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CHAPTER 1. AZAPEPTIDES: AN OVERVIEW OF THEIR 

SYNTHESIS, STRUCTURE AND APPLICATIONS IN MEDICINAL 

CHEMISTRY 

 

1.1 ABSTRACT 

 

Azapeptides are a class of peptide mimics (peptidomimetics), which have served as 

valuable tools for the development of peptide-based therapeutics. The biological activity of 

azapeptides has been correlated to its primary sequence and most importantly their ability to 

pre-organize bio-active secondary structures. Therefore, understanding the influence of 

azapeptide sequence and conformation on biological activity is significant for the 

development of selective and potent therapeutic agents. As determined by NMR, CD and IR 

spectroscopy, and X-ray crystallography in addition to computational analyses, the insertion 

of an aza-amino acid residue within a peptide sequence has been shown to pre-organize the 

azapeptide backbone into well folded β-turn conformations. Considering the relevance of turn 

structures in biologically active peptide sequences such as those belonging to the Growth 

Hormone Releasing Peptides (GHRPs), Oxytocin and the Leutinizing Hormone Releasing 

Hormone (LH-RH), azapeptide derivatives have produced enhanced peptide activity 

facilitating the translation of lead ligands into therapeutic agents. For example, Goserelin, an 

aza-Gly peptide analog has received FDA approval in 1989 for the treatment of prostate and 

breast cancers. Therefore, azapeptides have been adopted for the development of peptide-

based drugs. At the heart of their fruitful applications are robust chemical synthesis methods 

which produce azapeptides by solution phase or solid phase peptide chemistry. The solution 

phase approach requires work-up and purification procedures following each synthetic step 

making the production of lengthy and more complex sequences difficult to accomplish. 



  

 

Page 2 of 172 

 

Alternatively, the solid phase synthesis of azapeptides by-passes the laborious solution phase 

approach by employing a solid support. The first successful solid phase azapeptide syntheses 

involved the pre-requisite formation of the aza-amino acid building blocks in solution prior to 

azapeptide synthesis on solid phase. The submonomer approach introduced in 2009 

circumvents any solution phase synthesis and builds azapeptides directly on solid phase. This 

has led to the rapid production of structurally diverse azapeptide libraries for structure-

activity relationship studies with receptor targets. This chapter will highlight the role of 

azapeptides in biology and medicine by underscoring important contributions in synthesis 

and structural analyses that has enabled their widespread applications in medicinal chemistry. 

1.2   INTRODUCTION 

Naturally occurring peptide sequences have been isolated and synthesized for usage in 

biology, medicinal chemistry and pharmaceutical research. In spite of their potential, peptides 

are limited in their applications due to their poor stabilities in biological media, limited tissue 

penetration for biological activity and promiscuous binding to target receptors which restricts 

selectivity and potency. In an effort to mitigate these limitations, peptidomimetics have been 

designed to mimic naturally occurring peptides in attempts to retain the main biological 

function of the native sequences while enhancing their therapeutic efficacy. Many structural 

modifications have been incorporated within bio-active peptide sequences with the goal of 

producing peptide-based drugs.
1-3 

Among these modifications, azapeptides are a class of 

peptide mimics which substitutes the -carbon for a nitrogen atom in one or more amino acid 

producing aza-residues (Figure 1.1).
4 
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Figure 1.1.  Comparison of peptide and azapeptide primary structure. 

This single atom change introduces a semicarbazide into the peptide backbone which 

causes profound effects on configuration and structure. Replacement of an -carbon for a 

nitrogen atom within the aza-residue furnishes a configurationally labile center, rapidly 

inverting in between two trigonal pyramidal structures. Moreover, the introduction of a N,N’-

diacylhydrazine and urea moiety within the peptide backbone, constrains the φ and ψ dihedral 

angles producing some types of β-turn conformations as proven by CD, NMR spectroscopy, 

X-Ray crystallography and computational analyses.
5
 

Thus, azapeptides have served to improve the structure-activity profiles of peptides by 

stabilizing bio-active turns which favor bioavailability, metabolic stability, receptor binding 

affinity and selectivity.
4   

Their fruitful applications are based on robust and efficient synthetic 

methods that have produced azapeptides by either solution phase or solid phase peptide 

synthesis. The submonomer method for azapeptide synthesis has been especially productive 

and has led to the generation of structurally diverse azapeptides for exploring the influence of 

structure on biological activity with receptor targets.
6 
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1.3 SYNTHESIS 

 

Azapeptide synthesis is a combination of hydrazine and peptide chemistry.  Azapeptides 

have been historically prepared by either activation of the hydrazine moiety or by activation 

of the peptide N-terminus. Following activation, a coupling step attaches the aza-amino acid 

building block to the peptide sequence. At this stage, conventional peptide synthesis is 

continued until the desired azapeptide has been produced. This strategy has been adopted in 

solution and on solid phase, necessitating laborious steps in the production of the aza-amino 

acid building blocks and in the synthesis of the coveted azapeptides. The submonomer 

approach has been developed to circumvent any solution phase chemistry by building the 

azapeptide directly on solid phase. Thus, a combination of in-solution and solid phase 

techniques have been crafted for making azapeptides in order to explore their structure-

activity relationships.   

1.3.1 ACTIVATION AND COUPLING OF AZA-AMINO ACIDS  

 
The N-terminus of the growing peptide bound to a solid support has been activated 

with carbonyl donors, including bis-(2,4-dinitrophenyl)
7,8

 carbonate and carbonyldiimidazole 

(CDI)
9-12

, bis(pentafluorophenyl) carbonate
13-16

, triphosgene
17-19

, phosgene
20-24

 to produce 

reactive isocyanates, or equivalent carbamoyl halides or active carbamates prior to coupling 

with a suitably protected hydrazide (Scheme 1.1, Peptide N-terminus Activation). The 

major drawback of this method is the intermolecular nucleophilic attack at the activated 

isocyanate by the secondary amide nitrogen leading to the formation of the hydantoin 

byproduct which prematurely terminates azapeptide synthesis. Although reversible amide 

bond protecting groups have been introduced to prevent hydantoin formation, these methods 
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require additional protection and deprotection steps lengthening the synthetic procedures.
8
 

Conversely, activated carbazate intermediates have been prepared by hydrazine activation 

with similar carbonyl donors
10-12,15-24

 and coupled to peptide bound resin to manufacture the 

azapeptide on solid phase (Scheme 1.1 Hydrazine Activation). 

 

Scheme 1.1. Peptide N-terminus and hydrazine activation for the synthesis of azapeptides.
7-24 

1.3.2 SYNTHESIS OF AZAPEPTIDES USING N-FMOC N’-ALKYL CARBAZATES 

 

This hydrazine activation method was one of the first efficient strategies for scanning 

the importance and location of turn structures by the incorporation of aza-amino acids within 

bio-active peptide sequences.
11

 The methodology (Scheme 1.2), aptly named, aza-amino acid 
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scanning, features the insertion of an N-Fmoc N’-alkyl hydrazine within conventional Fmoc-

based solid phase peptide synthesis to procure the desired azapeptide for structure-activity 

relationship studies. The aza-amino acid monomer is produced in solution, by reductive 

amination of Fmoc carbazates. This alkylation step is followed by activation with phosgene 

which couples the Fmoc carbazic acid chloride intermediate onto the peptide bound resin. 

Fmoc deprotection, chain elongation and cleavage complete the synthesis of the azapeptide. 

This methodology was used for the generation of azapeptide analogs of the melanocortin 

receptor agonist, the growth hormone releasing peptide (GHRP-6) and the calcitonin gene-

related peptide antagonist for exploring the effect of azapeptide structure on biological 

activity.
23-25

 In spite of its widespread utility, this methodology suffers from the prerequisite 

formation of the aza amino acid monomers by a reductive amination procedure which limits 

side chain diversity. To circumvent this limitation, submonomer synthesis was developed to 

enable the synthesis of structurally diverse azapeptides for medicinal chemistry applications.   

 

Scheme 1.2. Azapeptide synthesis and aza-amino acid scanning using N-Fmoc carbazates.
23 

 

1.11 

1.12 

1.13 

1.14 

Aza amino acid scanning 
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1.3.3 SUBMONOMER AZAPEPTIDE SYNTHESIS 

 

The submonomer approach for azapeptide synthesis has effectively extended the 

scope of side chain diverse azapeptides for structure-activity relationship (SAR) studies with 

receptor targets.
6,26

 This methodology consists of a simple 3-step procedure inserted within 

conventional Fmoc-based solid-phase peptide synthesis (SPPS) (Scheme 1.3). These include: 

a) hydrazone activation with 4-nitrophenylchloroformate to generate the activated carbazate 

intermediate and coupling onto support-bound peptide to generate the N-terminus 

semicarbazone. The activation and coupling step is followed by, b) regioselective alkylation 

of the semicarbazone to introduce the putative aza-side chain. Finally, c) chemoselective 

deprotection of the N-terminal semicarbazone liberates the semicarbazide for continuation of 

SPPS until the desired azapeptide has been made.   

 

Scheme 1.3. Submonomer solid phase azapeptide synthesis method.
6,26 

1.15 
1.16 

1.17 

1.20 1.19 

1.18 

1.22 

1.21 

1.23 
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 Moreover, the submonomer method has furnished azapeptides with un-natural side 

chains that were applicable to further diversification yielding new azapeptides. For example, 

aza-propargylglycine was effectively prepared for 1,3-dipolar cycloadditions with aryl azides 

to generate a seven compound library of [aza-1,2,3-triazole-3-alanine
4
]GHRP-6 

azapeptides.
27

 Aza-arylglycine residues have also been prepared by a copper-catalyzed mono-

arylation procedure during the submonomer azapeptide synthesis.
28

 Aza-arylglycine 

derivatives may form a new class of potent Vancomycin analogs that may be useful in 

overcoming growing bacterial resistance upon antibiotic treatment. In a related application, 

Sonogashira coupling reactions were optimized by submonomer azapeptide synthesis for 

introduction of aza-aryl substituents that cyclized into N-amino-imidazolin-2-ones, forming a 

new class of Phe and Trp mimics.
29 

The copper catalyzed coupling reaction of aza-

propargylglycine residues with Mannich reagents also proved fruitful in the generation of 

rigid Lys mimics.
30

 These novel aza-residues may prove to be useful substrates for exploring 

the influence of ionic azapeptide structure on biological activity.   

The submonomer synthesis method has greatly influenced the production of azapeptides. 

It has effectively abolished the need for solution phase synthesis of the N-protected N’-alkyl 

hydrazides, as well as associated issues with hydantoin by-product formation. Consequently, 

the submonomer synthesis has significantly elaborated azapeptide structure and functional 

diversity. Regio-selective modifications of semicarbazone peptide on solid phase has 

generated novel N-alkylated and N-arylated aza-residues useful for SAR studies. 

Submonomer azapeptide synthesis is thus the present day method of choice for making 

azapeptides. 
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1.4 CONFORMATIONAL PROPERTIES  

 

 Stabilization of a particular conformational feature within biologically active peptides 

by introducing geometrical constraints may be vital for establishing therapeutic activity. In 

azapeptides, replacing a Cα by a Nα generates a hydrazine and a urea constituent, which 

restricts the bond rotation about the -CO-NH-N-CONH- peptide backbone. This 

conformational restraint may be characterized by the azapeptide torsion angles ϕ (phi) and ψ 

(psi).
31

 In principle, ϕ and ψ can have any values in between -180º and +180º, but many 

values are prohibited by steric interference and stereoelectronic effects. The spacial 

arrangement of the peptide backbone ϕ and ψ dihedral angles define its secondary structure.  

The most prominent secondary structure found within azapeptides are β-turn conformations 

(Figure 1.2). 

 

Figure 1.2. Azapeptide β-turn conformation defined by its ϕ and ψ dihedral angles.
31 

 The β-turn is the simplest peptide secondary structure which involves 4 amino acid 

residues, with the carbonyl oxygen of the first residue at the i position forming an 

intramolecular hydrogen bond (H-bond) with the amino group at the fourth (i+3) position. 
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These types of structural motifs often contain glycine and proline residues that stabilize the 

turn conformation. Glycine is small and flexible, readily facilitating turn geometries, whereas 

proline is a rigid cyclic amino acid which assumes the cis configuration and locks the peptide 

backbone into a turn conformation. Proline and glycine have been found at the i+1 and i+2 

positions, respectively, of β-turn conformations. Their influence on the ϕ and ψ dihedral 

angles favors different types of -turn conformations (Figure 1.3).
32,33

 

 

Figure 1.3. Structures of naturally occurring β-turn types in peptides and proteins.
32,33 

  Several model systems have been developed to understand the conformational 

properties of azapeptides. The most interesting structural variation is associated with the 

hydrazine moiety. The energy minimized geometry of the aza-amino acid residue is 

influenced by the conformational preferences of the N,N’-diacylhydrazine and urea 

components found within the azapeptide. For example, the conformations of hydrazine and 

its 1,2-diformyl derivatives, which resemble the aza-amino acid residues, were investigated 

by quantum mechanical computational studies.
34-38

 Ab initio molecular orbital calculations 

showed that N,N’-diacylhydrazines adopted non-planar structures in which the nitrogen lone 

pairs were found to be perpendicular to one another in the energy minimum conformation. 

Moreover, substituted N,N’-diacylhydrazines were found to be configurationally labile, 
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interconverting in between two mirror image nitrogen pyramids passing through a planar 

structure. Depending on the alkyl substitution pattern of N,N’-diacylhydrazines, a particular 

chiral nitrogen pyramid may be preferred at room temperature.
37

  

Insertion of N,N’-diformylhydrazines within peptide sequences results in azapeptides 

with torsion angles around 90° for ϕ and about 180° or 0° for ψ.
31

 These values correspond to 

some major types of β-turn secondary structures (Table 1.1). Thus, the aza-amino acid 

residues found within azapeptides pre-organizes-turn secondary structures by a 

combination of stereoelectronic and structural effects. The N,N’-diacylhydrazine nitrogen 

lone pairs exhibit repulsive electrostatic interactions which bends the azapeptide backbone 

into an energy minimum turn conformation. Moreover, the rigid urea functions to lock the 

turn conformation into a privileged -turn secondary structure. 

 

 

 

Table 1.1. Backbone torsion angles for different types of β-turns found within azapeptides. 

ϕ ψ 
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A variety of computational, crystallographic and spectroscopic approaches have been 

used to investigate azapeptide conformational properties.
39-54

 The conformations of model 

azapeptides containing proline residues have been examined.
43,44,46,48,50,53,54

 A combination of 

the aza-amino acid and proline appeared to be a strong β–turn–inducing motif. Since proline 

is known to stabilize β–turn structures, it is uncertain about the contribution of the aza-amino 

acid group in such combinations. Theoretical studies on model azapeptide sequences such as, 

Ac-azaXaa-NH2 (Xaa = Gly, Ala, Leu) showed that unlike naturally occurring amino acid 

residues, azapeptides preferred dihedral angles ϕ = ± 90 ± 30°, ψ = 0 or ±180 ± 30°. The 

dihedral angle (ϕ = ± 90 ± 30°, ψ = 0 ± 30°) appeared to correspond to the β–turn 

conformation.
41

 Ab initio calculations coupled to NMR spectroscopy have indicated that the 

preferred backbone geometries of azapeptides are similar, regardless of the side–chain 

functional groups on the aza-amino acid residue.
41

 Therefore, the conformational properties 

of azapeptides is contingent on the semicarbazide group, which pre-organizes the peptide 

backbone into a -turn type conformation. X-ray crystallographic analyses have been 

performed on simple azapeptides.
47-50,53

 The majority of the azapeptides for which the X-ray 

data is available, contain proline or aza-proline residues, which may favor turn conformations 

and thereby influence the conformational properties of the aza-amino acid residue. 

Spectroscopic techniques such as, FT-IR, NMR and CD spectroscopy have also been used for 

the structural analyses. FT-IR provides the amide N-H stretching band region (3200 – 3500 

cm
-1

) which is used to distinguish the free amide protons (3400 – 3500 cm
-1

) from the ones 

involved in hydrogen bonding (3200 – 3400 cm
-1

).
41

 For example, the FT-IR spectrum of 

Boc-Ala-Phe-azaLeu-Ala-OMe in CCl4 produced amide stretching bands at 3440, 3380, and 

3320 cm
-1

. The presence of the band at 3320 and 3380 cm
-1

 supported the β-turn geometry, 

which was also validated by the NMR studies. The carbonyl C=O stretching band region 
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(1580 – 1720 cm
-1

) may also provide evidence of the carbonyl groups involved in hydrogen 

bonds. NMR spectroscopy has also been used to study the conformation of smaller model 

azapeptides in solution.
41,42,44,47,54

 Distances between protons have been measured by 

studying through space transfer of magnetization by Nuclear Overhauser Effect (NOE) 

spectroscopy, to distinguish the aza-proline amide cis- from the trans-isomers. Hydrogen 

bonding interactions of the amide protons have also been observed by studying changes in 

chemical shift with variation in solvent and temperature. For example, the amide proton of 

Ala
4
 in Boc-Ala-Phe-azaLeu-Ala-OMe was undisturbed by the switch from CDCl3 to 

DMSO-d6, indicative of its involvement in an intramolecular hydrogen bonding.
41

 2D 

NOESY experiments in CDCl3 indicated that the amide proton of azaLeu
3
 exhibited strong 

and medium NOE correlations with the α-proton of Phe
2
 and the amide proton of Ala

4
, 

suggesting a type II β-turn. A weak NOE correlation in between the amide protons of Phe
2
 

and aza-Leu
3
 indicated that a type I β-turn was likely in equilibrium with the type II 

conformer (Figure 1.4).
41

 

                     

Figure 1.4. NOE correlations found within Boc-Ala-Phe-azaLeu-Ala-OMe.
41
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Circular Dichorism spectroscopy has also been used to study the structural characteristics of 

azapeptides.
6
 Azapeptide analogs which are less soluble in organic solvents can be assessed 

by CD spectroscopy in water and physiological buffer. For example, insertion of aza-Phe
4
 

within GHRP-6 caused a change in the CD signature of the native GHRP-6 sequence from a 

random coil to that of a β-turn for the azapeptide. The characteristic CD bands for-turns are 

characterized by negative maximum values located at around 190 and 230 nm and a positive 

maximum band near 215 nm.
55,56

 

1.5 MEDICINAL CHEMISTRY APPLICATIONS 

 

Azapeptides have been shown to enhance the biological activity of the parent peptide by 

facilitating tissue absorption, transport and distribution, improving enzyme or receptor 

binding, and metabolic stability. Taken together, these attributes have led to the successful 

medicinal chemistry applications of azapeptides.
4
 For example, azapeptides have resisted 

proteolytic degradation by proteases
11,22

, enhanced binding affinity and selectivity towards 

receptor targets
6,25

 in addition to demonstrating favorable pharmacodynamics which has led 

to the FDA approval of the first azapeptide drug, Goserelin, for the treatment of prostate and 

breast cancers.
57

 Thus, azapeptides have proven to be useful tools for the design of drug 

candidates for applications in medicinal chemistry. 

