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ABSTRACT 

QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) is an extraction technique 

developed by Anastassiades and co-workers initially for the extraction of veterinary 

drugs from animal tissue.  Since its inception, it was discovered that this method is 

particularly adept for the extraction of polar and basic compounds, thus the majority of 

research previously performed using QuEChERS involves the extraction of pesticides 

from various matrices, especially fruits, vegetables, and other food products. Combining 

a liquid-liquid extraction (LLE) and a dispersive solid phase extraction (d-SPE) clean up, 

QuEChERS provides a clean sample for analysis by gas chromatography (GC) or liquid 

chromatography (LC) and is commonly used for samples with complex matrices.   

 

The goal of this work was to expand the research that has been previously performed 

using QuEChERS, as reviewed in Chapter 1, particularly in the area of GC analysis by 

exploring both the fundamental chemistry involved in the method as well as expanding 

its applications.  The first original portion of the research performed involved 

investigating the chemistry in QuEChERS using a model study, the extraction of caffeine 

from tea, and is detailed in Chapter 2.  QuEChERS parameters have been optimized in 

the past but those optimized parameters have yet to be studied in depth to provide a 

deeper understanding of the chemistry involved in both the LLE and d-SPE portions of 

the method.  Study parameters such as pH, salt amount and type, solvent amount and 

type, temperature, extraction kinetics, and the partition coefficient of the final optimized 

method were evaluated.  The findings from studying these parameters were then applied 

to several original applications performed during the entirety of this research.  Analytical 
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figures of merit were determined for the method during validation as was percent 

recovery.  A percent recovery greater than 95% and an intra and interday %RSD less than 

6% and 12%, respectively, illustrated a successful and reproducible extraction for 

caffeine from tea using QuEChERS. 

 

The applications of QuEChERS investigated during the course of this research include: 

the extraction of glucocorticoids from water and herbal medicinal products using gas 

chromatography triple quadrupole mass spectrometry (GC-MS/MS) and high 

performance liquid chromatography (HPLC), the extraction of hormones from water 

using GC-MS/MS and GCxGC-TOFMS including a comparison of QuEChERS to solid 

phase microextraction (SPME) using GC-MS/MS, and finally the extraction of drugs of 

abuse from synthetic urine. 

 

The first two QuEChERS applications involved original work for the analysis of two 

classes of steroids in herbal medicinal products (HMPs) via gas chromatography triple 

quadrupole mass spectrometry (GC-MS/MS).  The first class of steroids investigated 

were 8 glucocorticoids studied for their possible adulteration in herbal medicines which 

target joints due to their ability to reduce inflammation.  Three main QuEChERS 

parameters were optimized including pH, salt amount, and solvent type for these 

compounds in water.  The optimized QuEChERS and GC-MS/MS methods were then 

applied to real herbal medicines for these 8 steroids.  Method validation was performed 

including percent recovery and partition coefficients for each of these steroids from 

water.  The second class of steroids investigated was 7 hormones including estrone and 
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estradiol. In this application, the optimized QuEChERS method from use with the 

glucocorticoids was used to investigate the presence of these compounds in herbal 

medicines as well.  The analysis of both steroid classes in HMPs using GC-MS/MS has 

not been performed in the literature and thus is an addition to the work that has been 

performed using QuEChERS-GC.  The method development for both sets of steroids can 

be found in Chapter 3.   

 

A third and fourth application involved use of the 7 hormones from the previous study.  

In the third application discussed in Chapter 4, the QuEChERS method was briefly 

compared to an optimized solid phase microextraction (SPME) method in which the fiber 

type, sample preparation parameters, and SPME extraction time were optimized.  

Samples containing the hormones of interest were prepared using the same concentration 

for both the QuEChERS and SPME methods.  The optimized methods were then applied 

to each sample and the resulting peak areas were compared to determine the extraction 

ability of these methods against each other.  A comparison between QuEChERS and 

SPME has not been performed in the literature and is thus a third original contribution to 

the literature using QuEChERS.   

 

The fourth application involved the pairing of the original current work using SPME and 

GC-MS/MS with the work performed by a former student using SPME and 

comprehensive two-dimensional gas chromatography time of flight mass spectrometry 

(GCxGC-TOFMS) for these hormones.  A comparison of these two instruments is 
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included in Chapter 5 of this thesis as well as the resulting chromatograms for the 

analysis of these compounds. 

 

A fifth application study using QuEChERS was performed using the first set of 8 

glucocorticoids and LC.  It was attempted to reproduce and improve a previously 

published high performance liquid chromatography (HPLC) method for the analysis of 

these 8 steroids to determine the method reproducibility and ruggedness.  It was 

interesting to find that the gradient method reported was not reproducible and provided 

limited separation of the steroids on our instrumentation; however, an isocratic method 

achieved separation for all of the steroids of interest using both a similar length column 

as described by the published article as well as a shorter, more efficient column in which 

total elution time was reduced from 25 minutes to 10 minutes.  The method optimization 

is discussed in detail in Chapter 6 of this thesis.     

 

A final original application of QuEChERS involved the extraction of drugs of abuse from 

synthetic urine.  There has been some work performed for the extraction of drugs of 

abuse from blood using QuEChERS with both LC and GC; however, the extraction of 

these drugs of abuse from urine using QuEChERS-GC has yet to be published.  This 

study was performed using both GC-MS/MS and GC-MS-SIM and is being completed by 

an undergraduate student at Seton Hall, Leanne Mocniak, whom I was mentoring during 

my time as a graduate student.  She will be finishing a comparison of the QuEChERS 

method for the extraction for these drugs from synthetic urine to both ionic liquid single 

drop microextraction (IL-SDME) and solid phase microextraction (SPME).  She will also 
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be evaluating the effects of derivatization and non-derivatization on the recovery of the 

analytes of interest.  Chapter 7 of this thesis discusses the method optimization completed 

thus far as well as a brief description of future work to be performed.   

 

The end of Chapter 7 includes a brief look at future work that can be performed using 

QuEChERS as well as future uses of the method.  The possible uses of QuEChERS-GC 

are truly unlimited as many of the analytes analyzed using QuEChERS-LC are amenable 

to QuEChERS-GC.  Thus the applications of QuEChERS-GC can include those 

previously employed using LC as well as fields of study yet to be fully explored using 

QuEChERS in general including forensic samples. 
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CHAPTER 1 – AN INTRODUCTION TO THE THEORY OF QUECHERS 

AND SEPARATION VIA GAS CHROMATOGRAPHY  

 
 
This chapter briefly summarizes the various research performed in the literature using 

QuEChERS, focusing on areas using gas chromatography for instrumental analysis as 

well as the theory behind gas chromatography mass spectrometry.  The theory of 

QuEChERS and method optimization are discussed and provide the knowledge necessary 

for future chapters in which the research performed will be discussed.  As the analysis of 

pesticides dominates the literature for both liquid chromatography (LC) and gas 

chromatography (GC) with QuEChERS, the analysis of these compounds will be briefly 

explored in this chapter; however, particular attention will be paid to less common types 

of analysis and what will hopefully be the future of QuEChERS, including the analysis of 

drugs, organic contaminants, mycotoxins, and a few novel methods.  

 

1.  QuEChERS Introduction 

QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) offers several advantages 

over other extractions in that it is quickly, easily, and safely performed, as its name 

implies, through the use of non-halogenated solvents and simple methodology.  

Anastassiades developed the QuEChERS method while performing postdoctoral research 

under Lehotay.  The method was originally designed for the extraction of veterinary 

drugs from animal tissues; however, its success with basic, polar compounds was quickly 

realized and the method was adopted for pesticide extraction in plant material [1].  
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Anastassiades and Lehotay presented the method in 2002 in Rome at the European 

Pesticide Residues Workshop, and the first publication of QuEChERS providing a 

detailed method was in 2003 by Anastassiades, Lehotay, Stajnbaher, and Schenck for 

pesticide residues [2].   Since its inception, QuEChERS has evolved to include buffering 

salts to increase recovery of analytes that are pH dependent in the AOAC 2007.01 

method [3] as well as the use of various forms of buffering salts including citrates in the 

European Standard EN 15662 method in order to expand the working range of 

QuEChERS [4].  Not only have the methods evolved over the years, but also the matrices 

in which QuEChERS is applied have expanded. The various techniques of QuEChERS 

and gas chromatography and how it has evolved are the topics of discussion for this 

chapter.   

 

Initially, QuEChERS demonstrated increased recovery and reproducibility compared to 

previous methods including classic multi-residue methods for analytes such as pesticides 

residues extracted from food products. QuEChERS has been used for pesticides to such 

an extent that there are now over 650 pesticides and metabolites present in the EURL-

datapool webpage for validation data of QuEChERS methods [5].  QuEChERS is an ideal 

technique for extracting complex matrices, as it combines a liquid-liquid extraction 

(LLE) and a dispersive solid phase extraction (d-SPE), allowing for removal of matrix 

interferences and generating clean samples.  Agricultural products can have quite 

complex matrices and thus QuEChERS is well suited to the extraction of analytes from 

these matrices.  Pesticide, insecticide, fungicide, and herbicide extraction from food 

products, drinks, and soil using QuEChERS dominates the current literature for analysis 
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with both gas chromatography and liquid chromatography, with the latter being more 

prevalent [1], [6], [7], [8].   

 

QuEChERS has been used for several compounds and matrices other than pesticide 

extraction from agricultural products. Research has been performed regarding the 

extraction of mycotoxins and organic contaminants, such as volatile organic compounds 

(VOCs) and polycyclic aromatic hydrocarbons (PAHs) in matrices including food and 

drink, animals, sewage and water treatment sludge, breast milk, and baby formula [9], 

[10], [11].  Another area of use for QuEChERS involves veterinary drug extraction from 

animal products, urine, and soil, though this area primarily uses liquid chromatography 

(LC) for analysis [12]. Pharmaceutical drugs such as steroids, hormones, and 

acetaminophen have been extracted from sewage and water treatment sludge, soil, dietary 

supplements, livestock, and biological matrices [13], [14].  Though the analysis of 

biological matrices has been explored with QuEChERS for these compounds, 

QuEChERS has yet to be fully investigated for the analysis of drugs of abuse in matrices 

such as urine, blood, and hair.  The success of QuEChERS for the use of veterinary and 

pharmaceutical drug extraction from similar matrices indicates that QuEChERS-GC 

lends itself well to the analysis of drugs in forensic and pharmaceutical samples.    

 

The aforementioned areas of QuEChERS applications be discussed, as well as the use of 

instrumental analysis after extraction, with emphasis on those that are most commonly 

used in analysis of forensic drug samples, gas chromatography.  Most of the current 

literature involves analysis with liquid chromatography, especially the analysis of 
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veterinary drugs.  Conversely, the field of forensics is primarily gas chromatography 

based and thus this chapter will mainly address the use of QuEChERS and gas 

chromatography for sample analysis.   

 

 

1.1.  QuEChERS Theory and Methodology 

The QuEChERS method involves two main steps: a liquid-liquid extraction and a 

dispersive solid phase extraction clean up step.  In the first step, an organic solvent such 

as acetonitrile (ACN) is used to extract an aqueous-based sample in which salts are used 

to separate the aqueous and acetonitrile phases, as they are miscible.  In the second step, a 

d-SPE sorbent is added to bind unwanted compounds, providing a cleaner sample for 

analysis.  As mentioned above there are three commonly used methods that have given 

rise to all of the current QuEChERS methods: the original method, the AOAC 2007.01 

method, and finally the European Standard EN 15662 method [8].  The basic steps for 

each method are the same, a LLE between an organic phase and water with the use of 

salts for liquid-liquid partitioning.  The sample is shaken then centrifuged and an aliquot 

of the organic extract is removed and subjected to a d-SPE clean up using magnesium 

sulfate (MgSO4) and a sorbent that will bind matrix interferences such as primary 

secondary amine (PSA) as pictured in Figure 1-1.  The sample can then be analyzed using 

GC or LC.  The fundamental chemistry involved in the parameters of both the LLE and 

d-SPE steps including the effect of adding salts in the LLE as well as different solvents 

will be discussed below and differences between the three aforementioned methods will 

be outlined as seen in Figure 1-2.    
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Figure 1-1. Structure of endcapped primary secondary amine (PSA) solid phase 
extraction (SPE) bulk packing. 
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In at 50mL centrifuge tube: 
Add 10mL of ACN to10g 

homogenized/hydrated 
sample 

Add internal standard 
Shake 

To the 50mL centrifuge tube: 
Add 4g MgSO4 and 1 g NaCl 

Shake vigorously for 1 
minute 

Centrifuge for 5 minutes 
(5000rpm) 

In at 50mL centrifuge tube: 
Add 15mL of 1%  Acetic 

Acid in ACN to15mL 
homogenized/hydrated 

sample 
Add internal standard 

Shake 

To the 50mL centrifuge tube: 
Add 6g MgSO4 and 1.5g 

NaOAc 
Shake vigorously for 1 

minute 
Centrifuge for 1 minute 

(>1500rcf) 

In at 50mL centrifuge tube: 
Add 10mL of ACN to 10g 

homogenized/hydrated 
sample 

Add internal standard 
Shake 

To the 50mL centrifuge tube: 
Add 4g MgSO4 1 g NaCl, 1g 

Na3Citr, 0.5g Na2HCitr 
Shake vigorously for 1 

minute 
Centrifuge for 5 minutes 

(5000U/min) 

Step	  1:	  Liquid-‐Liquid	  Extraction	  Methodology	  

Original QuEChERS Method 
Anastassiades and Lehotay 2003 

AOAC QuEChERS Method 
AOAC 2007.01 

Buffered QuEChERS Method 
EN 15662 

To a microcentrifuge tube with 
150mg MgSO4 and 50mg PSA: 

Transfer 1mL of supernatant 
(organic layer) 

Shake for 1 minutes 
Centrifuge for 1 minute at 

6000rpm 

Transfer	  0.5mL	  to	  vial	  for	  GC	  
or	  LC	  analysis	  

To a dispersive clean-up tube with 
MgSO4,, PSA (C18, GCB or 
ChloroFiltr can be added for 

additional clean-up: Transfer 1mL 
supernatant (organic layer) 

Shake for 30 seconds 
Centrifuge for 1 minute (>1500rct) 

For	  GC/MS:	  Preserve	  with	  toluene	  
For	  LC/MS/MS:	  Preserve	  with	  

6.7mM	  formic	  acid	  
Add	  triphenyl	  phosphate	  

surrogate	  

To a dispersive clean-up tube with 25mg 
PSA and 150mg MgSO4 (plus 2.5 or 
7.5mg GCB to remove pigments): 

Transfer 1mL supernatant (organic layer) 
Shake for 30 seconds 

(5 minutes using GCB) 
Centrifuge for 5 minutes (3000U/min) 

Preserve	  with	  5%	  formic	  acid	  in	  ACN	  
Analyze	  by	  GC/MS	  or	  LC/MS/MS	  

Step 2: Dispersive Solid Phase Extraction Clean-up Methodology 

Figure 1-2.  Methodology of the LLE and clean up step for the original, AOAC 2007.01, and EN  15662 
QuEChERS methods.  Adapted from The UCT Pesticide Residue Analysis QuEChERS Information Booklet [8]. 
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During the LLE, acetonitrile, ethyl acetate, or acetone are the three organic solvents most 

commonly used during QuEChERS, as they are safer than chlorinated solvents.  ACN is 

the most frequently used organic solvent of the three as it minimizes the amount of 

interferences extracted while also extracting a broad range of analytes.  The LLE also 

includes the use of salts to drive the analyte of interest into the organic solvent as well as 

aid in phase separation.  Sodium chloride (NaCl) and magnesium sulfate (MgSO4) are 

used in the original and European methods, with the latter also using citrate buffering 

salts including sodium citrate dibasic sesquihydrate (Na2HCitr-1.5H2O) and sodium 

citrate tribasic dehydrate (Na3Citr-2H2O) [2], [4].  Salts aid in the partitioning of polar 

compounds by increasing the ionic strength that can result in salting out or salting in 

depending on the properties of the compound and solvents.  Adding salt can increase the 

polarity of a solvent, thus increasing the solubility of the polar compounds in that solvent.  

The goal is to increase solubility into the organic layer.  During the LLE, sodium chloride 

decreases the amount of polar interferences extracted, allowing for better selectivity for 

the compound of interest.  Magnesium sulfate works to improve polar analyte recovery 

and aids in solvent partitioning during the LLE.  Most publications cite MgSO4 and NaCl 

in a 4:1 ratio; however, different salts such as CaCl2 can be used which may better serve 

in the extraction process.  Other salts and buffers can also be employed as seen in Figure 

1-1, depending upon the analytes of interest.  The AOAC method uses MgSO4 and 

sodium acetate (NaAc) rather than NaCl as well as ACN with 1% acetic acid in order to 

buffer the system for base-sensitive problematic pesticides such as folpet, dichlofuanid, 

and pymetrozine [3].  It is important to understand the effects of these salts on the 
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partitioning process so one can choose the proper solvent and salts for the optimal 

extraction of the analyte(s).    

   

 The d-SPE step is similar in all three methods: a clean up sorbent such as primary 

secondary amine (PSA) removes polar matrix interferences such as sugars, fatty and 

organic acids, and some pigments, and MgSO4 is added to act as a desiccate, removing 

any water transferred with the organic phase [2], [3], [4].  An aliquot of the liquid is then 

transferred to a vial for analysis.  In the European method it is suggested to acidify the 

extract with formic acid once QuEChERS is complete in order to improve the storage 

conditions for base-sensitive pesticides [4].  The sorbent chosen can be optimized based 

upon the analytes of interest to provide the cleanest sample.  Each sorbent removes 

specific interferences to provide a cleaner sample depending on the composition of the 

matrix.  Some examples include: primary secondary amine (PSA) which decreases levels 

of organic acids and lipids based upon weak ion exchange, endcapped C18 where 

residual silanols of the sorbent have been reacted with reagent so they are no longer 

active which removes lipids and non-polar interferences, graphitized carbon black (GCB) 

which works to bind planar analytes and lower the recovery of pigments, and 

aminopropyl which is similar to PSA but has less affect on base sensitive analytes, 

providing higher recovery of those analytes.  Dual phase sorbents that combine two or 

more of the aforementioned sorbents are also of interest, especially for specifying the 

removal of certain compounds.  For example, a dual phase sorbent of GCB/PSA removes 

pigments while helping to retain planar analytes whereas GCB alone would remove the 

latter.  The choice of sorbent would depend on the matrix of the sample as well as the 
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composition of the analytes of interest.  The optimized result would provide high 

recovery and remove matrix interference peaks.  

 

It should be noted that though the original publications for each of the three methods 

have specific amounts of reagents that were used, it is important to optimize each step in 

the QuEChERS method for the compounds under investigation as the optimal parameters 

may vary from those pesticides that were analyzed in the original publications.  For 

instance, the solvent system, amounts and types of salts used, and choice of d-SPE 

sorbent should all be optimized, with the ultimate goal of increased recovery and removal 

of matrix interferences [1], [6], [7], [8].   

 

For example, optimization of a QuEChERS method for the extraction of several basic 

drugs of abuse and their metabolites from whole blood samples was performed by 

Matsuta and co-workers [14].  In Matsuta’s work, the dehydrating reagent, organic 

solvent, pH, and adsorbent type were optimized.  In the first step of QuEChERS, 

inorganic salts are used to aid in layer separation between the organic and aqueous phase 

and drive the analyte into the organic phase.  Here, MgSO4 and Na2SO4 were examined 

due to their solubility and neutral pH in water.  Here, MgSO4 provided easier collection 

of the organic phase with an optimized amount of 100mg (larger amounts decreased the 

organic layer volume obtained).  Four organic solvents were investigated: chloroform, 

chloroform-isopropyl alcohol (3:1 v/v), ethyl acetate, and acetonitrile.  The two 

chloroform-based solvents formed emulsions consisting of an aqueous layer that persisted 

on the surface of the organic layer making recovery of the organic layer difficult, while 
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acetonitrile and ethyl acetate provided better phase separation.  Acetonitrile provided the 

best recovery so it was used for further studies.  The pH was adjusted to 5 and 9 by using 

0.2% acetic acid in acetonitrile and 5mg of Na2CO3, respectively.  Only one metabolite, a 

metabolite of zolpidem, showed significant pH effects, though an acidic pH (pH 5) 

provided better recoveries for all compounds than neutral or basic conditions as well as 

decreasing loss of volatile amine drugs present in the sample.  The final optimized 

parameter was the adsorbent.  The adsorbent was added prior to the LLE in order to 

scavenge cholesterol that was interfering in the gas chromatographic analysis with 

triazolam.  Sorbents C2, C18, CH, and EC (Envi-Carb) were investigated and it was found 

that EC scavenged 90% of the cholesterol and was chosen as the optimal sorbent.  A 

portion of this study that should be included in all QuEChERS studies for new 

applications was the comparison of the QuEChERS method to LLE or another traditional 

extraction method commonly used for these analytes and matrix.  The LLE consisted of 

chloroform-isopropyl alcohol (3:1 v/v) at pH 4.5 and 9.  QuEChERS was shown to 

provide better recoveries for all analytes over the conventional LLE method, thus 

demonstrating the utility of QuEChERS for this application [14].    

 

It is well known that QuEChERS methods increase recoveries for very polar, basic 

pesticides: compounds that can be problematic when using other multi-residue methods.  

Average recoveries of 95% and a repeatability of less than 5% in conjunction with a rapid 

and cost effective method (less than 30min and $1 per sample) caused the method to 

become the most commonly used sample preparation method for pesticide residues 

worldwide.  Now that more research has been performed, the use of QuEChERS has 



	   	   32	   	   	  

expanded, allowing for its application to more areas providing an easier, safer, more cost 

effective sample preparation alternative for many different compounds. 

 

Not only is it of interest in this current work to use the QuEChERS method for sample 

preparation, but it is also of interest to improve upon the most current QuEChERS 

method by investigating the theory as it pertains to such items as the kinetics and 

thermodynamics involved in the partitioning during the liquid extraction step between the 

analyte, solvents, and salts as well as the mechanism occurring in the d-SPE step in order 

to provide the most efficient extraction possible. This will involve understanding the 

theory involved in extraction equilibrium.  The partition coefficient (𝐾!) involved during 

equilibrium is the distribution constant (𝐾!)  and is defined as: 

 

𝐾! =   
[!]!"#$%&'
[!]!"#$%&

≡ 𝐾!        (Equation 1-1)  

    

For an extraction, it is desired that the distribution constant be greater than one so as to 

have a majority of the analyte in the extraction solvent [15], [16].  The extraction is also 

effected by type of solvent, temperature, and pH used during the process.  The pH of the 

aqueous sample phase must be adjusted to provide the non-ionized form of the analyte of 

interest in order to maximize extraction.  Thus, in order to optimize Kc, several 

experiments will have to be performed in which the solvent, pH, and temperature of the 

extraction are optimized.  
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The temperature of the system is related to thermodynamics in that it affects the 

spontaneity of the process.  The reaction quotient, Q, and Gibbs Free Energy, ΔG, are 

temperature dependent as seen below: 

 

∆𝐺 =   −𝑅𝑇𝑙𝑛𝑄        (Equation 1-2) 

𝑄 = 𝑒𝑥𝑝 ∆!
!"

            (Equation 1-3)  

 

Here, Q is of interest as it reflects the completeness of an extraction, similar to KD, and 

thus Equation 1-2 has been rearranged to Equation 1-3.  The reaction quotient, Q, is 

inversely proportional to temperature as seen in Equation 1-3.  As temperature decreases, 

Q will be greater than 1, indicating a larger concentration of the analyte of interest 

present in the extracting medium.  This will provide a more negative ΔG indicating that 

the extraction is more favorable [16].  The affect of temperature on the extraction steps 

involved in the QuEChERS method will be explored in Chapter 2 for the extraction of 

caffeine from tea and water.     

 

Kinetics is also involved in the extraction process.  The application of agitation to the 

sample will provide faster kinetics resulting in a faster extraction since the amount of 

analyte dissolved over time is increased.  Ultrasonication-assisted extraction uses 

ultrasonic vibrations for agitation resulting in a release of the analyte from the matrix into 

the extraction solvent.  The solvent system must also be considered during an extraction 

in order to maximize the extraction.  Solubility is affected by polarity, which can affect 

the Van der Waals interactions occurring during extraction.  When the polarities of the 
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analyte and solvent are similar, this causes the strength of the Van der Waals interactions 

to dominate other intermolecular interactions such as dipole-dipole and hydrogen 

bonding, resulting in greater solubility [16].    All of these factors play a role in the 

extraction process and must be considered here.  This will be accomplished through 

optimization of the various parameters as stated above.  By evaluating the solvent type, 

pH, temperature, and agitation of the system, the results will provide information on the 

interactions occurring as well as the thermodynamic and kinetic properties of the system. 

 

1.2.  Current Applications of QuEChERS 

QuEChERS offers several advantages over other extractions in that it is quickly, easily, 

and safely performed, as its name implies, through the use of non-halogenated solvents 

and simple methodology.  QuEChERS also has demonstrated increased recovery and 

reproducibility compared to previous methods for analytes such as pesticides when 

extracted from food products.  QuEChERS is an ideal technique when working with 

complex matrices as it combines a liquid-liquid extraction and a dispersive solid phase 

extraction (d-SPE), allowing for removal of matrix interferences, providing a clean 

sample.  Agricultural products can have quite complex matrices and thus the extraction of 

analytes from this matrix is well suited to QuEChERS.  Pesticide, insecticide, fungicide, 

and herbicide extraction from food products, drinks, and soil using QuEChERS 

dominates the current literature for both analysis with gas chromatography and liquid 

chromatography; with the latter being more prevalent [1], [2], [3], [4].  There has been a 

multitude of research performed on the use of QuEChERS for the extraction of 



	   	   35	   	   	  

pesticides, fungicides, insecticides, and herbicides for various matrices [17].  A brief 

summary will be discussed in order to expose the reader to this area of QuEChERS, 

followed by a more in depth analysis of other applications of QuEChERS including both 

GC and LC analyses.   

 

Pesticide residues are the primary interest as it pertains to QuEChERS and their detection 

in mostly food-based products including nutraceuticals due to its larger extraction range 

for pesticides in plant based matrices [17], [18].  One study of interest evaluated the use 

of the three aforementioned main QuEChERS methods, the original unbuffered method, 

the AOAC 2007.01 acetate buffering method, and the EN 1556 citrate buffering method.  

This study looked at the extraction of 32 pesticides in fruits and vegetables using both 

GC and LC/MS and found that, in general, the three methods provided similar results for 

all matrices resulting in an overall recovery of 98% and residual standard deviations less 

than 10%.  It was found that the original unbuffered method did provide slightly lower 

recoveries for pH dependent pesticides with the acetate buffering AOAC 2007.01 method 

providing the most consistent and highest recovery for these compounds including 

pymetrozine and thiabendazole.  The use of ethyl acetate was also investigated in this 

study and gave lower recoveries as compared to acetonitrile [19].   

