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Abstract 

The current third-generation globalization caused structural, organizational and 

functional changes in the STEM workforce along with changes in human capital flow. The new 

globalization shift produced new world order causing the STEM workforce to adopt new 

frameworks, new skills, and new policy approaches to maintain economic strength and achieve 

growth and prosperity. Available data indicate that the U.S. secondary and postsecondary 

education system prepares and produce more than an adequate number of STEM graduates. The 

perceived crisis in the number of U.S. STEM graduates was not confirmed by any data or policy 

report. Thus, attention should not be caught simply by the quantity of graduates, but rather on the 

quality and level of competitiveness. The federal government, along with private organizations, 

allocates substantial fiscal aid and resources to the STEM education system. However, concerns 

over the quality and competence of STEM graduates, and the U.S. position in the global market 

continue to grow as STEM graduates increasingly work in non-STEM occupations (degree-job 

mismatch).  

Degree-job match in this study refers to the match between degree field, or degree 

knowledge and skills, to the job. The impact of mismatching degree, or degree knowledge and 

skills, to jobs, is substantial resulting in lower wages, low job satisfaction and productivity, loss 

of unused skills, higher turnover, feelings of loss in educational return on investments, loss of 

return on human capital investment, and an inadequate labor force for workforce' expansion and 

growth. The current research in the area focused substantially on the consequences of the 

mismatch with little to no attention to the causes of the mismatch. Using a sample of 1864 

participants taken from the National Center for Education Statistics (NCES): the Education 

Longitudinal Study of 2002 (ELS: 2002), this study looked at predictors to degree-job match 
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among recent bachelor degree STEM graduates. The study used the Social Cognitive Career 

Theory (SCCT) as a foundation for its Degree-Job Match Model. Results show that cognitive 

abilities and career-related experiences during college are by far the most influential predictors 

of the match between degree and job. The adequacy of the degree-job match was found as well 

to be influenced by discriminatory factors; race and socioeconomic status. This study also 

documented that mismatched workers suffer from nearly 33% wage penalty as compared to their 

adequately matched peers. This study contributes substantially to the existing line of literature 

concerned about career choice and college major choice.           
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Chapter I 

INTRODUCTION 

Background 

Numerous reports on the lack of sufficient numbers of Science, Technology, Engineering, 

and Mathematics (STEM) graduates have recently dominated discussions raising concerns about 

the overall health of U.S. economy and its global position as innovation preeminence (Butz, 

Kelly, Adamson, Bloom, Fossum, & Gross, 2004; Charette, 2013; Freeman, 2006; Freeman & 

Goroff, 2009; Lowell & Salzman, 2007; Lowell, Salzman, Bernstein, & Henderson, 2009; Lynn 

& Salzman, 2006; Salzman, 2007; Salzman & Lynn, 2010; Salzman, Kuehn & Lowell, 2013; 

Teitelbaum, 2014). Policymakers are concerned with the quality and competence levels of STEM 

graduates, the quality of K-12 math and science education, and the overall declining interest in 

STEM-related fields and STEM careers among students (Lowell & Salzman, 2007; Lowell et al., 

2009; Teitelbaum, 2014). On the contrary, many reports claim the opposite; data show that the 

supply of STEM-qualified graduates is adequate enough, the retention rate of undergraduates in 

STEM-related fields has grown, K-12 math and science education shows steady improvement; 

test scores are better than two decades ago, and high school students' interest in STEM majors or 

occupations is higher than ever by historical standards (American College Testing, 2013; Butz et 

al., 2004; Freeman, 2006; Lowell & Salzman, 2007; NSF, 2012; Salzman et al., 2013). In fact, 

some reports even claim that recently more students graduate from STEM disciplines than the 

United States workforce can absorb; causing wages to stagnate, or even fall, and even the 

unemployment rate to rise (Butz et al., 2004; Charette, 2013; Lowell & Salzman, 2007; Lowell et 

al., 2009; Teitelbaum, 2014; Zeigler & Camarota, 2014). Lowell and Salzman (2007) reported in 

their study that the number of students who graduate with a four-year degree in Science and 

Engineering (S&E) fields "...are three times as many as S&E job openings" (Lowell & Salzman, 
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2007, p. 1), pointing out that the demand side is unable to  more STEM graduates into the STEM 

workforce. According to the National Science Foundation's Scientists and Engineers Statistical 

Data System (SESTAT), nearly half of S&E degree holders are working in non-S&E occupations 

(see Table1).  

 

Table 1.  

 

Employed Scientists and Engineers by Occupation Type in 2013  

Total Employed S&E Occupations S&E-Related Occupations Non-S&E Occupations 

21,903,000 5,398,000 6,957,000 9,549,000 

 

SOURCE: National Science Foundation, National Center for Science and Engineering Statistics, Scientists and 

Engineers Statistical Data System (SESTAT), 2013. 

 

 

Economic indicators such as unemployment rate and earning patterns are often used as 

the best measurements of STEM workers' shortage/surplus. If the demand side is unable to 

absorb the supply of workers, wages will fall while unemployment rate increases. In examining 

earnings and employment patterns of STEM workers, Butz et al. (2004) concluded that shortage 

patterns do not exist. In fact "underemployment patterns" were relatively high for STEM workers 

compared to the non-STEM workers, indicating that a large number of STEM workers are 

involuntarily working out of their fields (Butz et al., 2004), which is an indicative of surpluses, 

rather than shortages.  

Unemployment in STEM Occupations 

For the period from 1983 to 2010, The Bureau of Labor Statistics' Current Population 

Survey data shows that unemployment rate for S&E occupations ranged from 1.3% to 4.3%, 

where the rate is slightly higher for technicians and computer programmers that ranged from 

2.1% to 7.4% (Bureau of Labor Statistics, 2013). The 4.3% unemployment rate for S&E 
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workers, although lower compared to other fields, is the highest in the last twenty-five years 

(Bureau of Labor Statistics, 2013). In the period from 1984 to 2010, STEM unemployment rates 

were lower than the national average (The Bureau of Labor Statistics, 2010), but are in line with 

the unemployment rate for other occupations. Figure 1 shows the trend in STEM workers’ 

unemployment rate compared to all U.S. workers.  If there is a shortage of STEM workers, then 

the STEM unemployment pattern should at least show a different/better trend than the national 

average trend. Mirroring the national average could be taken as an indication that the STEM 

problem is not associated with the supply adequacy, but rather with the overall health of the U.S. 

economy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOURCE: SEI 2012: Unemployment in the S&E Labor Force, Chapter 3.   

Science and Engineering Indicators Digest, 2012. 

 

 
Figure 1. Unemployment rates for all workers compared to workers in S&E occupations: 1984–2011    

 

Further, involuntarily out-of-field rate (IOF) which is an indication of underemployment; 

working involuntarily outside the field of the worker's highest degree because a job in that field 

is not available, increased since 1999 to reach 12% in 2010 for newly-graduated (within five 
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years since receiving the degree) STEM bachelor's degree holders (NSF, 2014). The IOF rate 

varied by STEM-degree type and field, in 2010; for example newly-graduated STEM master's 

degree holders had an IOF rate of 4.1% whereas newly-graduated STEM doctorate holders had 

an IOF rate of 1.9% (see Figure 2, NSF, 2014). 

 

Percent 

 

 

 

 

 

 

 

 
Years since degree 

 

SOURCE: National Science Foundation, National Center for Science and Engineering Statistics, Scientists and 

Engineers Statistical Data System (SESTAT) (2010), http://sestat.nsf.gov.        

 

 

Figure 2. Scientists and engineers who are working involuntarily out of field, by level of and years since highest 

degree: 2010 

 

 

Figure 2 also shows that the IOF rate, for nearly all STEM-degree types, slowly decline 

through career stages. However, when it reaches mid-to-late career years (25-34), it starts to 

increase. It is also clear that among STEM-degree holders, master’s degree has an IOF rate that 

remains slightly stable across career stages. The IOF rate shows significant differences among 

STEM fields as well; computer and mathematical sciences, and engineering show a lower IOF 

rate (5.1 and 4.9 respectively) compared to life, or social sciences; 10.1% and 11.3% respectively 

(NSF, 2014).  
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To further challenge the shortage claim, Figure 3 shows the percentage of STEM 

workforce in the U.S. workforce for the period from 1983 to 2010. During that period, STEM 

workforce has grown faster compared to the overall U.S. workforce growth; the average annual 

growth rate of the S&E workforce is 3.3% compared to 1.5% of the U.S. workforce (NSF, 2012). 

In fact, the Department for Professional Employees (DPE) notes that the STEM workforce has 

more than doubled in size since 1960 (1.6%), and it represented nearly 5.2% of the total 

workforce nationwide in 2011 (DPE, 2014).  

 
Percent of total workforce 

 

 

 

  

 

 

 

SOURCE: National Science Foundation, SEI 2012: Size of the S&E Workforce, Chapter 3.  

Science and Engineering Indicators 2012 

 

 

Figure 3. Individuals in S&E occupations and as a percentage of the U.S. workforce: 1983–2010 

 

The "total" U.S. STEM workforce differs by geographic location; California has over 

13% of the U.S. STEM workforce accounting for over one million jobs (DPF, 2014). In 

Washington, D.C. the STEM market represents 10.1% of the total "regional" workforce while it 

only represents 2.8% in Mississippi (DPE, 2014).  

The increasing growth trend of the STEM job market might support the shortage claim if 

accompanied by a declining trend of STEM unemployment rate. There is an unstable correlation 
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between STEM market growth (demand-side) and STEM unemployment rate (supply-side). For 

instance, the unemployment rate of STEM-degree holders increased 0.6% between 2007 and 

2008 where, during the same period, the STEM workforce hired 440,000 more individuals (2007 

to 2009 represent a recession period). It is clear that the demand side is economically healthy as 

reflected in the overall growth. What might explain the increasing STEM unemployment pattern 

is that there are more STEM-degree holders than STEM job openings which contradict with the 

shortage claim. It is also possible that the demand side is looking to fill its jobs by employing 

either non-STEM degree holders or non-citizen STEM-degree holders or for other reasons that 

are not yet explored, such as outsourcing and off-shoring.    

Earning Patterns 

In general, individuals in STEM occupations have a median annual earning that is higher 

(in some cases double) than other occupations in the U.S. workforce (NSF, 2014). The 

Occupational Employment Statistics (OES) survey notes that in 2012 individuals in STEM 

occupations had median annual earnings of $75,840 (regardless of education level or field) 

compared with $34,750 of all U.S. workers (Bureau of Labor Statistics, 2012). However, 

employment trends in STEM occupations have been unstable over the years. Lazonick (2009) 

examined the employment and wages trends in different U.S. industries including the S&E job 

market. The analysis revealed a steep increase in employment and wages for STEM occupations 

(particularly the Information Technology labor market) during the dot-com period (the 1990s), 

followed by a collapse in 2001. A slow improvement in hiring followed, along with stagnation in 

wages- excluding some regions and occupation-specific (Lazonick, 2009). The same trend was 

documented by other researchers as well; low unemployment rate accompanied by high wages 

reflecting the strong demand during the 1990s. After the bursting of the dot-com bubble in 2001, 
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the unemployment rate went up along with a tapering off of wages growth (Costa 2012; Matloff 

2013; Salzman et al., 2013). As shown in Figure 4, though a slight improvement started around 

2004 reflected in salary increase, wage rates never recovered and are stagnated for the past 

decade. Unmet demands accompanied by a rise in wage rates are usually an indication of a labor 

shortage. Having stagnant wages for the past ten years does not support the shortage claims 

(Salzman et al., 2013).  

 

 
 

  

 

 

 

 

 

 

 
 

SOURCE: Public-use files of the 2000-2012 American Community Survey. Analysis confined to STEM workers 

with at least a bachelor's degree age 64 and under, working 35 hours or more per week and at least 50 weeks a year. 

 

 

Figure 4. Average annual wages for STEM workers with a Bachelor's degree or higher (in 2012 dollars) 

 

 

 

The low annual wage growth rates (all STEM 0.4%, Science 0.2%, Engineering 0.6%, 

and Technology 0.3%) over the past decade indicate no shortage or high demand for labor; in 

contrast, it shows that the supply is adequate to meet the demand. It is important to note that 

earnings vary by degree levels; in 2010, doctorate STEM-degree holders earned an average of 

$85,000 while bachelor's and master's STEM-degree holders earned $57,000 and $68,000, 
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respectively (NSF, 2014). Further, individuals with S&E-degree working in an S&E or S&E-

related fields earn more ($78,000 and $65,000 respectively) than those with S&E degree 

($50,000) but are working in a non-S&E occupation (NSF, 2014). In fact, S&E degree holders 

working in a non-S&E field earn less ($50,000) than non-S&E degree holders who are working 

in S&E or S&E-related fields; $70,000 and $53,000 respectively (NSF, 2014).  

 

Statement of the Problem 

The supply of STEM workers seems to be larger than what might at first appear based on 

economic indicators: unemployment rates and earning patterns. The supply of qualified STEM 

workers appears to be adequate; to the point where a shortage of STEM workers did not exist nor 

will it in the near future (Butz et al., 2004). The fact that new STEM graduates (1 to 5 years since 

receiving the degree) are struggling with worker surpluses might result from the mismatch 

between supply and demand. Such mismatch varies by STEM degree type and field, degree 

holders' demographic characteristics, geographic locations and many other factors (NSF, 2014; 

Salzman, 2014; U.S. Census Bureau, 2014).  

Differences by STEM Degree Type 

In 2010, recent STEM graduates had an unemployment rate of 6.6%; higher than the 

average unemployment rate (4.3%) of all STEM workers (NSF, 2014). In the same year, young 

scientists with bachelor's degree who recently graduated had an even higher unemployment rate 

(7.7%) than master's and doctoral recent STEM graduates; 4% and 1.6% respectively (NSF, 

2014). It also seems that the number of recent STEM bachelor's degree holders involuntarily 

working out of their field (IOF rate) is significantly higher compared to other degree types within 

the same field. As shown in Figure 5, nearly 11% of S&E recent graduates reported working out 



THE DEGREE-JOB MATCH AMONG STEM GRADUATES                                                                               9 
 

 

of their field because a job in their field was not available, compared with 6.4% of the overall 

S&E population (NSF, 2014). The percentage is more than double for bachelor's degree holders 

(13.5%) compared with 6.4% of the national average of all S&E workers working involuntarily 

out of their fields (NSF, 2014).  
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SOURCE: National Science Foundation, National Center for Science and Engineering Statistics, Scientists and 

Engineers Statistical Data System (SESTAT) (2010), http://sestat.nsf.gov.           
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Figure 5. Involuntarily out-of-field (IOF) rate for recent S&E degree recipients up to 5 years after receiving degree, 

by level of highest degree: 2010    

 

Concerning the relationship between their degree and current job, nearly 36% of recent 

bachelor's S&E degree holders work in non-S&E fields stated it is "not related" (NSF, 2014). 

Table 2 further notes the significant difference in job relation to the field of study among 

different S&E degree holders working in non-S&E occupations. When asked about the reasons 

for working out of their field, 29% reported a lack of a suitable job in their degree field as a 

reason; 20% cited wages and promotion opportunities as a factor while 13% reported a change in 
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career or professional interests (NSF, 2014). Over 80% of S&E master's degree holders and 84% 

of doctoral degree holders working in a non-S&E occupations reported that their job is either 

"closely related" or "somehow related" to their field of study, compared with 64% of bachelors’ 

degree holders.  

 

Table 2.  

 

Relationship of highest degree to job among S&E highest degree holders not in S&E occupations, by 

degree level: 2010    

    Degree related to job (%) 

Highest degree Workers (n) Closely Somewhat Not 

All degree levels a 7,386,000 35.2 32.4 32.4 

Bachelor’s 5,902,000 31.1 33.1 35.8 

Master’s 1,242,000 51.8 28.7 19.5 

Doctorate 236,000 49.6 34.3 16.1 
a Includes professional degrees not broken out separately.  

 

 

SOURCE: National Science Foundation, National Center for Science and Engineering Statistics, Scientists and 

Engineers Statistical Data System (SESTAT) (2010), http://sestat.nsf.gov.    
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Differences by STEM Degree Field 

The significant differences among recent graduates are not only shown in degree type, 

but it is obvious as well in degree fields. As stated earlier, recent graduates holding a bachelor's 

degree in STEM are of particular interest to this study considering their significant differences in 

unemployment rates, wages, and IOF rates compared to STEM master or doctoral degree 

holders. Among newly-graduated S&E bachelor's degree holders, individuals with an 

engineering, or computer/mathematical sciences degrees are struggling less than other S&E 

majors (NSF, 2014). Notable in Figure 6 below, among S&E recent bachelor's degree recipients, 

individuals with computer/mathematical sciences degrees work in jobs closely related to their 

degree in higher rates than other S&E degree types, especially compared to the social science 
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field. Unemployment rate ranged from 5.6% for those with engineering degrees, to 8.8% for 

individuals with social science degrees. As for the IOF rate, again the social science field shows 

higher rate (18%) than other majors.  
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SOURCE: National Science Foundation, National Center for Science and Engineering Statistics, Scientists and 

Engineers Statistical Data System (SESTAT) (2008), http://sestat.nsf.gov.          

Science and Engineering Indicators 2014 

 

 

Figure 6. Labor market indicators for recent S&E bachelor's degree recipients up to 5 years after receiving degree, 

by field of degree: 2008/2010 

 

 

It is worth noting that this pattern of field's significant differences is generally at either a 

bachelor’s or master’s degree level. At the doctoral level, such field differences shrink 

substantially where doctoral degree recipients work in occupations related to their doctoral field 

(NSF, 2014). For instance, nearly 70% of individuals with a doctoral degree in social science are 

working in S&E occupations, compared to 13% for individuals with bachelor's degree in the 

same field, and compared to 75% for those with a doctoral degree in engineering (NSF, 2014). 

Furthermore, the relationship between occupation and degree type is robust across career stages 
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for doctoral degree holders compared to bachelor’s and master’s although such relationship 

becomes weaker over time possibly due to changes in career interests or promotion to managerial 

positions (NSF, 2014).  

Economic variation among STEM degree fields for recent graduates (5 years after 

receiving a degree) is notable as well in annual wages. As shown in Figure 7, the engineering 

field followed by the computer/mathematical sciences are the two fields with higher annual 

income; 60K and 55K respectively for all degree levels. The latter applies across different S&E 

degree types reflecting how lucrative it is to hold a degree in these two fields.  

 

 
Annual median wage 

 

 

 

 

 

 

 

 

 

 

SOURCE: National Science Foundation, National Center for Science and Engineering Statistics, Scientists and 

Engineers Statistical Data System (SESTAT) (2008), http://sestat.nsf.gov.          
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Figure 7. Annual income for recent S&E degree recipients up to 5 years after receiving degree, by level and field of 

highest degree: 2010 
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Differences by Demographic Attributes 

In general, the S&E workforce is largely dominated by white male individuals 

representing more than half of the STEM job market (NSF, 2013). Women, of all races and 

ethnicities, and minorities working in STEM fields are underrepresented and underpaid (DPE, 

2014; Hill, Corbett, St. Rose, 2010; Ong, 2005). Previous research noted several reasons related 

to the underrepresentation of minorities and women in the STEM pipeline. These include lack of 

role models, inadequate social integration into the field, feelings of academic or social isolation 

and marginalization due to one's race/ethnicity, gender, or a combination of both (American 

Institutes for Research, 2012; Stout, Dasgupta, Hunsinger, & McManus, 2011). The 

underrepresentation of women and minorities differs considerably by the STEM field. In 2013, 

for example, women made up 46% of professional science workers (with even larger 

representation in fields like dietitians and therapists), but only had a small representation in 

math/computer and engineering professionals; 26% and 14%, respectively (DPE, 2014). Further, 

in 2013, male practitioners in the STEM workforce and related occupations earned on average 

27% more than women (Bureau of Labor Statistics, 2013). As for minorities, African Americans 

comprised 9.3% of the professional workforce, while Hispanic professionals represented only 

8.2%; similar representation to Asians (DPE, 2014). The underrepresentation of minority 

professionals is even larger in some STEM fields. In occupations like architecture and 

engineering African Americans were just 5.5% of the workforce (Bureau of Labor Statistics, 

2013). Overall, African Americans and Hispanic professional workers were more proportionally 

represented in lower-paying support positions such as computer support personnel or technicians 

(DPE, 2014). As for wages, Asian and White workers had higher than average earnings, while 
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Hispanic and African American professionals reported lower than average wages in 2012 (DPE, 

2014). 

Unemployment status did not show a significant gender gap. However, a deeper look into 

unemployment rate by race/ethnicity shows significant gender/race differences, especially for 

female Asian scientists and engineers. As shown in Figure 8, Asian female scientists and 

engineers had the higher unemployment rate (7.4%) compared to other races in 2010. When 

asked for reasons why not employed, 45% of Asian female scientists and engineers cited "family 

responsibilities" as a reason (NSF, 2013). Both males and females and different race/ethnicity 

professionals cited “not able to find a job in the field” as a frequent reason for unemployment 

(see Figure 8).   

 

 

 

 

 

 

 

  

    

 
 

SOURCE:  National Science Foundation, National Center for Science and Engineering Statistics, Scientists and 

Engineers Statistical Data System (SESTAT), 2010.  

 

 
 

Figure 8. Unemployment rate of scientists and engineers by race and reasons for unemployment: 2010 
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Limitations of Previous Research 

Although recent graduates' degree type and field along with their demographic 

characteristics can greatly affect their retention in the field after graduation (Bureau of Labor 

Statistics, 2013; DPE, 2014; Hill, Corbett, St. Rose, 2010; NSF, 2014; Ong, 2005), their 

unemployment rate, IOF rate, annual income, and the current attrition problem at the end of the 

STEM pipeline cannot be simply explained by graduates’ attributes. The crisis of recent STEM 

graduates is a result of a combination of problems where individuals (students), the supply (K-16 

education), and the demand (workforce) are all involved. Such combination can be grouped into 

two major categories (besides the previously explained students' attributes): the supply-side 

competency, and the demand-side deficiencies, where the latter is constantly changing as a result 

of globalization and internationalization forces (Salzman, Kuehn, Lowell, 2013). These two 

categories are explained in greater depth in Chapter 2.  

So far empirical evidence shows that recent STEM graduates especially bachelor's degree 

holders, if not unemployed, are working in large proportions in fields that unrelated to their 

degrees. Data shows that economic indicators such as unemployment rate, IOF rate, and wages 

trends, point to a surplus in the supply of young scientists. Finding a job in the STEM field or 

STEM-related fields immediately after graduation (even few years after) is becoming an 

inevitable challenge for STEM recent graduates. Some graduates struggle more than others due 

to factors related to their degree type/field, geographic location, and some demographic 

characteristics (Bureau of Labor Statistics, 2013; DPE, 2014; Hill, Corbett, St. Rose, 2010; NSF, 

2014; Ong, 2005). It is, therefore, important to investigate why some recent STEM graduates are 

successful in securing a job in their field or related fields upon graduation while others struggle 

even to find a job years after they earned their degrees.  
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Unlike the supply side, the demand side has received some scholarly attention (e.g., Lynn 

& Salzman, 2006; Manning, Massini & Lewin, 2008; Salzman, 2007; Salzman, Kuehn & 

Lowell, 2013; Salzman & Lynn, 2010; Sargent Jr., 2010). Little focus has been given to the 

supply side which requires immediate attention, especially on the student level, since the current 

issue is a result of both the supply and the demand. Some researchers examined the concept of 

shortage, comparing the number of STEM graduates to job openings in their fields (e.g., 

Salzman, 2007) without providing further analysis. Others went deeper to follow students 

through the STEM pipeline's main pathways (e.g., Lowell, Salzman, Bernstien, & Henderson, 

2009) analyzing several longitudinal datasets. However, their conclusions focused mainly on 

trends in the rates of retention and attrition along the STEM pipeline. Some research has focused 

on one field of STEM, engineering, with no consideration to other STEM fields (e.g., Lowell & 

Salzman, 2007; Shuman, Delaney, Wolfe, Scalise, & Besterfield-Sacre, 1999). 