1.5.1 AZAPEPTIDES AS RECEPTOR AGONISTS AND ANTAGONISTS  

 
Azapeptides have been designed and applied to regulate protein function in SAR 

studies that has led to important medicinal chemistry applications. The first azapeptide was 

designed and synthesized in 1963, as a modified angiotensin II derivative, [azaVal
3
]-

angiotensin II (bovine) [Asp-Arg-azaVal-Tyr-Val-His-Pro-Phe], which reduced activity and 
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exhibited longer duration of action relative to its parent peptide in a standard blood pressure 

assay.
58

 Azapeptide analogs of the peptide hormone oxytocin, used therapeutically to induce 

labor contractions have been made with varying degrees of biological activities. For example, 

the azaAsn
5
-oxytocin was inactive when tested within rat uterus, while azaGly

9
-oxytocin held 

1.5-fold greater activity than the parent peptide.
59,60

 Azapeptide analogues of the leutinizing 

hormone-releasing hormone (LH-RH) [Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2], 

responsible for the release of the leutinizing hormone (LH) and the follicle-stimulating 

hormone (FSH), have been prepared and demonstrated a 100-fold enhancement relative to the 

parent hormone.
61

 An azapeptide analog, [D-Ser(t-Bu)
6
, azaGly

10
]-LH-RH (Zoladex®, 

Goserelin acetate, AstraZeneca Inc.) was approved for clinical use of prostate and breast 

cancer.
57

  

 Azapeptide regulators of the integrin receptors αIIbβ3 and αvβ3 have been applied in 

platelet aggregation and pathologies such as osteoporosis, restenosis, angiogenesis and acute 

renal failure.
21

 The native peptide ligand, Arg-Gly-Asp (RGD), was replaced by six 

azapeptides substituting glycine by aza-glycine, aza-alanine or aza-sarcosine and Arg with 4-

cis-guanidinocyclohexanecarboxylic acid and δ-guanidinovaleric acid. SAR studies led to the 

development of aminopyridine 154 (Figure 1.5, 1.24) which exhibited high selectivity and 

nanomolar binding affinity for the αvβ3 receptor.  
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Figure 1.5. Lead RGD azapeptide mimic, 1.24, as a selective and potent antagonist of the 

αvβ3 receptor. 

Azapeptide analogs of the Growth Hormone Releasing Peptides (GHRP-6), were also 

developed to improve binding selectivity and affinity to the Cluster of Differentiation 36 

(CD36) scavenger receptor implicated in atherosclerosis, angiogenesis and in age-related 

macular degeneration.
6,62

 The native hormone, GHRP-6 exhibits dual binding activity for the 

Growth Hormone Secretagogue Receptor 1a (GHS-R1a) and the CD36 scavenger receptor. 

The pharmacophoric region of the growth hormone secretagogue GHRP-6, D-Trp-Ala-Trp, 

was systematically replaced by aza-amino acids residues to explore the importance of a turn 

conformation and side chain binding interactions on CD36 binding affinity and selectivity. 

An aza-Phe
4
 analog caused a 1000-fold improvement in selectivity for the CD36 receptor 

while reducing binding with GHS-R1a. Thus, azapeptide ligands of GHRP-6 may be useful 

leads in the development of selective forms of anti-atherosclerotic and anti-angiogenic 

treatments.  

The melanocortin receptor (MCR) agonist, Ac-His-D-Phe-Arg-Trp-NH2, has been 

implicated in the regulation of skin pigmentation, steroidogenesis, obesity, energy 

1.24 
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homeostasis, and exocrine gland function. Its widespread biological activity is stimulated by 

its promiscuous binding to MCR subtypes mMC1R, mMC3R, mMC4R, and mMC5R. Thus, 

potent and selective ligands may lead to the regulation of specific metabolic signaling 

pathways. Towards this goal, aza-residues, for D-Phe and Arg, have been developed for 

stabilizing the putative bio-active -turn found within the native sequence. These 

modifications caused a decrease in binding to the mMC1R and mMC4R, while substitution of 

Trp with aza-Nal-1, aza-Nal-2, and aza-Bip yielded analogs which displayed activity similar 

to the native sequence.
25

  

Azapeptide analogs of the calcitonin gene-related peptide (CGRP) were developed to 

improve the inhibitory activity of this physiologically important peptide implicated in non-

insulin-dependent diabetes mellitus, migraine headache, pain, and inflammation.
63

 The 

insertion of aza-Gly
33

 within [D31,G33,P34,F35]CGRP27-37 led a 10-fold increase in inhibitory 

activity when compared to CGRP27-37. Thus, azapeptides have displayed an exquisite ability 

to modulate target receptor function with an affinity and selectivity that is absent in their 

naturally occurring counterparts. These favorable effects have led to the development of lead 

azapeptide ligands that are currently in the pipeline for drug design and development.  

1.5.2 AZAPEPTIDES AS PROTEASE INHIBITORS  

 

Azapeptide inhibitors of serine and cysteine proteases have also been developed for 

medicinal chemistry applications. Interestingly, azapeptides possessing electrophilic aza-

residues at the P1 position have been designed and developed as selective irreversible 

inhibitors of cysteine proteases.
64-72

 A requirement for selective inhibition of cysteine over 

serine proteases is related to the incorporation of leaving groups, such as p-nitrophenolate 
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ion, which react preferentially with the active site cysteine thiol relative to the serine 

hydroxyl group. Therefore, activated esters of azapeptides N-Ac-Phe-azaGly-OPh have been 

prepared for the rapid and effective inhibition of cysteine proteases (>11,000 M
-l
 s

-l
).

64
 More 

recently, azapeptides with reactive site halomethyl ketones, Michael acceptors and epoxides 

have all served as potent covalent inhibitors of cysteine proteases, such as the those 

belonging to the therapeutically relevant caspase family of cell death effector proteins 

(Figure 1.6).
66,68-70,72

 These substrates have been developed for therapeutic applications and 

also as biological probes for elucidating the mechanisms and kinetics associated with enzyme 

activity.
73,74

 

Figure 1.6. Representative azapeptide covalent inhibitors of cysteine proteases. Epoxide 

inhibitor, 1.25. Acyloxymethylketone inhibitors, 1.26, Nitrile inhibitor, 1.27.
64-72 

Active site serine protease azapeptide inhibitors, such as the thrombin serine 

proteases, which plays a key role in blood coagulation, have also been developed. The 

ketoargininamide Boc-azaPhe-trans-Chx-Arg-CONH(s-PhEt) sequence was found to be the 

most potent inhibitor in this series.
75

 A cyclic azapeptide inhibitor of HCV NS3 serine 

proteases has also been developed as a potential anti-viral agent. The lead macrocyclic 
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tripeptide, BILN 2061, displayed potent inhibition of the HCV NS3 serine protease (Figure 

1.7).
22

 Furthermore, NMR spectroscopy and molecular modeling indicated that a bio-active 

-turn conformation for the lead analog BILN 2061 contributed to tight binding to the active 

site of the HCV NS3 protease.
22

 Therefore, introduction of aza-amino acid residues along the 

backbone of bio-active peptides have provided enhanced protease inhibitor efficacy. These 

results are not only important for therapeutic applications, but also improve peptide metabolic 

stability for longer duration of action in biological media.  Moreover, azapeptides own the 

ability to pre-organize the biologically active -turn responsible for potent and selective 

regulation of enzyme targets. 

 

Figure 1.7. Macrocyclic azapeptide inhibitor, BILN 2061, of HCV NS3 serine protease.
22

  

1.6 CONCLUSIONS  

 

Azapeptides are a special class of peptide mimics which introduce a change in 

configuration and a pre-organization of the peptide backbone -turn structure found within 

native sequences. These structural changes are due to a combination of stereoelectronic and 

structural effects. The N,N’-diacylhydrazine moiety bends the peptide backbone into a turn 
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geometry due to the repulsive electrostatic effects of the nitrogen lone pairs and the rigid urea 

stabilizing the turn conformation. The conformational preferences of azapeptides have been 

observed by molecular modeling, spectroscopic and crystallographic studies. The pre-

organized azapeptide -turn structure has translated into enhanced biological activity in lead 

peptide sequences. In these cases, aza-amino acid scanning effected by the submonomer 

approach allows for the systematic incorporation of aza-amino acid residues along the peptide 

backbone for exploring the location and importance of a turn geometry on peptide activity. 

This methodology has enabled the rapid production of structurally diverse azapeptides for 

SAR studies. This has led to the development of lead azapeptide ligands as potent and 

selective regulators of receptor signaling activity in-vitro and in-vivo. Moreover, azapeptides 

have also been designed and developed as antagonists of enzyme activity. This has led to a 

production of azapeptide inhibitors of serine and cysteine proteases with an increase in 

metabolic stability which produces a longer duration of action. These substrates are also 

important for the better understanding of the mechanisms and kinetics of these important 

enzymes. Thus, azapeptides are vital tools in biological applications related to the 

development of potent and selective peptide-based drugs.  

1.7 THESIS OBJECTIVES 

In this thesis, the submonomer method is applied and optimized for the production of a 

small library (7) of azapeptide inhibitors of the Insulin Receptor Tyrosine Kinase (IRTK) 

domain. In cancer, the IRTK is overexpressed at the cell surface where it signals metabolic 

activity, protein expression and cell proliferation without regulation, that are all hallmarks of 

tumorigenesis.
76

 Thus, potent and selective inhibitors of the IRTK may for the basis of 

effective anti-cancer agents. Towards this goal, a short pentapeptide, Ac-DIYET-NH2, 
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derived from the activation loop of the IRTK has shown inhibitory activity towards IRTK 

autophosphorylation, albeit at high doses which limits therapeutic efficacy (80% at 4 mM).
77

 

Interestingly, molecular docking of the lead peptide bound to the active site of the IRTK 

indicated a folded peptide structure, reminiscent of a -turn conformation. In order to 

evaluate whether the -turn structure contributed to peptide activity, a series of Ac-DIYET-

NH2, azapeptides were designed to effect potent and specific inhibition of the IRTK. 

In chapter 2 of this thesis, the submonomer azapeptide synthesis method is described for 

the production of azapeptides designed to inhibit IRTK autophosphorylation. Azapeptide 

modifications within the IYE pharmacophoric region are anticipated to stabilize the 

biologically active turn conformation. Moreover, the submonomer approach also enables the 

generation of novel aza-amino acid residues which contain un-natural side chains that may 

improve binding affinity and inhibitory activity. For example, a novel aza-DOPA analog is 

expected to be a more potent inhibitor of IRTK autophosphorylation due to the multiple 

hydroxyl groups at the aza-position. This is an important requirement, as Tyr residues have 

been attributed as the active site residues for IRTK phosphorylation which contributes to 

receptor signaling activity. 

In Chapter 3, a conformational analysis is anticipated to provide insight into our SAR 

study. A molecular IRTK docking study of a lead azapeptide ligand, Ac-DIazaYET-NH2, 

compared to its native sequence is expected to provide a theoretical model describing the 

presence and location of the putative peptide -turn. CD and NMR spectroscopy will be used 

to validate the secondary structures of the azapeptides synthesized in this study.  

In order to investigate the relationship between the conformational properties observed 

for the azapeptides and their biological activities, an IRTK inhibition assay is described in 
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Chapter 4. A western blot experiment is used to determine the propensity in which the 

azapeptides inhibit IRTK autophosphorylation in the presence of ATP. These studies are not 

only significant for our SAR studies, but also in the development of new azapeptide 

inhibitors of the IRTK. These may prove to be useful leads in the development of peptide-

based anti-cancer drugs and also as valuable substrates for elucidating the mechanisms and 

kinetics of these important enzymes.   
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CHAPTER 2. SOLID PHASE SUBMONOMER SYNTHESIS OF 

AZAPEPTIDE ANALOGS OF THE Ac-DIYET-NH2 SEQUENCE 

 

2.1 ABSTRACT 

A small library (7) of azapeptide derivatives of the Ac-DIYET-NH2, 2.28, sequence 

has been prepared by submonomer azapeptide synthesis in an effort to explore the importance 

of a turn conformation on peptide activity. The synthetic pentapeptide, Ac-DIYET-NH2, 2.28, 

was found to inhibit the autophosphorylation of the insulin receptor tyrosine kinase (IRTK) 

domain to about 80% at 4 mM, making it a potential lead in the development of novel 

peptide-based anti-cancer drugs. The submonomer method for making azapeptide derivatives 

of the Ac-DIYET-NH2, 2.28, sequence featured a modified three step procedure, (a) 

activation and coupling, (b) alkylation and (c) deprotection, inserted within conventional 

Fmoc-based solid phase peptide synthesis. Aza-amino acid residues were built within the IYE 

pharmacophoric region of Ac-DIYET-NH2, 2.28, including new aza-Ile and aza-DOPA 

residues. Azapeptides were prepared in sufficient isolated yields (36% - 55%) and purities > 

95% for structure activity relationship (SAR) studies (Chapters 3 and 4).  

2.2 INTRODUCTION 

Azapeptides are a special class of peptide mimics formed by the incorporation of aza-

amino acid monomers within a peptide sequence.
1
 The site-specific insertion of aza-amino 

acid residues along a peptide sequence (i.e. aza-amino acid scanning) has been used to 

identify the importance and location of -turn-conformations on peptide biological activity.
2
 

Thus, azapeptides have enhanced binding affinity and selectivity against biological targets
3
 

and have improved pharmacokinetic properties for the translation of biologically active 
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peptides into azapeptide drugs.
4
 Enabling their utility in biological and medicinal applications 

are more than 50 years of method development. These have involved a combination of 

solution phase hydrazine and peptide chemistry
5
 and evolved into the present day 

submonomer approach for azapeptide synthesis.
6  

Historically, azapeptide synthesis has necessitated the pre-requisite formation of 

activated hydrazine precursors in solution prior to their incorporation within a peptide 

sequence on solid phase. Among the most common aza-amino acid builidng blocks prepared 

for the solid phase synthesis of azapeptides are the N-Fmoc protected N′-alkyl hydrazine
7 

and 

N-Boc aza-dipeptide fragments
8
, as well as N-Fmoc-

9
 and N-2-(3,5-dimethoxyphenyl)propan-

2-yloxy-carbonyl (Ddz)
10

-protected aza-amino acid chlorides. The Fmoc/Ddz-strategies 

(Scheme 2.1) have been especially useful in producing small librairies of azapeptides for 

exploring SAR studies with receptor targets.
9,10 

These methods required the solution phase 

preparation of the N-Fmoc or N-Ddz-protected N′-substituted carbazates, 2.1. These aza-

amino acid building blocks were prepared by reductive amination, followed by a phosgene 

treatment which generated the activated aza-amino acid chloride, 2.2, for coupling to the 

resin bound peptide, 2.3. In spite of their utility in aza-amino scanning, these methods have 

limited widespread applicability due to the difficulties associated with the synthesis of the 

aza-amino acid monomers and the restricted side chain diversity produced by reductive 

amination. 
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 Scheme 2.1. The Fmoc/Ddz-strategies for azapeptide synthesis.
9,10

  

 

 A variety of methods have also been developed for preparing azapeptides by 

activating the N-terminal amino group of a resin bound peptide into an isocyanate and 

coupling with a suitable aza-amino acid monomer (Scheme 2.2). For example, aza-tri, 

dipeptide and amino acid fragments have been prepared in solution and coupled onto the 

activated N-terminus of peptide bound resin.
8,11 

 In these approaches, multiple steps were 

required to make the aza amino acid building blocks and the synthesis method was 

contaminated with significant amounts of hydantoin. Reversible amide bond protecting 

groups have since then been introduced to surmount the issues of hydantoin formation, albeit 

with additional steps for the introduction and removal of the protecting group.
12

 Thus, aza-

amino acid or N-terminus peptide activation have been successfully employed for making 

bio-active azapeptides. However, these methods are limited in their ability for producing a 

combinatorial library of structurally diverse azapeptides for studying SARs with biological 

targets. 
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Scheme 2.2. N-terminal isocyanate activation and carbazate coupling strategy for azapeptide 

synthesis.
8,11

 

The previously described methods necessitated the preparation of the aza-amino acid 

monomers in solution prior to their incorporation within azapeptide sequences by 

conventional solid phase peptide synthesis (SPPS).
7-12

 A more direct and versatile approach 

would be to build the aza-amino acid residue during the course of the azapeptide synthesis 

method. Inspired by the un-natural peptide synthesis (UPS) approach developed by 

O’Donnell
13

 and applied by others
14

, the submonomer azapeptide synthesis strategy
6
 

circumvents the need for monomer preparation and does not require stereo-chemical control 

for building the aza-residue on solid phase. Instead, the construction of the aza-amino acid 

residue during SPPS requires the efficient introduction of a suitably protected aza-glycine 

residue, its chemo-selective alkylation, deprotection and chain extension reactions. In the 

submonomer approach (Scheme 2.3), aza-glycine has been incorporated at the N-terminus of 

the peptide bound support by treating benzaldehyde hydrazone with p-nitrophenyl 
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chloroformate and coupling the activated carbazate to form the N-terminal semicarbazone.  

Regioselective semicarbazone alkylations introduced varying side chain groups at the aza-

glycine position. Semicarbazone deprotection and conventional SPPS
15

 were continued until 

the desired azapeptides were produced. Thus, the submonomer azapeptide synthesis method 

followed a three-step procedure inserted within the SPPS cycle (Scheme 2.3). The method 

consisted of (1) activation and acylation of peptide bound resin with an activated benzylidene 

carbazate, 2.12, formed in-situ upon the reaction of benzaldehyde hydrazone and p-

nitrophenyl chloroformate, (2) alkylation of the N-terminal semicarbazone, 2.13 and (3) its 

deprotection yielded semicarbazide, 2.15, ready for (4) conventional Fmoc-based SPPS.
6
 

Following step 3, the submonomer method may be repeated producing azapeptides with 

several aza-residues within the sequence or the fully functionalized azatides.
16

 Completion of 

the solid phase synthesis produced the protected azapeptides bound to their solid supports. 

Azapeptide deprotection and cleavage from solid phase were finally accomplished for 

analysis and purification which led to structure-function studies. In a nutshell, the 

submonomer method was created to simplify azapeptide synthesis while providing greater 

opportunity for the combinatorial library preparation of side chain diverse azapeptides for 

SAR studies.   
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Scheme 2.3. The submonomer solid phase azapeptide synthesis method.
6
  

The submonomer approach has led to the solid phase synthesis of 10 aza-analogs of 

GHRP-6 built from support bound aza-glycine alkylations with primary and secondary alkyl 

halides (Figure 2.1).
6
 Among this series, the conformational and biological properties of 

[aza-Phe
4
]-GHRP-6 evaluated by CD spectroscopy and receptor binding studies respectively 

demonstrated a stable -turn favored selective CD36 receptor binding. Considering the anti-

angiogenic properties of GHRP-6 ligands that favor selective CD36 scavenger receptor 

binding, [aza-Phe
4
]-GHRP-6 may become a promising lead for the development of treatments 

for angiogenic disorders, such as age-related macular degeneration.  
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Figure 2.1. Submonomer synthesis produced ten GHRP-6 azapeptides, from which the [aza-

Phe
4
]-GHRP-6 analog exhbited a 1000-fold increase in CD36 scavenger receptor binding 

relative to the growth hormone secretagogue receptor (GHS-R1a). Figure adapted from 

reference 6. 