 

In comparing ultrasonic extraction (USE), pressurized liquid extraction (PLE), the 

European Norm Din 12393 method (acetone extraction with ethyl acetate and 

cyclohexane partitioning followed by gel permeation chromatography clean up), and 

QuEChERS, a study found that QuEChERS and PLE were the only two methods able to 
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recover all 24 pesticides using GC/MS.  This study also determined that QuEChERS was 

the most efficient extraction, providing recoveries of 27.3-120.9% [20].  The effect of 

washing and cooking foods was evaluated for the removal of pesticides.  During this 

study, 31 foods and 44 pesticides were monitored using QuEChERS and LC-MS/MS 

before washing, after washing, and after processing such as boiling.  It was concluded 

that levels of the pesticides did decrease significantly or were eliminated after washing 

and cooking with the exception of green chilies.  The level of acetamiprid actually 

increased during boiling and stir-frying of green chilies [21].    

 

Herbicide, fungicide, and insecticide residue analysis in food products or soil is also 

commonly performed using QuEChERS.  Various forms of the QuEChERS method have 

been investigated for the extraction of herbicides in polished rice, yogurt, milk, and soil 

[22-27].  In particular one study combined the liquid-liquid extraction and clean up step 

of QuEChERS in one step for the extraction of 5 herbicides in soil resulting in recoveries 

of 74.5-98.5% and RSD values form 3.2-11.8%.  Baby food was analyzed for 10 

fungicides using QuEChERS and LC-ion trap-MS/MS.  The analysis of real samples 

showed the presence of some of the fungicides investigated, but at a level below 10µg/kg, 

the cutoff level designated by the European Commission Directives [24].  One final study 

evaluated the detection of insecticides in banana leaves used to feed cattle and hogs and 

was performed using QuEChERS and GC-MS/MS with 89-104% recoveries and less 

than 9.1% RSD [25].   
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The use of QuEChERS for the analysis for these compounds has been performed using 

both GC and LC, as seen from the brief summary above.  These compounds contain 

many similar components and functional groups in compounds that have not been 

thoroughly investigated using QuEChERS, such as the analysis of drugs in forensic 

applications.  QuEChERS has also been used for various compounds and matrices other 

than pesticide extraction from agricultural products.  There has been some research 

performed regarding the extraction of mycotoxins and organic contaminants such as 

volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) in 

matrices including food and drink, animals, sewage and water treatment sludge, and 

breast milk/formula [9], [10], [11].  Another area of use for QuEChERS involves 

veterinary drug extraction from animal products, urine, and soil, though this area 

primarily uses liquid chromatography (LC) for analysis [12], [28].  Pharmaceutical drugs 

such as steroids, hormones, and acetaminophen have been extracted from sewage and 

water treatment sludge, soil, dietary supplements, livestock, and biological matrices [28], 

[29].  Though the analysis of biological matrices has been explored with QuEChERS for 

these compounds, QuEChERS has yet to be fully investigated for the analysis of drugs of 

abuse in matrices such as urine, blood, and hair.  The success of QuEChERS for the use 

of veterinary and pharmaceutical drug extraction from these same matrices indicates that 

QuEChERS-GC would lend itself very well to analysis of drugs in forensic and 

pharmaceutical samples.     

 

Not only will the aforementioned areas of QuEChERS application be discussed, but also 

will the use of instrumental analysis after extraction, with emphasis on gas 
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chromatographic analysis.  Most of the current literature involves analysis with liquid 

chromatography, especially the analysis of veterinary drugs. There are many analytical 

techniques published using QuEChERS as the sample preparation method. Ultra high 

performance liquid chromatography-electrospray tandem mass spectrometry 

(UPLC/MS/MS) gas chromatography tandem mass spectrometry (GC/MS/MS), and 

GCxGC-TOFMS are examples of the more sophisticated systems used for the analysis of 

tea for pesticides, providing more sensitive and selective techniques [30].  QuEChERS 

has also been used for the extraction of ibuprophen and its metabolites from soil, 

followed by liquid chromatography with fluorescence detection [28].  It is the success of 

these instruments, in particular GC-MS/MS and GCxGC-TOFMS, with pesticide analysis 

in complex matrices that lends its use in this research [31].   

 

1.3.  QuEChERS and Gas Chromatography 

There have been three main areas of study for the use of QuEChERS with GC excluding 

pesticide analysis: drug analysis, environmental studies concerning contaminants, and 

mycotoxins.  These three areas will be addressed in turn below with emphasis on 

QuEChERS methodology, analytical figures of merit such as percent recovery and 

detection and quantitation limits, and connections of these areas to the application of 

QuEChERS to forensic samples. 

1.3.1  Drugs 

Various drugs have been extracted from biological matrices using QuEChERS including 

pharmaceuticals, antibacterial agents, and a few drugs of forensic interest [14], [31-35].  
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A summary of the results can be seen in Table 1-1.  The work performed in this area in 

particular provides substantial evidence for the potential of QuEChERS-GC in drug 

analysis.  However, this literature for QuEChERS is sparse for gas chromatography 

analysis and forensic-type samples.   

 

All the research performed in this area with GC analysis included the same basic 

QuEChERS LLE method with the use of NaCl and MgSO4 as extraction salts and ACN 

as the solvent with varying amounts of acetic acid depending upon the matrix.  Among 

drug analysis methods, the d-SPE steps varied for the sorbent used, including primary 

secondary amine (PSA) for pharmaceuticals in whole blood [33] or graphitized carbon 

black (GCB) for benzodiazepines in blood and urine [34], and sometimes in combination 

including C18 and GCB for drugs of forensic interest [14], C18 and PSA for analysis of 

nevirapine [32], and PSA and Florisil for triclosan and methyltriclosan in fish roe and 

surimi [35].  The research performed with forensic drugs in whole blood did not use a d-

SPE step but instead employed solid phase extraction (SPE) [14].  It would be useful to 

apply the entire QuEChERS procedure to blood and compare the results to those from 

SPE to determine if the use of loose sorbent increases efficiency at binding matrix 

interferences and increasing recovery. 

 

In addition, a method similar to the d-SPE step in QuEChERS, matrix solid-phase 

dispersion (MSPD), has also been applied to drug residues including veterinary drugs, 

antibacterials, hormones, and drugs of abuse from biological matrices, including hair by 

GC-MS and the application of new sorbents such as multi-walled carbon nanotubes  
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 Table 1-1. Summary of results from the literature involving QuEChERS and GC-MS for various drugs. 
Drug(s) of 

Interest 
[reference] 

Matrix LLE d-SPE Recovery 
(%) 

Instrument LOD/LOQ 

Nevirapine 
(NVP) [32] 

Human 
Plasma 

1.5mL NVP 
1.5mL plasma 
4.0mL ACN 
(0.1%HAc) 
2.6g salts 

Entire extract 
C18 and PSA 
150mg MgSO4 

83% GC-MS  
EI – full scan 
EI – SIM  
PCI – full 
scan  
PCI - SIM 

LOD: 11.1-
29.8µg/L 
LOQ: 16.5-
66.7µg/L 
(Helium carrier 
gas PCI – SIM 
had the best 
sensitivity) 
 

Drugs of 
forensic interest 
[33] 

Whole 
blood 

100µL whole 
blood 
50mg NaCl 
100mg MgSO4 
500µL ACN 
(0.2% HAc) 

N/A 
SPE was used 
with C18 and 
GCB 

59-
93% 

GC-MS LOD: 0.01-
0.1µg/mL 

40 
pharmaceutical 
drugs [14] 

Whole 
blood 

1000µL whole 
blood  
10µL I.S. 
2000µL ACN 
250mg NaCl 
500mg MgSO4 

1000µL extract 
25mg PSA 
25mg MgSO4 
 

Above 80% GC-MS LOD: 5.6-
17.2ng/mL 
LOQ: 11.3-
39.0ng/mL 
(For 8 model 
analytes) 
Overall 
<20ng/mL 

Benzodiazepines 
[34] 

Blood and 
Urine  

10mL sample 
10mL ACN 
1g NaCL 
4g MgSO4 

1mL extract 
0.025g GCB 
0.150g MgSO4 

--- GC-MS --- 

Triclosan (TCS) 
and 
Methyltriclosan 
(MTCS) [35] 

Fish Roe 
and 
Surimi 

50mg sample 
1mL ACN 
0.5mL H2O 
50mg NaCl 
150mg MgSO4 

Entire extract 
50mg PSA 
50mg C18 
50mg Florisil 
150mg MgSO4 
Derivatization 
necessary  

97% or 
above 

GC-MS  
 

TCS surimi; fish 
roe 
LOD: 2.0ng/g; 
4.0ng/g  
LOQ: 6.6ng/g; 
13ng/g  
MTCS surimi; 
fish roe 
LOD: 2.1ng/g; 
5.6ng/g 
LOQ: .72ng/g; 
18ng/g  
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(MWCNTs) [36].  The success of this method as well as the aforementioned studies using 

QuEChERS support the viability of QuEChERS in the extraction of drugs of abuse from 

these matrices and in combination with GC-MS.    

 

There are numerous QuEChERS methods that have been performed using LC and LC-

MS for drugs that could be GC amenable as well.  A few examples include the analysis of 

steroids such as beclomethasone, cortisone acetate, hydrocortisone, dexamethasone, and 

methylprednisolone in adulterated herbal medicinal products using HPLC [27]; the 

investigation of pharmaceuticals and hormones in sewage sludge using LC time-of-flight 

mass spectrometry (acetaminophen, androstenone, caffeine, codeine, diazepam, 

ibuprofen, ketoprofen, lorazepam, mestranol, oxycodone, prednisolone, and 

progesterone) [37]; banned veterinary drugs such as boldenone, alpha-testosterone, 

naproxen, and betamethasone in urine using LC/MS [12]; and the analysis of 

pharmaceuticals and plant toxins/secondary metabolites in herbal dietary supplements 

using LC/MS (amphetamine, phentermine, tadalafil, ephedrine, methamphetamine, and 

warfarin) [38].  All of these methods used GC-amenable compounds and thus could be 

analyzed using QuEChERS-GC in addition to QuEChERS-LC. 

 

1.3.2.  Novel Applications of QuEChERS for Drugs and Similar Compounds 

The use of QuEChERS has been expanding recently to include novel applications for 

drug analysis and compounds with similar structural components including pesticides, 

herbicides, and fungicides, some of which can be seen summarized in Table 1-2 [18].  

Methods for pesticides should be translatable to the analysis of drugs.  The evaluation of 
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new sorbents for the d-SPE step is perhaps the most prevalent novel QuEChERS 

application and is the focus of this section.   

 

Pesticides, pharmaceuticals, and personal care products (PCPs) have all been investigated 

using innovative sorbents such as chitin, zirconium dioxide, multi-walled carbon 

nanotubes (MWCNTs), and magnetic nanoparticles (MNPs) in both food and drink 

matrices [39], [40], [41], [42], [43].  Chitin is very abundant and is found in shrimp shell 

waste.  It was used as the d-SPE sorbet in the investigation of contaminants in drinking 

water treatment sludge and demonstrated higher recoveries for pharmaceuticals than C18, 

PSA, and C18/PSA sorbents using LC analysis, though once again this method could be 

easily transferred to a QuEChERS-GC method as it analyzes GC amenable compounds 

(atrazine, bisphenol A, caffeine, ibuprophen, methylparaben and polyparaben) [39]. 

Another study was able to decrease matrix effects and fatty interferences in pesticide 

extraction from avocado and almonds by using a zirconium dioxide based sorbent [40].   

 

Multi-walled carbon nanotubes (MWCNTs) is another sorbent that is of interest due to 

the large surface area and unique structure that allows increased adsorption ability 

compared to other sorbents.  MWCNTs have been successfully implemented in SPE and 

this allowed for its transition into use as a d-SPE sorbent for QuEChERS for the 

extraction of pesticides from vegetables, fruits, and tea [41], [42].  A final sorbent which 

is new to QuEChERS is magnetic nanoparticles (MNPs) in conjunction with GCB and 

PSA where the supernatant of the extraction is collected using an external magnet in 

extracting pesticides from vegetables [43].   



	   	   43	   	   	  

 

 

 
 
 
Table 1-2. Summary of results from the literature involving QuEChERS and GC-MS using novel sorbents  
for d-SPE clean-up. 

Analyte(s) of 
interest 

[reference] 

Matrix LLE d-SPE Recovery 
(%) 

Instrument LOD/LOQ 

Pesticides, 
Pharmaceuticals, 
and Personal 
Care Products 
(PCPs) [39] 

Drinking 
water 
treatment 
sludge 

10g sludge 
10mL ACN 
100µL HAc 
4g MgSO4 
1g NaCl 

2mL extract 
50mg chitin 
150mg 
MgSO4 
 

50-120% LC-MS/MS LOQ; 1-
50µg/kg 
 

170 Pesticides 
[40] 

Avocado 
and 
almonds  

10g avocado 
or 5g almond 
with 5mL H2O 
10mL ACN 
1g NaCL 
4g MgSO4 
1g 
C6H5Na3O7-
2H2O 
0.5mg 
C6H6Na2O7-
1.5H2O 

5mL extract 
5mL H2O 
750mg 
MgSO4 
175mg Z-Sep 
 

Avocado 
60-
115% 
Almond 
28-
159% 

GC-
MS/MS 

Avocado and 
Almond 
LOQ: 10 and 
50µg/kg 

30 Pesticides 
[41] 

Vegetables 
and fruits 

10g sample 
10mL ACN 
1g NaCL 
4g MgSO4 

1mL extract 
10mg 
MWCNTs 
150mg 
MgSO4 
Filter 

71-110% GC-MS -
SIM 

LOD: 0.001-
0.02mg/L 
LOQ: 0.003-
0.05mg/L 
 

78 Pesticides 
[42] 

Tea 2g tea 
10mL H2O 
10mL ACN 
100µL I.S. 
1g NaCl 
4mg MgSO4 

6mL extract 
6mg 
MWCNTs 
150mg PSA 
750mg 
MgSO4 

70-120% GC-
MS/MS 

LOQ: 0.001-
0.038mg/kg 

Ten Pesticides 
[43] 

Vegetables 10g sample 
10mL ACN 
1g NaCl 
4g MgSO4 

0.5mL extract 
10mg GCB 
25mg PSA 
30mg MNPs  

69.9-125% GC-MS  
 

LOD: 0.39-
8.6ng/g 
LOQ:  1.3-
29.0ng/g 
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If these novel methods for QuEChERS-GC are successful for the analysis of pesticides 

that have many structural components such as multiple functional groups (benzene rings, 

amine groups, halogens, etc.) that drugs of abuse and pharmaceuticals possess, then it 

stands to reason that these methods would also have success in the analysis of drugs.  All 

of the above sorbents can be applied to compounds other than pesticides, such as drugs of 

abuse in complex matrices.  The success of a chitin sorbent for pharmaceutical drugs over 

previously used sorbents shows the extraction of drugs of abuse in forensic samples can 

be investigated using both the traditional QuEChERS method as well as these newer 

methods using novel d-SPE sorbents.  Molecular imprinted polymers (MIPs) are another 

form of sorbent that could expand the use of QuEChERS methods by the ability to bind a 

particular compound of interest or a particular matrix interferent.    

 

1.3.3.  Organic Contaminants 

Environmental contaminants, including volatile organic compounds (VOCs), polycyclic 

aromatic hydrocarbons (PAHs), pesticides, and endocrine disrupters (EDs) are a major 

concern so detection of these compounds in various environmental matrices including 

soil, animal tissue, and agricultural products is of interest.  These samples are complex 

and full of possible matrix interferences, making them amenable to QuEChERS. 

QuEChERS allows extraction of the compounds of interest with relatively high 

recoveries, providing a clean sample for analysis with GC-MS.  Most of the literature in 

this area involves extractions with multi-class compounds, demonstrating the range of the 

QuEChERS method.  Table 1-3 provides a summary of QuEChERS methods for the 

analysis of various organic contaminants.  Representative methods are discussed below.   
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The extraction of VOCs such as trihalomethanes, benzenes, and xylenes from soil has 

been performed using QuEChERS with recoveries ranging from 62-94%.  A difference in 

this method compared to those discussed thus far is the use of ethyl acetate (EtOAc) 

rather than ACN as the solvent during the extraction as well as no needed d-SPE step 

[44], [45], [46].  Though recoveries are greater than 60% for these analyses, it would be 

of interest to see if applying the d-SPE step would aid in increasing selectivity of desired 

analytes, which may allow for easier data interpretation with matrix interferences 

removed.  For instance, when analyzing wine for haloanisoles such as 2,4,6-

trichloroanisole, which is responsible for cork taint, the use of primary secondary amine 

(PSA) and calcium chloride (CaCl2) rather than the typical MgSO4 in the d-SPE step 

decreased extraction of sample interferences and matrix effects, improving the extraction 

results for the analytes of interest [47].  

 

The analysis of four PAHs in smoked and non-smoked teas and tea infusions was 

performed and optimized using a dual organic solvent system of ACN:acetone (60:40) 

with recoveries of 74-89%; however, an SPE clean up step using a C18 cartridge was used 

rather than a d-SPE method [48].  Another use of a dual solvent system (ACN:THF) for 

OCP and PCB extraction from salmon tissue gave a 42-79% recovery for PCBs and 47-

101% recovery for OCPs [49].  A zirconium dioxide sorbent was also used successfully 

for the extraction of organic contaminants including PCBs and PAHs from fish tissue 

[50].  These compounds are another class of analytes that have similar structure and 

functional groups to drugs, allowing for translation of the QuEChERS method from these 

contaminants to drugs of abuse.   
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Table 1-3. Summary of results from the literature involving QuEChERS and GC-MS for organic 
contaminants. 

Analyte(s) of 
interest [reference] 

Matrix LLE d-SPE Recovery 
(%) 

Instrument LOD/LOQ 

Trihalomethanes 
[44] 

Soil  5g soil 
3mL H2O 
2.5mL EtOAc 
2g MgSO4 

N/A 
Organic extract 
analyzed 
directly 

65-94% GC-ECD LOD: 6-659ng/kg 
LOQ: 17-
1998ng/kg 
 

Trihalomethanes, 
benzene, toluene, 
ethylbenzene, and 
xylenes [45] 

Soil  5g soil 
3mL H2O 
2.5mL EtOAc 
2g MgSO4 

N/A 
Organic extract 
analyzed 
directly 

66-
76% 

PTV-GC-
MS 

LOD: 0.2-15µg/kg 
LOQ: 0.5-45µg/kg 

Chloroform, 1,2-
dichlorobenzene, 
hexachlorobenzene 
[46] 

Soil 2.5g soil 
1.5mL H2O 
2.5mL EtOAc 
1g MgSO4 

N/A  
Organic extract 
analyzed 
directly 

62-93% PTV-GC-
µECD 

LOD: 0.15-
2.2µg/kg 
 

2,4,6-
trichloroanisole 
[47]  

Wine Toluene 
MgSO4 and 
NaCl 

MgSO4, PSA, 
and CaCl2  

92-108% GC-MS/MS 
GC-ToFMS 

LOD: 8.3ng/L 
 

4 PAHs 
benzo(a)anthracene, 
chrysene, 
benzo(b)fluoroanthe
ne, and 
benzo(a)pyrene [48] 

Smoked/n
on-
smoked 
black teas 
and tea 
infusions 

5g tea powder 
+ 10mL H2O 
or 10mL tea 
infusion 
10mL 
ACN:Acetone 
(60:40) 
4g MgSO4 
1g NaCl 
1g Na3Citr-
2H2O 
0.5g 
Na2HCitr-
1.5H2O 

N/A 
SPE performed 
using C18 
cartridge 

Leaves:  
74-83% 
Infusions:  
81-89% 

GC-MS/MS Leaves 
LOD: 0.2-0.3µg/kg 
LOQ:0.3-0.6µg/kg 
Infusions 
LOD: 0.1µg/kg 
LOQ: 0.2-0.4µg/kg 

OCPs and PCBs 
[49] 

Fish tissue Fish tissue 
10mL H2O 
10mL solvent 
(ACN or 
ACN/THF 
75/25) 
4g MgSO4 
1g NaCl 
1g Na3Citr-
2H2O 
500mg 
Na2HCitr-
1.5H2O 

6mL extract  
1g CaCl2 
supernatant 
from CaCl2 
shake 
900mg MgSO4 
150mg PSA 

Tilapia 
(ACN) 
70-115% 
Salmon 
(ACN/TH
F) 
42-79% 
(PCBs) 
47-101% 
(OCPs) 

PTV-GC-
MS 

LOQ 
Tilapia: 1-5ng/g 
Salmon: 2-10ng/g 

Pesticides, PCBs, 
PAHs, PBDE, 
Flame Retardants 
[50] 

Fish  10g sample 
10mL ACN 
4g MgSO4 
1g NaCl 

1mL extract 
50mg Z-Sep 

70-120% LP-GC-
MS/MS 

LOD: 0.1-10ng/g 
 

80 Environmental 
Contaminants [51] 

Honeys, 
honeybees
, and 
pollens 

5g honey/bees 
2g pollen 
10mL H2O 
(honey) 
3mL H2O 
(bees) 
8mL H2O 
(pollen) 
3mL hexane 
(bees/pollen) 
10mL ACN 

6mL extract 
PSA (honey) 
PSA/C18 
(honeybees and 
pollen) 

60-120% GC-ToFMS LOD: 0.01-
23.9ng/g 
LOQ: 3.0-70.4ng/g 
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4g MgSO4 
1gNaCl 
1g Na3Citr-
2H2O 
500mg 
Na2HCitr-
1.5H2O 
 

Bisphenol A (BPA) 
and Bisphenol B 
(BPB) [52] 

Canned 
fruits and 
vegetables 

10g sample 
100µL I.S. 
5mL H2O 
10mL ACN 
4g MgSO4 
1g NaCl 

1mL extract 
5% K2CO3 (to 
pH 10) 
50µL  C2Cl4 
30µL AA 
3mL H2O 
Derivatization 
necessary 

>69% GC-MS BPA LOD: 
0.3µg/kg 
BPB LOD: 
0.6µg/kg 

16 PAHs [53] Rice 10g sample 
10mL H2O 
10mL ACN 
(1% HAc) 
6g MgSO4 
1.5g NaOAc 

1.5mL extract 
150mg MgSO4 
50mg PSA 

70-106% GC-EI-MS LOQ: 1-5µg/kg 

40 Endocrine 
Disruptors (EDs) 
[54] 

Fish fillet 10g fish 
10mL ACN 
(1% HAc) 
2.0g NaCl 
0.3g MgSO4 
1.7g NaAc 

3mL extract 
450mg MgSO4 
75mg PSA 
375mg C18 
Filter 

70.1-
120% 

GC-MS/MS LOD: 0.3-7.5µg/kg 
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Endocrine disruptors (EDs) are a classification of organic contaminant that is commonly 

investigated, especially in fish.  Many endocrine disruptors are drugs and thus are another 

model for the use of QuEChERS-GC and drug analysis.  Alkylphenols, polychlorinated 

biphenyls (PCBs), PAHs, bisphenol A (BPA), and pesticides are all considered EDs as 

they mimic endogenous hormones, interfering with the endocrine system, preventing the 

action of those hormones.  The use of QuEChERS for this area involves the mostly citrate 

salts for analysis, though there are some which only use MgSO4 and NaCl in the LLE 

step with comparable results [50].  Other sorbents have also been investigated such as 

zirconium based sorbents as well as the use of tetrahydrofuran (THF) along with ACN in 

the extraction method which increased the recovery of polychlorinated biphenyls in 

salmon [49].  Honeybees and pollen have also been investigated for the aforementioned 

environmental contaminants and for veterinary drug residues.  Using hexanes and 

acetonitrile for the extraction combined with either a PSA sorbent (honey) or combined 

PSA/C18 sorbent (honeybees and pollen) provided a recovery of greater than 60%.  It was 

found that using hexane along with ACN improved the method by removing lipids that 

can interfere with detection [51].  As the matrices become more complex, optimization of 

all parameters involved in the QuEChERS extraction becomes increasingly critical. 

 

1.3.4.  Mycotoxins 

The study of mycotoxins via QuEChERS and GC has grown recently.  Mycotoxins are 

toxigenic molds that contaminate food.  Some analyses have been performed with GC, 

including both food and drink products.  Sodium carbonate (Na2CO3) has been used in 

most of these methods to alkalinize the sample, aiding in extraction of the analyte(s), in  
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 Table 1-4. Summary of results from the literature involving QuEChERS and GC-MS for various 
mycotoxins. 

Mycotoxin 
[reference] 

Matrix LLE d-SPE Recovery 
(%) 

Instrument LOD/LOQ 

Patulin [55] Apple juice 5mL sample 
10µg/mL patulin 
15mL ACN 
MgSO4:NaCl:N
a2CO3 (4:1:0.5) 

11.5mL extract 
400mg PSA 
1200mg MgSO4 
Derivatization 
necessary 

79.9-
87.9% 

GC-MS LOD: 0.4µg/mL 
LOQ: 1.3µg/mL 
 

Multi-
mycotoxin 
[56] 

Wheat 
semolina  

10mL sample 
10mL ACN 
1g NaCL 
4g MgSO4 

1mL extract 
0.025g GCB 
0.150g MgSO4 
Derivatization 
necessary 

74-
124% 

GC-MS/MS LOQ: 1.25-
10µg/kg 

Multi-
mycotoxin 
[57] 

Popcorn  5g sample 
10mL H2O 
(20mL for 
popped sample) 
5.0mL Na2CO3 
10.0mL ACN  
1g NaCl 
4g MgSO4 

6mL extract 
300mg C18 
900mg MgSO4 
Derivatization 
necessary 

Unpopped 
61-118% 
Popped 
65-89%  

GC-MS  
 

LOD: 7-65µg/kg 
LOQ: 20-
196µg/kg 
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contrast to most other QuEChERS methods as can be seen in Table 1-4.  Analysis of 

mycotoxins via GC-MS also requires derivatization of the analyte after the clean up step 

and before injection [55], [56], [57].  None of the methods have attempted a pre-

extraction derivatization, which may be of interest to try in future work.       

 

2.  Basic Theory of Gas Chromatographic Separations 

2.1.  Discussion of Mobile and Stationary Phases 

The purpose of any type of chromatography is to separate a mixture into its components.  