Although research exists to investigate education and job match, studies conducted in that 

area looked at all majors with no particular attention to STEM and mainly focused on the match 

between years of schooling and the educational attainment required for the job (e.g., Cohn & 

Kahn, 1995; Groot & Van Den Brink, 2000; Hartog, 2000). As Sloane (2003) states, educational 

attainment is one way to measure the match between degree and career (Sloane, 2003). A worker 

may spend years on schooling and thus have the appropriate educational attainment, but not in a 

highly demanded field; noting that the college major may relate to educational mismatch 

(Sloane, 2003). To date, limited research has looked into degree-job matching by the degree field 

which contributes to the research literature on college major choice (e.g., Robst, 2006). Although 

such studies contribute significantly to the current literature on college major choice, their 

conclusions are not robust enough to draw evidence on explaining the current worker-job 
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mismatch phenomenon. For instance, such studies conclude that the mismatch is more likely to 

occur among workers with degrees in English and foreign languages, social sciences, and liberal 

arts, and less likely to occur among workers with degrees in engineering, architecture, and 

business management (Robst, 2006). However, these conclusions lack empirical evidence on 

how individuals with similar degrees vary in their likelihood to be matched with their careers, or 

how broader factors, beyond degree fields, can influence the mismatch. Finally, the majority of 

research on educational career matching had largely focused on wage differences between the 

matched and mismatched workers’ return on investment in their education (e.g., Cohn & Kahn, 

1995; Hartog, 2000; Robst, 2006).         

 There is a surprising lack of any empirical analysis in the literature about how the 

mismatch between job and degree can be influenced by educational outcomes, demographic 

attributes, institutional characteristics, or even broader personality and cultural influences. 

Studies done in this line of research seem to be sufficient to draw attention to particular causes of 

shortage/surplus rather than clearly defined or well-understood factors of the actual issue.        

Furthermore, focusing on the supply side (STEM graduates) is crucial for several 

reasons: first, graduates of the STEM field play a fundamental role in innovation and 

technological advancement; an area that witness a global competition. As a result, a healthy 

supply of scientists can greatly impact technological progress and the United States' position as 

innovation preeminence. Second, policymakers concerned with the STEM market productivity 

and advancement need to understand how the mismatch between degree and occupation 

influences job satisfaction, and thus market productivity. Third, federal agencies and private 

organizations allocate substantial fiscal aid and resources to the STEM field and its students. 

However, concerns over the quality and competence of STEM graduates, and the U.S. position in 
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the global market continue to grow as STEM graduates increasingly work in non-STEM 

occupations (Preston, 2004). Furthermore, the consequences of the mismatch not only affect 

individuals, but also exceed to reach institutions and, in the longer run, the entire workforce. One 

might perceive that it is cheaper for workers to remain mismatched as alternatives (searching for 

a new job or a new applicant) may cost money and time for both the employer and the employee 

(Bender & Heywood, 2009). However, remaining mismatched is costly; it results in significantly 

diminished earnings, lower job performance, loss in human capital investments, high quit rate, 

and lower levels of job satisfaction and productivity; setbacks that could affect the entire STEM 

field (Allen & Van der Velden, 2001; Belman & Heywood 1997; Bender & Heywood, 2009; 

Borghans, Bruinshoofd & de Grip, 2000; Clark & Oswald 1996; Freeman 1978; McGoldrick & 

Robst 1996; Sattinger, 1993, 2012; Sloane, Battu & Seaman 1996; Solomon, Kent, Ochsner & 

Hurwicz, 1981; Tsang 1987). For those reasons, focusing on the supply side (STEM graduates in 

this study) is the first step towards better understanding the origin of the problem and addressing 

the current STEM crisis.  

In the age of accountability, universities and policyholders should be aware of what could 

contribute to a successful transition into the STEM workforce. Universities need to be held 

accountable for their graduates; it should not stop at awarding degrees. Knowing what could help 

a graduate to find a job in his/her field is crucial not only to the graduate's overall economic 

health but the U.S economy as well and its position as an innovation leader. Keeping a healthy 

STEM supply that is responsive to the STEM market's needs will ensure prosperity in all phases 

and transition pathways of the STEM pipeline. Universities need to connect their students' 

education plan to their career plan by preparing them for the market's needs. Most universities 

include in their mission a goal to make their students lifelong learners. If their graduates cannot 
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find a job or a job placement related to their academic majors, then universities will fail in their 

mission since career life is a learning stage as well. It is critical at this point to investigate what 

increases the odds of finding a job in the field. Factors like training during degree thus gaining 

hands-on experiences may contribute to the chances of successful transition into the workforce. 

It could be as well factors that relate to students' soft skills; such as self-efficacy, social 

intelligence, or other non-technical skills are highly needed in the current third-generation 

globalization era, and, fortunately, can be acquired during college years as well. If job 

opportunities for recent STEM graduates relate to degree field or type, then universities should 

predict the market needs through collaboration with the demand side, and thus offer programs 

that match the future demand. Postsecondary institutions should obtain a more in-depth 

understanding of how individuals are matched with their careers. As a result, universities can 

modify courses or even an entire program based on attributes to degree-job matching. By doing 

so, individuals, and the society as a whole can maximize returns to educational investments. 

Only when job opportunities are correlated with demographic attributes, which are unalterable 

factors, can the policymakers enforce policies that ensure equal opportunity for all graduates 

regardless of their race/ethnicity or gender. 

 

Purpose of Study & Research Questions 

The purpose of this study is to examine whether career self-efficacy and expectancy are 

related to the degree-job matching among recent STEM college graduates. Degree-job matching 

in this study refers to the match between degree field, or degree knowledge and skills, to jobs. 

The impact of mismatching degree, or degree knowledge and skills, to jobs is substantial to the 

point where it not only affects individuals but also exceeds, in the long run, to reach the entire 

STEM field. The mismatch, as documented by previous research on STEM and other fields, can 
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result in multiple adverse outcomes. These include lower wages, job dissatisfaction, low 

productivity, loss of unused skills, higher turnover, feelings of loss in returns in educational 

investments, loss of returns to human capital investments, and inadequate labor force for 

workforce' expansion and growth (Belman & Heywood 1997; Bender & Heywood, 2009; 

McGoldrick & Robst 1996; Sattinger, 1993, 2012; Sloane, Battu, & Seaman 1996; Tsang 1987). 

In an attempt to fulfill the purpose of this study, the following research questions that guide the 

study are derived from Lent, Brown and Hackett's (1987) Social Cognitive Career Theory 

(SCCT) which focuses on the relationship between self, learning experiences, and surrounding 

factors, and how the interrelated relationships among these factors affect self-efficacy and 

outcome expectations, thereby influencing an individual’s career choices. The SCCT theory is 

explained fully in the next chapter. 

 

(Demographic Characteristics)  

 

1) How do demographic characteristics of recent STEM graduates influence the match between 

their degree and their current job? 

 

(Institutional Characteristics) 

 

2) Controlling for demographic characteristics, how do institutional characteristics (i.e., 

selectivity and control) influence recent STEM graduates' current degree-job match? 

 

(College Attributes) 

3) While controlling for both demographic and institutional characteristics: 

 How do a graduate's major and academic cognitive abilities relate to the match between 

degree and current job? 
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 Does participating in hands-on learning opportunities (e.g., internship and onsite 

training) during college years increase the odds of match between STEM graduates' 

degree and current job? 

(Career Self-efficacy and Outcome Expectations) 

4) Controlling for demographic characteristics, institutional characteristics, and college 

attributes, to what extent do individuals' career self-efficacy and expectancy predict the odds of 

match between degree and job for recent STEM graduates? 

Research Model 

 The aim of this study is to examine whether career self-efficacy and expectancy are 

related to the degree-job matching among recent STEM college graduates. The conceptual model 

of this study is based on the Social Cognitive Career Theory (SCCT) and includes four major 

constructs: 

 Demographic characteristics, including gender, race/ethnicity, social backgrounds (e.g., 

socioeconomic status). 

 Institutional characteristics, including postsecondary institution's level (four-year vs. two- 

year), sector (public vs. private), and selectivity level. 

 College attributes, including participation in hands-on learning opportunities during 

college years (e.g., internship and onsite training), personal abilities (e.g., cognitive and 

non-cognitive skills), and college major. 

 Career self-efficacy and outcome expectations, including participants' perceived 

confidence in their career abilities and their abilities to meet their career plans. 
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Figure 9, below, explains how individual's demographic characteristics and institutional 

characteristics could affect career-related learning experiences that reflect on career self-efficacy 

and career outcome expectations leading to career decision-making.   

 

 

 

 

 

 

 

 

 

Figure 9. Research Model for Predictors of Degree-Job Match among Recent STEM Graduates 

 

 

 

 

Significance of the Study 

This study will contribute to the current field by highlighting factors associated with the 

mismatch between supply and demand in the STEM pipeline. A large portion of the existing 

research has focused on either the first phase of the STEM pipeline; primary and secondary 

education and the transition to postsecondary education or the second phase; persistence through 

college years to graduation. However, little attention has been paid to the third and final phase 

(transition to the STEM workforce). This study will look at factors that relate to graduates' 

successful transition into the STEM workforce, and thus retaining them in the field.  

The demand side has gone under tremendous changes in the past decade or so due to the 

globalization and internationalization of the field along with many other factors making the 

transition into the STEM workforce a challenging task for recent graduates. Offshoring and 

outsourcing jobs along with the increasing number of foreign-born individuals on temporally 

visa working in the STEM workforce are all factors in influencing the attrition rate of the STEM 
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pipeline. Increasing the supply of STEM workers through immigration can considerably impact 

the field's economic indicators. For example, increasing the supply of immigrant workers by only 

10 percent can lower wages in a given STEM field by 3 to 4 percent (Borjas, 2009). Retirement 

age of STEM workers increased in the past years adding difficulties to recent graduates who seek 

a job in their field. Between 1993 and 2008 the median age of S&E workers in the STEM 

workforce increased from 37 to 41, where individuals in their 50s who reported they were still in 

the labor force rose from 18 percent in 1998 to 27 percent in 2008 (NSF, 2012). All of these 

factors can play a significant role in affecting the recent STEM graduates' attrition problem. 

Given that a large number of recent graduates work in occupations related to their fields despite 

the obstacle of high labor productivity and low labor market stability, identifying factors that 

ease the transition into the workforce, especially in the current globalization era, will help recent 

STEM graduates' to retain in the field. Working in jobs related to the individuals' field of study 

results in higher job satisfaction and higher productivity where individuals feel rewarded for 

their investments in education.   

Although many researchers have attempted to validate the current concern over the 

STEM pipeline (Butz, Kelly, Adamson, Bloom, Fossum, & Gross, 2004; Lowell & Salzman, 

2007; Salzman, Kuehn, Lowell, 2013; Salzman & Lynn, 2010; Sargent Jr, 2013; Zeigler & 

Camarota, 2014), little research exists to empirically investigate the STEM attrition at the end of 

the pipeline. The STEM pipeline received a massive research contribution over the years, but as 

stated earlier the pipeline has many pathways where most research focused on the first and 

second transition phases with little-to-no attention paid to the third and final transition phase; 

transition to the STEM workforce. Some researchers like Lowell et al. (2009) performed a 

rigorous analysis of six longitudinal datasets to validate the STEM shortage, and their study 



THE DEGREE-JOB MATCH AMONG STEM GRADUATES                                                                               24 
 

 

concluded that STEM students are sufficient both in numbers and preparation levels. What is 

missing from Lowell et al. (2009) findings and many other studies is the focus on STEM 

students' characteristics and attributes. Research work done in this field concluded no shortage in 

STEM graduates, yet attrition rate at the end of the STEM pipeline keeps raising with no clear 

evidence of who stays and who leaves. STEM supply differs by demographic attributes, and it 

varies as well by type and level of degrees. STEM demand also different by industry, occupation, 

and geographic locations.  

These variations both in supply and demand, impact the STEM pipeline and to better 

understand the current mismatch a critical analysis supported by data is warranted. Studies that 

have attempted to examine career choices by different demographic attributes along with what 

could predict a STEM student’s choice of STEM career are very limited. Many U.S. employers 

have concern with the lack of cross-cultural skills "social cognitive skills" in such globalized 

market, but to what extent such skills impact the chances of a STEM graduate to hold a STEM 

job? Do low levels of social cognitive skills lead to employment in non-STEM occupations? 

How do students with similar levels of social cognitive skills, but different demographic features, 

gender/race, differ in their probability of holding a STEM job after graduation? The following 

section examines the problem of soft skill. The current gap in the literature, the shortage of 

evidence, and the forthcoming burst of the STEM bubble requires an immediate policy 

intervention based on empirical findings. 

  

Organization of the Dissertation 

Chapter one includes an introduction to current concerns over the STEM pipeline. The 

chapter then, supported with statistical figures, moves to highlighting the issue of the mismatch 

between supply (graduates' fields) and demand (careers), and why the mismatch should be 
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considered as a serious problem. Further, chapter one also includes the statement of the problem, 

purpose of research, significance of the study, and research questions. The study moves then to 

chapter two, where both the review of the literature and the theoretical frameworks are presented. 

The literature review in chapter two provides a comprehensive review of the current STEM 

concern; starting with a brief history of the issue, moving to highlight the concept of the third-

generation globalization, and ending with both a micro and a macro analysis of the STEM 

pipeline. Chapter two then, concludes with theoretical frameworks guiding the current research. 

The third chapter in this study presents the proposed methodological procedures that will be 

applied in this research; proposed dataset, list of variables, and proposed statistical analysis 

methods.    
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CHAPTER II 

Literature Review and Theoretical Framework 

To understand the nature of the ongoing STEM crisis debate a fine-grained analysis is 

critical, and thus the following sections will address three main points. First, it is important to 

take a brief look at the history of U.S. research and technological development (R&D) and the 

recent move to the "Third-Generation Globalization" era to understand better the root of STEM 

concerns and the increasing emphasis on the importance of maintaining the world's leader 

position. Second, to identify the deficiencies or the leak in the STEM pipeline, it is necessary to 

follow the flow of students through the pipeline or the pathways; from high school to college, 

and until they reach the workforce. The third section will address the concept of STEM 

"shortage" by looking at the nature of STEM workforce and the recent structural changes in the 

field.  

 

Historical Development 

Brief Look 

            In 1957, the Soviet Union launched the Sputnik satellite breaking the United States' R&D 

monopoly and creating fear and concerns among American citizens about their national security 

(Dickson, 2001; Michael, 1960; Nisbet, M. C., & Scheufele, 2009; Swinehart & McLeod, 1960). 

Concerns were not only about national security status but also the possibility that Soviet youth 

may have a much better education in science and technology than American students, which 

eventually may lead the U.S. to lose its global domination (Lynn & Salzman, 2006). A few years 

after that, America was shocked by another global advancement from Japan and Korea. Their 

success in steelmaking and auto production industries raised the bar even higher for the United 

States. While countries like Japan enrolled their students in S&E fields, U.S. students majored in 
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law and finance, enabling Japan to take over some key technological fields. The economic threat 

from the Soviet Union and East Asia led U.S. policymakers to question their ability to maintain 

America's global dominance and high standard of living, such threat quickly diminished; the 

Soviet Union with its Communist system slipped into tough times (Lynn & Salzman, 2006; Nye, 

1990).    

            In the 1980s several firms started what became known as the "multinational" move; 

offshoring jobs and production to low-cost locations outside the United States. At the same time, 

Japan and Korea increased their production into the global market taking over a fair amount of 

market share (Lynn & Salzman, 2006). Such race to dominance in the industrial field along with 

the offshore trend led the U.S. to lose hundreds of thousands of jobs, and it was painful for both 

workers and small domestic companies. With all that challenge, the U.S. managed to recover and 

grow its economy, keeping up with the overall growth in world trade market and switching its 

workforce into high-end technological development (Lynn & Salzman, 2006). The U.S. ability to 

overcome these challenges was attributable to several reasons: the ongoing improvement of the 

education system, the increasing production of qualified scientists and engineers, the fertile 

environment that attracted highly-talented foreigners to its universities and businesses, and the 

flexible system that fosters innovation and encourages new business ventures. To ensure its 

dominance, by the end of the 20th century the United States spent more than Japan and double 

what France, Germany, and the United Kingdom combined spent on R&D (Lynn & Salzman, 

2006).  

Third-Generation Globalization 

            During the era between the 1950s and early 1960s, U.S. companies outsourced simple 

and easy task technological jobs to boost profit and cut costs. At that time, U.S. firms enjoyed 
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trade privileges provided to them by world trade regulations. Further, the U.S. was filled with 

talented workers and superior technology where there wasn't much foreign competition. In short, 

that period of globalization was marked by U.S. firms' dominance (Lynn & Salzman, 2006). The 

era after that was clearly different; in the late 1960s the world moved into the second generation 

of post-war globalization where companies from East Asia started taking over the automobile 

industries, electronics production, and steelmaking. The U.S. companies responded to the 

emergence of their new non-Western rivals with a cold shoulder doubting their abilities to 

compete and considering their products as lower-grade and unsophisticated merchandise (Lynn 

& Salzman, 2006). Soon as the technology became more mobile, East Asian firms slowly 

dominated the innovation and global market. As a response, U.S. firms used their strong 

technological lobby and access to capital to ask for market protection to maintain its 

competitiveness; yet many U.S. firms failed (Lynn & Salzman, 2006). 

            The twenty-first century marks a turning point in a new era of globalization known as 

Third-Generation Globalization. It started at the end of the 1990s when the trade environment 

shifted tremendously due to new communication channels and work-sharing technologies that 

significantly reduced geographical barriers making the world an open society and enabling 

human capital, technological services, production, and capital to flow free and fast around the 

globe (Lynn & Salzman, 2006). U.S. firms, at this globalization stage, faced challenges to stay 

dominant since the newly emerging economies are much more solid and stronger than those that 

emerged two decades ago (Freeman, 2006). Further, multinational strategies that U.S. firms 

exercised before soon became a threat to U.S. economy. Such strategies jeopardized U.S. 

national identities by making these firms citizens of the countries in which they do business with 

(Lynn & Salzman, 2006). Also, multinational strategies caused U.S. firms to be loosely tied to 
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their country, making the effort to maintain U.S. global hegemony an overwhelming challenge; if 

it is even feasible at all. What marked this period (the 1990s) as well is the declining number of 

S&E immigrants who the United States heavily depend on as its science, engineering, and 

technology human capital. For immigrants, the emerging economy of their home countries 

presented greater opportunities than the U.S., leading them to move back to their countries and 

causing the U.S. the loss of a vital source of technology entrepreneurship and innovation (Lynn 

& Salzman, 2006). During this time as well, U.S. students enrolling in STEM fields or pursuing 

STEM careers declined, raising concerns over the availability of adequate human resources to 

maintain global leadership (Freeman, 2006; Lowell et al., 2009). 

            Policies were created to encourage more students to major in STEM fields to address the 

perceived U.S. technology challenge. The problem is, however, as Lynn and Salzman (2006) 

point out in their interviews with engineering managers, that inducing more STEM graduates 

into the market will not solve the issue, it will, in fact, worsen it. None of the engineering 

managers interviewed complained about a shortage of new STEM graduates, thus increasing the 

supply of STEM graduates will increase the unemployment rate, stagnate wages, and discourage 

future students from pursuing either a STEM degree or a STEM career (Lynn & Salzman, 2006). 

What engineering managers highlighted as an issue when hiring new S&E graduates is not the 

lack of technical knowledge and skills (talent) but the lack of soft-skills. In today's world, cross-

cultural skills (social cognitive skills) are critical to function in the current third-generation 

globalization. Firms are looking for individuals who can successfully communicate their ideas in 

a market setting more diverse than ever, and individuals who understand cross-cultural 

differences and appreciate them. For the U.S., to assure, or even gain back in some areas, its 

global leadership, STEM education system must be refined. U.S. universities need to reconstruct 
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their STEM curricula to meet the needs of the new global market, by increasing understanding of 

cross-cultural differences, encouraging collaborative competencies, and teaching how to manage 

global teams. In the current third-globalization generation era, it is critical for STEM graduates 

to know how to work "across disciplinary, organizational, cultural, and time/distance 

boundaries" (Lynn & Salzman, 2006, p 81).  Universities can achieve this by introducing cross-

cultural management courses, providing exchange programs and internships, and fostering 

communication across disciplinary boundaries (Lynn & Salzman, 2006).  

            The current third-generation globalization caused structural, organizational and 

functional changes in the STEM working environment along with changes in human capital 

flow. The new globalization shift produced a new world order causing the STEM workforce to 

adopt new frameworks and policy approaches to maintain economic strength and achieve growth 

and prosperity. The collaborative advantage is the new approach most firms adapted, based on 

building strength through collaboration with other nations by participating in the global supply of 

human capital. Available data indicate that the U.S. secondary and postsecondary education 

system prepares and produces more than an adequate number of qualified STEM graduates. No 

data or policy report confirms the perceived crisis in the number of U.S. STEM graduates. Thus, 

the ongoing quest to increase the supply will only result in a STEM bubble that may burst in the 

not-too-distant future if the current trend persists. The new globalization patterns produced a new 

collaborative STEM market environment that requires a broad education that incorporates 

teaching technical skills along with non-technical skills to meet the needs of the new global 

STEM market. The mismatch between what the supply offers and what the demand needs could 

be what causes the current STEM crisis. Lynn and Salzman (2006) pointed out the new 

requirements of the STEM field and further provided recommendations to strengthen education 
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pedagogy, but what their analysis is missing is a critical look at students' perspective and 

student-level factors that may influence their STEM degree and career choices. For an 

understanding of student-level factors, it is important to follow the flow of students through the 

STEM pipeline from high school, to college, and lastly to career choice and the workforce.  

 

The STEM Pipeline: A Micro Analysis 

The Development of Transition Pathways 

                There are three transition pathways along the STEM pipeline; the transition from high 

school to college, completion of a STEM college degree, and transition into the STEM 

workforce (see Figure 10). Before looking into the flow of each of the transition phases, an 

understanding of the development of each transition phase is important to understand the flow of 

phases in the STEM pipeline. Lowell et al. (2009) highlighted three perspectives identifying why 

students decide to pursue STEM as a course of study. First, students who receive early exposure 

to math and science, and thus attain high proficiency, tend to choose STEM pathways. From this 

perspective, due to their math and science qualifications, such students end up choosing STEM 

as a career (Lowell et al., 2009). This perspective deals with the quality of K-12 education where 

early exposure and high-quality preparation lead to the continued pursuit of STEM education, 

along with the ability to later compete in the STEM workforce. In the second perspective, Lowell 

et al. (2009) consider career choices as simply "idiosyncratic" where students try to match their 

interests with future occupations, and thus qualifications alone are not sufficient to predict career 

outcomes. Drawn from the career counseling theories, Lowell et al. (2009) second perspective; 

matching interest with career choice is a result of individuals' developmental outcomes. In this 
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sense, better matches are affected by students' personality traits (which are a developmental 

process) and career characteristics (Adelman, 1998; Lowell et al., 2009).  

            Lowell et al. (2009) third perspective on the reasons why students decide to pursue 

STEM deals with market mechanism and demand-related factors, where market incentives attract 

students to career paths. Supply and demand are the driving wheels behind labor prices and in 

this sense STEM shortage may not be caused by a shortage in the number of qualified STEM 

graduates, but caused by the workforce "demand" deficiencies. Demand deficiencies may mean 

that STEM employers are unable to attract highly qualified STEM college graduates, or that 

STEM graduates are choosing non-STEM related careers because of the STEM market's low 

wage incentives, less professional stability, high susceptible to offshoring, and more competitive 

job-environments from emerging economies (Freeman, 2009; Lowell et al., 2009). Another 

deficiency in the market mechanisms could be the so-called Freeman's (1976) "cobweb" model 

that deals with the supply and demand cyclical patterns. In the cobweb model, when market 

wages increase, an increase of job-seekers follows, as a result, but in turn wages stagnate/depress 

as a consequence of the overdose in supply numbers. What follows after wages decline is a 

decline in students' interest in the field, followed by a decline in enrollment. For example, the 

decline in mathematics enrollments in 1996 was attributed to the cobweb cycle (Davis, 1997). 

Understanding the main factors contributing to the development of STEM pathways may help in 

spotting the leakage in the STEM pipeline. The next section follows the flow of each of the 

transition phases in the STEM pipeline to detect the leakage while keeping in mind Lowell's et 

al. (2009) three perspectives, and the turning point of S&E workforce — the beginning of the 

third-generation globalization era. Moving from one phase to another, e.g. from high school to 
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college, marks a "transitions" phase along the STEM pipeline, at the same time the pipeline can 

have many exits and entries, and reentries along the way.  

 

 

 

 

 

Figure 10. STEM pipeline transition pathways. 

