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ABSTRACT 

Binding of Cobalt (111) to Nucleic Acids via Reaction with [co(NH,),(oH,)]~+ 

David M. Calderone, Ph.D. 

Seton Hall University, 1997 

Mentor: Richard D. Sheardy 

Treatment of five different synthetic DNA oligomers and a natural DNA polymer 

(sonicated calf thymus DNA) with [Co(NH3),(O~,)J3' resulted in irreversible modifications 

of all DNA samples. Standard protocol for preparing DNA samples calls for heat-annealing 

the oligomer in phosphate buffer in the absence or presence of cobalt(II1)ammine complex for 

two minutes at 80 "C followed by slow cooling. An alternative method for treatment, in 

which the DNA remains hlly duplexed, is incubation of oligomer in the presence of complex 

at 37 "C followed by exhaustive dialysis against 0.2 M NaCl and then water. The interaction 

specificities of cobalt(111)ammines with the self-complementary eight base pair oligomer 

(5medC-dG), , or 28, have been investigated. The conformational properties of 2 8  were 

determined by inspection of the UV and CD spectra at 25 "C and 95 "C and thermal 

denaturation studies. With heat-annealing in the absence of any cobalt (111) complex, 2 8  

assumes a double stranded, right-handed B conformation at 25 "C. Upon heat-annealing in 

the presence of 200 pM [Co(NH,),I3+ , 2 8  assumes a double stranded, left-handed Z 

conformation at 25 "C. In contrast, the CD and UV spectra of 2 8  heat-annealed in the 

presence of 200 pM [CO(NH,),(OH,)]~+ is consistent with a distorted B-like conformation 

at 25 "C. Incubation of 2 8  in the presence of [CO(NI-I,),(OH,)]~' results in modification of 

the conformational properties of the oligomer at both 25 "C and 95 "C relative to the 



untreated oligomer. The extent of modification depends upon the incubation concentration 

of complex and reaction time. Atomic absorption (AA) analysis of these treated 2 8  samples 

indicate a high degree of cobalt association to the oligomer. The salt dependence of melting 

temperature, shown through linear T, versus log PaCI] plots, can be used to calculate (from 

the slope) the differential ion binding term, An, which represents the release of counterions 

per duplex upon denaturation. For oligomers 28,223 heat-treated, and 2 8  incubated, the An 

terms are 0.92, 0.48, and 0.28, respectively, indicating fewer Na+ released upon melting. 

This is indirect evidence that the two methods of modification result in cobalt being tightly 

bound to the DNA. These studies suggest that [Co(NH,),(OH2)I3+ reacts with the oligomer 

resulting in tight binding of the cobalt (111) metal center to the DNA lattice. 

Thermal denaturation studies on three oligomers which possess GpC sites (28, 12-mer 

and GC-site) indicated higher T, values and dramatically decreased hyperchromism upon 

melting relative to the untreated oligomers. However, identical treatment of two oligomers 

(24-mer and CG-isomer) with G bases, but no GpC sites, resulted in lower T,, values and only 

slightly reduced hyperchrornism. Thermal denaturation studies on sonicated calf thymus DNA 

prepared at three different cobalt to DNA ratios resulted in irreversible melting profiles of 

lower T, than untreated DNA polymer. However, the sample prepared at high DNA and 

cobalt complex concentrations did not hlly dissociate and gave a quasi sigmoidal remelting 

profile. The combined results ofthese studies are interpreted in terms of covalent attachment 

of the cobalt (111) metal center to N7 of guanine, which is then followed by an interstrand 

GN7-Co-GN7 crosslink in those DNA samples which possess GpC sites. 



CHAPTER I 

INTRODUCTION 

Forty-four years ago Watson and Crick (1953) proposed the double helical structure 

of deoxyribose nucleic acid along with an elegant scenario for how that form allowed the cell 

to copy and excerpt the messages contained within the sequences. Over the last two decades 

hardy versions of nuclease and polymerase enzymes have become commercially available in 

kits for the methodical tagging, selecting and cutting specific pieces or whole genes of DNA 

in order to splice, transfer or express those messages. However, the complexity at the 

molecular level of the multitude of possible structures of DNA remains, to a large extent, 

hidden. 

DNA Strircture 

This polyelecrolyte has three types of interactions which contribute to its duplex 

structure in solution. Hydrogen bonding, as depicted between the bases (Figure 1) but also 

involving water molecules with many groups on the DNA, is an attractive interaction. 

Secondly, hydrophobic interactions are attractive in nature by involving not only the stacking 

of the aromatic rings of the bases but also the van der Waals shape fitting of any two 

structures which can exclude solvent. Lastly, electrostatic repulsion between the phosphate 

groups keeps them separated and also makes the DNA molecule sensitive to different counter 

ions and the ionic strength of the surrounding medium. Very large DNA molecules behave 

as rigid rods in solution because of the high charge density from the many phosphate repeats, 

but small oligomers are more flexible in that aspects of local conditions can more than 



compensate the effects of charge. In the cell, DNA is always attended by a whole entourage 

of chromatin, proteins and the like. When a section of the chromosome is, say, "unwrapped" 

for transcription, it is possible that the target portion of DNA would share more physical 

properties with a small oligomer than with an unnaturally "naked" long molecular salt. 