In gas chromatography (GC), this is achieved based upon an analyte’s vapor pressure and 

partitioning between two phases, a mobile phase and stationary phase.  The stationary 

phase is contained within a column.  The column can be a packed column containing 

solid particles that aid in separating the sample, or a capillary column that has a liquid 

coating on the walls of the capillary tube.  In this research, a capillary column was used 

during GC analysis.  The choice of stationary phase depends upon the sample 

composition and goals of analysis.  The principle involved in extractions of ‘like 

dissolves like’ is also applicable in chromatography.  An analyte that is more polar will 

not be as attracted to a non-polar stationary phase and will thus not be retained as long as 

a non-polar compound and will elute faster.  While traveling through the column, Van der 

Waals interactions occur between the analyte and stationary phase, causing the resulting 

separation.  These interactions will determine the amount of analyte present in the 

stationary phase as compared to the mobile phase.  For instance, if the analyte is polar 

and a non-polar stationary phase is used, the Van der Waals interactions will not be as 
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strong as if a non-polar analyte were being analyzed.  This scenario would result in less 

interaction of the analyte with the stationary phase and a shorter retention time.  The 

strength of these interactions will in turn affect the partition coefficient as will be further 

discussed in section 2.2.  The most commonly used stationary phase for a wide range of 

analyses is a 5% diphenyl/95% dimethyl polysiloxane phase [15]. 

 

The mobile phase is an inert gas such as helium, hydrogen, or nitrogen, which carries the 

sample through the instrument, hence it is also known as a carrier gas.  Effects of 

different gases have been studied and plotted in what is known as a van Deemter plot.  

This plot associates the kinetic and mass transfer effects of chromatography through the 

use of “rate theory” as developed by van Deemter for explaining band broadening of 

peaks in a chromatogram.  The van Deemter equation illustrates the terms involved in 

band broadening. 

 

𝐻 = 𝐴 +   !
!
+ (𝐶! +   𝐶!)𝜇      (Equation 1-4) 

 

In the above equation, A is the eddy diffusion, or multi-path term.  This term is of more 

importance in liquid chromatography and packed columns in which the analytes can take 

multiple paths through the column (see Figure 1-3A).  Longitudinal diffusion is 

accounted for by the B term, and the mass transfer effects in both the stationary and 

mobile phases are seen in the Cs and Cm terms, respectively (Figures 1-3B and C).  Linear 

velocity of the carrier gas, 𝜇, can effect each term.  An increase in carrier gas flow will 

decrease the occurrence of longitudinal diffusion; yet increase the mass transfer effects.  
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Figure 1-3. The three terms in the Van Deemter equation.  A: eddy diffusion; B: longitudinal 
diffusion; C: mass transfer.  Adapted from Y. Kazakevich Separations Introduction Lecture Slides  
[59]. 

Eddy	  Diffusion	  through	  
a	  packed	  column	  

Longitudinal	  Diffusion	  

Mass	  Transfer	  

Solute	  molecules	  



	   	   53	   	   	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4. The three terms in a Van Deemter plot (left) and the various gases as how they appear in the 
Van Deemter plot (right).   
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This equation demonstrates why it is important to consider not only the linear velocity 

used but also the type of carrier gas.  By plotting the resulting H values versus the linear 

velocity for various gases as in Figure 1-4, it can be seen how the velocity and gas type 

affect the chromatography.  The optimal linear velocity providing the best column 

efficiency in which the variables of the van Deemter equation are minimized varies with 

different gases as well.  The carrier gas used in this research was helium as it is safer to 

use than hydrogen, provides faster analyses than nitrogen, and has a greater use over a 

wider range of carrier gas flow rates as seen in Figure 1-4 [15], [16], [58].  

 

2.2.  Discussion of Analyte Retention and Sample Introduction  

Analyte retention is best explained by first discussing the partitioning between the mobile 

phase (MP) and stationary phase (SP) providing a partition coefficient (Kc) as seen 

below. 

 

𝐴 !" ↔    𝐴 !"              𝑤ℎ𝑒𝑟𝑒            𝐾! =   
! !"
! !"

    (Equation 1-5) 

 

The partition coefficient has a relationship to the retention factor of the analytes (k) using 

the phase ratio (β) which is equal to the volume of analyte in the mobile phase to the 

stationary phase and is determined using the capillary column’s dimensions as seen in 

Equation 1-6 (r = the column’s radius, df = stationary phase film thickness). 

 

𝐾! = 𝑘𝛽              𝑤ℎ𝑒𝑟𝑒              𝛽 =    !
!!!

     (Equation 1-6) 
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The retention of the analytes is not only based upon the capillary column and stationary 

phase selected, but also the properties of the analyte including the partition coefficient 

which is affected by the analyte’s boiling point, vapor pressure, and volatility [16].   

 

Volatility is an important property of the sample under investigation.  As the injection 

port for sample introduction is heated, it is imperative that the sample be volatile or semi-

volatile to the extent that it can be vaporized and introduced into the carrier gas.  The 

inlet employed in this research, and the most commonly used inlet for GC, is a 

split/splitless inlet.  With this type of inlet, a sample can be introduced via liquid injection 

into a split or splitless liner.  A liquid injection can result in solvent effects and an 

expansion of the sample volume due to the solvent being present and must be taken into 

account during method development and solvent type/amount used during the injection 

[15], [58].   

 

As seen in Figure 1-5, the main difference between these two types of injections is the 

opening of the purge valve.  As its name implies, during a split injection the purge valve 

is open for the entirety of the sample analysis allowing only a portion of the sample that 

is injected to be analyzed, splitting it.  No dilution of the sample is necessary with this 

type of injection.  The amount of sample analyzed is determined by the split ratio.  This 

type of sample introduction is best used for samples that are considered dirty such as 

urine that may contain contaminants and non-volatile components to keep these 

compounds from entering the column.  Splitting the sample means this form of analysis is  
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Figure 1-5. Split (left) and splitless (right) injection.  Adapted from Y. Kazakevich GC Injectors Lecture 
Slides [60]. 
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not as accurate as splitless injections for quantitation of samples and is not conducive for 

trace analysis [58].   

 

It is for these main two disadvantages that splitless injections were used in this research.  

Splitless injections are well suited for trace analysis because the entire sample injected is 

analyzed by keeping the purge valve closed during sample introduction, increasing the 

sensitivity and reproducibility.  This valve is then open after a certain amount of time to 

purge the inlet and remove any residual solvent.  The sample stays in the inlet for a 

longer amount of time, increasing the possibility for unwanted interactions occurring in 

the inlet.  This must be taken into consideration when using this type of injection as it can 

result in tailing if the purge valve time is not optimized.  Another result of splitless 

injections is wider peak widths when analyzed using isothermal conditions.  If 

temperature programming is employed with splitless injections and a cooler initial 

column temperature, this will focus the sample resulting in solvent focusing and sharper 

peaks through ‘cold-trapping’ due to the large temperature difference between the inlet 

and column [58].         

 

3.  GC Detectors: Mass Spectrometers 

There are many types of detectors that can be coupled to a gas chromatograph; however, 

the primary one used in this research was a mass spectrometer.  A mass spectrometer is 

composed of three main components: an ion source, a mass analyzer, and a detector.  In 

the ion source, the sample is impacted with a beam of electrons (70eV) obtained from a 
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tungsten filament, exciting and ionizing the analyte molecules, causing fragmentation 

derived from the analyte’s structure.  The ion source used here was electron ionization 

(EI) as seen in Figure 1-6, which is a form of hard ionization meaning it produces more 

fragmentation than a softer technique such a chemical ionization [15].  

 

In the mass analyzer, the ions that were created in the ion source are separated based on 

their mass-to-charge (m/z) ratio in quadrupole mass analyzers and by their kinetic 

energies in a time-of-flight mass analyzer.  The types of mass analyzers used in this 

research include a quadrupole, triple quadrupole, and time of flight.  The latter two will 

be discussed in greater detail in Chapters 3 and 5, respectively.  A quadrupole, shown in 

Figure 1-7, is composed of four parallel rods at right angles to each other with alternating 

electrostatic charges and a magnetic field formed by a radio frequency surrounding the 

poles.  The ions travel through the center of the poles, reaching the detector only if they 

are in the chosen mass range.  The entire range of masses can be scanned or a selected 

number can be analyzed using selected ion monitoring (SIM).  SIM confirms an analyte’s 

identity as well as increases selectivity and the signal to noise ratio [16], [58].   

 

The detector used in this research is an electron multiplier and is pictured in Figure 1-8.  

An electron multiplier uses dynodes to amplify the signal approximately 1 million times 

the original signal.   The detector helps to establish the sensitivity and limits of detection 

and quantitation; however, the mass analyzer defines these parameters as well as the 

resolution and speed of analysis [15].   
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Figure 1-6.  Schematic of an electron ionization (EI) source. 
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Figure 1-7.  Schematic of a quadrupole mass analyzer.  Adapted from P. Gates Gas Chromatography Mass 
Spectrometry (GC/MS): Figure 2 [61]. 
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Figure 1-8.	  	  Schematic of a continuous dynode electron multiplier.  Adapted from J. Benedikt, A. 
Hecimovic, D. Ellerweg, and A. von Keudell. J Phys D-Appl Phys. 45(50) (2012) [62].	  
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4.	  	  Conclusions	  

Recently, the literature for QuEChERS has begun to include more research including 

biological matrices and analytes such as the extraction of pharmaceutical drugs from 

blood.  This shift has paved the way for the future of QuEChERS applications to include 

forensic samples such as drugs of abuse in urine and blood.  The constant modifications 

that have been made to the original three methods previously discussed allow for its 

growth for future applications and improvement to existing ones.  One such modification 

involves the combination of the LLE and d-SPE portions into a single step.  The analyses 

that have been applied to liquid chromatography for compounds that are also GC 

amenable, allow for an unlimited number of applications that QuEChERS can be used for 

including further integration into environmental chemistry, food chemistry, and forensic 

samples.   

 

QuEChERS is a method that has multiple applications that have been explored as well as 

novel techniques and applications that have yet to be discovered.  One such original study 

includes the investigation of the fundamental chemistry involved in the extraction 

parameters that are optimized.  This, along with several novel applications of 

QuEChERS, will be discussed throughout the chapters of this dissertation.  A caffeine 

study, Chapter 2, will address the fundamental chemistry of the extraction by optimizing 

various parameters and discussing the results at a chemical level including a look at the 

extraction kinetics, temperature effects, and partition coefficient of the extraction.  

Chapter 3 will look at an original application of QuEChERS for the extraction of steroids 

from water and herbal medicinal products using GC analysis rather than the more 
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common LC methods.  This research uses QuEChERS, GC-MS/MS and GCxGC-

TOFMS as well as SPME for a few of the steroids as discussed in Chapters 4 and 5.  A 

methodology using HPLC and these steroids was also investigated, Chapter 6, as it was 

attempted to reproduce the method used in a research article in which steroids were 

extracted from water.  The method used by the authors in the original work will be 

discussed in this chapter as well as the development of a new, more efficient method.  

Chapter 7 will address the novel use of QuEChERS in a forensic sample aspect involving 

the extraction of drugs of abuse from urine, a field which QuEChERS has yet to be used 

to its fullest potential and may possibly be a major direction of research for this 

extraction technique.   
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CHAPTER 2 – A FUNDAMENTAL STUDY FOR THE EXTRACTION 

OF CAFFEINE FROM TEA AND WATER USING QUECHERS 

 

The extraction of caffeine from tea has long been an experiment used in classroom 

laboratories, but this extraction dates back to the Stone Age.  According to a Mongolian 

legend, an Emperor was boiling water and some tea leaves accidentally fell into the hot 

water producing a fragrant and revitalizing drink.  In the past, people would chew on 

seeds, bark, or leaves that contained caffeine and noticed ease in fatigue and elevated 

mood.  It was only later discovered, perhaps by the Mongolian emperor if the legend is 

true, that steeping the leaves in hot water provided an increase in these effects [63].  

Caffeine is a xanthine alkaloid that acts as a central nervous system stimulant and is one 

of the most widely consumed psychoactive substances today.  It is estimated that in North 

America, approximately 90% of adults ingest caffeine daily, and 80% worldwide [63], 

[64].  In adults between the ages of 25 to 65, coffee and soda are the two primary sources 

of caffeine with a shift to coffee and tea for adults over 65.  On average, a person will 

consume 106-170 mg of caffeine per day [64].  The amount of caffeine present varies 

depending on the type of tea, for instance herbal tea contains almost no caffeine in a tea 

bag whereas black tea contains 25-110 mg per tea bag [65].   

 

There are many different types of extraction methods that can be used for the extraction 

of caffeine from tea, most commonly the use of dichloromethane or ethyl acetate.  These 

methods can be as simple as a separatory funnel liquid-liquid extraction, or more 

complex by the addition of salts and clean up sorbents to the method as one would find 
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during a QuEChERS method [66].  In this study, caffeine and tea were used as a model 

analyte and matrix.  Caffeine has a structure similar to other compounds, including drugs, 

and has been studied quite extensively.  Tea has both qualities of a plant and food matrix 

making it ideal to investigate the use of QuEChERS and its ability to eliminate matrix 

interferences upon the extraction of caffeine.   

 

Thus far in the literature, QuEChERS has been used primarily for the analysis of 

pesticides in food products as well as other uses including the extraction of drugs and 

environmental contaminants from various matrices.  Though optimization of the method 

has been performed, the fundamental chemistry has yet to be explored and explained 

within the literature, thus this study seeks to describe the chemistry involved in 

QuEChERS in a greater detail.  Not only were the parameters of the method optimized 

including salt amount and type (500mg MgSO4:500mg NaCl) , but also the partition 

coefficient of the extraction was determined and extraction kinetics and temperature 

effects were investigated.  This study resulted in a method with a percent recovery greater 

than 95%, an average partition coefficient of 2.1, and an intra and interday %RSD less 

than 6% and 12%, respectively.  Overall, this method helped to evaluate the chemistry 

involved in the QuEChERS method, providing insight into its future uses as an extraction 

method. 
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1.  Introduction 

QuEChERS is an extraction technique that combines a liquid-liquid extraction (LLE) 

with a dispersive solid phase extraction (d-SPE) to remove matrix interferences.  This 

method is attractive due to its ease of use, limited solvent use, and effectiveness in 

providing a clean sample [1], [2], [3], [4].  QuEChERS is especially known for its use in 

the determination of pesticides in many agricultural products such as fruits and 

vegetables as well as analyzing various matrices including soil, tea, biological fluids, and 

sewage sludge for pharmaceutical drugs, drugs of forensic interest, personal care 

products, and environmental contaminants to name a few [10-13], [34], [45], [49].  

QuEChERS has been reported by multiple sources as a sample preparation technique in 

conjunction with liquid chromatography (LC); however, gas chromatography mass 

spectrometry (GC/MS) is not nearly as abundant, possibly due to the complexity of 

certain matrices and the large abundance of LC in fields that use this technique, 

especially for the analysis of pesticides.  Also often lacking is the explanation of the 

resulting optimization parameters in terms of the fundamental chemistry involved in 

those steps of QuEChERS and how certain parameters such as extraction kinetics are 

influenced by these parameters and their optimization.  

 

Two basic steps are involved in the QuEChERS method: extracting the aqueous sample 

via an organic solvent such as acetonitrile followed by the use of a dispersive solid phase 

extraction (d-SPE) sorbent as a clean up step.  There are three commonly used methods: 

the original method, the AOAC method, and finally the European version, the latter two 

employing the use of buffers and various salts in the method.  It is obvious that the 
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QuEChERS method used will depend upon the analytes of interest; however, each 

method would require optimization of items such as the solvent system, the amounts and 

types of salts present, and the choice of d-SPE sorbent [1], [3]. 

 

The LLE step involves the use of salts to drive the analyte into the organic phase.  

Acetonitrile is most commonly used as a solvent due to its ability to minimize the amount 

of co-extractables while maintaining a large extraction range of desired analytes [1].  In 

the d-SPE clean up step, a sorbent is used to retain certain unwanted interferences in 

addition to a drying agent (MgSO4).  For instance, the sorbent primary secondary amine 

(PSA) will remove sugars, fatty and organic acids, and some pigments [3].  The ultimate 

goal after optimization includes high recovery and removal of matrix interference peaks.  

This study looks to improve upon current QuEChERS methods by investigating the 

theory as it pertains to the kinetics and effect of temperature on the partitioning steps.  It 

is of interest to investigate the parameters optimized in the QuEChERS extraction of a 

model analyte, caffeine, from a model matrix, tea, as well as the use of GC-MS for 

instrumental analysis.  The parameters studied include pH, type and amount of organic 

solvent, type and amount of salts, sonication time and temperature, and type of sorbent 

used during d-SPE.   
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2.  Materials and Methods 

2.1.  Chemicals, Reagents, and Samples 

Acetonitrile (ACN) was purchased from pharmco-AAPER (Kindermorgan, PA) and was 

reagent ACS grade.  All salts used throughout the study as well as the caffeine standard 

were purchased from Sigma Aldrich (St. Louis, MO).  QuEChERS tubes containing 

150mg PSA and 50mg MgSO4 were purchased from Restek (Bellefonte, PA) and 15mL 

PFTE centrifuge tubes were obtained from VWR International (Radnor, PA). The tea 

used was Wagh Bakri Masala Chai Tea Bags purchased from a Patel Brothers grocery 

store (Parsippany, NJ).  Deionized water was used throughout the methodology. 

 

2.2.  Sample Preparation 

The type of solvent, salts, temperature, and pH used during the QuEChERS process can 

affect the extraction of the analyte and thus need to be optimized.  By evaluating these 

parameters in the following steps, the results can provide information on the interactions 

occurring as well as the thermodynamic and kinetic properties of the system. All 

optimization analyses were performed using tea to evaluate the effect of matrix 

interferences and determine the ability of the method to provide a clean sample.  Also, for 

each optimization a standard dichloromethane (DCM) extraction was performed for 

comparison in which 1mL of DCM and 1mL of the aqueous tea sample was shaken in a 

GC vial and analyzed. 
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QuEChERS involves two main steps, a LLE step and a d-SPE clean up step.  For this 

study, there was an additional step prior to the extraction involving the sonication of 

loose tea from a tea bag in deionized water (0.4g of tea for every 10mL of water), the 

time of which was optimized.  Once sonication was complete, the liquid was separated 

from the loose tea and used as the aqueous sample in the LLE step of the method.  During 

this process, the pH of the water used to soak the tea leaves was optimized using a 

sodium acetate buffer at both pH 7 and pH 8, the latter of which was prepared by adding 

2M sodium hydroxide drop wise until a pH of 8 was obtained. These systems were 

compared to one in which no buffers were added at pH 6 (deionized water).  The 

sonication time and extraction temperature (0°C, 100°C, and room temperature) were 

also investigated during the initial extraction where only the room temperature sample 

was subject to sonication.  This was performed to evaluate both the extraction kinetics 

(sonication time) and temperature effects (sonication temperature). 

 

The LLE portion of the method required the optimization of salt and solvent amount and 

type.  In this study, various ratios of MgSO4:NaCl were investigated including 1:1, 2:1, 

3:1, and 4:1, with the later (500:500mg) providing the highest peak area for caffeine upon 

GC-MS analysis.  Once the salts were placed in the centrifuge tube, 4mL of the aqueous 

sample and 2mL of ACN were added as opposed to 2mL of each solvent and the tube 

was vortexed for 1 minute and centrifuged for 3 minutes at 1,000rpm.  The use of ethyl 

acetate, acetone, and ethanol/water mixtures were investigated as organic solvents as 

well.  The extraction kinetics (sonication time) and temperature effects were investigated 

during the LLE portion of QuEChERS as with the initial sonication of loose tea. 
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From here, the top organic layer was transferred via Pasteur pipette to the QuEChERS 

tube containing 150mg PSA and 50mg MgSO4.  This tube was vortexed for 1 minute and 

centrifuged for 3 minutes at 8,000rpm.  Once again, the extraction kinetics and 

temperature effects were studied during the d-SPE step as well.  Once complete, the 

liquid was removed using a Pasteur pipette and transferred to a GC vial for analysis via 

direct liquid injection using GC-MS.  

 

2.3.  Instrumental Parameters 

The instrumentation utilized for this study was an Agilent 6890 GC and 5973 MSD 

(Santa Clara, CA) as well as a CTC Analytics combiPAL (Zwingen, Switzerland).  

Splitless injection was used for all analyses, with selected ion monitoring being employed 

during method validation (ions 55, 67, 109, and 194 selected for the entirety of the run).  

The GC method consisted of the following parameters: inlet temperature of 250°C using 

a splitless liner, initial oven temperature of 40°C, oven ramp of 20°C/min to 220°C with a 

5min hold (total time was 14min), and constant flow set to 1mL/min.  The carrier gas was 

helium and a Restek RTX-5MS column was used (30m x 0.25mm x 0.25µm). For the 

MSD parameters, the thermal auxiliary was set to 220°C and the ion source was at 

230°C.   
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2.4.  Method validation 

2.4.1.  Calibration curve, linearity, and partition coefficient 

Caffeine standards were prepared in deionized water ranging from 0.1ppb to 100ppm.  

These samples were then subjected to the optimized QuEChERS method as described in 

section 2.2 and then analyzed in triplicate using GC-MS.  Limits of quantitation (LOQ) 

and detection (LOD) were assessed using the data analysis software where the S/N for the 

caffeine peak was 10 and 3, respectively. These results were also confirmed by 

evaluating the data by observation and repetition to confirm the software analysis results 

as well calculating the LOD and LOQ using the following equation: 

 

𝐿𝑂𝐷 = !!!
!
                                                                (Equation 2-1)     

       

Where sB is the standard deviation of the signal for 10 points from a blank sample and m 

is the slope of the calibration curve.  For LOQ, the factor of 3 was changed to 10. 

 

The calibration curve was prepared using samples with concentrations over 

approximately three orders of magnitude (8ppb to 1ppm), and the linearity was assessed 

over five orders of magnitude (8ppb to 100ppm).  The R2 value and equation of the line 

were obtained using Excel for both plots.  Once the calibration curve was constructed, the 

equation of the line could be used to determine the partition coefficient using the 

following equation: 
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𝐾 = !!"#$%&'
!!"#$%#&

         (Equation 2-2) 

  

The variables used in equation 2-2 were calculated using the calibration curve and can be 

seen in section 3.4.1.  For an extraction, it is desired that the partition coefficient be 

greater than one, where the majority of the analyte is in the solvent.   The partition 

coefficient for three samples was determined at the LOQ (50ppb) and an average was 

reported. 

 

2.4.2.  Recovery, precision, accuracy 

Three caffeine standard samples at the LOQ were analyzed and used in the determination 

of percent recovery by using the equation of the line from the calibration curve to find the 

concentration from the resulting peak area.  Once determined, this value was divided by 

the LOQ concentration and multiplied by 100 to give percent recovery.  An average value 

was reported.  Percent error was determined for each of these three samples as well to 

assess accuracy of the method and an average value was reported.  Five samples at the 

LOQ were performed and used in the determination of precision for both interday and 

intraday precision.  The %RSD was calculated from these five samples for both days 

individually as well as collectively.  

 

%𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =    !"#!$%&!'()**+  !"#"$%&'"!  !"#!$#%&'%("#
!"#

100                         (Equation 2-3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦:  %𝑒𝑟𝑟𝑜𝑟 =    !"#!  !"#!$%&!'()**+  !"#"$%&'"!  !"#!$#%&�!"#$
!"#

100    (Equation 2-4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛:  %𝑅𝑆𝐷 =    !
!
100                                                                                             (Equation 2-5) 
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3.  Results and discussion 

3.1.  Optimization of QuEChERS Extraction 

Firstly, the peak area was used to evaluate the amount of caffeine extracted using 

QuEChERS as opposed to a simple organic solvent shake with the aqueous tea sample.  

The following were compared and are seen in Figure 2-1A: a 1mL DCM:1mL aqueous 

tea sample shake (black line in Figure 2-1A), the analysis of the tea sample using the 

QuEChERS method (red line in Figure 2-1A), the analysis of the sample using the LLE 

portion of the QuEChERS method with acetonitrile (green line in Figure 2-1A), and the 

analysis of the tea sample using only the d-SPE step from the QuEChERS method (blue 

line in Figure 2-1A).  Only the full QuEChERS method (3.25x108) resulted in a peak area 

for caffeine greater than that of the DCM shake (2.95x108), as seen in Figure 2-1A.  

Figure 2-1B also shows the ability of QuEChERS to provide a cleaner sample.   

 

3.1.1.  Initial sonication of loose tea 

Three items were optimized in the initial sonication of tea, the pH of the aqueous phase 

(deionized water), the sonication time, and the temperature.  When evaluating pH, it was 

first determined to work at a pH below the pKa of caffeine, closer to that of the pH of 

deionized water with no buffer added.  Though the compound is ionized at this pH and 

the unionized form is usually desired as it will result in a better extraction into the organic 

phase, it was decided that the addition of a buffer could further complicate the system for 

the evaluation of the chemistry involved, thus a lower pH was used.  In addition to 

working at a convenient pH, it was also desired to investigate the ability of the extraction 

and detector given this ‘non-optimized’ pH.  
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Figure 2-1A. Overlaid chromatograms of a DCM-tea sample shake, LLE with ACN and salts, d-SPE with 
ACN and tea sample only, and the complete QuEChERS method. 



	   	   75	   	   	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIC	  of	  Tea	  Extraction 
Without	  QuEChERS 

With	  QuEChERS 

Caffeine 
5.704	  min 

Caffeine 
5.716	  min 

Peak	  area:	  4.99	  x	  10
7

 

Peak	  area:	  6.79	  x	  10
7

 

Figure 2-1B. Top: Chromatogram depicting the peak area of caffeine at 5.704min without QuEChERS.  
Bottom: Chromatogram depicting the increased peak area of caffeine at 5.716min with QuEChERS as 
well as decreased matrix interference peaks. 
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Through Figure 2-2, it can be seen that there was no significant increase in peak area or 

extraction stability upon the use of a buffer and thus it was deemed unnecessary.   

 

Kinetics of this initial sonication was evaluated by determining the sonication time 

required to provide the most amount of caffeine extracted from the loose tea by the 

deionized water.  A plateau was seen from 6-10 minutes indicating no further increase in 

peak area with time and thus it was determined that 8 minutes was the optimal time for 

the sonication.  When peak area was plotted vs. time in Figure 2-3, a curved plot resulted 

indicating that the extraction does not follow a true zero order kinetic trend for the 

entirety of the extraction, as a linear trend would indicate a zero order extraction.  

Plotting Ln[A] vs. time also provided a curved line and thus the extraction is not first 

order either.  This shows that the initial extraction of caffeine from the tea leaf is not a 

simple process as one may think.  The caffeine is imbedded within the tea leaf, thus the 

water must penetrate the cuticle of the leaf, permeate the leaf and extract the caffeine, 

carrying it back across the cuticle of the leaf and into solution as seen in Figure 2-3.    