  

     Expanding on the alkylation step, Michael additions of electron deficient olefins and 

conjugate addition-elimination reactions of activated allylic acetates have produced aza-Glu 

surrogates to explore the influence of turn conformation and carboxylate interactions on 

azapeptide activity (Figure 2.2).
17

 Fifteen aza-Glu derivatives of GHRP-6 were prepared by 

the submonomer approach, effectively expanding the repertoire of side chain diverse 

azapeptides for SAR studies with receptor targets.  Moreover, aza-pyroglutamate and 

pyrrazoline GHRP-6 analogs were prepared upon intramolecular cyclization of aza-Michael 

acceptors with the N-terminal amine of the peptide sequence. Structural studies of the aza-

Glu peptides by NMR and CD spectroscopy demonstrated folded azapeptide conformations 

which translated into varying degrees of CD36 receptor binding affinities, none of which 

outperformed the [aza-Phe
4
]-GHRP-6 analog. 
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Figure 2.2. Aza-Glu GHRP-6 azapeptide binding interactions to the CD36 scavenger 

receptor. Figure adapted from reference 17. 

 

 Submonomer azapeptide synthesis has also produced 13 aza-arylglycine GHRP-6 analogs by 

copper-catalyzed N-arylation of semicarbazone peptide bound support.
18

 The use of aryl and 

heteroaryl iodides furnished azapeptides with side chains bearing resemblance to the aza-Phe, 

aza-Tyr, aza-Trp and aza-His residues (Scheme 2.4). Substituion of the Trp
4 

position with 

aza-arylglycine residues induced a β-turn conformation which may favor CD36 binding 

affinity and selectivity. 
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Scheme 2.4. Copper-catalyzed N-arylation of semicarbazone peptide bound support. Figure 

adapted from reference 18. 

 

Seven new GHRP-6 azapeptides containing aza-1,2,3-triazole-3-alanine residues were 

prepared on aza-propargylglycine residues by a copper-catalyzed 1,3-dipolar cycloaddition 

reaction with aryl azides (Scheme 2.5).
19

 This libraries-from-libraries methodology featured 

further diversification of the aza-residues and led to the generation of new azapeptides that 

may be useful for structure-activity studies. 

 

 

Scheme 2.5. Copper-catalyzed 1,3-dipolar cycloaddition reaction with azapropargyl glycine 

residues and aryl azides. Figure adapted from reference 19. 
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The azapropargyl glycine residue was also used for the production of constrained aza-

lysine peptides (Figure 2.3). Their synthesis was accomplished by a copper catalyzed 

coupling of Mannich reagents to aza-propargylglycine residues. Eighteen aza-Lys GHRP-6 

analogs were produced by the so-called A(3)-coupling reaction.
20

  

 

 

Figure 2.3. Structure comparison of lysine and a constrained aza-lysine mimic. Figure 

adapted from reference 20. 

 

The submonomer method has also been used to modify the azapeptide backbone. For 

example, 4-substituted N-amino-imidazolin-2-one peptides were synthesized by a base-

promoted cyclization of aza-propargylglycine residues.
21

 Further diversification of the N-

amino-imidazolin-2-one scaffold was accomplished by a tandem Sonogashira cross-coupling  

and cyclization reaction with aryl and heteroaryl iodides to modify the 4-position of the 

imidazolin-2-one. These peptide mimics revealed a type II’ β-turn conformation according to 

X-ray crystallography and circular dichroism spectroscopy supported the presence of a turn 

conformation. This privelged structure led to tight binding affinity for the CD36 receptor, and 

inhibitory activity on MAP kinase JNK phosphorylation, that are all indicative of modulating 

scavenger receptor activity. In a related application, N-amino-imidazolidin-2-one 

peptidomimetics have also been achieved by alkylation and cyclization of the urea nitrogen 
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of a semicarbazone using ethylene bromide. The syntheses and isolation of 25 N-amino-

imidazolidin-2-one peptidomimetics have been developed by an extension of the 

submonomer azapeptide synthesis method.
22

  

 

Figure 2.4. Structure of N-amino-imidazolin-2-one. Figure adapted from reference 21-22. 

 

Thus, submonomer solid phase azapeptide synthesis has effectively expanded the repertoire 

of side chain diverse azapeptides useful in studying the effects of the -nitrogen 

configuration, backbone conformation and side chain structure on biological activity.   

 

2.3   CHAPTER OBJECTIVES 

In this chapter, the synthesis and characterization of a new class of azapeptide inhibitors 

of the insulin receptor tyrosine kinase (IRTK) will be described.
23

 The azapeptide ligands are 

derived from the activation loop of the IRTK which encompass the Ac-DIYET-NH2, 2.28, 

sequence. Submonomer azapeptide synthesis will be employed to develop a small library of 

azapeptide analogs of the native sequence to identify the influence and location of turn 

structure on IRTK inhibitory activity. Specifically, the IYE pharmacophoric region of 2.28 

will be systematically replaced with aza-amino acid residues to facilitate our aza-amino acid 
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scanning strategy (Figure 2.5). Following azapeptide synthesis, LCMS analyses and 

purification, the isolated azapeptides will be employed for SAR studies (Chapters 3 and 4).  

 

 

Figure 2.5. Aza-amino acid scanning of Ac-DIYET-NH2, 2.28, for IRTK inhibitory 

activity.
23 

2.4 RESULTS AND DISCUSSION 

The native sequence Ac-DIYET-NH2 2.28 and an analog Ac-DIFET-NH2 2.43 were 

synthesized by SPPS using Rink amide AM resin in 75% isolated yields. The submonomer 

approach was adopted and optimized for the preparation of azapeptide analogs of the Ac-

DIYET-NH2, 2.28, sequence. Reaction conditions were initially developed for Ac-

DIazaYET-NH2, 2.36. This methodology consisted of an activation and coupling step, which 

facilitated the introduction of an activated carbazate intermediate, 2.30, onto the peptide 
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bound support, 2.31, to generate the N-terminal semicarbazone, 2.32. Regioselective 

alkylation was next accomplished by a tandem halogen exchange and alkylation reaction. 

Halogen exchange of 4-benzyloxybenzyl chloride and sodium iodide
24

 resulted in the 

formation of 4-benzyloxybenzyl iodide in-situ. The more reactive benzyl iodide was used as 

alkylating reagent with the non-ionic Schwesinger phosphazene-base, tert-butylimino-

tri(pyrrolidino)phosphorane, BTPP
25

 to generate the alkylated semicarbazone, 2.33. No 

alkylation was observed by the reaction of 4-benzyloxybenzyl chloride, BTPP and the 

semicarbazone bound support, highlighting the importance of the halogen exchange step to 

yield the more reactive 4-benzyloxybenzyl iodide electrophile. Following alkylation, 

transamination of the N-terminal semicarbazone, 2.33, to generate semicarbazide, 2.34, was 

completed in a pre-set incubator (60 
o
C, 100 rpm, 12 h) by treating the resin in a solution of 

hydroxylamine hydrochloride buffered in pyridine (1.5 M). These mild conditions were 

found to be chemo-selective for the removal of the semicarbazone group while leaving the 

side chain protecting groups in-tact and minimizing the premature cleavage of the azapeptide 

from the solid support. Following semicarbazone deprotection, conventional solid phase 

peptide synthesis
15

, was used to complete the partially protected azapeptide, 2.35. Attempts 

for the removal of the aza-Tyr benzyl protecting group from the azapeptide bound support 

were unsuccessful on solid phase, resulting in minor deprotection yields and concomitant side 

product formation. Therefore, the azapeptide was cleaved from the Rink amide-linked 

polysytrene solid support
26

 and deprotection of the acid-labile side chain protecting groups 

were accomplished in TFA with H2O and TES scavenging the reactive tetrabutyl carbonium 

ion species.
27

 The removal of the aza-Tyr benzyl protecting group was next accomplished in 

solution by a Pd/C catalyzed hydrogenolysis reaction
8
 which finally afforded the desired Ac-

DIazaYET-NH2, 2.36, (Scheme 2.6). Following purification and characterization by RP-
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LCMS, 2.36, was isolated in yields of 50% and purities >95% as ascertained by RP-LCMS 

(Figure 2.6). 

 

  

Scheme 2.6. Submonomer solid phase synthesis of Ac-DIazaYET-NH2 (2.36). 
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Figure 2.6. LCMS spectra of Ac-DIazaYET-NH2, 2.36. 

 

 

Azapeptide analogs targeting the IYE pharmacophoric region of the parent 

pentapeptide Ac-DIYET-NH2, 2.28, were next prepared by the established submonomer 

synthesis method (Scheme 2.6) and characterized by RP-LCMS (Table 2.1). At the 2 

position, [aza-Ile
2
] and [aza-Ala

2
] residues were introduced respectively by alkylation with 2-

iodobutane and methyl iodide in the presence of BTPP. The [aza-Gly
2
]-residue was recovered 

without alkylation to generate azapeptides (2.37-2.39) in isolated yields of 51-55% and 
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purities > 95%. Of note, the aza-Ile residue was synthesized in racemic form due to the 

achiral 2-iodobutane used as alkylating reagent. However, a single azapeptide diastereomer 

for 2.38 was isolated by RP-LCMS for structure-activity relationship studies. Moving to the 3 

position, the [aza-Phe
3
] residue was constructed with KOtBu as base and benzyl bromide as 

alkylating reagent to produce the Ac-DIazaFET-NH2, 2.40, analog, in good yields (43%) and 

isolated purities (96%) according to RP-LCMS analyses. In the case of [aza-Tyr
3
], and [aza-

DOPA
3
], halogen exchange reactions

24
 converting the alkylating reagents 4-benzyloxybenzyl 

chloride and 3,4-dibenzyloxybenzyl chloride, respectively, to their corresponding alkyl 

iodides in the presence of BTPP improved yields (36-50%) and purities >95% for the desired 

azapeptides (2.36, 2.41). At the 4 position, [aza-Glu
4
] was installed using Michael addition 

chemistry
17

 with KOtBu and tert-butyl acrylate to generate Ac-DIYazaET-NH2, 2.42, in 

isolated yields of 42% and 96% purity. 
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Table 2.1. Characterization data of azapeptides synthesized in this study.
 

 

 

        

         

a
Crude purity by RP-LCMS at 214 nm using 2-90% MeOH in H2O with 0.1% FA over 15 

min. 
b
Isolated purity by RP-LCMS at 214 nm using 2-90% MeOH in H2O with 0.1% FA over 

15 min. 
c
Calculated from resin loading. 

d
Observed mass (expected mass) as [M+H]

+
 or [M-

H]
-
 by ESI-MS in positive or negative mode. Retention times (min) by RP-LCMS at 214 nm 

using 2-90% 
e
MeOH or 

f
MeCN in H2O with 0.1% FA over 15 min. 
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2.5 CONCLUSIONS 

In conclusion, a new class of azapeptide analogs of the Ac-DIYET-NH2, 2.28, 

sequence were constructed by submonomer synthesis. Submonomer solid phase synthesis 

furnished a small library (7) of azapeptides featuring the introduction of new aza-Ile and aza-

DOPA residues. Halogen exchange reactions were found to be particularly well suited for the 

introduction of aza-Tyr and aza-DOPA residues at the Tyr
3
 position. These reactions were 

used to convert the poorly reactive benzyl chlorides to the more reactive iodides which 

furnished azapeptide, 2.36 and 2.41 in 50 and 36% yields, respectively. The aza-isoleucine 

analog was synthesized using racemic 2-iodobutane as alkylating agent in the presence of 

BTPP. Although this resulted in diastereomeric Ac-DazaIYET-NH2, 2.38, RP-LCMS 

purification and analysis provided a single diastereomer, suitable for SAR studies. 

Azapeptides were isolated in sufficient yields (36-55%) and good purities (>95%) following 

submonomer synthesis and RP-LCMS purification. Thus, the submonomer approach for 

azapeptide synthesis proved to be an efficient methodology for the combinatorial preparation 

of azapeptides useful for structure-function studies. With purified constructs in hand, 

opportunity now exists for exploring influence of azapeptide configuration, conformation and 

side chain interactions on IRTK binding and inhibitory activity (Chapters 3 and 4). 
 

2.6 EXPERIMENTAL SECTION 

Materials. Fmoc-Asp(OtBu), Fmoc-Ile, Fmoc-Tyr(t-Bu), Fmoc-Glu(t-Bu) and Fmoc-

Thr (t-Bu) and Fmoc-Phe were purchased from Novabiochem
™

 (EMD Millipore) and used as 

received. Polystyrene Rink Amide AM resin (0.79 mmol/g) was purchased from 

Novabiochem
™ 

(EMD Millipore), and the manufacturer’s reported loading of the resin was 

used in the calculation of the yields of the final products. Reagents used for the submonomer 
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solid phase synthesis of azapeptides include, tert-butyl acrylate (TCI), 3,4-dibenzyloxybenzyl 

chloride (Acros), hydroxylamine hydrochloride (Alfa Aesar), potassium t-butoxide (Aldrich), 

N,N-diisopropylcarbodiimide, DIC (TCI), N-methylmorpholine, NMM (Acros), piperidine, 

N,N-diisopropylethylamine, DIEA (Aldrich), triethylsilane, TES (Alfa Aesar), benzyl 

bromide BnBr (TCI), 4-nitrophenyl chloroformate (Alfa Aesar), palladium 10% weight on 

activated carbon, Pd/C (Aldrich), acetic anhydride, Ac2O (Mallinckrodt) hydrazine hydrate 

(Alfa Aesar), trifluoroacetic acid TFA (Alfa Aesar), pyridine (Alfa Aesar), 2-iodobutane 

(TCI), 4-benzyloxybenzyl chloride (Aldrich), iodomethane (Alfa Aesar), tert-Butylimino-

tri(pyrrolidino)phosphorane, BTPP (Aldrich), N,N-dimethylformamide DMF (Macron), 

formic acid FA (Aldrich), dichloromethane DCM (Macron), methanol MeOH (Macron), 

acetone Ace (Macron), acetonitrile MeCN (Macron), tetrahydrofuran THF (BDH) and    O-

(1H-6-Chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate HCTU 

(Creosalus).   

Fmoc-based Solid Phase Peptide Synthesis. 

 

Peptide syntheses were performed under standard Fmoc-SPPS conditions
15 

on a PSI 

200C Peptide Synthesizer (Peptide Scientific, New York NY) using Polystyrene Rink Amide 

AM resin (0.79 mmol/g). Couplings of amino acids (3 equiv.) were performed in DMF using 

HCTU (3 equiv.) as coupling reagent and NMM as base (6 equiv.). About 5 equiv. of amino 

acids and HCTU and 10 equiv. of NMM were used for the coupling of the first amino acid 

[Fmoc Thr(t-Bu)] to the resin. Fmoc deprotections were performed by treating the peptide 

bound resin with 20% piperidine in DMF for 20 min. The resin was washed after each 

coupling and deprotection steps with DMF (3 x 10 mL). N-terminal acetylation was 

performed by addition of acetic anhydride (0.1 mmol, 50 equiv. 472 µL) and pyridine (400 
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µL) in DMF (1.5 mL). The reaction was continued for about 20 minutes on an overhead 

shaker. The peptide bound resin was vacuum filtered and washed with DMF (3 x 10 mL), 

MeOH (3 x 10 mL), THF (3 x 10 mL), and DCM (3 x 10 mL). The purity of di-, [Glu-Thr-

CONH2] tri-, [Tyr-Glu-Thr-CONH2] & [Phe-Glu-Thr-CONH2] and tetra- [Ile-Tyr-Glu-Thr-

CONH2] & [Ile-Phe-Glu-Thr-CONH2] peptide fragments were ascertained by molecular 

weight confirmation using ESI-LCMS following cleavage and deprotection of small aliquots 

of resin. After each step during the synthesis of control sequences as well as azapeptides, 

reaction monitoring and verification of the products, were performed by LCMS.  

 Cleavage test of resin-bound peptide. A small portion of the peptide bound resin (3-

5 mg) was treated with a freshly made solution of TFA/H2O/TES (95:2.5:2.5, v/v/ v, 0.5 mL) 

for about 30 min at room temperature. The cleavage mixture was filtered and then 

concentrated under air or nitrogen and crude peptide was precipitated with cold ether (1.5 

mL). Crude peptide samples were agitated on a vortex shaker, and spun in a centrifuge 

followed by decantation of the supernatant which left a pellet that was dissolved in 50% 

MeCN/H2O (about 1 mg/mL) and injected in LCMS for analyses.    

Submonomer azapeptide synthesis. 

Representative protocol for aza-Gly peptide synthesis, preparation of semicarbazone-

azaGly-Glu(t-Bu)-Thr(t-Bu) Rink amide AM resin (2.32). 
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To a stirred solution of EtOH (1.5 mL) in a vial equipped with a magnetic stirrer at 0 
o
C, was 

added hydrazine hydrate (56 μL, 1.8 mmol). To this reaction mixture, dropwise addition of 

benzaldehyde (61 μL, 0.6 mmol) was added. The reaction progress was tracked by TLC, [(2:1 

Hexane:EtOAc), Rf (benzaldehyde): about 0.7 and Rf (benzaldehyde hydrazone): about 0.6] 

which indicated complete reaction in about 15 min.  The reaction mixture was quenched in 

H2O (5 mL) and the desired benzaldehyde hydrazone was extracted with DCM (3 x 5 mL). 

The organic phase was dried with anhydrous MgSO4 or Na2SO4, concentrated to yield the 

crude product (70 mg, 98%) that was employed without further purification.  

Benzaldehyde hydrazone (70 mg, 0.6 mmol, 3 equiv.) was dissolved in DCM (1 mL) and 

added dropwise over 15 min to a solution of p-nitrophenyl chloroformate (123 mg, 0.61 

mmol, 3.2 equiv.) in DCM (1 mL) at 0 
o
C. The reaction mixture was warmed to room 

temperature (22 
o
C) and stirred for an additional 1.5 h under nitrogen. Complete conversion 

of the starting material to the activated carbazate intermediate, 2.30, was confirmed by TLC 

[(2:1 Hexane:EtOAc), Rf: 0.75]. DIEA (210 μL, 1.2 mmol, 6 equiv.) was added to neutralize 

the reaction mixture (20 min at 0
o
C) and the suspension was added to the resin for the 

coupling reaction. This reaction was mixed on an automated shaker for 16 h at room 

temperature. The next day, the resin was filtered and washed under vacuum with DMF (3 x 

10 mL), MeOH (3 x 10 mL), THF (3 x 10 mL), and DCM (3 x 10 mL). The reaction 

conversion was monitored by analyzing a small sample of resin (~3 mg) by LCMS following 

peptide cleavage and deprotection [1 mL, TFA/TES/H2O (95:2.5:2.5, v/v/v)] from the solid 

support. 
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Benzaldehyde semicarbazone-azaGly-Glu-Thr-CONH2 (2.32). ESI-LCMS [2-90% MeOH 

in H2O (0.1% FA), 15 min] RT = 6.5 min; Calculated for C13H23N5O6 [M+H]
+
 394.1 found 

m/z 394.1. 