A molecule of DNA can be described with global parameters which result from 

calculations relative to the overall helix axis. The pitch of the helix, or number of bases per 

turn, derives from the average rise (DJ and helix rotation (Q) per base-pair. The tilt angle 

(z) measures the average sideways tilting of the base-pairs, allowing for the separation of the 

bases along the helical axis to appear to be smaller than the van der Waals distance of 3.4 A. 

The displacement ofthe base-pairs from the helical axis contributes, in part, to the size of the 

major and minor grooves. The handedness ofthe helix is a right-spiral except for left-handed 

2-DNA. The five membered ring of the sugar can pucker two ways: either with C2'-endo 

(i.e. C2' is on the same side of the ring plane as C5') or with C3'-endo. The base can be 

oriented principally across from the sugar with respect from the C1' bond, an m t i  

conformation, or oriented above the sugar as in the s y ~  position. The oxygen of carbon 2 

limits pyrimidines to the m~ti form. Studies show that guanine prefers the syn orientation, but 

this can only occur in a helix if it is left-handed (Blackburn & Gait, 1996). 

B-DNA is the classic double-helical structure in which the base pairings are in the 

middle ofthe helix and are oriented nearly perpendicular to the axis (Watson & Crick, 1953). 

This right handed helix has a rise of 3.4 A, helix rotation of 36", and a pitch of ten residues 

per turn. When the nucleic acid is dehydrated, the A-DNA structure results in which the 

bases tilt 20" and are displaced 4.5 A from the center of the axis. With a pitch of 11 residues 



per turn and a smaller rise (2.8 A), A-DNA is a more compact structure. It has been 

suggested that the B-form occurs in high humidity because it requires two water molecules 

to bridge the gap of 0.66 nm between adjacent phosphates. At lower humidity, the A 

conformation occurs in which only one water molecule now can span the 0.53 nm between 

adjacent phosphates (Saenger et al., 1986). 

X-ray determinations of many examples of DNA molecules have provided groupings 

of DNA types with differing secondary structure characteristics. Decamer and dodecamer 

B-DNA crystal structure analyses have provided examples for about one quarter of the 136 

unique tetrads or four-base pair sequences found in the double helix (Dickerson, 1992). From 

such detailed studies, local helix axis parameters can be determined for how individual bases 

are distorted from expected averaged positions. Often the bases pair up in Watson-Crick 

fashion, but their orientations can vary slightly by translational displacement or by rotation 

about the x, y, or z axes (Dickerson, 1989). The bases can rise in a displacement up the z 

axis, slide along the y axis toward the sugars, or shift along the x axis into one of the grooves 

(Figure 1). The bases can rotate about their short (x) axis, called tilting, or turn about their 

long (y) axis, which is called rolling. If two paired bases roll in opposite directions, the base- 

pair assumes a propeller twist. Rotation about the z axis, perpendicular to the plane of the 

bases, constitutes the base twist. The average of all the base twist angles results in the global 

helix rotation. Should the hydrogen bonding between the bases depart from the preferred 

angles or separating distance between donor and accepter, then even more possible base 

movements arise. These seemingly unfavorable adjustments occur to allow for better stacking 

of the bases. The 7c - .rr: interactions of overlapping bases are so strongly an attractive force 



MINOR GROOVE I b 

Figure 1 .  Watson-Crick Base Pairing and the Base Pair Coordinate Frame 



that the base sequence predominantly determines both base orientation and helix conformation 

(Dickerson et al., 1994). 

Many of these base movements are restricted because the duplex is a relatively 

compact structure. Propeller twist can cause a purine-purine clash in either groove. 

Calladine's rules describe the four likely responses that B-DNA structures undergo to 

minimize the sequence-dependent base clashes (Calladine et a]., 1988). The propeller twist 

can flatten locally for either or both base-pairs. The base-pairs can roll (y axis) away from 

their clashing edges. One or both of the base-pairs can slide (shift) along their x axis to push 

the purine away from the helical axis. Lastly the helix axis can unwind locally to diminish 

interstrand purine-purine overlap. Altering the helical twist angle is principle among the 

adjustments to relieve base rolling steric clash. Depending upon sequence, the local helical 

twist angle can vary from 27.7" for ApG to 40.0" for GpC (Kabsch et al., 1982). This 

highlights the sequence-dependent irregularity of the helix. 

The sequence also causes a deformation to the sugar phosphate backbone. How 

compact or elongated the helix is varies as well as the nature of the grooves in terms of width 

and depth. The binding ofwater to the particularly oriented phosphates and the solvation of 

functional groups in the grooves can present a local shape which is recognized by proteins or 

preferred by small molecules. 