 

The effect of temperature on the system was evaluated next through the use of three 

different temperatures and resulting caffeine peak area.  Both hot (100°C) and cold (0°C) 

were investigated in addition to the use of a sonicated room temperature sample.  It was 

seen when plotting the peak area of each temperature in Figure 2-4 that the use of hot 

water in the initial extraction, mimicking the act of steeping your tea, provided a 

substantially higher peak area for caffeine within the optimized 8 minutes.  This was 

expected, as caffeine is more soluble in hot water, causing the extraction of more caffeine  
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Figure 2-2. Optimization of the pH during the initial sonication of lose tea in deionized water. 
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Figure 2-3. Investigation of the effect of time on the initial sonication time of loose 
tea in deionized water provided the resulting plot of peak area vs. time as a kinetic 
study.  The process involved in extracting caffeine from the tea leaf using water is 
also shown. 
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Figure 2-4. Investigation of the effect of temperature during the initial sonication of loose tea in deionized 
water as a thermodynamic study. 
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within 8 minutes.  However, this also results in the extraction of more matrix 

interferences.  These results were also mimicked when looking at a comparison to a 

DCM-shake control also exposed to the varying temperatures.  

 

3.1.2.  Liquid-Liquid Extraction (LLE) 

The LLE includes the use of salts, typically MgSO4 and NaCl as salting-out agents, the 

first of which aids in solvent partitioning between the aqueous and organic solvent as 

well as increasing polar analyte recovery.  The second salt, NaCl, acts to decrease the 

amount of polar interferences.  Both of these were evidenced in Figure 2-5 where it is 

seen that increasing the amount of MgSO4 results in an increased amount of organic 

phase indicating a greater partitioning between the organic and aqueous phase.  The 

addition of salts to the sample allows for the separation of the miscible organic solvent, in 

this case acetonitrile, and the aqueous sample.  This leads to a more favored interaction 

between the water and the salts than any hydrogen bonds formed between the water and 

the analyte, thus allowing the analyte to be driven into the organic phase.  Figure 2-5 also 

shows that the increased amount of NaCl results in less pigmentation of the extract.  The 

fact that the sample becomes less colored as more NaCl is added also shows that NaCl 

adds selectivity to the extraction by decreasing the amount of co-extractables. 

 

In this study, various ratios of MgSO4:NaCl were investigated to optimize salt amount.  It 

was determined that 1:1 and 2:1 ratios provided the best results, with 500mg 

MgSO4:500mg NaCl providing the optimal peak area, seen in Figure 2-6.  This is 

different from other commonly used methods which utilize a 4:1 ratio of MgSO4:NaCl as  
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Figure 2-5. A visual example showing the effect of the salt ratio on the amount of organic solvent 
separated from the aqueous phase and the extraction of matrix interferences. 
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Figure 2-6. Optimization of salt ratio amount during the LLE step of the QuEChERS method 
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 obtained from the original method parameters first established by Anastassiades and co-

workers [3].   

 

Optimization of salt type was also performed.  NaCl is the standard salt used in addition 

to MgSO4 due to its cost and availability; however, it was of interest to evaluate other 

salts to determine if there was a pattern to be observed on peak area depending on 

parameters such as size of atomic radius or electronegativity.  Though NaCl did provide 

the best results, MgCl2 provided similar results and could be used in the LLE extraction 

as well.   

 

When peak area was plotted for each salt investigated (Figure 2-7), there was not much of 

a trend observed when evaluating the elements of each cation in the compound including 

atomic radii, electronegativity, and electron affinity.  When looking at compound 

properties such as solubility, density, mass, melting point, and dipole moment, no 

observable trend was seen.  It should be noted that the difference between the highest and 

lowest peak area was not a full order of magnitude (NaCl: 8.77x107; LiCl: 3.57x107), 

thus there may not be a great enough difference to observe a consistent trend as some of 

the standard deviations overlap each other.  It would be of interest to investigate 

properties such as solvated radius, acidity, conductivity, and number of ions in solution.  

As caffeine is positively charged at pH 6, the number of chloride ions in particular could 

affect the ability of the extraction.  It would be of interest to investigate these salts using 

the same molarity of each salt solution rather than the use of salt amount.  This may help 

to normalize the data for the investigation of ionic strength as an affect on the process.    
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Figure	  2-‐7.	  Optimization	  of	  the	  salt	  type	  during	  the	  LLE	  step	  of	  the	  QuEChERS	  method.	  
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All of these parameters should be investigated in the future to further explore a trend in 

the data.   

 

Solvent amount and type were optimized next and are pictured in Figures 2-8 and 2-9, 

respectively.  Three different ratios of acetonitrile:aqueous tea sample were investigated 

and it was determined that a ratio of 1:2 (2mL ACN:4mL aqueous tea) provided a greater 

extraction of caffeine than a typical 1:1 ratio of organic solvent to aqueous sample.  This 

was expected, as with an increase in aqueous sample amount there will be an increase in 

caffeine present to be extracted.  

 

Finally, the solvent type was optimized between acetonitrile (ACN), acetone (ACE), 

ethyl acetate (EtOAc), ethanol (EtOH), and various ratios of EtOH:H2O.  It was found 

that all of the ethanol and ethanol:water samples were unable to be separated from the 

aqueous sample, thus only caffeine peak areas for ACE, EtOAc, and ACN were plotted. 

From Figure 2-9 it was determined that ACN had optimal results.  Acetonitrile does not 

have as great an ability to form hydrogen bonds with water as other solvents such as 

ethanol, acetone, and ethyl acetate, and thus this allows for a greater separation between 

the aqueous and organic layer as opposed to the use of a solvent such as ethanol, which 

cannot be separated from water using this method.  This fact also provided a more stable 

environment for the extraction of caffeine than other solvents most likely due to the lower 

vapor pressure of ACN as compared to ethyl acetate and acetone.  The latter two solvents 

will evaporate more readily than ACN, causing inconsistent results in the amount of 

caffeine extracted.   
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Figure 2-8. Optimization of the ratio of organic solvent to aqueous tea sample during the LLE step of the 
QuEChERS method. 
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Figure 2-9. Optimization of the organic solvent type during the LLE step of the QuEChERS method. 



	   	   88	   	   	  

3.1.3.  Extraction kinetics: LLE and d-SPE sonication time 

As aforementioned, the extraction kinetics was analyzed via optimization of the 

sonication time following a 1-minute vortexing of the sample.  It was found that in the 

LLE sonication step, there were no significant changes throughout minutes 0-10 seen in 

Figure 2-10, indicating that the extraction is occurring primarily during the 1-minute 

vortexing period.  This was also observed during the d-SPE step seen in Figure 2-11, 

where a negative effect was observed as time progressed indicating that the caffeine was 

binding to the sorbent as time continued during the sonication.   

 

This hypothesis of caffeine binding was found to be true as a back extraction with ACN 

showed that there was an increased amount of caffeine recovered from the sorbents from 

the longer sonication times.   When the peak area was plotted vs. time during the LLE 

sonication period, a slight upward slope was observed, with no curvature, indicating a 

zero order kinetics extraction; however, there is not enough of a change occurring to 

make any conclusions regarding the kinetics.   

 

The same linear trend is true for the d-SPE step, though again it was difficult to make any 

conclusions regarding the kinetics, as the extraction was mostly complete during the 

vortexing step.  One item that can be concluded from this study is that sonication is not 

necessary and in the instance of the d-SPE step, was actually negatively impacting the 

extraction of caffeine.  Also, sonication can produce hot spots affecting the precision of 

the results and thus removing it from the method should help to improve the extraction 

overall. 
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Figure 2-10. Investigation of the effect of time on the sonication time during the 
LLE step in the QuEChERS method provided the resulting plot of peak area vs. 
time as a kinetic study. 
 



	   	   90	   	   	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.00E+00	  

1.00E+08	  

2.00E+08	  

3.00E+08	  

4.00E+08	  

5.00E+08	  

6.00E+08	  

0	   2	   4	   6	   8	   10	   12	  

Pe
ak
	  A
re
a	  

Time	  (min)	  

d-‐SPE	  Sonication	  Time	  Study	  

Figure 2-11. Investigation of the effect of time on the sonication time during 
the d-SPE step in the QuEChERS method provided the resulting plot of peak 
area vs. time as a kinetic study. 
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3.1.4.  Extraction temperature: LLE and d-SPE sonication temperature 

Not only were the kinetics of the extraction investigated, but the effect of temperature on 

the extraction was as well following the 1-minute vortex.  Three temperatures were 

investigated for both the LLE and d-SPE steps: 0°C, 100°C, and room temperature 

(23°C).  As the extraction was mostly complete after the vortexing step in both portions 

of QuEChERS, (see section 3.1.3), the optimization of the sonication temperature is not 

necessary but it was of interest to evaluate the effect of temperature on the system.   

 

In an extraction, equilibrium will occur at a certain temperature.  According to 

LeChatlier’s principle, in an exothermic reaction if the temperature of the system is 

lowered, the extraction will release heat in order to achieve the temperature at which 

equilibrium will occur.  This will cause an increase in the products during a reaction, or 

in the case of an extraction, an increase in the amount of analyte extracted.  This can be 

seen in Figure 2-12 where the cold sample provided the greatest amount of caffeine 

extracted compared to the room temperature and heated sample, indicating that the 

extraction is exothermic and is favored, providing a -ΔH.  

 

For the d-SPE step, all three temperatures appeared to be fairly close to each other in 

terms of affecting caffeine peak area.  Both a hot and room temperature environment 

produced very similar results with the colder temperature extracting slightly less.  This 

also shows that the d-SPE step is exothermic and favored.  The cold sample provided less 

caffeine remaining in solution; however, this indicates that the extraction of caffeine from 

the organic solvent to the solid sorbent occurs at a greater abundance than with the other  



	   	   92	   	   	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.00E+00	  

1.00E+07	  

2.00E+07	  

3.00E+07	  

4.00E+07	  

5.00E+07	  

6.00E+07	  

7.00E+07	  

DCM-‐TeaRT_S1	   RT_S1	   Cold_S1	   Hot_S1	  

Pe
ak
	  A
re
a	  

Sample	  

LLE	  Temperature	  Study	  

Figure 2-12. Investigation of the effect of temperature during the LLE step in the QuEChERS method. 
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Figure 2-13. Investigation of the effect of temperature during the d-SPE step in the QuEChERS method. 
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two temperatures.  Thus, the extraction is exothermic and favored, providing a -ΔH once 

again.  Another reason for less caffeine remaining after the cold temperature study could 

be that cold temperature had a negative impact and promoted the binding of caffeine to 

the sorbent more so than a warmer temperature.  Heat and a warmer environment in 

general could cause the molecules to be more active, whereas in a colder environment the 

molecules could be less active and thus more likely to bind to the sorbent as opposed to 

the more active molecules in the warmer system.  Given this theory, the warmest system 

(100°C) would perform better than the other two, which can be seen in Figure 2-13 where 

the heated system performs slightly better than the room temperature and colder systems. 

 

3.3.  Comparison with LLE 

It should be noted that with each optimization performed there was a comparison made to 

a simple DCM-tea sample shake.  In each optimization, the QuEChERS extraction 

provided increased peak areas indicating its ability to perform better than or as equally 

well as the DCM-tea sample shake.  The DCM-tea shake was plotted with each Figure 

during the above studies to illustrate the improved extraction ability when QuEChERS 

was used. 

 

3.4.  Validation 

3.4.1.  Calibration curve, linearity, and partition coefficient  

Upon analysis caffeine standards of concentrations from 0.1ppb to 100ppm, a calibration 

curve from 8ppb to 1ppm was plotted as seen in Figure 2-14, providing an R2 value of  
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Figure 2-14. Calibration curve from the method validation of the optimized QuEChERS extraction. 
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Figure 2-15. Linearity of caffeine extraction from the method validation of the optimized QuEChERS 
extraction. 
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0.993, an LOD of 8ppb (3S/N) and an LOQ of 50ppb (10S/N).  It was determined that the 

linearity of the calibration curve could be extended over five orders of magnitude from 

8ppb to 100ppm as shown in Figure 2-15, providing an R2 value of 0.998.  The LOD and 

LOQ determined using the software were also confirmed by using the following 

equation: 

 

𝐿𝑂𝐷 = !!!
!
      = ! !"#$.!"

!!!"!
= 0.007                                                      (Equation 2-6)    

  

The partition coefficient was determined using the equation of the line from the 

calibration curve (y=2x106x+ 145474) as seen in the set of equations below (Equations 2-

7 to 2-12).  The concentration used for determination of the partition coefficient was the 

LOQ, 50ppb (0.05ppm).  This was performed three times yielding three partition 

coefficients ranging from 1.8 to 2.6 with an average of 2.1±0.4.  In terms of the effect of 

the addition of salts to the system that are used during the QuEChERS method, it would 

be expected that the addition of salts to the system for a compound that is more soluble in 

water than acetonitrile would cause an increase in the partition coefficient as opposed to a 

compound that has less solubility in water.  A partition coefficient greater than 1 supports 

the data found during the temperature study of a favorable extraction, as a partition 

coefficient greater than 1 indicates a –ΔG.  The temperature study showed an exothermic 

reaction that has a –ΔH.  The change in entropy would be minimal as the difference 

between water and acetonitrile is negligible for these purposes.  A –ΔH and a small 

change in entropy would provide a –ΔG, as supported by the calculated partition  
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= 0.048                 (Equation 2-7) 

𝑚!"# = (𝑐!"#) 𝑣!"# = 0.048 0.002𝐿 = 9.57𝑥10!!                                 (Equation 2-8) 

𝑚!" !"!#!$% = (𝑐𝑎𝑞) 𝑣𝑎𝑞 = 0.05𝑝𝑝𝑚 0.004𝐿 = 2.0𝑥10!!             (Equation 2-9) 

𝑚!"# =   𝑚!" !"!#!$% −𝑚!"# = 2.0𝑥10!! − 9.57𝑥10!! = 1.04𝑥10!!                   (Equation 2-10) 

𝑐!" =     
!!"

!!"
=    !.!"!!"

!!

!.!!"!
= 0.026                       (Equation 2-11) 

𝐾 =      !!"#$%&'
!!"#$%#&

=    !.!"#
!.!"#

= 1.84                (Equation 2-12) 

 

 

 

 

 

 

Calibration Curve Line Equation y = 2E+06x + 145474 
Peak Area  
(0.05ppm sample) 

241183 

Calculated Concentration using Calibration Curve  
(corg) 

0.048 

Volume of Organic Phase  
(vorg) 

2mL (0.002L) 

Volume of Aqueous Phase  
(vaq) 

4mL (0.004L) 

Table	  2-‐1.	  Summary	  table	  of	  important	  variables	  used	  to	  determine	  the	  partition	  coefficient	  in	  
Equations	  2-‐6	  to	  2-‐11.	  
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coefficient of 2.1.   Using the calibration curve the average amount of caffeine present in 

a 4mL aliquot taken from a 20mL sample in which 0.8g of loose tea was sonicated 

(roughly 0.16g of tea/4mL) was determined.  It was found that in this 4mL sample, after 

performing the QuEChERS optimization, that the average amount of caffeine present 

between three samples was approximately 171ppm.  A tea bag contains approximately 

1.95g of tea, thus in 1.95g of tea there would be an approximate caffeine concentration of 

2,084ppm for the Wagh Bakri Masala Chai tea used.  A summary of the LOD, LOQ, and 

partition coefficient data can be seen in section 3.4.2.  

 

3.4.2.  Recovery, precision, accuracy 

Four samples were analyzed at the LOQ (50ppb) for determination of percent recovery 

and accuracy.  To determine percent recovery, the concentration was found from the 

resulting peak area using the equation of the line for the calibration curve.  This value 

was divided by 50ppb and multiplied by 100.  These four samples gave an average 

percent recovery of 96.55% and an average percent error of 3.45% (accuracy).  The 

intraday and interday precisions were determined using fives samples run at the LOQ 

(50ppb) and calculating the %RSD corresponding to each set of data.  Day 1 yielded a 

precision of 3.70%, day 2 had a precision of 5.23%, and the precision between the two 

days (interday) was 11.35%. 
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LOD 
(ppb) 

LOQ 
(ppb) 

Partition 
Coefficient  

% Recovery 
(%; n=4) 

Accuracy 
(%Error; n=4) 

Intraday 
Precision 
(%RSD) 

Interday 
Precision 
(%RSD) 

8 50 2.1 ± 0.4 96.55 3.45 Day 1: 3.70 
Day 2: 5.23 

11.35 

Table 2-2. Summary of method validation results. 
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4.  Conclusion 

The extraction of caffeine has long been used whether it be for the steeping of tea or an 

experiment performed in a laboratory.  Caffeine is a model analyte that has been studied 

many times and was chosen in this study for its similarities in structure and properties to 

other drugs that could be studied including pharmaceuticals and drugs of abuse using 

QuEChERS.  The ability of QuEChERS to extract compounds such as pesticides from 

food products with high recoveries has been proven but the fundamental chemistry 

involved in each step of this method had not been evaluated in great detail.   

 

This study was able to study several parameters for the QuEChERS method and evaluate 

them at a chemical level.  The function of each salt used during the LLE step was clearly 

defined and the effect of these salts on the partition coefficient was discussed.  It was also 

determined that acetonitrile not only has the ability to extract over a wide range of 

analytes, but that it also works as a better solvent due to its decreased ability of hydrogen 

bonding compared to other solvents that can be used in the QuEChERS method.  

Parameters such as extraction kinetics and effects of temperature on the extraction were 

evaluated in determining how time and temperature effect the extraction that occurs in 

both the LLE and d-SPE portion of the method.  It was concluded that a majority of the 

extraction was complete after the 1-minute vortex and thus further sonication or shaking 

is not necessary, decreasing the time needed for sample preparation as most methods call 

for a 5-10 minute shaking.   
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It was seen that steeping the tea in hot water provided increased extraction of caffeine as 

expected, whereas during the LLE a colder environment seemed to provide the best 

result.  The d-SPE step performed best at a room temperature or warmer environment as 

cold actually allowed for binding of the caffeine to the sorbent to occur.  The 

optimization of these parameters allowed for a very efficient extraction of caffeine from 

tea using acetonitrile with a partition coefficient of 2.1, an average recovery of 96.6%, 

and precision values below 6% for intraday precision and 12% for interday precision.  It 

was also determined that the average concentration of caffeine present in 1 tea bag (1.95g 

of tea) was 2,084ppm.  The optimized method provided more than acceptable validation 

results, and each optimized parameter resulted in a greater amount of caffeine extracted 

than a simple DCM-tea sample shake as used for standard comparison.  

  

The affect of increasing the pH of the aqueous phase used during the LLE was 

investigated using a 10ppm caffeine standard.  A 0.2M potassium chloride solution and 

0.2M sodium hydroxide solution were used to prepare a pH 13 buffer.  This buffer was 

used to prepare a 10ppm caffeine standard and was compared to a pH 6, 10ppm caffeine 

standard in an aqueous solution with no buffer during the LLE.  It was found that the 

peak area increased from 5.23x106 to 9.45x106 when using a pH 13 buffered aqueous 

solution during the LLE.  Thus, it would be of interest in the future to perform further 

studies on the extraction using this buffered method and compare the results to those 

determined in this research.  
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CHAPTER 3 – EXTRACTION OF GLUCOCORTICOIDS AND 

HORMONES FROM WATER AND HERBAL MEDICINAL PRODUCTS 

USING QUECHERS VIA GC-MS/MS ANALYSIS 

 
 

The use of herbal medicinal products (HMPs) as treatments has become more common as 

they are viewed as safe and natural; however, the adulteration of these medicines has 

become more frequent.  Though the practice is prohibited, drugs such as steroids are 

added to these medicines in order to speed the healing process; thus an analytical method 

is necessary to identify the presence of these adulterants.  It is also desired that this be a 

simple method in both sample preparation and data analysis, meaning that the resulting 

chromatogram be clean and easy to interpret.  In the past, high-performance liquid 

chromatography (HPLC) with ultraviolet (UV) or mass spectrometry (MS) detection has 

been used to detect steroids in the herbal medicines.  One study utilized the QuEChERS 

(Quick, Easy, Cheap, Effective, Rugged, and Safe) method for sample preparation before 

HPLC analysis [29].   

 

This study investigated the detection of 8 glucocorticoids and 7 hormones in herbal 

medicinal products by optimizing a QuEChERS extraction method for steroids from 

water and HMPs using gas chromatography triple quadrupole mass spectrometry (GC-

MS/MS).  The first 8 steroids were chosen for their ability to reduce inflammation.  The 

detection of these 8 steroids in herbal medicines that target joint treatment was 

investigated using optimized QuEChERS and GC-MS/MS methods.  It was determined 
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that a buffer was not necessary for use in this method, and that 500mg of MgSO4 and 

NaCl as well as acetonitrile provided the best extraction of these steroids.  The validation 

of this method for the glucocorticoids of interest provided precision, both interday and 

intraday, less than 9%, percent recoveries greater than 83%, and partition coefficients 

between 0.73 and 0.88.  These partition coefficients were similar to those observed with 

the caffeine study in Chapter 2 as expected.  The validated QuEChERS method was also 

used for the extraction of the 7 hormones from water as well as determination of the 

presence of these compounds in the herbal medicinal products analyzed previously. 

 

1.  Introduction 

1.1.  GC-MS/MS Instrumentation 

The same basic principles discussed in Chapter 1 for gas chromatography and separation 

apply to triple quadrupole mass spectrometry as well.  The main difference in this 

instrument is not the chromatographic separation, but the detector.  In Chapter 1, a 

quadrupole mass spectrometer was discussed as coupled to gas chromatography (GC-

MS).  This instrumentation was used in the caffeine study from Chapter 2.  For this 

application, a more complex detector, a triple quadrupole, also known as a tandem mass 

spectrometer, was used.  The four parallel rods with alternating currents are still present 

as in a single quadrupole mass spectrometer; however, rather than a single quadrupole 

there are now multiple quadrupoles operated as a tandem mass spectrometer.   

 



	   	   105	   	   	  

Figure 3-1 depicts how a triple quadrupole operates.  There are three quadrupoles that 

compose the mass analyzer portion of a triple quadrupole, as its name indicates.  Once 

the sample has undergone ionization, the ions enter the first quadrupole, or Q1, which 

acts as a mass filter that can scan an entire range of mass-to-charge ratios or be fixed for 

certain ions.  This, in essence, performs as a single quadrupole would with the ion source 

and detector on either side, except here the quadrupole is followed by two more 

quadrupoles prior to the detector [67-70].   

 

After Q1, these ions pass to Q2, a collision cell where an inert collision gas such as argon 

or nitrogen is used to cause further fragmentation of the ions in a process known as 

collision induced dissociation (CID).  This is similar to the process that occurs in the ion 

source; however, this process takes place at a lower energy level thus the fragmentation 

caused is not as severe as can occur during electron ionization in the ion source.   

 

Once complete, the ions travel to the third quadrupole, Q3, which acts as a second mass 

filter as in Q1.  Once again, specific ions can be chosen to continue to the detector or the 

quadrupole can allow all ions to pass in full scan mode.  This process is very similar to 

scan versus SIM mode in a quadrupole but with two mass filters rather than one.  If ions 

are selected that are unique to a particular compound in both mass filters, this 

instrumentation has the ability to be very selective and specific to a certain compound.  

This instrument is also conducive for separating a mixture in which compounds co-elute 

and may not be able to be separated using a single quadrupole.      
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Figure 3-1. Schematic of a triple quadrupole mass spectrometer.  Adapted from [71]. 
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There are many operational modes for a triple quadrupole because there are two mass 

filters that can either be set in full scan mode or fixed for certain ions.  When optimizing 

a multiple reaction monitoring (MRM) method, the first step is to perform a full scan of 

all the compounds in both mass filters.  This allows for the determination of ions that are 

specific to each compound and are known as precursor ions.  This process can be thought 

of as collecting a total ion chromatogram when using a single quadrupole mass 

spectrometer.    

 

Once these ions are optimized for each compound, a product ion scan is performed.  

During a product ion scan, Q1 is fixed and Q3 is scanning in order to determine the 

resulting product ions that are produced from collision of the precursor ion in Q2 with the 

inert gas.  The collision energy for each transition of precursor to product ion can be 

different and must be optimized in order to obtain optimal results.  In the instrument used 

during this study, argon gas was used as the collision gas in the collision chamber.   

 

In the final MRM method, both Q1 and Q3 are fixed for the determined precursor and 

product ions, respectively, and the collision energy has been optimized for each transition 

of precursor to product ion.  A summary of a product ion scan and MRM scan can be 

seen in Figure 3-2.  
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A	  

B	  

Figure 3-2. Schematic of two triple quadrupole mass spectrometer modes: product ion scan (A) and MRM 
scan (B).  Adapted from [72]. 
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In order to describe the optimization process in creating an MRM method, a step-by-step 

procedure is described below for one of the hormones of interest, prasterone, pictured in 

Figures 3-3 to 3-5.  To begin, a full scan must be performed in order to obtain the 

retention time of the compound and a mass spectrum to choose a precursor ion.  Once 

complete, an ion is chosen from the mass spectrum with a high abundance and relatively 

high molecular weight to insure fragmentation occurs during CID.  If present, the 

molecular ion is the optimal precursor ion to choose.  A product ion scan is then 

performed to determine product ions.  Multiple precursor ions should be evaluated in 

separate product ion scans to determine the optimal precursor and product ions.  The 

product ions are evaluated using product ion scans at differing collision energies.  The 

collision energies for the product ions are chosen based on the base peak of the mass 

spectrum.  When the base peak becomes an ion other than the precursor ion, then this ion 

should be chosen as a product ion at the collision energy that provides the highest 

abundance.  Occasionally, a second ion may not become the base peak but is still at 

relatively high abundance.  This instance is seen in Figure 3-4. 

