orange compared to the 

eusperm (Figs. 13b and c). This possibly indicates that the chromatin might be less 

compacted in the parasperm morphs which would allow the stain to have better access to 

the DNA for binding. The two sperm morphologies observed in both cultured cysts were 

confirmed using DAPI staining (Fig. 14). Both the parasperm and the eusperm were 

detected after 72 hours in vitro, as well as in vivo. 



Figure 13. Acridine orange staining of cysts from three-day cultures and adult D. 
pseudoobscura. (a and b) Cysts and mature sperm after three days in culture. (a) Coiling 
cysts. The nuclei indicated by the arrowhead appear to be longer than the nuclei seen in 
the cyst indicated by the arrow. (b) Mature sperm that have burst from encapsulating 
cysts. Two sperm morphs are apparent; a eusperm is indicated by the white arrow, a 
parasperm is indicated by the arrowhead. (c and d) Mature sperm and cyst from D. 
pseudoobscura adult. (c) Mature sperm from adult testes. Two sperm morphs are 
apparent; a eusperm is indicated by the white arrow, a parasperm is indicated by the 
arrowhead. (d) Early elongating cyst. Nuclei have started to transform. Scale bar for 
panel a= 25 p, b= 40 pm, c= 80 pm, d= 25 p. 
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ure 14. DAPI staining of individual sperm after 72 hours in culture. Eusperm 
cated by the white arrows, and parasperm indicated by the arrowheads. Scale 
pm in all panels. 
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DISCUSSION 

i. Treatment of isolated cysts in vitro 

Our results indicate that treatment of cysts with glutathione only, insulin only, and 

glutathione + insulin supported their growth to the elongated and motile form in vitro. 

Also, in non-treated cultures cyst maturation as well as motility was consistently 

achieved. However we sought to determine the effect of GSH and insulin treatments on 

the overall survival of spermatogenic cysts, and the survival of early cysts specifically. 

Cysts at the spermatogonia and primary spermatocyte state frequently degenerated in our 

previous study (Njogu et al. 2010). Quantitative analysis showed that the addition of 

glutathione only to the cultures had a greater effect on the survival of early spermatogenic 

cysts compared to cultures treated with insulin only, and glutathione + insulin, after 96 

hours in viho. Moreover, cultures treated with glutathione + insulin performed in a 

similar manner to control cultures that were not treated. In addition, our initial results on 

sperm chromatin integrity using acridine orange staining indicate that qualitatively there 

is no difference between chromatin integrity in cultured sperm and sperm obtained from 

adult testes. 

D. rnelanogaster has been an animal model for developmental and genetic studies 

since the early 1900s, and spermatogenesis in this species of Drosophila has been 

described in great detail (Tokuyasu er al. 1972; Hardy et al., 1979; Fuller et al. 1993). 

Our results affirm that D. pseudoobscura provides an excellent system for the 

investigation of spermatogenesis in vitro based on the high rates of success in cyst culture. 



Moreover, the fact that its genome has been fully sequenced (Richards ei al. 2005) makes 

it an ideal species for various studies. Our results for the culture of cysts isolated 60m D. 

pseudoobscura testes resemble germ cell development and differentiation in early reports 

of in vitro culture of Drosophila spermatogenic cysts with some important differences. 

Cross and Shellenbarger (1979) and Liebrich (1981) reported a low yield of fully 

elongated cysts, and motility was never observed. Fowler and Johannisson (1976) did not 

observe sperm motility in culture using Drosophila hydei. It was unclear why motility did 

not occur in viho, however they hypothesized there may be a developmental factor or 

hormone in the in vivo system that functions to initiate spermiogenesis, which was absent 

in the in vitro culture. This hypothesis is contrary to our results in that motility was 

consistently observed in cultures in our previous and present work. 

Recent studies have successfully investigated in vitro sperm culture in D. 

melanogaster. Noguchi and Miller (2003) used this system to analyze the role of actin in 

the individualization process in D. melanogaster. As previously mentioned, adult testes 

were used as starting material for Noguchi and Miller's cyst culture. The use of adult 

testes results in a high degree of cysts that undergo individualization and coiling. 

However, cysts at advanced stages of development at the onset of culture are not 

favorable for in viiro analysis of the molecular mechanisms involved in nuclear 

transformation, which occurs from the round spermatid stage to the elongation. Our 

studies utilized pupal testes because we are particularly interested in the transformation of 

the sperm nucleus. 



Kawamoto et al. (2008) used larval testes from D. melanogaster as a starting 

material for the study of Drosophila spermatogenesis in vitro. They showed that sperm 

development and motility can be achieved in culture using testes from early and late larva. 