Representative alkylation of aza-Gly, preparation of semicarbazone-azaTyr(OBn)-

Glu(t-Bu)-Thr(t-Bu) Rink amide AM resin (2.33). 

 

 

For benzyl chloride derivatives, Finkelstein reactions
24

 were performed by dissolving 4-

benzyloxybenzyl chloride (140 mg, 0.1 mmol, 6 equiv.) and NaI (180 mg, 1.2 mmol, 12 

equiv.) in acetone (1 mL). The reaction was refluxed overnight (16 h) for the production of 4-

benzyloxybenzyl iodide. The reaction mixture was quenched with water (3 mL) and extracted 

with ether (2 x 10 mL). The ether layer was isolated and dried over anhydrous MgSO4 and 

the solution was evaporated to dryness under vacuum.  

The semicarbazone peptide bound resin 2.32 (0.1 g, 67 μmol) was swollen in THF (1 mL), 

and BTPP (92 µL, 0.1 mmol, 3 equiv.) was added to activate the semicarbazone for the 

alkylation reaction. The mixture was agitated on an automated shaker for about 20 min, and 

then treated with 4-benzyloxybenzyl iodide (196 mg, 0.1 mmol, 3 equiv.) at room 
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temperature for an additional 16 h. The resin was filtered, then washed with DMF (2 x 10 

mL), MeOH (2 x 10 mL), THF (2 x 10 mL), and DCM (2 x 10 mL) and dried under vacuum. 

The extent of reaction was monitored by sampling an aliquot (~3 mg) of resin which was 

subjected to 1 mL of TFA/TES/H2O (95:2.5:2.5, v/v/v) for cleavage and deprotection of the 

crude peptide. 

 

 

Benzaldehyde semicarbazone-azaTyr(OBn)-Glu-Thr-CONH2 (2.33). ESI-LCMS [2-90% 

MeOH in H2O (0.1% FA), 15 min] RT = 12.5 min; Calculated for C31H35N5O7 [M+H]
+
,590.2 

found m/e 590.2. 

Representative protocol for semicarbazone removal, preparation of azaTyr(OBn)-Glu(t-

Bu)-Thr(t-Bu) Rink amide AM resin (2.34). 

 

 

 

The resin-bound semicarbazone 2.33 (0.1 g, 67 μmol) was treated with a solution of 1.5 M 

NH2OH
.
HCl in pyridine (2.5 mL) and the semicarbazone transamination reaction was 

completed in a pre-set incubator (60 
o
C, 100 rpm, 12 h) to liberate the resin bound 
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semicarbazide 2.34. The resin was filtered and washed under vacuum with DMF (3 x 10 mL), 

MeOH (3 x 10 mL), THF (3 x 10 mL), and DCM (3 x 10 mL). The extent of the reaction was 

monitored by ESI-LCMS, by cleaving and deprotecting an aliquot (~3 mg) of resin with 

TFA/TES/H2O (1 mL, 95:2.5:2.5, v/v/v). 

 

 

azaTyr(OBn)-Glu-Thr-CONH2 (2.34). ESI-LCMS [2-90% MeOH in H2O (0.1% FA), 15 

min] RT = 8.5 min; Calculated for C24H31N5O7 [M+H]
+
,502.2 found m/z 502.2. 

Preparation of Asp(t-Bu)-Ile-azaTyr(OBn)-Glu(t-Bu)-Thr(t-Bu) Rink amide AM resin 

(2.35). 

 

 

Fmoc-Ile (353 mg, 0.67 mmol, 10 equiv.) and diisopropylcarbodiimide (77 µL, 0.34 mmol, 5 

eq) in DCM (1 mL) were reacted for 20 min on ice. The suspension was then concentrated in-

vacuo, dissolved in DMF (1 mL), and added to semicarbazide peptide resin 2.34 (0.1 g, 67 

μmol) for the coupling reaction. This reaction was continued for an additional 16 h at room 

temperature (22 
o
C) and the resin was filtered and washed under vacuum with DMF (3 x 10 
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mL), MeOH (3 x 10 mL), THF (3 x 10 mL), and DCM (3 x 10 mL). Fmoc deprotection was 

performed by addition of 20% piperidine in DMF (2 mL) and the reaction was continued on 

an overhead shaker for 20 minutes at 22
o 

C. Upon completion of the Fmoc deprotection 

reaction, the azapeptide bound resin was vacuum filtered, washed with DMF (3 x 10 mL), 

MeOH (3 x 10 mL), THF (3 x 10 mL), and DCM (3 x 10 mL).  

Fmoc-Asp(t-Bu) (123 mg, 0.3 mmol, 3 equiv.), HCTU (124 mg, 0.3 mmol, 5 equiv.) and 

NMM (66 µL, 0.6 mmol, 6 equiv.) were dissolved in DMF (1 mL) and added to the resin. 

The reaction was agitated on an overhead shaker for 30 min. The resin was then filtered and 

washed under vacuum with DMF (3 x 10 mL), MeOH (3 x 10 mL), THF (3 x 10 mL), and 

DCM (3 x 10 mL). Fmoc deprotection was then performed as previously described. The 

sample crude purity was analyzed by ESI-LCMS by subjecting an aliquot (~3 mg) of resin to 

the cleavage and deprotection conditions [1 mL, TFA/TES/H2O (95:2.5:2.5, v/v/v)].
 

 

 

Asp-Ile-azaTyr(OBn)-Glu-Thr-CONH2 (2.35). ESI-LCMS [2-90% MeOH in H2O (0.1% 

FA), 15 min] RT = 8.5 min; Calculated for C24H31N5O7 [M+H]
+
, 615.3 found m/z 615.3. 
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Preparation of Ac-Asp-Ile-azaTyr-Glu-Thr-CONH2 (2.36). 

 

 

N-terminal acetylation was performed by addition of acetic anhydride (0.1 mmol, 50 equiv. 

472 µL) and pyridine (400 µL) in DMF (1.5 mL). The reaction was continued for about 20 

minutes on an overhead shaker. The peptide bound resin was vacuum filtered and washed 

with DMF (3 x 10 mL), MeOH (3 x 10 mL), THF (3 x 10 mL), and DCM (3 x 10 mL). The 

extent of reaction was monitored by subjecting an aliquot (~3 mg) of resin to cleavage 

conditions [1 mL, TFA/TES/H2O (95:2.5:2.5, v/v/v)] and analyzing the crude by LCMS. The 

azapeptide (0.2 mmol) was then dissolved in ethanol:water (1 mL, 50:50 v/v) and 10% Pd/C 

catalyst (20 mg) was added to the solution. A hydrogen filled balloon was placed over the 

reaction vessel and the reaction was continued overnight at room temperature (22 
o
C). The 

solution was filtered and lyophilized to a dry powder followed by LCMS analysis as 

previously described.  
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Ac-Asp-Ile-Aza-Tyr-Glu-Thr-CONH2 (2.36). ESI-LCMS [2-90% MeOH in H2O (0.1% 

FA), 15 min] RT = 10.1 min; Calculated for C36H49N7O12 [M-H]
-
, 681.3 found m/z 681.2. 

 

Complete deprotection and cleavage of azapeptides (2.36-2.42) from the resin. 

 The Rink resin-bound azapeptides were deprotected and cleaved from the support using 

freshly made solutions of TFA/H2O/TES (95:2.5:2.5, v/v/v, 20 mL/g of peptide resin) at 

room temperature for 2.5 h. The resin was filtered and rinsed with 1 mL of TFA. The filtrate 

and rinses were concentrated under a flow of N2(g) until a crude oil persisted. Cold ether (10-

15 mL) was then added to crude oil to precipitate the peptide. Following centrifugation (1200 

rpm for 10 min.), the supernatant was removed and the crude peptide was taken up in 

aqueous MeCN or MeOH (10% v/v in water) and freeze-dried to a white solid prior to 

analysis. 

Analyses and purification of azapeptides (2.36-2.42). 

  Analyses and characterization of crude azapeptides were accomplished on either an 

Agilent
TM

 Technologies 1100 Series LCMS instrument with ESI ion-source, single 

quadropole mass detection and positive or negative mode ionization or a Waters Alliance 

HPLC system equipped with a photodiode array detector (PDA) for azapeptide analyses at 

214 nm. Azapeptide samples were dissolved in 50% H2O in acetonitrile or methanol (1 

mg/mL). The LCMS analyses were performed on a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm), using binary solvent system consisting of 0.1% formic acid 

in H2O (Mobile phase A), and 0.1% formic acid in methanol (Mobile phase B) at a flow rate 

of 1.0 mL/min and UV detection at 214 nm. Linear gradients of the mobile phase (0.1% 

formic acid in methanol, 2-90% over 15 min) were used for analyses of the crude 

azapeptides. 
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Purification of azapeptides was conducted on a Waters
TM

 PrepLC instrument 

equipped with a reverse-phase YMC pack ODS A column (250 × 20  mm, 5 μm), using 

binary solvent system consisting of 0.1% formic acid in H2O, and 0.1% formic acid in 

methanol at a flow rate of 15 mL/min and UV detection at 214 nm. Linear gradients of the 

mobile phase (0.1% formic acid in methanol, 2-90% in 15 min) were used for purifications of 

azapeptides. Fractions containing pure azapeptides were combined, freeze-dried and 

lyophilized to a white powder. Purified azapeptide samples were analyzed for purity by 

LCMS with a Symmetry Sheild C18 reverse-phase column (150 × 4.60 mm, 3.5 μm), with a 

flow rate of 1.0 mL/min using a 2-90% gradient from water (0.1% FA) to CH3CN (0.1% FA) 

or to MeOH (0.1% FA) as previously described.   
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CHAPTER 3: AZAPEPTIDE STRUCTURAL STUDIES BY 

MOLECULAR MODELING, CD AND NMR SPECTROSCOPY 

 

3.1  ABSTRACT 

The structural characterization of the azapeptide analogs (Table 2.1, sequence no. 

2.36-2.42) of the Ac-DIYET-NH2, sequence were performed by molecular modeling and 

docking simulations, circular dichroism (CD) and NMR spectroscopy. Computational 

analyses were initially performed to determine the structural differences between the 

azapeptide analog, Ac-DIazaYET-NH2, sequence 2.36 and its parent sequence, 2.28. 

Interestingly, the azapeptide sequence, 2.36, was found to maintain a turn-type geometry 

which translated into tight binding affinity (< 5Å) within the active site of the insulin receptor 

tyrosine kinase (IRTK) domain. The structural properties of the azapeptides synthesized in 

this study (Chapter 2, Table 2.1) were further analyzed by CD spectroscopy to determine 

trends in peptide folds in aqueous media (H2O and phosphate buffered saline, PBS) and 

organic solvent (dimethyl sulfoxide, DMSO). The peptides were found to exhibit secondary 

structural features which contained both random and turn conformations that were contingent 

on solvent, sequence and position of the aza-amino acid substitutions. Specifically, the CD 

spectrum of the parent peptide Ac-DIYET-NH2 (2.28), was compared to that of the 

azapeptide, Ac-DIazaYET-NH2 (2.36). The insertion of the [aza-Tyr
3
] residue within the i+2 

position of the native sequence was found to stabilize a -turn conformation. NMR 

spectroscopy confirmed the azapeptide β-turn structure by providing evidence of the 

intramolecular hydrogen bonding interaction in between the CO at the i and the NH at the 

i+3 position. Moreover, 2D NOESY correlation studies supported the azapeptide fold, 

highlighting the influence of the [aza-Tyr
3
] residue in locking the turn-type geometry. In light 
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of the stable azapeptide folded structures which may translate into IRTK binding and 

inhibitory activity, a structural study is presented within this chapter and concluded with the 

biological activity of the azapeptides in Chapter 4 of this thesis.  

3.2 INTRODUCTION 

 

3.2.1 AZAPEPTIDE STRUCTURE AND CONFORMATION 

 

Introduction of an aza-amino acid within a peptide sequence provides a unique 

conformational change within the peptide backbone, resulting in a stable turn-type secondary 

structure.
1
 Several model systems were designed and examined to understand the 

conformational properties of azapeptides. For example, the conformations of a 1,2-

diacylhydrazine, which mimics the semicarbazide moiety found within azapeptides, were 

investigated by computational analyses. These studies indicated that the 1,2-diacylhydrazine 

adopted a nonplanar global minimum structure in which the nitrogen lone pairs were 

essentially perpendicular to one another.
2-6

 
 
Azapeptide conformation is dictated by the 

dihedral angles φ (NH-Nα) and ψ (Nα – CO).  A variety of computational, spectroscopic and 

crystallographic methods have been used to study the conformational properties of 

azapetides. These studies have shown that azapeptides prefer a narrow range of dihedral 

angle values (φ  = 90
◦
 ± 30

o 
or  -90

◦
 ± 30

º  
and ψ = 0

◦
 ± 30

◦  
or 180

◦
 ± 30

◦
) which correspond 

closely to different types of β-turn secondary structures (Figure 1.2, Table 1.1).
7 

Introduction 

of a semicarbazide residue within a peptide chain causes significant restriction of the peptide 

backbone favoring nonlinear conformations which mimics several known types of -turn 

structures found in naturally occurring peptides and proteins.
8
 Significantly, the stabilized -

turn conformations found within azapeptides have translated into improved peptide biological 

activity, underscoring their potential in medicinal chemistry applications.
9-11
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3.2.2 COMPUTATIONAL ANALYSES  

Computational docking experiments of the pentapeptide, Ac-DIYET-NH2, 2.28, with 

the IRTK binding domain were performed with DOCK 6 and its accessories programs.
12 

These binding simulations illustrated a folded peptide structure reminiscent of a turn 

conformation which may contribute to binding affinity (Figure 3.1).
12

 The docking studies 

showed that binding site occupied by Ac-DIYET-NH2, 2.28, consisted of an ATP binding site 

and the catalytic loop. Two key residues, Asp 1132 and Arg 1136, found within the catalytic 

loop of the insulin receptor played a crucial role in the IRTK phosphorylation reactions and 

may be considered optimal locations for peptide inhibitory activity. According to the IRTK 

binding studies, the pentapeptide ligand, Ac-DIYET-NH2, 2.28, was found near the catalytic 

site, with the threonine residue interacting with Asp 1132 and Arg 1136 of the IRTK, 

presumably through hydrophobic and H-bonding interactions. The binding interactions of 

Ac-DIYET-NH2, 2.28, with these 2 key IRTK binding site residues may prevent the entry of 

ATP substrate to the catalytic site of the receptor. Consequently, IRTK autophosphorylation 

and activation of its signaling pathways are inhibited. Thus, peptide analogs that may 

stabilize the bio-active conformation responsible for IRTK binding may lead to the 

generation of more potent inhibitors of this important receptor.  
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Figure 3.1. Binding model of the pentapeptide ligand, Ac-DIYET-NH2, 2.28 within the 

active site of the IRTK. Figure adapted from reference Kato, M. et al. J. Pept. Sci. 2009, 15, 

327.
12 

 3.2.3 CD SPECTROSCOPY 

 Circular Dichroism (CD) spectroscopy is a powerful method in structural biology, 

useful for the conformational analysis of peptides and proteins. CD spectroscopy is a measure 

of the difference in light absorption of right versus left-handed polarized light.
13

 When 

asymmetric molecules such as peptides absorb circularly polarized light, a CD signal that is 

characteristic of the peptide conformation (ellipticity) as a function of wavelength in the UV 

(190 - 350 nm) region is generated. Therefore, the CD spectrum provides a unique trace that 

is contingent on the nature of the chromophores and the asymmetric structure of the peptide.   

More specifically, CD spectroscopy is an excellent tool for the rapid evaluation of 

peptide secondary structures. It may also be useful in determining the various folding patterns 

of peptides and their mimics, the stabilities of their secondary structures and may also 

provide valuable information on their binding properties with ligands and receptor targets.
14

 

Thus, CD spectroscopy is a useful characterization technique for studying peptide secondary 
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structures in order to gain greater insight into their structure-activity relationships. Although 

other methods may also be used to evaluate peptide structures, including computational 

analyses
15

, mass spectrometry
16

, nuclear magnetic resonance (NMR) spectroscopy
17

 and X-

ray crystallography
18

, the CD study retains the ability to produce quick spectra for a wide 

range of peptide samples in solution relative to these other laborious techniques.
13,14

 This is 

because CD spectroscopy provides a non-destructive method for sample analyses while 

providing opportunity for exploring peptide structure, bio-physical and biological properties.    

The chirality of the peptides along with their ability to absorb electromagnetic 

radiation in the far (190 – 260 nm) and near (260 – 350 nm) UV region make them well 

suited for conformational analysis by CD spectroscopy.  The CD spectrum in this region is 

dominated by the n→π* (C=O) and π→π* (N-CO) transitions of the amide groups and are 

reflective of the peptide backbone geometry. The electronic transitions of the peptide 

functional groups in the far UV-region and the asymmetric peptide geometry produces a CD 

spectrum that is contingent on the peptide secondary structure. Peptide coils, helices, sheets 

and turn conformations have all been characterized by CD spectroscopy (Figure 3.2, i).
13,14

 A 

random coil has a broad positive n→π* electronic absorption transition at 210 nm and a 

negative π→π* transition at 190 nm.
 
The -sheet peptide secondary structure has a negative 

π→π* transition from 230 - 210 nm and a positive n→π* transition at 196 nm. Peptide turns 

have positive n→π* transitions in between 220 and 200 nm and a negative band at 190 nm. 