 

2.  Materials and Methods 

2.1.  Chemicals, Reagents, and Samples 

Acetonitrile (ACN) was purchased from pharmco-AAPER (Kindermorgan, PA) and was 

reagent ACS grade.  All salts used throughout the study as well as the steroid standards 

were purchased from Sigma Aldrich (St. Louis, MO).  QuEChERS tubes containing 

150mg PSA and 50mg MgSO4 were purchased from Restek (Bellefonte, PA) and 15mL  
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'''''(DES)'

11.607'

2)''Prasterone' 12.410'

3)''Methandriol' 12.563'

Steroid( Reten+on(Time((min)(

4)''Estrone' 12.820(

5)''Estradiol' 12.847(

6)''Mesterlone' 12.877(

7)''1,4CAndrostadieneC3,17Cdione' 13.030'

Steroid( Reten+on(Time((min)(

4)((Estrone( 12.820(

5)((Estradiol( 12.847(

6)((Mesterlone( 12.877(

7)''1,4CAndrostadieneC3,17Cdione' 13.030'

Parent'Ion:'288'

15#

Step%1:%
Full%Ion%
Scan%

Steroid) Parent)Ion) Daughter)Ions) Collision)Energy)

1)#Diethyls,lbestrol#(DES)# 268# 239;#145;#107# 10;#18;#26#

2))Prasterone) 288) 203;)107;)97) 10;)14;)20)

3)#Methandriol# 253# 197;#155;#169# 16;#26;#26#

4)#Estrone# 270# 185;#157;#172# 14;#26;#20#

5)#Estradiol# 272# 185;#172;#213# 8;#14;#16#

6)#Mesterlone# 218# 159;#105;#200# 14;#26;#8#

7)#1,4BAndrostadieneB3,17Bdione# 122# 107;#77;#79# 16;#26;#18#

Figure 3-3.  Step 1 in optimizing an MRM method.  Top chromatogram: full scan of 
sample (star denotes prasterone).  Bottom spectrum: the mass spectrum of the chosen 
precursor ion for prasterone. 
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Step%2:%
Product%
Ion%Scan%

Base%Peak:%203/21,228%
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12#

Step%2:%
Product%
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Base%Peak:%203/33,620%

Collision%Energy:%10$

14#

Step%2:%
Product%
Ion%Scan%

Base%Peak:%97/33,769%

Collision%Energy:%20#

Figure 3-4.  Step 2 in optimizing an MRM method.  Top chromatogram: product ion 
scan of sample (star denotes prasterone).  Bottom three spectra: the mass spectra for 
each of the chosen precursor ions at their respective collision energies.  Note that 
spectrum 2 provides an example of the precursor ion not being the base peak for that 
collision energy. 
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Step%3:%
Multi%Ion%
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Steroid) Precursor)Ion) Product)Ions) Collision)Energy)(eV))
1)#Diethyls,lbestrol#(DES)# 268# 239;#145;#107# 10;#18;#26#

2))Prasterone) 288) 203;)107;)97) 10;)14;)20)

3)#Methandriol# 253# 197;#155;#169# 16;#26;#26#

4)#Estrone# 270# 185;#157;#172# 14;#26;#20#

5)#Estradiol# 272# 185;#172;#213# 8;#14;#16#

6)#Mesterolone# 218# 159;#105;#200# 14;#26;#8#

7)#Boldenone# 122# 107;#77;#79# 16;#26;#18#

Abundance#

Time#(min)#

Figure 3-5.  Step 3 in optimizing an MRM method.  Top chromatogram: optimized MRM method for 
the sample.  The table illustrates the parameters used in the optimized MRM method. 
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PFTE centrifuge tubes were obtained from VWR International (Radnor, PA).  All herbal 

medicines were obtained from Auyurvedic Herbs Direct (Torrance, CA).  Deionized 

water was used throughout the methodology. 

 

2.2.  Sample Preparation 

The pH, salt amount, and type of solvent were all evaluated in the optimization of the 

QuEChERS method for the extraction of 8 glucocorticoids: beclomethasone, cortisone 

acetate, prednisone, hydrocortisone, prednisolone, fludrocortisone acetate, 

dexamethasone, and methylprednisolone.  The optimization was performed using the 

glucocorticoids prepared in water at concentrations of 200ppm (hydrocortisone, 

prednisolone, dexamethasone, methylprednisolone) and 400ppm (beclomethasone, 

cortisone acetate, prednisone, fludrocortisone acetate).  In addition to the glucocorticoids, 

these optimized conditions were used for the extraction of 7 hormones of interest from 

water at concentrations of 500ppm for each steroid (diethylstilbestrol, prasterone, 

methandriol, estrone, estradiol, mesterolone, and boldenone).   

 

The QuEChERS extraction involves both a LLE step and d-SPE clean up step.  During 

the LLE portion of the method, the pH, salt amount, and solvent type were optimized for 

the 8 glucocorticoids in Table 3-1. In this study, pH was investigated at pH 6 and 7, with 

the latter being achieved through the use of a phosphate buffer prepared using 0.2M 

monobasic potassium phosphate and 0.2M sodium hydroxide solution according to the 
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Table 3-1. Summary of glucocorticoids commonly used for adulteration in herbal medicines. 
Steroid 
 

Synonym Classification Structure 

Prednisone 17,21-dihydroxypregna-
1,4-diene-3,11,20-trione  
 

Synthetic corticosteroid 

 
Prednisolone 1,4-Pregnadiene-

11β,17α,21-triol-3,20-
dione 
 

Corticosteroid  
(active metabolite of 
prednisone) 
 
 
 

 
 
 
 
 

Hydrocortisone 
(cortisol) 

11β,17α,21-
Trihydroxypregn-4-ene-
3,20-dione,  

Glucocorticoid 
 
 
 
 
 

 
 
 
 
 

Methylprednisolone 11β,17α,21-Trihydroxy-
6α-methyl-1,4-
pregnadiene-3,20-dione 

Synthetic glucocorticoid  
(variant of prednisolone) 
 
 
 
 
 

 
 
 
 
 

Dexamethasone  (11β,16α)-9-Fluoro-
11,17,21-trihydroxy-16-
methylpregna-1,4-diene-
3,20-dione 

Synthetic glucocorticoid 
 
 
 
 
 
 

 
 
 
 
 

Beclomethasone 9-Chloro-11β,17,21-
trihydroxy-16β-
methylpregna-1,4-diene-
3,20-dione 17,21-
dipropionate 

Glucocorticoid  
(prodrug in free form) 
 
 
 
 
 

 
 
 
 
 

Fludrocortisone acetate 9α-Fluoro-11β,17α,21-
trihydroxy-4-pregnene-
3,20-dione acetate 

Synthetic corticosteroid 
 
 
 
 
 

 
 
 
 
 

Cortisone acetate 17α,21-Dihydroxy-4-
pregnene-3,11,20-trione 
21-acetate 

Glucocorticoid 
 
 
 
 
 

 
 
 
 
 

 

 

 

Fludrocor(sone,Acetate:,MW,=,422.49,Cor(sone,,21:Acetate:,,MW,=,402.48,,

Prednisolone:,,,
MW,=,360.44,

Hydrocor(sone:,
,MW,=,362.46,

Beclomethasone:,,
MW,=,408.92,

Dexamethasone:,,
MW,=,392.46,

Methylprednisolone:,,
MW,=,374.47,

Prednisone:,,
MW,=,358.43,
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Table 3-2. Summary of hormones investigated for detection in herbal medicines. 
Steroid 
 

Synonym Classification Structure 

Diethylstilbestrol 
(DES) 

4,4’-(3E)- hex-3-ene-3,4-
diyldiphenol 
 

Synthetic non-steroidal 
estrogen 
 
 

 
Prasterone 

 
(3S,8R,9S,10R,13S,14S)-3- 
hydroxy-10,13-dimethyl-
1,2,3,4,7,8,9,11,12,14,15,16- 
dodecahydrocyclopenta[a]ph
enanthren-17-one 
 
 

Steroid hormone 
 

 

 
Methandriol 3S,8S,9R,10R,13S,14R,17S)- 

10,13,17-trimethyl-
1,2,3,4,7,8,9,11,12,14,15,16- 
dodecahydrocyclopenta[a]ph
enanthrene-3,17-diol 
 

Anabolic steroid 
 

 

 
 

Estrone (8R,9S,13S,14S)-3-hydroxy-
13-methyl- 
6,7,8,9,11,12,13,14,15,16- 
decahydrocyclopenta[a] 
phenanthren- 17- one 

Estrogenic hormone  

 
 

Estradiol  (17β)-estra-1,3,5(10)- 
triene-3,17-diol 

Estrogenic hormone 
 

 

 
 

Mesterolone 1α-methyl-17β-hydroxy-5α-
androstan-3-one 

Anabolic steroid 
 

 

 
 

Boldenone 1,4-androstadiene-3,17-dione Anabolic steroid 
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U.S. Pharmacopia phosphate buffer preparation [73].  The optimized pH was 6.0, with 

the analytes in neutral form, and thus no buffer was used in this methodology.  Various 

ratios of MgSO4:NaCl were investigated including 4:1, 2:1, and 1:1, with 500mg MgSO4 

and 500mg NaCl providing optimal extraction of all eight steroids.  The salts were placed 

in a 15mL centrifuge tube followed by 2mL of aqueous sample (a mixture of all 8 

steroids) and 2mL of ACN.  The organic solvent was investigated using acetone and ethyl 

acetate as well, with ACN and ethyl acetate providing comparable results.  The samples 

were vortexed for 1-minute and centrifuged for 3-minutes at 1,000rpm.  The top organic 

layer was removed using a Pasteur pipette and transferred to a QuEChERS tube (2mL 

centrifuge tube with 150mg PSA and 50mg MgSO4).  The samples were vortexed for 1-

minute and centrifuged for 3-minutes at 8,000rpm.  The liquid was then removed and 

transferred to a GC vial for analysis via splitless injection using GC-MS/MS.  These 

optimized extraction parameters were used during the analysis of 7 hormones as well. 

 

2.3.  Instrumental Parameters 

The instrumentation utilized for this study was a Shimadzu GC-MS/MS TQ8030 with an 

AOC-5000 Auto Injector (Santa Clara, CA).  Splitless injection was used for all analyses 

of QuEChERS samples, with multiple reaction monitoring (MRM) being used during 

GC-MS/MS analysis.  The separation and detection parameters for the 8 glucocorticoids 

and 7 hormones using GC-MS/MS are listed below in tables 3-3, 3-4, and 3-5.  
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GC-MS/MS 
GC Parameters Oven Parameters MS Parameters 

Column: RTX-5MS 15m, 
0.25mm, 0.25µm 

Initial Temperature: 150°C 
Hold 1 minute 

EI Source: 250°C 

Carrier Gas: Helium 15°C/minute Ramp to 300°C 
Hold 10 minutes 

Transfer Line: 280°C 

Column Flow: 0.98mL/min 
Linear Velocity: 51.0cm/sec 

Injection Mode: Splitless 
Inlet Temperature: 250°C 

 

 

 

 

 

 

 

 

 

 

 

Table 3-3. Method conditions used for GC-MS/MS analysis. 
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Glucocorticoid Retention Time  
(min) 

Precursor 
Ion 

Product Ions Collision 
Energy 

Beclomethasone 9.227 121 77; 91; 51 20; 13; 25 
Cortisone Acetate 9.267 122 107; 77; 79 13; 25; 20 
Prednisone 9.374 121 77; 91; 93 20; 13; 7 
Hydrocortisone 9.931 163 148; 105; 145 20; 13; 11 
Prednisolone 10.088 122 107; 77; 79 13; 25; 20 
Fludrocortisone Acetate 10.144 121 77; 91; 93 20; 11; 7 
Dexamethasone 10.269 160 145; 127; 115 11; 25; 25 
Methylprednisolone 10.372 136 121; 77; 79 11; 25; 25 

 

 

 

 

 

 

 

 

 

 

 

Table 3-4. MRM method conditions for the 8 glucocorticoids. 
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Hormone Retention Time  
(min) 

Precursor 
Ion 

Product Ions Collision 
Energy 

Diethylstilbestrol 11.607 268 239; 145; 107 10; 18; 26 
Prasterone 12.410 288 203; 107; 97 10; 14; 20 
Methandriol 12.563 253 197; 155; 169 16; 26; 26 
Estrone 12.820 270 185; 157; 172 14; 26; 20 
Estradiol 12.847 272 185; 172; 213 8; 14; 16 
Mesterolone 12.877 218 159; 105; 200 14; 26; 8 
Boldenone 13.030 122 107; 77; 79 16; 26; 18 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3-5. MRM method conditions for the 7 hormones. 
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2.4.  Method Validation 

2.4.1.  Calibration curve, linearity, and partition coefficient 

Glucocorticoid mix standards containing beclomethasone, cortisone acetate, prednisone, 

hydrocortisone, prednisolone, fludrocortisone acetate, dexamethasone, and 

methylprednisolone were prepared in deionized water ranging from 10ppb to 500ppm.  

These samples were then subjected to the optimized QuEChERS method as described in 

section 2.2 and analyzed in triplicate using GC-MS/MS.  Limits of quantitation (LOQ) 

and detection (LOD) were assessed using the data analysis software where the S/N for the 

each steroid peak were 10 and 3, respectively.  The calibration curve was prepared using 

samples with concentrations ranging from 5 to 100ppm for all glucocorticoids but 

fludrocortisone acetate in which 200 to 500ppm concentrations were used.  The R2 value 

and equation of the line were obtained using Excel for all resulting calibration curves.  

Once the calibration curve was constructed, the equation of the line could be used to 

determine the partition coefficient using the following equation as derived in Table 2-1 in 

Chapter 2: 

 

𝐾 = !!"#$%&'
!!"#$%#&

         (Equation 3-1) 

  

The partition coefficient for three samples was determined at 50ppm for each steroid 

excluding fludrocortisone acetate in which 250ppm was used.  An average was then taken 

of these three values. 
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2.4.2.  Recovery, precision, accuracy 

Three glucocorticoid mixture samples at 250ppm for fludrocortisone acetate and 50ppm 

for each of the remaining 7 steroids were prepared and used in the determination of 

percent recovery and accuracy by using the equation of the line from the calibration curve 

to find the concentration from the resulting peak area.  Once determined, these values 

were divided by the appropriate concentration (250 or 50ppm) and multiplied by 100 to 

give percent recovery.  An average value was reported.  Percent error was determined for 

each of these three samples as well to assess accuracy of the method and an average value 

was reported.  Six samples at 300ppm were performed and used in the determination of 

both interday and intraday precision.  This high concentration was chosen in order to 

evaluate the precision of all steroids within the range of fludrocortisone acetate as this 

glucocorticoid was determined undetectable below 200ppm.  The percent RSD was 

calculated from these six samples for both days individually as well as collectively.  All 

three values were reported in Table 3-6.  

 

%𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =    !"#!$%&!'()**+  !"#"$%&'"!  !"#!$#%&'%("#
!"#

100                         (Equation 3-2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦:  %𝑒𝑟𝑟𝑜𝑟 =    !"#!  !"#!$%&!'()**+  !"#"$%&'"!  !"#!$#%&'%("#
!"#

100    (Equation 3-3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛:  %𝑅𝑆𝐷 =    !
!
100                                                                                  (Equation 3-4) 

 

2.4.3.  Analysis of Real Samples: HMPs 

Four herbal medicinal products were investigated for the presence of both the 

glucocorticoids and hormones using the optimized QuEChERS and MRM methods.  

These four HMPs encompassed two brands of Boswellia including both vegetarian 
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tablets as well as capsules, Yogaraj Guggulu tablets, and a revitalizing liquid tonic all 

targeting joint treatment.  Any tablet products were ground and placed into a 10mL 

volumetric flask where deionized water was added to the mark.  The contents of the 

capsule product were emptied into a 10mL volumetric flask as well with deionized water.  

For each of these products, 2mL of each were used in the optimized QuEChERS method, 

whereas 2mL of the liquid tonic was used with no dilution.  The optimized QuEChERS 

method was applied and the sample was analyzed using the aforementioned GC-MS/MS 

parameters for both the glucocorticoids and hormones.  

   

3.  Results and Discussion 

3.1.  Optimization of MRM GC-MS/MS Method 

In optimizing a multiple reaction method (MRM) for the analysis of the 8 glucocorticoids 

of interest (beclomethasone, cortisone acetate, prednisone, hydrocortisone, prednisolone, 

fludrocortisone acetate, dexamethasone, methylprednisolone) and the additional 7 

hormones (DES, prasterone, methandriol, estrone, estradiol, methandriol, and boldenone: 

500ppm) the first step taken was performing a full scan for all ions between m/z values of 

40-500amu.  Figures 3-6A and 3-8A depict the full scan chromatograms for both the 

glucocorticoids and hormones studied, respectively.  The methods for both sets of 

compounds were optimized so as to achieve the best separation in the shortest time.  The 

pairs with partial co-elution before optimizing this method were beclomethasone with 

cortisone acetate, and prednisolone with fludrocortisone acetate for the first 8 

glucocorticoids, and estrone, estradiol, and methandriol for the second set of 7 hormones.  
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It was difficult to detect beclomethasone, cortisone acetate, prednisone, and 

fludrocortisone acetate, so their concentrations were increased to 400ppm in order to be 

better visualized for optimization purposes.  Cortisone acetate, beclomethasone, and 

fludrocortisone acetate have more complicated structures including acetate groups which 

could be a reason for the difficulty in seeing their presence at lower concentrations using 

liquid injections as these groups are more prone to degradation in the inlet and possible 

adherence to the liner in the inlet though a deactivated liner was used throughout all 

research performed and was changed frequently. 

   

A product ion scan was performed next, in which the ions for each steroid were examined 

from the mass spectrum for each analyte in the total ion scan.  The ions with the highest 

molecular weight as well as relatively high abundance were chosen and tested.  Those 

that provided the best sensitivity and selectivity for each compound were chosen and are 

depicted in Figures 3-6B and 3-8B for glucocorticoids and hormones, respectively.   

 

Various collision energies ranging from 5-26eV were applied to each precursor ion to 

determine the best collision energy for each transition of a precursor ion to a product ion.  

Three transitions for each compound were chosen as seen in Figures 3-7 and 3-8C for the 

glucocorticoids and hormones, respectively.  It can be seen here how an optimized MRM 

method can show clear separation of any compounds that were partially co-eluting in the 

full ion scan. 
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Figure 3-6.   A: Full scan (total ion chromatogram) of the 8 glucocorticoids of interest.  B: Product 
Ion Scan of the 8 glucocorticoids of interest. 
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Steroid Retention 
Time (min) 

Precursor 
Ion 

Product Ions Collision 
Energy 

1) Beclomethasone 9.227 121 77; 91; 51 20; 13; 25 
2) Cortisone Acetate 9.267 122 107; 77; 79 13; 25; 20 
3) Prednisone 9.374 121 77; 91; 93 20; 13; 7 
4) Hydrocortisone 9.931 163 148; 105; 145 20; 13; 11 
5) Prednisolone 10.088 122 107; 77; 79 13; 25; 20 
6) Fludrocortisone Acetate 10.144 121 77; 91; 93 20; 11; 7 
7) Dexamethasone 10.296 160 145; 127; 115 11; 25; 25 
8) Methylprednisolone 10.372 136 121; 77; 79 11; 25; 25 

17#

pr
ed

ni
so

ne
#

hy
dr
oc

or
tis

on
e#

flu
dr
oc

or
tis

on
e#
ac

et
at
e#

m
et
hy

lp
re
dn

is
ol
on

e#

be
cl
om

et
ha

so
ne

#

pr
ed

ni
so

lo
ne

#

de
xa

m
et
ha

so
ne

#

co
rt
is
on

e#
ac

et
at
e#

Figure	  3-‐7.	  The	  MRM	  method	  parameters	  (bottom)	  used	  in	  the	  MRM	  chromatogram	  (top)	  for	  the	  8	  
glucocorticoids of	  interest.	  
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Steroid Retention Time 
(min) 

Precursor 
Ion 

Product Ions Collision 
Energy 

1) DES 11.607 268 239; 145; 107 10; 18; 26 
2) Prasterone 12.410 288 203; 107; 97 10; 14; 20 
3) Methandriol 12.563 253 197; 155; 169 16; 26; 26 
4) Estrone 12.820 270 185; 157; 172 14; 26; 20 
5) Estradiol 12.847 272 185; 172; 213 8; 14; 16 
6) Mesterolone 12.877 218 159; 105; 200 14; 26; 8 
7) Boldenone 13.030 122 107; 77; 79 16; 26; 18 

500ppm	  	  
Total	  Ion	  Scan	  

500ppm	  	  
Product	  Ion	  Scan	  

500ppm	  	  
Multireaction	  
Monitoring	  

      

      

Figure	  3-‐8.	  	  	  A:	  Full	  ion	  scan	  of	  the	  7	  hormones	  of	  interest.	  	  B:	  Product	  ion	  scan	  of	  
the	  7	  hormones	  of	  interest.	  	  C:	  MRM	  of	  the	  7	  hormones	  of	  interest.	  	  D:	  	  The	  
optimized	  MRM	  parameters	  for	  the	  7	  hormones	  of	  interest.	  

A	  

B	  

C	  

D	  
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3.2.  Optimization of QuEChERS Method 

3.2.1.  Optimization of pH for QuEChERS  

The pKa values of all steroids were above 10, thus it was determined to work at a pH 

below the pKa values.  Not only was this convenient pH as in the caffeine study, but also 

for these compounds, it was the pH at which the steroids were neutral as is desired for 

extraction into an organic phase.  A previous study performed using QuEChERS for the 

extraction of a few of the steroids under investigation currently used no buffer and had 

success.  Without buffer adjustment, the pH of the deionized water used to prepare the 

steroid standards was approximately 6.  A phosphate buffer was used to adjust the system 

to a pH of 7.  Drawing from the caffeine study, it was predicted that a buffer would not 

result in greater stability of the method as at a pH of 6 and 7, the compounds are all in the 

same ionization state.  As expected, it was determined that there was no significant 

increase upon the use of a buffer and it was deemed unnecessary.   

 

3.2.2.  Liquid-Liquid extraction (LLE) 

As described in chapter 2, the LLE includes the use of salts that aid in solvent 

partitioning and decreasing the amount of co-extractables.  Based upon the results from 

the previous study, ratios of 4:1, 2:1, and 1:1 were investigated, and once again a 1:1 ratio 

with 500mg MgSO4 and 500mg NaCl was the optimal salt amount allowing for the best 

extraction of all eight glucocorticoids.  This is seen in Figure 3-10 upon plotting the 

resulting peak areas for each compound at the three different salt ratios investigated.  

This amount also provided the best reproducibility for the method represented by the  
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Figure 3-9. Optimization of the pH during the initial sonication of lose tea in deionized water. 
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Figure 3-10. Optimization of salt ratio amount during the LLE step of the QuEChERS method 
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smaller error bars in Figure 3-10, most likely due to the principles in salting out and 

equilibrium.  The lower salt amounts are not allowing for completion of the salting out 

effect, resulting in an inconsistent amount of analyte being driven into the organic phase.  

An increased amount of salt allows for salting out to occur completely in a consistent 

manner, resulting in a more reproducible extraction.  The increased salt amount may 

result in a more consistent completion of the extraction equilibrium as well. 

 

The final optimization parameter was solvent type.  Acetonitrile (ACN), acetone (ACE), 

and ethyl acetate (EtOAc) were all investigated.  As with the caffeine study, it was found 

that ACN provided the optimal results; however, ethyl acetate is fairly comparable and 

could be used during the extraction if desired.  These results are consistent with those 

from the caffeine study in Chapter 2.  The solubility data reported in the literature for the 

glucocorticoids investigated states sparingly soluble in water and acetone; however, there 

is not much data on ethyl acetate or acetonitrile.  Given the results of this study, it can be 

deduced that these steroids have greater solubility in ethyl acetate and acetonitrile than 

acetone, hence the decreased peak areas and extraction ability using the latter solvent as 

seen in Figure 3-11.  

 

3.3.  Validation 

3.3.1.  Calibration curve, linearity, and partition coefficient 

Upon analysis, glucocorticoid mix standards of concentrations from 10ppb to 500ppm 

resulted in calibration curves for each compound with limits of detection ranging from  
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Figure 3-11. Optimization of the organic solvent type during the LLE step of the QuEChERS method. 
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5ppm to 450ppm depending on the steroid.  The resulting LOD, LOQ, and R2 values for 

each steroid are summarized in Table 3-6.  In terms of the effect of the addition of salts to 

the system that are used during the QuEChERS method on the partition coefficient, it 

would be expected that the addition of salts to the system for a compound that is more 

soluble in water than acetonitrile would cause an increase in the partition coefficient as 

opposed to a compound who has less solubility in water.  Beclomethasone, cortisone 

acetate, and fludrocortisone acetate were less soluble in water and would thus be less 

affected by the addition salts than the remaining 5 steroids.  A summary of the LOD, 

LOQ, and partition coefficient data can be seen in section 3.3.2.  

 

3.3.2.  Recovery, precision, accuracy 

The precision data was obtained by the analysis of 6 samples using the optimized 

QuEChERS and MRM methods.  The percent RSD for these samples was performed for 

each of the 8 glucocorticoids, providing the precision results seen in Table 3-6.  This was 

performed on two consecutive days, resulting in two interday precisions and one intraday 

precision.  The percent recovery and accuracy (% error) were performed using 3 samples.  

The percent recovery and accuracy were calculated for each of these 3 samples and an 

average was taken.  The average values for each glucocorticoid are seen in Table 3-6 

along with the LOD, LOQ, R2, and partition coefficient data. 
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Figure 3-12. Calibration curve of beclomethasone from the method validation of the optimized 
QuEChERS extraction. 
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Figure 3-13. Calibration curve of cortisone acetate from the method validation of the optimized 
QuEChERS extraction. 
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Figure 3-14. Calibration curve of prednisone from the method validation of the optimized QuEChERS 
extraction. 
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Figure 3-15. Calibration curve of hydrocortisone from the method validation of the optimized QuEChERS 
extraction. 
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Figure 3-16. Calibration curve of prednisolone from the method validation of the optimized QuEChERS 
extraction. 
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Figure 3-17. Calibration curve of fludrocortisone acetate from the method validation of the optimized 
QuEChERS extraction. 
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Figure 3-18. Calibration curve of dexamethasone from the method validation of the optimized 
QuEChERS extraction. 
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Figure 3-19. Calibration curve of methylprednisolone from the method validation of the optimized 
QuEChERS extraction. 
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Steroid 
(calibration range) 

LOD 
(ppm) 

LOQ 
(ppm) 

R2  Recovery 
(%; n=3) 

Accuracy 
(%Error; 

n=3) 

Interday 
Precision 
(%RSD) 

Intraday 
Precision 
(%RSD) 

Partition 
Coefficient 

Beclomethasone 
(5 to 100ppm) 

5 10 0.991 85.58 14.42 Day 1: 2.71 
Day 2: 7.02 

5.28 0.75 ± 0.06 

Cortisone Acetate 
(5 to 100ppm) 

5 10 0.994 83.87 16.13 Day 1: 4.90 
Day 2: 6.47 

7.75 0.72 ± 0.04 

Prednisone 
(5 to 150ppm) 

5 10 0.995 93.70 6.30 Day 1: 1.77 
Day 2: 5.46 

3.91 0.88 ± 0.02 

Hydrocortisone 
(5 to 100ppm) 

5 10 0.993 93.47 6.53 Day 1: 1.91 
Day 2: 3.97 

3.06 0.88 ± 0.04 

Prednisolone 
(5 to 100ppm) 

5 8 0.992 88.76 11.24 Day 1: 3.60 
Day 2: 1.63 

2.77 0.80 ± 0.04 

Fludrocortisone 
Acetate 

(200 to 450ppm) 

200 250 0.987 93.65 6.35 Day 1: 2.59 
Day 2: 8.91 

7.40 0.88 ± 0.03 

Dexamethasone 
(5 to 100ppm) 

5 10 0.997 90.71 9.29 Day 1: 4.82 
Day 2: 1.60 

4.89 0.83 ± 0.04 

Methylprednisolone 
(5 to 100ppm) 

5 8 0.993 84.14 15.86 Day 1: 3.68 
Day 2: 1.98 

3.04 0.73 ± 0.03 

Table 3-6. Summary of method validation results using GC-MS/MS. 
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3.3.3.  Analysis of Real Samples: HMPs 

The four HMPs were analyzed for both glucocorticoids as well as hormones.  This was 

performed using the optimized QuEChERS and MRM method as well as a Q3 Scan (total 

ion scan).  The analysis results showed that neither glucocorticoids nor hormones were 

detected using the QuEChERS and MRM methods.  Though it may be possible that these 

compounds are present in the samples and were simply not able to be detected.  An 

extraction technique such as SPME that could provide lower detection limits may be able 

to detect if these compounds are present in the HMPs.  Please see Chapter 4 for a 

discussion on the comparison of QuEChERS and SPME.    