 

 First Transition Phase: From High School to College 

            In general, the National Center for Educational Statistics (NCES) shows that the 

percentage of students who finish high school has increased in the past thirty years from 83 

percent in 1972 to 93 percent in 2012 (NCES, 2014). Further, demographic groups showed 

steady improvement in their high school completion rate, and more students are staying in 

schools and are on track (NCES, 2013). For instance, the period between 1994 and 2003 

witnessed a six percentage point increase to 75 percent for students aged 12- to 17-years old and 

who were considered to be academically on track (Dye & Johnson, 2007; Lowell & Salzman, 

2007). Further, a significant increase in science and math course-taking occurred for students 

from all racial/ethnic groups, and both for male and female students (Lowell & Salzman, 2007). 

Also, the National Assessment of Educational Progress (NAEP) shows a steady progress in math 

test scores for both 13-year-old and 17-year-old cohorts. The Scholastic Aptitude Tests (SAT) 

and the American College Testing (ACT) both show as well an increase in test scores over that 

past thirty years (College Board, 2013; Lowell & Salzman, 2007; NCES, 2012).  Figure 11 
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below shows an overall steady increase of SAT mean test scores for the period between 1986/87 

and 2011/12 across different race/ethnicity groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOURCE: U.S. Department of Education, National Center for Education Statistics. (2013). Digest of Education 

Statistics, 2012 (NCES 2014-015), Chapter 2.         
 

 
Figure 11. SAT-Math mean scores of college-bound seniors by race/ethnicity 
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Williams, 2004). The Program for International Student Assessment (PISA) is an international 

assessment measuring 15-year-old’s achievement in reading, mathematics, and science literacy. 

On the other hand, PISA results show that U.S. students' math and science performance do not 

compare favorably with results for students in leading industrialized nations (OECD, 2010). 

Furthermore, over the years elementary science instructional time declined to reach an average of 

2.3 hours per week, the lowest since 1988 (Blank, 2012). The decline came as a result of the 
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2001 No Child Left Behind (NCLB) law currently known as the Education and Secondary 

Education Act (ESEA) (Blank, 2012). The ESEA test measures schools' performance (as a way 

to measure accountability) by students' math and English language arts scores, since then 

instructional time for science, dropped whereas math increased steadily and English language 

arts substantially increased (Blank, 2012). All different measurements presented so far evidence 

that there is no decline, but rather an improvement, of U.S. domestic trends relating to high 

school students' educational outcomes. There might be a slight shift in focus on K-12 science 

education resulting from policy shift that favors other subjects (e.g. math and English language 

arts) over science, but previous evidence proves an overall improvement of high school students' 

academic performance. Since this research is concerned about STEM, in particular, a micro look 

at this field is important to reach valid conclusions.   

            Using six different longitudinal data sets (NLS72, NLSY79, HS&B, NELS88, B&B93, 

NLSY97) Lowell et al. (2009) tracked the percentage "flow rate" of a given cohort over time. 

The study compared cohorts or data sets, from one phase to another along the STEM pipeline, 

covering thirty years of time, to spot a change or stability in the flow rate of students along the 

pipeline. For high school graduates, the retention rate in the STEM pipeline has stayed stable 

over time, hinting that overall the percentage of high school graduates who enroll in a STEM 

field did not change significantly over time (Lowell et al., 2009). It is worth noting though that 

only the retention rate of high school top achievers—those testing the highest on their SAT/ACT 

math exams—significantly dropped around the late 1990s; the same period where S&E market 

witnessed the turning point caused by third-generation globalization. The retention rate in the 

STEM pipeline for high school top performers significantly (p=.000) dropped from "28.7 percent 

in the 1992/97 cohort to 13.8 percent for the 2000/05 cohort" (Lowell et al., 2009, p. 18). The 
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explanation may be the fact that high school top performers are usually from well-educated 

families who have the knowledge of market needs and thus involve in their children's 

postsecondary enrollment decisions. For example, in their interviews with engineering managers, 

Lynn and Salzman (2006) reported that "some managers said they would not recommend that 

their children go into engineering since they did not see it as a career with a bright future" (Lynn 

& Salzman, 2006, p. 78).  

            Overall, little change occurred in the percentage of high school graduates who enroll in a 

postsecondary institution, and the same apply to the STEM field. Only the cohort of high school 

top achievers witnessed a steep decline in its retention rate in the STEM pipeline. The trend for 

top performers in the STEM pipeline shows an increase in the retention rate for 1972/77 cohort 

to 1992/97 cohort from 21.4 percent to 28.7 percent respectively, but then a steep decline for the 

2000/05 cohort; 13.8% (Lowell et al., 2009). 

Second Transition Phase: Persistence to Graduation 

            At the college level, the great challenge is to attract students to STEM majors and retain 

them until graduation. Although there is an increased interest to pursue a STEM degree among 

high school graduates, that does not necessarily translate to actual enrollment in the STEM field. 

Every year, the Higher Education Research Institute (HERI) selects a national sample of first-

year students in four-year postsecondary institutions and asks them through a survey known as 

the Freshman Norms Survey about their intentions to major in STEM fields. The freshman 

survey shows continuity in students’ desires to pursue STEM majors, but again what freshmen 

say they intend to do and what they, in fact, do differ on many occasions. Roughly speaking, 

there is equivalence in the percentage of students who expressed an interest in pursuing a STEM 

degree and students who obtained one (Lowell & Salzman, 2007). Further, the proportion of 
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students graduating with a STEM bachelor degree has been growing over time (Figure 12), as 

well as the proportion of freshmen enrollment in STEM fields, and the proportion of STEM 

master and doctoral students (Lowell & Salzman, 2007). 

 

 

                                                   

 

 

 

 

 

 

SOURCES: U.S. Department of Education, National Center for Education Statistics, Integrated Postsecondary 

Education Data System, Completions Survey; and National Science Foundation, Division of Science Resources 

Statistics, Integrated Science and Engineering Resources Data System (WebCASPAR), http://webcaspar.nsf.gov.  

 

 

Figure 12. Number of S&E Bachelor's Degree awarded between: 1983-2011 
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workforce. Also, the evidence so far did not show any leakage in the pipeline, hinting that the 

last phase may hold the missing link.   

Third Transition Phase: College to Workforce   

            To address the explicit criticism, that there is an inadequate number of STEM graduates, 

a look at the employment rate in the STEM workforce may help in testing these claims. It is 

important to note though that not all STEM graduates have the interest to work in STEM careers, 

and for those who are interested, the number of job openings may not be equal to the number of 

STEM graduates who are pursuing a career in the STEM field. Also, even if we assume the 

supply is equal to the demand, some STEM graduates may not enter the STEM employment 

simply because they are under qualified for the STEM jobs that are available. The retention of 

STEM graduates in STEM fields-either working or pursuing graduate studies- increased from 

1977/80 (31.5%) to 1987/90 (38.3%) to 1993/96 (52.8%), but then significantly declined 

(44.9%) in 1997/00 cohort (Lowell et al., 2009). The drop in the STEM retention rate found in 

all students regardless of their GPA scores; indicating that even STEM levels of preparedness 

could not moderate the significant reduction (Lowell et al., 2009). The chances of top STEM 

achievers to hold a STEM job as their first occupation are equal to average STEM graduates. In 

fact, Lowell et al. (2009) concluded that "college achievement does not predict STEM 

retention...higher achievers are not more likely to stay in the STEM pipeline, either at the first 

job or at mid-career, than average STEM college graduates" (Lowell et al., 2009, p.29). Further, 

the same period (1993-2001) witnessed high attrition where the percentage of STEM bachelor 

holders and master holders working in non-STEM fields is 45 percent and 31 percent 

respectively (NSF, 2006). So what is causing STEM graduates not to work or be unable to work 

in the STEM workforce? Is the high attrition at the end of the pipeline caused by poor math and 
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science preparation during high school or poor quality of college education thus leading STEM 

graduates to exit the STEM pathway? As stated earlier, science instructional time in K-12 

education dropped in recent years to reach an average of 2.3 hours per week, but could this 

explain the high attrition rate at the end of STEM pipeline? Previous studies concluded that once 

enrolled in a STEM major, neither prior science and math abilities nor the quality of college 

education were strong predictors of STEM attrition (Lowell & Salzman, 2007; Seymour, & 

Hewitt, 1997).    

            So the question then, is the decline in STEM graduates' retention (holding a STEM job 

after graduation) attributed to a shortage of STEM jobs? Alternatively, are there another type of 

employees (non-STEM holders) taking STEM jobs, especially when the period that witnessed a 

decline in the STEM graduates' job retention was the same period where STEM job market 

witnessed an expansion and growth? There are three different arguments in this regard. 

            First, the number of STEM graduates—bachelor, master, and doctoral levels—from 1985 

to 2000 was around 435,000 annually (Lowell & Salzman, 2007). For the same period, the "net 

change" in STEM job market was about 150,000 annually, with disregard to a replacement for 

retirements or occupational quits (Lowell & Salzman, 2007). These numbers reveal that the 

average ratio of all STEM graduates relative to net occupational change is about three to one 

(Lowell & Salzman, 2007). This argument suggests that colleges and universities are providing a 

more than adequate supply for the demand; hence "there are 15.7 million workers who report at 

least one degree in an S&E field but 4.8 million work in an S&E occupation" (Lowell & 

Salzman, 2007, p. 34). The second argument claims that STEM degree holders are not facing 

employment difficulties, but the fact is the majority, especially top-achievers, have been lured to 

non-STEM related occupations where there is a substantial demand for STEM-related 



THE DEGREE-JOB MATCH AMONG STEM GRADUATES                                                                               40 
 

 

knowledge, such as a patent lawyer or a medical salesperson. For example, some financial firms 

have been hiring top-achieving STEM graduates by offering incentives and much higher salaries 

than those offered by STEM occupations (Bernstein, 2008; Derman, 2004; Lowell et al., 2009; 

Overbye, 2009). So even if STEM graduates are working in jobs classified as non-STEM, they 

are still using their STEM knowledge; the issue is simply with formal occupational 

classifications (Lowell et al., 2009). Third, there is the argument that claims non-STEM degree 

holders are taking STEM jobs. Lowell et al. (2009) reported in their study a strong evidence of 

non-STEM graduates moving into the STEM workforce; from 1977/80 cohort to 1997/00 cohort 

the percentage of non-STEM workers working in formal STEM occupations increased from 2.5 

percent to 7 percent (Lowell et al., 2009). Further, the percent of STEM occupations held by 

non-STEM graduates increased from 16 percent in 1987/90 to 40 percent in 1997/00 (Lowell et 

al., 2009). This rapid increase can be explained as Lowell et al. (2009) suggested by the 

substantial increase of non-STEM workers in the information technology sector which was a 

booming sector in the late 1990s. Further, the same period witnessed a large number of 

immigrants holding a substantial share of the STEM labor market. The U.S. witnessed an 

increase in the number of students with a temporary visa graduating with a STEM bachelor's 

degree (Figure 13) who may compete for STEM jobs with their U.S. counterparts (Salzman, 

2007). Figure 13 shows a rapid increase in foreign students graduating with a U.S. bachelor's 

degree in STEM majors. The past three decades witnessed a 67 percent increase in the number of 

students on temporary visa graduating with a U.S. STEM bachelor degrees; from 14,071 degrees 

awarded in 1983 to 20,798 awarded in 2011 (NSF, 2013). 
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SOURCES: National Center for Education Statistics, Integrated Postsecondary Education Data System, Completions 

Survey; and National Science Foundation, National Center for Science and Engineering Statistics, Integrated 

Science and Engineering Resources Data System (WebCASPAR), http://webcaspar.nsf.gov. 

 

 

 

Figure 13. Total number of S&E bachelor degrees awarded to students on temporary visas between 1983- 2011 
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evidence reveals that the leakage could be due to the failure of the occupational classification 

system to identify the extent of jobs a STEM major can reach. Also, the growing share of non-

STEM graduates, foreign STEM graduates, and immigrants working in the STEM marketplace is 

undoubtedly contributing to the STEM pipeline attrition rate (Lowell & Salzman, 2007; Lowell 

et al., 2009). All the evidence reviewed so far point at the "demand-side" as a possible cause of 

the STEM pipeline leakage. Thus, a close analysis of the nature of the STEM marketplace is 

critical at this stage to pinpoint the "real" shortage.  
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The Nature of the STEM Demand 

Structural Changes: New frameworks 

            Before looking at the nature of the STEM market's demand, it is important to understand 

the recent structural changes caused by the shift in globalization patterns to understand better the 

demand side. Changes occurred both in human capital flows and firms structures, along with 

innovation changes in emerging economies enabling them to step up as pioneers in technological 

developments (Bartlett, 2000; Bartlett & Ghoshal; 1988, 1989; Choy, 2007; Salzman, 2007). 

STEM market structural changes caused by changes in globalization patterns can cluster in three 

areas as Salzman (2007) suggests. 

            First, the "internationalization of the STEM field" is now clearer in the U.S. universities 

and workforce than two decades ago. As mentioned earlier, the number of students on temporary 

visas seeking bachelor degrees in S&E fields has been steadily growing since the 1980s. That 

number is even larger in graduate programs where in some fields, such as petroleum engineering 

75 percent of graduate degrees awarded were to students on temporary visas since the late 1980s 

(Salzman, 2007). Further, the percentage of doctoral degrees in S&E awarded to students on 

temporary visas has roughly grown by 62 percent for the period from 2000 to 2009 (NSF, 2009). 

Students on temporary visas (both graduate and undergraduate) have been entering the U.S. 

STEM workforce as scientists and engineers representing a relatively large proportion of STEM 

occupations where that proportion increase/decrease by type of industry. Nowadays, these 

scientists and engineers have climbed the work ladder, working in upper-level management and 

involved in decision-making processes (Salzman, 2007). Figure 14 shows how for the year 2011, 

foreign-born workers represented 21.4 percent of the total number of employees in STEM and 

STEM-related occupations compared to 16.7 percent of their representation in non-STEM jobs; 
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showing an overrepresentation of foreign-born STEM workers in STEM and STEM-related jobs 

compared to non-STEM occupations (U.S. Census Bureau, 2011). 

 

 

 

 

 

 

 

 

 

 

 
 

Source: U.S. Census Bureau, 2011 American Community Survey. 
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Figure 14. Employment in STEM, STEM-related, and non-STEM occupations by citizenship: 2011 (percentage)    

 

 

            Recent trends of "deconstructing" the firm's organizational forms demonstrate the second 

structural change. In the past, companies were rooted in their home countries and bound by 

geographic limits reflecting the economic performance of the country where they reside (Bartlett, 

2000). Then a structural shift occurred due to third-generation globalization; firms started 

outsourcing their production, buying rather than making products. At first, companies outsourced 

low-level commodity parts but then moved to outsourcing high-value functions to external 

enterprises. The new strategy soon expanded to reach many industries causing, as a result, less 

integration among domestic organizational forms, and more globalization of the STEM 

workforce where many international markets supplied the needs of U.S. firms in the form of 

labor, knowledge, and experience (Salzman, 2007). 
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            The nature of innovation witnessed the third structural change that caused three types of 

innovation shifts that benefited emerging economies. First, in the field of Information 

Technology, offshoring initially started with low-level activities such as product development 

and services. As Information Technology field prospers and advances, offshoring developed to 

the point where companies at emerging economies highly structured and systematized methods 

of product process and software development causing an innovation shift (Salzman, 2007). The 

second innovation shift is in the types of innovation. In the first- and second- generation 

globalization, innovation aligned with existing products that adhere to local conditions, that type 

of innovation does not suit the current third generation globalization. The current local 

innovation must adapt to local environments as well as global demands (Salzman, 2007). Lastly, 

the innovation market in the past captured only high-end technology whereas nowadays both 

high- and low- end technological innovations are occurring. Slazman (2007) gives a simple, yet 

thoughtful, example to explain this third shift in high-end and low-end innovation: 

The high-end IPhone is predicted to capture something less than 1 percent of the 

global market (under 10 million units), whereas developing an innovative, cheap 

cell phone has potential sales in the hundreds of millions (China Telecom is 

already the largest cell phone company in the world with an estimated 300 million 

subscribers). (p. 6)         

            Further, just because U.S. based firms are innovation leaders in some technical areas, 

does not necessarily mean the innovation or its benefits will advantage the United States, and 

that is because many U.S. companies are offshoring their innovation development whether it is 

on high- or low- end levels (Salzman, 2007). An understanding of the dynamic of offshoring and 

outsourcing of STEM workforce through an analysis of multi-level perspective both on firm-
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level strategies and national policy-making will help in strengthening the analysis of this 

research. 

The Dynamic of Offshoring and Outsourcing 

 Offshoring refers to the process of sending abroad and coordinating business tasks and 

functions to emerging economies to cut costs and boost benefits (Manning, Massini & Lewin, 

2008). Two trends of offshoring emerged in the past decade. First, offshoring is no longer driven 

by cost efficient causes, but search for highly talented individuals is the new key role driver. 

Second, offshoring abandons its simple initial role of low-level IT processing and production to 

reach products development and design and even some areas of R&D (Bunyaratavej, Hahn & 

Doh, 2007; Engardio, Einhorn, 2005; Farrell, Laboissiere, & Rosenfeld, 2006; Manning et al., 

2008). The shift in offshoring structures led to the global sourcing of STEM's highly talented 

individuals, meaning in the past decade companies developed their product functions at home 

(U.S.) through domestic STEM talent. However, the case is different now where many U.S. 

firms are hiring talented STEM employees around the globe at their global locations (Manning et 

al., 2008). The annual Offshoring Research Network (ORN) survey, initiated in 2004 by Duke 

Center for International Business Education and Research (CIBER) follows offshoring trends 

and global sourcing strategies and drivers of more than 1,600 U.S. and European companies. It 

noted that for the 2004-2006, results indicate that access to highly talented individuals come 

second as main reasons for offshoring decisions after cost savings and that product development 

including software development and product design along with some R&D services were the 

second most offshoring services after IT. In 2010, sixty-three percent of companies engaged in 

innovation offshoring where their main destination, with countries such as India and China 

taking about 33 percent and 27 percent respectively of innovation services (CIBER, 2010). Such 
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trend will likely to continue in the upcoming years as more services provided by emerging 

economies, and as more manufacturing companies continue to search for new ideas (talent) and 

new business models and technologies (innovation).  

Offshoring and outsourcing are two terms that are often confused and used 

interchangeably. While offshoring refers to sending business tasks abroad while coordinating and 

supervising such tasks domestically, outsourcing, on the other hand, refers to the delivery of 

tasks by external providers (domestically or abroad) that have no affiliation with companies that 

receive such tasks (Manning et al., 2008). Offshoring concerns development and production that 

support local operation (home-based) where the benefit may go to global or domestic ends, while 

outsourcing completely supports and benefits the provider. With the continuing trend of 

offshoring and outsourcing, new providers emerged, with coordination with domestic firms, they 

provided an array of technological and R&D services. Providers then, in the longer term, 

expanded and advanced their corporate networks and centers of excellence where the line 

between domestic and foreign slowly faded away (Holm & Pedersen, 1999). Thus, product 

development and R&D services witnessed an internationalization trend where STEM talent 

needed to perform such functions has to be sourced globally (Manning et al., 2008). Sending 

production, design, and R&D services abroad is not a new phenomenon; United States firms 

outsourced low-level tasks for decades. What is unique about the offshoring and outsourcing that 

is occurring recently in third-generation globalization is, as mentioned earlier, the relocation of 

the high-level process and administrative services to emerging economies, and the rapid 

improvement of technology that enabled a variety of delivery forms (Manning et al., 2008). 

As mentioned earlier in this section, companies are no longer driven only by cost savings 

when making offshoring decisions— in fact, there is an acceleration in wage inflation in offshore 
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locations. As more high-end STEM work sourced globally, search for the global talented, skilled 

workers "global race for talent" becomes the norm (Athey, 2008; Bunyaratavej et al., 2007; 

Frymire, 2006; Salzman, 2007; Manning et al., 2008). Even for STEM tasks that are difficult to 

accomplish in an asynchronous matter, U.S. firms react to such limitation by restructuring the 

nature of the work or even sourcing the entire task to offshore locations (Salzman, 2007). 

Offshoring and outsourcing have challenges of their own. The Offshoring Research Network 

(ORN) survey indicated that U.S. companies involved in offshoring activities are concerned 

about wage inflation, maintaining a consistent quality, efficiency in operational functions, 

offshore employee shortages and turnovers, and loss of managerial control (ORN, 2006). 

Further, with the growing tendency to offshore and outsource STEM jobs, an imminent threat to 

high-end STEM tasks is not here yet, simply because U.S. firms are not willing to completely 

abandon their domestic locations due to their investments in facilities and human capital that is 

hard to replicate elsewhere (Salzman, 2007). Also, the United States is still a pioneer in its high-

level knowledge production through its universities that most of the emerging economies lack 

though they may catch up in the not-too-distant future. The recent trend of globalizing U.S. 

universities by founding centers of excellence around the world supports this trend. Notably, in 

the future growth in high-task STEM jobs is more likely to shift to offshore locations based on 

the current globalization pattern. Thus before boosting the supply of STEM-educated workforce 

entrants, policymakers need to validate the current demand for such workers otherwise 

increasing the supply will shrink the demand, stagnate wages, reduce the quality of STEM jobs, 

and eventually discourage future students from pursuing STEM jobs.                          

The previous section reviewed factors in both the supply and the demand side that might 

impact the attrition rate at the end of the STEM pipeline. STEM graduates (potential STEM 
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workers) can as well affect the current issue. It seems that recent graduates' degree type and field 

along with their demographic characteristics can predict their employability in the STEM 

workforce. The following graph (Figure 15) illustrates the current issue faced by recent STEM 

graduates. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 15. Illustration of the flow of recent STEM graduates 

 

 

As seen in Figure 15, recent STEM graduates are faced with obstacles related to both 

their characteristics and the characteristics of the workforce where they are seeking employment. 

Some graduates successfully secure a job in their field or related field, while others struggle to 

find a job. The percentage of recent STEM graduates involuntary working out of their field is 

increasing lately along with the percentage of those who are still looking for a job (unemployed). 

Recently the STEM workforce changed rapidly as a response to globalization forces where both 
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human capital flow and firms structures changed. It is time for U.S. universities to respond to 

globalization demands by preparing their students, especially those who will be most affected by 

these forces (STEM graduates), and equip them with the needed skills in such globalization time.  

Graduates Shortage or Skills Shortage? 

To date, claims regarding STEM deficiencies were directed to primary, secondary and 

postsecondary STEM education as the primary reason for employment shortage (Lowell & 

Salzman, 2007; Lowell et al., 2009; Teitelbaum, 2014). Without much evidence, many "alarmed" 

the general public and policymakers of a "crisis" that may cause the U.S. to lose its global 

position as innovation, R&D, and technological leader (Charette, 2013; Salzman, Kuehn & 

Lowell, 2013; Teitelbaum, 2014). As Salzman (2007) points out, it is important to distinguish 

between employment difficulties U.S. firms are encountering, and an actual workers shortage. So 

far, data along with evidence cited in various policy reports point at STEM workforce as a cause 

of the perceived STEM crisis. Many firm managers assert that the number of domestic applicants 

is sufficient, and they are more than qualified when it comes to their STEM knowledge and 

technical skills. A repeated complaint by firms where about the lack of years of experience of 

new entrants, and dissatisfaction about the need to train them; companies do not want to bear the 

cost of training new STEM-graduates and have been asking higher education to shoulder the cost 

(Salzman, 2007). This highlights the critical importance of experience; in fact the same concern 

was raised in the sixties when the number of technicians working as engineers increased rapidly 

(Freeman, 1971). Non-degree holders can take a few academic courses in an educational 

institution, along with considerable on-the-job training and work experience and then easily 

compete with degree holders. Furthermore, graduates' lack of non-technical skills, "soft-skills," 

seems to surface frequently as a complaint by firms, especially in a world where geographic 
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boundaries are fading due to globalization forces. Thus cross-cultural skills such as 

communication and cultural appreciation are critical.  Several managers stated that technical 

skills are not a distinguishing factor when considering STEM applicants, where abilities to 

communicate ideas in a diverse setting of co-workers along with different social skills are the 

criterion that set applicants apart (Lynn & Salzman, 2006; Salzman & Lynn, 2010).  