DNA in the left-handed Z form conformation usually requires a sequence of 

alternating pyrirnidine-purine bases and is facilitated by bromination or methylation of the C-5 

of cytosines, as in (dG-SmedC),,. High salt concentrations or specific counter ions can induce 

the flip to the left handed helix. In Z-DNA all the purine bases are in the .sy conformation 



and the sugars alternate between C-2'-endo and C-3'-endo pucker. In 2-DNA the helical 

repeat unit consists of two successive base pairs, a purine and pyrimidine. The GpC step has 

a helical twist angle of -50.6" and a base pair slide (y-axis) of -1.1 4 which is in contrast to 

a -9" twist and a slide of 5.4 A of the CpG step. These very distinct conformations, which 

cause the sugar-phosphate backbone to zig-zag, allow for greater base overlap. The minor 

groove ofZ-DNA is so deep that it contains the helix axis. What would be the major groove 

is a convex sufice, exposing cytosine-C5 and guanine-N7 and -C8. Certain base sequences 

then form specific conformational domains. If the two domains which differ greatly in 

conformation are juxtaposed, as in the case of a strictly B-DNA sequence next to a sequence 

capable of the Z-form at high salt, then the intervening residues are part of neither a right nor 

left helical region, but are considered to comprise a junction (Sheardy, 1988; Lu et a]., 1992). 

Early work in protein crystallography raised the question of whether the conformation 

ofthe molecule in the crystals might differ from that in solution (Matthews, 1977). Observing 

catalysis from crystallized enzymes and obtaining identical structures with crystals grown 

from very different solutions indicated that the examined crystal-locked proteins were not 

distorted fiom their native conformation (Eisenberg, 1970). It is accepted that x-ray studies 

of proteins produce a time-averaged image of the crystal which represents the stable 

equilibrium conformation of the molecule held within it (Blundell & Johnson, 1976). 

However, the dynamic conformations which nucleic acids are capable of are an intrinsic part 

of their structure and hnction. A prominent or critical motif present in the DNA, while in 

solution, may be literally squeezed out when the molecules are constrained in a crystal lattice. 

Although sensitive to changes, CD spectropolarimetry can at best indicate an averaged view 



of secondary structure. Some NMR techniques can show agreement or differences with the 

x-ray depiction. The CpG twist angle has been found to be 29.8" from x-ray crystal structures 

(Kabsch et al., 1982), but a study adds perspective to the sensitivity of the CpG step toward 

its flanking sequences in two decamers (Lefebvre et a]., 1995). Comparison of the solution 

structures by NMR illustrates the malleability of CpG, which has a helical twist of 42" and a 

roll (y-axis) of -lo for the sequence -ACGT- while the -TCGA- oligomer has a 35" twist and 

a 3.7" roll. Early reports on many synthetic oligonucleotides often revealed crystals of the A- 

type DNA structure. Some of these oligomers, mostly octamers, in fact appear to assume the 

B-form in solution as determined by NMR. Trends indicate that the crystal packing may favor 

A-DNA for octanucleotides (Blackburn & Gait, 1996). In addition to dynamic behavior in 

solution, native DNA in the cell is attended to by various counter ions, positively charged 

nucleoproteins and nucleosomes. Any DNA studies with clinical implications should be 

considered in a general sense and with caution. 

DNA Sources and Synthesis 

While DNA can be obtained from any cell, it has been traditionally extracted from 

sources rich in material, such as animals (calf thymus), bacteria (e. coli) and viruses (lambda 

phage). The polymerase chain reaction (PCR) allows for an extremely small amount of DNA 

to be amplified geometrically until necessary quantities are obtained. If a large DNA 

sequence, gene, or group of genes is required in great abundance, the desired sequence is 

cloned by means of a vector into a cell line. Cultivating the cells makes exact copies of the 

inserted DNA. While these sources of DNA have their applications, the studying of nucleic 

acid structure at the inolecular level ofien requires small molecules of DNA which are 



synthesiied one nucleotide at a time. Commercially available automated solid support DNA 

synthesizers can make DNA molecules of less than 100 bases in usehl micromolar scale 

quantities. 

The phosphoramidite chemistry for solid support synthesis was worked out by 

Caruthers (1985). The breakthrough in this phosphite triester method is the highly efficient 

coupling reaction between a 5'-hydroxyl group of a deoxynucleoside and an alkyl 5'-DMTr- 

(N-acy1ated)-deoxynucleoside 3'-O-(N,N-diisopropylamino)phosphite. Nanogram quantities 

of nucleoside, producing micromoles of base pairs, are employed for every milligram of 

column resin. Silica or control pored glass is used with a 10-20 atom linker to the 3' end 

residue. The ester linkage to the 3'-oxygen is base labile, but less so than the protecting 

groups. The 3'-hydroxyl is a seconda~y alcohol which can be chemically modified with a 

phosphitylating reagent. The resins with linked tritylated bases and the phosphoramidites for 

the base building blocks are commercially available and stable if kept dry and at a basic pH. 

The order of synthesis is 3' end to 5' end, which is the reverse of the convention for writing 

sequences, i.e. 5' end to 3' end. The automation involves a cycle of four steps: 1) 

detritylation of the 5' end, 2) activation and coupling, 3) capping any failed sites, and 4) 

oxidation of phosphite to phosphate. The reagent lines and column are washed with 

acetonitrile in between each step. The synthesis scheme is depicted in Figures 2 A, B, and C. 