 

4.  Conclusion 

This study was successful in optimizing an instrumental method for the separation of the 

8 glucocorticoids and 7 hormones of interest for GC-MS/MS analysis as well as 

optimization of the QuEChERS method.  The knowledge gained from the previous 

caffeine study was employed here for optimization of salt amount as well as elimination 

of any sonication steps during the method.  The resulting optimized QuEChERS and 

MRM methods provided successful validation with percent recoveries for all 

glucocorticoids greater than 83%, precision data both interday and intraday less than 9%, 

and partition coefficients between 0.72 and 0.88.  Limits of detection for all steroids but 

fludrocortisone acetate were 5ppm with limits of quantitation at either 8 or 10ppm.  

Fludrocortisone acetate had much higher LOD and LOQ values of 200 and 250ppm, 

respectively.   
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Herbal Medicine Product Steroid(s) Present 
Brand 1 
Vegetarian Tablet 

None detected 

Brand 2 
Vegetarian Capsule 

None detected 

Brand 3 
Tablet 

None detected 

Brand 4 
Revitalizing Tonic 

None detected 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-7. Summary of steroids found in studied HMPs. 
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One reason for the higher detection limits for all of the compounds of interest involves 

the limitations of the QuEChERS method.  This method involves an extraction into 2mL 

of organic solvent with no concentrating step.  Thus, if 1ppm of sample is used during the 

extraction, then 2µg of sample is extracted into the organic solvent.  Assuming no loss of 

sample throughout the entire extraction and injection processes, this means that only 

20ng of sample is actually analyzed using a 1µL injection.  Also, derivatization was not 

used during this process, which may have aided in preventing any loss of sample during 

the injection process due to active sites on the liner and inlet.  Both of these items must 

be taken into consideration when analyzing the detection limit results for this extraction 

method in order to fairly evaluate its capabilities.  This item is once again addressed in 

Chapter 4 during a discussion on SPME and QuEChERS detection abilities. 
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CHAPTER 4 – A COMPARISON OF SPME AND QUECHERS FOR THE 

EXTRACTION OF HORMONES FROM WATER  

 
 
The previous chapters have discussed QuEChERS and the components of its extraction 

quite thoroughly; however, there are multiple extraction techniques that can be used for 

the extraction of hormones from water.  Solid phase microextraction (SPME) is one such 

extraction method.  This technique was investigated by a former student, Shilpi Chopra, 

for the extraction of hormones from water and will be briefly applied for a selection of 

those hormones using GC-MS/MS.  The resulting SPME method was compared to the 

use of QuEChERS for the extraction of these hormones, a comparison that has yet to be 

performed in the literature.  This comparison showed that SPME has sensitivities for the 

hormones of interest down to parts per trillion, whereas QuEChERS shows a part per 

million sensitivity as seen in Chapter 3.  Reasons for this may be due to limitations of the 

QuEChERS method and is further discussed within this Chapter.      

 

1.  Introduction 

1.1. Solid Phase Microextraction (SPME) Sample Preparation 

As QuEChERS was discussed quite extensively in previous chapters, this section will 

concentrate on the theory involved in solid phase microextraction (SPME) and a 

comparison of these two extraction techniques.  SPME is a solvent-less technique that 

was invented in 1990 by Pawliszyn [16].  This extraction is extremely versatile and can 

be performed for a multitude of analytes, using multiple techniques including headspace 
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and direct immersion.  Both methods employ a fiber that has been coated with a polymer 

that is either suspended in the headspace above the sample in a SPME vial, or immersed 

directly in the sample itself.  The latter tends to shorten the lifetime of a fiber; however, 

this was the method used for the analysis of the hormones of interest, as these compounds 

are semi-volatile and polar, making them more conducive to direct immersion SPME 

[74].  During extraction, the analytes adsorb onto the fiber and upon completion are 

thermally desorbed in the heated GC inlet as seen in Figure 4-1.   

 

Both time and temperature will affect the rate of equilibrium, and it is imperative that 

both the extraction time and temperature are optimized to ensure that optimal extraction 

of all compounds is achieved.  For instance, a 30-minute extraction may be optimal for 

lower molecular weight compounds in a sample, whereas a 60-minute extraction results 

in less lighter compounds due to the heavier molecules adsorbing and displacing the 

lighter analytes.  In this case, perhaps a 45-minute extraction provides the best extraction 

in which all of the compounds are present at a satisfactory level.  The temperature used 

during the extraction process should be optimized as well.  

 

Once equilibrium has been reached, the fiber is placed into the heated GC inlet where the 

heat of the inlet causes the analytes to desorb from the fiber and be carried into the 

column for separation.  Again, it is important to optimize the desorption time and 

temperature as these two factors are responsible for causing the analytes to transfer from 

the fiber to the inlet. 
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 Figure 4-1.  Schematic of the direct immersion SPME extraction (top) and 
desorption (bottom) processes.  Adapted from S. Chopra [83].  
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of	  analytes	  
onto	  fiber	  
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Figure	  4-‐2.	  	  Guide	  for	  fiber	  coating	  selection	  using	  the	  polarity	  and	  
volatility	  of	  analytes	  of	  interest.	  	  

Analyte	  
Properties	   Polarity	  

Vo
la
til
ity
	  

low	   high	  

low	  

high	  

7μm	  PDMS	  

30μm	  PDMS	  

100μm	  PDMS	  

PDMS/DVB	   Carbowax/DVB	  

PA	  
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In addition to factors such as agitation, temperature, and time, fiber characteristics will 

effect the resulting extraction too.  There are many different polymers that can be chosen, 

and as with stationary phases in GC they are chosen based upon polarity and volatility of 

the analytes under investigation.  If a sample is being investigated with only polar 

analytes present, then a fiber with polar properties such as polyacrylate (PA) should be 

used; however, if non-polar analytes are also present then a fiber including a wide range 

of polarity such as polydimethylsiloxane/divinyl benzene (PDMS/DVB) should be used.  

Both of these fibers and more can be seen in Figure 4-2.  The thickness of the coating 

should also be taken into consideration.  With direct immersion, typically a thinner 

coating polymer is used as this will prevent contamination of the fiber due to the fiber 

being immersed in the sample rather than exposed only to the headspace [16].  

 

1.2. The Analysis of Hormones using SPME Sample Preparation 

Solid phase microextraction (SPME) has been used for a wide range of applications 

including environmental, clinical, biological, food and flavor, pharmaceutical, and 

forensic samples [74].  Of particular interest to this study was the analysis of hormones 

using SPME and comparing the results to a QuEChERS extraction.  In the past, non-

volatile compounds such as steroids with polar functional groups were analyzed using 

direct immersion followed by on-fiber head space derivatization using bis-(trimethyl-

silyl)trifluoroacetamide (BSTFA), forming TMS derivatives for GC-MS analysis [74-77].   

 

Such work was performed by Snow and co-workers for the analysis of steroids from 

human serum as well as estrogens and anabolic steroids in both aqueous and biological 
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mediums, both studies using a carbowax/divinyl benzene (DVB) fiber with a 30 minute 

extraction at 60°C with on-fiber derivatization using BSTFA [75-80].  A PDMS/DVB 

fiber with a 60 minute extraction at 50°C was used for the evaluation of river water for 

steroid contamination in a third study by Snow; however, this study did not use any 

derivatization and was successful in extracting steroids from water with recovery ranges 

from 73-115% and LOD from 0.008-3.77µg/L [81].  Chopra and Snow also performed 

work without derivatization of steroid estrogens that were under investigation in the 

current study.  Chopra’s work involved the analysis of steroids using SPME and GCxGC-

TOFMS as well as GC-MS/MS.  The SPME conditions including the vial contents and 

use of a PDMS/DVB fiber used in their study were employed during the current work; 

however, the MRM method was re-optimized, as was the extraction time [82-83].  

 

1.2. QuEChERS and SPME Sample Preparation 

There are many advantages to both QuEChERS and SPME as compared to classic multi-

residue methods.  QuEChERS was invented as a quicker, cheaper, safer, more effective 

method alternative for a multi-residue sample preparation method.  The amount of 

sample and solvent used is less in addition to the use of safer solvents.  Simpler method 

steps are involved such as the use of a centrifuge and shaker as opposed to a filtration or 

ultra-turrax.  Evaporation is also not a step necessary in QuEChERS and the d-SPE clean 

up used in QuEChERS is much less complicated than the clean up steps used in classic 

multi-residue methods (MRM).  An outline of the differences between QuEChERS and 

classic MRM methods are listed in Table 4-1.   
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As aforementioned, SPME is a solvent-less technique, which QuEChERS is not.  Thus 

the exposure to solvents and the cost for solvents is less; however, the cost of SPME 

fibers is high.  SPME is also both an extraction and concentration method; therefore, the 

sensitivity of the method may be greater than QuEChERS as it does not include a 

concentration step.  There is also an endless amount of combinations that can be used in 

QuEChERS between variations in solvent, salts used, and sorbents during the clean up 

step to optimize a method and make it applicable to a wide range of samples.  SPME has 

limited fiber options that can be used for sample analysis though the use of fibers allows 

for direct analysis of a sample without additional extensive sample preparation.  A 

comparison between SPME and QuEChERS is also included in Table 4-1.  

 

The use of SPME for the extraction of hormones from water was investigated briefly 

using a previously optimized method by Chopra [83].  The use of various extraction 

times was investigated and the optimized SPME method was compared to the optimized 

QuEChERS method as these two methods have not been compared directly in the 

literature extensively.  The resulting peak areas for each method were investigated for 

samples of same concentrations to determine the extraction ability of each comparatively.  

 

2. Materials and Methods 

2.1.  Chemicals, Reagents, and Samples 

Acetonitrile (ACN) was purchased from pharmco-AAPER (Kindermorgan, PA) and was 

reagent ACS grade.  All salts used throughout the study as well as the steroid standards  
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Table 4-1.  Comparison of the QuEChERS method to SPME and classical MRM methods. 
SPME QuEChERS Classic Multi-residue 

Methods 
Sample amount can vary Smaller samples used Macro-scale sample amount 
Less complicated, simpler steps: 

-‐ Single extraction step in 
a single vessel 

-‐ Concentration technique 
as well 

-‐ Sensitivity increased 
due to concentration 

-‐ Limited by fiber type 
 

Less complicated, simpler steps: 
-‐ Single partitioning step 

in a single vessel 
-‐ d-SPE clean-up 
-‐ Centrifuge and 

shaker/vortex 
-‐ Less error prone 
-‐ Multitude of 

combinations possible 

More complicated steps: 
-‐ Multiple partitioning 

steps with multiple 
vessels 

-‐ SPE, GPC clean-up 
-‐ Filtration and ultra-

turrax 
-‐ More error prone 

Solvent-less technique Limited safer solvents used Exposure to less safer solvents 
Large method applicability Larger extraction range Limited extraction range 
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were purchased from Sigma Aldrich (St. Louis, MO).  QuEChERS tubes containing 

150mg PSA and 50mg MgSO4 were purchased from Restek (Bellefonte, PA) and 15mL 

PFTE centrifuge tubes were obtained from VWR International (Radnor, PA).  The 

PDMS/DVB fibers used during SPME analysis were obtained from Sigma Aldrich 

(Bellefonte, PA).  Deionized water was used throughout the methodology. 

 

2.2.  SPME Sample Preparation 

The 7 hormones investigated in Chapter 3 were also used in this study: diethylstilbestrol, 

prasterone, methandriol, estrone, estradiol, mesterolone, and boldenone.  An optimized 

SPME method for hormones determined by Chopra was utilized in this research where 

the pH, salt amount, and water amount were previously determined [83].  A phosphate 

buffer was prepared at pH 8.0 in which 25µL was added to 2.15g NaCl and 8.5mL 

deionized water in a 10mL SPME vial.  The extraction time was optimized using a 

sample containing 0.5ppm of the hormone mixture prepared in ethanol that was added to 

the vial and vortexed until mixed and the salt dissolved.  The SPME parameters used for 

the extraction can be seen in Table 4-2.      

  

2.2.1.  Optimization of pH, salt amount, and extraction time for SPME 

A previous study performed by Chopra used a 0.5M phosphate buffer.  In this study, 

100mL phosphate buffer was prepared by dissolving 0.36g sodium phosphate dibasic and 

0.30g potassium phosphate monobasic in deionized water and brought to a pH of 8.0 

using a 5M sodium hydroxide solution.  The salt amount of 2.15g optimized by Chopra 

was used in this study [83].  As the GC-MS/MS used during Chopra’s study was different  
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SPME Conditions 
Sample Preparation Fiber Type Extraction/Desorption Parameters 

10mL SPME vial containing: 
2.15g NaCl 

8.5mL DI H2O 
0.25µL phosphate buffer (pH 8.0) 
Desired amount of hormone mix 

PDMS/DVB  
(23 ga, df 65µm) 

Incubation: 10 min at 55°C 
Extraction: 60 min at 55°C 
Desorption: 3 min at 250°C 

Post-Fiber Bake: 20 min 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-2. SPME conditions used for GC-MS/MS analysis of hormones. 
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then that used in this study, the MRM parameters and extraction time were re-optimized 

and investigated at 15, 30, 45, and 60min using a 0.5ppm hormone standard mixture. 

 

2.3.  QuEChERS Sample Preparation 

The hormones used in this study were also investigated using the optimized QuEChERS 

method described in Chapter 3 for the glucocorticoids analysis in which 500mg of NaCl 

and 500mg of MgSO4 were placed into a 15mL centrifuge tube along with 2mL of 

aqueous sample and 2mL of acetonitrile.  The sample was vortexed for 1-minute and 

centrifuged for 3-minutes at 1,000rpm.  The top organic layer was transferred to a tube 

containing 50mg PSA and 150mg MgSO4 that was then vortexed and centrifuged.  The 

resulting liquid extract was transferred to a GC vial and analyzed.    

 

2.3.  SPME and QuEChERS Comparison 

Both SPME and QuEChERS were performed for the purpose of comparing the resulting 

peak areas for the extraction of samples with the same concentrations.  The following 

concentrations were analyzed using SPME and QuEChERS: 5, 1, 0.5, 0.05, and 

0.005ppm, as well as 0.0005ppm for SPME. 

 

2.4.  Instrumental Parameters 

The instrumentation utilized for this study was a Shimadzu GC-MS/MS TQ8030 with an 

AOC-5000 Auto Injector (Santa Clara, CA).  Splitless liquid injection was used for all 

analyses of QuEChERS samples and SPME analysis also used splitless injection.  Both  
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GC-MS/MS 
GC Parameters Oven Parameters MS Parameters 

Column: RTX-5MS 15m, 
0.25mm, 0.25µm 

Initial Temperature: 40°C 
Hold 1 minute 

EI Source: 250°C 

Carrier Gas: Helium 20°C/minute Ramp to 300°C 
Hold 3 minutes 

Transfer Line: 250°C 

Column Flow: 0.98mL/min 
Linear Velocity: 51.0cm/sec 

Injection Mode: Splitless 
Inlet Temperature: 250°C 

 

 

 

 

 

 

 

 

 

 

 

Table 4-3. Method conditions used for GC-MS/MS analysis of hormones. 
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Hormone Retention Time  
(min) 

Precursor 
Ion 

Product Ions Collision 
Energy 

Diethylstilbestrol 11.607 268 239; 145; 107 10; 18; 26 
Prasterone 12.410 288 203; 107; 97 10; 14; 20 
Methandriol 12.563 253 197; 155; 169 16; 26; 26 
Estrone 12.820 270 185; 157; 172 14; 26; 20 
Estradiol 12.847 272 185; 172; 213 8; 14; 16 
Mesterolone 12.877 218 159; 105; 200 14; 26; 8 
Boldenone 13.030 122 107; 77; 79 16; 26; 18 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Table 4-4. MRM method conditions used for the 7 hormones of interest with GC-
MS/MS analysis (quantitative ion transition in italics. 
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extraction methods used multiple reaction monitoring (MRM) previously optimized as 

described in Chapter 3.  The separation and detection parameters for the instrument are 

listed in tables 4-3 and 4-4. 

 

3.  Results and Discussion 

3.1.  SPME Sample Preparation 

As previously stated in section 2.2, the SPME conditions including pH and salt amount 

were previously optimized by Chopra; however, the extraction time was re-optimized in 

this study.  It was found that 60 min provided the best extraction for all of the hormones 

of interest.  This finding was congruent with that of Chopra.  Figures 4-3 and 4-4 depict 

the optimization of the extraction time and a summary of the optimized MRM SPME 

extraction at 60min with a 0.5ppm sample, respectively. 

 

3.2.  QuEChERS Sample Preparation 

It was found that the optimized parameters used for extraction of glucocorticoids was 

also successful for the extraction of the hormones of interest, as expected due to their 

similar structures and functional groups.  Thus, the same parameters optimized in Chapter 

3 were used during this study during QuEChERS. 
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30min	  

15min	  

Figure 4-3. Optimization of SPME extraction time for the hormones of interest (0.5ppm). 
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Hormone 
1) Diethylstilbestrol 
2) Prasterone 
3) Methandriol 
4) Estrone 
5) Estradiol 
6) Mesterolone 
7) Boldenone 

	  	  	  	  1	   	   	   	  	  	  	  	  	  2	  	  	  	  	  	  	  3	  	  	  	  	  	  	  	  4,5,6	  	  	  	  	  7	  

A	  

B	  

C	  

Figure	  4-‐4.	  A:	  Chromatogram	  of	  hormones	  analyzed	  using	  the	  optimized	  MRM	  and	  SPME	  methods	  
with	  a	  60min	  extraction	  time	  and	  0.5ppm	  concentration.	  	  B:	  Zoomed	  in	  portion	  of	  A	  including	  the	  
hormones	  of	  interest.	  	  C:	  Chromatogram	  show	  separation	  of	  the	  hormones	  by	  quantitative	  ion	  
transition	  (see	  Table	  4-‐4).	  
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Hormone 
1) Diethylstilbestrol 
2) Prasterone 
3) Methandriol 
4) Estrone 
5) Estradiol 
6) Mesterolone 
7) Boldenone 

Figure	  4-‐5.	  Chromatogram	  of	  hormones	  analyzed	  using	  the	  optimized	  MRM	  and	  QuEChERS	  methods	  
(500ppm).	  	  

16#

500ppm%Steroid%Mix%

Steroid( Parent(Ion( Daughter(Ions( Collision(Energy(

1)%Diethyls6lbestrol%(DES)% 268% 239;%145;%107% 10;%18;%26%

2)%Prasterone% 288% 203;%107;%97% 10;%14;%20%

3)%Methandriol% 253% 197;%155;%169% 16;%26;%26%

4)%Estrone% 270% 185;%157;%172% 14;%26;%20%

5)%Estradiol% 272% 185;%172;%213% 8;%14;%16%

6)%Mesterlone% 218% 159;%105;%200% 14;%26;%8%

7)%1,4FAndrostadieneF3,17Fdione% 122% 107;%77;%79% 16;%26;%18%
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3.3.  SPME and QuEChERS Comparison 

The 60-minute SPME extraction was performed using concentrations ranging from 5ppm 

to 500ppt.  Three of the hormones were detected at the lowest concentration of 500ppt 

(prasterone, methandriol, mesterolone).  The remaining hormones were detected at the 

following concentrations: DES at 1ppb, estrone and boldenone at 5ppb, and estradiol at 

0.5ppm.   

 

The QuEChERS extraction resulted in higher levels of detection in the ppm range; 

however, this is most likely due to the limitations of QuEChERS as compared to SPME.  

SPME has a concentration step that occurs during extraction that QuEChERS does not.  

The extraction for QuEChERS takes place in a 1:1 ratio of sample to solvent (2mL 

aqueous solvent:2mL acetonitrile) with a 1µL injection, resulting in a significant decrease 

in the amount of sample injected onto the column.  If a 1ppm sample is used during 

extraction, this contains 1µg of sample in each mL, and assuming all 2µg are extracted 

from the aqueous layer to the organic layer, then only 20ng of sample will travel to the 

column in the 1µL that is injected.  This would only be possible if the extraction was 

100% efficient with no analyte loss in the inlet from the liquid injection.  This amount is 

closer to the ppt levels that were observed with the SPME results and shows that these 

two techniques only appear to have very different detection levels due to the QuEChERS 

methodology.   

 

Another item to keep in mind is the partition coefficient difference between these two 

methods.  When performed by Chopra, partition coefficients on the order of 10,000 were  
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Hormone SPME Lowest Detection  QuEChERS Lowest Detection 
DES 1ppb 80ppm 
Prasterone 500ppt 5ppm 
Methandriol 500ppt 10ppm 
Estrone 5ppb 80ppm 
Estradiol 0.5ppm 80ppm 
Mesterolone 500ppt 5ppm 
Boldenone 5ppb 5ppm 

 

 

 

 

 

 

 

 

 

 

 

Table 4-5. Comparison of hormone detection using SPME and QuEChERS. 
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observed when using SPME.  This is significantly higher than when using QuEChERS as 

evidenced by both the caffeine and glucocorticoid studies.  Thus once again limitations of 

the QuEChERS method are responsible for the difference between SPME and 

QuEChERS. 

 

4.  Conclusions 

Though it may appear given the results from this study that SPME has much lower 

detection limits than QuEChERS for this set of compounds, this is not a fair direct 

comparison.  One must take into account the limitations of QuEChERS including lack of 

a concentration step, difference in partition coefficients, larger extraction volume, and 

limited injection volume in order to make a more just comparison.  If these parameters 

are evaluated it can be seen that the two methods are not that different in terms of 

detection limits.   

 

It must also be considered that due to direct liquid injection, the compounds may be more 

prone to loss and solvent effects in the inlet during QuEChERS analysis.  Derivatization 

could be performed to evaluate the effect on sensitivity.  Another path for future work to 

improve sensitivity of QuEChERS is the use of a programed temperature vaporizing 

(PTV) inlet.  This would allow for large volume injections of the extract, resulting in 

increased sensitivity.  This has been performed in our lab using organic solvents for large 

volume injections with good peak shape and thus should be further studied for use with 

QuEChERS to improve sensitivity. 
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CHAPTER 5 – A DISCUSSION ON THE USE OF GC-MS/MS AND 

GCXGC-TOFMS FOR THE EXTRACTION OF STEROIDS FROM 

WATER USING SPME  

 

1.  Introduction 

1.1.  GCxGC-TOFMS Instrumentation 

One of the main reasons for the use of this instrument for this particular study is to not 

only separate any co-eluting steroids via two-dimensional chromatography, but also to 

investigate any degradation products that may be occur during analysis. It is also 

predicted that the use of a more sensitive detector will allow for the detection of trace 

amounts of steroids that may be adulterated in herbal medicinal products.  

Multidimensional chromatography also allows for further separation of any matrix 

interferences from the analyte(s) of interest due to separation in two sequential columns 

with different stationary phase polarities as depicted in Figure 5-1.  The use of two 

columns allows for an increase in the number of resolved peaks, also known as peak 

capacity.  In single column chromatography, peak capacity is defined as: 

 

𝑛 =    !
!!
ln !!

!!
+   1          (Equation 5-1) 

 

where n is peak capacity, R is adjacent peak resolution, N is column efficiency, t1 is the 

start time, and t2 is the end time; whereas in comprehensive two-dimensional 



	   	   166	   	   	  

chromatography the equation multiplies the peak capacities of both columns [15-16], [84-

87]. 

 

𝑛!"#!" =    𝑛!"#$%&  ! 𝑛!"#$%&  !                                                                   (Equation 5-2) 

 

Not only does this difference in polarity provide better separation of the components, but 

it also allows for orthogonal separation in that there are two separate mechanisms 

occurring simultaneously and independently with no interference.  These two columns 

are connected by a deactivated fused silica pressfit.  The first column is usually a non-

polar stationary phase, for example polydimethylsiloxane, with typical capillary column 

dimensions (30 or 15m x 0.25mm x 0.25µm).  The second dimension stationary phase is 

more polar than the first to aid in eliminating carry-over and for separating volatile 

analytes.  The column is also shorter (1-2m), and has about half the internal diameter 

compared to the first column, resulting in a rapid separation with little analyte retention.  

The smaller secondary column dimensions help to focus the eluent onto the second 

column, providing narrower, sharper peaks that in turn increase the peak height providing 

easier detection and increasing sensitivity [15], [84-87].  The resulting chromatogram 

from multidimensional chromatography is known as a contour plot.  Any co-elution 

occurring due to the complex matrix and/or multiple steroids of interest will also be 

solved by use of the GCxGC-TOFMS. 
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Figure 5-1.  Schematic of the GC portion of the instrument used in this 
research.  It can be seen that the second column is housed in a separate oven 
for heating and a modulator is between the two columns.  Adapted from B.B. 
Barnes 2012 Dissertations Paper 1804  [16]. 

cold and  
hot modulator 
jets 
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The two columns are connected by a pressfit composed of deactivated fused silica, after 

which there is a modulator.  This portion of the instrument is responsible for peak 

modulation in which the eluent is focused onto the second column, allowing for no 

interferences to occur resulting in the ability for orthogonal separation.  For this reason, 

the modulator is known as the heart of this instrument.  There are three commonly used 

modulators: a thermal sweeper, Deans switch, and a cryotrap.  The cryotrap modulator 

was present in the instrument used for this research and thus will be further discussed.  In 

this type of modulator, alternating cold and hot jets of nitrogen gas help focus the eluent 

and keep the sample mobile to eliminate interferences.  Two cold jets work to focus the 

eluent, splitting the peak providing fractions of the eluent, and two hot jets eliminate any 

interferences between the fractions by keeping the eluent mobile through the modulator.  