Universities must go beyond academic qualifications to teach cross-cultural non-technical 

skills to maintain global competitiveness. Policies must focus on the quality of STEM-graduates 

taking into account technical and non-technical skills together, rather than only the number of 

STEM graduates. The focus needs to shift to the current mismatch between what employers need 

and are looking for, and what STEM graduates have to offer. Policies need to address the 

development of cross-cultural non-technical skills to enhance STEM graduates effectiveness at 

working across organizational borders in both settings; domestic and global. The current 

mismatch originates from the difference between what the demand needs and what the supply 

offers in term of soft skills (Salzman &Lynn, 2010). Unfortunately, the vast majority of STEM 

graduates do not have sufficient levels of soft skills that make them valuable to firms and meet 

the demand of the global workplace (Salzman & Lynn, 2010).  

Currently, U.S. colleges and universities are not responsive to market needs in a time that 

is highly impacted by third-generation globalization forces that causing massive structural shifts 

in firms, innovation patterns, and even offshoring trends. There is little evidence of a deficit in 

K-12 education, STEM postsecondary technical education, and in the STEM market. However, a 

deficit does exist, and it might be a "soft skill" deficit (American College Testing, 2013; Butz et 

al., 2004; Freeman, 2006; Lowell & Salzman, 2007; NSF, 2012; Salzman et al., 2013).     
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Theoretical Framework 

This section reviews theories and models that impact the current discussion on the STEM 

mismatch starting with the Economic Theory of Occupational Choice, which deals with 

economic factors affecting the career decision-making process, and then moving to Sattinger's 

Assignment Theory; a theory that explains how the labor market assigns workers to jobs. Next, is 

a discussion of Freeman's Cobweb Model; a model that deals with the supply and demand cycle. 

The final section of this chapter addresses two theories; the theory of Globalization and how it 

relates to the STEM workforce along with Lent, Brown and Hackett's (1987) Social Cognitive 

Career Theory (SCCT).   

The Economic Theory of Occupational Choice  

In the occupational choice process, decision making differs according to preferences; 

both monetary and nonmonetary. When choosing a career from a set of mutual alternatives, 

individuals tend to take the "all-or-nothing" approach; meaning that individuals tend to limit 

themselves to a single occupation (Freeman, 1971). That could be because the time needed to 

master the skills of the new career is long enough to hinder the process of learning other 

specialties' skills (Freeman, 1971). On the other hand, the attempt to develop a variety of skills 

that would suit different occupations may lead to an inability to compete with specialized 

individuals, or as Ben-Porath (1967) summarizes "jack of all trades and master of none."  When 

making career choice decisions, two sets of factors influence the process: individual's abilities 

and preferences and job characteristics (Ben-Porath, 1967; Freeman, 1971). Within the 

limitations of the two sets (individual abilities and market characteristics), the Economic Theory 

of Occupational Choice posits that individuals choose careers that maximize their "utility 

function" (Freeman, 1971). In other words, when a person chooses an occupation, the decision is 
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based on the expected income to earned throughout a lifetime of working in that career or 

relevant careers. One then compares the "utility of the commodities" purchased with the potential 

career's income and other non-career incomes (e.g. family wealth) to the non-monetary value that 

he/she may get when working in the potential job. Then a career selection is grounded on the one 

that maximizes the total utility (Freeman, 1971). 

The theory suggests that those with a wealthy background (upper-middle-, upper-class) who 

have non-career incomes tend to choose different careers than individuals with different 

socioeconomic backgrounds. Career wages may not lead, or at least are not a major factor in the 

career decision-making process; the wealthy may choose careers with higher non-monetary 

rewards (Freeman, 1971). Thus, socioeconomic backgrounds (along with the availability of 

nonwage income) may become a key factor in STEM graduates' career choice decisions on 

which graduates from affluent backgrounds may consider values other than monetary factors. 

Such graduates may voluntarily opt-out of the STEM field because they are seeking non-

monetary rewards.   

Further, since the theory indicates that individuals make their decisions based on 

expected future income and job stability rather than current income, job expectations and market 

conditions are two interrelated factors. If a job seeker feels uncertain about a work environment; 

e.g. highly susceptible to offshoring and highly competitive such as the STEM workforce, the 

rewards of such environment can be at risk. Thus, job expectations influence current and future 

labor market behavior and the process of career choice decision (Freeman, 1971). Under the 

Economic Theory of Occupational Choice, career decisions are made largely based on 

individuals' perceptions and attributes.  
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The Assignment Theory 

The Assignment Theory developed by Sattinger (1993) asserts that returns to human 

capital investments depend largely on the match between the worker's qualifications (education 

and skills), and the occupation requirements (Sattinger, 1993). Mismatches between the two 

(worker-job) result in weighty costs to workers; they either have skills that go underutilized or 

they are unable to fulfill job requirements (Bender & Heywood, 2009; Sattinger, 1993). These 

mismatches simply waste educational investments which, in the long run, results in frustration 

and job dissatisfaction (Allen & Van der Velden, 2001; Sattinger, 1993; Solomon, Kent, Ochsner 

& Hurwicz, 1981; Tsang, 1987) and low wages (Bender & Heywood, 2009; Sattinger, 1993). It 

also results in high turnovers, absenteeism, and quit rates (Clark & Oswald 1996; Freeman 1978; 

McGoldrick & Robst, 1996; Sattinger, 1993). This is so even after controlling for other 

explanatory variables (Bender & Heywood, 2009). Several arguments came to explain why the 

mismatch between workers and jobs continues to persist. First, when looking for a job, wage 

offers drive job seekers' decisions to accept a job offer or not; in alignment with the Economic 

Theory of Occupational Choice that potential future monetary gains drive career choices. 

However, because the search process is costly, a worker may stop searching and accept a job that 

pays less than what a continued search may generate (Sattinger, 1993). Further, workers may 

remain mismatched because it is still cheaper and less risky to stay in a mismatched career than 

starting a search for new "better" alternatives. Similarly, though job productivity depends on 

workers' qualifications, employers tend to fill jobs as quickly as possible (regardless of finding 

the ideal worker) because it is costly to leave the job vacant for so long. Thus, the worker's 

qualifications and jobs are not perfectly matched; disadvantaging both the employee and the 

employer (Sattinger, 1993).  
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Another argument explaining the persisted mismatch between workers and jobs notes that 

it is a result of government subsidization that generated overeducated individuals with levels of 

educational attainment that exceed what the workforce demands (Freeman, 1976). Overeducated 

individuals suffer a 14 percent earnings penalty (Groot, 1993). The resultant earning penalty 

from the mismatch goes beyond "too much" education to reach individuals working out of their 

fields in jobs not directly related to their degrees. Such IOF workers suffer significantly 

diminished earnings as a result of wages-skills mismatch (Allen & Van der Velden, 2001). It 

seems that mismatched workers disadvantage differently based on the level of skills they have or 

required by occupations. For instance, the STEM field requires high skills that change rapidly 

depending on the discipline, technological changes, globalization, and workforce changes, and 

thus scientists are more likely to be mismatched. The penalty of mismatch grows as career life 

progresses and new more advanced skills emerge (Bender & Heywood, 2009).  

Two kinds of workers' mismatch are identified by Sattinger (1993); short-run mismatch 

and long-run mismatch. The cause of short-run mismatch, as mentioned earlier, is from the 

perceived cost of job searching while the cause of long-run mismatch is globalization forces. The 

consequences of short-run mismatch are lower wages, lower productivity, lower job satisfaction, 

and a decline in cognitive abilities. While the consequences of long-run mismatch are a loss of 

return on human capital investment, loss of workers' investment in education, loss of time spent 

on job training, and inadequate labor force for firms' expansion and growth (Sattinger, 1993). 

Some may argue that changing careers can solve the short-run mismatch, but not all mismatches 

can be resolved by individual workers and there always will be new entrants who will begin their 

careers with mismatches (Sattinger, 1993). Though they are beyond complete elimination, short-

run mismatches can be substantially reduced through policies that ensure efficient matching. An 
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example of an intervention to reduce short-run mismatches is through the labor market's 

intermediary agencies that help to place workers in jobs more efficiently. Another example can 

be through conducting research and analyzing data that help understand how the labor market 

assigns workers to jobs, and how workers' attributes, educational attainments, and skills level 

affect the mismatch susceptibility (Lowell, Salzman, Bernstien, & Henderson, 2009). Recent 

graduates face difficulties transitioning to the labor market and often accept jobs for which they 

are overqualified as a method to secure employment until they locate a stable occupation 

(Quintini & Manfredi, 2009). Exposing recent graduates to apprenticeships during their degree 

minimize the time needed to locate stable employment and ensure smooth and quick 

transitioning to the labor force, thus reducing the short-run mismatch that will eventually reduce 

the long-run mismatch.   

The Cobweb Model  

When choosing a college major, students make their decisions based on the perceived 

value of their degrees, or the expected rewards (wages) in the corresponding professional sectors 

(Diebolt & El Murr, 2004; Freeman, 1975). Further, a certain field of study may receive 

considerable attention and interest from students when a shortage (or perceived shortage) occurs 

in a particular profession. Once the professional sector's shortage is gone, the shortage notion 

continues because of the delay in the perception of the actual market's conditions by young 

college entrants (Freeman, 1975). As a result, a gradual overproduction (surplus) of qualified 

young graduates holding degrees in fields that once experienced a labor shortage starts flooding 

the workforce causing unbalanced supply and demand. Consequences of the unbalanced supply 

and demand can result in stagnant or lower wages and high unemployment and IOF rates. Thus, 

new students start to divert from these fields of study to other sectors causing, in the long run, a 
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new shortage and a continuous cyclical movement that follows job conditions (Diebolt & El 

Murr, 2004; Freeman, 1975). Such cyclical movement is called the Cobweb Model, and it can 

appear in all educational sectors depending on market dynamics and jobs availability (Freeman, 

1975). The cobweb model, an economic model, is based on the time lag between supply and 

demand. For example, the time lag between enrollment and graduation in field X may increase 

the time of job vacancy that requires an X degree, and thus a worker shortage appears on the 

demand side. The shortage results in high demand for workers with the X degree, and when 

strong demand is expected to continue, more students decide to enroll in the X field compared to 

other fields. Therefore, considering the time lag, a surplus of students holding the X degree will 

flood the market resulting in low demand, low wages, and high unemployment rate. Again when 

the weak demand is expected to continue in that particular field, new students will divert from 

the field, resulting in a repeated shortage and high demands for potential employees from the 

field.     

The STEM field has witnessed these cyclical cobweb patterns in different disciplines 

across different periods of time. For example, after a substantial growth in the number of 

engineers in late 1960s and early 1970s engineers experienced a steep decline in starting salaries 

because of low market demand where the number of new students seeking an engineering degree 

fell sharply (Freeman, 1975).  The cobweb model reveals the supply sensitivity to economic 

indicators and it can be a measure of supply-demand equilibrium and a prediction tool to help 

labor market decision-makers and human resources managers to predict future market needs. 

Patterns of cyclical behaviors drawn from cobweb models may be useful in forecasting future 

market trends and provide future postsecondary students with appropriate guidance and market 

information.        
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The Globalization Theory 

The idea of globalization is that many of the current problems cannot be fully understood 

at the national level while separated from the entire globe (Sklair, 1999). Instead, in solving 

contemporary problems, many argue for full consideration of international forces of transnational 

corporations, globalization of beliefs and ideologies, and other global forces as they become so 

powerful (Ohmae, 1990). When analyzing national problems, many globalization theorists assert 

that the nation-state analysis approach is no longer the only critical unit of analysis. In fact, some 

theorists even consider that the nation-state unit of analysis is now even less important compared 

to other global units (Sklair, 1999). Globalization resulted in two unique phenomena; the first is 

where new systems of production and consumption appeared as a consequence of the emergence 

of a globalized economy, and the second is the emergence of a global culture (Sklair, 1999). The 

U.S. for years dominated technological innovations and became the preeminent market economy. 

However, its global dominance started eroding lately and will continue eroding, probably forcing 

the U.S. to accept a position as one of many centers of excellence (Freeman, 2006). This can be 

explained through forces of globalization where the number of foreign science and engineering 

graduates increased as a result of enrollment expansions in their countries, the increasing number 

of international students on U.S. campuses, and the spread of U.S. centers of excellence around 

the world. For example, in 1975 China graduated almost no S&E doctoral students, but in 2003 

Chinese universities awarded 13,000 PhDs where nearly 70 percent were in science and 

engineering (Freeman, 2006).  

The major impacts of globalization can be seen in market changes, as mentioned earlier 

in this chapter, offshoring and outsourcing are two of the most tangible effects. Although the 

U.S. government does not keep a record of the number of jobs or tasks that are off-shored, many 
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business consultants say that the number is not negligible and estimate a 10 to 15 percent of U.S. 

jobs as potentially offshorable (Bardhan & Kroll 2003; Hira & Hira 2005). The fact is research 

and technological developments are moving where the people are; whether they are in the U.S. 

or across the world. Qualified individuals with skills that match the market's needs are in high 

demand, and market leaders are seeking them whether nationally or globally. This theory shed 

light on how the mismatch between worker and career can be influenced, in an indirect way, by 

global forces, thus highlights the importance of monitoring the demand side and preparing 

graduates with skills needed to succeed in such globalized market.             

The Social Cognitive Career Theory    

The Social Cognitive Career Theory (SCCT) devolved by Lent, Brown and Hackett in 

1987 derives from Bandura’s (1986) general social cognitive theory. The SCCT focuses on the 

relationship between self-efficacy, expectations and personal goals, and how the combination of 

these relationships affect individual’s career choice (Lent, Brown, & Hackett, 2002). The SCCT 

notes that individuals' beliefs influence career choices where such beliefs develop through four 

contextual factors that work together as a self-system: personal accomplishments, social 

persuasion, physiological status, and vicarious learning. Individuals express interest in a 

particular occupation if they think they will perform well in it, and if working at that particular 

job will lead to desired outcomes and offer valued compensation (Lent et al., 2002).  The four 

contextual factors work together in the career development process and refine and reinforce 

individuals' career choices and perception of success. The success of the process depends on 

individuals' views and perceptions of their abilities to succeed. Most job applicants have a sense 

of their competence and hold certain beliefs or perception about career outcomes that inherently 

influence the career choice process.   
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In SCCT, career interest is regulated by one’s belief about the ability to compete and 

success (self-efficacy) and by outcome expectation; the consequences of performing a specific 

task, e.g. an occupation (Lent et al., 2002). If a person perceives that a certain occupation will 

not lead to the desired outcome then the person will not seek employment in that job nor that 

he/she will express interest. Similarly, if a person has low confidence in performing a certain 

task, he/she will not perform such a task. Accomplishments depend, in part, on how people 

perceive their abilities to accomplish (Bandura, 1986). Thus, self-efficacy is a co-determinant of 

performance and can impact how effectively people deploy their talents (Lent et al., 2002). 

Competency level depends on both actual capabilities and the sense of personal efficacy, where 

both can explain performance attainments and overall success (Lent et al., 2002). Individuals are 

more likely to face issues (e.g. employment issues) when they either do not have sufficient skills 

needed for a particular task/occupation or when they underestimate their self-efficacy. These 

lead them to give up (unemployed), set lower goals (working out-of-field) or suffer from anxiety 

and disappointment (job dissatisfaction) as a consequence (Lent et al., 2002). In short, SCCT 

posits that abilities, self-efficacy, goals, and outcome expectations influence occupational and 

academic performance, where self-efficacy plays a major role on how individuals exploit their 

skills. Occupational failure may result from the unsuccessful match between personal abilities 

and occupationally required abilities, or when there is substantial underestimation of workers' 

self-efficacy.    
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Figure 16. Conceptual Model: The Mismatch Process 
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As seen in Figure 16 above, the problem of the mismatch is so complicated and involves 

many components that could start as early as major decision making. When students are trying to 

make a decision to enroll in a specific field (e.g., STEM), their decisions are regulated, based on 

the SCCT, by their self-efficacy (Lent, Brown, & Hackett, 2002), and outcome rewards (Diebolt 

& El Murr, 2004; Freeman, 1975). Self-efficacy and outcome expectations are both affected by 

students' personal accomplishments and their previous learning experiences; factors that greatly 

differ by demographic characteristics. After a decision to major in a particular field, these 

decisions are based in part on the perception of workers' shortage (Freeman, 1975).  

Due to the time lag between enrollment and graduation, and the delay in students' 

perception of the actual market's condition, a surplus of qualified graduates floods the workforce. 

The result is an overproduction of young professionals seeking a job in a field that once 

experienced a shortage (Freeman, 1975). Employers only hired graduates with credentials that 

match job requirements in their desired careers (Sattinger, 1993). Graduates' credentials can vary 

by degree field/level, professional experiences, and personality traits. It is equally important to 

mention that the STEM workforce, focus of this study, is constantly changing as a result of 

forces of globalization and internationalization (Freeman, 2006). Workforce changes are 

requiring new skills that go beyond degrees' credentials.  
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CHAPTER III 

METHODOLOGY 

The aim of this study is to examine whether career self-efficacy and expectancy are 

related to the degree-job matching among recent STEM college graduates. To fulfill this aim, 

this chapter will outline the methodology used in this research, including the study's variables 

and dataset, steps that will be taken to prepare the data, and the statistical procedures that will be 

performed to analyze the data. It is important to note first, that in the absence of an accepted 

definition of STEM majors or STEM occupations, it becomes complicated to investigate the 

current claim of STEM shortage/surplus or to analyze trends in the STEM pipeline. The acronym 

STEM stands for the primary disciplines of Science, Technology, Engineering, and Math. 

However there is some disagreement on what precisely falls within the STEM criteria. For 

example, the Standard Occupational Classification (SOC) federal system considers social science 

occupations as STEM while the National Science Foundation (NSF) does not. The Department 

of Commerce includes some STEM-related managerial occupations as STEM occupations, 

unlike many federal agencies. The existence of a too broad classification (or too narrow in some 

cases) and the absence of a commonly agreed upon definition of what comprises a STEM 

occupation or a STEM field further complicates the current issue, thereby making comparison 

among datasets provided by different federal agencies and organizations infeasible.    

In this study, a framework of what STEM fields include will be developed following the 

Classification of Instructional Programs (CIP) codes. Developed by the U.S. Department of 

Education's National Center for Education Statistics (NCES) in 1980, CIP provides classification 

codes of about 60 main fields of study. The Education Longitudinal Study of 2002 (ELS:2002), 

the dataset used in this research, follows CIP classification codes where fifteen of the majors 
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listed by ELS:2002 can be considered to be STEM majors following NSF's STEM CIP 

crosswalk (see Appendix A). These majors are agriculture, natural resources and conservation, 

communications technologies, computer and information sciences, engineering and engineering 

technologies, life/biological and biomedical sciences, mathematics and statistics, physical 

sciences, science technologies, and health professions and related clinical sciences. 

Further, guided by the Census Bureau more majors can be added to the above list: social 

science, psychology, family sciences, architecture and related services, mechanic and repair 

technologies/technicians, human sciences and interdisciplinary studies such as nutrition sciences, 

behavioral sciences, and gerontology. To consider both NSF and Census Bureau classifications, 

this research will approach the STEM classification differences in the following way: first, a 

sample that combines both NSF's and Census Bureau's will be used when analyzing the dataset. 

Second, the academic major classification variable will be recorded into two categories: 1= Hard 

STEM and 0= Soft STEM. In that variable, Hard-STEM fields include Science and Engineering, 

and Soft-STEM fields include other STEM majors. By doing so, all possible STEM majors 

definitions will be taken into account by this study and further allowing for comparison among 

hard and soft STEM. 

 

Research Questions  

As stated earlier in chapter one, the following research questions, which are derived from 

Lent, Brown and Hackett's (1987) Social Cognitive Career Theory (SCCT), guided this study: 

(Demographic Characteristics)  

 

1) How do demographic characteristics of recent STEM graduates influence the match between 

their degree and their current job? 
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(Institutional Characteristics) 

 

2) Controlling for demographic characteristics, how do institutional characteristics (i.e., 

selectivity and control) influence recent STEM graduates' current degree-job match? 

 

(College Attributes) 

3) While controlling for both demographic and institutional characteristics: 

 How do a graduate's major and academic cognitive abilities relate to the match between 

degree and current job? 

 Does participating in hands-on learning opportunities (e.g., internship and onsite 

training) during college years increase the odds of match between STEM graduates' 

degree and current job? 

(Career Self-efficacy and Outcome Expectations) 

4) Controlling for demographic characteristics, institutional characteristics, and college 

attributes, to what extent do individuals' career self-efficacy and expectancy predict the odds of 

match between degree and job for recent STEM graduates? 

 

Research questions were built on the following model: 

 

 

 

 

 

 

 

 

Figure 9. Research Model for Predictors of Degree-Job Match among Recent STEM Graduates 
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Data Source and Sample 

This study will use the National Center for Education Statistics (NCES): the Education 

Longitudinal Study of 2002 (ELS: 2002). It is based on three preceding studies collected by 

NCES; the National Longitudinal Study of the High School Class of 1972 (NLS: 72), High 

School and Beyond (HS&B: 80), and the National Education Longitudinal Study of 1988 

(NELS: 88). ELS: 2002 is the most recent study that follows a national sample of American 

students from secondary education to postsecondary years, and finally to the workforce. ELS: 

2002 allows a deep insight into a decade of American students and their educational experiences 

and outcomes. ELS:2002 base year data (BY 2002) collected while students were in the tenth 

grade, was followed by a first follow-up (F1) two years later, in 2004, when most students were 

in their senior year of high school. In 2006, a second follow-up (F2) collected data from students 

who responded to both the base year and the first follow-up; students at that time were either in 

their second year of college, did not go to college, or joined the workforce (NCES, 2013). The 

third and final follow-up (F3), the focus of this study, was released in 2014 and surveyed 

students during the year of 2012; or six years after the second follow-up. The third follow-up 

(F3) provides information about participants' graduation status, whether they continued with 

graduate studies, their employment histories, their marital status, their families, and their job 

satisfaction if they are employed, and much more valuable information.  

ELS:2002 is the most suitable data source for this study for the following two reasons: 

(1) released in 2012, it is the most up-to-date dataset about college graduates, (2) the depth of 

information given by ELS:2002 dataset is more comprehensive than other datasets that 

specifically follow STEM graduates. For example, the National Science Foundation (NSF) 

National Survey of Recent College Graduates (NSRCG) was released in 2010. Although this is 
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the most current dataset of recent STEM graduates and is useful, many of its main variables are 

also found in the ELS:2002 dataset. The reason for ELS:2002 selection over (NSRCG) is that 

ELS:2002, besides the commonly found variables like demographic attributes, fields of study, 

GPA, and so on, provides many social cognitive skills measurements. For instance, in its third 

follow-up, ELS:2002 includes seven different scales that based on the Social Cognitive Career 

Theory (SCCT); these items were created specifically for its third follow-up. These scales have 

an internal reliability estimate that ranged from 0.79 to 0.93. After data collection and analysis, 

ELS:2002 statisticians decided to include only three of the SCCT scales due to high skewness in 

other scales that can inaccurately influence results. The trait-like scales included in ELS:2002, 

are support, satisfaction, and commitment. These three components are useful for this study and 

are part of the conceptual framework. Given these advantages, this study selected ELS data over 

other data. 

This study will consider individuals who participated in the third follow-up study and 

who graduated with a STEM bachelor's degree as their highest level of education, have joined 

the workforce, and thus have employment. Since this study looks at predictors of the mismatch 

between degree and job, only students with a STEM degree holding a full-time job by June 2012 

will be included in the sample. Since ELS data follows its participants for about three years after 

they earned their bachelor's degree, individuals who continued their graduate studies and were 

pursuing a master or a doctoral degree will not be included in this study. That is because 

measuring attributes to degree-job match is not feasible when many of these individuals are still 

students pursuing a higher degree and when there are no more follow-ups with ELS data to 

measure their future career outcomes. 
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Missing Data 

Missing data will be handled using a multiple imputation method (MI) which is a 

desirable method over other traditional approaches to working with missing values (Acock, 

2005). Other traditional approaches may include listwise deletion (delete cases with mission 

values), or mean substitution (replace missing values with the mean of non-missing values) 

which could produce seriously biased estimates, increase Type II errors, or either reduce or 

increase statistical power; leading to invalid conclusions (Acock, 2005). Multiple imputations, on 

the other hand, allow for an improved parameter estimate and standard errors through 5-10 

imputed data sets and then pooling the results (Acock, 2005).  