The 5'-hydroxyl group is a primary alcohol which is protected with a 4,4'- 

dimethoxytriphenylmethyl group (or dimethoxytrityl or DMTr-) by means of DMTr-C1 and 

pyridine (Figure 2 A iv). 



Exocyclic Nitrogcn Base Protcctiaa aad Deprokcdon f a  G, A, C 

Protected 5'-OH 

Figure 2 A: Protection/Deprotection of the nucleoside bases G, A, C and the sugar 5' 
primary hydro* group. 



Activation 

Nllctboside Pbasphoramiditc 
Coupling 

Activated 
Phosplxxamidite + 

Figure 2 B: Phosphoramidite Activation (i), Coupling (i), and Capping of the failure 
sequences (iii). 



(9 Oxidation of Phosphite to Phosphate 

Removal of B-cyanoethyl group 

( iii) Detritylabon 

P"" 

Protected 5'-OH 

H* is CC13COOH during synthesis DMTr--OH 

H+ is acetic =id during 

Figure 2 C: Oxidation of Phosphite (i), Removal of the cyanoethyl group (ii), and 
Removal of DMTr group. 
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The support is activated by detritylating the initial tethered nucleoside and freeing its 

5'-hydroxyl with trichloroacetic acid, TCA (Figure 2 C iii). Exposure to TCA should be for 

less than three minutes to ensure deprotection of only the chain terminal trityl group and to 

avoid depurination. Activation of the phosphoramidite building block occurs when tetrazole 

protonates the tertiary arnine (Figure 2 B i). With triethylamine to deprotonate the 5'-oxygen, 

efficient coupling occurs by nucleophilic attack and loss of diisopropylamine, forming the 

phosphite linkage (Figure 2 B ii). The coupling efficiencies need to be 99.6% or better in 

order to obtain good yields of a 30 base or longer oligonucleotide polymer. In the third step 

of the cycle the coupling failures are capped on their 5'-OH with an acetyl group via acetic 

anhydride, tetrahydrofuran (THF), lutidine (2,6-dimethylpyridine), pyridine, and nucleophilic 

catalyst N-methylimidazole (Figure 2 B iii). The acetyl group cap will not be removed during 

the subsequent detritylating activation steps which stops the failure strands in their tracks. 

Originally the capping chemistry utilized DMAP which bound irreversibly to guanine and gave 

rise to a fluorescence. The phosphite is oxidized to a phosphate triester with iodine, pyridine, 

water, and THF (Figure 2 C i). This ends the cycle, leaving a resin supported dinucleotide 

with a dimethoxytrityl group on the 5' end. The cycle is repeated until the programmed 

sequence is completely coupled and oxidized. 

The exocyclic nitrogens on the bases other than thymine need to be protected in order 

not to be modified by the cycle chemistry. Isobutyryl chloride (or anhydride) is employed for 

blocking the arnide of carbon-2 of guanine (Figure 2 A i). The bulk of the protecting group 

shields N1 as well. The oxygen of carbon-6 can also react and become blocked. The amide 

of carbon-6 of adenine is protected with benzoyl chloride (Figure 2 A ii). The same reagent 



is used for cytosine to react with the amine of carbon-4. The oxygen of carbon-2 of cytosine 

is also reactive toward benzoyl chloride. The benzoyl group can react with an OH on the 

sugar, but it is readily removed in base. Concentrated ammonia m,, 11.8-M) is added to 

the column at the end of the sequence completion, cutting the linker ester and removing the 

DNA from the support to the collection vial. The base initiates removal of the nucleic acid 

protecting groups (isobutyl and benzoyl amides, Figure 2 A), as well as removal of the beta- 

cyanoethyl groups fiom the phosphate triesters to form phosphate diester links (Figure 2 C 

ii). 

The remaining protecting groups are removed by treatment with concentrated 

ammonium hydroxide (I 1.8-M) in an oil bath at 55 "C for 18 hours (or three days at room 

temperature). These reagent conditions convert every phosphate triester to a diester and 

released acrylonitrile, CH,=CH-CN. The still tritylated (hll sequence) strands are separated 

fiom failure sequences and cleaved protecting groups by a trityl select reverse phase HPLC 

as described in the methods (Sheardy, 1988). Acetic acid (0.1-M) detritylates the ful l  strands 

within an hour (Figure 2 C iii). A final reverse HPLC preparative run separates any 

dimethoxytrityl alcohol from the very pure oligonucleotide. In this manner, very pure DNA 

can be obtained for studies. The purity can be checked by running a native or denaturing 

polyacrylamide electrophoresis gel (PAGE) and observing a single band upon staining. To 

check the sequence, two additional avenues are available. A Maxam-Gilbert sequencing gel, 

with a 3 ' ~  end label or fluorescence tags, will provide a complete readout of the base 

sequence. One set of reactions are selective for the purines while another set of reactions pick 

out the pyrimidines. Secondly, an enzymatic digest with snake venom phosphodiesterase 



(SVPD) and bovine alkaline phosphatase (BAP), at 37 or 40 CO, will convert the strands to 

mononucleosides. Those monomers can, in turn, be separated on C-18 Novapac RP HPLC 

to verifL content, to determine the ratios of the bases, or even to quantifL them by peak 

heights or areas. 