In our hands isolation of cysts from larval testes was unsuccessful because the testes are 

delicate at this stage, and thus easily damaged. Additionally, the testes are not pigmented 

in the larval stage and are therefore difficult to locate in the larval abdomen 

Glutathione is a water soluble tri-peptide that acts as a reducing agent to slow, 

prevent the oxidation of molecules (Sies 1999; Hwang er al. 1991). It consists of 

glutamate, cysteine, and glycine amino acid residues, and a thiol group, indicated by the 

red circle in the structure below, which participates in redox reactions. During oxidation, 

electrons are transferred to a molecule producing free radicals that start chain reactions 

that damage cells. Glutathione directly neutralizes free radicals and reactive oxygen 

compounds (Sies 1999; Hwang et 01. 1991). 

0 

Figure 15. Reduced Glutathione. Adapted from Sigma Aldrich 2010 

Our results showed that GSH had a significant effect on the survival of early cysts in 

culture between 24 and 48 hours, and continued up to 96 hours. We suggest that there 

was an improved survival of cysts at the 8, 16, 32 cell stage with the addition of the 
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antioxidant, which would result in a less frequent bursting of cysts observed in our 

previous work. In addition, we speculate that cysts at the 1-4 cell stage are also surviving 

in the treated cultures compared to the non-treated cultures, which would explain the 

higher number of cysts seen in our results. Presently we have no methodology to quantify 

cysts at the 1-4 cell stage. 

Seven genes encoding insulin-like peptides (ILPs) have been identified in D. 

melanogaster genome (Gronke et al. 2010). These peptides are synthesized in clusters of 

medial neurosecretory cells in the Drosophila brain, but are expressed in various areas of 

the fruit fly. For example DILP7 is expressed in neurons that innervate the female 

reproductive tract (Gronke et al. 2010). An ILP receptor (insulin receptor, InR) and its 

downstream signaling cascade are well conserved in Drosophila. To understand the 

biological effects of insulin on cell growth and differentiation, Femandez et al. (1995) 

genetically cloned Drosophila homologs of the insulin signaling pathway. They reported 

that loss of function mutations in the inr gene lead to embryonic lethality. 

It has also been reported that altering the activity of the Drosophila insulin 

receptor changes the size and number of cells in the organism during development, which 

suggests insulin regulation of body size (Brogiolo et al. 2001). Ueishi et al. (2009) 

reported that GSC maintenance and spermatocyte growth were affected by insulin 

signaling in Drosophila mutants. Inhibition of insulin signaling resulted in a lower 

abundance of germline cells in Drosophila testes. In addition, spermatocytes growth was 

compromised in mutants that lacked insulin signaling, suggesting that insulin signaling 

plays a role in inducing the growth seen in primary spermatocytes (Ueishi et al. 2009). 



Our results indicate that insulin had an effect on the survival of early cysts in culture 

between 48 and 72 hours, in comparison to GSH which had an effect between 24 and 48 

hours. It appears that insulin supported the development of early cysts because 

quantitatively their degeneration was less frequent compared to those in the non-treated 

cultures. On the other hand cultures treated with insulin did not out-perform those treated 

with GSH. Possibly, the increase in performance of treated over non-treated cultures 

observed between 48 and 72 hours can be attnibuted to the addition of fresh culture media, 

which contained insulin, after 48 hours. 

Interestingly, in cultures treated with GSH + insulin the ratio of early cysts 

compared to those in non-treated cultures was 1.1 after 96 hours. This indicates there was 

no synergistic effect over time when both agents were used. A possible explanation can 

be derived from the structure of GSH and insulin. As mentioned previously, GSH 

contains a thiol group that participates in the reduction of other molecules. The bovine 

insulin used in our study (Fig. 16) contains three disulphide linkages produced by 

cysteine amino acid residues. 

Figure 16. Bovine Insulin. Adapted from Derewenda et a/. 1993 and US Pharmacopoeia 
1995. 



The disulphide bonds of certain proteins are often unreactive with thiols. However, 

certain proteins can be inactivated by reduction, in which the addition thiols initiate thiol- 

disulphide exchange reactions. Davidson and Hird (1967) investigated the reaction of 

glutathione with the disulphide bonds of purified proteins, including bovine serum 

albumin, pepsin, and insulin. These workers showed that the three disulphide bonds of 

insulin are reduced by glutathione. Proteolysis increased the reactivity of the proteins 

analyzed because the disulphide bonds within them became more accessible to 

glutathione. Native proteins under physiological conditions do not react with glutathione, 

which is found in every cell, because the disulphide bonds are structurally protected by 

steric hindrance or hydrophobic regions surrounding the bonds (Davidson and Hird, 

1967). Our present study suggests that GSH and insulin interaction inactivated both 

agents as a result, so early cysts were not rescued from frequent degeneration observed in 

our previous work. 

ii. Later cyst maturation in vitro 

Cross and Shellenbarger (1979) reported that in vitro sperm coiling with D. 

melanogaster did not always follow the completion of individualization as in vivo. 

