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Abstract 

The current study is aimed at analyzing putati ve protein sequences of the protamines of 

12 Drosophila species based upon the reference sequences of two protamines-like proteins 

(Mst35Ba and Mst35Bb) found in Drosophila melanogaster sperm nuclei. Protamine-like 

proteins belong to a larger group of proteins that are involved in DNA-binding known as sperm 

nuclear basic proteins (SNBPs). The SNBPs are involved in spermiogenesis and nuclear 

transformation. Spermiogenesis is the process where round spermatids develop into mature 

spermatozoa. During spermiogenesis, nuclear transformation occurs where histones are 

exchanged for protamines, the chromatin condenses, and nuclear shape becomes elongated like a 

needle in Drosophila. In the current work, we were interested in the role that sperm nuclear 

basic proteins (SNBPs) play in chromatin condensation and nuclear transformation, and in sperm 

nuclear shaping during spermatogenesis in Drosophila Our goal was to search the 12 sequenced 

Drosophila genomes for SNBPs based on the known SNBP sequences for D. melanogaster. 

The analysis was initially conducted using the basic local alignment search tool (BLAST) 

which utilizes a conservative algorithm to compare primary biological sequence information. 

Searches were performed on genomic DNA, RNA transcripts and amino acid sequences from 12 

species ofDrosophila flies whose genomes have been sequenced. The best matches from each of 

the 12 Drosophila species were aligned using CLUSTALW. Sequence alignments and analysis 

ofamino acid content indicate that homologues to Mst35Ba and Mst35Bb are present in all 12 

species of flies analyzed in this study. Additionally, aT-Coffee analysis found a conserved 

region among the isolated sequences that appears to contain a high mobility group DNA binding 

box. The protein functional domains were found through Domain Annotation -InterPro Scan on 
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Swiss-MODEL Workspace and Imperial College London Phyre 2. Lastly, Imperial College 

j London Phyre2 tool was used to predict secondary structures. 
I 

! Preliminary molecular and ultrastructural results were also generated. Genomic DNA I 

I 


i from D. pseudoobscura was extracted and PCR products were generated based on putative 


I 

I sequence for D. pseudoobscura GA18970. Finally, transmission electron microscopy was 

i 

performed on sperm from D. pseudoobscura testes and seminal vesicles, and initial analysis of 

t 
i chromatin condensation patterns was performed. 

I 
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Introduction 

I. Overview 

Drosophila melanogaster has been used as a model organism for studies of genetics, 

evolution, development and cellular biology for the last century (Gilbert et al. 2008). There are 

currently 12 of the approximately 2800 fly species in the family ofDrosophilidae that have 

been sequenced (Markow and O'Grady, 2007; Figs. 1, 2A, and 2B). Following the sequencing 

ofD. melanogaster, the second Drosophila fly to be sequenced was D. pseudoobscura because 

of its evolutionary relationship to D. melanogaster (Richards et al. 2005; Markow and O'Grady, 

2007). This relative ofD. melanogaster has recently been used for in vitro spermatogenesis 

studies by our lab (Njogu et al. 2010; and Ricketts et al. 2011). 

II. Spermatogenesis and Spermiogenesis in Drosophila 

The process of mature sperm formation in adult male Drosophila is similar to mammalian 

spermatogenesis. In flies, spermatogenesis proceeds within blind-ended tubular or ellipsoid 

testes. It begins in the apex of the testes in a region known as the stem cell niche (White-Cooper 

et al. 2009; Ricketts et aL 2011; Fig. 3). 

During spermatogenesis, the spermatogenic stem cells in the stem cell niche divide to 

produce another stem cell and a gonialblast cell (Fig. 3). The gonialblast will enter into 

spermatogenesis while the stem cell will remain in the niche in an undifferentiated state. After 

several mitotic divisions (five in D. pseudoobscura), the cells undergo two meiotic divisions to 

produce haploid round spermatids. The post-meiotic stage of spermatogenesis that follows is 

called spermiogenesis. During spermiogenesis, the round spermatids become elongated 

spermatids due to the growth of the tail. The different stages of spermatogenesis have been 

characterized in in vitro cell cultures ofD. melanogaster and D. pseudoobscura (Njogu et al. 
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2010; Noguchi and Miller 2003; Raja et al. 2005; Ricketts et al. 2011). Nuclear transformation 

is a process that involves histones being exchanged for protamines, chromatin condensation and 

the transformation of sperm nuclear shape from spherical to an elongated needle-like shape in 

Drosophila. During this transformation, the chromatin loses its nucleosome organization as 

somatic histones are exchanged for sperm-specific nuclear basic proteins (SNBPs) (Eirin-Lopez 

et al. 2006). SNBPs are categorized into three types: protamines (P type),protamine-like 

proteins (PL type), and histone HI linker-like proteins (H type) (Eirin-Lopez et al. 2006). PL 

type and H type proteins have been found in D. melanogaster sperm nuclei and are designated 

Mst35Ba (PL type; ProtA), Mst35Bb (PL type; ProtB), and Mst35f(H type) (Raja et al. 2005). 

III. Sperm Nuclear Basic Proteins 

As noted above, SNBPs can be divided into three groups: histone group (histone HI 

linker-like proteins); protamine-like proteins; and true protamines. The presence of protamine­

like proteins and histone HI linker-like proteins has been well documented in several 

invertebrate animals such as Spisula solidissima, Octopus vulgaris and Eledone cirrhosa (Eirin­

Lopez et al. 2006; Ausio 1999), as well as vertebrates such as Dicentrarchus labrax, Mus 

musculus, Homo sapiens, and Rattus norvgicus (Saperas et al. 1993; Hammoud et al. 2009). 

Detailed analysis of SNBPs has shown that true protamines evolved from protamine-like 

proteins and protamine-like proteins evolved from histones (Balhorn et al. 2007; Eirin-Lopez et 

al. 2009). The protamine-like proteins generally have high concentrations of basic amino acids 

such as arginine and lysine with varying degrees of concentration of the other amino acids 

(Birkhead et al. 2009; Eirin-Lopez 2006). The importance of arginine appears to be that it has 

more affinity for binding DNA as compared to lysine (Eirin-Lopez et al. 2006b; Kasinsky et al. 

2011). These other amino acids in protamine-like proteins include serine and alanine. Likewise, 
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histone HI linker proteins have similar amino acid content as compared to protamine-like 

proteins with lysine usually making up the 44% and approximately 8% being arginine (Birkhead i 
! 	 et al. 2009; Kasinsky et al. 2011). Similarly, the protamine-like proteins have an approximate 
I 
i 
! 	 concentration of 35 to 50% of lysine and arginine amino acids combined (Eirin-Lopez et al. 

1
,1 2006). In contrast, true protamines are very rich in arginine (Balhorn, et al. 2007). 
I 

Interestingly, both protamines and protamine-like proteins are fast evolving and highly variable 1 

! 
 among species (Eirin-Lopez et al. 2011) including those in the same genus (Rooney et al. 2000). 


I 
 In D. melanogaster, the SNBPs are called male specific transcripts (Mst) (Eirin-Lopez et al. 


I 
t 

I 
2006b; Tweedie et al. 2009). There are three known male specific transcripts found in the sperm 

nucleus in D. melanogaster: Mst35Ba, Mst35Bb, and Mst77F. Mst35Ba and Mst35Bb have 

been well documented and characterized as DNA binding proteins (Raja et al. 2005; Dorns et al. 

I 
I 	 2008). The difference between Mst35Ba and Mst35Bb is only two amino acids with Mst35Ba 
! 

! 
1 

being 146 amino acids and Mst35Bb being only 144 amino acids. This similarity is due to the 
G 

I duplication event of Mst35Ba to Mst35Bb (Dorns et aL 2008; Raja et al. 2005). The last male 

I 
~ 

specific transcript found in the sperm nucleus in D. melanogaster is known as Mst77F, which 

i 	 has been shown to be involved in chromatin condensation and nuclear shaping (Raja et al. 2005). 

The interaction of these SNBPs in D. melanogaster give rise to the chromatin condensation 

patterns that is likely unique to the D. melanogaster sperm nucleus (Birkhead et a12009; Raja et 

al. 2005; Rathke et al. 2007). 

I 
i 
f 

j 

IV. Current Approach 

In the current work, we have used the published sequences for the D. melanogaster 

protamine-like proteins Mst35Ba and Mst35Bb to search the genomes ofthe 12 sequenced 

Drosophila species for similar SNBPs. Several bioinformatics tools have been used to find 
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I putative DNA and protein sequences among the 12 sequenced Drosophila flies. A BLAST 

I search was conducted to find similar DNA and amino acid sequences in the twelve Drosophila 

flies. T -Coffee, a local sequence alignment tool, was used find a consensus region within the 1 

I 

matches. These matches were then used to generate phylogenetic trees using ClustalW2. Three 

different DNA binding predicting tools were used on the whole matched protein and the 

conserved regions. This was followed by a search for functional domains for each of the 

conserved region and the whole proteins. Lastly, a detailed analysis was conducted on the 

amino acid content of all the matched proteins and their respective conserved regions. Our 

results indicate that homologues for Mst35Ba and Mst35Bb are present in all 12 sequences 

Drosophila species. Additionally, the conserved amino acid sequences corresponded to a 

known DNA-binding high mobility group (HMO) box. We hypothesize that the rapidly 

evolving and highly variable protamine-like proteins will give rise to variable chromatin 

condensation patterns, which in tum will give rise to internal nuclei forces that help generate the 

species-specific shape of the sperm nucleus. The 12 sequenced genomes in the genus 

Drosophila present a unique opportunity for a large-scale, fine-grained analysis of the SNBPs 

and their relationship to chromatin patterning, as well as providing a means to closely analyze 

the evolution of these proteins. 
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Figure. 1. The phylogenetic relationship among the 12 sequenced Drosophila species in the 
Drosophilidae family. The time scale illustrates the evolutionary distance in terms of millions of 
years (modified from Tweedie et al. 2009 and Markow et al. 2002). 
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Relationship of 12 Sequenced Drosophila Flies within the Drosophilidae Family 
(Sophophora Subgenus) 
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Figure. 2A. Expanded phylogenetic trees of all Drosophila species groups. This figure 
illustrates the enormous number Drosophila species that are available to be studied within the 
Drosophilidae Family. Subgenus Sophophora. The highlighted species are the 12 Drosophila 
species that have been sequenced as shown in Figure 1 (modified from Tweedie et al. 2009). 
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Figure. 2B. Expanded phylogenetic trees ofall Drosophila species groups. This figure illustrates 

the enormous number Drosophila species that are available to be studied within the 
Drosophilidae Family. Subgenus Drosophila. The highlighted species are the 12 Drosophila 
species that have been sequenced as shown in Figure 1 (modified from Tweedie et a1. 2009). 
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Spermatogenesis 
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Divisions 
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Figure. 3. Illustration ofall the stages of spermatogenesis in Drosophila pseudoobscura. (a) 
I11ustration of spermatogenic cysts within the testis. H = hub cells, S somatic stem cells (cyst 
progenitor cells), G Glonialblast, SG spermatogonia, 1° SP = Primary Spermatocyte, 2° SP = 
Secondary Spermatocyte, SP Primary spermatocytes, RS = Round spermatids, ES = Elongated 
Spermatids, MS = Mature spermatozoa, CC Coiling Cyst. (b) Paired testes, seminal vesicles 
and accessory glands. AG Accessory Gland, SV = Seminal Vesicle, T = Testis. (c) Illustration 
showing cellular changes that occur during spermatogenesis and spermiogenesis. During 
spermiogenesis, there is growth of the tail, relocation of mitochondria and nuclear transformation 
of the sperm head. Nuclear transformation entails the histones being exchanged for protamines, 
chromatin condensation, and the nuclear shape changing from a spherical to an elongated needle 
like shape in Drosophila (Figure modified from Fuller et al. 1998; Njogu et al. 2010; Zhou et al. 
2009; Ricketts et al. 20 II ). 
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Methods and Materials 

I. Nucleotide BLAST and protein BLAST of ProtA, ProtB in 12 sequenced Drosophila 

species 

The nucleotide reference sequences· of the male specific transcripts for Drosophila 

melanogaster protamine-like proteins Mst35Ba (01: 45549065) and Mst35Bb (01: 24584359) 

were obtained through the NCBI nucleotide database. Likewise, the protein reference sequences 

of the male specific transcripts for D. melanogaster protamine-like proteins Mst35Ba (01: 

17137016) and Mst35Bb (01: 17137018) were obtained through NCBI protein database (NCBI 

and Clark et al. 2007). Nucleotide BLAST, protein BLAST, and PSI BLAST searches were 

conducted on the 12 sequenced Drosophila genomes with the respective male specific transcripts 

from D. melanogaster as the controls. The matches were verified and refined through BLASTx 

and NCBI open reading frame finder (ORF Finder). Subsequently, these matches were aligned 

with their respective male specific transcript control sequences. The matched nucleotide 

sequences for the 12 sequenced Drosophila genomes have been listed in Figures 4A, 4B, 5A and 

5B. Similarly, the matched protein sequences for the 12 Drosophila genomes have been listed in 

Figures 6A and 6B. The whole gene regions that correlated to the male specific transcripts for D. 

melanogaster protamine-like proteins Mst35Ba (Flybase ID: FBgn0013300) and Mst35Bb 

(Flybase ID: FBgnOO 1330 I) were obtained through Flybase.org. Then nucleotide BLAST was 

conducted on 12 sequenced Drosophila flies with respective whole genome matches for 

Drosophila melanogaster male specific transcripts used as controls. The matches were checked 

with BLASTx. 

II. Phylogeny Generation 

ClustalW2, a global alignment bio-informatics tool, was used to create phylogenies 

based on the best matches for each respective nucleotide and protein sequences: (NCB I 
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nucleotide transcript matches, Flybase nucleotide matches, and protein matches). 

III. Conserved Regions 

T -Coffee, a local alignment bio-informatics tool, was used to find the conserved 

regions among the best protein matches for their respective male specific transcripts for the 12 

sequenced species (http://tcfdev.vital-it.chlapps/tcoffeelindex.html; Di Tommaso et al. 2011). 

Partial Order Alignment Visualization (POA VIZ) was used to demonstrate the overall 

conservation ofthe transcript mRNA and protein best matches for their respective male specific 

transcript (Lee et al. 2002; Orasso et al. 2003). 