Researchers have argued whether to impute/include in the imputation the dependent 

variable (von Hippel, 2007). Many researchers (e.g., Allison, 2002) recommend the inclusion of 

the dependent variable in the MI procedure. Statisticians have argued (e.g., Allison, 2002) that 

when missing values exist in both the dependent and the independent variables, then the 

dependent variable must be included in the MI model. The rationale behind this is that if the 

imputation model does not use the dependent variable, then independent variables will be 

imputed as if they have no relationship to the dependent variable (Allison, 2002; Little, 1992; 

von Hippel, 2007). This will result in a biased estimate; the estimated slope of the dependent 

variable on the independent variable (Little, 1992). Including the dependent variable, even when 

it has missing values, in the imputation process of independent variables provides more 

information and improves the prediction of independent variables' missing values (Little, 1992). 

For these reasons, this study includes and imputes all variables with missing values (dependent 

and independent) in the MI model.  
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Validity and Reliability  

As stated earlier, ELS:2002 is based on three preceding studies (NLS:72, HS&B:80, 

NELS:88) collected by NCES where numerous reports and empirical studies that used these 

datasets as a base for their findings and conclusions. Thus, the components found in these 

datasets are already established in the field.     

Selection of Study Variables 

The issue of degree-job match/mismatch has a theoretical importance as it draws 

attention to how and why individuals match with their careers; a concern of many policymakers 

and labor force specialists (Robst, 2007; Witte & Kalleberg, 1995). Theories and relevant studies 

in the field of career-choice literature are the basis for the selection of variables. For example, the 

Economic Theory of Occupational Choice, discussed in Chapter 2, notes that in the occupational 

choice process, decision making differs by preferences; both monetary and nonmonetary 

(Freeman, 1971). The theory also points out that individuals' career choices vary by 

socioeconomic backgrounds; noting that individuals with high socioeconomic status may accept 

a lower paying job (e.g., humanitarian job) because financial needs do not drive them. Under the 

Economic Theory of Occupational Choice, socioeconomic status may play a role in degree-job 

matching. 

Furthermore, the Human Capital Theory notes that in addition to education, skills gained 

from experiences and training are critical to workers to be more productive and to perform 

complex tasks (Allen & De Wert, 2007). The theory concludes that skilled individuals usually 

end up with the best careers and the highest wages. The same was noted by Lynn and Salzman 

(2006) in their interviews with engineering managers where many managers highlighted the 

importance of technical and non-technical skills when hiring new employees. Salzman (2007) 
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also noted in his research the importance of a STEM graduate's experience since firms do not 

want to burden the cost of training new STEM graduates and have been asking higher education 

to shoulder the cost. For such reasons, learning experiences gained from participations in on-site 

training and internships during college years, for example, is a major factor recognized by many 

scholars, theorists, and workforce specialists to play a role in graduates' career placement. 

Many empirical studies have documented variations in the career choice process based 

on graduates' field of study where occupation-specific fields are found to have a much higher 

degree-job match than fields with general skills (Garcia-Espejo & Ibanez, 2006; Grayson 2004; 

Robst, 2007; Storen & Arnesen, 2006). Such findings warrant the importance of considering the 

graduates' majors when investigating attributes to degree-job match/mismatch. 

There has been a consensus in empirical research that academic performance is almost 

always a strong predictor of desirable outcomes. Many scholars concluded that academic 

performance during college years can affect the degree-job match/mismatch (Boudarbat & 

Chernoff, 2010; Garcia-Espejo & Ibanez, 2006; Grayson 2004; Storen & Arnesen, 2006).  

There are mixed conclusions about the relationship between demographic attributes and 

degree-job matching (Boudarbat & Chernoff, 2010). For instance, some scholars (e.g., Krahn & 

Bowlby, 1999) found that older workers are more likely to match with their careers than younger 

workers; a conclusion that contradicts other scholars' findings (e.g., Robst, 2007; Witte & 

Kalleberg, 1995; Wolbers, 2003). As for gender, some scholars (e.g., Robst, 2007; Wolbers, 

2003) found that being female increases the likelihood of the degree-job match. On the other 

hand, other researchers (e.g., Krahn & Bowlby, 1999) found that the males have higher chances 

of matching with their careers, and some scholars found no significant difference by gender (e.g., 

Boudarbat & Chernoff, 2010; Garcia-Espejo & Ibanez, 2006; Storen & Arnesen, 2006). 
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Moreover, many researchers consider racial backgrounds to be a key to degree-job 

match/mismatch (Boudarbat & Chernoff, 2010). White and Asian workers are less likely than 

African Americans and Hispanics to match with their careers (Robst, 2007). This study includes 

demographic backgrounds as an independent variable in the analysis. 

Institutional characteristics are aspects that should be involved since many empirical 

studies found that postsecondary institution characteristics such as sector, control, and selectivity 

can be important predictors in explaining variations in student educational outcomes (Astin, 

1993; Bandura, 1986; Lent et al., 2002; Tinto, 1975, 1987).  

Career self-efficacy and outcome expectations refer to students' perceived confidence in 

their abilities to plan and execute future careers that they perceive as having desirable and 

rewarding outcomes (Lent et al., 2002; Peterson, 1993). Many scholars note the significant 

relationship between career goal identification and retention in the field (Astin, 1975; Beal & 

Noel, 1980; Lent et al., 2002; Sprandel, 1986). Further, there is evidence to support a 

relationship between career self-efficacy expectations and persistence (Brown, Lent, & Larkin, 

1989; Lent, Larkin, & Brown, 1989; Lent et al., 2002). Thus, career planning and the perceived 

abilities to execute such plans (career self-efficacy) might be a critical factor in explaining 

degree-job match. In the present study, such component will be measured by comparing 

respondents' expected age-30 occupation as reported in the third follow-up (after postsecondary 

graduation) to their expected age-30 occupation as reported in the first follow-up (when 

participants were high school seniors). Such variable allows for an insight into individuals' career 

self-efficacy and outcome expectations. Participants will expect to work in certain jobs if they 

perceive these jobs as having satisfying results and if they are confident in their abilities to 

pursue such careers. Participants whose career self-efficacy and outcome expectation remained 
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the same (or even increased), before and after college years, meaning they are still expecting the 

same age-30 occupations, are the ones with high career self-efficacy and outcome expectations 

because their perceived abilities persisted throughout the college years. In contrast, individuals 

with lower expected age-30 occupation as compared to their expectations during high school are 

hypothesized to have less confidence in their abilities to execute their career goals, and thereby 

possessing less career self-efficacy and outcome expectation.            

   

Study Variables 

Variables in this study include an outcome variable, and a set of independent variables 

grouped into four categories: individual's characteristics, institutional characteristics, college 

learning experiences, and career self-efficacy and outcome expectations. Details about variables 

description, labels, and recording are in Appendices B and C.  

 Outcome Variable 

The outcome variable in this study is the primary measurement of the mismatch, and it 

comes from participants' response to one of the third follow-up (F3) questions, asked in 2012. 

The question is "How closely related is your current job to the major or field of study you had 

when you were last enrolled in college?" Responses vary between "1=closely related," 

"2=somewhat related," or "3=not related." Matched individuals will probably answer "closely 

related," and somewhat matched are more likely to choose "somewhat related," where 

mismatched individuals will probably answer "not related." Thus, the outcome variable will be 

coded as a nominal variable where "closely related" is coded as 1=closely matched, "somewhat 

related" is coded as 2= somewhat-matched, and "not related" is coded as 3=mismatched; with 

"closely matched" as the reference category.  
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Responses to the outcome variable chosen in this research might be considered by some 

to be subjective where alternatives such as comparing the degree field with the current 

occupation field might be a better approach to measuring degree-job matching. It is, however, 

important to note that in this research the degree-job matching is considered to be the match 

between, not only degree field but also degree knowledge and skills, to career. With the current 

classification issue within STEM fields and occupations, there might be some STEM graduates 

who are working in careers not classified as STEM. These individuals, such as patent lawyers 

and medical consultants, use their degree knowledge and skills on a daily basis. The issue arises 

from formal occupational classifications (Lowell et al., 2009). Further, many universities are 

now providing students with a broad range of skills that go beyond their degrees' fields to be able 

to compete in a competitive job market (Robst, 2006). For these reasons, it is not viable to 

simply compare degree field to occupation field and ignore whether employees apply their 

academic knowledge and skills or not.  Consequences of the mismatch result mainly from 

feelings of loss in return on educational investments (Sattinger, 1993, 2012); when employees 

use their academic knowledge and skills they acquired from a college education, it is unlikely 

that a sense of loss in return on investment in education will occur. Thus, individuals' 

assessments, while it might be subjective, could be a valid measure of the degree-job matching.    

Independent Variables 

Independent variables are grouped into set of blocks under four major constructs. 

Participants' Characteristics:  

 Gender: A categorical variable indicating participant's gender. In this research, the variable 

will be recoded into a dichotomous variable with Male as the reference group. 



THE DEGREE-JOB MATCH AMONG STEM GRADUATES                                                                               73 
 

 

 Race: A categorical variable indicating participant's race/ethnicity. The variable will be 

recorded into a set of dummy variables, in which White will be considered as the reference 

group. 

 Socioeconomic status composite: A continuous variable which is a composite of parental 

education and income. 

 Cognitive abilities: A continuous variable that is the transcript reported cumulative GPA for 

the last degree obtained.  

 Field of study: A categorical variable indicating whether participant's field of study is within 

the hard or soft STEM majors. The variable will be coded as a dummy variable in which hard 

STEM is considered as the reference group.  

Institutional Characteristics:  

 Institution control: A categorical variable indicating the control of the respondent's attended 

postsecondary institution. The variable will be recorded as a dichotomous variable with 

public institutions as a reference group. 

 Institution selectivity: A categorical variable indicating the selectivity of the respondent's 

attended postsecondary institution (based on 2005 Carnegie Classification System). The 

variable will be recorded into a set of dummy variables, in which Very Selective will be 

considered as the reference group. Appendix B further clarifies definitions of each selectivity 

category. 

College Experiences: 

 Participation in hands-on learning opportunity: A categorical variable indicating if a graduate 

participated in an internship, field experience, student teaching, or clinical assignment during 

college.   
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Career Self-efficacy and Outcome Expectation: 

 Career self-efficacy and outcome expectation: A categorical variable indicating whether the 

respondent's expected age-30 occupation as reported in the third follow-up is higher than, 

equal to, or less than the respondent's expected age-30 occupation as reported in the first 

follow-up.  

Data Analysis 

Due to the categorical nature of the outcome variable, a hierarchical multinomial logistic 

regression analysis will be used in this research along with descriptive statistics to analyze the 

dataset. Built upon the SCCT, independent variables can cluster in four categories resulting in 

four blocks of predictors; individuals' characteristics, institutional characteristics, college 

experiences, and career self-efficacy and outcome expectation. Each block of predictors will be 

entered in the logistic model where, based on the SCCT, individuals' backgrounds will be 

entered first followed by institutional characteristics, then by college experiences and lastly 

career self-efficacy and outcome expectation.   

 

 

Why Multinomial Logistic Regression? 

Hierarchical multinomial logistic regression analysis is the appropriate type of inferential 

analysis for this study considering the nature of the dependent variable (three outcomes). When 

testing institutional characteristics, Hierarchical Linear Modeling (HLM) might be more 

advantageous over Multinomial Logistic Regression (MLR) since MLR does not allow 

institutional characteristics to vary within institutions (Astin & Denson, 2009). When using 

MLR, institutional characteristics' degrees of freedom are based on the number of students when 

it should be based on the number of institutions (Astin & Denson, 2009). Such case results in a 
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tendency to commit more Type I errors (rejecting the null hypothesis when it is true) when 

measuring the effects of institutional characteristics (Astin & Denson, 2009). The aim of the 

study is not to measure how individual predictors vary across institutional units (cross-level 

effects) which in that case HLM may not offer any other advantages over MLR (Astin & 

Denson, 2009). The study considered the issue of clustering in the data, and HLM software will 

be used to calculate the interclass correlation coefficient (ICC) for the data. This allows for the 

calculation of the between group variance that can be explained by differences in level two 

predictors; in this study, postsecondary institutions' variables. Performing this step; testing the 

null model and calculating the ICC, indicates whether multilevel modeling is warranted (Lee, 

2000). Before doing so, the sample under consideration needs to meet certain assumption; HLM 

is not only affected by the size of the student sample but also the size of the organizations at 

level-two. Too few institutions and/or too few students within each institution may not be 

sufficient to run HLM (Snijders & Bosker, 1999). Though there is no general rule on the number 

of institutions and/or the number of students in each institution needed to perform HLM, at least 

50 institutions along with 20 students in each institution is essential.  

Education Longitudinal Study (ELS) dataset has students who attended 2,470 different 

postsecondary institutions (Núñez & Bowers, 2011). In the current sample, students have 

attended 970 different institutions. Although the number of institutions is more than adequate for 

HLM, the number of students in each institution does not make HLM analysis feasible. Ninety-

three percent of institutions in the sample have only one student within them which is reasonable 

considering the criteria used to narrow the sample size and target the particular group. Since 

level-two is critical in HLM analysis, excluding institutions with only one student is a must 

because variances cannot be calculated for institutions with only one student (Snijders & Bosker, 
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1999). Such action will result in excluding 93% of institutions in the sample which will 

significantly reduce the sample size, making HLM less favorable compared to other statistical 

approaches. On a final remark, logistic regression analysis is proven to be a very robust method 

with a good fit even if it does not satisfy all of its assumptions, such as homoscedasticity and 

linearity (Bohrnstedt & Carter, 1971; Hanushek & Jackson, 1977). 

After excluding the possibility of using HLM due to lack of appropriate data and since 

nesting in the data exists, to exercise caution and to avoid committing Type I error many 

researchers recommend assigning a smaller p-value to determine the statistical significance of 

institutional variables. A general approach used by many is a stringent p-value of p < .001 (e.g., 

Austin & Denson 2009; Thomas & Heck, 2001; Park, 2009).  

 

The multinomial logistic regression model is based on the following equation: 

 

 

log  
𝑃𝑟  (𝑌=𝑗 )

𝑃𝑟 ( 𝑌=𝑗′ )
 = 𝛼 + 𝛽1X1+  𝛽2 X2 +...+  𝛽k Xk                          Equation 1 

 

 

where j is the identified outcome (somewhat-matched/mismatched) 

and j' is the reference outcome (matched) 

 

 

In this research, the model of degree-job matching between three outcomes can therefore be 

represented using two logit models as follow: 
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 log 
𝑃𝑟  (𝑌=𝑢𝑛𝑑𝑒𝑟𝑚𝑎𝑡𝑐ℎ𝑒𝑑 )

𝑃𝑟 ( 𝑌=𝑚𝑎𝑡𝑐ℎ𝑒𝑑)
 = 𝛼 +𝛽1X1+  𝛽2 X2 +...+  𝛽k Xk 

Equation 2 

log 
𝑃𝑟  (𝑌=𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑑 )

𝑃𝑟 ( 𝑌=𝑚𝑎𝑡𝑐ℎ𝑒𝑑)
 = 𝛼 +𝛽1X1+  𝛽2 X2 +...+  𝛽k Xk 

 

As shown above in Equation 2, to model which of the three degree-job outcomes is likely 

to be influenced by explanatory variables, two logit models are computed; one comparing 

outcome (somewhat-matched) with the reference category (matched) and one comparing 

outcome (mismatched) with the reference category (matched). The two logit models provide two 

estimates for the effect that each explanatory variable (Xk) has on the response (e.g., the effect of 

Xgender on the degree-job outcome between somewhat-matched and matched, and the effect of 

Xgender on the degree-job outcome between mismatched and matched) and also for the model as a 

whole (e.g., the effect of Xgender across all degree-job outcomes in the sample) (Moutinho & 

Hutcheson, 2007). 

Descriptive statistics (using both frequencies and cross-tabulations) allow for data 

exploration and comparison of participants' characteristics, and against the outcome variable, 

while inferential statistics (e.g., multinomial logistic regression) allow for findings generalization 

to the general population (Gay, Mills, & Airasian, 2009).  Before proceeding with data analysis, 

a few steps will be taken to prepare the dataset. First, as mentioned earlier, multiple imputations 

will be used to handle missing values. Second, the sample will be weighed using the adjusted 

weight from the appropriate weight panel (F3QWT) which accommodates sample members who 

participated in the 2012 third follow-up questionnaire; allowing for the generalization of results 

to the cohort of the study; 2002 high school sophomores. Third, the Variance Inflation Factor 

(VIF) will be tested for independent variables in the multinomial logistic model as a 
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measurement of multicollinearity within the model. If predictors have VIF values that are less 

than 10, then none of the predictors are highly correlated (Marquardt, 1970). Fourth, to examine 

the fit of the multinomial logistic regression models against the outcome variable, Hosmer–

Lemeshow (H–L) goodness-of-fit test will be used where insignificant results (p > .05) are an 

indication that the models are well fit to the data (Peng, So, Stage, & St. John, 2002). Using 

block sequential modeling, participants' characteristics will be entered first in the hierarchical 

multinomial logistic regression model, followed then, in the second block, by institutional 

characteristics, and in the third block by college attributes, and finally, in the fourth block, by 

career self-efficacy and expectancy measurement.  

 

Why Hierarchical Regression as the Data Analysis Strategy? 

The desire to examine specific theoretically-based hypotheses drives the decision to use 

sequential block entry of variables (hierarchical regression). The aim was to test if the 

hypnotized Degree-Job Match Model proposed by the study, based on the SCCT, can be used as 

a model to predict degree-job match among recent STEM graduates. Simultaneous regression is 

used to maximize prediction and determine the "optimal" set of predictors while hierarchical 

regression is used to examine theory-based hypotheses (Aron, 2012; Cohen, 2008; Petrocelli, 

2003).  

Also, hierarchical regression allows for testing the predictability associated with 

independent variables that were entered later in the analysis over and beyond that contributed by 

predictors entered earlier in the model (Petrocelli, 2003). In doing so, the relative importance of 

predictors entered later in the analysis can be judged based on how much prediction of criterion 

they add over and above predictions accounted for by other predictors (Petrocelli, 2003). 

Considering that some predictors (e.g., demographic) were proven by previous empirical 
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research to influence career outcomes, this study wanted to test other predictors over and above 

that of preexisting predictors. In such a case, hierarchical regression analysis would be 

appropriate provided that preexisting variables be entered into the analysis first (J. Cohen, P. 

Cohen, West, & Aiken, 2013; Petrocelli, 2003). For instance, the interest of this study is to 

examine the effect of career self-efficacy and expectancy as a predictor independent of the 

effects of other preexisting predictors (e.g., demographic and institutional variables). The study 

used logical reasoning driven by theoretical grounding in specifying the order of block entry of 

variables. This is a strongly recommended approach since results may depend largely on the 

entry order of predictors into the model (J. Cohen et al., 2013; Petrocelli, 2003).       

 

Variables Coding Scheme 

Table 3 presents the variable's coding scheme used in the hierarchical multinomial 

logistic regression model. 

 

 

Variance Inflation Factor 

The study tested the Variance Inflation Factor (VIF) for all independent variables as a 

measurement of multicollinearity within the model. Table 4 presents the VIF values for all 

predictors in the model. None of the study predictors have a VIF value that is greater than 10; the 

range of VIF values is 1.02 to 1.61. This range is an indication that predictors are not highly 

correlated, and thus, a multicollinearity issue does not exist for the model (Marquardt, 1970). 
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Table 3 

 

Variable Coding Scheme 

Variables Coding Scheme 

Individuals' Characteristics 

Gender 

Race/ethnicity 

African American  

Hispanic 

White a  

Asian 

Other Races 

Socioeconomic Status (Quartile) 

Low SES Quartile 

Mid SES Quartile 

High SES Quartile a 

STEM Cognitive Abilities 

GPA for all known STEM courses † 

STEM Major 

Institutional Characteristics 

Institution Control 

Institution Selectivity 

High Selectivity a 

Moderate Selectivity 

Inclusive Selectivity 

Selectivity not Specified 

 

1= Female; 0= Male 

 

1= African American; 0= Other 

1= Hispanic; 0= Other 

1= White; 0= Other  

1= Asian; 0= Other 

1= Other Races; 0= Race Specified 

 

1= Low SES; 0= Other  

1= Mid SES; 0= Other  

1= High SES; 0= Other  

 

Continues Scale 

1= Hard STEM; 0= Soft STEM 

 

1= Public; 0= Private 

 

1= High Selectivity; 0= Other 

1= Moderate Selectivity; 0= Other 

1= Inclusive Selectivity; 0= Other 

1= Selectivity not Specified; 0= Other 

Learning Experiences 

Participation in hands-on learning opportunities 

(e.g., internship and onsite training) during college years 

Career Self-efficacy and Outcome Expectations   

 

1= Yes; 0= No 

 

Continues Scale 

Outcome Variable 

Relationship between current job and field of study 

Matched 

Somewhat-Matched 

Mismatched 

 

 

1= Closely Related; 0= Other 

1= Somehow Related; 0= Other 

1= Not Related; 0= Other 
  a Reference Group 

† Using NSF definition of Science, Engineering, and related fields 

 

Limitations 

Several limitations should be noted when considering results from this study. First, every 

effort was made to ensure proper classification of STEM majors. However, in the absence of an 

agreed upon definition of what STEM includes, some may criticize the classification procedure 

followed in this research. Some majors considered in this research as STEM might be regarded 
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by others as non-STEM. Likewise, there might be some majors that are not included in this 

research as STEM when many others consider them as STEM. Second, the dataset used in this 

study (ELS:2002) follows participants for about three to four years after their graduation (or six 

years after the second follow-up). Thus, an analysis of participants' long-run career outcomes 

was not feasible in this study limiting findings to only short-run career outcomes. Third, 

employment history was not considered in this research, nor individuals employed previously but 

are currently looking for a job. However, it would be interesting to see if somewhat-

match/mismatch status is influenced by the length of past unemployment or by the number of 

times individuals were unemployed. Fourth, it is important to note that some STEM graduates 

may choose to work outside their field of study simply because they lost interest in their previous 

field, or have goals that can only be fulfilled by working outside their field of highest degree. 

This study did not include this factor due to data limitation. Fifth, the model in this study, used 

one component to measure career self-efficacy and outcome expectation as a predictor of degree-

job match, integrating more than one component to assess career self-efficacy and outcome 

expectation was not feasible due to data limitations. 

An additional consideration is the potential influence of pre-college attributes (e.g., 

interest in STEM, high school math and science preparation) on the degree-job matching 

phenomenon. Empirical studies on major choice and college retention have noted the importance 

of pre-college variables in influencing graduation and career placement (Clotfelter, 2010; Trusty, 

2002). Pre-college attributes were not integrated in this study partly because the primary 

intention of this study was to examine the predictability of college factors for degree-job 

matching (e.g., collegiate experience, career self-efficacy, institutional characteristics).  



THE DEGREE-JOB MATCH AMONG STEM GRADUATES                                                                               82 
 

 

Finally, this study used ELS:2002 dataset where results are reflective of the 2002 high 

school sophomore cohorts. Other national datasets, such as Baccalaureate and Beyond (B&B), 

may provide a more comprehensive representation of U.S. college graduates. B&B follows 

several cohorts of college students over time focusing on bachelor’s degree graduates' education, 

undergraduate experiences, and employment outcomes.   

 
Table 4 

 

Variance Inflation Factor (VIF) for Independent Variables (N=1864). 

Predictor Variables Variance Inflation Factor 

Individuals' Characteristics 

Gender 

African American  

Hispanic 

Asian 

Other Races 

Low SES Quartile 

Mid SES Quartile 

GPA a 

Institutional Characteristics 

Institution Control 

High Selectivity 

Moderate Selectivity 

Inclusive Selectivity 

 

1.06 

1.12 

1.09 

1.06 

1.03 

1.29 

1.24 

1.12 

 

1.07 

1.61 

1.42 

1.19 

Learning Experiences 

Participation in hands-on learning opportunities 

during college years 

Career Self-efficacy and Outcome Expectations b  

 

1.05 

 

1.02 
a GPA for all known STEM courses (using NSF definition of science, engineering, and related fields). 
b A scale that measures whether the prestige score associated with the respondent's expected age-30 

occupation as reported in the third follow-up is higher than, equal to, or less than the prestige score 

associated with the respondent's expected age-30 occupation as reported in the first follow-up 

 

Summary  

In this chapter, a description of the dataset used in this study (ELS:2002) along with 

research variables were presented. In addition, the methodology that will be used to handle the 

dataset was outlined along with the research limitations. The following two chapters will present 

the results and discussion of findings along with implications and suggestions for policyholders 

and future research.  
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CHAPTER IV 

Results 

 

This research focuses on examining whether career self-efficacy and expectancy are 

related to the degree-job matching among recent STEM college graduates. Possible attributes 

include participants' background characteristics (such as race/ethnicity, gender, and 

socioeconomic status), academic performance, institutional characteristics, college attributes, and 

participants' career self-efficacy and career outcome expectation. The study limited the sample 

subjects to bachelor’s degree recipients in a STEM field or related fields (based on NSF 

classification) who, at the time of the survey (June 2012), held a full-time job. This limit yielded 

a sample size of 1,864 participants. Handling missing values along with model fit tests were 

performed first to prepare the dataset. Descriptive and inferential statistics were then performed 

to look at relationships between predictors and the outcome variable (measured by degree-job 

match). The study presents the results along with related tables.  