The CD spectra for α-helices have negative bands at 222 nm and 208 nm and a positive band 

near 190 nm. In addition to these characteristic electronic absorptions, CD spectroscopy 

provides information on the asymmetric peptide backbone geometry, that is dictated by the φ 

and ψ torsion angles (Figure 3.2, ii).
13,14,19
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Figure 3.2. Peptide secondary structure analyses i. Far UV (180 – 260 nm) CD spectra 

associated with peptide secondary structures: solid curve, α-helix; long dashes, anti-parallel 

β-sheet; dots, type I β-turn; dots and short dashes, random coil. ii. Peptide dihedral angles (φ, 

ψ) associated with the -helix, -sheet and -turn peptide secondary structures.
13,14,19 

 

3.2.4 NMR SPECTROSCOPY 

 

NMR spectroscopy has been used to determine the primary sequences and to study the 

secondary structures of short model peptides in solution.
20-24

 This is primarily due to the 

interaction of radiofrequency radiation in an oriented magnetic field with nuclei (
1
H, 

13
C, 

15
N) that are sensitive to NMR spectroscopy. Considering peptides contain an abundance of 

NMR sensitive nuclei for analyses, various direct detection (
1
H and 

13
C NMR) and 

correlation experiments (
1
H-

1
H COSY, 

1
H-

1
H TOCSY, 

1
H-

1
H NOESY, 

1
H-

13
C HMQC, 

1
H-

15
N HSQC) have been used to sequence the amino acid residues found within peptides and 

for mapping their secondary structures. Deuterated solvents are used in NMR spectroscopy to 

calibrate the instrument to the radiofrequency for detection and to minimize the overlap of 

solvent signals with sample. Moreover, deuterated solvents (i.e. DMSO-d6 or CDCl3 / 

DMSO-d6 mixtures) that minimize exchange of deuterium with sample protons that are acidic 

or protic in nature (e.g. –OH, -COOH, -NH2) have been used to characterize peptide 
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secondary structures. In these deuterated solvent systems, peptide H-bonding interactions that 

maintain their secondary structures may be detected. Moreover, protons that are solvent 

exposed and not implicated in peptide folds will produce larger chemical shift changes that 

are sensitive to solvent and temperature changes. For example, in the NMR study of a model 

azapeptide, Boc-Ala-Phe-azaLeu-Ala-OMe, the amide proton of Ala
4
 was undisturbed by the 

switch from chloroform to DMSO-d6, indicative of its involvement in an intramolecular 

hydrogen bond.
24

 Additionally, 2D NOESY experiments may also be used to characterize the 

nature of the peptide fold by determining which protons are within close NOE (< 5Å) contact 

distances. In CDCl3, the model azapeptide indicated that the amide proton of the [azaLeu
3
] 

residue exhibited strong and medium NOE, respectively with the α-proton of [Phe
2
] and the 

amide proton of [Ala
4
], suggesting a type II β-turn with the aza-residue located in the i+2 

position (Figure 1.5).
24

  

3.3 CHAPTER OBJECTIVES 

 

Azapeptide analogs of the Ac-DIYET-NH2 sequence, 2.28, presented in Chapter 2 

will be further investigated in this chapter to determine their structural properties. The 

structural studies will be initially performed by computational analyses. Molecular modeling 

will be used to explore the influence of the aza-amino acid residue on azapeptide 

conformation in silico. The Ac-DIazaYET-NH2 sequence, 2.36, and its parent peptide, Ac-

DIYET-NH2, 2.28 will be used in a proof-of-concept study to explore the influence of the 

[aza-Tyr
3
] residue on peptide backbone configuration and secondary structure. Following 

conformational analyses of 2.28 a molecular docking simulation study will be conducted to 

determine the likelihood azapeptide, 2.36, will bind to the active site of the IRTK. As suitable 

controls, these binding experiments will be performed in comparison to the parent 
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pentapeptide, Ac-DIYET-NH2, 2.28, and the natural ATP ligand of the IRTK. These 

simulation experiments will pave the way for structure-activity relationship studies of the 

azapeptides. CD and NMR spectroscopy will be used to confirm the azapeptide structures in 

solution. These techniques are especially useful for the rapid and precise elucidation of 

peptide conformational properties which will serve to validate the computational studies. 

Moreover, these spectroscopic studies will be useful in supporting the putative -turn 

secondary structures found within the azapeptide analogs of the Ac-DIYET-NH2, 2.28, 

sequence. These azapeptides may prove to be useful ligands for the IRTK and related 

tyrosine kinases for studying enzyme kinetics, mechanisms of action and in regulating their 

biological activity for therapeutic applications (Chapter 4). 

3.4 RESULTS AND DISCUSSION 

3.4.1 MOLECULAR MODELING AND DOCKING STUDIES 

The binding model of the parent pentapeptide Ac-DIYET-NH2, 2.28, with the IRTK 

has shown that the peptide ligand is positioned near ASP 1132 and ARG 1136, two key 

residues found within the catalytic loop of the receptor and involved in the 

autophosphorylation reactions.
12

 Molecular docking studies were performed to gain a better 

understanding of the binding model of the azapeptide analog, Ac-DIazaYET-NH2, 2.36, for 

the kinase domain of the insulin receptor. 

The crystal structure of the IRTK domain (Ser
981

- Lys
1283

) bound with ATP and a 

peptide (KKKLPATGDYMNMSPVGD) was available from Protein Data Bank (PDB ID # 

1IR3, and downloaded from the website (Figure 3.3).
25

 



  

 

Page 66 of 172 

  

 

Figure 3.3. Crystal structure of the IRTK downloaded from the Protein Data Bank (PDB ID 

# 1IR3).
25

   

The crystal structure of the IRTK was saved as a PDBQT file and transported within 

AutoDock Tools to generate grid functions for the docking simulation studies.
 
A molecular 

docking study was performed with the azapeptide analog Ac-DIazaYET-NH2, 2.36, in 

relation to the native peptide Ac-DIYET-NH2, 2.28, to visualize the binding interactions of 

the modified peptide with the catalytic loop of the IRTK. An interface between the molecular 

graphics system PyMOL and the molecular docking suite AutoDock Vina
26

 was used to 

demonstrate the combination of docking and visualization models. AutoDock tools were used 

to generate the PDBQT files of the receptor and the ligands. Vina is the program which 

performed the docking and its output files were in PDBQT format. The output files were 

visualized using PyMOL for evaluation of the binding models. The ligand was enclosed in a 

box with a number of grid points in x, y, z directions, 20 x 22 x 16 and a grid spacing of 1.0 

Ả. The center of the grid was set to -23.906, 30.439 and 12.466. Vina has generated 9 

possible models of the azapeptide analog Ac-DIazaYET-NH2, 2.36, binding to the catalytic 

loop of IRTK. The affinity of these candidates at 37 ºC and the probability of their docked 

conformations were computed according to the Arrhenius equation (Table 3.1). The first 

three candidates were found to be very similar in probability, differing by only about 2.5%. 
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The visualization of the binding models by PyMOL displayed similar docking locations for 

the azapeptide, 2.36. For the docking studies, the lowest energy docked conformation, 

according to the AutoDock scoring function was selected as the binding model. The results 

indicated that the proposed Ac-DIazaYET-NH2, 2.36, ligand also binds to the catalytic loop 

of the IRTK, and in closer proximity (< 5Ả) to the key Asp 1132 and Arg 1136 residues, 

relative to the parent peptide (Figures 3.4 and 3.5). Specifically, the azapeptide ligand, Ac-

DIazaYET-NH2, 2.36, was found to respectively position the threonine amide and the 

aspartate side chain groups near (< 5Ả) the Asp 1132 and Arg 1136 IRTK residues (Figure 

3.4). It may be suggested that a combination of hydrogen bonding and ionic interactions were 

associated with the azapeptide:IRTK binding model. Moreover, the Ac-DIazaYET-NH2, 

2.36, sequence was found to project a turn-type conformation bound to the IRTK domain that 

may contribute to binding affinity. 

The same grid points were used for the generation of the binding models for the Ac-

DIYET-NH2, 2.28, sequence. The native peptide was positioned further (> 5Ả) from Asp 

1132 and Arg 1136 within the catalytic loop of the IRTK (Figure 3.5). Moreover, the parent 

pentapeptide was found to project a random conformation at the IRTK binding site. Thus, the 

azapeptide ligand Ac-DIazaYET-NH2, 2.36, may confer a stable turn geometry that may 

translate into tighter IRTK binding and enhanced inhibitory activity relative to the native 

sequence. 
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Table 3.1. Binding energy calculations of Ac-DIazaYET-NH2 

 

 

  

 

Figure 3.4. Binding models of the azapeptide Ac-DIazaYET-NH2, 2.36, for the IRTK 

binding domain. The spatial distances in between the azapeptide N-terminal Asp and the C-

terminal Thr with the IRTK Arg 1136 and Asp 1132 were respectively found at 4.9 and 4.4 

Ả.  
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Figure 3.5.   Binding models of the native pentapeptide Ac-DIYET-NH2, 2.28, for the IRTK 

binding domain. The spatial distances in between the peptide N-terminal Asp and the C-

terminal Thr with the IRTK Arg 1136 and Asp 1132 were respectively found at 5.4 and 6.5 

Ả.  

 

3.4.2 CD SPECTROSCOPY 

CD spectroscopy was used to determine the propensity for azapeptides to adopt the putative 

β-turn structure which may contribute to enhanced IRTK binding and inhibitory activity. The 

main objective of this study was to compare the conformational trends of the parent 

pentapeptide sequence, Ac-DIYET-NH2, 2.28, and its related azapeptide analogs. The CD 

study was conducted in aqueous conditions (H2O, phosphate buffered saline, PBS) to 

determine the influence of salt on peptide conformation. Moreover, the CD spectrum of the 

peptides was also collected in DMSO, to support the NMR data acquired for the azapeptides 

dissolved in deuterated DMSO. The conformational study of the azapeptides (Table 2.1, 

sequence no. 2.37 – 2.42) was used to determine the influence of the aza-substitution on 

peptide structure.   
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 The CD spectra of the peptides were measured on an Aviv 62A DS CD Spectrophotometer 

using a 1.0 cm path-length quartz cell containing peptide (20 μM) dissolved in water, 

phosphate buffer at pH 7.2 and DMSO at room temperature in the far UV range (190 - 260 

nm). The CD spectra were plotted as changes in molar ellipticities (θ) vs. wavelength (nm) 

Figures 3.6-3.14.  

  In order to assess the influence of solvent on peptide structures, the CD spectrum of 

the parent peptides Ac-DIYET-NH2, 2.28, and Ac-DIFET-NH2, 2.43, was compared to the 

azapeptides (Table 2.1, sequences 2.37 – 2.42). At the 2 position, the [aza-Ile
2
], [aza-Ala

2
] 

and the [aza-Gly
2
]-residues exhibited CD spectra that were respectively associated with 

random coil in water (Figure 3.6), a combination of helical and turn geometries in phosphate 

buffer (Figure 3.7) and folded conformations in DMSO (Figure 3.8).
13

 Thus, the solvent 

conditions were found to impact the azapeptide folds, indicating the influence of solvent and 

aza substitutions at the i+1 position on the peptide conformations.  

 

Figure 3.6. CD spectra for Ac-DazaIYET-NH2, 2.38, Ac-DazaAYET-NH2, 2.37, Ac-

DazaGYET-NH2, 2.39, (20 µM) in water, at 25 °C. 
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Figure 3.7. CD spectra for Ac-DazaIYET-NH2, 2.38, Ac-DazaAYET-NH2, 2.37, Ac-

DazaGYET-NH2, 2.39, (20 µM) in phosphate buffer, at 25 °C. 

 

 

Figure 3.8. CD spectra for Ac-DazaIYET-NH2, 2.38, Ac-DazaAYET-NH2, 2.37, Ac-

DazaGYET-NH2, 2.39, (20 µM) in DMSO, at 25 °C. 
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Moving along to the 3 position of the Ac-DIYET-NH2, 2.28, sequence, [aza-Tyr
3
], [aza-

DOPA
3
] and [aza-Phe

3
] modifications at the i+2 position were studied by CD spectroscopy 

(Figures 3.9-3.11). The CD curve for the parent peptide was typical of a random coil or a 

disordered structure, characterized by the strong negative band at 190 nm.
13

 Conversely, the 

CD curve for the azapeptides in water were found to exhibit a change in conformation, 

characterized by a positive band near 215 nm and two negative ones near 230 and 190 nm. 

The observed structure is indicative of a β-turn geometry, with some proportion of random 

coil due to the sharp negative minima observed near 190 nm (Figure 3.9).
7,9,10,19,20

 The 

observed -turn geometry was also maintained for the azapeptide dissolved in phosphate 

buffer (Figure 3.10), whereas peptide folds were observed in DMSO (Figure 3.11). Thus, the 

insertion of aza-residues at the i+2 position of the native sequence was found to stabilize a 

turn conformation about the peptide backbone geometry.  

 

Figure 3.9. CD spectra for Ac-DIazaYET-NH2, 2.36, Ac-DIazaFET-NH2, 2.40, Ac-

DIaza(DOPA)ET-NH2, 2.41, (20 µM) in water, at 25 °C. 
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Figure 3.10. CD spectra for Ac-DIazaYET-NH2, 2.36, Ac-DIazaFET-NH2, 2.40, Ac-

DIaza(DOPA)ET-NH2, 2.41, (20 µM) in phosphate buffer, at 25 °C. 

 

Figure 3.11. CD spectra for Ac-DIazaYET-NH2, 2.36, Ac-DIazaFET-NH2, 2.40, Ac-

DIaza(DOPA)ET-NH2, 2.41, (20 µM) in DMSO, at 25 °C. 
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At the 4 position, Ac-DIYazaET-NH2, 2.42, displayed a CD spectrum in water, PBS 

and DMSO that failed to stabilize a peptide turn conformation. These results were based on 

the large proportion of random coil observed in water and characterized by the negative 

minimum band at 190 nm (Figures 3.12). In phosphate buffer, the azapeptide displayed a 

large positive band near 190 nm, that are typically consistent with helical type structures 

(Figure 3.13).
13

 In DMSO, a poorly folded peptide geometry indicated that the aza-Glu 

modification at the 4 positon of the sequence weakly stabilized the peptide secondary 

structure (Figure 3.14). 

 

Figure 3.12. CD spectra for Ac-DIYazaET-NH2, 2.42, (20 µM) in water, at 25 °C. 
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Figure 3.13.  CD spectra for Ac-DIYazaET-NH2, 2.42, (20 µM) in phosphate buffer, at 25 

°C. 

.  

Figure 3.14. CD spectra for Ac-DIYazaET-NH2, 2.42, (20 µM) in DMSO, at 25 °C. 
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In sum, azapeptides (2.36 – 2.42) displayed conformations that were found to vary with the 

location and nature of the aza-residue in aqueous media (water and phosphate buffer) and 

organic (DMSO) solvents illustrating rich peptide structures that may contribute to biological 

activity. 

3.4.3 NMR SPECTROSCOPY 

NMR spectroscopy was next performed to support the observed azapeptide turn 

conformation in Ac-DIazaYET-NH2, 2.36. The NMR spectrum of the parent pentapeptide 

Ac-DIYET-NH2, 2.28 was compared to azapeptide, 2.36, in deuterated water and DMSO. In 

DMSO, the azapeptide exhibited an NMR spectrum that was consistent with a β-turn 

structure. The azapeptide secondary structure was characterized by the disappearance of the 

Glu NH and down-field chemical shift of the Ile NH (δ: 8.2 vs 7.6) when compared to the 

parent peptide (Figure 3.15 A and B, respectively). This observation is consistent with the 

hydrogen bonding interaction found in between the carbonyl group of the Asp residue at the i 

position and the amino group of the Glu residue at the i+3 position to generate the turn 

conformation that is stabilized by the aza-Tyr residue at the i+2 position. Moreover, 2D 

NOESY confirmed successive NOE correlations that were consistent with an organized 

azapeptide turn geometry found within Ac-DIazaYET-NH2, 2.36, and absent within Ac-

DIYET-NH2, 2.28, whose protons appeared to be solvent exposed with fewer NOE 

correlations (Figure 3.16).
20-24 
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Figure 3.15.  
1
H NMR spectra of (B) Ac-DIYET-NH2, 2.28, and (A) Ac-DIazaYET-

NH2, 2.36, (2 mM) in DMSO-d6. 

 

A 

B 
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Figure 3.16.  2D NOESY spectrum and conformational analysis of Ac-DIazaYET-NH2, 

2.36, (2 mM) in DMSO-d6. 
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3.5 CONCLUSIONS 

In this chapter a conformational study of the azapeptides (Table 2.1, sequences 2.36-

2.42) belonging to the Ac-DIYET-NH2, 2.28, sequence was conducted to explore the 

influence of the aza-substitutions on peptide backbone geometry. A computational study was 

initially investigated to determine the molecular structure of a selected azapeptide sequence, 

Ac-DIazaYET-NH2, 2.36, and its correlation with IRTK binding. Molecular modeling and 

docking studies displayed a folded azapeptide turn geometry which translated into tight IRTK 

binding (< 5Å) at the active site of the target receptor. Thus, a -turn conformation was 

observed in silico with the Ac-DIazaYET-NH2, 2.36, sequence. In order to validate 

azapeptide structures in solution, CD and NMR spectroscopy indicated that the azapeptide 

folds were contingent on solvent, location and nature of the aza-residues found within the Ac-

DIYET-NH2, 2.28, sequence. Significantly, aza-substitutions at the i+2 position, Tyr
3
, were 

found to stabilize the -turn structure in water, phosphate buffer and DMSO. Thus, aza-

modifications at this position may be useful in studying the influence of the -turn trajectory 

and side chain interactions on IRTK binding affinity and inhibitory activity. The latter is a 

focal point of the biological studies reported in Chapter 4 of this thesis, in order to gain 

insight into the SARs in between the putative azapeptide ligands and their IRTK target 

receptor. 
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3.6 EXPERIMENTAL SECTION 

 

3.6.1 MATERIALS 

Sodium chloride, potassium chloride, disodium phosphate, monobasic potassium phosphate 

and deuterated solvents were all purchased from Aldrich (Milwaukee, WI) and used without 

further purification.   

3.6.2 COMPUTATIONAL ANALYSIS 

The crystal structure of the IRTK domain (Ser
981

- Lys
1283

) bound with ATP and a peptide 

ligand (KKKLPATGDYMNMSPVGD) was available for download from the Protein Data 

Bank (PDB ID # 1IR3).
 
A molecular docking study was then performed with a selected 

azapeptide Ac-DIazaYET-NH2 and compared with the native peptide sequence Ac-DIYET-

NH2 to visualize the binding model of the peptides on the catalytic loop of the IRTK. An 

interface between the molecular graphics system PyMOL and the molecular docking suite 

AutoDockVina was used to demonstrate the docking and visualization models. The peptide 

ligands were enclosed in a box with the number of grid points in x, y, z directions, 20 x 22 x 

16 correlating with a grid spacing of 1.0 Ả. The center of the grid was set to -23.906, 30.439 

and 12.466. For the docking simulation studies, the lowest energy docked conformation, 

according to the AutoDock scoring function was selected as the binding model.  

3.6.3 CD SPECTROSCOPY  

The CD spectra of the peptides were collected in the far UV range (190 - 260 nm). 

The CD spectra of the peptides were collected and blank corrected with the corresponding 

solvent. All CD spectra were recorded on an Aviv 62A DS CD Spectrophotometer using a 

1.0 cm path-length quartz cell containing 20 μM of peptide dissolved in water, phosphate 

buffer (0.005 M Na2HPO4, 0.14 M KCl and 0.001 M MgCl2 at pH 7.2) and DMSO at room 
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temperature. The CD spectra were transported to Microsoft Excel and plotted as changes in 

molar ellipticities (θ) vs. wavelength (nm).  

3.6.4 NMR SPECTROSCOPY 

 
1
H NMR spectra were recorded on a Varian Oxford NMR spectrometer (500 MHz) 

with samples (2 – 5 mM) dissolved in DMSO-d6 and D2O (99.9%) and referenced to H2O 

(4.79 ppm) and DMSO-d6 (2.5 ppm). Coupling constants, J values were measured in Hertz 

(Hz) and chemical shift values in parts per million (ppm). Two-dimensional COSY, TOCSY 

(80 ms mixing time) and NOESY (500 ms mixing time) spectra were acquired at 298 K. 