IV. Amino Acid Content Analysis 

Sequence Manipulation Suite Protein Statistics and Oraphpad Prism 5.0 were used to 

generate bar graphs and statistically analyze each ofthe SBNP protein BLAST matches and 

conserved sequences (http://www.bioinformatics.org/sms2/protein stats.html). Additional 

sequences for histone HI linker like proteins, protamine-like proteins, and true protamines were 

added to the analysis to illustrate evolutionary relationship of the protein BLAST results. The 

following histone HI linker proteins were added: Mus musculus spermatid-specific linker histone 

HI-like protein (01: 9055232) and Rattus norvegicus histone linker HI domain, spermatid­

specific 1 (01: 157818369). The following protamine-like proteins were added: Mullus 

surmuletus protamine-like protein (01: 115565002), Spisula solidissima sperm nuclear basic 

protein PL-I isoform PUa (01: 48526358), and Spisula solidissima sperm nuclear basic protein 

PL-I isoform PUb (01: 48526360). The following true protamines were added: Homo sapiens 

sperm protamine PI (01: 4506109), Homo sapiens protamine-2 (01: 68989267), Mus musculus 

sperm protamine PI (01: 7305409), Mus musculus protamine-2 (01: 6679475), and 

Dicentrarchus labrax sperm protamine (01: 263998). 
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I 
i V. Putative DNA Binding Domains 

I 
I DNA-Binder, BindN+ and BindN-RF were used to generate statistical graphical data to 

further analyze each SBNP protein BLAST matches and conserved domains found through T­
I 
t Coffee alignment. DNA-Binder verified the sequences 3 algorithms: realistic, main, and j, 

alternative (http://www.imtech.res.iniraghavaJdnabinder/; Kumar et al. 2007). BindN+ and 
I 
J BindN-RF showed the actual DNA Binding residues on the protein sequences 

I (http://bioinfo.ggc.org/; Wang et al. 2009; Wang et a1. 2010). 

'I VI. Putative 2D Secondary Structure and Protein Disorder Prediction 

1 The putative secondary structures and their protein disorder for each SBNP protein 
j 
1 BLAST matches and conserved regions (Putative DNA Binding Domain) were predicted using ! 
l 

several bio-informatics tools that yielded similar results. These tools included the following: 
1 
~ VCL Psi-Pred (http://bioinf.cs.uc1.ac.uk/psipredJ); VCL Diso-Pred 

I (http://bioinf.cs.ucl.ac.ukJdisopred); Swiss-Model-Workspace Domain Annotation Tool 
1 

(http://swissmode1.expasy.org/workspace/; Arnold, et a1. 2006); and Phyre2 

I (http://www.sbg.bio.ic.ac.uk/phyre2/; Kelley et aL 2009). 


I VII. Functional Groups, 3D Secondary Structures, and Putative Tertiary Models 


I 

The functional groups for each respective SBNP protein BLAST match and conserved 

regions (putative DNA Binding Domains) was found through Swiss-Model-Workspace Domain 

Annotation Tool (http://swissmodel.expasy.org/workspace/; Arnold et aL 2006); and Phyre2 

(http://www.sbg.bio.ic.ac.uk/phyre2/; Kelley et aL 2009). Both yielded similar results. The 

overall functional groups were derived using Swiss-Model-Workspace Domain Annotation Tool. 

Phyre2 was used to generate the putative 3D secondary and tertiary models of each respective 

SBNP protein BLAST match and conserved regions (Putative DNA Binding Domains). The 3D 
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secondary structure models were further analyzed through Molsoft ICM Browser 

(http://www.molsoft.com/). 

VIII. Primer Design 

Primers were designed for Drosophila pseudoobscura gene transcript location of 

GA18970 (GI: 198475489) using NCBI Primer BLAST and IDT PrimerQuestSM respectively. 

The primer matches were analyzed through IDT OligoAnalyzer 

(http://www.ncbi.nlm.nih.gov/tools/primer-blastl; http://www.idtdna.com). The primers are 

listed in Table 5. Primers were synthesized at MWG Operon (http://www.operon.com) and 

shipped to our lab. 

IX. Fly Stocks and Cultures 

Living fly stocks were acquired from the San Diego Drosophila Species stock center and 

maintained in our lab at room temperature (25°C) on Drosophila Jazz Mix medium (Fisher). 

X. DNA Extraction, PCR, and Sequencing 

The Qiagen Kit (QIAMp) was used in the extraction of DNA from Drosophila flies 

followed the manufacturer's protocol (Qiagen, Valencia, CA). Two D. pseudoobscura flies were 

placed in each 1.5 mL centrifuge tube. The flies were then cooled by either placing them on ice 

or in the freezer for approximately 90 seconds. Fifty micro-liter of ATL Buffer was then added 

into the centrifuge tube. A combination of "homemade" grinders based on 200 III pipetman tips 

and specialized centrifuge grinders were used to grind the flies. Another 50 ilL of A TL Buffer 

was then added. Then 10 ilL of proteinase K and 100 ilL Buffer AL was added to remove 

proteins. The samples were vortexed for approximately 15 sec. The ground fly parts were 

incubated at 56°C for 10 minutes on a heat block or a warm water bath on a rocker. Next, 50 ilL 

of 100 % (200 Proof) ethanol was added to the centrifuge tube, vortexed, and incubated at room 
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temperature for 3 minutes. The centrifuge tubes were quickly centrifuged to pull down any 

liquid from the lid. The lysate was carefully transferred to a Qiagen MinElute Column that 

contained. A new collection tube with the column was centrifuged at 8000 rpm for I minute. 

Then 500 ilL ofAWI was carefully added so that the rim of MinE lute Column was not wet. 

The column was centrifuged at 8000 rpm for 1 minute. Another collection tube was prepared 

with 500 ilL ofBuffer A W2 and added to the column. The new collection tube with the column 

was centrifuged at 8000 rpm for I minute. The column was moved to a new collection tube. A 

dry centrifugation step at full speed (13,200 RPM) for 3 minutes following in order to dry the 

membrane on Qiagen MinElute Column, and the collection tube discarded. The column was 

added to 1.5 mL tube and was incubated at RT for 5 minutes after 20 ilL of diH20 was added to 

membrane of the Qiagen MinElute Column. After the incubation step, the column with 1.5 mL 

tube was centrifuged at 13,200 rpm for I minute. Twenty micro-liter of diH20 was added to the 

center of the membrane and incubated at RT for 5 minutes. The 1.5 mL tube with column was 

centrifuged for 1 minute at 13,200 rpm. This process yielded approximately 40 ilL ofextracted 

DNA. Extracted DNA was analyzed by 1 % agarose gels. 

Polymerase Chain Reaction (PCR) samples were prepared with each PCR tube 

containing a total volume of25 ilL with following reagents: 1 ilL of extracted DNA from 

Drosophila pseudoobscura, 12.5 ilL of Hot-Start Taq Mastermix with 1.5 mM of MgCh 

(Denville Scientific), 2.5 ilL dimethyl sulfoxide (DMSO), 7 ilL of sterile diH20, and 1 ilL of the 

respective forward and reverse primer as shown in Table 12. PCR was conducted with the 

denaturation stage set to 1 cycle of 95°C for 5 minutes. The annealing stage was set to 35 cycles 

of95°Cfor 40 seconds, 60°C for 40 seconds and 72°C for 40 seconds. The elongation stage was 

set to noc for 5 minutes. PCR products were then analyzed by 2% agarose gels. The PCR 
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primers were diluted with sterile diH20 using a 1 :200 ratio, for a final concentration of 500 nM. 

j 
PCR products were sequenced by Genewiz (South Plainfield, NJ). These results were then 

1 
analyzed with NCBI nucleotide BLAST2. 

XI. Transmission Electron Microscopy 

1 
t Flies were anaesthetized on ice or using CO2. Testes were dissected in a drop of IX PBS 

and transferred to 2% glutaraldehyde in 0.1 M cacodylate buffer in a spot plate well. Testes 

1 were fixed for 1-2 hours at room temperature (RT), and then rinsed two times in 0.1 M 

1 cacodylate buffer for 30 minutes on a rotating platform at room temperature. The final rinse in 

~ 
0.1 M cacodylate buffer was done overnight at 4 degrees C. The following day, the testes were 

I 
1 

postfixed in 1 % osmium tetra-oxide in 0.1 M cacodylate for 1 hour at room temperature. The 

samples were rinsed three times in 0.1 M cacodylate for 15 minutes at room temperature each I 
f rinse. The testes were then dehydrated in an ethanol series: 50%, 70%,95% (2 times) for 10 

minutes each. The final dehydration step was in 100% ethanol, two rinses for 20 minutes each atI 
I RT. Samples were transferred to lOO% acetone and rinse for 15 minutes. The testes were then 

I infiltrated with Embed 182 resin as follows. Samples were transferred from acetone into a 1: 1 

resin: acetone and put on a rotator for 1 hour. The mixture was removed and replaced with 2: 1 

I resin: acetone and placed on the rotator overnight. The following day, the samples mixed with 

100% resin for at least 1 hour, and then transferred to fresh 100% resin for at least 1 additional 

hour. The testes were then gently removed from the resin with a sharpened wooden applicator 

and placed at the bottom of a size 00 plastic BEEM capsules (Electron Microscopy Sciences). 

The capsules were filled with 100% resin and incubated overnight at 60 degrees C. Ultrathin 

sections (60-80 nanometers) were made on a Leica ultramicrotome using a diamond knife. 
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Sections were stained with 1% uranyl acetate, rinsed in distilled water, and viewed on an FEI 

Tecnai G2 Spirit transmission electron microscope. 
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Results 

I. BLAST results for nucleic acid sequences in 12 Drosophila species 

Using the published genomic and mRNA nucleotide sequences for Mst35Ba (GI: 

45549065) and Mst35Bb (GI: 24584359) we searched the sequenced genomes for the 12 

Drosophila sequenced species. Figure 4A shows all ofthe Drosophila matches for Mst35Ba: 

Drosophila simulans (GI: 195579289), Drosophila sechelia (GI: 195338498), Drosophila 

yakuba (GI: 195474092), Drosophila erecta (GI: 194857282), Drosophila anannassae (GI: 

194758514), Drosophila pseudoobscura (GI: 198475489), and Drosophila persmillis (GI: 

195159817), Drosophila willistoni (GI: 195437082), Drosophila mojavensis (GI: 195115614) 

and Drosophila virilis (GI: 195385648). Although there were six unique matches for 

Drosophila willistoni, only the best match is shown. Figure 4B shows all the mRNA transcript 

matches for Mst35Bb. The only difference being Drosophila grimshawi (GI: 195043630) is the 

best match for Mst35Bb, while Drosophila grimshawi (GI: 195055896) is the best match for 

Mst35Ba. Both of the Drosophila grimshawi matches were attained through the modification of 

the nucleotide NCB I search parameters of match/mismatch score set to (4,-5) and the maximum 

target sequence to be displayed set to 100. 

In the melanogaster subgroup, D. simulans and D. sechelia transcript (mRNA) matches 

for both Mst35Ba and Mst35Bb had the identical E-value score of 6e-139, maximum identity of 

84% and query coverage ofthe region of62%. Their genomic DNA matches had identical 

maximum identity scores of 100%, E-value scores for only Mst35Ba as illustrated in Figure 5A. 

As indicated in Figure 5B, the maximum identity score stayed the same except it was slightly 

reduced to 85%, but the E-value score changed between the two closely related species. As for 

the genomic E-value scores, the E-value for D. sechelia was reduced to 5e-164 and 2e-161 for 

. 

D. simulans respectively. This indicated that the matches for D. simulans and D. sechelia are 
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I 
I 
1 
f closer to Mst3SBa in tenns of their genomic DNA relationship. The global CiustalW2 

alignment (Figs. 7 A and 7B) for the transcripts (mRNA) shows the phylogenetic relationship to 

I be identical to the established phylogenetic tree (Fig. I). This was further confinned through the 

CiustalW2 alignment for the genomic DNA, which shows phylogenetic relationship in Figures I 
i 
1 8A and 8B. 

The other two Drosophila species in the melanogaster subgroup, D. erecta and D. 

1 yakuba, respectively yielded interesting results in tenn oftheir transcripts (mRNA) and their 
I 

genomic DNA sequence relationship. The mRNA transcript match for Drosophila yakuba 

Mst3SBa and Mst3SBb shows the query coverage was identical for Mst3SBa and Mst3SBb. 

These types of identical matches are likely to occur due to Mst3SBb were fonned as result ofa 

duplication event of Mst3SBa (Raja et at. 200S; Birkhead et al. 2009). Therefore, they are very 

similar to each other. In Figures 4A and 4B, the D. yakuba E-value for Mst3SBa was 8e-S7 and 

Se-S9 for Mst3SBb with the maximum identity for Mst3SBa and Mst3SBb being 84% and 8S% 

respectively. The genomic DNA D. yakuba matches are shown in Figures SA and SB. The 

matches for Mst3SBa and Mst3SBb E-values are Se-S4 and 4e-S9 and with the maximum 

identity being 76% and 8S% respectively. 

D. erecta had interesting results as well with their transcript (mRNA) sequence and 

genomic DNA matches. In Figures 4A and 4B, the E-value for both Mst3SBa and Mst3SBb 

match was different with 2e-77 and 2e-83 being the respective scores for each. The maximum 

identity score for D. erecta Mst3SBa and Mst3SBb matches were 81% and 64% respectively for 

each. As shown in Figures SA and SB, the genomic DNA matches for D. erecta Mst3SBa and 

Mst3SBb match had same maximum identity score of 81 %. The E-value scores were slightly 

different with 7e-6S and 3e-74 being the respective scores for D. erecta Mst3SBa and Mst3SBb 
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matches. This means that the match for D. erecta match is slightly closer to the nucleotide 

sequence ofMst35Bb when compared to Mst35Ba. 

Figures 7 A and 7B illustrate that D. yakuba and D. erecta are closely related to just each 

other in their phylogenetic relationship by splintering away from the group formed by D. 

melanogaster, D. simulans, and D. sechelia. Therefore, the melanogaster subgroup is not 

conserved and is not akin to the established phylogenetic tree. However, as shown in Figures 

8A and 8B, the genomic DNA sequences for D. yakuba and D. erecta illustrate the conservation 

of melanogaster subgroup, which is akin to the established phylogenetic tree (Fig. 1). Overall, 

the genomic DNA sequences matches for the different Drosophila species among the 

melanogaster subgroup are analogous to each other in global manner. 

D. annanassae yielded very similar results for its transcript (mRNA) matches for 

Mst35Ba and Mst35Bb. Figures 4A and 4B depicts this relationship to Mst35Ba and Mst35Bb 

in terms of its transcript region covered, E-value, and the maximum identity. The E-value 

scores were 5e-24 and 2e-23 for Mst35Ba and Mst35Bb match for D. ananassae. Similarly, the 

maximum identity was 70% and 71 % respectively for Mst35Ba and Mst35Bb with identical 

query coverage of 28% for these transcript matches. 

In Figures 5A and 5B, D. ananassae genomic DNA sequence match yielded almost 

identical results for Mst35Ba and Mst35Bb. The only difference for the genomic DNA 

sequence was that the Mst35Bb E-value was 8e-16 compared to 7e-13. 

Figures 7 A and 7B illustrates a generated phylogenetic relationship of the transcript 

sequences for D. ananassae. This generated phylogenetic tree shows that D. ananassae does not 

branch from the melanogaster group. The branching path for D. ananassae stems from the 

initial branched group ofD. erect a and D. yakuba, which is then followed by the willistoni, 
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1 
4 rep leta, and virilis groups. Figures 8A and 8B, illustrate the genomic DNA phylogenetic l 

relationship and indicates that D. ananassae with the obscura group are a third splinter group in 1 
I 
! the Drosophilidae Family. This splinter group is not present in the established phylogenetic 
1 
I tree (Fig. 1) nor are these two flies considered sister species as they do not branch from same l 

branch point. Overall, both ofthese phylogenetic relationships are drastically different than 

I what is shown in the established phylogenetic tree (Fig. 1). Therefore, there is no Sophophora 

j group present in terms of their global phylogenetic relationship with any of the nucleotide 

1 relationships. 
! 