In order to preserve peak bandwidth and orthogonal separation, the hot jets tend to have 

shorter pulses.  The hot jet pulse times and the total modulation time, or second 

dimension separation time, also effect retention and should be optimized depending on 

the complexity of the sample [16], [84-86].  A schematic of the cryotrap modulator can 

be seen in Figure 5-2.  

 

Once separated via both columns, the eluent travels through a heated transfer line to the 

mass spectrometer.  As discussed in Chapter 1, the mass spectrometer (MS) is composed 

of an ion source that ionizes and fragments the analytes, a mass analyzer, in this case a 

time of flight mass spectrometer (TOFMS), and a detector.  The main difference from the 

discussion in Chapter 1 is the use of a TOFMS and thus the theory involved will be 

discussed briefly.  
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To	  secondary	  
oven	  

Figure 5-2.  Schematic depicting the cryotrap peak modulation process.  A) The first cold jet 
focuses a single component.  B) The first hot jet moves the peak to the second cold jet.  C) 
The second cold jet splits the peak of the component.  D) The second hot jet moves the peak 
to the secondary oven. 
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The mass analyzer used in the instrument for this study was the TOFMS.  In this mass 

analyzer ions are separated based on their kinetic energy (KE).  It is assumed that the 

ion’s potential energy and kinetic energy are equal which leads to the conclusion that 

velocity is inversely related to mass, thus smaller ions are faster as seen in the following 

set of equations [15-16]. 

 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑞𝑉                                        𝐾𝑖𝑛𝑒𝑡𝑖𝑐  𝐸𝑛𝑒𝑟𝑔𝑦 = !
!
𝑚𝑣!                   (Equation 5-3) 

Where q is the ion charge, V is the repeller accelerating potential, m is the mass of the 

ion, and v is the ion’s velocity. 

 

𝑞𝑉 =    !
!
𝑚𝑣!                                    𝑤ℎ𝑒𝑟𝑒                𝑣 =    !!"

!
                                                 (Equation 5-4) 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =    !"#$%&'(
!"#$

                                        𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒                𝑡 = 𝐿 !
!!"

                           (Equation 5-5) 

Where t is the time spent by the ion in the flight tube and L is the length of the flight tube. 

 

Resolution is increased in TOFMS due to electrostatic plates that control the ion flow and 

maintain the distance between ions.  There are also steering plates in the flight tube to 

control the path the ions take down the tube until they reach the reflectron at the end of 

the tube.  This causes the ions to turn, doubling the path length traveled [6].  Leco’s 

Pegasus 4D GCxGC-TOFMS was the instrument used in the research and can be viewed 

in Leco’s Pegasus 4D GCxGC-TOFMS Brochure [89].    
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In order to obtain the desired results, GCxGC-TOFMS optimization of all necessary 

parameters must be performed.  This includes not only the parameters normally 

optimized in GC/MS such as flow rate and oven ramps, but also parameters for the 

second column as well as the modulator.  The method used was optimized by a former 

student, Shilpi Chopra, and any data reported using GCxGC-TOFMS is from her 

previous work and was not repeated [83].  All GC-MS/MS data was generated by the 

current research. 

 

1.2. A Discussion on GC-MS/MS and GCxGC-TOFMS  

The use of GC-MS/MS or GCxGC-TOFMS depends upon the goal of analysis.  One 

instrument cannot be considered superior over the other, as their purposes are different, 

providing different outcomes.  These instruments should be used in conjunction with 

each other to obtain all information possible.  The main difference between these two 

instruments involves the method used to resolve any co-elution.  GCxGC-TOFMS uses 

chromatography to chromatographically separate compounds as discussed in section 1.1; 

however, GC-MS/MS uses a detector to resolve co-elution as discussed in Chapter 4 by 

preparing a multiple reaction monitoring method (MRM).  There are pros and cons to 

both instruments and thus the goal of analysis must be evaluated.  For instance, GCxGC-

TOFMS allows for separation of column and septum bleed from the peaks of interest but 

can result in two-dimensional tailing as well as the ability to see multiple degradation 

products.  These degradation products can complicate the analysis of the resulting 

chromatogram; however, they can also be used to determine the origin of compounds that 

were analyzed which may be of interest.  A summary table comparing various aspects of  
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Table 5-1. Comparison of certain characteristics of GC-MS/MS and GCxGC-TOFMS.  
GC-MS/MS GCxGC-TOFMS 

Detector resolved co-elution Chromatographic resolved co-elution 
Column and septum bleed not separated 

from peaks of interest 
Column and septum bleed separated 

from peaks of interest 
Tailing only in 1D Tailing in 2D 

Sensitivity increased when using MRM Multitude of degradation products 
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Figure 5-3.  Total ion chromatogram of hormones resolved on GCXGC-TOFMS with SPME sample 
introduction showing the separation of column and septum bleed from the analytes of interest (0.03ppm).  
Reprinted with permission from Chopra S. Dissertation and Theses 2014 [83].  
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these two instruments can be seen in Table 5-1.  An example of chromatographic 

resolution, separation of column and septum bleed from the analytes of interest, and 

presence of multiple peaks that include degradation products using GCxGC-TOFMS is 

depicted in Figure 5-3.  

 

2. Materials and Methods 

2.1.  Chemicals, Reagents, and Samples 

Ethanol was purchased from KOPTEC (King of Prussia, PA) and was 200 Proof.  All 

salts used throughout the study as well as the hormone standards were purchased from 

Sigma Aldrich (St. Louis, MO).  The PDMS/DVB fibers used for SPME analysis were 

obtained from Sigma Aldrich (Bellefonte, PA).  Deionized water was used throughout the 

methodology. 

 

2.2.  SPME Sample Preparation 

The 7 hormones investigated in Chapters 3 and 4 were also used in this study: 

diethylstilbestrol, prasterone, methandriol, estrone, estradiol, mesterolone, and 

boldenone.  An optimized SPME method for steroids determined by Chopra was utilized 

in this research in where the pH, salt amount, and water amount were previously 

determined [80].  A phosphate buffer was prepared at pH 8.0 in which 25µL was added to 

2.15g NaCl and 8.5mL deionized water in a 10mL SPME vial for the GC-MS/MS.  The 

amounts were doubled for GCxGC-TOFMS where a 20mL vial was used.  The extraction 
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time was optimized using GC-MS/MS as mentioned in Chapter 4, section 2.2.  The 

SPME parameters used for the extraction can be seen in Table 5-2.      

 
 

2.3.  GCxGC-TOFMS and GC-MS/MS Instrument Comparison 

In this study, the work performed by Chopra using GCxGC-TOFMS was compared to the 

work performed currently as outlined in Chapter 4 using GC-MS/MS for the extraction of 

hormones from water using SPME.   The ability of both instruments to resolve co-elution 

as well as selectivity were compared using a 0.03ppm standard mixture for GCxGC-

TOFMS and a 0.5ppm standard mixture for GC-MS/MS.  The purpose of this study was 

not to evaluate sensitivity of the instruments, but simply to compare their separation 

ability.   

 

2.4.  Instrumental Parameters 

The instrumentation utilized for this study was a Shimadzu GC-MS/MS TQ8030 with an 

AOC-5000 Auto Injector (Santa Clara, CA) and a LECO Pegasus 4D GCxGC-TOFMS 

with a Gerstel Auto Injector.  Splitless injection was used for all SPME analyses. The 

previously optimized multiple reaction monitoring (MRM) method was used during GC-

MS/MS analysis as described in Chapter 3.  The separation and detection parameters for 

both instruments are listed below in tables 5-3 through 5-5. 

 

 

 



	   	   176	   	   	  

 

 

 

 

 

 

 

 
 

SPME Conditions 
Sample Preparation Fiber Type Extraction/Desorption 

Parameters 
10mL SPME vial: 

2.15g NaCl 
8.5mL DI H2O 

0.25µL phosphate 
buffer (pH 8.0) 

Desired amount of 
hormone mix 

20mL SPME vial: 
4.3g NaCl 

17mL DI H2O 
0.50µL phosphate 

buffer (pH 8.0) 
Desired amount of 

hormone mix 

PDMS/DVB  
(23 ga, df 65µm) 

Incubation: 10 min at 55°C  
Pre-Fiber Bake: 18min (GCxGC-

TOFMS)  
Extraction: 60 min 
Desorption: 3 min 

Post-Fiber Bake: 20 min 

 

 

 

 

 

 

 

 

 

 

 

Table 5-2. SPME method conditions used for GCxGC-TOFMS and GC-MS/MS analysis. 
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GCxGC-TOFMS 
GC Parameters Oven Parameters MS Parameters 

Column: RTX-5MS 
30m, 0.25m, 0.25µm 

Primary Column: 
Initial Temperature: 40°C (hold 1 min) 

20°C/minute Ramp to 200°C (hold 3 min) 

EI Source: 230°C 

Carrier Gas: Helium 
Column Flow: 1mL/min 

 

Secondary Column: 
Initial Temperature: 46°C (hold 1 min) 

20°C/minute Ramp to 250°C (hold 3 min) 

Transfer Line: 250°C 

Injection Mode: Splitless 
Inlet Temperature: 

250°C 

Modulator Parameters: 
Offset 35° to secondary column 

0.90sec hot pulse time 
1.60sec cool time between stages 

Solvent Delay: 120 sec 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5-3. Method conditions used for GCxGC-TOFMS analysis by Chopra [83]. 
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GC-MS/MS 
GC Parameters Oven Parameters MS Parameters 

Column: RTX-5MS 15m, 
0.25mm, 0.25µm 

Initial Temperature: 40°C 
Hold 1 minute 

EI Source: 250°C 

Carrier Gas: Helium 20°C/minute Ramp to 300°C 
Hold 3 minutes 

Transfer Line: 250°C 

Column Flow: 0.98mL/min 
Linear Velocity: 51.0cm/sec 

Injection Mode: Splitless 
Inlet Temperature: 250°C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5-4. Method conditions used for GC-MS/MS analysis. 
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Hormone Retention Time  
(min) 

Precursor 
Ion 

Product Ions Collision 
Energy 

Diethylstilbestrol 11.607 268 239; 145; 107 10; 18; 26 
Prasterone 12.410 288 203; 107; 97 10; 14; 20 
Methandriol 12.563 253 197; 155; 169 16; 26; 26 
Estrone 12.820 270 185; 157; 172 14; 26; 20 
Estradiol 12.847 272 185; 172; 213 8; 14; 16 
Mesterolone 12.877 218 159; 105; 200 14; 26; 8 
Boldenone 13.030 122 107; 77; 79 16; 26; 18 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table 5-5. MRM method conditions used for GC-MS/MS analysis. 
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3.  Results and Discussion 

3.1.  SPME Sample Preparation 

The SPME conditions including pH, salt amount, and extraction time were previously 

optimized by Chopra using GCxGC-TOFMS and GC-MS/MS including 2.15g NaCl, 

8.5mL DI H2O, 25µL, and the desired amount of standard mixture in a 10mL vial with a 

60 minute extraction time [83].  During this study, it was found that 60 minutes also 

provided the best extraction for all of the hormones of interest.  Figures 5-4 and 5-5 

depict the optimized SPME extraction at 60min with a 0.5ppm sample for GC-MS/MS 

analysis and a 0.03ppm for GCxGC-TOFMS, respectively. 

 
 

2.3.  GCxGC-TOFMS and GC-MS/MS Instrument Comparison 

The analysis of these 7 hormones using both GC-MS/MS and GCxGC-TOFMS analysis 

provided a direct comparison of the resulting optimized separations.  Figure 5-5b shows 

the separation using GC-MS/MS and SPME.  The co-elution seen was resolved using the 

detector of the instrument and the optimized MRM method.  As is seen in Figure 5-4a 

using a liquid injection, three of the compounds are co-eluting: Estrone, estradiol, and 

mesterolone.  Rather than attempt to optimize the GC parameters further, the capabilities 

of the detector to resolve the co-eluted peaks using an MRM method was employed.  

Figure 5-4b shows the resolution of those three peaks using the MRM software by 

choosing ions specific to each compound at its specified retention time. 
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Hormone Retention Time (min) 
1) Diethylstilbestrol 11.607 
2) Prasterone 12.410 
3) Methandriol 12.563 
4) Estrone 12.820 
5) Estradiol 12.847 
6) Mesterolone 12.877 
7) Boldenone 13.030 

	  	  	  	  	  	  	  	  	  	  	  1	   	   	  	  	  	  	  	  	  	  	  	  2	  	  	  	  	  	  3	  	  	  	  	  	  	  4,5,6	  	  	  7	  

Figure 5-4.  A:  Total ion chromatogram of the hormones of interest using GC-MS/MS and 
direct liquid injection (500ppm).  B:  Chromatogram of hormones resolved on GC-MS/MS 
using the optimized MRM method and SPME sample introduction (0.5ppm).  
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Figure 5-5.  Total ion chromatogram of hormones resolved on GCXGC-TOFMS with SPME 
sample introduction (0.03ppm).  The analytes that were co-eluting using single dimension GC 
are highlighted in red on the figure.  Reprinted with permission from Chopra S. Dissertation and 
Theses 2014 [83]. 
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The hormones were also separated using GCxGC-TOFMS using the two-dimensional 

chromatographic separation ability of the instrument.  Figure 5-5 depicts the separation of 

all the compounds not only from one another but also from column and septum bleed as 

outlined by a white box.  It can be seen that once again estrone, estradiol, and 

mesterolone are almost directly behind one another in the 2D separation space, thus in a 

single dimension separation they would co-elute as was seen during analysis with GC-

MS/MS.  However, the two-dimensional separation ability of the instrument was able to 

resolve this co-elution using chromatography rather than the detector as with GC-

MS/MS.  There is also a multitude of peaks seen in the separation space, some of which 

are impurities and degradation products that could allow for the collection of further data.  

 

4.  Conclusion 

Comparing these two techniques during this study for the extraction of hormones from 

water using SPME illustrated the separation ability of each instrument.  Though the 

methodology used to achieve this separation was different for each instrument, the 

overall goal of resolving co-elution was accomplished.   

 

The use of a detector to achieve separation was demonstrated using an MRM method 

during analysis with GC-MS/MS in which three co-eluted peaks were resolved.  

Chromatographic separation was shown in which the two-dimensional separation ability 

of GCxGC-TOFMS provided resolution of these three co-eluted peaks as well.  This 

study also showed the ways in which these techniques varied, such as separation of 
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column and septum bleed from the sample, demonstrating that these instruments should 

both be used for sample analysis in order to obtain as much information as possible.  One 

instrument is not superior over the other as they have different strengths and weaknesses, 

thus it is in an analyst’s best interest to utilize both in order to collect all information 

possible. 
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CHAPTER 6 – QUECHERS-HPLC FOR THE SEPARATION OF 

STEROIDS IN HERBAL MEDICINAL PRODUCTS  

	  
	  
 
A previous study investigating the detection of steroids in herbal medicinal products was 

performed using high performance liquid chromatography (HPLC) and QuEChERS 

extraction.  It was of interest to perform the conditions stated in this paper for both the 

extraction method as well as the HPLC conditions to see if the results and separation 

could be replicated.  It was found that the parameters listed in the paper for both the 

extraction and HPLC method were not optimal for the work performed currently.  The 

new optimized parameters will be discussed in this chapter. 

 

1.  Introduction 

1.1.  Adulteration of Herbal Medicinal Products (HMPs) 

The detection of adulterants and contaminants in herbal medicinal products, or HMPs, is 

very important as the presence of these substances can cause adverse effects.  In order for 

the safety of the consumer, a method must be developed for the detection of these 

possible adulterants.  Common adulterants and contaminants include mold, fungi, 

pollens, dust, insects, rodents, microbes, parasites, toxins, toxic heavy metals, pesticides, 

and prescription drugs causing severe side effects including meningitis, organ failure, 

stroke, heavy metal poisoning, coma, and death.  The most commonly adulterated HMPs 

are traditional Indian and Chinese herbal medicines [90-94].     
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1.2  QuEChERS and HMPs  

QuEChERS has been used for the extraction of pesticides from many different matrices, 

including herbal medicinal products.    The analysis of fresh herbs used in HMPs was 

performed using QuEChERS and GC-MS-SIM for the presence of pesticides and PAHs.  

It was found that acetonitrile provided the best extraction solvent, providing cleaner 

samples with increased recoveries of 71.6-116.9% and RSD values less than 15%.  

Pesticides were detected in real samples, with some pesticides present at levels greater 

than the maximum residue levels (MRL) stated by the European Commission [92].  

Auyurvedic churna was analyzed for 200 pesticides in 28-minutes using GC-MS/MS.  

Dried leaves of herbs are used to make the churna so it is important to have a method of 

screening and detection for the presence of pesticides in order to assure product safety. 

Limits of detection were found as low as 2.5ng/g, which is below the Unani guidelines 

[93].     

 
 
 

1.3.   QuEChERS-HPLC for the Analysis of Steroid Adulteration in HMPs 

There has been very little work in the literature performed for the analysis of steroids in 

HMPs using HPLC, and none using GC-MS analysis. Two studies were found that 

investigated steroid adulteration in HMPs using HPLC.  One of these investigated 

dexamethasone adulteration in herbal medicines using QuEChERS and HPLC-UV 

analysis.  The QuEChERS method used a 4:1 ratio of MgSO4:NaCl (500mg:125mg) and 

acetonitrile with no d-SPE step.  The sample was filtered and analyzed using HPLC with 

a 1% acetic acid and methanol mobile phase (40:60 ratio) with UV detection at 254nm.  
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Limits of detection and quantitation were determined to be 0.3ppm and 1.0ppm, 

respectively, with a percent RSD less than 10, and recoveries of 90-110% in both analysis 

of a standard and herbal pill obtained from Bangkok Thailand [94].  

 

The specific article under investigation for the work outlined in this chapter was 

performed by Klinsunthorn and co-workers for the analysis of 9 glucocorticoids in HMPs 

using HPLC-UV.  The authors optimized a QuEChERS method involving 500mg MgSO4 

and 125mg NaCl, 2mL ACN and 2mL liquid herbal medicine, 50mg of PSA used during 

d-SPE, and filtering of the final extract before HPLC analysis using a gradient method 

with an ACN and water based mobile phase and monitoring at 240nm using PDA UV-

VIS detection.  The method provided a 91-113% recovery, less than 4.6 and 3.2% 

intraday and interday precision, respectively, and limits of detection from 0.06-0.17ppm.  

The method was also able to detect steroids in 3 out of the 6 herbal medicines 

investigated: 1.6 and 8.8ppm dexamethasone and 0.43ppm prednisolone [29].  These 

parameters were different from those found during Chapter 3 in optimizing the extraction 

of glucocorticoids from water.  The QuEChERS method optimized for the 8 

glucocorticoids in Chapter 3 was used here in attempting to reproduce the HPLC method 

and results obtained by Klinsunthorn.   
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2.  Materials and Methods 

2.1.  Chemicals, Reagents, and Samples 

Acetonitrile (ACN) was purchased from pharmco-AAPER (Kindermorgan, PA) and was 

reagent ACS grade.  All salts used throughout the study as well as the steroid standards 

were purchased from Sigma Aldrich (St. Louis, MO).  QuEChERS tubes containing 

150mg PSA and 50mg MgSO4 were purchased from Restek (Bellefonte, PA) and 15mL 

PFTE centrifuge tubes were obtained from VWR International (Radnor, PA).  Deionized 

water was used throughout the methodology. 

 
 

2.2.  QuEChERS Sample Preparation 

The pH, salt amount, and type of solvent were all evaluated in the optimization of the 

QuEChERS method for the extraction of 8 steroids: beclomethasone, cortisone acetate, 

prednisone, hydrocortisone, prednisolone, fludrocortisone acetate, dexamethasone, and 

methylprednisolone as described in Chapter 3 using GC-MS/MS.  One difference 

between the current study and a previous study by Klinsunthorn and co-workers involved 

the use of prednisone rather than betamethasone [29].  The pH, salt amount, and organic 

solvent were optimized using GC-MS/MS and can be seen in detail in Chapter 3.  These 

parameters were investigated by Klinsunthorn and were compared to what was found 

during the optimization performed in Chapter 3.  Both QuEChERS parameters are 

summarized in Table 6-1.  
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QuEChERS Parameters  Klinsunthorn and co-workers [29] Current Study 
pH Not mentioned 6.0 and 7.0 
Solvents Acetonitrile 

Ethyl Acetate 
Acetone 

Acetonitrile 
Ethyl Acetate 
Acetone 

Salt amounts during 
LLE 

500mg MgSO4, 125mg NaCl 
Other total salt amount investigated: 
1000mg, 750mg, 625mg, and 500mg  

500mg MgSO4, 125mg NaCl 
500mg MgSO4, 250mg NaCl 
500mg MgSO4, 500mg NaCl 
 

Sorbents during d-SPE PSA, C18, alumina, GCB, HLB PSA 
 

 

 

 

 

 

 

 

 

 

Table 6-1. QuEChERS parameters optimized during both studies with optimal conditions in bold.  
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2.3.  Instrumental Parameters 

The instrumentation utilized for this study was an HP1100 Series HPLC (G1312A Bin 

Pump, G1313A ALS, G1316A ColComp) with a UV-VIS diode array detector (G1315A 

DAD).  A 1µL injection of a sample containing all 8 steroids was used for all analyses.  

Three different columns were investigated including a Luna(2) C18 column (250mm, 

4.6mm, 5µm), a Halo C18 column (100mm, 4.6mm, 2.7µm), and an Ascentis Express 

C18 column (50mm, 4.6mm, 2.7µm).  The first column was used to mimic the original 

conditions of Klinsunthorn and co-workers.  The latter two were chosen for their more 

efficient column length and poroshell column packing that is proven to increase 

efficiency and resolution [95].  The separation and detection parameters for the current 

and previously performed study are listed below in table 6-1.  The main difference being 

the use of an isocratic method in the current study versus a gradient method as well as the 

use of a shorter, more efficient column resulting in a shorter elution time and more 

efficient overall analysis.  

 

2.4.  Analysis of Real Samples 

The four herbal medicinal products investigated during Chapter 3 for the presence of 

glucocorticoids were used here for determining the presence of glucocorticoids using the 

optimized HPLC method with the Luna(2) column.  As in Chapter 3, any tablet products 

were ground and placed into a 10mL volumetric flask where deionized water was added 

to the mark.  The contents of the capsule product were emptied into a 10mL volumetric 

flask as well with deionized water.  For each of these products, 2mL of each were used in 

the optimized QuEChERS method, whereas 2mL of the liquid tonic was used with no 
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dilution.  The optimized QuEChERS method was applied and the sample was analyzed 

using the HPLC parameters listed in Table 6-2.  

 

3.  Results and discussion 

2.2.  QuEChERS Sample Preparation 

The QuEChERS parameters used by Klinsunthorn were compared to those optimized in 

this study [29].  During the LLE, two of the parameters between the methods were the 

same including solvent type and amount (2mL acetonitrile) and sample amount (2mL).  

The salt amount differed between the two methods.  The commonly used ratio of 

MgSO4:NaCl during the LLE step for QuEChERS is 4:1 as used in Klinsunthorn’s study; 

however, the current study found that a ratio of 1:1 with 500mg of each provided better 

phase separation and analyte extraction as noted in Chapter 2 for the extraction of 

caffeine from tea as well as in Chapter 3 for the extraction of these 8 glucocorticoids 

from water.  During the d-SPE step, PSA was used during the current and previous study.  

Klinsunthorn investigated other sorbents as well and observed interference peaks that 

persisted when using C18, alumina, and HLB (Hydrophilic-Lipophilic-Balanced) [29].  

The use of the optimized QuEChERS method was successful in the extraction of these 

steroids from water using HPLC analysis.  For detailed QuEChERS parameters please 

see Chapter 3. 
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 Current Study Conditions Used By: 
Klinsunthorn and co-workers 

Mobile Phase 
Conditions 

ACN :Water isocratic elution 
35% ACN 

ACN:Water gradient elution 
33:67 (0-10 min) 
50:50 (10-20min) 

 
Column 1: Luna (2) C18 column 

250mm x 4.6mm x 5µm 
Elution time 25 min 

 
2: Halo C18 column 

100mm x 4.6mm x 2.7µm 
Elution time 10 min 

 
3: Ascentis Express C18 
50mm x 4.6mm x 2.7µm 

Elution time 10 min 

Hypersil BDS C18 column 
300mm x 4.6mm x 5µm 

Elution time 20 min 
 

UV-VIS Conditions PDA UV-VIS  
Scanning 200-400nm 
(monitor at 240nm) 

 

DAD UV-VIS 
Scanning 200-400nm 
(monitor at 240nm) 

 
 

 

 

 

 

 

 

 

 

Table 6-2. Method conditions used for HPLC analysis for the current and previous study. 
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3.1.  Optimization of HPLC Method 

This study attempted to replicate the results obtained by Klinsunthorn for the separation 

of glucocorticoids using HPLC as well as attempting to further optimize the method.  

Optimization of the HPLC method for the 8 steroids of interest began by first using a 

column of similar nature to that used by Klinsunthorn which was a C18 column, 300mm, 

4.6mm, 5µm.  The column used in the current study was a Luna(2) C18 column, 250mm, 

4.6mm, 5µm.  The gradient method used by Klinsunthorn listed in Table 6-2 was used 

and resulted in very little separation of the steroid mixture as seen in Figure 6-1.  Various 

gradient methods were attempted with no complete resolution of the sample.  Isocratic 

methods were then attempted ranging from 65% organic phase to 25% organic phase.  A 

final isocratic method of 35% acetonitrile:65% water provided separation of all 

compounds of interest, shown in Figure 6-2.  One item to note is the added compound, 

prednisone, co-eluted with hydrocortisone and caused some added difficulty in method 

optimization that may not have been present if the original mixture used by Klinsunthorn 

had been employed.  The isocratic method was 25min compared to the 20-minute 

gradient method. 