Missing Values  

Multiple Imputation (MI) was used to handle missing values as it is the most 

recommended method by statisticians (Acock, 2005). No missing values were found for the 

demographic or the institutional variables. On the other hand, the following variables have 

missing values; GPA and Major have less than 1% missing values, Experience (6.5%), Self-

Efficacy (41%), and the dependent variable has less than 7% missing values. One may argue that 

41% of missing value found in the Self-Efficacy variable is not acceptable to perform statistical 

analysis. However, the existing line of research does not note a specific cutoff regarding an 

acceptable percentage of missing data to perform statistical inferences (Dong & Peng, 2013). 

Researchers do not focus on the amount of missing data, but rather on the missing data 
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mechanisms and patterns (Tabachnick & Fidell, 2012). Three missing data mechanisms can 

occur where one of them is MCAR or missing completely at random where missing values do 

not depend on the values of the dataset variables (Rubin, 1876). When missing values are 

MCAR, the response mechanism is ignorable and concerns over having biased estimates of 

parameters or increased standard errors should no longer exist (Pigott, 2001). Little's MCAR test 

was performed to test whether the 41% missing values of the Self-Efficacy variable are MCAR. 

The result was found to be not statistically significant (p = .304) indicating that the data is 

MCAR in which there is no pattern exists for the missing values, and thus allows for MI 

(Little,1988).  

Missing values, including those found in the dependent variable, were imputed using MI 

as this technique found to be desirable by multiple researchers (e.g., Allison, 2002; Little, 1992). 

The study created five imputed datasets with interpretation of the pooled data. No consensus in 

empirical research on whether to include the dependent variable's (DV) imputed values in the 

analysis. Von Hippel (2007) described an accepted practice known as Multiple Imputation then 

Deletion (MID) where MI includes missing values of DV, but delete these before analysis. This 

is, as von Hippel (2007) notes, because adding imputed DV values to the analysis add 

"unnecessary noise," and inflate the standard error (von Hippel, 2007). That might be true when 

(1) there are a small number of imputed datasets, less than 5, or when (2) DV has a high 

percentage of missing values; over 20% (Sullivan, Salter, Ryan, & Lee, 2015; Young & Johnson, 

2010). When none of the two conditions exist, MID may not offer any more advantage than 

standard MI (Young & Johnson, 2010). Since the DV in this study has less than 7% missing 

values and since five imputations generated, the standard method of MI was chosen over MID; 

meaning retention of DV imputed values in the analysis. With that said, a sensitivity test was 
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performed to compare outcomes obtained from standard MI and MID. The test showed no 

significant difference between the two methods, validating the decision to use standard MI and 

retain 7% of the data.     

 

Goodness of Fit Test 

When testing the fit of a multinomial logistic regression model, many researchers 

recommend treating the model as if it was a series of binary logistic regression models; where 

each outcome is tested against the reference outcome, thus testing the fit of each model 

separately (Begg & Gray, 1984; Hosmer & Lemeshow, 2000; Goeman & Le Cessie, 2006; 

Pigeon & Heyse; 1999). In doing so, two binary logistic regression models were created 

(matched and somewhat-matched) to test the goodness of fit of each model against the reference 

outcome (mismatched). Using Hosmer-Lemeshow goodness of fit test, both models proved to be 

insignificant (p ˃ .05) indicating that both models fit the data very well (Hosmer & Lemeshow, 

2000) as shown in Table 5.  

Although R2 values are a desired method of testing a model power or goodness of fit, this 

method is not recommended for use with logistic regression models (Hosmer & Lemeshow, 

2000). R2 measures compare the predicted values from the fitted model to the null model (the no 

data model) when the comparison should be between the observed and the predicted values from 

the fitted model (Hosmer & Lemeshow, 2000). Thus, R2 in logistic regression models is not an 

adequate method of the goodness of fit or power. With that said, this study tested models using 

the R2 test where values seemed to be low (ranging between 2.5% to 15%). However, low R2 

values are the norm in a logistic regression where the test might be helpful in model building, but 

not model assessing (Hosmer & Lemeshow, 2000). Thus, this study used R2 values only to test 



THE DEGREE-JOB MATCH AMONG STEM GRADUATES                                                                               86 
 

 

variables' contribution to the model, but not the goodness of fit since the Hosmer-Lemeshow test 

served that purpose.  

 

Table 5 

 

Hosmer-Lemeshow Goodness-of-Fit Test for MLR Models 

MLR Outcome Model 1 Model 2 Model 3 Model 4 

Matched  0.974 0.243 0.093 0.138 

Somewhat-Matched 0.862 0.774 0.491 0.247 

Note: As shown, all models are found to be insignificant (p ˃ .05) indicating a good fit 

 

 

Descriptive Statistics  

Table 6 summarizes the descriptive statistics of the dependent variable, where Table 7 

presents the descriptive statistics of the categorical independent variables, and Table 8 shows 

descriptive statistics of the continuous independent variables including the weighted mean, 

standard deviation, and range. 

As noted in Table 6, more than half of the study sample (53%) stated that their field of 

study is closely related (matched) to their current job while only 24% noted that their degree is 

somewhat related to their current job (somewhat-matched). On the other hand, 23% of the 

sample reported that their current job is unrelated to their field of study (mismatched).  

 

Table 6 

 

Descriptive Statistics of the Dependent Variable (N=1864). 

Variable Weighted Percentages (%) 

Matched 53 

Somewhat-Matched 24 

Mismatched 23 

 

Moreover, as shown in Table 7, female participants represent more than half (57%) the 

STEM bachelor’s degree recipients in the sample. However, male participants have a 

significantly higher representation in hard STEM fields; 91% in Engineering and 84% in 
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Computer Science for example. Female participants are more represented among soft STEM 

majors; for example, they represent 83% of those majored in Psychology.  

 

Table 7 

 
Descriptive Statistics of Categorical Variables (N=1864). 

Variables Weighted Percentages (%) 

Individuals' Characteristics 

Gender 

Male 

Female 

Race/Ethnicity 

White 

African American  

Hispanic 

Asian 

Other Races 

Socioeconomic Status 

High SES Quartile 

Mid SES Quartile 

Low SES Quartile 

Major 

Hard STEM 

Soft STEM 

Institutional Characteristics 

Institution Control 

Public 

Private 

Selectivity 

High Selectivity 

Moderate Selectivity 

Inclusive Selectivity 

Selectivity not Classified  

 

 

43 

57 

 

64 

10 

10 

11 

5 

 

41 

45 

14 

 

61 

39 

 

 

70 

30 

 

34 

27 

8 

31 

Career-Related Experiences during College 

Participation in hands-on learning opportunities 

Yes 

No 

 

 

63 

37 

 

The sample comprised 64% White participants, 10% African Americans, 10% Hispanics, 

11% Asians, and 5% other minority groups. Further, the socioeconomic status of participants 

seems to be equally distributed between high and mid socioeconomic quartiles, 41% and 45% 

respectively, whereas participants from the low socioeconomic quartile only represent 14% of 
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the total sample. Further, 61% of participants have their degree in a hard STEM major compared 

to 39% in a soft STEM major. Seventy percent of the sample received their education at a public 

institution compared with 30% who graduated from private institutions. 

Also, it is worth noting that 34% of the graduates in the sample received their degree 

from highly selective institutions compared with 27% who received it from moderately selective 

institutions and 8% who received from institutions with inclusive selectivity. As shown in Table 

7, 63% of the sample stated that they had participated in hands-on learning opportunities (e.g., 

internship and field experience) during college years.  

Regarding descriptive statistics of continuous independent variables; Table 8 shows that 

the Grade Point Average (GPA) for all participants in the sample has a mean value of 3.03 with a 

standard deviation of 0.552. The career self-efficacy measurement in the total sample has a mean 

value of 2.12 with a standard deviation of 0.648.  

 

Table 8 

 
Descriptive Statistics of Continuous Variables (N=1864). 

Outcome Variables Weighted 

Mean 

SD Min Max 

Matched GPA for all known STEM courses 3.10 .504 1.25 4.00 

Career Self-efficacy b  2.06 .612 1 3 

Somewhat -Matched GPA for all known STEM courses 3.00 .583 .75 4.00 

Career Self-efficacy b  2.15 .661 1 3 

Mismatched GPA for all known STEM courses 2.87 .564 .50 4.00 

Career Self-efficacy b  2.23 .736 1 3 

Total Sample GPA for all known STEM courses 3.03 .552 .50 4.00 

Career Self-efficacy b  2.12 .648 1 3 

b A descending scale that measures whether the prestige score associated with the respondent's 

expected age-30 occupation as reported in the third follow-up is higher than, equal to, or less than 

the prestige score associated with the respondent's expected age-30 occupation as reported in the first 

follow-up. 
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Table 8 also presents descriptive statistics of continuous variables by each category of the 

dependent variable. GPA within the Matched outcome has a mean value of 3.10 and a standard 

deviation of 0.504 while career self-efficacy within the same model has a mean value of 2.06 

with a standard deviation of 0.612. In the Somewhat-Matched outcome, GPA has a mean value 

of 3.00 with a standard deviation of 0.583, whereas career self-efficacy has a mean value of 2.15 

with a standard deviation of 0.661. In the third outcome, Mismatch, GPA has a mean value of 

2.87 and a standard deviation of 0.564 while career self-efficacy has a mean value of 2.12 and a 

standard deviation of 0.648.      

One-Way ANOVA 

The study performed a one-way analysis of variance (ANOVA) to test if there is a 

statistically significant difference between the groups' means presented in Table 8. As shown in 

Table 9, there was a statistically significant difference in GPA between groups as determined by 

one-way ANOVA (F(2,1725) = 24.559, p = .000). To determine which of the specific groups 

differed, the study applied a Tukey posthoc test. It revealed that GPA was significantly higher 

for the matched participants (3.10 ± .50, p = .004) compared to somewhat-matched and 

mismatched, and for the somewhat-matched (3.00 ± .58, p = .004) compared to the mismatched 

(2.87 ± .56, p = .004), see Table 10. However, as shown in Table 9, there were no significant 

differences between the career self-efficacy groups as determined by one-way ANOVA 

(F(2,1019) = 2.780, p = .063).  

Table 9 

One-Way Analysis of Variance of Degree-Job Match by Continues Independent Variables 

Variable  SS df MS F Sig. 

GPA Between Groups 14.238 2 7.119 24.559 .000 

Within Groups 500.024 1725 .290   

Total 514.263 1727    

Self-Efficacy Between Groups 2.339 2 1.170 2.780 .063 

Within Groups 428.740 1019 .421   

Total 431.079 1021    
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Table 10 

 

Tukey Post-Hoc for the Depended Variable GPA 

Match Level Mean Difference Std. Error Sig. 

Match Somewhat-Match .10320 .03189 .004 

Mismatch .22292 .03225 .000 

Somewhat-Match Match -.10320 .03189 .004 

Mismatch .11972 .03770 .004 

Mismatch Match -.22292 .03225 .000 

Somewhat-Match -.11972 .03770 .004 

 

 

 

Cross-Tabulation 

The cross-tabulation analysis compared the characteristics of the sample participants by 

the outcome variable. Table 11 indicates differences among participants by predictors. First, 

female participants are more represented (60%) among matched individuals whereas male 

participants are more represented in the somewhat-matched group (48%). Further, differences 

are also found among different races; for example, White participants are more represented 

(71%) among matched groups while other minority groups, such as African-Americans, are more 

represented in the somewhat-matched and mismatched groups compared to the matched group 

(see Table 11 for further racial differences).  

Further, participants from low socioeconomic quartile have more representation in the 

mismatched group than the matched or the somewhat-matched whereas those from the middle 

socioeconomic quartile have a slightly higher representation in the somewhat-match and 

mismatch groups than the match. Graduates with a degree in hard STEM are more represented in 

all degree-job match outcomes, with higher representation (71%) in the somewhat-matched 

group. The breakdown by institutional type in the total sample (70% public, 30% private) seems 

to remain stable across all degree-job match outcomes. Also, institutions with "no selectivity 

specified" have more graduates (41%) working in jobs unrelated to their fields of study; 
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compared to the representation in the total sample. It is also worth noting that 70% of matched 

individuals stated that they have participated in hands-on learning opportunities during college 

years compared with 55% of somewhat-matched and 50% of mismatched participants, 

suggesting the importance of hands-on activities during college years and prior experiences.      

 

 

Table 11 

 
Cross-Tabulation Statistics by Participants' Characteristics and the Outcome Variable 

 

Variables 

% of the 

total sample 

(N=1,864) 

% of matched 

sample 

(n=986) 

% of somewhat 

matched sample 

(n=444) 

% of mis-

matched sample 

(n=434) 

Individuals' Characteristics 

Gender 

Male 

Female 

Race/Ethnicity 

White 

African American  

Hispanic 

Asian 

Other Races 

Socioeconomic Status 

High SES Quartile 

Mid SES Quartile 

Low SES Quartile 

Major 

Hard STEM 

Soft STEM 

Institutional Characteristics 

Institution Control 

Public 

Private 

Selectivity 

High Selectivity 

Moderate Selectivity 

Inclusive Selectivity 

Selectivity not Classified  

 

 

42 

58 

 

64 

10 

10 

11 

5 

 

41 

45 

14 

 

61 

39 

 

 

70 

30 

 

34 

27 

8 

31 

 

 

40 

60 

 

71 

9 

11 

5 

4 

 

37 

47 

16 

 

57 

43 

 

 

74 

26 

 

28 

29 

9 

34 

 

 

48 

52 

 

66 

11 

11 

8 

4 

 

40 

49 

11 

 

71 

29 

 

 

74 

26 

 

34 

27 

11 

28 

 

 

45 

55 

 

68 

12 

13 

4 

4 

 

33 

49 

18 

 

60 

40 

 

 

70 

30 

 

28 

24 

7 

41 

Career-Related Experiences 

during College  

Participation in hands-on 

learning opportunities 

Yes 

No 

 

 

 

 

63 

37 

 

 

 

 

70 

30 

 

 

 

 

55 

45 

 

 

 

 

50 

50 
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Multinomial Logistic Regression Analyses 

 

The Categories 

This section presents the Multinomial Logistic Regression (MLR) analyses along with 

relevant tables. The study performed a hierarchical multinomial logistic regression analysis to 

determine the relationship between predictor variables (students' background characteristics, 

institutional characteristics, college attributes, and career self-efficacy) and the outcome variable 

(degree-job match). 

The study examines student expectations for academic major and job match in the STEM 

field operationalized as a multi-categorical variable: matched, somewhat-matched, and 

mismatched. Multinomial logistic regression is the appropriate analytical method for multiple 

response categories such as those used in this study for matched types between job and field of 

study.  

The hierarchical method was implemented in the multinomial logistic regression analysis 

to account for the effect of background and institutional characteristics on the criterion variable. 

Independent variables divided into four blocks were entered into the multinomial logistic 

regression equation in an order based on block sequential modeling per Lent, Brown and 

Hackett's (1987) Social Cognitive Career Theory (SCCT): 

 

 Block 1: Participants' demographic characteristics represented in race/ethnicity, gender, 

and socioeconomic level (composite of parental education and income).  

 Block 2: Institutional characteristics represented in control (public or private), and 

selectivity (based on 2005 Carnegie classifications). 
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 Block 3: College attributes represented in major (hard or soft STEM based on NSF 

classification), career-related experiences during college, and STEM cognitive abilities 

(measured in GPA for all known STEM courses).    

 Block 4: Career self-efficacy and expectancy. 

Table 12 presents the findings of the MLR analysis and model evaluation. Odds ratio 

were used to determine the predictability of factors in each category. In Table 12, an odds ratio 

greater than one indicates that participants in that category (closely-related/matched, or 

somewhat-related/somewhat-matched) have a higher odds than participants in the reference 

category (not-related/mismatched) to be classified as 'matched or somewhat-matched' (Osborne, 

2008).  

 

The "Matched" Outcome: Category Results 

As shown in Table 12, Model One, within the Matched Outcome, introduces 

demographic variables (gender, race, and socioeconomic status) where none of these predictors 

was found to be statistically significant (p ˃ .05). This indicates that demographic attributes, 

represented in race, gender, and socioeconomic status, have no statistically significant relation to 

the odds of STEM graduates being matched or mismatched.  

In Model Two, after controlling for demographic variables, institutional characteristics 

(control and selectivity) were added to the category. Like the previous model, none of the 

institutional attributes were found to be statistically significant (p ˃ .05). This indicates that 

institutional characteristics have no statistically significant relation to the odds of STEM 

graduates to be matched or mismatched with their jobs. 
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On the other hand in Model Three, and while controlling for demographic variables and 

institutional characteristics, college attributes were entered into the model. College attributes 

variables entered in this model include GPA, career-related experiences during college, and 

major (hard-STEM or soft-STEM). In this model, academic performance during college 

(represented in GPA for all know STEM courses) found to be statistically significant (OR = 

2.206, p < 0.001) and positively related to being matched. This indicates that the odds of a 

STEM graduate being matched (as opposed to mismatch) were two times greater for participants 

with higher GPA; measured by a 0.25 point grading scale. In other words, a one unit increase in 

GPA, or a 0.25 increase, is associated with a 20% increase in the odds of STEM graduates to be 

matched with their jobs than being mismatched, controlling for all factors included in the model. 

For instance, the odds of a STEM graduate with a 3.75 GPA to be matched rather than 

mismatched are 60% higher than a STEM graduate with a 3.00 GPA. By the same token, 

controlling for other predictors, a STEM graduate with a 3.25 GPA is four times more likely to 

work in a job that is not related to his/her degree (mismatched) than a STEM graduate with 3.75 

GPA.   

Career-related experiences during college years was found to be a statistically significant 

predictor of participants' degree-job match (OR = 2.102, p < 0.001). This finding indicates that 

the odds of being matched (as opposed to mismatch) are two times as high for graduates who 

participated in career-related learning opportunities (e.g., internship and onsite training) during 

college years; controlling for other variables in the model. Major, on the other hand, was found 

to be statistically insignificant (p ˃ .05) indicating that STEM major (hard or soft) has no 

statistically significant relation to the odds of being matched or mismatched.  
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After controlling for demographic variables, institutional characteristics and college 

attributes, the career self-efficacy and expectancy measurement was introduced to the final 

block; Model Four. In this model, the career self-efficacy and expectancy predictor was not 

found to be statistically significant (p ˃ .05) indicating that career self-efficacy and expectancy is 

not a significant predictor of STEM graduates' degree-job match.  

In sum, findings from the Matched Category show that demographic characteristics, 

institutional characteristics, STEM major, and career self-efficacy and expectancy were all found 

to be not statistically significant predictors of the odds of a STEM graduate to be matched or 

mismatched with their jobs. On the other hand, findings from the same category suggest that 

graduates who have a relatively lower GPA and lack career-related college experience have 

higher odds of being mismatched with their jobs than matched compared to their peers with 

higher GPA and more career-related college experiences.
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Table 12. 

Multinomial Logistic Regression Model and Model Evaluation for Recent Bachelor STEM Graduates' Degree-Job Match (N= 1864) 

Variables  Model One  Model Two  Model Three  Model Four 

b̂  
S.E. 

b̂  

̂  
Odds 

Ratio 
b̂  

S.E. 

b̂  

̂  
Odds 

Ratio 
b̂  

S.E. 

b̂  

̂  
Odds 

Ratio 
b̂  

S.E. 

b̂  

̂  
Odds 

Ratio 

Dependent a Independent        

 

 

 

 

 

 

 

Matched 

Gender -.219 .136 -.026 .803 -.207 .137 -.025 .813 -.015 .142 -.001 .986 .005 .145 .000 1.005 

Hispanic .160 .211 .012 1.173 .117 .211 .009 1.124 -.028 .217 -.002 .972 -.022 .224 -.001 .979 

African American .346 .205 .025 1.413 .369 .208 .027 1.447 .000 .228 .000 1.000 .013 .235 .000 1.013 

Asian -.231 .316 .012 .794 -.225 .319 -.012 .798 -.342 .333 -.019 .710 -.371 .330 -.020 .690 

Other Races -.070 .367 .003 .933 -.045 .369 -.002 .956 -.210 .373 -.010 .811 -.192 .376 -.009 .825 

Mid SES quartile -.120 .133 .014 .887 -.115 .139 -.014 .892 -.114 .144 -.014 .893 -.124 .144 -.015 .883 

Low SES quartile -.220 .186 .019 .803 -.178 .195 -.015 .837 -.148 .202 -.013 .862 -.172 .206 -.015 .842 

Institution control     -.223 .136 .024 .793 -.425** .140 -.046 .654 -.423** .141 -.046 .655 

Moderate selectivity     .171 .166 .018 1.187 .214 .172 .023 1.239 .206 .174 .022 1.228 

Inclusive selectivity     .296 .253 .020 1.344 .343 .261 .024 1.409 .368 .265 .025 1.445 

Selectivity not specified     -.152 .161 .017 .859 -.174 .183 -.020 .840 -.192 .187 -.022 .825 

STEM GPA         .791*** .130 .107 2.206 .766*** .136 .104 2.151 

Major         .163 .148 .089 1.177 .154 .152 .018 1.166 

Career-related experience          .743*** .143 .019 2.102 .735*** .147 .088 2.085 

Career self-efficacy             -.359 .223 -.057 .699 

 

 

 

 

 

 

 

Somewhat 

Matched 

Gender .049 .152 .006 1.050 .056 .153 .006 1.057 .078 .159 .009 1.081 .091 .160 .011 1.096 

Hispanic -.151 .234 -.011 .860 -.205 .235 -.016 .815 -.247 .239 -.019 .781 -.243 .243 -.019 .785 

African American -.052 .251 -.003 .950 -.016 .260 -.001 .984 -.227 .274 -.016 .797 -.218 .275 -.016 .804 

Asian -.685* .325 -.037 .504 -.633 .328 -.035 .531 -.682* .333 -.037 .506 -.700* .332 -.038 .497 

Other races -.206 .393 -.009 .814 -.173 .396 -.009 .841 -.262 .399 -.012 .769 -.252 .400 -.012 .777 

Mid SES quartile -.201 .157 -.024 .818 -.140 .166 -.017 .870 -.092 .167 -.011 .912 -.097 .166 -.012 .907 

Low SES quartile -.793** .237 -.070 .452 -.654** .247 -.058 .520 -.595* .250 -.052 .551 -.605* .251 -.053 .546 

Institution control     -.286 .165 -.031 .751 -.402* .165 -.044 .699 -.402* .166 -.044 .669 

Moderate selectivity     -.028 .191 -.003 .972 .037 .193 .004 1.038 .033 .193 .003 1.034 

Inclusive selectivity     .377 .290 .026 1.457 .504 .291 .035 1.656 .524 .294 .036 1.690 

Selectivity not specified     -.478* .204 -.056 .620 -.315 .229 -.037 .730 -.327 .234 -.038 .721 

STEM GPA         .478** .142 .065 1.614 .466** .143 .063 1.593 

Major         -.309 .179 .021 .734 -.314 .177 -.037 .730 

Career-related experience          .182 .155 -.037 1.199 .173 .159 .020 1.189 

Career self-efficacy            -.210 .249 -.033 .810 

Overall Model Evaluation 

Negelkerke R2    

 

2.5% 

 

4% 

 

12% 

 

14% 
a The reference outcome is Not-Related or Mismatched.     Significant variables are presented with asterisks       *p<.05,    **p<.01,   ***p<.001 

b̂ = unstandardized beta.   S.E. b̂  = standard error of unstandardized beta.  ̂  = semi-standardized beta weight using the mean predicted probability of 0.544 as a reference value.  
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The "Somewhat-Matched" Outcome: Category Results 

As shown in Table 12, Model One, within the Somewhat-Matched Outcome, 

demographic outcomes represented in race/ethnicity (with White being the reference group), 

gender, and socioeconomic status (measured by parental education and family income) were 

entered in this model. Gender was not found to be statistically significant (p ˃ .05) indicating that 

gender is not a significant predictor of a STEM graduate being somewhat-matched or 

mismatched. Further, Hispanics, African Americans, and multiracial participants were found not 

to be a statistically significant predictor of a STEM graduate being somewhat-matched or 

mismatched as compared to their White counterparts. On the other hand, Asians were found to 

be statistically significant (OR = 0.504, p < 0.05) indicating that the odds of being somewhat-

matched as opposed to mismatched are 50% lower for STEM graduates identified as Asians 

compared to their White counterparts. In other words, White STEM graduates have higher odds 

of working in jobs that are somehow related to their degrees (as opposed to not related) 

compared to their Asian peers. 