Additionally, the initiation of in vitro coiling occurred at variable stages of the 

individualization process. They also reported the in vitro development from meiosis to a 

coiled state was less than one-half the estimated in vivo time. Our results showed that in 

cultures treated with GSH 23.7% of cysts were at the coiled stage, while 28.7% of cysts 

were in the coiled stage in the non-treated (Fig. 11). Development of cysts at the coiled 

state in the non-treated cultures out-performed cultures treated with insulin only at 96 
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hours by a difference of 10.5%. This indicated that in the non-treated cultures, cysts 

progress to the coiling stage at a much faster rate. However in cultures treated with GSH 

+ insulin, there was a 0.7% difference. This suggests that the addition of GSH and insulin 

independently retards the cyst maturation process in vitro, whereas the addition of GSH + 

insulin was similar to the events that occur in the non-treated cultures. The reason for the 

retardation of coiling in treated cultures is currently unknown. 

iii. Mature sperm morphology and chromatin integrity 

Species found in the obscura group within Drosophila are known to develop two 

sperm morphologies: sperm with short morphs are termed parasperm and long sperm are 

termed eusperm (Snook er al. 1994). Eusperm are capable of fertilizing Drosophila eggs, 

while the parasperm are not (Snook et al. 1998). We detected both sperm morphs in our 

in viho cyst cultures. Initial analysis of total sperm length and sperm nuclei length 

indicate that cultured morphs are similar to adult morphs as reported in Snook el al. 

(1994). They reported a mean length of 362.5 +I- 1.5 pm for long sperm morphs with an 

average nuclei length of 56.6 +I- 0.39 pm. Short sperm morphs were reported as having a 

total mean length of 92.1 +I- 1.7pm with a mean nuclei length of 14.2 +I- 0.23 pm. Our 

results for D. pseudoobscura cultured sperm showed a parasperm mean length of 84.6 +/- 

3 pm with a nuclei mean length of 11.3 +I- 2 pm. Moreover, the eusperm mean length 

was 327.5 +I- 6.5 pm with a nuclei mean length of 58.8 +I- 1.9 pm. Although our 

statistical analysis of the eusperm and parasperm is preliminary, our results are similar to 

results reported by Snook el al. 1994. 



Our initial results on sperm chromatin integrity using acridine orange (AO) staining 

indicate no qualitative difference between chromatin integrity in cultured sperm and 

sperm in cysts obtained from adult testes. Acridine orange green fluorescence indicates 

binding of A 0  to double-stranded DNA, while red fluorescence (not shown in this study) 

indicates A 0  binding to single-stranded DNA (Evenson and Wixon 2006). However, the 

A 0  green fluorescence in parasperm was more intense than A 0  green fluorescence in 

eusperm. We suggest the increased intensity in A 0  fluorescence in parasperm could 

indicate that the stain has better access to the chromatin, possibly because the chromatin 

is less condensed. In addition, there is a possibility that the nuclei in the eusperm 

appeared less intensely stained because of the spatial arrangement of the DNA. We also 

suggest that a decrease in chromatin condensation may provide a mechanism for targeting 

parasperm for spermicide. Recent studies have suggested that the presence of parasperm 

in the female reproductive tract lessens the spermicidal effect the female tract has on the 

eusperm, thereby enhancing the survival of the eusperm (Holman and Snook 2008). 

DAPI staining confirmed the presence of the parasperm and eusperm in cultured D. 

pseudoobscura sperm as well as sperm from pupal testes. The fluorescence in the 

parasperm was also more intense that the fluorescence in the eusperm, as with acridine 

orange staining. 



FUTURE STUDIES 

D. pseudoobscura offers an easy and consistent in viho culture system for studies 

where cellular transformation process can be manipulated. Future studies can utilize this 

culture system to investigate the mechanism of nuclear transformation. Since we are 

particularly interested in nuclear transformation, a possible future study could be a 

disruption of the microtubular perinuclear structure that surrounds the sperm heads 

known as the manchette. Additionally, we plan to perform dose response studies for both 

GSH and insulin in culture. The concentrations we chose to use in the current study were 

obtained from previous work done by Kawarnoto et al. 2008 and Niki et al. 2006. 
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