 

The method was further optimized using a shorter, more efficient Halo C18 column, 

100mm, 4.6mm, 2.7µm.  This resulted in a less than 10-minute separation with the 35% 

isocratic method as seen in Figure 6-3, cutting the method time in half.  Again, there was 

limited separation between prednisone and hydrocortisone; however, this method would 

have been sufficient using the steroid mixture by Klinsunthorn.  The 50mm Ascentis 

Express C18 column provided separation in under 5 minutes as illustrated in Figure 6-4;  
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 Retention Time (min) 
Glucocorticoid Gradient 

Method  
Klinsunthorn 

Isocratic 
Method  
Luna(2) 

Isocratic 
Method  
Halo 

Isocratic 
Method 
Ascentis Express 

Prednisolone 6.81 6.600 1.660 0.956 
Hydrocortisone 7.13 6.954 1.718 0.956 
Prednisone --- 7.098 1.718 0.956 
Methylprednisolone 10.01 9.780 2.767 1.318 
Betamethasone 10.73 --- --- --- 
Dexamethasone 11.20 11.519 3.305 1.546 
Beclomethasone 12.59 13.596 3.983 1.792 
Fludrocortisone 
Acetate 

17.32 22.338 6.576 2.864 

Cortisone Acetate 18.86 26.430 8.264 3.379 
 

 

 

 

 

 

 

 

 

Table 6-3. Summary of retention times for each steroid from Klinsunthorn and co-workers’ 
study as well as the current study.  
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Figure 6-1. Resulting chromatogram in using the gradient method reported by Klinsunthorn. 
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Steroid Retention Time (min) 
1) Prednisolone 6.600 
2) Hydrocortisone 6.954 
3) Prednisone 7.098 
4) Methylprednisolone 9.780 
5) Dexamethasone 11.519 
6) Beclomethasone 13.596 
7) Fludrocortisone Acetate 22.338 
8) Cortisone Acetate 26.430 

Figure 6-2. Resulting chromatogram and retention times using the isocratic method and Luna(2) C18 
column in the current study. 
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Triamcinolone	  
(used	  by	  Klinsunthorn)	  

Breakdown	  
product	  of	  
beclomethasone	  

Luna(2)	  C18	  	  
Column	  
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Steroid Retention Time (min) 
1) Prednisolone 1.660 
2) Hydrocortisone 1.718 
3) Prednisone 1.718 
4) Methylprednisolone 2.767 
5) Dexamethasone --- 
6) Beclomethasone 3.305 
7) Fludrocortisone Acetate 3.983 
8) Cortisone Acetate 6.576 

Figure 6-3. Resulting chromatogram and retention times using the isocratic method and Halo 
C18 column in the current study. 

1	  	  	  	  	  2,3	  	  	  	  	  	  4	  	  	  	  	  5	  	  	  	  	  	  6	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  7	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  8	  

Halo	  C18	  Column	  
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Steroid Retention Time (min) 
1) Prednisolone 0.956 
2) Hydrocortisone 0.956 
3) Prednisone 0.956 
4) Methylprednisolone 1.318 
5) Dexamethasone --- 
6) Beclomethasone 1.546 
7) Fludrocortisone Acetate 1.792 
8) Cortisone Acetate 2.864 

Figure 6-4. Resulting chromatogram and retention times using the isocratic method and 
Ascentis Express C18 column in the current study. 

1,2,3	  	  	  	  	  4	  	  5	  	  6	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  7	  	  	  	  	  	  	  	  8	  

Ascentis	  Express	  	  
C18	  Column	  
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however, not only were prednisone and hydrocortisone unresolved, but prednisolone was 

now eluting with these two analytes as well providing a method that would not have 

provided separation using Klinsunthorn’s steroids. 

 

3.2.  Analysis of Real Samples: HMPs 

The four HMPs were analyzed for glucocorticoid adulteration using the Luna(2) column 

and isocratic HPLC method conditions. The analysis results showed that none of the 

glucocorticoids were detected, which is congruent with the findings in Chapter 3 using 

GC-MS/MS analysis.  Though, as concluded in Chapter 3, it may be possible that these 

compounds are present in the samples and were simply not able to be detected using the 

method and instrument employed.  An instrument with lower detection limits and better 

selectivity for the analytes of interest may be needed such as LC/MS in order to detect if 

these compounds are truly present in the HMPs studied.  

 

4.  Conclusion 

This study was successful in providing an isocratic method for the separation of the 8 

steroids of interest.  It was also determined that the method developed by Klinsunthorn 

was not a rugged or reproducible method [29].  The use of an isocratic method is 

desirable, as fundamental parameters such as theoretical plate height are only truly 

accurate when using an isocratic method.  Though there was some separation difficulty 

from the added prednisone, the 7 other steroids investigated by Klinsunthorn were easily 

separated with the isocratic method using both a 250mm and 100mm C18 column, 
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resulting in a faster, more efficient separation, improving upon the method by 

Klinsunthorn.  Though the co-eluting peaks could not be separated using the UV-VIS, if 

LC/MS were used for sample analysis, the separation of these compounds would be much 

more likely due to the fact that they have different mass spectra as opposed to their UV-

VIS spectra, which are very similar.   

 

Some future work to perform following this study would be to improve upon the 

separation achieved so that all 8 steroids can be separated using a shorter, more efficient 

column.  This could be accomplished by evaluating different columns as well as different 

solvent systems for the mobile phase in an attempt to increase the separation.  Once 

optimized, validation could be performed on the method and limits of detection could be 

compared to those found by Klinsunthorn.  Various HMPs could also be analyzed using 

this method to determine if steroids are present as adulterants in the products.  
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CHAPTER 7 – QUECHERS FOR THE ANALYSIS OF DRUGS OF 

ABUSE IN SYNTHETIC URINE 

 

QuEChERS has been used for the extraction of various compounds including 

pharmaceutical products and veterinary drugs from biological matrices with analysis via 

GC and LC successfully.  Its success in other fields in providing a clean sample for 

analysis elucidates the viability of QuEChERS for the field of forensic drug analysis.  

This is an area of research which must be explored further as past literature for the 

extraction of similar compounds from biological matrices implies that QuEChERS would 

be extremely successful in forensics in providing a quick, easy, cheap, effective, rugged, 

and safe method for the analysis of forensic drug samples. 

 

This study was performed to demonstrate proof of concept for the use of QuEChERS in 

the extraction of drugs of abuse from biological matrices such as urine.  The study was 

successful in the detection of 3 drugs of abuse using GC-MS/MS and 6 drugs of abuse 

using GC-MS-SIM with no derivatization.  Derivatizing the drugs in order to increase 

recovery during GC analysis could increase the number of drugs detected as well as 

decrease the detection limits during analysis. 
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1.  Introduction 

1.1. QuEChERS and Forensic Analysis of Drugs of Abuse   

The primary focus of QuEChERS since its discovery has been the analysis of pesticides 

in food products.  This method is adept at extracting compounds from complex matrices, 

thus it could be applied to a much larger range of compounds and matrices.  This method 

has already been used for the extraction of pharmaceutical drugs from biological matrices 

and so it could be very useful to forensic samples for the extraction of drugs of abuse 

from matrices such as blood and urine [14].  This study looks to expand the uses of 

QuEChERS with a proof of concept study for the extraction of drugs of abuse from 

synthetic urine using GC-MS/MS and GC-MS-SIM analysis.  GC-MS remains the 

primary instrumentation for forensic drugs of abuse analysis, although LC-MS based 

methods are gaining importance.  Interestingly, QuEChERS has been primarily used with 

LC for drug analysis so far in the literature; however, this does not limit its potential with 

GC, as the compounds investigated are amenable to GC as well.   

 

Studies that have used LC analysis for compounds which could be analyzed using GC as 

well include the analysis of urine, blood plasma, hair, and tissue samples for the 

extraction of lipids, banned veterinary drugs, and phenylethanolamine A using 

QuEChERS [96-98].  The extraction of lipids from both blood and urine had a percent 

recovery around 90% as well as minimized matrix effects due to clean up with C18 d-SPE 

sorbent [96].  Eighty-seven banned veterinary drugs such as steroid hormones, β-

agonists, and tranquilizers were extracted from bovine urine with percent recoveies 

greater than 60% using three different QuEChERS methods which extracted 92-100% of 
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the desired compounds.  Each of these QuEChERS methods performed better than a 

dilution extraction and two SPE methods in which only 32-70% of the desired 

compounds were extracted, demonstrating QuEChERS as a successful compliance 

monitoring tool for these substances [97].  Finally, the analysis of seven different 

matrices including animal hair, tissue, and feeds for phenylethanolamine A, a β-agonist 

that can be used illegally as a growth promoter in livestock, was performed using 

QuEChERS with an average percent recovery of 95.4-108.9% [98].  

 

All of these applications of QuEChERS for the analysis of drugs in biological samples 

using LC can be applied to forensic samples using GC analysis.  This study aims to 

broaden the application of QuEChERS-GC by extracting several drugs of abuse from 

synthetic urine. 

 

2.  Materials and Methods 

2.1.  Chemicals, Reagents, and Samples 

Methanol was purchased from pharmco-AAPER (Kindermorgan, PA) and was reagent 

ACS grade.  All salts used throughout the study as well as the drug standards were 

purchased from Sigma Aldrich (St. Louis, MO).  The drug standards used were 1mg/mL 

and prepared in methanol.  These standards were diluted to 100ppm and combined in a 

mixture for analysis and optimization of an MRM method.  QuEChERS tubes containing 

150mg PSA and 50mg MgSO4 were purchased from Restek (Bellefonte, PA) and 15mL 

PFTE centrifuge tubes were obtained from VWR International (Radnor, PA).  
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MoniCheck synthetic urine was purchased from Branan Medical Corporation (Irvine, 

CA).  The urine purchased was both negative and positive, with the positive urine 

containing the following drugs: amphetamine (3,000ng/mL), methamphetamine 

(3,000ng/mL), secobarbital (900ng/mL), phencyclidine (75ng/mL), methadone 

(900ng/mL), nortriptyline (3,000ng/mL), oxazepam (900ng/mL), morphine 

(6,000ng/mL), and benzoylecgonine (900ng/mL).    Deionized water was used throughout 

the methodology. 

 

2.2.  Sample Preparation 

The pH, salt amount, and type of solvent were all previously optimized in Chapter 3 

using steroids and are summarized in Figure 7-1.  These optimized parameters were used 

during this study for the extraction of drugs of abuse from synthetic urine.  

 

2.3.  Instrumental Parameters 

The instrumentation utilized for this study was a Shimadzu GC-MS/MS TQ8030 with an 

AOC-5000 Auto Injector (Santa Clara, CA) and an Agilent 6890 GC and 5973 MSD 

(Santa Clara, CA) and CTC Analytics combiPAL (Zwingen, Switzerland).     Splitless 

liquid injection was used for all analyses of non-extracted and QuEChERS samples, with 

multiple reaction monitoring (MRM) being used during GC-MS/MS analysis and 

selected ion monitoring during GC-MS analysis.  The separation and detection 

parameters for both instruments are listed below in Tables 7-1 to 7-4.  
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Place	  sals	  in	  15mL	  
centrifuge	  tube	  
500mg	  MgSO4	  
500mg	  NaCl	  

Add	  aqueous	  sampe	  
and	  organic	  solvent	  

2mL	  water	  
2mL	  acetonitrile	  

Vortex	  1min;	  
Centrifuge	  3min	  

(1000rpm)	  

Transfer	  organic	  
layer	  to	  QuEChERS	  

tube	  
50mg	  PSA	  

150mg	  MgSO4	  

Vortex	  1min;	  	  
Centrifuge	  3min	  

(8000rpm)	  

Analyze	  
(GC/MS)	  

Figure	  7-‐1.	  Summary	  of	  QuEChERS	  conditions	  used	  for	  analysis	  of	  synthetic	  urine	  samples.	  
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GC-MS/MS 
GC Parameters Oven Parameters MS Parameters 

Column: RTX-5MS 15m, 
0.25mm, 0.25µm 

Initial Temperature: 60°C 
Hold 1 minute 

EI Source: 250°C 

Carrier Gas: Helium 20°C/minute Ramp to 300°C 
Hold 10 minutes 

Transfer Line: 280°C 

Column Flow: 0.98mL/min 
Linear Velocity: 51.0cm/sec 

Injection Mode: Splitless 
Inlet Temperature: 250°C 

 

 

 

 

 

 

 

 

 

 

 

Table 7-1. Method conditions used for GC-MS/MS analysis. 
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Drug of Abuse Retention Time  
(min) 

Precursor 
Ion 

Product Ions Collision 
Energy 

Amphetamine 3.683 65 51; 63 10; 10 
Methamphetamine 4.107 65 51; 63 10; 10 
Secobarbital 8.110 167 124; 78; 106 10; 20; 18 
Phencyclidine 8.597 200 117; 84; 115 18; 12; 24 
Methadone 9.843 72 56; 57 24; 18 
Nortriptyline* 10.157 202 *Successful with 

GC-MS-SIM 
(precursor ion used) 

--- 

Oxazepam** 10.727 267 **Unsuccessful --- 
Morphine** 11.190 285 **Unsuccessful --- 
Benzoylecgonine** 11.780 82 **Unsuccessful --- 

 

 

 

 

 

 

 

 

 

 

 

Table 7-2. MRM method conditions for the drugs of interest 
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GC-MS 
GC Parameters Oven Parameters MS Parameters 

Column: RTX-5MS 30m, 
0.25mm, 0.25µm 

Initial Temperature: 60°C 
Hold 1 minute 

EI Source: 250°C 

Carrier Gas: Helium 20°C/minute Ramp to 300°C 
Hold 10 minutes 

Transfer Line: 280°C 

Column Flow: 1.0mL/min 
Injection Mode: Splitless 
Inlet Temperature: 250°C 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7-3. Method conditions used for GC-MS analysis. 



	   	   209	   	   	  

 

 

 

 

 

 

 

Glucocorticoid SIM Scan Time (min) SIM Ion Parameters 
Amphetamine 3 to 7  65; 51; 63 
Methamphetamine 3 to 7  65; 51; 63 
Secobarbital 7 to 12 124; 78; 106 
Phencyclidine 7 to 12 117; 84; 115 
Methadone 7 to 12 72; 56; 57 
Nortriptyline* 7 to 12 202 
Oxazepam** 12 to 18 267 
Morphine** 12 to 18 285 
Benzoylecgonine** 12 to 18 82 

 

 

 

 
 
 
 
 

 

 

 

 

Table 7-4. SIM method conditions for the drugs of interest  
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3.  Results and Discussion 

3.1.  Optimization of MRM GC-MS/MS method 

In optimizing a multiple reaction method (MRM) for the analysis of the drugs of interest 

(amphetamine, methamphetamine, secobarbital, phencyclidine, methadone, nortriptyline, 

oxazepam, morphine, and benzoylecgonine), it was found that while all drugs were 

detected using full scan during analysis individually, when analyzed as a 100ppm mixture 

only amphetamine, methamphetamine, secobarbital, phencyclidine, and methadone were 

detected using GC-MS/MS.  Nortriptyline was also detected when using the GC-MS-SIM 

method.   

 

One reason for the compound drop out could be in combining the drugs, interactions 

occurred, causing degradation of these compounds, resulting in no detection.  Those that 

were not detected in a mixture contained hydroxyl groups, whereas the other compounds 

did not.  This will be studied further in future work to be performed by Leanne Mocniak 

by investigating different combinations of the various drugs of abuse to determine what is 

causing the loss of these three compounds.  A 10ppm mixture was analyzed as well to 

determine if perhaps the 100ppm mixture was overloading the instrument, yet these drugs 

remained undetected at this lower concentration as well.  Morphine and oxazepam had 

fairly substantial peaks during analysis alone and yet are completely absent from the 

mixture when analyzed, supporting the hypothesis that some drug interaction is occurring 

with these two particular drugs, causing them not to be seen on the chromatogram.  The 

peak for benzoylecgonine is very small when run alone and thus is most likely 

overshadowed by the other drugs to the point where it is not detectable when run in the 



	   	   211	   	   	  

mixture.  This problem could be remedied by derivatization of the compounds to reduce 

the chances of any unwanted interaction with either the other drugs or the inlet or column 

that could be causing the absence of these drugs during analysis of the drug mixture.   

 

Once the total ion scan was performed and ions for each of the detected drugs were 

selected, a product ion scan was performed to determine the product ions as well as the 

optimal collision energy.  These parameters are listed in the instrumental parameters 

section of this chapter in Tables 7-2 and 7-4.  The resulting chromatograms for the 

analysis of a 100ppm drug mixture are depicted in Figure 7-2 using GC-MS/MS and 

Figure 7-3 using GC-MS-SIM. 

 

3.2.  Analysis of Synthetic Urine Samples 

The optimized QuEChERS method was applied to the positive urine sample containing 

the 9 drugs of abuse and negative urine samples.  Secobarbital, phencyclidine, and 

methadone were detected in positive urine using the optimized MRM method.  These 

three compounds were also detected in positive urine using the GC-MS-SIM method 

along with amphetamine, methamphetamine, and nortriptyline.  Though the peak for 

secobarbital is very small in the GC-MS-SIM analysis and is difficult to see in Figure 7-

5, it is present.  Amphetamine and methamphetamine were difficult to detect when GC-

MS/MS was used as seen in Figure 7-4.  It is hypothesized that this is due to the 

increased sensitivity of the instrument detecting more compounds from the synthetic 

urine around the retention times of amphetamine and methamphetamine that make the 

determination of their presence difficult.   
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Current Work 
When analyzed as a mixture, only 5 of the drugs were detected using GC-MS/MS (AMP, MET, SECO, PCP, 
and MTD) and 6 using GC-MS-SIM (AMP, MET, SECO, PCP, MTD, and NOR).  QuEChERS extraction of 
the drugs of interest at target concentrations (see Table 1) from positive synthetic urine was successful using 
both GC-MS/MS and GC-MS-SIM for all 5 or 6 aforementioned drugs; respectively.  Derivatization may 
increase the number of drugs extracted and is to be performed as well as the use of IL-SDME and SPME for 
the extraction of these drugs from positive synthetic urine.  Once complete, all three extraction methods will 
be compared.   

1  Amphetamine (AMP) 
2  Methamphetamine (MET) 
3  Secobarbital (SECO) 
4  Phencylidine (PCP) 
5  Methadone (MTD) 
6  Nortriptyline (NOR)  
7  Oxazepam (OXA) 
8  Morphine (MOR) 

TIC 
Drug Mix: 100ppm 

QuEChERS  
The QuEChERS (Quick, Easy, Cheap, Effective, 
Rugged, and Safe) method was published by 
Anastassiades, et al. in 2003 and has since been 
used to replace traditional multi-residue methods 
for the detection of pesticides in various matrices.  
This method uses two main extraction steps (see 
figure 1) to eliminate matrix interferences and can 
thus be employed for complex matrices such as 
urine.  Though the method is often adapted and 
optimized to the analytes of interest, there has 
been limited application of QuEChERS to the 
analysis of forensic samples for drug analysis. 
 
Forensic Applications 
In the past, QuEChERS has been used for various 
veterinary and pharmaceutical drugs in matrices 
such as sewage and water sludge, soil, tissue, hair, 
urine, blood, and food; however, this method has 
yet to be applied extensively to forensic samples 
such as drugs of abuse in urine.  Work has been 
done with benzodiazepines and various drugs of 
abuse in blood and should have success in other 
matrices as well for forensic drug samples.     
 
 
 
 
 
  

 
 
 
 
 
 
 
 

Extraction techniques are plentiful; however, determining which technique to implement for analysis can be difficult.  Percent recovery, selectivity, ease of extraction, and ruggedness, must all be considered.  It 
is the goal of this study to investigate three different extraction methods: QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe), IL-SDME (ionic liquid single drop microextraction), and SPME (solid phase 
microextraction).  In this discussion, the use of QuEChERS will be emphasized.  QuEChERS is a liquid-liquid microextraction combined with a dispersive solid phase extraction cleanup.  Primarily used for the 
extraction of pesticides from food products, QuEChERS has not yet been thoroughly investigated for forensic samples.  This study will serve to determine if QuEChERS is a viable extraction method for the 
analysis of drugs in urine as well as compare this extraction method to the use of IL-SDME and SPME.  In IL-SDME an ionic liquid drop is suspended above the sample until such a time that equilibrium has 
been reached.  The drop is then desorbed in the GC inlet.  This method is very similar to that of SPME except for the use of an ionic liquid drop rather than a coated fiber as the extraction media.  The 
optimization of these techniques for the extraction of amphetamine, methamphetamine, morphine, benzoylecgonine, methadone, oxazepam, secobarbital, phencyclidine, and nortriptyline from urine will be 
discussed as well as the sensitivity and selectivity of the method via gas chromatography-mass spectrometry (GC-MS).  

The Use of QuEChERS and IL-SDME for the Extraction of Drugs of Abuse from Urine 
using Gas Chromatography-Mass Spectrometry  

Michelle L. Schmidt, Leanne Mocniak, and Nicholas H. Snow 
Department of Chemistry and Biochemistry, Center for Academic Industry Partnership  

Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079  
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•  The QuEChERS extraction was successful 
in extracting five drugs of abuse from the 
positive synthetic urine sample using GC-
MS/MS and six using GC-MS-SIM 

•  Derivatization of the drugs may allow for 
a greater number of them to be extracted 

•  GC-MS/MS is not necessary 

Combine aqueous 
sample, solvent, 
and salts; shake 

Centrifuge  
Transfer aliquot 
to QuEChERS 

tube; shake 

Centrifuge 
Analyze final 

extract via GC/
MS 

Figure 1. Sequence of basic steps used in the QuEChERS method (Extraction and clean-up 
step highlighted in green and yellow, respectively). 

FUTURE WORK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

•  Optimize the QuEChERS method in 
synthetic urine for the drugs of 
interest 

•  Compare QuEChERS extraction of 
drugs of abuse from synthetic urine to 
solid phase microextaction (SPME) 
and ionic liquid single drop 
microextraction (IL-SDME) 

GC Parameters 
Carrier Gas: Helium 
Column Flow: 0.98mL/min 
Linear Velocity: 51.0cm/sec 
Injection mode: splitless 
Inlet temperature: 250oC 

Oven Parameters 
60oC (hold 1min) 
20oC/min to 300oC (hold 2min) 

MS Parameters 
EI source: 250oC 
Transfer line: 280oC 

Drug of Interest 
(Target conc. in 
urine control) 

RT  
(min) 

Parent 
Ion 

Daughter 
Ions(Collision 
Energy) 

Amphetamine 
(3,000ng/mL) 

3.683 65 
 

51(10) 
63(10) 

Methamphetamine 
(3,000ng/mL) 

4.107 65 
 

51(10) 
63(10) 

Secobarbital 
(900ng/mL) 

8.110 167 
 

124(10)   78(20) 
106(18) 

Phencyclidine 
(75ng/mL) 

8.597 200 
 

117(18)   84(12) 
115(24) 

Methadone 
(900ng/mL) 

9.843 72 
 

56(24) 
57(18) 

Nortriptyline* 
(3,000ng/mL) 

10.157 202 
 

*Successful with 
GC-MS-SIM 

Oxazepam** 
(900ng/mL) 

10.727 267 
 

**Unsuccessful 

Morphine** 
(6,000ng/mL) 

11.190 285 **Unsuccessful 
 

Benzoylecgonine** 
(900ng/mL) 

11.780 82 
 

**Unsuccessful 

Table 1. A summary of the parameters used in the optimized MRM method. 

1 2 3 4 5 6 7 8 

Product Ion Scan 
Drug Mix: 100ppm 

TIC (100ppm) 
Single drug chromatogram 
overlay 

MRM  
Drug Mix: 100ppm 

1  AMP 
2  MET 
3  SECO 

4  PCP 
5  MTD 

**Only MET, AMP, PCP, SECO, and MTD 
gave successful product ions 

1  AMP 
2  MET 
3  SECO 

4  PCP 
5  MTD 

Figure 2. Top Chromatograms: Overlay of individual full scan chromatograms for the drugs of interest.  Second Chromatogram: TIC of drug 
mix at 100ppm.  Third chromatogram: Product ion scan of all drugs, only AMP, MET, SECO, PCP, and MTD were successful.   Bottom 
Chromatogram: MRM of the five successful drugs – see Table 1 for parameters. 
Figure	  7-‐2.	  From	  top	  to	  bottom:	  Chromatograms	  of	  a	  total	  ion	  scan,	  product	  ion	  scan,	  and	  optimized	  MRM	  
method	  for	  the	  drugs	  of	  interest	  (100ppm	  standard	  mixture).	  
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Figure	  7-‐3.	  Chromatogram	  using	  GC-‐MS-‐SIM	  analysis	  of	  the	  drugs	  of	  interest	  (100ppm	  standard	  
mixture).	  
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Figure	  7-‐4.	  Chromatogram	  using	  GC-‐MS/MS	  analysis	  of	  the	  positive	  urine	  sample.	  
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Figure	  7-‐5.	  Chromatogram	  using	  GC-‐MS-‐SIM	  analysis	  of	  the	  positive	  urine	  sample.	  
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4.  Conclusions  

This data illustrates the capacity for QuEChERS to be applied to forensic drug samples 

and shows proof of concept.  QuEChERS was successful in the extraction and detection 

of multiple drugs of abuse from synthetic urine.  It is hypothesized that derivatizing the 

sample before performing GC-MS analysis will increase the number of drugs extracted.  

As future work, in addition to investigating the effect of derivatization, the optimized 

QuEChERS method will be compared to other extraction methods such as SPME and 

ionic liquid single drop microextraction (IL-SDME). 

 

5. Future Work for QuEChERS   

QuEChERS is a method that has not been used to its fullest potential.  The possible 

applications of this method are numerous and should be further investigated in the 

literature, especially its use for forensic and drug samples.  This method, though it has 

proven to be extremely successful for the extraction of pesticides from various matrices, 

can be as successful for the extraction of drugs of abuse from biological matrices.  Given 

the work performed throughout this thesis, QuEChERS is amenable to many different 

types of compounds not only for LC analysis, but GC as well.  As GC instrumentation 

improves, the need for derivatization is not necessary and is evidenced by the analysis of 

steroids during this work that are normally derivatized in order for detection.  However, 

for those that do require derivatization for improved sensitivity and detection, this 

technique can be coupled with QuEChERS as it was with SPME.  The derivatization step 

could be included within the QuEChERS method so as to avoid transferring the sample 
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between vessels, causing further complication of the method and possible loss of any 

analytes. 

 

Another area of interest that was mentioned briefly in Chapter 5 would be the use of 

QuEChERS-GC-PTV for using large volume injections of the sample rather than 1µL 

injections that may cause some loss in sensitivity.  The QuEChERS extraction, though on 

a smaller scale than most other classic multi-residue methods, still uses 2mL of sample 

and organic solvent, resulting in a fairly large volume of extract as compared to that of 

SPME which concentrates the sample during extraction, leading to increased sensitivity.  

The use of a PTV inlet for large volume injections may allow the ability to overcome any 

sensitivity issues encountered with QuEChERS as compared to a technique such as 

SPME and further eliminate the need for derivatization of certain compounds.  This is 

definitely an area of research that should be explored for QuEChERS.  QuEChERS has 

limitless applications in terms of analyte extraction from complex matrices.  It is up to 

scientists to explore those fields and expand the use of QuEChERS to improve current 

extraction methods.     
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