D. pseudoobscura and D. persmillis (obscura group) matches produced some noteworthy 

results. Figures 4A and 4B, the transcript (mRNA) matches for D. pseudoobscura had similar 

E-value of7e-06 and Ie-08 for Mst35Ba and Mst35Bb with the same maximum identity score 

of73%. In the case of the D. persmillis matches, the results similar with the E-value for 

Mst35Bb being slightly closer to zero with 2e-09 when compared to Mst35Ba match ofge-07. 

The maximum identity score was 73% for both Mst35Ba and Mst35Bb transcript match. 

Although the query coverage of the transcripts was slightly greater with Mst35Bb 11% 

compared to Mst35Ba 8% for D. pseudoobscura and D. persmillis. 

Figures 5A and 5B illustrate the obscura group matches for the genomic DNA sequences. 

The genomic DNA sequences yielded similar results to the transcript sequences with the 

relationship ofthe Mst35Bb match being slightly better when compared to Mst35Ba. The E-

value for D. pseudoobscura for Mst35Bb was 2e-07, which is closer to zero when compared to 

le-04 of Mst35Ba. The closer E-value to zero demonstrates that the match is significant because 

itis exponentially inversely related to the score of the sequences. Hence, the higher score for the 

match will yield a lower E-value, which would mean the match is significant. Additionally, the 
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query coverage for D. pseudoobscuras Mst35Bb result was 12%, much higher than the 5% 

j coverage for Mst35Ba. The maximum identity for D. pseudoobscura and D. persmillis was 
i 

I respectively 100% and 73% each for both Mst35Ba and Mst35Bb matches. The E-value for D. 
{ 

persmillis was 5e-09 for the Mst35Bb match and le-04 for the Mst35Ba match. Also D. 

permsillis query coverage decreased from 5% with Mst35Bb to 2% with Mst35Ba. 

Figures 7 A and 7B show that the transcript matches for the obscura group branch off 

from D. ananassae, which is similar to the established phylogenetic tree (Fig. I). Although the 

branching event in the phylogeny tree to reach the obscura group are different than the 

established phylogenetic tree (Fig. I) These differences are expanded upon when examining the 

phylogenetic relationship of the genomic DNA sequences ofD. pseudoobcura and D. persmillis 

shown in Figures 8A and 8B. In this case, D. pseudoobscura appears to be a sister species to 

virlis group and D. persimillis is a sister species to the Hawaiian Drosophila group. In addition, 

D. pseudoobscura and D. persmillis appear to belong to a third group instead of belonging and 

being a branched group from to D. ananassae and within the Sophophora group. These 

phylogenetic relationship indicate that how protamine-like proteins are very diverse (Fig. I). 

The D. willistoni transcript (mRNA) match yielded the same best match for Mst35Ba and 

mst35bb (Figs. 4A and 4B). The E-value for D. williston; was 1 e-22 and a maximum identity 

score of 100% with query coverage of 25%. The D. willistoni genomic DNA sequence matches 

still had a maximum identity score of 100%, but the E-value score and the query coverage 

slightly varied (Figs. 5A and 5B). The D. willis toni genomic DNA sequence match for 

Mst35Ba E-value score was 4e-18, which is very close to mst35bb match of2e-18. The 

mst35bb match had 10% query coverage and the coverage for Mst35Ba was only 6%. 
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i 
I The overall phylogenetic relationship for the mRNA transcripts is illustrated in Figures
1 

I 
7 A and 7B with D. willistoni branching further in the beginning from the obscura group and D. 

ananassae. The genomic DNA sequence relationship for D. willistoni depicted in Figures 8A 

I 

t and 8B creates a sister specie relationship with D. ananassae. In addition, this group is separate 

from rest of the species in Drosophilidae family. 

The rep leta and virilis group best matches for D. mojavensis and D. virilis indicate 

similar results between their respective transcript (mRNA) matches for Mst3SBa and Mst3SBb I 
i as shown in Figures 4A and 4B. The query coverage for D. mojavensis was 29%, which is 
J 

identical for Mst3SBa and mst3Sbb. The maximum identity score of67% and the E-value ofge­

13 are slightly better for D. mojavensis mst3Sbb match as compared to the Mst3SBa score of 

maximum identity of6S% and the E-value of Se-lO. The genomic DNA sequences for 

Mst3SBa and mst3Sbb have very similar scores for D. mojavensis (Figs SA and SB). The E-

value for D. mojavensis genomic DNA Mst3SBa match is 7e-04 with only 1 % query coverage. 

Whereas the E-value for mst3Sbb is 4e-OS with a 2% query coverage. In addition, the D. 

mojavensis match for Mst3SBa and mst3Sbb has 77% maximum identity score. 

Comparably, D. virilis has similar results with the transcripts (mRNA) for Mst3SBa and 

Mst3SBb as shown in Figures 4A and 4B. The E-values for D. virlis were 2e-07 for Mst3SBa 

with 10% query coverage and 2e-06 for Mst3SBb with a query coverage of 12% because D. 

virilis is one ofthe most distantly related specie to D. melanogaster. The maximum identity 

score was 100% for both Mst3SBa and Mst3SBb matches for D. virilis, but this time it was for 

the genomic DNA sequence that matched as shown in Figures SA and SB. The E-value scores 

for the genomic DNA match with D. virilis were still very similar with 4e-04 for Mst3SBa and 

8e-OS for Mst3SBb. Lastly, the query coverage was smaller as compared to the other sequenced 
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 Drosophila species due to its evolutionary distance. 


l 

The results for D. grimshawi transcript (mRNA) matches were the same for both 


Mst35Ba and mst35bb. D. grimshawi E-value was 6e-05 and 3% query coverage with 95% 


maximum identity score was obtained. Figures 5A and 5B show the genomic DNA sequence 

generated the same maximum identity score of 100% for D. grimshawi. D. grimshawi E-value 

score for Mst35Ba was 7e-04 with a query coverage of 5%. The coverage was increased to 5% 

for the same gene region, but E-value was reduced to 4e-04 for D. grimshawi Mst35Bb match. 

Whereas E-value for the best match for D. grimshawi Mst35bb was 0.001 with only 2% query 

coverage. The low query coverage is attributed to D. grimshawi due to it being the being the 

evolutionary furthest sequenced fly to D. melanogaster. 

Figures BA and BB shows the transcript (mRNA) phylogenetic relationship for D. 

grimshawi transcript (mRNA) is identical to just the genomic DNA sequences for D. grimshawi 

Mst35Ba match. Whereas the D. grimshawi Mst35Bb match, seems to be a sister species to D. 

persimilis. These two species are not sister species in the phylogenetic tree. In the constructed 

phylogenetic tree D. grimshawi branches from the Drosophila subgenus. This type of branching 

is not present in Figures BA and BB, which show D. grimshawi branching from the 

Drosophilidae Family with no relation to the Drosophilia subgenus. 

The data shown in Figures 5A and 5B illustrate that majority ofthe conserved matches 

occur at the C terminus (3') end of the genomic DNA sequences. Additionally, the phylogenetic 

relationship of genomic DNA sequences aligns better as compared to the established phylogeny 

as compared to the transcript (mRNA) phylogenetic alignment (Figs.7A, 7B, BA and BB). 
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Figure 4A. Nucleotide BLAST ofbest nucleotide matches among 12 sequenced Drosophila flies 
for Mst35Ba (ProtA) transcripts (mRNA). Every match was above the threshold and was verified 
with the NCBI ORF Finder. The exception was the D. grimshawi match. The match for D. 
grimshawi was archived through the NCBI nucleotide scoring parameter of match/mismatch 
scores set to (4,-5) and maximum target sequences to be displayed to 100. 

Color key for alignment scores 

<40 40-50 50-80 80-200 >=200 


"iiii~iiiiii"iiii"iiiiii"iiii"iiiiii~iiii>D.~-mst35bb-CG#78Query,.. 

~ 1bo 2bo 3bo 4bo 5bo ~6bOD.simulanl_GDl1981_8596(Je-14J) 
...............
~D.seche1ia_GMI46J2_8596(5e-I46) 

a_ ___.->D.erecta_GG24235_6496(2e-83):===§§:=:E~~~i~~~!::::::;::;---~g-----~~»D.yakuba-GE24787 _8096(5e-59) ---->D.ananassae_GFl5002_7l96(2e-23) 
- >D.pseudoobSCW1l_GA18970 7396(le-08) 

>D.persimilis_GL14516_7396(2e-09) 
:::--.....~>D.wilislDnLGKl8077_lOO%( le.22) 
- ~~D.mojaveosill_GI173J8_6796(ge-lJ) 

---='D.viriwLGJl6066 _100%(2e-06) 
a>D.grimsbawi_GH12778_8096{3e-04) 

Figure 4B. Nucleotide BLAST of best nucleotide matches among 12 sequenced Drosophila flies 
for Mst35Bb (ProtB) transcripts (mRNA). Every match was above the threshold and was verified 
with the NCBI ORF Finder. The exception was the D. grimshawi match. The match for D. 
grimshawi was archived through the NCBI nucleotide scoring parameter ofmatch/mismatch 
scores set to (4,-5) and maximum target sequences to be displayed to 100. 
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Figure SA. Nucleotide BLAST of the best Flybase nucleotide (genomic DNA) matches among 
12 sequenced Drosophila flies for D. meianogaster of Mst35Ba 
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Figure SB. Nucleotide BLAST of the best Flybase nucleotide (genomic DNA) matches among 
12 sequenced Drosophila flies for D. meianogaster of Mst35Bb. 
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D.sImuIans_GD21981: 0.02119 
D.sechelia3;M14632: 0.01034 

______-[===::;.;D.yakuba-GE24787: 0.06904
I D.erecta_GG24235: OJl5083 

,------------------D.8II11ll8SS8IUif15002:D.23934 

i 
I 
i 

I 

I 


based on NCBI transcri t nucleotide mRNA best matches ofMst35Ba 

,----------O.melanogaster_mst35ba_CG4479: 0.12628 
,-------1 O.simulllm!U;!)21981: 0.02087 

O.sechelia_GM14632: 0.01066 
______C==~~ID.yakIIblUiE24787: D.06881 r D.erecta_GG24235: 0.05106 

D.psendoobscwa_GA18970: 0.02819 
D.persimilr.Ull. 14516: ..0.01643 

L___t=========~D~S-Q1~0.13254
D.wlis_GJ16066: 0.13820 

'---------------D.willlstonCGK18077: 0.19094 
L..------------D,wimshawCGH13870: 0.16153 

based on NCBI transcri t nucleotide mRNA best matches of Mst35Bb 

,----------D.meI8nogaster.JIISt35bb_CG4478: 0.12691 
,--------1 

The matches for the protamine-like proteins (Mst35Ba and Mst35Bb) are diverse except for D. simulans 
and D. sechelia relationshi to D. melano aster in the established h 10 enetic tree Fi . 1 . 

based on FI 

1,---------------D.rneIanogaster_mst35b8_CG4479: D.09295 

f
mel::J.~=~::;::-----t.------f D.simuIans_GD21981: 0.01722 

----. D.sechel.U;M14632: 0.01106 

L~SU~b~gro~UP~__t=========~~D.yakIIblUiE24787: 0.07402 


D.erect8_GG24235: 0.06479 
D.ananassae GF15002: 0.01133 

r--------L -====::.:::..:==::..:..:.=--------D.willistoni_GK18077:0'12279 
D.pseudoobscur8 GA18970: ·0.02904 

r-----I----t::========-=-==:...-----D.Wilis_GJ16066:0.10607 
1 I'-------I '-----------------D.rnojIM!nsis_Q17338: 0.10639
L____C=======~D~.persimili:!Uj(.14516: D.05537 

D.grimshawUilt13870: 0.06002 

enomic DNA best matches ofMst35Bb 

,....---------D.meIanogaster_mst35bb_CG4478:0'09410 
r=.-=:::;:;;---L----l D.Simulans_GD21981: 0.01642 
melanogastH D.secheIia_GM14632: 0.01187 

sub group D.yakuba_GE24787: 0.07403 
D.erecta_GG24235: D.06478 

D.ananassae_GF15002: -0.00058 
r-------t=====.:::....:=::...:==----O.wllistoni_GK18077: 0.13410 

O.pseudoobsCur8_GA 18970: ·0.04099 
'-------------D-WiIis_GJ16066: 0.11802 

II L..-----------OJtlOjllwlISis_Q11338: 0.10911 
L___-[===~D~.per~siI~"~iJisGL14516: D.04137 

D.wimshawl_GH12778: 0.08089 

The association of the whole genome nucleotide region in comparison to the transcript region illustrates 
that the nucleotide matches for protamine-like proteins is akin to the established phylogenetic tree (Fig. 1) 
for the meianogaster subgroup. 
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II. Analysis of putative protamine-like proteins in 12 Drosophila species 

Using the published protein sequences for Mst35Ba (GI: 17137016) and Mst35Bb (GI: . 

17137018) we searched the sequenced genomes for the 12 Drosophila species. Figure 6A shows 

all the Drosophila matches for Mst35Ba: D. simulans (GI: 195579290), D. sechelia (GI: 

195338499), D. yakuba (GI: 195474093), D. erecta (GI: 194857283), D. anannassae (GI: 

194758515), D. pseudoobscura (GI: 198475490), and D. persmillis (GI: 195159818), 

Drosophilla willistoni (GI: 195435143), D. mojavensis (GI: 195115615), D. virilis (GI: 

195385649), and D. grimshawi (GI: 195092814). These matches were verified with NCBI ORF 

Finder, PSI BLAST and protein BLAST. Figure 4B indicates that all the protein matches for 

Mst35Bb with the only difference being with a different D. williston; (GI: 195437083) match. 

Although there were six unique matches for D. willistoni for Mst35Ba and Mst35Bb, only the 

best match has been shown. Additionally, all species had a minimum of two matches that were 

above the threshold except for D. erecta that had only match for both Mst35Ba and Mst35Bb. 

The best match for each species was re-aligned with its respective control protein 

sequence for Mst35Ba or Mst35Bb to yield query a coverage percent and an E-value score. All 

of the species that belonged in the melanogaster subgroup had query coverage of97%; except for 

D. erecta had query coverage of 88% for the Mst35Ba matches (Figs. 6A and 6B). The query 

coverage was increased to 99% for all species in the melanogaster subgroup except for D. erecta 

whose query coverage became 89% query for the Mst35Bb match. The query coverage slightly 

increased for D. ananassae between the Mst35Ba coverage of 65% to Mst35Bb coverage of 66% 

for the same match. 

The species that belonged to the obscura group had a greater area of coverage for 

Mst35Ba as compared to Mst35Bb. As shown in Figures 6A and 6B, the coverage area for D. 

pseudoobscura was 66% for Mst35Ba as compared to 52% for Mst35Bb. Likewise, D. 
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persmillis had coverage of39% for Mst35Ba, which is 5% larger to the coverage ofMst35Bb 

(34%). The second best match for D. pseudoobscura (GI: 198476418) yielded the same cover 

area of43% for Mst35Ba and Mst35Bb. Additionally, the E-value for the second best match for 

D. pseudoobscura Mst35Ba was 7e-14 and 4-e-14 for Mst35Bb. The second best match will be 

analyzed later with the functional groups of putative conserved regions among the best matches. 