The Duplex State 

Whether on single strands or in a duplex, adjacent bases readily stack at moderate 

temperatures, as determined by optical and NMR studies (Cantor & Shimmel, 1980, p. 1121). 

The process of two complementary single strands joining together is even more sensitive to 

environmental conditions and several factors. The attractive forces of hydrogen bonding and 

hydrophobic interactions overcome the repulsive electrostatic forces in complementary 

strands of three or more bases. Duplex stability depends upon the nature of the DNA. The 

G:C base-pair has three hydrogen bonds and is held together better than the two hydrogen 

bonds in A:T pairs. Generally duplex stability increases with the percent GC content. 

Conversely, AT rich regions are more readily separated and are involved in the initiation of 

replication and transcription. There is a sequence dependence on duplex stability as well. 

Purine-purine stacking is the most stable overlapping interaction, followed by purine- 

pyrimidine which is more stable than pyrimidine-pyrimidine stacking (Saenger, 1984). 

Recalling the earlier discussion, many conformational distortions are undergone to maximize 

base overlap. The adjacent bases have a pronounced effect on base stacking and helix 

stability. The nature ofthe solvent can also promote or discourage helix formation in several 

ways. A change in pH can alter the tautomeric form of the bases and thus their interactions. 

The ionic strength of the solvent can stabilize the duplex by shielding the phosphate 



repulsions. Studies which vary the salt concentration are, therefore, useful techniques. 

The thermodynamics of helix formation can be addressed as a two-state transition 

even though it is understood that both paired and single strands are dynamic structures of 

various conformations. The observed equilibrium constant for the formation of a double 

stranded structure, D, out of two single strands, S, and S2, is Kobs 

K O  = (D)(S)(S) or AG,,, = -RT In KO, ( 1 2 )  

The change in free energy of duplex formation, AG;, depends upon the change in heat 

capacity or enthalpy of helix formation, AH,,(', and the entropy of double strand formation, 

AS;. 

AG; = AH; - T AS; (3 

The entropic component of the helix to coil transition is a source of the temperature 

dependence. Raising the temperature separates the strands in what is classically termed 

"melting" of the DNA because the transition can be as dramatic as a phase change. The 

midpoint of the thermal denaturation is called the melting temperature, T, . The two-state 

model for duplex formation does not give a good fit with small oligomers because the effects 

of fraying ends, more readily separated AT-rich strings, and looped regions are not negligible. 

When the bases are stacked, their excitation dipoles are coupled, which reduces the 

UV absorption. In the melted single strand, the bases are more free to be unstacked and their 

absorbance more closely resembles that of the mononucleotides. This hyperchromicity is one 

way to monitor the helical duplex to coil transition as a function of temperature. For small 

oligomers the melting transition is reversible. The duplex separation (melting) and 

reformation (reannealing) is quite cooperative. For longer DNA molecules reannealing is 



more problematic in that the two DNA strands must find the correct register (Geiduschek, 

196 1). There are many possible incorrect reformations, including interstrand loops and 

slipped sequences. Once some region has joined up in a nucleation duplex, the bases can 

adjust by separating on a local, short range basis called breathing. The rate at which the 

incorrect pairings separate to single strands and then rejoin as correct double strand is so slow 

that the large DNA simply remains in a denatured random coil state. 

Reversible Interactions of Small Molecules with Nucleic Acids 

Reversible interactions occur between nucleic acids and many species, including: 

water, metal ions, metal complexes, small organic molecules, and proteins. These molecules 
1 

and ions usually stabilize the DNA duplex and in some cases induce big changes in 

conformation. There are three modes of binding to nucleic acids: exterior electrostatic 

binding, groove-binding and intercalation. First and foremost one should consider 

electrostatic binding. 

Nucleic acids are highly charged polyelectrolytes, so they are very sensitive to changes 

in the ionic environment. In developing polyelectrolyte theory, Manning (1978) showed that 

simple cations interact with nucleic acids in two ways. The ions can undergo direct binding 

or condensation to the polymer, or ions can be a part of the counterion atmosphere which 

provides electrostatic shielding for the net remaining charge on the polymer. The counterion 

binding is approached with a dimensionless parameter 5 , defined as: 

= e" ekTb 

where e is the charge on the electron, e is the solvent dielectric constant, k is the Boltzmann's 

constant, T is the absolute temperature, and b is the average spacing between charges along 



the length of the polymer. In water at 25 OC the value of e2 / ekT is 7.14 A. When 5 < 1, 

no ions condense, but if > 1, condensation of counterions will occur until 5 is reduced to the 

value of one. The fraction of a counterion condensed per polymer charge is 

0, = 1 - 5-'. ( 5 )  

For double stranded B-form DNA, two phosphates are between each base pair, at 3.4 4 so 

b is 1.7 A. A net negative charge of 1 - €I,, remains on each phosphate. So 1 - 0, = (-' = 1 

= b / 7.14, resulting in one net negative charge remaining at every 7.14 A after counterion 

condensation. This remaining charge is shielded by ions in the Debye-Huckel counterion 

atmosphere to the degree of E,", the net fractional charge on each phosphate. 