3.6.5 CHARACTERIZATION DATA 

Ac-Asp-Ile-azaTyr-Glu-Thr-CONH2 (2.36). Yield (15 mg, 50%), 
1
H NMR (500 MHz, 

DMSO-d6) δ 0.78 (m, 6H), 1.04 (d, J = 6 Hz, 3H), 1.38 (bs, 1H), 1.71 (bs, 1H), 1.82 (s, 3H), 

1.84 (m, 1H), 1.96 (m, 1H), 2.25 (m, 2H), 2.44 (dd, J = 8.5, 18 Hz, 1H), 2.63 (dd, J = 5, 20 

Hz, 1H), 3.91 (bs, 1H), 4.07 (d, J = 7 Hz, 2H), 4.13 (d, J = 4.5 Hz, 1H), 4.59 (d, J = 6.5 Hz, 

1H), 6.67 (d, J = 8.5 Hz, 2H), 7.03 (d, J = 8.5 Hz, 2H), 7.11 (d, J = 14.5 Hz, 2H), 7.50 (bs, 

1H), 8.07 (d, J = 6.5 Hz, 1H), 8.16 (s, 1H), 10.2 (bs, 1H); ESI-LCMS [2-90% MeOH in H2O 

(0.1% FA), 15 min] RT = 9.95 min; [2-90% MeCN in H2O (0.1% FA), 15 min] RT = 6.68 

min; Calculated for C29H42N7O12 [M-H]
-
,681.3 found m/z 681.2.   

 

Ac-Asp-azaAla-Tyr-Glu-Thr-CONH2 (2.37). Yield (22 mg, 51%), 
1
H NMR (500 MHz, 

D2O) δ 1.21 (m, 1H), 1.27 (d, J = 6 Hz, 3H), 2.04 (m, 1H), 2.08 (s, 3H), 2.15-2.19 (m, 1H), 

2.42 (t, J = 7 Hz, 2H), 2.80 (dd, J = 2, 6.25 Hz, 2H), 2.97-3.01 (m, 1H), 3.05 (s, 3H), 3.10-

3.16 (m, 1H), 4.31-4.35 (m, 2H), 4.41-4.74 (m, 2H), 4.60 (t, J = 6 Hz, 1H), 6.88 (d, J = 8.5 

Hz, 2H), 7.15 (d, J = 8 Hz, 2H); ESI-LCMS [2-90% MeOH in H2O (0.1% FA), 15 min] RT = 
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7.42 min; [2-90% MeCN in H2O (0.1% FA), 15 min] RT = 5.26 min; Calculated for 

C26H36N7O12 [M-H]
-
638.3 found m/z 638.2. 

Ac-Asp-azaIle-Tyr-Glu-Thr-CONH2 (2.38). Yield (27 mg, 55%), 
1
H NMR (500 MHz, 

D2O) δ 0.67-0.70 (m, 1H), 0.84-0.90 (m, 3H), 0.98-1.10 (m, 3H), 1.27 (dd, J = 2, 6.25 Hz, 

3H), 1.40-1.47 (m, 2H), 2.06 (s, 3H), 2.11-2.15 (m, 1H), 2.39 (t, J = 5 Hz, 2H), 2.68-2.86 (m, 

2H), 2.97-3.02 (m, 1H), 3.06-3.10 (m, 1H), 3.19-3.26 (m, 1H), 4.29-4.36 (m, 3H), 4.41-4.43 

(m, 1H), 4.54-4.48 (m, 1H), 4.57-4.60 (m, 1H), 6.86-6.91 (m, 2H), 7.13 (d, J = 8.5 Hz, 1H), 

7.22 (d, J = 8 Hz, 1H); ESI-LCMS [2-90% MeOH in H2O (0.1% FA), 15 min] RT = 6.97 

min; [2-90% MeCN in H2O (0.1% FA), 15 min] RT = 5.13 min; Calculated for C29H42N7O12 

[M-H]
-
680.3 found m/z 680.2. 

Ac-Asp-azaGly-Tyr-Glu-Thr-CONH2 (2.39). Yield (22 mg, 55%), 
1
H NMR (500 MHz, 

D2O) δ 1.27 (d, J = 6 Hz, 3H), 2.00-2.06 (m, 2H), 2.08 (s, 3H), 2.14-2.18 (m, 1H), 2.36-2.39 

(m, 2H), 2.75 (dd, J = 2.5, 6.5 Hz 2H), 3.01 (dd, J = 8.5, 14 Hz, 1H), 3.12 (dd, J = 6, 14.5 Hz, 

1H), 4.30-4.34 (m, 2H), 4.41 (dd, J = 5, 9.25 Hz, 1H), 4.49 (dd, J = 6, 8.5 Hz, 1H), 4.65 (t, J 

= 6.5 Hz, 1H), 6.85 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 8.5, 2H); ESI-LCMS [2-90% MeOH in 

H2O (0.1% FA), 15 min] RT = 6.99 min; [2-90% MeCN in H2O (0.1% FA), 15 min] RT = 

5.04 min; Calculated for C25H34N7O12 [M-H]
-
 624.2 found m/z 624.2. 

Ac-Asp-Ile-azaPhe-Glu-Thr-CONH2 (2.40). Yield (17 mg, 43%), 
1
H NMR (500 MHz, 

D2O) δ 0.85 (m, 6H), 1.13 (m, 1H), 1.29 (d, J = 6.5 Hz, 3H), 1.35 (bs, 1H), 1.84 (bs, 1H), 

2.05 (s, 3H), 2.18 (m, 1H), 2.39 (bs, 2H), 2.58 (dd, J = 8, 16.5 Hz, 1H), 2.69 (dd, J = 6.5, 16 

Hz, 1H), 4.05 (bs, 1H), 4.34-4.39 (m, 3H), 4.63-6.65 (m, 1H), 7.37 (d, J = 7.5 Hz, 2H), 7.41-

7.47 (m, 3H); ESI-LCMS [2-90% MeOH in H2O (0.1% FA), 15 min] RT = 11.76 min; [2-
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90% MeCN in H2O (0.1% FA), 15 min] RT = 7.78 min; Calculated for C29H44N7O11 [M+H]
+
, 

666.3 found m/z 666.2. 

Ac-Asp-Ile-aza(DOPA)-Glu-Thr-CONH2 (2.41). Yield (6 mg, 36%), 
1
H NMR (500 MHz, 

D2O) δ 0.82-0.89 (m, 6H), 1.06 (bs, 1H), 1.28 (d, J = 6.5 Hz, 3H), 1.82 (bs, 1H), 2.05 (s, 6H), 

2.16 (bs, 2H), 2.31 (bs, 2H), 2.58 (bs, 1H), 2.67-2.70 (m, 1H), 4.05 (bs, 1H), 4.31-4.38 (m, 

4H), 4.63-4.67 (m, 2H), 6.62-6.65 (m, 1H), 6.80 (d, J = 8.5 Hz, 1H), 6.88 (s, 1H), 6.92 (d, J = 

8 Hz, 1H); ESI-LCMS [2-90% MeOH in H2O (0.1% FA), 15 min] RT = 8.90 min; [2-90% 

MeCN in H2O (0.1% FA), 15 min] RT = 6.33 min; Calculated for C29H44N7O13 

[M+H]
+
,698.3 found m/z 698.2. 

Ac-Asp-Ile-Tyr-azaGlu-Thr-CONH2 (2.42). Yield (16 mg, 42%), 
1
H NMR (500 MHz, 

D2O) δ 0.81-0.86 (m, 1H), 0.89-0.96 (m, 6H), 1.22 (d, J = 7 Hz, 3H), 1.47 (bs, 1H), 1.85-1.88 

(m, 1H), 2.07 (s, 3H), 2.57 (dd, J = 9, 16 Hz, 1H), 2.70 (dd, J = 5.5, 16 Hz, 1H), 3.00 (m, 

2H), 3.25 (dd, J = 6, 13 Hz, 1H), 3.66 (bs, 1H), 4.20 (d, J = 4 Hz, 1H), 4.23 (d, J = 8 Hz, 1H), 

4.30 (t, J = 4 Hz, 1H), 4.41 (bs, 1H), 4.61 (dd, J = 5.5, 8.5 Hz, 1H) 6.91 (d, J = 8.5 Hz, 2H), 

7.24 (d, J = 8 Hz, 2H); ESI-LCMS [2-90% MeOH in H2O (0.1% FA), 15 min] RT = 9.61 

min; [2-90% MeCN in H2O (0.1% FA), 15 min] RT = 6.41 min; Calculated for C29H42N7O12 

[M-H]
-
,
 
680.3 found m/z 680.2. 

Ac-Asp-Ile-Tyr-Glu-Thr-CONH2 (2.28). Yield (50 mg, 75%), 
1
H NMR (500 MHz, DMSO-

d6) δ 0.60-0.67 (m, 6H), 0.85-0.91 (m, 1H), 0.96 (d, J = 6.5 Hz, 3H), 1.07 (bs, 1H), 1.58-1.61 

(m, 1H), 1.71-1.74 (m, 1H), 1.76 (s, 3H), 1.89 (bs, 1H), 2.15-2.23 (m, 2H), 2.37-2.40 (m, 

1H), 2.54-2.59 (m, 1H), 2.68 (bs, 1H), 2.86 (dd, J = 4, 14 Hz, 1H), 3.94-3.97 (m, 1H), 3.99-

4.01 (m, 1H), 4.23 (dd, J = 8.5, 13 Hz, 1H), 4.34 (bs, 1H), 4.53 (dd, J = 7.5, 14 Hz, 1H), 4.77 

(bs, 1H), 6.43 (bs, 1H), 6.55-6.57 (m, 2H), 6.95-7.01 (m, 4H), 7.45 (d, J = 8.5 Hz, 1H), 7.63 
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(bs, 1H), 7.90 (bs, 1H), 8.09 (bs, 1H), 9.04 (bs, 1H); ESI-LCMS [2-90% MeOH in H2O 

(0.1% FA), 15 min] RT = 9.34 min; [2-90% MeCN in H2O (0.1% FA), 15 min] RT = 6.55 

min; Calculated for C30H45N6O12 [M+H]
+
,681.3 found m/z 681.2.  
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CHAPTER   4. IRTK INHIBITORY ACTIVITY OF AZAPEPTIDES 

 

4.1 ABSTRACT 

In the absence of regulated tyrosine kinase activity of the insulin receptor, increased levels 

of gene expression and cell proliferation have been observed and associated with tumor 

progression. Thus, the inhibition of un-regulated tyrosine kinase phosphorylation of the 

insulin receptor may prove to be an effective form of cancer treatment. Towards this goal, 

synthetic pentapeptides, Ac-DIYET-NH2 (2.28) derived from the activation loop of the 

insulin receptor and related analog, Ac-DIFET-NH2 (2.43), were found to inhibit the 

autophosphorylation of the insulin receptor to about 80% and 20%, respectively, at 4 mM 

making them potential leads in the development of novel peptide-based anti-cancer drugs. 

Moreover, molecular docking simulation studies of the lead peptide ligand, 2.28, bound 

within the active site of the IRTK revealed a folded peptide structure, reminiscent of a turn 

geometry that may contribute to binding affinity with its receptor target. In order to test this 

hypothesis, azapeptide derivatives of the Ac-DIYET-NH2 sequence, and specifically 

encompassing aza-modifications within the IYE region were developed for structure activity 

relationship studies. CD and NMR spectroscopy proved that the Ac-DIazaYET-NH2 

sequence, 2.36, adopted a β-turn conformation. In this chapter, the phosphorylation activity 

of the recombinant IRTK domain (residues 1005-1310) in the presence of ATP (1000 µM) 

was initially validated by western blotting. The inhibitory activity of the peptides, Ac-

DIYET-NH2 (2.28) vs Ac-DIazaYET-NH2 (2.36), was next evaluated by conducting the 

IRTK phosphorylation reactions with the addition of peptide ligands (400 µM). In a single 

dose experiment, minimal inhibitory activity (<10%) was detected for the parent peptide, Ac- 
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DIYET-NH2 (2.28), whereas, Ac-DIazaYET-NH2 (2.36) displayed 50% inhibition of the 

IRTK autophosphorylation. The azapeptide analogs, DazaIYET, DazaGYET and DazaAYET 

exhibited about 25% - 40% inhibition of the IRTK phosphorylation at 400 µM concentration. 

The azapeptide analogs, [aza-DOPA
3
] and [aza-Glu

4
] displayed slight stimulatory effect on 

the phosphorylation activity of the IRTK at similar concentration levels.   

  These results validate the importance of the peptide-turn geometry on the inhibition of 

IRTK phosphorylation. This finding is not only important towards the development of potent 

azapeptide inhibitors of the IRTK for potential anti-cancer applications, but also in the design 

of novel peptide ligands that may function as useful probes for studying the mechanisms and 

kinetics associated with this important class of tyrosine kinases. 

4.2 INTRODUCTION  

4.2.1. SIGNALING ACTIVITIES OF THE RECEPTOR TYROSINE KINASES 

Signal transduction is ubiquitous in all cell types and involves the transfer of 

information from within and in between cells in order to regulate their structure and function. 

Signaling activity is transmitted from a ligand to a protein receptor and converted into a 

cellular response, which in turn regulates a biochemical process such as metabolism. Signal 

transduction must be precisely integrated and coordinated for normal cell function. The 

human genome project has revealed that ~ 20% of the ~ 32,000 human coding genes encode 

proteins that are implicated in signal transduction.
1
 These include the transmembrane G-

coupled protein receptors, whose recently solved crystal structures have led to a better 

understanding of their signaling activities.
2
 A Nobel Prize was recently awarded to Drs. 

Robert Lefkowitz and Brian Kobilka in 2012 for their contributions into the structure and 
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function of this important class of signaling receptors.
3
 Within this class of G-coupled protein 

receptors, more than 520 protein kinases and 130 protein phosphatases have been implicated 

in cell signaling activity by regulating protein phosphorylation.
4
 The protein kinases govern 

substrate phosphorylation with ATP, and are further divided into subgroups which define 

their target phosphorylation sites. The protein or receptor tyrosine kinases, PTK or RTK, 

respectively, promote substrate-level phosphorylation onto active site tyrosine residues, 

whereas the serine/threonine specific enzymes phosphorylate active site serine and threonine 

residues. The phosphorylation activity of kinases has crucial cellular effects. These are most 

often implicated with the activation of signaling pathways that control gene expression, 

protein production and function in addition to regulating cell metabolism which governs the 

cell cycle for proliferation. Thus, PTKs are among the most widely studied classes of 

enzymes for their important implications in regulated and oncogenic signaling.
5
  

4.2.2. THE INSULIN RECEPTOR TYROSINE KINASE 

The RTKs encompass a large family of membrane bound protein receptors with 

intrinsic phosphorylation signaling activity.
6
 Insulin receptor has associated RTK activity 

found within its cytoplasmic domain. The insulin receptor tyrosine kinase (IRTK) is a 

heterotetrameric transmembrane protein having two identical extracellular α-subunits that 

function as the binding site for the natural ligand insulin and intracellular β-subunits which 

encompass the RTK domain (Figure 4.1).
7
 Signal transduction of the IRTK is mediated by 

insulin binding to the extracellular α-subunit of the IRTK. This ligand:receptor binding 

interaction produces conformational changes within the cytosolic β-subunits, exposing the 

RTK for ATP binding and phosphorylation onto the active site tyrosine residues.
7,8

 There are 

3 major phosphorylation sites found within the insulin receptor (Figure 4.2) including a juxta 
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membrane region having Tyr residues, 965 and 979, the activation loop at position, 1158, 

1162 and 1163 and the C-terminal region at 1328 and 1334.
9 

 

Figure 4.1. Figurative description of the IRTK. Figure adapted from: 

http://grimwade.biochem.unimelb.edu.au/tutorial/s2730e.gif 

 

Figure 4.2.    Phosphorylation sites of the IRTK. Figure adapted from: Hirose, M. et al. Br. J. 

Pharm. 2004, 142, 222 -228.
16 

This ligand:receptor binding interaction causes a change in IRTK conformation which 

subsequently leads to phosphorylation of the key tyrosine residues in the activation loop, 

Tyr1158, Tyr1162, Tyr1163 in the presence of ATP.
7-9

 Once these tyrosine residues are 

http://grimwade.biochem.unimelb.edu.au/tutorial/s2730e.gif
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phosphorylated, an additional conformational change occurs within the activation loop of the 

IRTK for additional phosphorylation which activates the receptor for intracellular signaling 

activity.
7-9 

The activated IRTK then dictates a myriad of signaling events, such as the PI(3)K, 

CAP/CbI and the Ras/MAPK pathways, respectively associated with glucose metabolism, 

protein synthesis, and cell proliferation.
10-12

   

In order to maintain regulated IRTK signal transduction, the kinase activities of the 

RTKs must be precisely controlled. For example, when the receptor is in its inactive state the 

activation loop of the IRTK binds to its catalytic loop and inhibits the kinase domain by 

preventing ATP binding and phosphorylation of the active site Tyr residues.
9
 This 

conformation is stabilized by the hydrogen bonding interactions in between the Tyr 1162 

residue in the activation loop of the insulin receptor and the Asp1132 residue in the catalytic 

loop of the RTK. Binding of insulin to the α-subunit reverses this process and activates 

tyrosine specific phosphotransferase activity with ATP. This leads to the autophosphorylation 

of the specific tyrosine residues in the cytoplasmic domain of the β-subunit. The 

phosphorylation of the Tyr 1158 Tyr 1162 and Tyr1163
 
residues is mainly responsible for 

activation of substrate phosphorylation.
9
 The introduction of three anionic phosphotyrosine 

residues forces a 30 Å change in the position of the activation loop away from the substrate 

binding site, making it available to bind to and phosphorylate a target protein as shown in 

Figure 4.3.13 
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Figure 4.3. Phosphorylation mechanism of the IRTK. Figure adapted from: Nelson, D.L.; 

Cox, M.M. Lehninger Principles of Biochemistry 5 ed., 2008, W.H. Freeman and Co. New 

York, NY, 440.
13 

Among the most important IRTK signal transduction pathways, the mitogen-activated 

protein, MAP kinase signaling cascade regulates gene expression and cell proliferation.
12,13

 

This signaling pathway is triggered by insulin binding to the -subunit of the IRTK leading 

to a series of substrate-level phosphorylation reactions which activates proteins that 

ultimately cause gene expression in the cells’ nucleus (Figure 4.4). Initially, the 

phosphorylated IRTK stimulates phosphorylation and activation of the insulin receptor 

substrate 1, IRS-1, which in turn phosphorylates the growth factor receptor-bound protein, 

Grb2. Then the guanine nucleotide exchange factor, Sos binds to phosphorylated Grb2 and 

the Ras protein causing GTP binding to Ras and GDP release. Activated Ras then binds to 

Raf-1 and activates the so-called proto-oncogene serine/threonine protein kinase to 

phosphorylate the MEK serine residues. Activated MEK phosphorylates ERK which enters 

the nucleus and phosphorylates nuclear transcription factors Elk1 and SRF which stimulates 

mRNA transcription, protein translation and cell division.  
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Figure 4.4 MAP kinase signaling cascade. Figure adapted from: Nelson, D.L.; Cox, M.M. 