D. willistoni generated different best matches for Mst35Ba and Mst35Bb as illustrated in 

Figures 6A and 6B with the same E-value. The query coverage different with 67% for Mst35Ba 

i 
i match and 75% query coverage for Mst35Bb match. 
i 
I 
! As shown in Figures 6A and 6B, only D. mojavensis for the Drosophila sub genus had the 
j 
I 
 same query coverage of62% for the Mst35Ba and Mst35Bb match. The query coverage for D. 


virilis for Mst35Bb is larger with 79% than query coverage of 63% match for Mst35Ba. 

I 
1 

Likewise, the Hawaiian D. grimshawi has larger query coverage of77% for Mst35Bb as 

1 compared to Mst35Ba query coverage of 69%. 

! 
I 

I 

Figures 6A and 6B illustrate that regardless of the Mst35Ba and Mst35Bb respective best 

matches; all ofthe E-values are the same. These E-values range from 2e-28 for D. 

1 pseudoobscura to 6e-60 for D. sechelia. Overall, these E-values are a good indicator that the 

matches are conserved in terms of their respective control SBNP (Mst35Ba and Mst35Bb). 

The global alignment tool ClustalW2-was used to generate phylogenies of the best 

l 
'J 

I 
1 

protein matches. These phylogenies were compared to the generated phylogenetic tree. Figures 
I 
1, 9 A and 9B show the melanogaster subgroup as being conserved, as with the genomic DNA 1 
I 

nucleotide sequences phylogenetic relationship (Figs. 8A and 8B) and the proposed phylogenetic 

tree (Fig. 1). Another similarity was that D. ananassae branched off from the melanogaster sub­

group. In the proposed phylogenetic tree, the obscura group branched offD. ananassae; the 
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obscura group branched from D. ananassae at the same point in the protamine-like protein 

matches of Mst35Ba shown in Figure 9A. Similarly, the phylogenetic relationship for D. 

willistoni is similar to the known phylogenetic tree (Fig. 1). As shown in Figure 9B, D. 

willis toni branches off from the melanogaster subgroup instead ofD. ananassae and the obscura 

group. Also similar to the genomic DNA phylogenetic relationship shown in Figures 8A and 8B, 

D. ananassae and the obscura group are paired together for Mst35Bb matches. The repleta 

group (D. mojavensis) and the virilis group are still paired up together (Figs. 9A and 9B), which 

is similar to the known phylogenetic tree. The similarity continues with the Hawaiian 

Drosophila, D. grimshawi, branching off from repleta and virilis groups. Whereas in Figure 9A, 

the D. grimshawi branches from the Drosophilidae Family instead of branching from the 

Drosophila sub genus. Overall, the melanogaster subgroup is conserved according to 

phylogenetic relationship of the putative protamine-like protein matches among the 12 

sequenced Drosophila species. 

The best protein matches for Mst35Ba and Mst35Bb were statistically analyzed for amino 

acid percentage the total number of amino acids present in each matched sequence. Additionally 

the same break down is shown for histone HI linker-like proteins, protamine-like proteins, and 

true protamines to illustrate the evolution of histone HI linker-like proteins to protamine-like 

proteins and finally to true protamines (Figs. 11A and lIB). 

As shown in Figure lIB, the overall number of amino acids for the sister species to D. 

melanogaster Mst35Ba and Mst35Bb are almost identical in the total number of amino acids. 

The total number of amino acids changes fluctuates between the other matches for Mst35Ba and 

Mst35Bb, especially for the best match for D. pseudoobscura (569 amino acids). A percentage 

bar graph and table were generated to examine the amino acid content of each protein match 
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(Fig. IIA and Table IA). As indicated in previous studies the protamine-like proteins are rich in 

lysine (K), arginine (R), with a mixture of many other amino acids such as alanine (A), serine 

(S), and cysteine (C) (N. Saperas; Eirin-Lopez et al. 2006; Birkhead et al. 2009; Kasinsky et al. 

20 11). Nearly all matched sequences contained substantial amounts of arginine and lysine amino 

acids (Fig. IIA). Table lA shows the percentage of all amino acid ratios in matched species. The 

estimated total percentage of arginine and the lysine amino acids is important for protamine-like 

proteins. The lowest percentage sum of 13.7% ofarginine and lysine were found in the best 

match for D. pseudoobscura. The second best match for D. pseudoobscura shows the lysine and 

arginine combined percentage as 17.4% (Table lA). This percentage is closer to combined 

percentage ofarginine and lysine for the controls (Mst35Ba and Mst35Bb) with their percentage 

being 26.7 and 25.7. Also, the melanogaster subgroup arginine and lysine combined ratio is very 

close to the control sequence with the range being from 25.8 for D. simulans to 21.8 for D. 

erecta. (Table lA) For D. ananassae, the second best match had a lysine and arginine combined 

of23.2%and the best match percentage was 17.8% (Table lA). The D. virilis combined 

percentage for arginine and lysine for the best match was 30.9% and 18.5% for the second best 

match. The Mst35Ba best match for D. willistoni had a combined percentage for lysine and 

arginine of26.3% and Mst35Bb best match percentage was 31.9%. The D. mojavensis combined 

percentage for arginine and lysine was 16.6%. The D. virilis combined percentage for arginine 

and lysine was 26.8%. Lastly, there was a substantial concentration of serine and various 

significant concentrations ofcysteine present in all matches (Fig. 11 A and Table 1 A). 

The local alignment tool T -Coffee was used to align all the best matches for each SBNP 

(Mst35Ba and Mst35Bb). A local alignment tool searches for the nucleotide next to it in the 

relation as compared to a global alignment tool algorithm that searches for the overall consensus. 
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As shown in Figures lOA and lOB, the overall consensus among each of the best protein matches 

was very closely aligned. The Mst35Ba consensus was 82% among the best matches and 

Mst35Bb consensus was 83% among the best matches. In these consensus regions, a conserved 

region of approximately 56 amino acids for Mst35Ba was found (Fig. lOA). Likewise, a slightly 

larger conserved region was found in Mst35Bb with its size ranging from 55 to 56 amino acids 

(Fig. lOB). Then these matches were further analyzed in terms ofthe amino acid percentage 

breakdown in Figures 12A and 12B. Also, Tables IB and IC illustrated the detailed breakdown 

of the percentage ofamino acids present for each conserved region when compared to the 

controls and other species. 

The average concentration of lysine and arginine for Mst35Ba and Mst35Bb is 26.21 %. 

Whereas as the average concentration of lysine and arginine for the conserved regions for 

Mst35Ba and Mst35Bb are 25.58%. The average concentration oflysine and arginine in the 

conserved Mst35Ba and Mst35Bb regions are respectively 25.65% and 25.45%. The best match 

for D. pseudoobscura total percentage of lysine and arginine is 26.79. (Figs. 12A, 12B, Tables 

I B and I C) Whereas the second best match for D. pseudoobscura total percentage of lysine and 

arginine is only 20% with 1.85% of serine amino acids. (not shown) While in the best matches 

for the rest of conserved regions, once again there appears to be a substantial amount of serine 

present in the conserved. (Figs. 12A and 12B) 
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Color key for alignment scores 
<40 40-50 50-80 80-200 >=200 

Query I'""iiii"iiii~iiii"iiiiii~iiii"iiii~iiii"ii>Dmd-mfi3~~CG#~ 
~ 2h 4h sh ah 1ho 1~O 1~O /D.simulanl_GDlI981_Se-60 

/"~Dsechelia GMI4632 6e-60 

~Derecta_GG~23S3e-S2 
- ~D.ananassae GFI5002 2e-ll.__ .~ ..~~~_ -----.DpseudoobKun_GAi8970_1e-16:::~~~~§§~~~~~!!!!!!!!!!!!!!!!!!!!!!!!I~~~~DphID~GE~787_h_~____ >D.penimilil_GLl4S16_2e-16 _ ~~>DwilJislDni GKl4607 6e-34 
~"'~Dmojaverufs_Gil7338_1e-28 
'-~Dvirilis_GJl6066_6e-lO 

>Dgrimshawi_GHlS261_6e-28 

Figure 6A. Protein BLAST of best protein matches among 12 sequenced Drosophila flies for 
Mst35Ba (ProtA). All ofthe matched sequences in all twelve sequenced Drosophila flies were 
based on D. melanogaster Mst35Ba. These matches were verified with NCB I ORF Finder, PSI­
BLAST, and protein BLAST. The best-matched sequences were aligned through protein BLAST 

1 E-values are shown. 
i 
.j 

Color key for alignment scores 
<40 40-50 50-80 80-200 >=200 

1 

1 
1 

I 
I 
., 

Figure 6B Protein BLAST ofbest protein matches among 12 sequenced Drosophila flies for 
Mst35Bb (ProtB). All of the matched sequences in all twelve sequenced Drosophila flies were 

J based on D. melanogaster Mst35Bb. These matches were verified with NCBI ORF Finder, PSI­
j 

BLAST, and protein BLAST. The best-matched sequences were aligned through protein BLAST 
E-values are shown. 1 

I 
I 
l 
~ 
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,....-----o.l1'I8/anog8ster.,.mst35biil_CG4419: 0.10680 
O.s8nuliilmU,D21981: 0.02384 

O.sechelliiI_GM14632: 0.03058 

L____-[===~O.yakUb~UlE24181:D.0855fi
O.erecta_GG24235: 0.01180 

.-----------------~~sR_G1~2:0'~1 

'---il!!!i!9D.IIlIIIL­____________--l====-=:-::=-=-,O.pseudool:m:uriil-GA1891O:0'14634 
O.perslmilis_Gl.14516: -Wl3920 

L---"""""''-'''''''''-----------O.w.stonUiK14601: 0.29106 

L~~~========;;;.;;~o.nlOjl.BllskUi11338: 0.21934I O.WiIis_GJ16060: 0.16214 
'-'===='-"'="--O.grlmsMwUiH25261: 0.13141 

The melanogaster sub-group is conserved among all best protein matches in their respective male 
specific transcripts. The protein matches for the protamine-like proteins (Mst35Ba and 
Mst35Bb) indicate that only the melanogaster subgroup is the same as the established 
h 10 enetic tree. see Fi . 1 . 
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Mst35Ba and Mst35Bbl: 

Percentage vs Species (MST35Ba and MST35Bb) 
_ %ofA 
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Species (MST35Ba and MST35Bb) H =Hawaiian group 
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Table lA. Amino Acid percentage versus Species (Mst35Ba and Mst35Bb 
Species Percentage of Amino Acids 

%A %C %E %G %H %K %L %N %P %Q %R %8 %T 0/0 V 

Histone HI like· Mus musculus 
Histone HI like· Rattus norvegicus 

5.88 4.71 2.94 5.29 
8.28 
4.65 

3.53 11.18 9.41 4.12 2.94 7.65 7.06 9.41 5.88 5.88 
7.69 
6.51 

0.59 0.59 1.18 13.02 7.1 4.14 3.55 6.51 11.24 11.83 5.33 8.28 
Histone HI like· D. melanogaster· mst77F 4.65 7.91 1.86 13.49 2.33 4.65 6.98 1.86 9.77 13.02 3.26 3.72 
Protamine· like· M. surmuletus 12.75 0 0 4.7 0 24.83 5.37 2.68 6.04 0 21.48 8.05 2.68 4.7 
Protamine·like· S. solidissima • PUa 14.1 0.22 0 2.42 0.44 23.79 1.54 0.44 2.2 0.44 22.69 22.69 3.96 2.42 
Protamine-like - S. solidissima • PUb 14.07 0.22 0 2.42 0.44 23.3 1.54 0.44 2.2 0.22 23.74 22.64 3.96 2.2 
Protamine·like· D. melanogaster - Mst35Ba 10.27 6.85 4.11 2.05 2.05 14.38 4.11 6.85 6.16 3.42 12.33 7.53 3.42 3.42 
Protamine·like- D. melanogaster • Mst35Bb 10.42 6.94 5.56 2.08 2.78 15.28 4.17 5.56 7.64 2.08 10.42 6.94 3.47 3.47 
D. simulans GD21981 10.2 8.16 3.4 3.4 2.04 14.29 2.72 5.44 6.12 2.04 11.56 8.84 4.76 4.08 
D. sechelia GM14632 10.2 8.16 3.4 3.4 2.04 14.29 2.72 4.76 6.12 2.72 10.88 8.84 5.44 3.4 
D. yakuba GE24787 8.76 5.99 6.91 4.15 2.3 13.36 3.23 5.07 5.99 2.76 9.68 9.68 2.3 2.3 

2.97D. erecta GG24235 6.93 6.44 7.92 4.95 2.48 12.87 4.46 5.94 5.94 2.97 8.91 7.92 2.48 
D. ananassae GF15002 6.95 4.23 3.32 3.02 3.32 10.27 12.08 3.93 5.74 1.81 7.55 8.46 3.63 4.23 
D. ananassae GF18670 5.43 0.78 5.43 4.65 0.78 18.6 6.2 6.2 2.33 3.1 4.65 9.3 7.75 3.88 
D. pseudoobscura GA18970 8.96 1.41 5.27 5.1 1.93 7.73 9.84 5.8 4.92 3.69 5.98 8.61 5.98 7.91 
D. pseudoobscura GA25629 5.95 1.49 2.99 9.45 2.99 5.47 8.46 7.96 3.98 3.98 11.94 4.98 5.47 4.98 
D. persimilis GL14516 5.95 5.95 2.38 9.52 1.19 21.43 4.76 3.57 4.76 3.57 9.52 10.71 2.38 2.38 
D.persimilis GL25738 7.69 1.28 1.92 4.49 2.56 7.05 7.05 9.62 6.41 7.69 11.54 5.77 3.85 3.85 
D. willistoni GKl4607 8.48 6.25 3.57 4.02 1.34 14.29 5.8 4.91 8.48 1.79 12.05 6.7 4.46 2.23 
D. willistoni GK18077 7.32 7.66 2.98 2.55 1.7 17.45 4.26 4.68 8.09 1.7 14.47 5.96 4.26 2.98 
D. mojavensis GIl7338 11.19 4.33 5.42 4.69 0.72 9.39 7.22 4.33 6.14 3.25 7.22 5.42 3.61 3.61 
D. virilis GJl6066 5.66 10.38 0.94 3.3 0.94 12.74 5.66 5.66 12.74 2.36 14.15 4.25 2.83 5.19 
D. grimshawi GH25261 7.53 8.6 3.23 4.3 3.23 12.9 5.38 5.38 3.23 2.15 17.2 6.45 6.45 3.23 
True Protamine- Homo sapiens Prott 3.92 11.76 0 0 1.96 0 0 0 3.92 7.84 47.06 9.8 1.96 0 
True Protamine- Homo sapiens Prot2 0 4.9 7.84 5.88 13.73 1.96 3.92 0 0.98 7.84 31.37 7.84 2.94 4.9 
True Protamine- Mus musculus Protl 1.96 17.65 0 0 0 5.88 0 0 0 0 54.9 7.84 1.96 0 
True Protamine- Mus musculus Prot2 0 6.54 5.61 8.41 14.95 2.8 1.87 0 3.74 4.67 35.51 6.54 0.93 1.87 
True Protamine- D. labrax 5.88 0 2.94 0 0 0 0 0 5.88 2.94 61.76 5.88 5.88 8.82 
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* = controls 
MS =melanogaster sub group 
M = melanogaster group 
0 = obscura group 
W = willis toni group 
R =repleta group 
V =virilis group 
H =Hawaiian group 
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Table lB. Amino Acid percentage versus Species (Mst35Ba conserved region) 
Species PercentaJZ;e of Amino Acids 