Ionic strength has an effect on the equilibrium of duplex formation via the measurable 

role of monovalent cation M. For the transformation 

S,@) + + A,IM FT' D(O) , (6) 

in which Ail is the counterion uptake upon double helix formation, the true equilibrium 

constant is K,'O). 

KT(O) = (D(~))/(S,(~))(S~(~))(M)~" or AGT(O1 = -RT In K,'O) ( 7 8  

The superscript (0) denotes a particular reference state which can be chosen as the polymer 

with a complement of condensed counterions. The difference between KO, and K,'O) is due 

to two factors, the change in free energy involved in the uptake of counterions, and the 

change in Free energy of the ion atmosphere shielding between the double and single strands. 

Shielding is more important for single stranded nucleic acid than for double stranded polymer 

because the net charge after counterion condensation is much higher for single strands than 

for double strands. Conversely, the double stranded forms bind more condensed ions than 



the single strands because the duplex has a higher charge density than single strands by virtue 

of a more compact structure and two strings of phosphate. With increasing salt, the effect 

on the equilibrium of the interactions of cations with DNA act in opposition. Condensation 

favors the duplex form while shielding favors the single strands. The AH above is the 

counterion uptake or release with respect to a cooperative unit in the melting process, which 

is not easily known. Record (1978) has shown the dependence of melting temperature, T, 

, on salt concentration. 

6TJ6 log WaCI] = {2.303RTm'/AH}An (9) 

Here An is the differential ion binding term which represents the release of counterions per 

duplex oligomer upon denaturation. There is a linear relationship between T, and log WaCI] 

which reflects the linkage between sodium ions binding and the duplex to single strand 

transition. The enthalpy change per phosphate, AH, reflects the intrinsic heat of helix 

formation as well as the heat of any small molecule binding or release. The differential ion 

binding term (An) is a reflection of the sensitivity of DNA to the ionic strength of the solution. 

Groove-binding interactions involve direct interactions between the bound molecule 

and the edges of the base-pairs in either the major or minor grooves. The size of the minor 

groove favors small molecule bindins, while proteins have been found to interact with both 

grooves. Many natural antibiotics, such as netropsin and distamycin, are minor groove 

binders which curve to fit the space and displace bound water molecules (Kopka et a]., 1985; 

Pelton & Wemmer, 1989). Because of the nuances of base structure, the shape of the groove 

can be a handle for sequence-specific recognition. Some groove-binders are positively 

charged, adding an electrostatic component to the binding free energy. 



The model for intercalation involves a molecule containing planar aromatic rings 

which inserts between the adjacent base-pairs after the bases have separated and become 

unstacked. Separating the bases along the helical (2) axis unwinds and lengthens the double 

helix. These changes can be determined by hydrodynamic methods, such as viscosity which 

is sensitive to helix length, or by circular dichroism spectropolarimetry. Some natural 

products are charged groove-binders with aromatic rings which intercalate. Thermodynamic 

studies are able to separate the proportion due to each of the binding modes (Chaires, 1990; 

Chaires et al., 1993). 

It has been observed that intercalators reach saturation upon binding a maximum of 

one intercalator per two base-pairs. This is termed the neighbor exclusion principle, which 

states that intercalators can at most bind at alternate possible sites. Once a non-specific 

intercalator binds to a site, the sites on both sides of the occupied position become 

unfavorable toward further binding (Carlson et al., 1993). One possible explanation is that 

the intercalator induces conformational changes in the adjacent sites which prevents binding 

there. Another explanation by Friedman and Manning (1984) is that upon binding of the 

intercalator, some of the charge of the DNA is neutralized and the elongated local helix has 

a slightly lower charge density. As intercalators bind, the favorable release of condensed ions 

is reduced, lowering the observed equilibrium constant as well. This model is not only 

consistent with that predicted by neighbor exclusion, but it also applies to any non-specific 

binding mode. 



Binding of Metal Complexes to Mononucleosides 

Investigators have looked at the interactions of metal complexes with nucleosides and 

nucleotides as studies in their own right and for insights into interactions with DNA. The 

pentaammineruthenium complex preferentially coordinates to N7 of the imidazole ring of 

guanine with stabilizing hydrogen bonds from the ammines to 0 6  (Clarke & Taube, 1974; 

Clarke & Taube, 1975; Clarke, 1977). Substitution inert complexes between cobalt (111) 

ammines and ATP and ADP which have been studied by "P-NMR all indicate covalent 

binding between the metal and oxygens of the charged phosphate groups (Cornelius et al., 

1977). The monomeric nucleotide unit has metal binding sites in the base, sugar, and 

phosphate groups. In polynucleotides, those binding sites are altered. The phosphate group 

has decreased charge and another sugar ester linkage. The sugar has a second ester linkage, 

and lastly, the base undergoes hydrogen bonding with its complementary base while 

embedded in the helix (Marzilli, 1981). The double helix is more constrained compared to 

single stranded oligonucleotides, in which the bases are not hydrogen bonded and there are 

more varied possible conformations that allow for base stacking. Therefore making 

predictions even between single and double stranded structures is problematic (Kozelka & 

Chottard, 1990). 