Lehninger Principles of Biochemistry 5 ed., 2008, W.H. Freeman and Co. New York, NY, 

440.
13 

Normal IRTK MAP kinase signaling activity is found in epithelial cells that are expressed 

at lower basal levels.
6
 Unregulated IRTK MAP kinase signaling activity has been associated 

with uncontrolled gene expression, protein production and cell proliferation that are 

hallmarks of tumor growth.
5
 The overexpression and aberrant signaling activity of the IRTK 

have been found to occur in human breast, ovarian, colon and other epithelial tumors.
14

 It has 

been found that the IRTK may be directly related to oncogenic signaling activity by affecting 

cell metabolism and/or by working in synergy with other oncogenes that effect cell growth 

and differentiation. Moreover, genomic rearrangements such as chromosomal translocations, 

gain-of-function, GOF mutations, small deletions in PTKs, and gene amplification may each 

trigger oncogenic kinase signaling.
5 
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4.2.3. INHIBITION OF IRTK PHOSPHORYLATION BY THE DIYET SEQUENCE 

Considering their relevance in cancer, the selective regulation and potent inhibition of 

aberrant IRTK signaling activity may form the basis for effective forms of cancer treatment.
15

 

Towards this goal, the pentapeptide, Ac-DIYET-NH2 (2.28), derived from the activation loop 

of the IRTK
 

(G
1149

DFGMTRDIY
1158

ETDY
1162

Y
1163

RKGGKGL
1170

) and specifically 

encompassing the autophosphorylation site (Y
1158

) was found to inhibit IRTK 

phosphorylation to about 80% at 4 mM.
16,17

 Moreover, competitive binding experiments in 

between ATP and Ac-DIYET-NH2 (2.28) demonstrated that the pentapeptide was a 

competitive inhibitor of the IRTK domain, binding to the catalytic loop of the receptor and 

thereby preventing autophosphorylation of the IRTK in a non-ATP dependent manner.
17

 This 

mechanism was also confirmed by mass spectrometry, which indicated that the Ac-DIYET-

NH2 (2.28) sequence was phosphorylated at the tyrosine residue by the IRTK. Other peptide 

ligands were developed, of which Ac-DIFET-NH2 (2.43), demonstrated modest inhibition 

(20% at 4 mM) illustrating the importance of the Tyr side chain on peptide activity. 

Moreover, molecular docking simulation studies in between the Ac-DIYET-NH2 (2.28) 

sequence and the IRTK demonstrated a folded peptide geometry, which resembled a -turn 

motif. These studies suggested that a peptide turn may be also responsible for IRTK binding 

and inhibitory activity. Thus, peptide mimics (peptidomimetics) that may stabilize the 

putative bio-active -turn conformation responsible for IRTK binding may lead to the 

generation of more potent IRTK inhibitors. Towards this goal, azapeptide analogs of the 

parent pentapeptide Ac-DIYET-NH2 (2.28) were synthesized by submonomer solid-phase 

synthesis to explore the importance of a turn conformation on IRTK inhibitory activity.  
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4.3. CHAPTER OBJECTIVES 

The biological activity of the peptides synthesized in Chapter 2 and characterized in 

Chapter 3 will be described in this chapter. More specifically, the azapeptide derivatives of 

the Ac-DIYET-NH2 (2.28) sequence will be tested as inhibitors of IRTK 

autophosphorylation. The western blotting technique will be employed to determine the 

peptides’ ability to inhibit IRTK phosphorylation. Briefly, the IRTK and ATP will be 

incubated with and without the peptides to determine their influence on IRTK 

phosphorylation. Following the IRTK phosphorylation reactions, the protein samples will be 

separated on by PAGE and the phosphorylated IRTK will be selected by a primary antibody 

which only binds to the phosphorylated form of the IRTK. A secondary antibody coupled 

with a detection probe is finally added to monitor the signal. In this manner, the effect of the 

peptides on IRTK phosphorylation can be tracked and evaluated quantitatively by 

densiometric analyses. This study will serve to validate the assumption that a biologically 

active turn conformation within the parent Ac-DIYET-NH2 (2.28) sequence is responsible for 

IRTK binding and inhibition of phosphorylation in the presence of ATP. Azapeptides are 

perfectly suitable probes for testing the influence of turn conformations on peptide activity as 

the semicarbazide modification is known to restrain the ψ and φ dihedral angles leading to 

some types of β-turn conformations. Thus, azapeptide derivatives of the Ac-DIYET-NH2 

(2.28) sequence will be tested as potential inhibitors of IRTK phosphorylation en route 

towards the development of peptide-based anti-cancer agents (Figure 2.5). 
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4.4. RESULTS AND DISCUSSION 

4.4.1 IRTK PHOSPHORYLATION STUDIES 

A preliminary study on the inhibitory activity of the azapeptide Ac-DIazaYET-NH2 (2.36) 

in comparison with the native sequence Ac-DIYET-NH2 (2.28) was performed by western 

blot. The phosphorylation activity of the recombinant IRTK domain (residues 1005-1310) 

was initially determined with the IRTK (200 ng/mL) (Figure 4.5, lane 1), the IRTK (200 

ng/mL) and ATP (1000 µM) (Figure 4.5, lane 2), and with the IRTK (200 ng/mL), ATP 

(1000 µM) and insulin (200 ng/mL) (Figure 4.5, lane 3), in a reaction buffer consisting of 

HEPES, NaCl, EDTA, MgCl2, MnCl2, DTT, and phenylmethylsufonyl fluoride. 

The phosphorylation reactions were performed in Eppendorf tubes at 37 ºC for 20 minutes. 

The reactions were then quenched (Laemmli sample buffer) and heated at 70 ºC for 10 

minutes prior to gel electrophoresis. The samples were then resolved by denaturing 10% Bis-

Tris PAGE and transferred to a PVDF membrane in a transfer buffer (25 mM Bicine, 25 mM 

Bis-Tris (free base, 1 mM EDTA, pH 7.2) at 30 V for 1 hour.  The membrane was kept for 

overnight blocking in bovine serum albumin and Tris-buffered saline with Tween 20 (2% 

BSA in TBST) to prevent any non-specific binding. The membrane was then rinsed and 

treated with primary antibody, antiphospho-IR/IGFIR (Tyr 1158, 1162, 1163). The antigen–

antibody complexes were then visualized with a goat anti-rabbit IgG antibody, alkaline 

phosphatase (AP) conjugate which catalyzed the colorimetric detection of the blue colored 

phosphorylated IRTK using 5-Bromo-4-chloro-3-indolyl phosphate/ Nitroblue tetrazolium 

(BCIP/NBT). The combination of NBT (nitro-blue tetrazolium chloride) and BCIP (5-bromo-

4-chloro-3'-indolyphosphate p-toluidine salt) yields an intense, insoluble black-purple 

precipitate when reacted with alkaline phosphatase (Scheme 4.1).
18
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Scheme 4.1. Reaction mechanism for color development using BCIP/NBT.
18 

The substrate BCIP, 4.1, is hydrolyzed by alkaline phosphatase to form an intermediate 

that undergoes dimerization to produce an indigo dye, 4.4. The NBT is reduced to the NBT-

formazan during the oxidation of 4.3 to 4.4. This reaction proceeds at a steady rate, allowing 

for accurate control of detection during the reaction progress. The signal intensity may be 

then measured by densiometric analyses using Image J 

(http://rsbweb.nih.gov/ij/download.html).  

Incubation of IRTK in a HEPES buffer without ATP did not produce any visible bands 

following immunoblotting (Figure 4.5, lane 1). This is an expected result, considering in the 

absence of ATP no IRTK phosphorylation can occur nor can be detected by the primary 

antibody used for binding phosphorylated IRTK. A band was observed when the IRTK was 

phosphorylated with ATP (Figure 4.5, lane 2) and a more intense signal, albeit with a modest 

increase of ~10% relative to the control IRTK + ATP sample was observed with additional 

insulin (Figure 4.5, lane 3).  The latter result is somewhat surprising, since only a small 

http://rsbweb.nih.gov/ij/download.html
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portion of the IRTK (residues 1005-1310) comprising the cytoplasmic -subunit of the RTK 

domain and not the extracellular -subunit insulin binding site was used for this study. These 

results suggests the presence of an allosteric binding pocket on the IRTK domain that may 

contribute towards insulin binding and activation of IRTK phosphorylation. This result may 

be noteworthy of further investigation, but falls outside the scope of this present study. 

Therefore, further analyses were performed without the addition of insulin. 

 

Figure 4.5. Western blot analyses of the IRTK phosphorylation activity. Samples were 

analyzed as: IRTK (200 ng/mL) (lane 1), IRTK (200 ng/mL) and ATP (1000 µM) (lane 2), 

and with the IRTK (200 ng/mL), ATP (1000 µM) and insulin (200 ng/mL) (lane 3), in a 

HEPES reaction buffer consisting of HEPES, NaCl, EDTA, MgCl2, MnCl2, DTT, and 

phenylmethylsufonyl fluoride. 

4.4.2 INHIBITION OF IRTK PHOSHORYLATION  

The inhibitory activity of the peptides, Ac-DIYET-NH2 (2.28) vs Ac-DIazaYET-NH2 

(2.36), was next evaluated by conducting the IRTK phosphorylation reactions as previously 

described, but with the addition of peptide ligands (400 µM). Phosphorylation of the insulin 

receptor in the absence of the peptide ligands was considered to be 100%. In this single dose 
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experiment, minimal inhibitory activity (<10%) was detected for the parent peptide, Ac- 

DIYET-NH2 (2.28), whereas, Ac-DIazaYET-NH2 (2.36) displayed about 50% inhibition of 

the IRTK autophosphorylation (Figure 4.6). This result lends supporting evidence that the β-

turn conformation adopted by the selected azapeptide, Ac-DIazaYET-NH2 (2.36) may 

contribute to IRTK binding affinity and inhibitory activity within the catalytic loop of the 

RTK active site. 

 

Figure 4.6. Western blot data for IRTK (200 ng/mL) phosphorylation inhibition with peptide 

ligands Ac- DIYET-NH2 (2.28), and Ac-DIazaYET-NH2 (2.36) at 400 M. Each experiment 

was conducted in replicate n=3 with standard deviations reported about the mean % IRTK 

phosphorylation.  

 A dose-response (0 - 400 µM) assay was next conducted, comparing the inhibitory activity 

of the native sequence (2.28) with the azapeptide (2.36) and a known tyrphostin (AG1024) 

inhibitor of the IRTK was used as control.
19

 Three different concentrations of peptide ligands, 

4, 40 and 400 µM were used for this dose-response assay (Figure 4.7). In this experiment, 

Ac-DIazaYET-NH2 (2.36), maintained about 50% inhibitory activity of the IRTK 

autophosphorylation at 400 µM, albeit to a lesser extent relative to the tyrphostin inhibitor 
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(~80% inhibition at 40 µM) and without a dose-response correlation as depicted below. No 

significant inhibitory activity was noticed for the natural sequence with the conditions used in 

this study and which differ from the literature reported conditions, especially with the use of 

the IRTK.
16,17 

 

Figure 4.7. Western blot data for IRTK (200 ng/mL) phosphorylation inhibition with peptide 

ligands Ac-DIYET-NH2 (2.28), and Ac-DIazaYET-NH2 (2.36) in addition to tyrphostin 

inhibitor (AG1024) at 4, 40 and 400 M. Each experiment was conducted in replicate n=3 

with standard deviations reported about the mean % IRTK phosphorylation.  

        The inhibitory activity of the azapeptides on IRTK autophosphorylation was tested at 

400 µM by western blot. A control sample consisting of the IRTK (200 ng) and ATP (1000 

µM) was included in the phosphorylation reaction without the addition of any peptides and 

considered as 100% phosphorylation. The experimental results showed that the inhibitory 

activity of the azapeptides vary on the position and composition of the aza-residue. In this 

library, the Ac-DIazaYET-NH2 sequence exhibited the most antagonistic activity (50-60%) 

on the autophosphorylation of the IRTK. Similarly, the azapeptide analogs DazaAYET, 

DazaGYET and DazaIYET showed about 25% - 40 % inhibitory activity on the 

autophosphorylation of IRTK. Conversely, the azapeptide analog [azaDOPA
3
] displayed an 

increase (30%) in the autophosphorylation activity of IRTK. A similar effect was also 

observed for the azapeptide analog [azaE
4
], with a modest (10%) increase in IRTK 
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autophosphorylation activity. The modulatory effects of the azapeptide ligands on IRTK 

autophosphorylation are depicted in Figure 4.8. 

 

Figure 4.8. Western blot data for IRTK (200 ng/mL) phosphorylation inhibition with peptide 

ligands synthesized in this study at 400 M. Each experiment was conducted in replicate n=3 

with standard deviations reported about the mean % IRTK phosphorylation.  
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Entry Sequence (#) % IRTK 

Phosphorylation 

1 Ac-DIYET-NH2 (2.28) 82 ± 12 

2 Ac-DIFET-NH2 (2.43) 84 ± 5.7 

3 Ac-DIazaYET-NH2 (2.36) 40 ± 8.2 

4 Ac-DIazaFET-NH2 (2.40) 67 ± 9.4 

5 Ac-DIaza(DOPA)ET-NH2 (2.41) 128 ± 2.9 

6 Ac-DIYazaET-NH2 (2.42) 110 ± 3.6 

7 Ac-DazaAYET-NH2(2.37) 74 ± 19 

8 Ac-DazaGYET-NH2 (2.39) 61 ± 2.3 

9 Ac-DazaIYET-NH2 (2.38)  73 ± 10 

 

Table 4.1  IRTK Phosphorylation (%) in presence of peptides (400 µM) and ATP (1000 µM) 

 

4.5 CONCLUSIONS 

In sum, a new class of azapeptide inhibitors of the IRTK domain have been validated in 

this study. The selected azapeptide, Ac-DIazaYET-NH2 (2.36), which demonstrated a stable 

β-turn geometry resulted in a ~5-fold increase in IRTK inhibitory activity relative to the 

parent pentapeptide (50 vs <10%). The azapeptide analogs, Ac-DazaIYET-NH2 (2.38), and 

Ac-DazaAYET-NH2 (2.37) exhibited about 25% and Ac-DazaGYET-NH2 (2.39) exhibited 

about 40% inhibitory activity on the autophosphorylation of IRTK.  Thus, azapeptide 

inhibitors of the IRTK may form new leads in the development of potent and selective Tyr 

kinase binding ligands for anti-cancer
20

 and related applications in drug discovery.
15 
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4.7 EXPERIMENTAL MEHODS 

4.7.1. Materials and Methods 

 The insulin receptor tyrosine kinase domain, IRTK, (EMD Millipore, cat. no. 14-466) 

ATP (sigma) and insulin (calbiochem) were used directly as received. The reagents for 

preparing the reaction buffer, 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid, HEPES, 

(Sigma), NaCl (Macron), ethylenediaminetetraacetic acid, EDTA, (Sigma), MgCl2 (Fisher), 

MnCl2 (Fisher), dithiothreitol, DTT, (BRL) and phenylmethylsufonyl fluoride (sigma aldrich) 

were mixed together in MilliQ grade water and adjusted at pH 7.4. Laemmli sample buffer 

(consisting of 106 mM Tris HCl, 141 mM Tris Base, 2% LDS, 10% Glycerol, 0.51 mM 
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EDTA, 0.22 mM SERVA Blue G250, 0.175 mM Phenol Red, pH 8.5) was purchased from 

(Life Technologies) and used to quench the phosphorylation reactions prior to PAGE and 

western blotting. The gels, 10% Bis-Tris PAGE were purchased from Life Technologies and 

transferred to a polyvinylidene fluoride, PVDF, membrane (Millipore) for immunoblotting. 

Bovine serum albumin in tris-buffered saline containing 20% Tween 20 (2% BSA in TBST) 

was purchased from GeneTex and used directly for membrane blocking. The antibodies for 

phosphor-IRTK detection antiphospho-IR/IGFIR (Tyr1158/Tyr 1162/Tyr 1163) (EMD 

Millipore, cat. no. 07-841) and goat anti-rabbit IgG antibody, Alkaline Phosphatase conjugate 

(EMD Millipore, cat. no. 12-448) were used directly as received. The colorimetric detection 

of the antigen:antibody complexes was determined using 5-Bromo-4-chloro-3-indolyl 

phosphate / Nitroblue tetrazolium (BCIP/NBT) purchased from Sigma Aldrich. The IRTK 

inhibitor, AG1024 (EMD Millipore, cat. no. 121767) was also used as a control inhibitor for 

the IRTK.    

 4.7.2  Phosphorylation reactions of the IRTK 

The phosphorylation of the active insulin receptor tyrosine kinase domain, IRTK, 

encompassing residues 1005-1310 (EMD Millipore, cat. no. 14-466) was initially performed 

by treating the IRTK (200 ng) with ATP (1000 µM) and insulin (2.6 µg/mL) in 25 µL of 

incubation buffer consisting of 50 mM HEPES pH 7.4, 125 mM NaCl, 1 mM EDTA, 10 mM 

MgCl2, 5 mM MnCl2, 5 mM DTT and 1 mM phenylmethylsufonyl fluoride for 20 min at 37 

o
C. The reaction was quenched by addition of Laemmli sample buffer (8 µL) and the IRTK 

was denatured at 70 ºC for 10 minutes followed by separation and detection by western 

blotting. 
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4.7.3. Inhibition studies of the IRTK 

 The inhibitory activity of the peptides on the autophosphorylation of the insulin receptor 

was next evaluated by adding various concentrations (4-400 µM) of the peptides or control 

IRTK inhibitor, AG1024 (EMD Millipore, cat. no. 121767) to the IRTK (200 ng) and then 

proceeding with the phosphorylation reactions as previously described. The reactions were 

quenched by the addition of Laemmli sample buffer (8 µL) and the IRTK was denatured at 

70 ºC for 10 minutes and analyzed by western blotting.  

 4.7.4. Western blotting 

The IRTK was then resolved by denaturing 10% Bis-Tris PAGE and transferred to a 

PVDF membrane for overnight blocking (2% BSA in TBST) and immunoblotting was 

performed with antiphospho-IR/IGFIR (Tyr1158/Tyr 1162/Tyr 1163). The antigen–antibody 

complexes were visualized with a goat anti-rabbit IgG antibody, Alkaline Phosphatase 

conjugate (EMD Millipore, cat. no. 12-448) which catalyzed the colorimetric detection of the 

complexes using 5-Bromo-4-chloro-3-indolyl phosphate / Nitroblue tetrazolium 

(BCIP/NBT). After addition of the color development solution (BCIP/NBT) the reaction was 

continued for 10 minutes to visualize the desired bands. The PVDF membrane was rinsed 

with deionized water and dried at room temperature. The band intensities were measured by 

Image J (http://rsbweb.nih.gov/ij/download.html). The autophosphorylation of the IRTK 

domain in the presence of 1000 µM ATP for 20 minutes at 37 ºC was taken as control and 

considered to be 100%. A commercially available IRTK inhibitor, AG1024 (EMD Millipore, 

cat. no. 121767) was also used as a control inhibitor for the IRTK. 