%A %C %E %G %H %K %L %N %P %Q 0/0 R %S %T %V 
Histone HI like- Mus musculus 5.88 4.71 2.94 5.29 3.53 11.18 9.41 4.12 2.94 7.65 7.06 9.41 5.88 5.88 

------

Histone HI like- Rattus norvegicus 7.69 0.59 0.59 8.28 1.18 13.02 7.10 4.14 3.55 6.51 11.24 11.83 5.33 8.28 
Histone HI like - D. melanoJZ;aster - mst77F 6.51 4.65 7.91 4.65 1.86 13.49 2.33 4.65 6.98 1.86 9.77 13.02 3.26 3.72 
Protamine-like- M. surmuletus 12.75 0.00 0.00 4.70 0.00 24.83 5.37 2.68 6.04 0.00 21.48 8.05 2.68 4.70 
Protamine-like - S. solidissima - PLla 14.10 0.22 0.00 2.42 0.44 23.79 1.54 0.44 2.20 0.44 22.69 22.69 3.96 2.42 
Protamine-like - S. solidissima - PLlb 14.07 0.22 0.00 2.42 0.44 23.30 1.54 0.44 2.20 0.22 23.74 22.64 3.96 2.20 
Protamine-like- D. melanogaster - Mst35Ba 10.27 6.85 4.11 2.05 2.05 14.38 4.11 6.85 6.16 3.42 12.33 7.53 3.42 3.42 
Protamine-like- D. melanogaster - Mst35Bb 10.42 6.94 5.56 2.08 2.78 15.28 4.17 5.56 7.64 2.08 10.42 6.94 3.47 3.47 
D. melanogaster - Mst35Ba cons 12.50 5.36 3.57 1.79 1.79 14.29 7.14 8.93 3.57 1.79 14.29 5.36 1.79 3.57 

""""" 

D. melanogaster - Mst35Bb cons 11.29 4.84 8.06 1.61 3.32 11.29 6.45 4.84 4.84 3.23 11.29 3.23 4.84 4.84 
D. simulans GD21981 cons 12.50 5.36 3.57 3.57 3.57 12.50 5.36 3.57 5.36 3.57 10.71 5.36 1.79 1.79 
D. sechelia GM14632 cons 12.50 5.36 3.57 3.57 3.57 12.50 5.36 3.57 5.36 3.57 10.71 5.36 1.79 0.00 
D. yakuba GE24787 cons 10.71 5.36 5.36 3.57 1.79 14.29 7.14 5.36 7.14 3.57 10.71 3.57 1.79 3.57 
D. erecta GG24235 cons 8.93 5.36 7.14 3.57 1.79 16.07 7.14 5.36 5.36 3.57 8.93 3.57 3.57 3.57 
D. ananassae GF15002 cons 8.93 7.14 7.14 5.36 1.79 12.50 5.36 5.36 5.36 0.00 16.07 3.57 0.00 1.79 
D.pseudoobscura GA18970 cons 8.93 3.57 3.57 7.14 1.79 19.64 7.14 5.36 3.57 3.57 7.14 7.14 3.57 5.36 I 

D. persimilis GL14516 cons 8.93 3.57 3.57 7.14 1.79 19.64 7.14 5.36 3.57 3.57 5.36 8.93 3.57 3.57 
D. willistoni GK14607 cons 7.14 7.14 1.79 3.57 1.79 14.29 7.14 8.93 7.14 0.00 14.29 1.79 3.57 3.57 
D. mojavensis GI17338 cons 8.93 8.93 3.57 5.36 1.79 14.29 8.93 5.36 7.14 3.57 12.50 0.00 1.79 1.79 
D. virilis GJl6066 cons 7.14 8.93 3.57 5.36 1.79 12.50 8.93 5.36 7.14 3.57 14.29 1.79 1.79 3.57 
D. grimshawi GH25261 cons 7.14 5.36 5.36 7.14 3.57 7.14 8.93 7.14 3.57 3.57 16.07 7.14 1.79 1.79 
True Protamine- Homo sapiens Protl 3.92 11.76 0.00 0.00 1.96 0.00 0.00 0.00 3.92 7.84 47.06 9.80 1.96 0.00 
True Protamine- Homo sapiens Prot2 0.00 4.90 7.84 5.88 13.73 1.96 3.92 0.00 0.98 7.84 31.37 7.84 2.94 4.90 
True Protamine- Mus musculus Protl 1.96 17.65 0.00 0.00 0.00 5.88 0.00 0.00 0.00 0.00 54.90 7.84 1.96 0.00 
True Protamine- Mus musculus Prot2 0.00 6.54 5.61 8.41 14.95 2.80 1.87 0.00 3.74 4.67 35.51 6.54 0.93 1.87 
True Protamine- D. labrax 5.88 0.00 2.94 0.00 0.00 0.00 0.00 0.00 5.88 2.94 61.76 5.88 5.88 8.82 
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Table le. Amino Acid percentage versus Species (Mst35Bb conserved region) 
Species 

%A %C %E %G 
Histone HI like- Mus musculus 5.88 4.71 2.94 5.29 
Histone HI like- Rattus norvegicus 7.69 0.59 0.59 8.28 
Histone HI like - D. melanogaster - mst77F 6.51 4.65 7.91 4.65 
Protamine-like- M. surmuletus 12.75 0.00 0.00 4.70 
Protamine-like - S. solidissima - PUa 14.10 0.22 0.00 2.42 
Protamine-like - S. solidissima - PUb 14.07 0.22 0.00 2.42 
Protamine-like- D. melanogaster - Mst35Ba 10.27 6.85 4.11 2.05 
Protamine-like- D. melanogaster - Mst35Bb 10.42 6.94 5.56 2.08 
D. melanogaster - Mst35Ba cons 12.50 5.36 3.57 1.79 
D. melanogaster - Mst35Bb cons 11.29 4.84 8.06 1.61 
D. simulans GD21981 cons 11.29 4.84 4.84 3.23 
D. sechelia GM14632 cons 11.28 4.84 4.84 3.23 
D. yakuba GE24787 cons 9.68 4.84 6.45 3.23 
D. erecta GG24235 cons 8.06 4.84 6.45 3.23 
D. ananassae GF 15002 cons 8.06 6.45 6.45 4.84 
D. pseudoobscura GA18970 cons 8.20 3.28 3.28 8.20 
D. persimilis GL14516 cons 8.20 3.28 3.28 8.20 
D. willistoni GK18077 cons 6.45 8.06 3.23 3.23 
D. mojavensis GI17338 cons 8.06 9.68 3.23 4.84 
D. virilis GJ16066 cons 6.45 9.68 3.23 4.84 
D. grimshawi GH25261 cons 6.45 6.45 4.84 6.45 
True Protamine- Homo sapiens Prot 1 3.92 11.76 0.00 0.00 
True Protamine- Homo sapiens Prot2 0.00 4.90 7.84 5.88 
True Protamine- Mus musculus Prot 1 1.96 17.65 0.00 0.00 
True Protamine- Mus musculus Prot2 0.00 6.54 5.61 8.41 
True Protamine- D. labrax 5.88 0.00 2.94 0.00 

%H 
3.53 
1.18 
1.86 
0.00 
0.44 
0.44 
2.05 
2.78 
1.79 
3.32 
3.23 
3.23 
1.61 
1.61 
1.61 
1.64 
1.64 
l.61 
1.61 
1.61 
3.23 
1.96 
13.73 
0.00 
14.95 
0.00 

Percentage of Amino Acids 
%K %L %N %P 
11.18 9.41 4.12 2.94 
13.02 7.10 4.14 3.55 
13.49 2.33 4.65 6.98 
24.83 5.37 2.68 6.04 
23.79 1.54 0.44 2.20 
23.30 1.54 0.44 2.20 
14.38 4.11 6.85 6.16 
15.28 4.17 5.56 7.64 
14.29 7.14 8.93 3.57 
11.29 6.45 4.84 4.84 
11.29 4.84 3.23 4.84 
11.29 4.84 3.23 4.84 
12.90 6.45 4.84 6.45 
14.52 6.45 4.84 4.84 
11.29 4.84 4.84 4.84 
18.03 6.56 4.92 3.28 
18.03 6.56 4.92 3.28 
14.52 6.45 4.84 6.45 
14.52 8.06 4.84 6.45 
11.29 8.06 6.45 6.45 
6.45 8.06 6.45 3.23 
0.00 0.00 0.00 3.92 
1.96 3.92 0.00 0.98 
5.88 0.00 0.00 0.00 
2.80 1.87 0.00 3.74 
0.00 0.00 0.00 5.88 

%Q 
7.65 
6.51 
1.86 
0.00 
0.44 
0.22 
3.42 
2.08 
1.79 
3.23 
3.23 
3.23 
3.23 
3.23 
1.61 
3.28 
3.28 
1.61 
3.23 
3.23 
3.23 
7.84 
7.84 
0.00 
4.67 
2.94 

%R 
7.06 
11.24 
9.77 
21.48 
22.69 
23.74 
12.33 
10.42 
14.29 
11.29 
11.29 
11.29 
11.29 
9.68 
16.13 
11.48 
9.84 
11.29 
12.90 
14.52 
16.13 
47.06 
31.37 
54.90 
35.51 
61.76 

%S 
9.41 
11.83 
13.02 
8.05 

22.69 
22.64 
7.53 
6.94 
5.36 
3.23 
6.45 
6.45 
4.84 
4.84 
4.84 
8.20 
9.84 
8.06 
1.61 
1.61 
8.06 
9.80 
7.84 
7.84 
6.54 
5.88 

D/O T 
5.88 
5.33 
3.26 
2.68 
3.96 
3.96 
3.42 
3.47 
1.79 
4.84 
4.84 
4.84 
4.84 
6.45 
3.23 
3.28 
3.28 
0.00 
3.23 
4.84 
4.84 
1.96 
2.94 
1.96 
0.93 
5.88 

%V 
5.88 
8.28 
3.72 
4.70 
2.42 
2.20 
3.42 
3.47 
3.57 
4.84 
3.23 
1.61 
4.84 
4.84 
3.23 
4.92 
3.28 
4.84 
3.23 
4.84 
3.23 
0.00 
4.90 
0.00 
1.87 
8.82 
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III.Functional analysis of the conserved region 

Using three different bioinformatics tools, functional analyses of the conserved regions 

found in Mst35Ba and Mst35Bb for all 12 Drosophila species were carried out. Additionally, an 

alignment of all of the conserved matches' secondary structures to their respective conserved 

regions (Mst35Ba conserved and Mst35Bb conserved) was created through the use of Molsoft 

IeM-Browser. 

Our results indicate that the conserved region found in Mst35Ba and Mst35Bb is a DNA 

binding domain. Analysis using DNA-Binder indicated that the majority ofthe putative 

protamine-like protein sequences contained a DNA-binding domain or had a chance to be a 

DNA binding protein except for D. ananassa_GF15002, which at most a slim chance of being a 

DNA-binding protein. D. pseudoobscura GA18070 had a small chance of being a DNA-binding 

protein, which may be attributed to the low coverage score with the genomic sequence. All 

conserved regions for each match and the controls had high likelihood of being a DNA-Binding 

domain (Table 2). 

Using BindN+ and BindN-RF (Random Forests) were able to predict the actual residues 

with a score to be DNA binding or non-DNA binding. BindN+ is able to support vector 

machines (algorithm) for its prediction. 

Figures 13A and 13B, illustrate the conserved region (shaded region) for Mst35Ba and 

Mst35Bb for BindN-RF (strict) and BindN+ (relaxed). The conserved region corresponds 

directly to conserved region that contains many putative DNA-binding residues for the D. 

pseudoobscura matches shown in Figures 14A and 14B. As indicated in Figures 14A and 14B, 

the conserved regions are predicted to have majority of its residues be DNA binding for the two 

D. pseudoobscura best matches. In Table 3, the majority ofthe matches have residues that have 

been predicted to be DNA binding, except for the best match for D. ananassae, D. 
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pseudoobscura, and D. mojavensis. These matches' DNA binding residue percentages range 

from 15% to 47%. The low DNA binding residue percentage for these three matches can be 

attributed to their large number ofamino acid present in their respective protein. Hence the 

increase in variability is main reason for their low DNA binding residue percentage for these 

three matches (Figs. IIA, liB, and Table lA). Additionally, the conserved regions shown in 

Figures 14A and 14B indicate that the majority of the putative DNA binding residues belong to 

the conserved region. The conserved regions for each matching sequence have a large 

percentage of basic amino acids that are more likely involved in DNA binding. 

In Figure IS, through Swiss Model Interpro Domain Scan, the functional groups for 

Mst35Ba, Mst35Bb, D. pseudoobscura matches and their conserved regions were graphically 

visualized. This illustrates that D. pseudoobscura matches contain a high mobility group that 

overlaps with the high mobility group box. Furthennore, the presence of the high mobility 

group is present for every matched species. As D. pseudoobscura is our experimental fly, only 

this data has been shown. Overall this indicates that the high mobility group box has been 

present in many DNA binding proteins and regions. 

Using Protein Homology/analogy Recognition Engine 2.0 (Phyre 2) further analysis on 

the protein matches and the conserved regions were conducted. Phyre 2takes a protein 

sequences and predicts its 3D structure. The protein sequence is searched through a database 

containing 10 million known sequences for homologues through the use of PSI-BLAST to 

examine the evolutionary relationship with the known sequences. 

In Table 4A illustrates a sample ofhighly detailed analysis conserved matches for Mst35Ba. All 

three sample matches (c2e60A, c2cslA, dlv64a) overlap through protein of unknown function 

DUF1074 Family and the high mobility group box. Likewise in Table 4B, which illustrates 
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analysis of the whole protein a few sample results show the same occurrence ofDUFI074 of 

protein ofunknown function family overlapping with the HMO box. There is a possibility that 

there is some relationship occurring here. (Fig. 15) 

Using Phyre 2, all of the 3D secondary wire frame structures of the conserved regions 

were saved and analyzed through Molsoft reM Browser. This analysis curtailed the alignment 

of all respective matches on top of each based on their respective conserved regions of the 

controls (Mst35Ba and Mst35Bb). Figure 16 shows that all the conserved regions among the 12 

sequenced species have similar tertiary alignment of the three alpha helices. The conserved 

region occurred in high confidence region for majority of the matches (not shown). 

Additionally, the conserved region is very similar to known functional groups that have been 

presented in Figure 18. All of these functional groups are HMO boxes and are involved 

transcription or DNA-binding. Lastly these functional groups are found in the conserved region 

matches among the 12 species as well. 