In a study of inert metal-purine complexes in which alkylation reactions were 

employed, the coordination sites of the pyrimidine ligands were directed by steric factors 

(Marzilli et al., 1975). Steric repulsions result in adjustments in conformation for the ligand 

in a cobalt (111) glycinate complex (Buckingham et al., 1974). Steric repulsions also play a 

role in the interligand interactions between the exocyclic group on the bases and the chelated 



polyammines, which indicated binding might lead to specificity among the different bases 

(Marzilli et a]., 1974). The small size of these simple cobalt complexes lend themselves well 

both for binding to regions of DNA and for substitutions of one or more ligands. Cobalt (111) 

complexes have a very high preference for binding to nitrogen over oxygen donor sites on 

nucleic acids and nucleotides because it is a soft metal with a lower charge-to-radius ratio and 

more polarizable electron shells (Marzilli, 1981). Evidence for the binding of simple cobalt 

(111) complexes to nucleoside bases indicate outer sphere coordination in both crystal 

structure and solution (Marzilli, 1977; Marzilli, 1981). Additional evidence for such 

interactions of purine nucleotides with [Co(NH3),13+ or cobalt (111) hexaammine, 

[Co(NH3),CI]" or cobalt (111) pentaammine chloride, and [Co(NH3),CI2]+ or cobalt (111) 

tetraammine dichloride has been put forth from FT-IR and NMR studies (Tajmir-Riahi, 199 1). 

Early studies of the structures of cobalt (111) complexes with adenine and theophylline 

indicated hydrogen bonding altered the conformation of the product (Kistenmacher et al., 

1973; Marzilli et al., 1973). They suggest that octahedral complexes with hydrogen donor 

ligands attached may achieve selectivity for guanine over adenine bases. It was hrther 

indicated that the reaction of the cobalt complex frnns-[Co(en),CI,]+ with a DNA polymer 

should not severely disrupt the intermolecular Watson-Crick hydrogen bonding for G:C 

(Marzilli et al., 1973). 

I~lteractions betweell Select Metal Coniplexes and Nucleic Acids 

It is well known that the inert complex cobalt (111) hexaammine induces the B to Z 

transition in appropriate DNA polymers (Behe & Felsenfeld, 198 1) and in synthetic oligomers 

(Winkle & Sheardy, 1990; Lu et al., 1992). The stabilization of Z-DNA by [Co(NH3),13+ has 



also been attributed to specific hydrogen bonds between three of the ammine groups with 

guanine and phosphate accepter sites on the DNA helix (Gessner et a]., 1985). While all 

cations are drawn to DNA to neutralize the negatively charged lattice, monovalent cations are 

bound in a nonspecific way at a mobile layer, termed "territorial," in close proximity to DNA 

(Friedman & Manning, 1984). In contrast, divalent and trivalent cations bind with specific 

interactions with individual moieties. In some such fashion cobalt (111) hexaammine induces 

the B to A transition in oligomers of sequence dCCCCGGGG (Xu et a]., 1993). This cobalt 

complex also induces an unusual non-Z like structure in a DNA oligomer which contains a 

(dC-dG), segment (Winkle et al., 1992). Cobalt (111) hexaammine has been shown to bind 

to natural occurring DNA with a preference for regions rich in GC content (Braunlin & Xu, 

1992; Braunlin et a]., 1987). Various cobalt complexes have been synthesized for binding 

studies with nucleosides (Sorrel1 et a]., 1977). The candidate molecules are screened for 

novel, informative or usefil model complexes between metal ions and nucleic acids. 

A number of reports have been published of metal cations binding to RNA and DNA. 

Transition metals such as manganese (Jack et al., 1977) and complexes of cobalt, platinum, 

and iridium (Karpel et al., 1975) have been studied in the binding to RNA. A nickel(I1) 

macrocyclic complex bound to DNA and facilitated oxidative cleavage of the polymer (Muller 

et al., 1992). There is a report of x-ray evidence of manganese bound to N7 of guanosine 5'- 

monophosphate (de Meester et at., 1974). A study of the effect of the carcinogen chromium 

on the thermal denaturation of DNA was limited in that at a pH of greater than 6, the 

hydroxychromium species precipitates (Pett et a]., 1985). 



A number of small metal complexes with appropriate ligands have been shown to 

interact with DNA by covalent attachment of the nitrogenous bases to the metal via loss of 

a labile ligand from the metal. For example, [RU(NH,),(~H~)]~+ has been shown to bind to 

calf thymus DNA primarily at N7 of guanine bases (Clarke et al., 1986). It has been 

suggested that c i s - [ ~ u ( ~ ~ , ) , ~ l J ~ '  behaves in a manner similar to the anti-tumor drug 

cisplatin (Clarke, 1980). 