 

http://rsbweb.nih.gov/ij/download.html
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CHAPTER 5: CONCLUSIONS AND CONTRIBUTIONS TO 

KNOWLEDGE  
 

 

5.1 CONCLUSIONS AND CONTRIBUTIONS TO KNOWLEDGE MADE IN THIS 

THESIS 

 

5.1.1 DESIGN, SYNTHESIS AND CONFORMATIONAL ANALYSES OF 

AZAPEPTIDE INHIBITORS OF THE INSULIN RECEPTOR TYROSINE KINASE 

Receptor tyrosine kinases play a crucial role in cell growth and differentiation. The 

phosphorylation activity of kinases is implicated in the activation of signaling pathways that 

governs the cell cycle for proliferation among other biological functions. Thus, kinase 

signaling activity must be highly regulated in order to maintain cellular homeostasis and 

avoid tumorogenesis. In cells that harbor mutations or genetic modifications leading to the 

overexpression of receptor tyrosine kinases, regulated cell division ceases to exist lending 

rise to cell division without restriction. As a result, the overexpression of receptor tyrosine 

kinases has been associated with oncogenic signaling and the growth of tumors. They have 

been vastly implicated in many epithelial tumor types, such as those belonging to breast, 

ovarian and prostate cancers. Thus, the selective inhibition of aberrant receptor tyrosine 

kinase signaling activity may lead to the development of effective forms of cancer therapy. 

Towards this goal, a synthetic pentapeptide, Ac-DIYET-NH2, derived from the activation 

loop of the insulin receptor tyrosine kinase (IRTK) domain has been validated as a peptide 

lead for the inhibition of IRTK phosphorylation and activation of its signaling activity. The 

peptide sequence exhibited strong IRTK inhibition (~80%), albeit at high concentration levels 

(4 mM) which limits its applications in vivo. Moreover, molecular docking studies of the lead 

pentapeptide bound to the active site of the IRTK domain demonstrated a turn type peptide 

geometry that may contribute to binding affinity and inhibitory activity. Considering 
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azapeptides are a valid class of peptide mimics that are known to stabilize bio-active turn 

conformations, a small library (7) of azapeptide analogs of the Ac-DIYET-NH2 sequence 

were synthesized, characterized and evaluated for IRTK inhibitory activity.  

A submonomer approach was adopted for the synthesis of azapeptides belonging to 

the Ac-DIYET-NH2 sequence in order to systematically introduce aza-residues within the 

IYE pharmacophoric region of the peptide sequence. In Chapter 2, the submonomer solid 

phase synthesis furnished a small library (7) of azapeptides featuring the introduction of new 

aza-Ile and aza-DOPA residues. Halogen exchange reactions were found to be particularly 

useful for the introduction of aza-Tyr and aza-DOPA residues at the Tyr
3
 position. These 

reactions were used to convert the poorly reactive benzyl chlorides to the more reactive 

iodides leading to azapeptides, 2.36 and 2.41 in 50 and 36% yields, respectively. The aza-

isoleucine analog was synthesized using racemic 2-iodobutane as alkylating agent in the 

presence of BTPP. Although this resulted in diastereomeric Ac-DazaIYET-NH2, 2.38, RP-

LCMS purification and analysis provided a single diastereomer, suitable for SAR studies. 

Azapeptides were isolated in sufficient yields (36-55%) and good purities (>95%) following 

submonomer synthesis and RP-LCMS purification. Thus, the submonomer approach for 

azapeptide synthesis proved to be an efficient method for the preparation of azapeptides 

useful for structure-function studies as described in Chapters 3 and 4.  

A conformational analysis of the novel azapeptides synthesized in Chapter 2 was 

presented in Chapter 3 of this thesis. A molecular docking simulation study was initially 

performed to evaluate the propensity for the azapeptide analog Ac-DIazaYET-NH2, 2.36, to 

adopt a turn geometry at the active site of the IRTK. An interface between the molecular 

graphics system PyMOL and the molecular docking suite AutoDock Vina was used to 

demonstrate the combination of docking and visualization models. The Ac-DIazaYET-NH2, 



  

 

Page 109 of 172 

  

2.36, sequence was found to be in close proximity to the key IRTK binding site residues Asp 

1132 and Arg 1136 found within the catalytic loop of the IRTK. Moreover, the azapeptide 

was found to project a turn-type conformation bound to the IRTK domain that may contribute 

to binding affinity. CD and NMR spectroscopy were used to lend additional support into the 

structural trends determined by computational analyses. The CD study was conducted in 

aqueous media (H2O, phosphate buffered saline, PBS) to determine the influence of salt on 

peptide conformation. Moreover, the CD spectra of the peptides were also collected in 

DMSO, to support the NMR data. The CD curve for the parent peptide, Ac-DIYET-NH2 was 

typical of a random coil or a disordered structure, characterized by the strong negative band 

at 190 nm. At the 2 position, the [aza-Ile
2
], [aza-Ala

2
] and the [aza-Gly

2
]-residues exhibited 

CD spectra that were respectively associated with random coils in water (Figure 3.6), a 

combination of helical and turn geometries in phosphate buffer (Figure 3.7) and folded 

conformations in DMSO (Figure 3.8). Thus, the solvent conditions were found to impact the 

azapeptide folds, indicating the influence of solvent and aza substitutions at the i+1 position 

on the peptide conformations. At the 3 position, the [aza-Tyr
3
], [aza-DOPA

3
] and [aza-Phe

3
] 

modifications were found to exhibit CD spectra with characteristic positive bands near 215 

nm and two negative ones near 230 and 190 nm. The observed CD traces are indicative of a 

β-turn geometry, with some proportion of random coil due to the sharp negative minima 

observed near 190 nm (Figure 3.9). The observed -turn geometry was also maintained for 

the azapeptide dissolved in phosphate buffer (Figure 3.10), whereas peptide folds were 

observed in DMSO (Figure 3.11). Thus, the insertion of aza-residues at the i+2 position were 

found to stabilize a turn conformation about the peptide backbone geometry. Moving to the 4 

position, [aza-Glu
3
], 2.42, displayed a CD spectrum in water, PBS and DMSO that failed to 

stabilize a peptide turn conformation. These results were based on the large proportion of 
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random coil observed in water and characterized by the negative minimum band at 190 nm 

(Figures 3.12). In phosphate buffer, the azapeptide displayed a large positive band near 190 

nm that are typically consistent with helical type structures (Figure 3.13). In DMSO, a poorly 

folded peptide geometry indicated that the aza-Glu modification at the 4 position failed to 

stabilize the peptide secondary structure (Figure 3.14). 

The NMR spectrum of the parent pentapeptide Ac-DIYET-NH2, 2.28 was compared 

to azapeptide, 2.36, in deuterated water and DMSO. In DMSO, the azapeptide displayed an 

NMR spectrum that was indicative of a β-turn. This azapeptide secondary structure was 

characterized by the disappearance of the Glu NH and down-field chemical shift of the Ile 

NH (δ: 8.2 vs 7.6) when compared to the parent peptide (Figure 3.15 A and B, respectively). 

This observation is consistent with the hydrogen bonding interaction found in between the 

carbonyl group of the Asp residue at the i position and the amino group of the Glu residue at 

the i+3 position to generate the turn conformation that is stabilized by the aza-Tyr residue at 

the i+2 position. Moreover, 2D NOESY confirmed multiple NOE correlations that were 

consistent with a folded azapeptide geometry that was absent within the parent peptide whose 

protons appeared to be solvent exposed with fewer NOE correlations (Figure 3.16).
 

After the confirmation of the peptide structures, biology was next examined towards 

the development of an azapeptide analog which may improve the inhibitory activity of the 

Ac-DIYET-NH2 sequence towards the IRTK (Chapter 4).  

 

5.1.2 BIOLOGICAL ACTIVITY OF AZAPEPTIDE ANALOGS 

In Chapter 4 of this thesis, a preliminary study on the inhibitory activity of the 

azapeptide Ac-DIazaYET-NH2 (2.36) in comparison with the native sequence Ac-DIYET-

NH2 (2.28) was performed by western blot. The phosphorylation activity of the recombinant 
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IRTK domain (residues 1005-1310) was initially determined with the IRTK (200 ng/mL) 

(Figure 4.5, lane 1), the IRTK (200 ng/mL) and ATP (1000 µM) (Figure 4.5, lane 2), and 

with the IRTK (200 ng/mL), ATP (1000 µM) and insulin (200 ng/mL) (Figure 4.5, lane 3), 

in a reaction buffer at pH 7.4, consisting of HEPES, NaCl, EDTA, MgCl2, MnCl2, DTT, and 

phenylmethylsufonyl fluoride. The extent of the IRTK phosphorylation reactions was probed 

with an anti-phospho-IRTK primary antibody and a secondary one conjugated with alkaline 

phosphatase for detection. A band was observed when the IRTK was phosphorylated with 

ATP (Figure 4.5, lane 2) and a more intense signal, albeit with a modest increase of ~10% 

relative to the control IRTK + ATP sample was observed with additional insulin (Figure 4.5, 

lane 3). 

In this single dose (400 µM) experiment, minimal inhibitory activity (<10%) was detected 

for the parent peptide, Ac-DIYET-NH2 (2.28), whereas, Ac-DIazaYET-NH2 (2.36) displayed 

about 50% inhibition of the IRTK autophosphorylation (Figure 4.6). This result lends 

supporting evidence that the β-turn conformation adopted by, Ac-DIazaYET-NH2 (2.36) may 

contribute to IRTK binding affinity and inhibitory activity at the IRTK active site. A dose-

response (0 - 400 µM) study wiith Ac-DIazaYET-NH2 (2.36), maintained about 50% 

inhibitory activity of the IRTK autophosphorylation at 400 µM, without a dose-response 

correlation.  

In sum, a new class of azapeptide inhibitors of the IRTK domain have been validated in 

this thesis. The selected azapeptide, Ac-DIazaYET-NH2 (2.36), which demonstrated a stable 

β-turn geometry resulted in a about 5-fold increase in IRTK inhibitory activity relative to the 

parent pentapeptide (50 vs <10%).  Thus, azapeptide inhibitors of the IRTK may form new 
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leads in the development of potent and selective Tyr kinase binding ligands for anti-cancer 

and related medicinal chemistry applications. 

5.1.3   FUTURE WORK 

 The submonomer approach for azapeptide synthesis is especially useful in the production 

of a library of structurally diverse azapeptides to further our SAR studies. As part of our 

ongoing SAR studies, future work will be geared towards additional biology experiments that 

will be used to evaluate the in-vitro IRTK phosphorylation inhibitory activity of the 

azapeptide ligands. Moreover, mechanistic insights can also be gained by the azapeptides that 

may function as valuable probes for elucidating their mechanisms of IRTK inhibitory 

activity. This enzyme-based study will pave the way for cell-based assays, in which a 

relevant tumor cell line model (eg. HepG2 cells) known to overexpress IRTK will be used to 

determine the potential of the azapeptides to inhibit IRTK signaling activity in cancer. A 

variety of molecular markers may be evaluated for this cell based assay, including IRTK 

phosphorylation levels and a number of downstream substrates (i.e. IRS-1, c-Raf, Ras and 

Sos) known to activate oncogenic signaling. Moreover, caspase activation and cell death 

measurements may be used to evaluate the anti-cancer potential of the azapeptides. These 

fruitful experiments will facilitate the selection of a lead azapeptide inhibitor that may be 

screened in multiple cell types to validate efficacy and selectivity. A medicinal chemistry 

approach may then be used to optimize the ‘drug-like’ properties of the azapeptide en route 

towards the development of a potent and selective peptidomimetic therapeutic.    
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Figure A1. RP-HPLC analysis of crude Ac-DIYazaET-NH2, 2.42, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 

2.42 
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Figure A2. ESI-LCMS analysis of crude Ac-DIYazaET-NH2, 2.42, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with positive mode of detection. 
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Figure A3. RP-HPLC analysis of pure Ac-DIYazaET-NH2, 2.42, using a linear gradient 2-

90% CH3CN/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A4. ESI-LCMS analysis of pure Ac-DIYazaET-NH2, 2.42, using a linear gradient 2-

90% CH3CN/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with positive mode of detection. 
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Figure A5. RP-HPLC analysis of pure Ac-DIYazaET-NH2, 2.42, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A6. ESI-LCMS analysis of pure Ac-DIYazaET-NH2, 2.42, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with positive mode of detection. 
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Figure A7. RP-HPLC analysis of crude Ac-DazaAYET-NH2, 2.37, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A8. ESI-LCMS analysis of crude Ac-DazaAYET-NH2, 2.37, using a linear gradient 

2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with negative mode of detection. 
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Figure A9. RP-HPLC analysis of pure Ac-DazaAYET-NH2, 2.37, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A10. ESI-LCMS analysis of pure Ac-DazaAYET-NH2, 2.37, using a linear gradient 

2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with negative mode of detection. 
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Figure A11. RP-HPLC analysis of pure Ac-DazaAYET-NH2, 2.37, using a linear gradient 2-

90% CH3CN/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A12. ESI-LCMS analysis of pure Ac-DazaAYET-NH2, 2.37, using a linear gradient 

2-90% CH3CN/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with negative mode of detection. 
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Figure A13. RP-HPLC analysis of crude Ac-DazaGYET-NH2, 2.39, using a linear gradient 

2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A14. ESI-LCMS analysis of crude Ac-DazaGYET-NH2, 2.39, using a linear gradient 

2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with negative mode of detection. 
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Figure A15. RP-HPLC analysis of pure Ac-DazaGYET-NH2, 2.39, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A16. ESI-LCMS analysis of pure Ac-DazaGYET-NH2, 2.39, using a linear gradient 

2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with negative mode of detection. 
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Figure A17. RP-HPLC analysis of pure Ac-DazaGYET-NH2, 2.39, using a linear gradient 2-

90% CH3CN/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A18. ESI-LCMS analysis of pure Ac-DazaGYET-NH2, 2.39, using a linear gradient 

2-90% CH3CN/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with negative mode of detection. 
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Figure A19. RP-HPLC analysis of crude Ac-DazaIYET-NH2, 2.38, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A20. ESI-LCMS analysis of crude Ac-DazaIYET-NH2, 2.38, using a linear gradient 

2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with negative mode of detection. 

 



  

 

Page 138 of 172 

  

 

 
 

Figure A21. ESI-LCMS analysis of crude Ac-DazaIYET-NH2, 2.38, using a linear gradient 

2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A22. ESI-LCMS analysis of crude Ac-DazaIYET-NH2, 2.38, using a linear gradient 

2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with negative mode of detection. 
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Figure A23. RP-HPLC analysis of pure Ac-DazaIYET-NH2, 2.38, using a linear gradient 2-

90% CH3CN/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with negative mode of detection. 
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Figure A24. ESI-LCMS analysis of pure Ac-DazaIYET-NH2, 2.38, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with negative mode of detection. 
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Figure A25. RP-HPLC analysis of crude Ac-DIazaFET-NH2, 2.40, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A26. ESI-LCMS analysis of crude Ac-DIazaFET-NH2, 2.40, using a linear gradient 

2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with positive mode of detection. 
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Figure A27. RP-HPLC analysis of crude Ac-DIazaFET-NH2, 2.40, using a linear gradient 2-

90% CH3CN/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A28. ESI-LCMS analysis of pure Ac-DIazaFET-NH2, 2.40, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with positive mode of detection. 
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Figure A29. ESI-LCMS analysis of pure Ac-DIazaFET-NH2, 2.40, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A30. ESI-LCMS analysis of crude Ac-DIazaFET-NH2, 2.40, using a linear gradient 

2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with positive mode of detection. 
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Figure A31. RP-HPLC analysis of crude Ac-DIazaYET-NH2, 2.36, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A32. ESI-LCMS analysis of crude Ac-DIazaYET-NH2, 2.36, using a linear gradient 

2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with negative mode of detection. 
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Figure A33. RP-HPLC analysis of pure Ac-DIazaYET-NH2, 2.36, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A34. ESI-LCMS analysis of pure Ac-DIazaYET-NH2, 2.36, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with positive mode of detection. 

 



  

 

Page 152 of 172 

  

 

 
 

Figure A35. RP-HPLC analysis of pure Ac-DIazaYET-NH2, 2.36, using a linear gradient 2-

90% CH3CN/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A36. RP-HPLC analysis of crude Ac-DIazaYET-NH2, 2.36, using a linear gradient 2-

90% CH3CN/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with positive mode of detection. 
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Figure A37. RP-HPLC analysis of crude Ac-DIaza(DOPA)ET-NH2, 2.41, using a linear 

gradient 2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-

phase column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 

mL/min with detection at 214 nm. 
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Figure A38. RP-HPLC analysis of crude Ac-DIaza(DOPA)ET-NH2, 2.41, using a linear 

gradient 2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-

phase column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 

mL/min with positive mode of detection. 
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Figure A39. RP-HPLC analysis of pure Ac-DIaza(DOPA)ET-NH2, 2.41, using a linear 

gradient 2-90% CH3CN/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-

phase column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 

mL/min with detection at 214 nm. 
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Figure A40. ESI-LCMS analysis of crude Ac-DIaza(DOPA)ET-NH2, 2.41, using a linear 

gradient 2-90% CH3CN/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-

phase column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 

mL/min with negative mode of detection. 
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Figure A41. RP-HPLC analysis of pure Ac-DIaza(DOPA)ET-NH2, 2.41, using a linear 

gradient 2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-

phase column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 

mL/min with detection at 214 nm. 
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Figure A42. ESI-LCMS analysis of pure Ac-DIaza(DOPA)ET-NH2, 2.41, using a linear 

gradient 2-90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-

phase column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 

mL/min with negative mode of detection. 
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                                       2.28 

Figure A43. RP-HPLC analysis of crude Ac-DIYET-NH2, 2.28, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with detection at 214 nm. 
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Figure A44. ESI-LCMS analysis of crude Ac-DIYET-NH2, 2.28, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with positive mode of detection. 
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Figure A45. RP-HPLC analysis of pure Ac-DIaza(DOPA)ET-NH2, 2.41, using a linear 

gradient 2-90% CH3CN/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-

phase column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 

mL/min with detection at 214 nm. 
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Figure A46. ESI-LCMS analysis of pure Ac-DIYET-NH2, 2.28, using a linear gradient 2-

90% CH3OH/H2O (0.1% FA) over 15 min using a Symmetry Shield C18 reverse-phase 

column (150 × 4.60 mm, 3.5 μm) set at a temperature of 25 °C at a flow rate of 1 mL/min 

with positive mode of detection. 
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 Figure A47. 
1
H NMR spectra of Ac-DIaza(DOPA)ET sequence, 2.41, (2 mM) in DMSO-d6. 
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Figure A48. 
1
H NMR spectra of Ac-DIYazaET sequence, 2.42, (2 mM) in DMSO-d6. 
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Figure A49. 
1
H NMR spectra of Ac-DazaIYET sequence, 2.38, (2 mM) in DMSO-d6. 
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Figure A50. 
1
H NMR spectra of Ac-DazaGYET sequence, 2.39, (2 mM) in DMSO-d6. 
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Figure A51. 
1
H NMR spectra of Ac-DazaAYET sequence, 2.37, (2 mM) in DMSO-d6. 
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Figure A52. 

1
H NMR spectra of Ac-DIYazaET sequence, 2.42, (2 mM) in DMSO-d6. 
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Figure A53. 
1
H NMR spectra of Ac-DIazaFET sequence, 2.40, (2 mM) in DMSO-d6. 
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Figure A54. 
1
H NMR spectra of Ac-DIazaYET sequence, 2.36, (2 mM) in DMSO-d6. 
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Figure A55. 2D NOESY spectrum and conformational analysis of Ac-DIYET-NH2, 

2.28, (2 mM) in DMSO-d6. 
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