45 




I 
J 


I 

I 


I 

1 

I 


. Table 2. DNA-Binder Predictions for Mst35Ba, Mst35Bb, and conserved sequences 
I Sequence Name Realistic Datasetl Alternative Dataset" Main Datasee 

SVM threshold -1 SVM Score DNA SVM Score DNA SVM DNA 
Bind Bind Score (YIN) 

(YINIM) (YINIM) 
• Drnel Mst35Ba 2.5352528 Yes 0.4838234 Yes -
D.sim GD21981 1.5765025 Yes 0.55971467 MaybeNes -
D.sec GM14632 0.97788236 Yes 0.59466325 MaybeNes - -
D.yak GE24787 -1.0898525 No 0.26950508 Maybe - -
D.ere GG24235 -0.55590193 Maybe/No 0.53697442 MaybeNes - -
D.ana GF15002 -0.75164668 No -0.27363754 Maybe - -
D.pse GA18970 -0.81001403 No 0.57353094 MaybeNes - -
D.pse GA25629 0.34727124 Maybe 0.19297556 Maybe - -
D.per GLl4516 2.0164925 Yes 0.93872436 Yes - -
D.will GK14607 0.73459339 Yes 51398 Yes - -
D.moi GIl7338 -1.4897 No 0.77375851 Yes - -
D.vir GJ16066 1.9136553 Yes 0.070493013 Maybe - -
D.gri GH25261 3.0519743 Yes 0.070493013 Maybe - -
D.will GK18077 2.606360 Yes 0.13364001 Maybe - -
D.mel Mst35Bb 1.5465344 Yes 0.80853348 Yes - -
Dmel Mst35Ba cons 4.6082969 Yes - - 3.2052009 Yes 
D.sim GD21981 ba C 1.6854101 Yes - - 2.0974391 Yes 
D.sec GM14632 ba C 2.1782354 Yes - - 2.2391386 Yes 
D.yak GE24787 ba C 2.501675 Yes - 2.1575922 Yes 
D.ere GG24235 ba C 2.239147 Yes - - 2.1354235 Yes 
D.ana GF15002 ba C 1.9012743 Yes - - 2.7949326 Yes 
D.pse GA18970 ba C 2.3441848 Yes - - Hi8? Yes 
Dpse GA25629 ba C 2.5587343 Yes - - 04 Yes 
D.per GLl4516 ba C 1.2632506 Yes - - 2416 Yes 
D.will GK14607 ba C 4.2431542 Yes - - 2.5043752 Yes 
D.moj GIl7338 ba C 4.015309 Yes - - 2.5289927 Yes 
D.vir GJ16066 ba C 3.58217 Yes - - 2.7286503 Yes 
D.gri. GH25261 ba C 2.0370817 Yes - - 2.8598303 Yes 
D.mel Mst35Bb cons 1.9513811 Yes - - 2.5348116 Yes 
D.will GK18077 bb C 1.7061587 Yes - - 2.1913375 Yes 
D.sim GD21981 bb C 1.3290914 Yes - - 2.1786021 Yes 
D.sec GM14632 bb C 1.661014 Yes - - 2.3063786 Yes 
D.yak GE24787 bb C 1.8465637 Yes - - 2.2325163 Yes 
D.ere GG24235 bb C 1.8013479 Yes - - 2.0569327 Yes 
D.ana GF15002 bb C 1.5110199 Yes - - 2.8097756 Yes 
D.pse GA18970 bb C 2.9576456 Yes - - 2.4946569 Yes 
Dpse GA25629 bb C 2.5587343 Yes - - 2.0852804 Yes 
D.per GL14516 bb C 2.2245383 Yes - - 2.2800249 Yes 
D.moj GI17338 bb C 3.7578127 Yes - - 2.6700481 Yes 
D.vir GJ16066 bb C 3.4336474 Yes - - 2.5675003 Yes 
D.gri. GH25261 bb C 1.6257282 Yes - - 2.7873782 Yes 
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K''M,I1.r,Cf Residues to Bind N+ for Mst35Ba 
HSSRliVHECKSLWRGIlSISAKDESPKGLTEMCNBPIRRAPQKCKPMKSCAKPRRl{AACAKATRPKVKCAPR 
-++++-++-++-++---+-+-+--+++--+----111111441-1+11111111111++ ++++++-++-++ 

269742223252343345333722236234345323279326334335533869894343826935232228. SERBKRRRICQ'; 

.. 11111111+++ 

87988989323 
DNA' Residues to BindN-RF for Mst35Ba 
HSSNRVlfECKSLWRGIISI SAKDESPKGLTEMCNBPIRRAPQKCKPMKSCAKPRRKAACAKATRPKVKCAPRQJ 
-++++-+--++-++---+-+++-11111-+----+--++--++ 11I11 11111111 -++++++-+-+-++. 
4675474367633352773545225252443982245792438383296239599923249359494923275: 

I 

i 
! 

to Bind N+ for Mst35Bb 
HSSRRVIiIECKSLWRGIlSISAKDESPKGLTEMCNBPKRRAPPKCKPHKSCAKPRRKAACAKATRPKVKCA.PS 

-++++-++-++-++---+-+-+--+++--+--- 111111111 I1I1I11111I1I11 111111-++-++ 
269742223252343345333722236234345333578325334335533869894343826935232236 
• • HlOit.RRICK 

:­ 88999224 
DNA· Residues to BindN-RF for Mst35Bb 
MSSRHVRECKSLWRGIISlSAKDESPKGLTEMCNBPKRRAPPKCKPHKSCAKPRRKAACAKATRPKVKCAPS 
-++++-+--++-++---+-+++-+++++-+----+--++---+ 1IIIt 1111I111 11111+-+-+-+ 

467547436763335277354522525244399224379232838329623959992324935949393227 

I\,&UU\..I.CK 

8879326 
Red and + indicates DNA Binding Residues 
Green and - indicates a non-DNA Binding regions 
Dark Shaded . is the conserved 

Key: 

Confidence Score: o 
. 
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...'i......."" 14A. 

! I.b d B' dN+ £ DDNA Bind' R 'd d b ura GA18970 
'" TAHDILlREEDISLAQIGVYASVSFLVVSAVGAALYTTCSRRY 

---------------------+-------------------+­,23227955765 3889999376562453586252668989578887876688617 
RLNlfFEQNLLESANERDEDQQREALVAGAAGYNVDNLNECSRGNLSPTSLKNDDlDPA!lIVPASVASTAAIQQQVSNTTI!:ESAPPTPTSPTGSLKSHTLSLCSTASVPIARSDKJiVVLAH 

-----------+----------------------------------------------------------------------------------+++--+-------------------­
588688543342737689989899898465328986987852937784496534446788989786658483329464757598728435344423223349648799594799999999 
HPTRPRVSSKNAKLDHTKIDHTLYRSHAQPKILDPAPAIEVRGNLBVGISYDPVGGLLNVRLLEAQNLQPRQFSGSADPYAKVRLLPDKKNFWQTRIBKKTLNPVFDEHFV~AAGVIC 

--------------------------------------------------------------------------+-----------------++++-----------------------­
544362753669686987999796477779999999999895947587987879376839488773575636323224529584999854324234222225536888899999998977 
KRTVEILLYDFDAYSRHVCIGGTKLHLANIDLSEQLQLlfTPLSSASAQIlHKVDLGDIHVSLAYLPSAERLHVVLlKARNLlUVDDARIISSDPYVKVTLLGPVGIt!lMKKIUO"GVQRSTVNP 
--------------------------------------------------------------------------------++----++++-------------+--++--+-+++++--+ 
487989885967243327888896888987997879578687757788998989999895872685987999989892253222324332243948496857433623224222422323 
VYNEALAFDVNKETLKNCVLEFTVVHDGLI.GSSEILGRTLIGNSSEVRTEEKIFFEEKPlUIKNATAQWVPLQEPATNLANAAKSTTIIKIII 

DNA 

-----------+----------------------------------------------------------------------------------+++--+-------------------­
588688543342737689989899898465328986987852937784496534446788989786658483329464757598728435344423223349648799594799999999 
HPTRPRVSSKNAKLDHTKIDHTLYRSHAQPKTLDPAPAIEVRGNLHVGISYDPVGGLLNVRLLEAQNLQPRQFSGSADPYAKVRLLPDKKNFWQTRIHKKILNPVFDEHFVFEVAAGVIC 

--------------------------------------------------------------------------+-----------------++++-----------------------­
544362753669686987999796477779999999999895947587987879376839488773575636323224529584999854324234222225536888899999998977 
KRTVEILLYDFDAYSRHVCIGGTKI.HI.ANIDLSEQLQLlfTPLSSASAQIlHKVDLGDIHVSLAYLPSAERLHVVLlKARNLlUVDDARIISSDPYVKVTLLGPVGKKMKKRKTGVQRSTVNP 
--------------------------------------------------------------------------------++----++++-------------+--++--+-+++++--+ 
487989885967243327888896888987997879578687757788998989999895872685987999989892253222324332243948496857433623224222422323 
VYNEALAFDVNKETLKNCVLEFTVVHDGLLGSSEILGRTLIGNSSEVRTEEKIFFEEKPlUIKNATAQWVPLQEPATNLANAAKSTTIIKIII 

----------------------------+-+++-------------------------------------------------+--++++ 

Residues based on Bind N+ and Bind RF for D d b 

9463563784544738934 

Key: Red and + indicates DNA Binding Residues 
Green and - indicates a non-DNA Binding regions 
Dark Shaded Region is the conserved region 
Blue Shaded Re is the extended conserved 

Confidence Score: 0 

GA25629 

Mst35Bb 

48 




Table 3. DNA Binding Residues based on BindN+ and Bind-RF for Mst35Ba and Mst35Bb 

Sequence BindN+ BindN-RF 

I 

Specificity set to recommended 79% 
Estimated Sensitivity was 80.28% 

specificity set to recommended 
78.22% 

Estimated Sensitivi~ was 78.03 
Sequence 
Length 
(Amino 
Acids) 

Predicted 
Binding 

Site 
(Amino 
Acids) 

Percentage 
of DNA 
Binding 

Sites 

Sequence 
Length 
(Amino 
Acids) 

Predicted 
Binding 

Site 
(Amino 
Acids) 

Percentage 
of DNA 
Binding 

Sites 

Dme1 Mst35Ba 146 106 72.60273973 146 91 62.32876712 i 

D.sim GD21981 147 102 69.3877551 146 88 60.2739726 
D.sec GM14632 147 101 68.70748299 147 90 61.2244898 
D.yak GE24787 217 125 57.60368664 217 118 54.37788018 
D.ere GG24235 202 115 56.93069307 202 112 55.44554455 i 

D.ana GF15002 331 155 46.82779456 331 144 43.50453172 i 

D.pse GA18970 569 88 15.46572935 569 90 15.8172232 
D.pse GA25629 201 122 60.69651741 201 106 52.73631841 
D.per GL14516 84 57 67.85714286 84 57 67.85714286 
D.will GK14607 224 153 68.30357143 224 144 64.28571429 
D.mQj GI17338 277 85 30.68592058 277 89 32.1299639 
D.vir G116066 212 127 59.90566038 212 133 62.73584906 i 

D.gri GH25261 93 66 70.96774194 9j I 61 65.59139785 
D.will GK18077 235 170 72.34042553 235 155 65.95744681 
D.me1 Mst35Bb 144 100 69.44444444 144 88 61.11111111 

I 

i 

i 

! 

As table 3, both BindN+ and BindN-RF reveal similar percentage for the DNA Binding Sites. 
Overall there the difference is approximately the range of difference is between 0 to 13% 
between BindN+ and BindN-RF. BindN+ algorithm is based upon support vector machines and 
is a more relaxed algorithm when compared to stricter algorithm of BindN-RF (Random 
Forests). 
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Figure IS. Functional Groups found in Mst35Ba, Mst35Ba conserved, Mst35Bb, and Mst35Bb 
conserved 

I Swissport Model InterPro Scan: Functional Groups found in Mst35Ba, Mst35Ba conserved, 
Mst35Bb, and Mst35Bb conserv~4~--,--eq-,,-u,--e_n_c_e_s------------------:.:;;..-1 

1 1~D.met_mst35b.l ! ! 

, 

I 
I 

IPR009071: High fflobilit~ group box, DOfflain 
(8:>-128)SSF47095 

IPR010477: Protein of unknown function DUHON, Fafflil~ 
(8-110)PF06382 

D.met_mst35b.l t 56 
I 

cons 
(9-54)IPR009071: High fflobilit~ group box, DOfflain 

SSF47095 
IPR010477: Protein of unknown function DUF1074, Faffli l~ 

(1-36)PF06382 

1 144,D.mel_ mst35bb! 

IPR009071: High mobilit~ group box, Domain 
(8:>-128)SSF47095 

IPR010477: PI'otein of unknown function DlIF1074, Famil~ 
(8-110)PF06382 

D.mel_mst35bb t 62 
cons 

! 

IPR009071: High mobilit~ group box, DOfflain 
(9-54)SSF47095 

IPR010477: Protein of unknown function DUF1074, Fafflily 
(1-36)PF06382 

1 569!D.pse_GA18970 

IPR000008: C2 calcium-dependent mefflbrane targeting, Domain(298-384) (430--S02) 
PFOO168 

(298-384)PS50004 
(427-520)IPR008973: C2 calciuffl/lipid-binding region, CaLB, Domain 

SSF49562 
(275-406) (414-554)IPR009071: High mobi Iit~ grol~p box, DOl1lain (1-67)

SSF47095 
IPR010477: Protein of unknown function DUF1074, Fafflil~ 
PF06382 - (15-48) 

D.pse_ mst35b.l 1 

(9 ::; I 
1 rons 

IPR009071: High mobility group box, Domain 
SSF47095 --------------------------­
IPR010477: Protein of unknown function DUF1074, Family 
PF06382 (3-36) 

D.pse_mst35bb f._____________________________....lll..1 

rons -
IPR009071: High mobility gl'oup box, Domain 
SSF47095 ...... ­ ....------------------(9-55)
IPR010477: Protein of unknown function DUF1074, Famil~ 
PF06382 (3-36) 

1 201D.pse_GA15629"1_____________________________.....1 

IPR009071: High mobility group box, Domain 
SSF47095 --------(8-49)i(65-120)
IPR010477: Pr'otein of unknown function DUF1074, Fafflily
PF06382 (7:>-106) 
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~~e_GAl5629~.........................................................5..4! 