In the same model, Model One, the log of the odds of being somewhat-matched (as 

compared to mismatched) were negatively related to participants from the low socioeconomic 

quartile (OR = 0.452, p < 0.01) as compared to the high socioeconomic quartile. This means that 

the odds of working in jobs that are somehow-related to STEM graduates' field of study (as 

opposed to not-related) are about 45% lower for graduates with low socioeconomic status 

compared to their peers with high socioeconomic status.  

In Model Two, within the Somewhat-Matched category, institutional characteristics were 

entered in the model (Block 2) while controlling for demographic attributes (Block 1). In this 

model, and since the study is considering a stringent p-value for institutional characteristics (p < 
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.001), none of the institutional characteristics were found to be statistically significant. Such 

result indicates that there is no statistically significant relation between institutional 

characteristics (represented in control and selectivity) and the odds of STEM graduates to be 

somewhat-matched or mismatched; holding background attributes as constant. 

After controlling for demographic predictors and institutional characteristics (Block 1 and 

2), and within the Somewhat-Matched category, Model Three introduced the college attributes 

variables (Block 3). Similar to the "Matched Category," academic performance represented in 

GPA for all known STEM courses was also found to be statistically significant (OR = 1.614, p < 

0.01). This indicates that controlling for all other factors included in the model, a one unit 

increase in GPA (measured on a 0.25 grading scale) is statistically associated with an over 61% 

increase in the odds of STEM graduates being somewhat-matched with their jobs than being 

mismatched. However, major and career-related college experiences were not found to be 

statistically significant (p ˃ .05) for the Somewhat-Matched category. This indicates that STEM 

major (hard or soft) and career-related experiences during college have no statistically significant 

relationship to the odds of being somewhat-matched or mismatched. 

In the final model, and within the Somewhat-Matched category, Model Four adds the last 

block of variables (Block 4) while controlling for previous blocks. In this model, the 

measurement of career self-efficacy and career outcome expectations was introduced and found 

not to be statistically significant (p ˃ .05) in predicting the degree-career match outcomes.  

Combining the statistically significant explanatory predictors from the Somewhat-

Matched Category, race, socioeconomic status, and academic performance represented in GPA 

were all found to be statistically significant predictors in increasing the odds of a STEM graduate 

to be somewhat-matched than mismatched. On the other hand, gender, institutional 
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characteristics, major, career-related college experiences, and career self-efficacy were all found 

not to be statistically significant predictors.   

 In short, combining the statistically significant explanatory variables from both of the 

MLR categories a simple, yet robust profile emerges for a STEM graduate who is at the greatest 

risk of being mismatched with his/her career. This is an Asian, who comes from the low 

socioeconomic quartile, has a relatively lower GPA, and lacks career-related college experience          

 

How Costly is the Mismatch? 

Descriptive statistics are presented in Table 13. To test if there was a statistically 

significant difference between the groups' means given in Table 13, a one-way analysis of 

variance (ANOVA) was performed. The one-way analysis of variance (ANOVA) compared 

participants' earnings from employment, during the 2011 calendar year, by degree-job match. As 

shown in Table 14, there was a statistically significant difference between groups (F(2,1725) = 

24.559, p = .000).  

 

Table 13 

 
Descriptive Statistics of Participants' Earnings from Employment (N=1864). 

Outcome N Weighted 

Mean 

SD Min Max 

Matched 990 40325.80 23715.20 0 250000 

Somewhat-Matched 443 38966.05 29117.86 0 250000 

Mismatched 431 29990.51 22793.60 0 250000 

Total Sample 1864 37612.24 25296.73 0 250000 

 

 

Table 14 

 

One-Way ANOVA of Degree-Job Match by Participants' Earnings from Employment 

 SS df MS F Sig. 

Between Groups 14.238 2 7.119 24.559 .000 

Within Groups 500.024 1725 .290   

Total 514.263 1727    
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To determine which of the distinct groups differed, a Tukey posthoc test was applied 

(Table 15). The test revealed that earnings from employment were statistically significantly 

higher for matched ($40325.80 ± $23715.20, p = .000) and somewhat-matched ($38966.05 ± 

$29117.86, p = .000) compared to mismatched ($29990.51 ± 22793.60). However, there was no 

statistically significant difference between matched and somewhat-matched (p = .643). To 

conclude, STEM graduates who are mismatched with their jobs are suffering from a wage 

penalty of about 33% compared to matched or somewhat-matched STEM graduates. 

 

 

 

Table 15 

 

Tukey Post-Hoc for the Depended Variable Earning from Employment 

Match Level Mean Difference Std. Error Sig. 

Match Somewhat-Match 1318.799 1471.365 .643 

Mismatch 10938.05 1486.346 .000 

Somewhat-Match Match -1318.799 1471.365 .643 

Mismatch 9619.256 1740.099 .000 

Mismatch Match -10938.05 1486.346 .000 

Somewhat-Match -9619.256 1740.099 .000 

 

 

Summery 

This chapter presented the statistical findings of both the descriptive and inferential 

analysis along with model evaluation techniques. A one-way ANOVA was as well conducted to 

test differences in earnings among degree-job match groups. The hierarchical multinomial 

logistic regression results of four models were discussed in depth in this chapter along with 

related tables. The following chapter concludes with the discussion and implication of findings 

along with recommendations for policyholders and future research.       
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Chapter V 

Conclusions and Implications 

 

            Concerns over the lack of adequate numbers of qualified STEM graduates continue to 

dominate discussions about the U.S. global position as innovation preeminence (Butz, Kelly, 

Adamson, Bloom, Fossum, & Gross, 2004; Charette, 2013; Freeman, 2006; Freeman & Goroff, 

2009; Lowell & Salzman, 2007; Lowell, Salzman, Bernstein, & Henderson, 2009; Lynn & 

Salzman, 2006; Salzman, 2007; Salzman & Lynn, 2010; Salzman, Kuehn & Lowell, 2013; 

Teitelbaum, 2014). Although the federal government and private agencies allocate substantial 

fiscal aid to the STEM field, the quality and competence level of STEM graduates and the 

country's position in the global market continue to receive severe doubts as STEM graduates 

increasingly work in non-STEM occupations (Preston, 2004). Recent empirical studies have paid 

considerable attention to the (mis)match between a worker's academic knowledge and job 

(Robost, 2007), concluding that the mismatch results in significantly diminished wages, lower 

job satisfaction and productivity, loss of unused skills, higher turnover, feelings of loss in 

educational return on investment, loss of human capital return on investment, cognitive decline, 

and inadequate labor force for workforce expansion and growth (Belman & Heywood 1997; 

Bender & Heywood, 2009; De Grip, Bosma, Willems, & Van Boxtel, 2008; McGoldrick & 

Robst 1996; Sattinger, 1993, 2012; Sloane, Battu, & Seaman 1996; Tsang 1987). These 

outcomes intensify the current concerns over the STEM labor market ability of the U.S. to 

compete in the global market.  

One aspect of workforce success is the ability to utilize workers' knowledge and skills 

gained from the educational investment. Failing to match workers with jobs that present proper 

intellectual challenge results in underutilization of employees' abilities, posing economic 
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implications for the entire STEM workforce. So far, empirical research on worker-job match has 

focused on a limited area of the issue, calling for immediate attention yet with different 

approaches to the current degree-job mismatch. The majority of research on degree-job match 

has mainly focused on three areas: (1) the consequences of the degree-job mismatch (e.g., 

Belman & Heywood 1997; Bender & Heywood, 2009; De Grip, Bosma, Willems, & Van Boxtel, 

2008), (2) the match between years of schooling and the educational attainment required for the 

job (e.g., Hartog, 2000; Sloane, 2003), and (3) earning differences between the matched and 

mismatched workers with regard to returns on investment in education (e.g., Cohn & Kahn, 

1995; Groot & Van Den Brink, 2000; Hartog, 2000; Robst, 2006). However, research that 

measures the consequence of the worker-job mismatch has overlooked the root of the problem; 

where the mismatch originates from. Further, studies that looked at the relationship between 

educational attainment required for the job and quantity of schooling have limited themselves to 

only one way to measure the match between degree and job (Sloane, 2003). To close the gap in 

the literature, this study took a different approach to addressing degree-job match by looking at 

what could predict the match during college years. The primary focus of the present study was to 

understand better the supply side (STEM students) since the demand side has received 

considerable attention (e.g., Lynn & Salzman, 2006; Manning, Massini & Lewin, 2008; 

Salzman, 2007; Salzman, Kuehn & Lowell, 2013; Salzman & Lynn, 2010; Sargent Jr., 2010). 

STEM students are the future generation; they will play a fundamental role in innovation and 

technological advancement  

University officials and policymakers need to understand what can predict STEM students’ 

successful transition into the STEM workforce. Providing STEM graduates with opportunities to 

choose jobs that match their knowledge and skill level needs to be a shared responsibility 
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between universities, workforce, policymakers, and the graduates themselves. This chapter 

discusses the shared responsibility concept and presents the implications for policy and practice. 

Findings from Chapter IV are briefly examined in response to the research questions. Discussion 

of the theoretical contribution of the degree-job match model is then presented, followed by 

implications for policy and practice, and finally conclude with recommendations for future 

research. 

Discussion 

Building on the Social Cognitive Career Theory (SCCT) and previous empirical research, 

this study looked at determinants of degree-job match among recent STEM bachelor's degree 

graduates. Degree-job match in this study refers to the match between degree field, or degree 

knowledge and skills, to the job. The influence of the mismatch between degree, or degree 

knowledge and skills, to the job, is substantial. It has been documented by previous research 

pointing to diminished wages, lower job satisfaction and productivity, higher turnover, feelings 

of loss in educational return on investment, and improper labor force for workforce' expansion 

and growth (Belman & Heywood 1997; Bender & Heywood, 2009; McGoldrick & Robst 1996; 

Sattinger, 1993, 2012; Sloane, Battu, & Seaman 1996; Tsang 1987). The study examined four 

different sets of predictors that were hypothesized to influence degree-job match; demographic 

attributes, institutional characteristics, college-related influences and experiences, and career 

self-efficacy and outcome expectation. Using a nationally representative sample of 1864 recent 

bachelor STEM graduates from the Education Longitudinal Study of 2002 (ELS:2002), this 

study addressed the following research questions: 

1. How do demographic characteristics of recent STEM graduates influence the match 

between their degree and their current job? 
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2.  Controlling for demographic characteristics, how do institutional characteristics (i.e., 

selectivity and control) influence recent STEM graduates' current degree-job match? 

3. While controlling for both demographic and institutional characteristics: 

 How do a graduate's major and academic cognitive abilities relate to the match 

between degree and current job? 

 Does participating in hands-on learning opportunities (e.g., internship and onsite 

training) during college years increase the odds of match between STEM 

graduates' degree and current job? 

4. Controlling for demographic characteristics, institutional characteristics, and college 

attributes, to what extent do individuals' career self-efficacy and expectancy predict the 

odds of match between degree and job for recent STEM graduates? 

 

Descriptive analysis, cross-tabulations and one-way analysis of variance (ANOVA) were 

performed to analyze the dataset. In the study sample (N = 1864), more than half (53%) of the 

STEM graduates stated that their jobs are "closely related" to their fields of study; an indication 

of a good match. By and large, cognitive abilities and career-related experiences during college 

predict the match to a great extent. On the other hand, institutional characteristics and career self-

efficacy were far less important in explaining the degree-job match. The study also used 

hierarchical multinomial logistic regression as the appropriate statistical analytic method to 

examine relationships between predictors and the outcome variable (measured by degree-job 

match). 

In answering the first research question, among the demographic characteristics race and 

socioeconomic status were found to influence the match between degree and job. Asian 
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graduates are less likely to be adequately matched with their jobs as compared to their White 

counterparts. In fact, White STEM graduates' odds of being appropriately matched with their 

jobs are nearly 50% higher compared to their Asian peers. Other racial minority groups were not 

found to have statistically significant results indicating no significant difference in the odds to be 

matched with jobs between African Americans, Latinos, other minorities (except Asians) and 

Whites. Furthermore, graduates who come from a low socioeconomic household (as measured 

by parental education and household income) appear to be mismatched with their jobs at a 

significantly higher rate compared to their high socioeconomic counterparts. Mismatched 

workers earn less, as documented in this study, which could translate over time into greater 

lifetime earning differentials. To break the poverty cycle and climb the social ladder, low-income 

graduates must make nearly as much as their high-income peers. As evidenced in this study, 

mismatched workers suffer from a significant wage penalty of about 33% compared to 

adequately matched workers which further challenges the efforts to ensure equal pay among 

graduates with different socioeconomic levels and/or race. Neither gender nor graduates' major 

(in the form of hard or soft STEM) were found to be significant in influencing the degree-job 

match.                        

The second research question looked at the impact of institutional characteristics on 

STEM graduates' degree-job match. Institutional control (public or private) was not found to be a 

significant predictor of the degree-job match. Although institutional control in this study had a 

low p-value (p < .01), this research used a stringent p-value (p < .001) to measure institutional 

characteristics, and thus this variable was considered insignificant. Similarly, institutional level 

of selectivity was not found to be a significant predictor of the degree-career match among recent 

STEM graduates.        
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The strongest predictor that influenced the degree-job match was cognitive abilities 

(represented by GPA for all known STEM courses) followed by career-related experiences 

during college. Academic performance (GPA) during college was found to be a significant 

predictor of the match; a 0.25 point increase in GPA is associated with a 20% increase in the 

odds of being matched. This study indicates that the higher the cognitive abilities, the greater 

odds that graduates be matched with their jobs; controlling for all other factors. Such finding can 

easily be reconciled with other studies (e.g., De Grip et al., 2008) where mismatched workers, 

over time, experience decline in their cognitive abilities. This suggests that high cognitive ability 

is not only associated with a match, but that remaining matched may result in less cognitive 

decline since matched jobs present more intellectual challenge than mismatched jobs (De Grip et 

al., 2008).  

While the primary focus of this study was not to estimate the rates of return on 

educational investment, concerns about the cost of being mismatched should not go unnoticed. 

The lack of fit between degree and job was found to be associated with significantly diminished 

earnings; a wage penalty of nearly 33% compared to adequately matched workers with similar 

degrees. This suggests that students should seriously consider finding employment in a job 

related to their majors, as being mismatched can significantly reduce the returns on educational 

investment. With that said, students should not consider the earning effects of the mismatch 

without taking into account the role of prior career-related experiences they gained while in 

college. In this study, STEM graduates who were better prepared to enter the workforce through 

participation in hands-on learning experiences, internships, and field training during college were 

twice as likely to be matched with their jobs. Graduates may settle for mismatched jobs to 
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compensate for their lack of skills and experience when they can avoid making such unfortunate 

choices by gaining career-related experiences during their college years.  

Regarding the relation between career self-efficacy and the proper match between degree 

and job, career self-efficacy was not a significant predictor of the degree-job match. In sum, 

race/ethnicity, socioeconomic status, STEM cognitive abilities and career-related college 

experiences were found to influence significantly how adequately recent STEM graduates are 

matched with their jobs. On the other hand, gender, major (hard or soft STEM), institutional 

control and selectivity, and career self-efficacy were all found to be insignificant predictors of 

the degree-job match models. Such findings should be considered by higher education leaders, 

scholars in the field, and future STEM students as recommended in the following section.       

 

Theoretical Contribution of the STEM Degree-Job Match Model 

The degree-job match model in this study was based on the Social Cognitive Career 

Theory developed by Lent, Brown and Hackett's (1987). The theory focuses on the relationship 

between cognitive performance, learning experiences and career self-efficacy, and how the 

combination of these relationships affect individual’s career choice (Lent, Brown, & Hackett, 

2002). The theory also notes the role the environment and personal traits play in influencing the 

entire process. Drawing upon the theory, the STEM degree-job match model in this study 

grouped variables as shown in Figure 9. This conceptual framework incorporates individuals' 

characteristics (race, gender, and socioeconomic level), institutional characteristics (control and 

selectivity), college attributes (cognitive abilities, major, and career-related experiences), career 

self-efficacy, and career outcome expectation. These parameters indicate influential factors of 

STEM degree-job match where intervention regarding policy and practice may take place.  
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Figure 9. Research Model for Predictors of Degree-Career Match among Recent STEM Graduates 

 

In this model, gender was not found to be a significant predictor of the degree-job match 

which aligns with findings from previous empirical studies (e.g., Boudarbat & Chernoff, 2010; 

Garcia-Espejo & Ibanez, 2006; Storen & Arnesen, 2006). However, a few studies (e.g., Robst, 

2007; Witte & Kalleberg 1995; Wolbers, 2003) found that female scientists and engineers are 

more likely to be matched with their careers compared to their male counterparts. On the 

contrary, Krahn and Bowlby (1999) found that male individuals working in STEM fields have 

higher chances of being matched with their jobs than females. Mixed results about the role that 

gender plays in the degree-job match points to the possibility of gender discrimination in STEM 

job placement. Though findings from this research do not support the possibility of any gender 

discrimination, the inconclusive conclusions drawn from various related studies merit further 

investigation.  

Past research shows that racial background is considered to be a key predictor of job 

placements including degree-job match (Boudarbat & Chernoff, 2010). However, this study did 

not find any significant difference in the degree-job match likelihood between African American 

and Hispanic STEM graduates as compared to their White counterparts. Interestingly, Asian 

STEM graduates were found less likely to be adequately matched with their jobs compared to 

Whites. The National Science Foundation (NSF) also noted similar racial differences; Asians 
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were found to be overrepresented among unemployed scientists and engineers (NSF, 2013). 

Unemployed individuals may tend to accept jobs where they are overqualified for since other, 

more suitable, alternatives are not available and the job search process is costly (Sattinger, 1993). 

Racial discrimination coupled with unemployment should be further examined when 

investigating the tendency of the mismatch among Asian scientists and engineers. Other factors 

should be noted as well such as employment location, family constraints, and job conditions.    

Among the demographic characteristics, socioeconomic status was documented by 

various empirical research as critical to college access, persistence, graduation, and even job 

placement (Carnevale & Strohl, 2010; Perna, 2000; Perna & Titus, 2005). This study found that 

the socioeconomic status of STEM graduates plays a significant role in the STEM degree-job 

match model. However, some empirical studies (e.g., Boudarbat, & Chernoff, 2010) found no 

relationship between socioeconomic levels and degree-job match. In this research, graduates 

from the low socioeconomic quartile seem to have less chance of a suitable degree-job match as 

compared to their high socioeconomic quartile counterparts. Lack of appropriate match, as found 

in this study, results in nearly 33% wage penalty which could translate into greater future earning 

differentials. Such a consequence has the potential to reduce the capacity for intergenerational 

investment, thus repeating the cycle of poverty across the generations (Carnevale & Strohl, 

2010).    

In addition to the demographic attributes, the STEM degree-job match model considers 

institutional characteristics as a possible influence to the match. Several empirical research noted 

the characteristics of postsecondary institutions such as sector, control, and selectivity as 

significant predictors in explaining variations in students' educational outcomes (Astin, 1993; 

Bandura, 1986; Lent et al., 2002; Tinto, 1975, 1987). However, when applied to the degree-job 
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match model utilized in this research no significant influence either on institutions' control 

(public or private) or selectivity was found. This study used a stringent p-value (p < .001) to 

measure institutional characteristics considering nesting within variables, thus noting control as 

insignificant. Little research has attempted to incorporate institutional characteristics into the 

measurement of degree-job match. This area needs more consideration and attention from 

scholars in the field.     

Researchers have noted variations in the career choice process based on graduates' field 

of study (Garcia-Espejo & Ibanez, 2006; Grayson 2004; Robst, 2007; Storen & Arnesen, 2006). 

Graduates from occupation-specific fields are more likely to be matched than fields with general 

skills (Garcia-Espejo & Ibanez, 2006; Grayson 2004; Heijke, Meng, & Ris, 2003; Krahn & 

Bowlby, 1999; Robst, 2007; Storen & Arnesen, 2006; Wolbers, 2003). Building on these 

findings, and using NSF classification, this study categorized STEM graduates' majors into hard-

STEM majors (science and engineering), and soft-STEM majors (other STEM-related majors). 

However, STEM graduates' major was not found to be a significant predictor in the current 

degree-job match model. 

Cognitive abilities, measured by GPA for all known STEM courses, is by far the most 

powerful predictor of degree-job match found in this research. Empirical evidence from the 

existing body of research seems to reach a general consensus that academic performance is a 

strong predictor of desirable outcomes (Boudarbat, & Chernoff, 2010). This study reaffirms that 

academic abilities are an important predictor of degree-job match (Garcia-Espejo & Ibanez, 

2006; Grayson 2004; Storen & Arnesen, 2006).  

Several theories (e.g., the Human Capital Theory, the SCCT used in this research) and 

scholars recognize the importance of skills gained from experiences and training to worker's 
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performance, productivity, and job placement (Allen & De Wert, 2007; Bender & Heywood, 

2009; Lynn & Salzman, 2006; Sattinger, 1993). The STEM degree-job match model in this study 

incorporated similar component; career-related preparedness during college years. Findings from 

the model corroborate previous research (e.g., Allen & De Wert, 2007; Bender & Heywood, 

2009; Lynn & Salzman, 2006; Salzman, 2007) emphasizing the importance of prior experiences 

and skills not only necessary for better job placement but also for a better match. Qualified 

individuals with skills that match the workforce's needs are in high demand (Freeman, 2006). 

Many graduates are unfavorably accepting jobs in which they are mismatched to compensate for 

their lack of skills (Lynn & Salzman, 2006). The current degree-job match model suggests that 

such unfavorable outcome can be avoided by increasing the level of career-related preparedness 

during college years.      

The final component of the theoretical STEM degree-job match model utilized by this 

research suggests career self-efficacy as a possible predictor of suitable match. Career self-

efficacy refers to students' perceived confidence in their abilities to plan and execute future 

careers (Lent et al., 2002; Peterson, 1993). Previous empirical studies linked the ability to 

identify future career goals with persistence and retention (Lent et al., 2002). This study extends 

existing literature by linking career planning to degree-job match. The STEM degree-job match 

model did not find career self-efficacy as a significant predictor of proper match. However, 

considering the robust line of literature on college retention and persistence that suggests 

otherwise, future studies should include this component in the model while improving its 

measurements. This study was challenged by the scarcity of variables that measure self-efficacy, 

and thus future research is encouraged to keep self-efficacy in the model once better variables 

are available.  
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In conclusion, though the STEM degree-job match model derived from the SCCT theory 

proposed by this research partially worked, it is still useful in understanding predictors of the 

degree-job match adequacy. The model utilized did not find career self-efficacy to be significant 

in predicting the adequacy of degree-job match. However, it sheds light on understanding 

predictors of degree-job match where higher education policymakers, postsecondary institutions, 

and even current/future students may benefit. As for postsecondary institutions, there is an 

increasing tendency to evaluate and rank their performance in terms of (1) how their graduates 

perform in the workforce, and (2) their abilities to transfer workforce needed skills to their 

students (Bratti, McKnight, Naylor, & Smith, 2004; Krahn & Bowlby, 1999). The suggested 

degree-job match model provides insight into how and why graduates seek employment related 

to their education and thereby improving the match between academic degrees and job. 

 

Implications for Policy and Practice 

Early recognition and development of adequate policies may resolve and minimize the 

losses from the degree-job mismatch. Some policy recommendations and initiatives that can 

enhance appropriate match between STEM graduates' field and their jobs are discussed here.  