IPR010477: Protein of unknown function DUF1074, Falllil~ 


PF06382 --------....---------(3-36) 


All matches for Mst35Ba (Prot A) and Mst35Bb(Prot B) contained HMG and DUF1074 (a 

i protein of unknown function). There is an overlap of these functional groups in their respective 

matches. Thus, there is a possibility that there HMG group and DUF1074 could be involved in 
some DNA condensatin rocess. 
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Figurer 16. Conservation of Secondary Structures among all Mst35Ba and Mst35Bb 
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I. Wireframe secondary structure ofall respective SNBP matches overlaid on each otherjllustrating the 
conservation of secondary and tertiary structure within the conserved region among different Drosophila 
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----------

Table 4A. Detailed Analysis of Functional Groups found in Mst35Ba conserved matches 
---------- ­

Sample Matches Mst35 Mst35 D.sim D.sec D.yak D.ere D.ana D.pse D.pse D.per D.wil D.wil D.mo D.vir D.gri 
for Mst35Ba cons Ba Bb can. con. can. can. con. can. can. can. con. con. jcon. con. con. 

cons cons GD21 GM1 GE24 GG24 GF15 GA18 GA25 GLl4 GK14 GK18 GIl 7 GJ16 GH25 
981 4632 787 235 002 970 629 516 607 077 338 066 261 I 

c2e6oA Yo Confidence 98.6 98.6 98.1 98.5 98.5 99.1 97.9 97.8 97.5 98.1 98.6 98.2 98.7 98 98 
Yo identity 15 12 13 13 16 16 20 11 14 11 15 13 16 17 19 

Info: Yo Coverage 96 96 92 96 96 89 94 94 92 94 96 88 96 92 92 
abed Residues 2-56 2-56 2-54 2-56 2-56 6-56 1-54 1-54 1-51 1-54 2-56 2-57 2-56 2-54 2-54 
c2cslA Yo Confidence 98.6 98.5 98.1 98.5 98.4 99.1 97.9 97.7 97.6 98.1 98.6 98.3 98.6 98 98 

Yo identity 24 21 17 18 27 22 24 13 18 13 22 19 16 15 19 
Info: Yo Coverage 96 91 92 96 78 96 78 94 79 94 96 83 96 92 92 
e fg Residues 2-56 2-59 2-54 2-56 10-54 2-56 10-54 1-54 6-51 1-54 2-56 2-54 2-56 2-54 2-54 

dlv64a Yo Confidence 98.6 98.6 98.3 98.5 98.5 99.1 98 97.8 97.5 98.1 98.6 98.3 98.6 98.1 98.1 
Yo identity 17 16 15 15 21 17 19 19 17 19 15 19 17 17 19 

Info: Yo Coverage 91 79 91 91 91 92 91 91 88 91 91 90 91 91 91 
j !Residues 3-54 10-59 3-54 3-54 3-54 3-55 3-54 3-54 2-50 3-54 3-54 3-59 3-54 3-54 3-54 

a -transcription e - dna binding protein 
b - cell cycle f - pms 1 protein homolog 1 
c - hmg box-containing protein 1 g- solution structure of the hmg domain ofhuman dna mismatch2 repair 
d- solution structure of the hmg box domain from human hmg-box2 protein 
transcription factor I h- HMG- box 
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Table 4B. Detailed Analysis ofFunctional Groups found in Mst35Ba matches 
-------------- ­

Sample Mst35 Mst35 D.sim D.sec D.yak D.ere D.ana D.pse D.pse D.per D.wil D.wil D.moj D.vir D.gri 
Matches Mst35Ba Ba Bb GD21 GM1 GE24 GG24 GF15 GA18 GA25 GL14 GK14 GK18 GIl 7 GJ16 GH25 

981 4632 787 235 002 970 629 516 607 077 338 066 261 
c2e6oA Yo Confidence 99.5 99.5 99.5 99.4 97.9 99.5 99.5 - 99.4 99.5 99.1 60.7 96.9 98 99.2 

Yo identity 11 11 11 12 11 10 19 - 15 11 10 23 17 11 14 
Info: Yo Coverage 47 47 48 50 31 38 24 - 30 89 33 23 16 33 80 
ab Residues 69­ 69­ 69­ 66­ 135­ 117 67­ - 2-63 1-76 139­ 23-62 215­ 129­ 12-87 
cd 138 138 140 140 204 194 149 215 262 200 

dlv64a Yo Confidence 99.5 99.5 99.4 99.3 98 99.5 99.3 22.5 99.5 99.3 99 69.4 97.2 98.1 99.1 
Yo identity 13 13 13 12 17 11 15 20 11 18 12 8 18 14 13 

Info: Yo Coverage 47 46 48 50 23 38 19 12 34 84 33 23 17 33 81 
e Residues 169­ 71­ 73­ 66­ 153­ 117­ 83­ 1-71 3-73 5-76 139­ 23-62 215­ 129­ 10-86 

138 138 144 140 204 195 149 215 264 200 
clhmfA Yo Confidence 99.4 99.4 99.4 99.2 97.6 99.4 99.3 6.4 99.4 99.3 98.8 61 96.6 97.6 99 

Yo identity 18 20 16 13 21 18 21 32 13 21 27 23 24 30 26 
Info: Yo Coverage 44 44 46 46 23 32 21 5 32 71 34 23 17 21 69 
fgh !Residues 74­ 74­ 76­ 76­ 153­ 129­ 78­ 32-65 3-69 15-75 138­ 23-62 215­ 149­ 21-86 

139 138 144 144 204 194 149 215 264 195 
--------------- ­ - ­

a-transcription e- HMG-box 
b-cell cycle f-DNA-binding 
c- hmg box-containing protein 1 g-high mobility group protein fragment-b 
d- solution structure of the hmg box domain from human hmg-box2 h-structure of the hmg box motif in the b-domain of hmg 1 
transcription factor 1 
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_______________ 

Figure 17. T -Coffee alignment ofDrosophila protamine-like proteins and two protamines like 
proteins from Arctic surfClams. The conserved sequence is found in the surf clam as well as in 
the protamine-like protein matches for the 12 sequenced Drosophila flies. 
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Figure 18: Secondary structures in wire frame for Mst35Ba functional groups 

c2e6oA - Involved in 
transcription and cell 
cycle. Also it is part 
Human HMG Box 

cs2cslA - involved in 
DNA binding and is part 
ofHMG. 

dl v64a - part ofHMG 
Box. 

c IhmfA - involved in 
DNA binding. Also it is 

part ofHMG protein. 
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IV. peR and Sequencing Analysis 

Qiagen Kit (QIAMp) was used to isolate genomic DNA from two D. pseudoobscura flies 

following manufacturer's protocol. This extracted DNA was analyzed on 1 % agarose gel as 

indicated in Figure 19 with its number of nucleotide bases being larger than 20,000 base pairs. 

Using the designed primers through NCBI Primer BLAST and IDT Primer QuestSM 

based on the transcript (mRNA) sequences as indicated in Table 5, we tried to isolate DNA 

from D. pseudoobscura and analyze it on a 2% agarose gel as indicated in Figure 20. After 

sequencing the PCR products that appeared to work, it was acknowledged that only two of the 

six primers were partially successful in extracting the region of interest ofD. pseudoobscura 

GA18970. The primers that partially worked were Dpse35baMSPOOIF: 

CTTCCACGGCCGCCATCCAG, Dpse35baMSPOO lR: GCCTCCAGCAGTCGCACGTT and 

Dpse35baEWRP002F: TGCAGCTGTGGACGCCCTTG, Dpse35baEWRP002R: 

TGCGCGGTGGCATTTTTGGC. 

Primer Dpse35baMSPOOl sequence was only acquired through nucleotide BLAST two, which 

allows the aligning of two sequences. The expected primer locations and sequenced regions that 

were observed for each working primer location is illustrated in Figure 21. The following 

sequence was able to be extracted from D. pseudoobscura GA 18970 through nucleotide 

BLAST for Dpse35baMSPOOl with the sequence in pink and green indicating the scores: 

CTTCCACGGCCGCCATCCAGCAACAAGTGTCCAACACCACGGAGGAGTCGG 
CCCCGCCCACTCCCACCTCGCCCACTGGCAGCCTCAAGTCGAACACCCTGTC 
CCTGTGCTCCACCGCTTCCGTGCCCATCGCCCGATCGGACAAGCACGTCGTC 
CTGGCCATGCACCCCACGCGTCCCCGCGTCTCCTCCATGAACGCCAAGTTGG 
ATCACACCAAAATCGACATGACCCTCTACAGAAGCCACGCTCAGCCAAAGA 
CCCTGGACCCCGCTCCGGCCATCGAAGTCiCGGCiGAAATCTCiCACGTGGGCA 
TCAGCTACGATCCTGTGGGGGGTCTGCTCAACGTGCGACTGCTGGAGGC 

A total of270 base pairs of the total 358 base pairs were extracted. (Fig. 21) 
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The following sequence was able to be extracted from D. pseudoobscura GA18970 (Fig. 21) 

through Mega BLAST for Dpse35baEWRP002 with the sequence in the red indicate a score 

above 200: 

TGCAGCTGTGGACGCCCTTGAGCTCTGCCTCGGCCCAGGACATGAAAGTGGA 
TTTGGGGGACATAATGGTGTCCCTGGCCTACCTGCCCTCGGCCGAACGCCTG 
ATGGTGGTGCTGATCAAGGCCAGAAATCTGCGGATTGTGGACGATGCCAGG 
AACTCCTCCGATCCGTACGTGAAGGTGACTCTCCTCGGGCCTGTGGGCAAGA 
AAATGAAGAAGCGCAAGACCGGCGTCCAGCGGAGCACCGTCAATCCTGTGT 
ACAACGAGGCCCTGGCCTTTGATGTCAACAAGGAGACGCTGAAGAACTGCG 
TGCTCGAGTTTACTGTCGTCCACGACGGTCTTTTGGGATCGAGCGAAATATT 
GGGCCGCACTCTCATCGGCAACTCGTCCGAGGTGCGCACTGAGGAGAAGAT 
CTTCTTCGAGGAGATGTTTCGCGCCAAAAATGCCACCGCGCA 

The extracted genomic size for Dpse35baEWRP002 was 302 base pairs, which is comparable 

and close to the expected base pair size of 454 base pairs. 
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Table 5. Primers for D. pseudoobscura gene transcript location ofGA18970 (GI: 198475489) 

Prime Name Primer Sequence Primer Set # Size (bp) 
Dpse35baSshFlP002F CCTGTCGCCCCGGGAGATGA 2F 

434
Dpse35baSshFlP002R GCACCCAGAAGGCCGGATCG 2R 
Dpse35baSrlRP002F GCAGAAGGCGAGCTTCCGCA 4F 

505
Dpse35baSrlRP002R AGCGGTGGAGCACAGGGACA 4R 
Dpse35ba~SPOOIF CTTCCACGGCCGCCATCCAG 5F 

358 
Dpse35ba~SPOOIR GCCTCCAGCAGTCGCACGTT 5R 
Dpse35ba~~ESP002F CTTCCACGGCCGCCATCCAG 6F 

582 
Dpse35ba~~ESP002R TGCACACGTGCCGCGAGTAG 6R 
Dpse35baEVVltPOOIF TGCAGCTGTGGACGCCCTTG 8F 

460
Dpse35baEVVltPOOIR ACCCATTGCGCGGTGGCATT 8R 
Dpse35baEVVltP002F TGCAGCTGTGGACGCCCTTG 9F 

454
Dpse35baEVVltP002R TGCGCGGTGGCATTTTTGGC 9R 

Lane Sample 

1 1 Kb ladder 

2 Negative control 

3 Pse#l DNA 

4 Pse#2 DNA 

Pse#l and Pse#2 
contain 2 DRse flies each 
1% Agarose Gel 

Figure 19. DNA Extraction of D. pseudoobscura 
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Lane Primers 

L 1 Kb ladder 

1 

2 

3 

4 

5 

6 

aSshRP002 #2 

Dpse35baSri RP002 #4 


Dpse35ba MSPOOl #5 


Dpse35baMMESP002 #6 


Dpse35baEWRPOOl #8 


Dpse35ba EWROO2 #9 


Pse#l was used for peR, 
2% Aqarose Gel 

Figure 20. peR Gel Results for D. pseudoobscura GA18970 

Color key for alignment scores 
<40 40-50 50-80 SO-200 >=200 

Color key for alignment scores 
<40 40-50 50-80 SO-200 >=200 

QuerY~iiiiii'iiiiii"iiiiiiii"iiiiii"iiiiii.iiiiii>~phl~~~
I I I I I I GAl8970 
1 300 600 900 1200 1500 

~.:====-
Figure 21. Sequenced regions ofD. pseudoobscura GA18970 versus expected regions 
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V. 	Transmission electron microscopy 

Using TEM samples made from virgin adult D. pseudoobscura flies, we analyzed and 

identified chromatin condensation in the sperm nucleus during nuclear transformation. 

Figure 22 shows several stages ofa nuclear transformation in sperm nuclei. 

We visualized the progression of chromatin condensation within the sperm nuclei ofD. 

pseudoobscura by transmission electron microscopy (TEM). Figure 22 shows the patterns of 

chromatin condensation in elongated spermatids during nuclear transformation. The chromatin 

appears diffuse in the early stages of nuclear transformation (Figs. 22A and 22B). As the 

nucleus becomes more condensed in later stages of transformation, chromatin patterning 

becomes evident (Figs. 22C - 22F). As the chromatin approaches full condensation, regions 

that appear to be voids are visible within the nuclei (Figs. 22G and 22H). The sperm shown in 

Figures 22A 22H were from the basal end of the D. pseudoobscura testis. Figures 221 and 221 

show mature sperm nuclei within the seminal vesicle. The chromatin is assumed to be fully 

compacted at this stage 
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Figure 22. Transmission electron micrographs of condensing sperm chromatin in D. 
pseudoobscura. (A, C, E, G, I) low magnification views of chromatin becoming increasingly 
more condensed, left to right. (B, D, F, H, J) Higher magnification views of the sperm nuclei. In 
panels A and B, single arrows = developing acrosome and double arrows = chromatin. In panels 
C - J single arrows = condensing chromatin. 
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Discussion 

I. 	 Putative translational expression regions among the 12 sequenced Drosophila species 

Our results indicate that the best nucleotide transcript and genomic DNA sequence matches 
t ,.I for Mst35Ba and Mst35Bb among the 12 Drosophila species are identical with the exception of 
I 

D. grimshawi (Figs. 4A and 4B). This similarity, as stated earlier, is due to a duplication event J 

j 
1 	

of Mst35Ba (Raja et ai. 2005; Birkhead et ai. 2009). The 3' untranslated region (UTR) region 

that is found in mice is known to be involved in translational repression after being mutated 

(Raja et ai. 2005; Zhong et ai. 2001). In contrast, the promoter region and the 5' UTR for 

Mst35Ba and Mst35Bb have a high identity between each other and are responsible for 

translational repression after gradual 5' upstream deletions to create a mutant line (Raja et ai. 

2005). The high identity match between Mst35Ba and Mst35Bb at the 5' end can be attributed to 

the putative conserved region among the 12 Drosophila species (Figs. lOA and lOB). NCBI 

ORF finder indicated that the conserved region for each Drosophila fly was within the open 

reading frame that occurs near the 5' end of each respective genomic DNA sequence. D. 

grimshawi GH12778 was the only genomic DNA match that had a similar conserved region at 

the 5' end of its sequence. However, the overall length of this region was increased to 113 amino 

acids as compared to approximately 56 and 62 amino acids respectively for the conserved region 

of Mst35Ba and Mst35Bb. The other genomic DNA match, D. grimshawi GH13870, did not 

appear to have a conserved region when compared to the rest ofthe matches. Moreover, the 

overall consensus among the conserved regions in the 12 Drosophila species was 95% with D. 

grimshawi GH12778. This high consensus score correlates with that the 5' region will have high 

identity score. Overall, the putative conserved regions and their respective 5' open reading 

frames are predicted to be involved in transcriptional expression. Alternatively, if the conserved 
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1 

j 
regions and their respective 5' open reading frames could be involved in transcriptional t 

1 
I repression if modified.i 
I 
I 

j II. Presence of conserved region in protamine-like proteins in other organisms. 

1 
The best-matched protamine-like proteins among the 12 Drosophila species for Mst35Ba 

and Mst35Bb were compared with other protamine-like proteins from other unrelated species for 

I a similar conserved region. Interestingly, Spidsula solidissima, an arctic surf clam has similar 

conserved region such as the putative conserved region that was predicted in Figures lOA and1, 
1 
1 lOB. In contrast, Mullus surmuletus, which only has one protamine-like protein, does not have a 

1 highly conserved domain as S. solidiss ima and the all the Drosophila matches. The interesting 

1, aspect of these preliminary findings is that the conserved domain seems to only be found in 

~ species that have two protamine-like proteins. 

III. Phylogenetic relationship ofthe 12 sequenced Drosophila species 

Our results indicate that the matches for the species that are in the melanogaster sub group 

(D. melanogaster, D. simulans, D. erecta, D. yakuba) shows consensus to the established 

phylogenetic tree (Fig. 1) by being conserved and identical in the phylogenetic trees for the 

protein and genomic DNA matches. Interestingly the branching patterns in the phylogenies 

generated using Mst35Ba and Mst35Bb match with the relationships that have been established 

in the phylogenetic tree in Figure I. In contrast, the nucleotide transcript matches illustrate only 

D. simulans, D. sechelia, and D. melanogaster have the same phylogenetic relationship as the 

established phylogenetic tree (Fig. 1). Also the phylogenetic relationship for D. grimshawi 

indicates that it evolved from the Drosophilidae Family as a separate lone group as shown in 

Figures 7A and 7B instead of branching from repleta and virilis sister groups. 
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As Mst3SBb emerged due to a duplication event of Mst3SBa (Birkhead et al. 2009; Raja et 

al. 200S), this could be a reason as to why the majority of the distant species from Mst3SBb 

matches have a larger query coverage with lower E-values when compared to the matches that 

have been found for Mst3SBa for the nucleotide transcript and genomic DNA matches (Figs. 4A, 

4B, SA, and SB) .. Therefore the generated phylogenetic trees for nucleotide transcript and 

genomic DNA matches for Mst3SBb indicate a greater variance when compared to Mst3SBa 

matches. 

IV. Amino acid analysis 

There have been numerous studies conducted on the number of amino acids present and 

their respective percentages for histone H I linker like proteins, protamine-like proteins, and true 

protamines. (Eirin-Lopez et al. 2009; Eirin-Lopez et al. 2006b; Birkhead et al. 2009; Balhom et 

al. 2007) Protamine-like proteins evolved into protamines due to a separation of small arginine­

rich regions that occurred early in the evolution of these proteins (Eirin-Lopez et al. 2009). The 

protamine-like proteins evolved from an HI histone lineage (somatic HI, RD, HI, RI, and 

SNBPs) and belong to the same monophyletic group (Eirin-Lopez et al. 2009; Eirin-Lopez et al. 

2006b), which explains the similar number ofdifferent amino acid percentages between histone 

HI linker proteins and protamine-like proteins. A study with protamine-like proteins PLiA and 

PLiB from S. solidissima was compared to a true protamine found inDo labrax in terms of the 

percentage and the total number ofamino acids in comparison (Saperas et al. 1993). 

Interestingly, this study found that the concentration of serine, lysine, and arginine in S. 

solidissima was similar to the matches found for Mst3SBa and Mst3SBb (Saperas et al. 1993). In 

general, the combination or the ratios of lysine and arginine amino acids that are in protamine­
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like proteins are important indicators for binding DNA. In addition, the high percentage of 

alanine and serine amino acids is a characteristic of protamine-like proteins (Saperas et al. 1993). 

In the whole protein matches amino acid percentage breakdown, all matches have 

approximately 3 to 9 % cysteine for the conserved regions. The importance of cysteine is that it 

is able to form disulfide bonds to increase sperm chromatin compactness (Cheng et al. 2009; 

McBride et al. 1992). Both whole proteins and the conserved protein regions had a high 

percentage of lysine and arginine amino acids. The common importance ofarginine and lysine is 

that they are basic amino acids that have positive charge at physiological pH. The higher 

percentage ofthese amino acids means that the protamines-like proteins use them to increase 

their affinity with the DNA during chromatin condensation. Furthermore, the arginine has the 

higher hydrogen bonding potential than lysine, which protects the condensing chromatin from 

DNA damaging agents. 

V. Putative Conserved as DNA Binding regions - DNA Binder, BindN+, BindN-RF 

DNA-Binder (http://www.imtech.res.inlraghavaldnabinderl) was used to predict that the 

conserved regions may be a DNA-binding domain based on support vector machine (SVM) 

models. DNA-Binder uses this for classification of the protein based on a regression algorithm 

models to predict inputted amino acid sequence based on a user-defined threshold is a DNA 

binding protein or a non-DNA binding protein. The three-dataset types are realistic, alternative, 

and main set. As the name states, the realistic dataset compares the amino acid sequence as it 

would be in nature with the 1: 10 (DNA-binding to non-DNA-binding protein chains). Realistic 

Datasee has the following parameters: sensitivity set to 47.95%, specificity set to 93.33% and 

accuracy set to 89.31 %. Additionally the realistic dataset searches through 146 DNA-binding 

protein chains and 1500 non DNA-binding chains. 
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1 , 

I 
1 

The alternative set compares the whole library ofDNA-binding and non-DNA-binding 

l 
I protein chains. Alternative Dataset: has the following parameters: sensitivity set to 72.51 %, 

specificity set to 72.33%, and accuracy set to 72.42%. Additionally the alternative dataset I 
i 

searches through a wider range ofDNA-binding and non DNA-binding protein chains as I 
-I
i compared to the realistic dataset. This range includes 1153 DNA-binding proteins and 1153 non 

I DNA-binding protein chains. The alternative dataset is usually used to analyze full-length 

~ protein sequences. The combination of alternative dataset and realistic dataset was used to 

I 
1 analyze protein BLAST matches for SNBP. ~ 

,~ 

~ 
t Lastly, the main set is used specifically to identify domains within large protein sequences 


j to be DNA binding or non-DNA binding. Main Datasee has the following parameters: 
'J 

I sensitivity is set to 78.11 %, specificity is set to 80.80%, and accuracy is set to 79.80%. The main I 

data set searches through 146 DNA-binding protein and 250 non-DNA binding chains. The I 
I 

I 
purpose of the main dataset is to identify and search domain sequences within larger protein 

sequences for their likeliness to be DNA-binding regions. Hence, this was used to analyze the 

putative DNA binding domains matches for each SNBP. If the score is greater or close to one 

then the likely chance of it to be DNA binding domain are high. In contrast, if the score is closer 

to -lor less than the amino acid sequence is more likely to be non-DNA binding domain. If the 

number is near zero and in between -1 and 1 then it could be DNA binding domain or non-DNA 

binding domain (Kumar et aI2007). In general, the majority of the matches were DNA-Binding 

proteins with s·ome minor divergences due to their low query convergence and increased 

variance in the amino acid distribution due to their length (Table 2). 

In BindN+ the amino acid sequence is analyzed and predict based upon two Protein Data 

Bank (PDB) datasets (PDNA-62 and PRINR25) (Wang et aI20lO). The BindN-RF uses a 
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Random Forest algorithm to predict the DNA binding residues. The user-defined amino acid 

sequence is searched through PDB PDNA-62 database. Overall, BindN-RF is able to achieve 

higher accuracy compared to BindN+ (Wang et. aI2009). Additionally, BindN and BindN+ 

search for the evolutionary information ofthe amino acid sequence by having the amino acid 

sequence be searched three times against the UniPortKB database. , 

In Figures 13A, 13 B, 14A, and 14B the BindN+ (relaxed) and Bind-RF (strict) indicate 

conserved region (darkly shaded) contains several DNA binding residues, which are analogous 

to conserved matches in the 12 sequenced Drosophila flies for each respective SNBP. The darkly 

shaded region in black is the conserved region in both Mst35Ba (Prot A) and Mst35Ba (Prot B). 

The darkly shaded region in blue is the conserved region in only Mst35Bb (Prot B). The 

conserved regions in the SNBP matches all contain a high concentration of DNA binding 

residues. The Bind N+ specificity was set 79% as recommended. Likewise, the specificity for 

BindN-RF was set to the recommended value of78.22% (http://bioinfo.ggc.orgl; Wang et al. 

2009). 

VI. Functional Groups 

After determining that the different matched sequences for each species conserved region is 

a putative DNA-binding domain, we searched for the function of these conserved regions and the 

whole proteins using Swiss Model Interpro Domain scan and Phyre2. The Swiss Model Interpro 

Domain scan was able to search and identify the regions of a sequence that belong to particular 

protein domains, superfamilies, and families. The Swiss Model Interpro Domain uses 

HMMPFam, which is a collection multiple sequence alignment ofHidden Markov models that 

cover many commonly known protein domains and families; HMMTgr is a collection of protein 

families that have been organized and collected by multiple aligned sequences that identify the 
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functionality of related proteins based on the homology of the sequence; ProfileScan is able to 

identify significant sites, patterns of known protein families; Superfamily is a library of hidden 

Markov models that are representative of proteins of known functions; ProDom is a large 

collection ofhomologous domains where recursive PSI-BLAST is conducted to analyze the 

domain arrangement between the protein sequence and their families. FPrintScan searches the 

conserved motifs that help characterize the protein family; HMMSmart is able identify and 

annotate the genetic mobile domains and analyze their domain architecture; and ScanRegExp is a 

database of protein families and domains that are composed of biologically important sites and 

patterns (Zdobnov et al. 200 I ). 

The homologous regions are gathered together and converted to Hidden Markov Models 

(HMM). The HMM is able to capture the mutations that have occurred through the 

evolutionary time ofthe sequence. Therefore the HHM is able to act as an evolutionary 

fingerprint for the protein's evolutionary history. Additionally, the 3D protein structures for the 

protein are generated by extracting the protein sequence ofthe known approximately 65,000 3D 

protein structures and then running PSI BLAST to generate HMM for a sequence of a known 

structure. This is then made into HMM Database of Known Structures. The user defined 

protein sequence is scanned and matched through the HMM Model Database of Known 

Structures, which yield an alignment that can be interpreted through high confidence score, 

coverage, and identity match. Then finally the alignment is used to create a 3D model ofthe 

user-defined protein sequence (Kelley et al 2009). 

The functional groups present in Table 4B are present in all conserved regions. 

Additionally, these functional groups are present in nearly all Drosophila fly protein matches 

with the exception ofD. pseudoobscura GA 18970, which can probably be attributed to its large 
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number of amino acids. The functional groups listed in Tables 4A and 4B belong to the high 

mobility group (HMO) box. which has been reported to be a DNA-binding domain and is 

involved in transcription (Qin et aL 2003). As expected the, Swiss-Model InterPro Scan found 

large coverage of the HMO box with partial coverage ofthe DUF1074 family of proteins, 

whose function is unknown. DUFI074 is part of HMO box like superfamily that contains six 

family members (CHDNT, DUFlOI4, DUF1074, DUF1898, HMO box, and Y ABBY) as 

annotated by the Sanger Institute (Bateman et aL 2004). The functional group of 3fghA (not 

shown) is a known DNA binding subunit that has excellent confidence above 98% (Pearl et aL 

2005). All of the conserved regions (Figs. lOA and lOB) contain an expanded overlap of the 

DUF1074 protein family of unknown function and HMO. Only D. pseudoobscura matches and 

the controls for Mst35Ba and Mst35Bb have been shown in Figure 15. Thus, there is an strong 

possibility that the HMO group and DUF1074 could be involved in DNA-binding and the 

chromatin condensating process. 

Lastly, the conserved region (Figs. lOA and lOB) appears to be almost identical to each 

other among the 12 sequenced Drosophila flies in terms oftheir secondary wire frame structure. 

In addition, the consensus secondary wire frame structures appear to have similar shape to 

known secondary wireframe structures in terms of the three helices ofknown HMO boxes. 

VII. Spermiogenesis, Chromatin Condensation and Nuclear Transformation 

The condensation of sperm chromatin is a process that occurs during spermiogenesis and 

nuclear transformation. Our preliminary work on D. pseudoobscura transforming nuclei shows 

that we can visualize successive stages of chromatin condensation by TEM. During 

spermiogenesis, the histones are replaced by protamines (Kasinsky et aL 2011). Throughout 

spermiogenesis. the chromatin is able to condense and become a stable and compact structure 
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due to this exchange (Kasinsky et a1. 2011). In contrast to protamine: DNA interactions, histones 

compact DNA wrapping the DNA molecule two and a halftimes. HI linker histones bind to 

DNA that connects adjoining nucleosomes (Kasinsky et a1. 2011; van Holdie et a1. 1998). 

Protamines bind directly to the major groove of DNA by interacting with the phosphates of the 

backbone (Eirin-Lopez et a1. 2009; Kasinsky et a1. 2011). In the events just prior to protamine 

displacement, histones become acetylated in vertebrates and invertebrates, which lowers the 

histone and DNA interaction and increases the protamine displacement of the histones (Kasinsky 

et a1. 2011; Oliva et a1. 1991). 

During nuclear transformation when round spermatids undergo the transition into mature 

spermatozoa, sperm nuclear basic proteins replace histones and the majority ofnucleosome 

structure is lost (Ward and Coffey et a1. 1991; Ward et a1. 2011). However, in some species, 

such as humans, some fraction ofhistone-bound DNA and nucleosome structure is retained (van 

der Heijden et aI., 2006; van der Heijden et aI., 2008; Vavouri and Lehner, 2011). Chromatin 

condensed with P type, PL type, and H type proteins give rise to a variety of chromatin patterns 

including lamellar and fibrogranular (Caceres et aI., 1999; Harrison et aI., 2005; Kasinsky et aI., 

2011; Eirin-Lopez et aI., 2011; Saperas et aI., 1993). 

Mammalian sperm nuclear shape is disrupted if protamine expression is abnormal, with the 

heads assuming a enlarge, rounded shape instead of a paddle-like flattened shape in humans 

(Balhorn et aI., 1988). Problems with protamine expression is often associated with male 

infertility (Oliva, 2006). Other authors have suggested that nuclear shaping and sperm head 

shape is associated with SNBPs (Ausio, et aI., 2006; Martin-Coello et aI., 2009). Ultimately, we 

will test the hypothesis that the variable protamine-like proteins identified in the current work 

are involved in variable chromatin patterning in the 12 sequenced Drosophila species. 
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Future Studies 

Our work strongly suggests that the homologues for Mst35Ba and Mst35Bb are present 

in all of the currently sequenced Drosophila species. Additionally, there appears to be a 

conserved DNA binding domain present in these proteins. The next step in this work will be to 

continue peR analysis of the putative sequences found in the current study, as well as continue 

the analysis ofchromatin condensation patterns for the 12 Drosophila species. Furthermore, 

analyze the chromatin condensation patterns of the 12 Drosophila species with the relationship to 

the concentration of arginine and lysine present for the respective matches. Future studies may 

also use the data from the current work as a starting point to generate mutant flies among 12 

sequenced Drosophila flies. The development ofmutant flies will aid in the better understanding 

ofhow these proteins affect nuclear transformation and chromatin condensation during 

spermiogenesis. As our lab has already developed an in vitro cyst culture for D. pseudoobscura, 

we hope to use these new mutant flies to study spermatogenesis. Additionally, we will perform a 

12-species analysis of the other SNBP (Mst77F) found in the D. melanogaster sperm nucleus. 

Overall, a better understanding of fertility and the role of these particular protamines in the 

development of mature sperm will be achieved. 
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