First, being mismatched is not only costly for individuals, but it may as well be harmful 

to the workforce. In many studies, the mismatch between workers' qualifications and their jobs 

has been found to relate negatively to workforce productivity (Rycx, 2012). The improper match 

between employees and jobs result in lower wages leading to low levels of job satisfaction which 

eventually correspond to low levels of productivity (Groeneveld & Hartog, 2004; Rycx, 2012). 

With the broad concern by many workforce officials about the U.S. position in the global market, 

policymakers should consider approaches that increase the market's productivity. One approach, 



THE DEGREE-JOB MATCH AMONG STEM GRADUATES                                                                               113 
 

 

as suggested by previous research, is a proper match between degree and job. Accurate degree-

job match results in higher levels of job satisfaction which translates to higher productivity.  

Second, the job search is costly and thus graduates may accept jobs where they are 

overqualified rather than remaining unemployed. Similarly, employers may hire applicants that 

do not adequately meet job requirements as leaving the job unfilled is costly. Such situations 

stem from a lack of information and lack of proper communication between job seekers and the 

workforce. Initiating an outlet during college years that connect graduates with employers 

through better communication channels about workforce conditions may help minimize the 

issue. Additionally, applying policies that reduce unemployment can eventually lessen the 

mismatch as they provide graduates with some sense of job security, helping them in taking the 

time to navigate the workforce rather than rushing to accept jobs that they are overqualified for 

in fear of unemployment. 

Third, an appropriate system of career guidance needs to be provided during college 

years. Postsecondary institutions need to increase their graduates' level of awareness of labor 

market needs and better prepare their students through job counseling, on-site training, and field 

experiences. Career-related preparation during college years contributes significantly to 

graduates' career mobility in the labor market. Many graduates found themselves forced to accept 

jobs that are lower than their skill level (mismatched) to compensate for their lack of experience. 

Providing graduates, during college, with experiences and competencies that are transferable 

across occupations increases their career mobility and ability to navigate the workforce, which in 

turn increases their chances of proper degree-job match. 

Fourth, policymakers and postsecondary institutions should target the specific groups 

found to be at risk of improper match. Minorities and students with low socioeconomic levels 
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seem to encounter difficulties securing appropriate jobs. Policymakers should ensure an adequate 

match to all graduates regardless of their race/ethnicity or socioeconomic level. Postsecondary 

institutions need to create a system that provides support, apprenticeship, and labor programs 

that targeted such particular groups to increase their chances of an adequate match and better 

career mobility that can translate to long-term social mobility and intergenerational investment.  

Fifth, the STEM field is more sensitive to technological and globalization changes than 

any other field. Rapid technological changes, offshoring and outsourcing trends and the spread of 

computerization (elasticity of substitution) alter the degree-job match. The STEM market is 

evolving at a rapid pace bringing new development, new firms, new customer preference and 

needs, and new products. The requirements for jobs in the STEM workforce can quickly differ 

from qualifications students have obtained during their college in preparation for employment. 

The inability to anticipate changes in the STEM market can substantially contribute to the 

degree-job mismatch. This issue can be addressed by policies that ensure collaboration between 

the workforce and universities through networks of trade and technical institute that provide 

STEM graduates with the anticipated skills needed. Such policies should focus on the future 

needs of labor, description of such work, and the preparation necessary to match. 

Finally, like other empirical research this study notes the crucial importance of math and 

science preparation in the graduate’s persistence and retention in the STEM field. The degree-job 

match model used in this study concluded that the strongest predictor of the proper match came 

from cognitive performance in college. Math and science preparation is by large the strongest 

predictor of a healthy supply of scientists and engineers documented by an extensive line of 

research (Gonzales, Guzmán, Partelow, Pahlke, Jocelyn, Kastberg, & Williams, 2004; Lowell & 

Salzman, 2007). However, science instructional time in K-6 is at the lowest number of hours per 
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week (2.3) as a national average since 1988 (Blank, 2012). Science performance is not included 

in the school accountability annual progress report even with the global emphasis on science 

proficiency. Policymakers might need to review their school accountability policies and consider 

a more comprehensive measurement system that covers all vital subjects. Students' math and 

science performance in K-12 improved over the years (College Board, 2013; Gonzales et al., 

2004; Lowell & Salzman, 2007; NCES, 2012). However, internationally their performance does 

not compare favorably (OECD, 2010). Further, many empirical studies concluded that 

instructional innovations for STEM college preparation are greatly needed (NSF, 2010). A 

repeated recommendation is learning through an active and collaborative learning environment 

inside and outside the classroom. It is recommended that U.S. education officials consider policy 

implementations that ensure global competitiveness by maintaining a constant focus on 

improving STEM instructional innovations, and students' math and science performance.     

         

Recommendations for Future Research 

The primary intention of this research was to identify predictors of the degree-job match 

among recent bachelor STEM graduates. Cognitive abilities and work-related experiences gained 

during college are the strongest predictors of the degree-job match. Asian graduates and 

graduates from the low socioeconomic quartile have fewer odds to have a suitable match with 

their jobs. The following is a list of recommendations for future research to consider: 

 Though additional quantitative studies should be conducted to help in highlighting 

attributes to the current degree-job mismatch, it is highly recommended that scholars 

conduct qualitative research as to why some graduates may voluntarily decide to be 

mismatched. For example, a qualitative study carried out on unemployed scientists and 

engineers found that 45% of female Asian scientists and engineers were voluntarily not 
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working due to family responsibilities; highlighting the cultural influence that may affect 

unemployment. Qualitative studies may help better understand how psychological or 

cultural attributes influence the current degree-job mismatch. Family and peer influence, 

along with the surrounding environment are all possible factors influencing the decision 

to pursue a STEM career.                

 The present mismatch between workers and jobs can be influenced by attributes from 

both the supply and the demand sides. However, little research is available about the 

workforce recruitment practices. There is a scarcity of information about what firms are 

looking for in employees during the hiring process. The basis for employers' decisions on 

hiring a particular worker are largely unknown. Simply matching a job description may 

not be enough for a candidate to secure a job; it is what employers seek beyond the 

formal qualifications. Thus, future research should look at the demand side and possibly 

survey employers to identify what may attribute to the worker-job match beyond formal 

job descriptions.      

 The lack of adequate measurements of self-efficacy and other soft skills in the current 

national datasets posed a challenge for this type of research. It is recommended that 

future research include variables that further allow for soft skills assessment. Though this 

study included a career self-efficacy scale that was built on the SCCT, the scale did not 

accurately capture the construct of self-efficacy. Thus, this variable may need to be 

refined in future studies where better measurements of soft skills may substantially 

advance the area of degree-job mismatch. 

 Previous research has identified particular groups for which the degree-job mismatch 

occur in a significant number. When particular groups suffer greatly than others this will 
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result on the long run in greater job instability and income inequality. Such groups need 

to receive greater attention from empirical research, economists, and policy analysis. This 

study, for example, noted the differences in the degree-job match probability based on a 

graduate's race and socioeconomic level. Asian STEM graduates in this research seem to 

be more mismatched than somewhat-matched compared to their White counterparts. It 

may be that factors such as culture and surrounding environments could be attributed to 

these significant differences. For example, level of acculturation and family involvement 

were found to influence Asian students' occupational interests and career placement 

(Fouad & Smith, 1999). Occupational segregation was as well documented among Asian 

workers causing low self-confidence and a sense of powerlessness (Fouad & Smith, 

1999).  Further, graduates from the low socioeconomic quartile are more inadequately 

matched compared to those with high socioeconomic quartile. Other studies noted similar 

differences based on gender and field of study (e.g., Robst, 2007; Storen & Arnesen, 

2006; Wolbers, 2003). Taken together, particular groups can be more likely to be at risk 

of being somewhat-matched or mismatched with their jobs rather than being matched. 

Additional research is warranted to better explain the likelihood of mismatch by 

race/ethnicity and socioeconomic status.      

 More research in the transition from school to work is needed in the STEM field. For 

example, research can focus on the area of how universities may influence the transition 

process; how collegiate experiences, for instance, provided by universities influence the 

decision to pursue a STEM career. Research can focus as well on how graduates' both 

academic and non-academic qualifications influence the transition from school to work.  
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 This study examined the degree-job mismatch among STEM bachelor degree recipients. 

This study can be extended by investigating whether the attributes used in this research 

can influence other STEM degree recipients including higher degree levels such as 

master and doctoral. The mismatch between degree and job was documented among 

STEM higher degree recipients; it was found among scientists and engineers with a Ph.D. 

degree (Bender & Heywood, 2009). However, the focus was on the consequence of the 

mismatch, not the attributes. Due to the use of secondary data, the present study could not 

include differences by degree level as a possible attribute to the degree-job mismatch. 

Further, this study did not look at students who switched from STEM and non-STEM 

majors in college. Such students may have different degree-job match patterns that are 

worth investigating.  

 It would be worth investigating whether the probability of a mismatch may influence how 

students determine whether to avoid certain majors. Studies of college major choice may 

incorporate this new concept into their research. This study contributes to the body of 

literature by using the degree-job match as a possible factor influencing the college major 

choice process. Students base their college major choice decision on many factors 

including expected earnings and uncertainty (Altonji, 1993; Berger, 1988). When the 

economic cost to degree-job mismatch results is lower wages, and when degree-job 

match is uncertain when selecting a college major, how will such factors affect the 

college major choice process? This research suggests that students should consider the 

potential match of future employment to the academic major under consideration. 

Becoming mismatched significantly reduces the educational return on investment, and 
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thus students should be aware of such outcome before choosing their occupation-specific 

major.      

 An important aspect seems to be overlooked by current literature which may significantly 

influence the degree-job match. Unemployment behavior can be an important factor in 

affecting STEM graduates current degree-job match. It is unknown whether the length of 

unemployment affects the degree-job match or whether the number of times a graduate 

was unemployed may relate to the decision of accepting a mismatched job. These areas 

may shed light on the current problem of the mismatch and may help in solving it. 

 STEM majors in this research were grouped into hard and soft STEM majors based on 

NSF classification. Future research is recommended to use a more detailed list of the 

fields designated as STEM. For example, it may be worth investigating how the adequacy 

of degree-job match differs by STEM majors such as Engineering, Mathematics, Clinical 

Science, Psychology and other STEM and STEM-related majors. 

 Finally, this research focused on predictors of the degree-job match among the STEM 

field only. Future research can expand the current study by looking at other fields and 

majors to explore the degree-job match and mismatch phenomenon. 

 

Conclusion  

In an age of accountability, and to meet the high requirements and expectations of the 21st 

century, postsecondary institutions and policymakers need to be aware of the rapidly changing 

STEM workforce. Such changes fueled by forces of globalization and internationalization of the 

STEM market spur new skills, qualifications, and economic challenges that require new ways of 

preparation and new sets of qualifications. Requirements for jobs in the STEM market can vastly 
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shift from the skills students acquire during their college years. Anticipating the needs of a 

market that is so vulnerable to global forces and changes will aid future scientists and engineers 

to transition smoothly to the workforce.  

To compete for the world's technological and innovation leading positions, STEM 

graduates need to be supported and prepared throughout all STEM pathways. Keeping a healthy 

STEM supply that is responsive to the STEM market's needs will ensure prosperity in all phases 

and transition paths of the STEM pipeline. Providing a proper match, between workers' field of 

knowledge and their jobs, results in benefits that go beyond workers and their workplace to reach 

the entire economy. Concerns should not be focused on the quantity of STEM graduates, but 

rather on the quality of their preparedness. The U.S. has invested and continues to invest 

tremendous fiscal support in its STEM education. However, when graduates fail to match their 

academic degree with their jobs, then the investment needs to be redirected. 

This study contributes to the literature on the degree-job match area by accounting for 

several predictors that have been understudied. The degree-job match model proposed in this 

study includes a variety of predictors that were proven by many empirical studies to influence 

persistence, retention/attrition, and job placement. The degree-job match model can be used as a 

stepping stone to understanding better the current STEM degree-job match problem and can be 

expanded to include other majors and workforces. 
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Appendix A 

NSF STEM Classification of Instructional Programs Crosswalk 

 

Listed below is the NSF CIP Code Crosswalk for STEM disciplines. 

 
Agricultural Sciences 
01.09    Animal Sciences 

01.10    Food Science and Technology 

01.12    Soil Sciences 

01.99    Agriculture, Agriculture Operations and 

Related Sciences, Other 

03.0101    Natural Resources/Conservation, General 

03.02    Natural Resources Management and Policy 

03.03    Fishing and Fisheries Sciences and 

Management 

03.05    Forestry 

03.06    Wildlife and Wildlands Science and 

Management 

03.99    Natural Resources and Conservation, Other 

Chemistry 
40.05    Chemistry 

40.0507    Polymer Chemistry 

40.0509    Environmental Chemistry. 

40.051    Forensic Chemistry. 

40.0511    Theoretical Chemistry. 

40.1002    Materials Chemistry. 

40.1099    Materials Sciences, Other. 

Computer Science 
11.01    Computer and Information Sciences, 

General 

11.0104    Informatics (STEM Only) 

11.04    Information Science/Studies 

11.07    Computer Science 

52.1201    Management Information Systems, General 

52.1301    Management Science 

Environmental Science 
03.0103    Environmental Studies 

03.0104    Environmental Science 

Geosciences 
40.06    Geological and Earth Sciences/Geosciences 

40.0601    Geology/Earth Science, General 

Mathematics 
27.01    Mathematics 

27.03    Applied Mathematics 

27.0304    Computational and Applied Mathematics. 

27.0306    Mathematical Biology. 

27.0503    Mathematics and Statistics. 

14.3701    Operations Research 

27.99    Mathematics and Statistics, Other 

30.08    Mathematics and Computer Science 

27.05    Statistics 

52.1304    Actuarial Science 

Physics/Astronomy 
40.02    Astronomy and Astrophysics 

26.0507    Immunology 

26.0504    Virology 

26.0503    Medical Microbiology and Bacteriology 

26.1501    Neuroscience  

19.05    Foods, Nutrition, and Related Services 

30.1901    Nutritional Sciences  

26.0910    Pathology/Experimental Pathology  

26.1001    Pharmacology 

26.1004    Toxicology 

26.1104    Computational Biology. 

26.131    Ecology and Evolutionary Biology.  

26.0707    Animal Physiology. (NEW) 

26.0901    Physiology, General. (NEW) 

26.09    Physiology, Pathology and Related 

Sciences  

26.07    Zoology/Animal Biology  

26.1201    Biotechnology 

26.1302    Marine Biology and Biological 

Oceanography 

26.99    Biological and Biomedical Sciences, Other 

30.01    Biological and Physical Sciences 

30.10    Biopsychology 

30.27    Human Biology. 

30.3    Computational Science. 

30.32    Marine Sciences. 

Engineering 
14.02    Aerospace, Aeronautical and Astronautical 

Engineering  

14.03    Agricultural Engineering  

14.05    Biomedical/Medical Engineering 

03.0509    Wood Science and Wood Products/Pulp 

and Paper Technology 

14.07    Chemical Engineering 

14.0702    Chemical and Biomolecular Engineering. 

14.0799    Chemical Engineering, Other. 

14.1003    Laser and Optical Engineering. 

14.1004    Telecommunications Engineering. 

14.1099    Electrical, Electronics and 

Communications Engineering, Other. 

14.32    Polymer/Plastics Engineering 

14.4    Paper Science and Engineering. 

14.41    Electromechanical Engineering. 

14.42    Mechatronics, Robotics, and Automation 

Engineering. 

14.43    Biochemical Engineering. 

14.44    Engineering Chemistry. 

14.45    Biological/Biosystems Engineering. 

15.0306    Integrated Circuit Design. 

15.1502    Engineering Design. 
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40.0809    Acoustics 

40.08    Physics 

40.0607    Oceanography, Chemical and Physical 

40.0807    Optics/Optical Sciences 

40.9999    Physical Sciences, Other 

 

Life/Biological Sciences 
26.0403    Anatomy  

26.0202    Biochemistry  

26.01    Biology, General  

26.1101    Biometry/ Biometrics 

26.1102    Biostatistics 

26.1309    Epidemiology  

26.0203    Biophysics  

26.03    Botany/Plant Biology 

26.0305    Plant Pathology/Phytopathology 

26.0307    Plant Physiology  

26.04    Cell/Cellular Biology and Anatomical 

Sciences 

26.0401    Cell/Cellular Biology and Histology 

26.0204    Molecular Biology  

26.1301    Ecology  

26.0505    Parasitology 

26.0702    Entomology  

26.0801    Genetics, General. (NEW) 

26.0804    Animal Genetics. (NEW) 

26.0805    Plant Genetics. (NEW) 

26.1303    Evolutionary Biology 

26.0806    Human/Medical Genetics  

26.0508    Microbiology and Immunology. 

26.0807    Genome Sciences/Genomics. 

26.05    Microbiological Sciences and Immunology 

15.16    Nanotechnology. 

04.02    Architecture 

14.04    Architectural Engineering 

14.08    Civil Engineering 

14.0803    Structural Engineering 

14.0805    Water Resources Engineering 

14.14    Environmental/Environmental Health 

Engineering  

14.09    Computer Engineering, General 

14.10    Electrical, Electronics and Communi-

cations Engineering  

14.12    Engineering Physics 

14.13    Engineering Science  

14.27    Systems Engineering 

30.06    Systems Science and Theory  

14.11    Engineering Mechanics 

14.19    Mechanical Engineering  

14.06    Ceramic Sciences and Engineering 

40.18    Materials Engineering 

14.20    Metallurgical Engineering 

14.28    Textile Sciences and Engineering 

40.10    Materials Science  

14.21    Mining and Mineral Engineering  

14.23    Nuclear Engineering  

14.25    Petroleum Engineering  

14.01    Engineering, General 

14.22    Naval Architecture and Marine 

Engineering 

14.24    Ocean Engineering 

14.99    Engineering, Other 
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Appendix B 

 

Variables used in the Degree-Job Match Model 

 

Variable Name Description ELS Variable Label 

Gender Male = 1 

Female = 2 

F2SEX 

Race 1= American Indian/Alaskan 

Native, non-Hispanic 

2= Asian, non-Hispanic 

3= Black or African-American, non-Hispanic 

4= Hispanic, no race specified 

5= Hispanic race specified 

6= more than one race, non- 

Hispanic 

7= Native Hawaii/Pac. Islander, non-

Hispanic 

8= White, non-Hispanic 

F1RACE 

Socioeconomic level Composite variable of mother’s education, 

father’s education, family income, mother’s 

occupation, and father’s occupation. 

F1SES2QU 

STEM Cognitive abilities Grade Point Average for all known STEM 

courses (using NSF definition of science, 

engineering, and related fields) 

F3TZSTEM2GPA 

Postsecondary institution 

sector 

1= Four-year 

2= Two-year 

F3ILEVEL 

Postsecondary institution 

control 

1= Public 

2= Private not-for-profit 

3= Private for-profit 

F3ICNTRL 

Postsecondary institution 

selectivity. 
 

Selective here is based on the 

2005 Carnegie Classification 

System which is based on the 

distribution of entrance 

examination scores. Highly 

selective institutions are where 

students’ test scores place 

them in roughly the top fifth. 

Moderate selectivity is where 

students' test scores place the 

institutions in the middle two-

fifths. Inclusive selectivity 

institutions are those who 

extend educational opportunity 

to a wide range of students 

with respect to academic 

preparation and achievement. 

Selectivity of attended postsecondary 

institution:  

1= Highly selective, 4-yr institution 

2= Moderately selective, 4-yr inst 

3= Inclusive, 4-yr institution 

4= Selectivity not classified, 4yr inst 

5= Selectivity not classified, 2yr inst 

6= Selectivity not classified, less than 2yr 

F3ISELC 
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Institutions who did not report 

test score data are not 

classified.  

On-site training during 

college 

Participation in internship/co-op/field 

experience/student teaching/clinical 

assignment during college? 

0= No; 1= Yes 

F3A14A 

Degree level Credential type: 

1= Undergraduate certificate or diploma 

2= Associate's Degree 

3= Bachelor's Degree 

4= Post-baccalaureate certificate 

5= Master's Degree 

6= Post-Master's certificate 

7= Doctoral Degree - research/scholarship 

8= Doctoral Degree - professional practice 

9= Doctoral Degree - other 

F3ICREDTYPE_1 

Degree field Ever earned a postsecondary credential in a 

STEM field (NSF definition) 

F3TZSTEM2CRED 

Hard or Soft STEM Ever earned a postsecondary credential in a 

science & engineering field 

F3TZSCENCRED 

Employment status Working for pay at a full time job  

0= No; 1= Yes 

F3A01A 

Career self-efficacy and 

outcome expectation 

whether the prestige score associated with 

the respondent's expected age-30 occupation 

as reported in the third follow-up is higher 

than, equal to, or less than the prestige score 

associated with the respondent's expected 

age-30 occupation as reported in the first 

follow-up: 

1=F3 occupation expectation has higher 

prestige score than F1 occupation 

expectation. 

2=F3 occupation expectation has same 

prestige score as F1 occupation expectation. 

3=F3 occupation expectation has lower 

prestige score than F1 occupation 

expectation. 

F3OCC30F1VF3 

Relation between field of 

study and current job 

1= closely related; 2= somehow related 

3= not related 

F3B31 

Employment income 2011 employment income:  R only F3ERN2011 

Weight Third follow-up questionnaire respondent 

weight. A weight for sample members who 

completed a questionnaire in the third 

follow-up. 

F3QWT 
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Appendix C 

 

Recoding of variables used in the Degree-Job Match Model 

 

Variable Name Description ELS Variable Label 

Major is in a STEM field Variable will be used to separate 

STEM majors from other majors. 

Only STEM majors will be kept in 

the sample, and then divided into 

hard STEM and soft STEM 

Recoded from 

F3TZSTEM2CRED 

STEM fields are based on 

NSF classification as stated in 

Appendix A. 

Major is Hard of Soft 

STEM 

Major is in S&E (Hard) = 1,  

Other (Soft) = 0 

Recoded from 

F3TZSCENCRED 

Income from employment In U.S. Dollars Continues F3ERN2011 

Gender Participant's gender, 

female =1, male = 0 

Recoded from F2SEX 

Race/ethnicity 

Hispanic 

 

White 

 

Asian 

 

African American 

 

 

Other races 

 

 

Hispanic =1, all other races= 0 

 

White= 1, all other races= 0 

 

Asian= 1, all other races= 0 

 

African American= 1, all other 

races= 0 

 

American Indian, Alaskan 

native, Native Hawaii/Pac. 

Islander more than one race= 1, all 

other races = 0 

Recoded from F1RACE 

Socioeconomic status 1= High SES, 0= Other SES 

1= Mid SES, 0= Other SES 

1= Low SES, 0= Other SES 

Recoded from F1SES2QU  

 

STEM Cognitive abilities GPA for all known STEM courses 

(using NSF definition) 

F3TZSTEM2GPA Continuous 

Participation in internship, 

on-site training during 

college 

0= No; 1= Yes F3A14A 

Postsecondary institution 

sector 

1= Four-year, 0= Two-year Recoded from F3ILEVEL 

Postsecondary institution 

control 

1= Public, 0= Private Recoded from F3ICNTRL 

Postsecondary institution 

selectivity 

Highly selective=1,  

all other=0 

 

Moderately selective=1,  

all other= 0 

Recoded from F3ISELC 
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Inclusive=1, all other= 0  

 

Selectivity not classified=1, all 

other= 0 

Employment status Working for pay at a full time job 

0= No; 1= Yes 

 

Will be used to include only 

employed graduates 

F3A01A 

Degree level Bachelor's Degree=1,  

all other=0 

 

Will be used to include only 

Bachelor's degree graduates 

Recoded from 

F3ICREDTYPE_1 

Career self-efficacy and 

outcome expectation 

F3 occupation expectation score 

 

F3OCC30F1VF3 Continuous  
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Appendix D 

 

Literature Review Map 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Validating the Argument through Economic Indicators 

Earning Patterns Unemployment Rate 

A Problem Do Exists 

What Causing the Problem? 

(Trying to Explore Reasons) 

Demand 

Factors 
Students 

Factors 

Supply 

Pathways 

Demographic 
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Temporary 
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Outsourcing 
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Concerns over the Globalization Forces 
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Lack of Empirical Research 

Policy Recommendations 

Conclusion 

 

Introduction to the Problem 
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