Cisplatin, cis-diamminedichloroplatinum(II), also selects sites rich in G bases, 

covalently attaching to the N7 position (Murry et al., 1992; Brabek et al., 1992; Hopkins et 

al., 1991 ; Bruhn et al., 1990). Echoing the modeling studies of traits-[C~(en)~Cl,]', plausible 

structures for cisplatin and double stranded DNA could involve either intact Watson-Crick 

base-pairing or disrupted Watson-Crick base-pairing consisting of weaker hydrogen bonds 

or bihrcated hydrogen bonds (Kozelka & Chottard, 1990). Both intrastrand and interstrand 

crosslinking by cisplatin have been observed, with intrastrand crosslinking predominant at 5'- 

GG-3' sites (Pinto & Lippard, 1985; Rahmouni & Leng, 1987; Bruhn et al., 1990) and 

interstrand crosslinking occurring at 5'-GC-3' sites (Hopkins et al., 1991). Both cisplatin (cis- 

Pt(NH3)+3J and cis-dichloro (ethlenediamine) platinum(I1) platinate the following DNA 

sequences in an interstrand fashion: GpG, 65%; ApG, 25%; GpNpG, 6%. The AG adduct 

invariably occurs with adenine on the 5' end of the duplex (Eastman, 1983; Eastman, 1986). 

The distances between nitrogens in the sequences can account for some of the observed 

specificity. With some uncertainty arising from the differences in the local helical twist, there 

is approximately 4.5 A separating N7's in GpG sites and a 4 A distance in ApG sites. Also 

the N7 of guanine is more nucleophilic than N7 on adenine. The guanine nitrogens in a 



GpNpG sequence are spaced at 8 4 but that can vary with a bend or wedge step in the helix 

conformation. The distance between the N7's of interstrand G's in GpC sites is also 8 4 but 

in this case the separating vector makes an angle of about 15" with the helical axis and that 

vector is at least 2 A away From the helical axis. In contrast, the interstrand distance between 

nitrogens in CpG sites is 9 4 but because of the turn of the helix, those nitrogens are on the 

floor of the major groove on opposite sides of the helical axis. These two nitrogens are 

actually in a straight line with a third point that is on the helical axis. The resulting steric 

hindrance prevents the metal complex from getting close enough to both guanines in the CpG 

sequence. 

In our preliminary experiments, it was found that pentaammineaquocobaIt(III), 

[CO(NH,),(OHJ]~', bound to a small oligomer differently from cobalt (111) hexaammine. The 

replacement of one of the ammine groups on the metal with a more labile ligand appeared to 

cause an irreversible modification of the DNA (Calderone et al., 1995). Since this cobalt 

complex seemed to be a novel modifier of DNA, we undertook an investigation to delineate 

the interactions of pentaammineaquocobaIt(III) with nucleic acids. 



CHAPTER I1 

EXPERIMENTAL SECTION 

2.1 MATERIALS 

A. DNA Preparation 

DNA oligomers were synthesized via the phosphoramidite method (Caruthers, 1985) 

on an Applied Biosystems 380B DNA synthesizer (Foster City, CA). The remaining 

protecting groups are removed by treatment with concentrated ammonium hydroxide (I 1.8 

M) kept at 55 "C for 18 hours. M e r  incubation the acetonitrile and ammonia are removed, 

together with ethanol and triethylamine, by rotovap reduced pressure distillation. Ethanol 

helps remove water azeotropically, while triethylamine vaporizes last, keeping the pH basic. 

Without triethylamine, any water present would be acidic enough to detritylate the nucleic 

acid product after the ammonia is removed. The failure sequences have hydroxyl groups at 

both ends as a result ofthe removed linker at the beginning 3' residues and the removed acetyl 

cap at the 5' positions (which are missing the dimethoxytrityl group, DMTr). Complete 

strands are purified by trityl select reverse phase HPLC on a Waters two pump (Model 5 10) 

Chromatography system utilizing Baseline Acquisition Software (version 2.1) with a 

microBodapak C- 18 RP Plastic Radial (Z-module) semi-prep column. Acetic acid (0.1 -M) 

detritylates the fill strands within an hour. Most of the free dimethoxytrityl alcohol, DMTr- 

OH, is removed by extraction with diethylether. A final reverse HTLC preparative run 

removes any DMTr-OH from the very pure oligonucleotide. Product purity was checked by 

analytical HPLC and native and denaturing polyacrylamide gel electrophoresis (PAGE). 



Prior to any studies, oligomers were dissolved in buffer, heated at 80 OC for two 

minutes and allowed to cool slowly for a uniform heat annealing. 

Calf thymus DNA (Sigma Chemical Co., St. Louis, MO.) was sonicated in phosphate 

buffer (for 1 minute in 5 second intervals, on ice), dialyzed against water and lyophilized. The 

natural DNA was reconstituted in phosphate buffer and a portion melted to check the sample 

batch. Sonicated calf thymus DNA was strictly not heat annealed as this would denature the 

sample. 

B. Cobalt Complex Preparation 

PentaammineaquocobaIt(III) perchlorate was synthesized from the carbonato- 

pentaamminecobalt(II1) nitrate salt (Basolo and Murmann, 1953). Clean air was bubbled for 

24 hours through a mixture of 300 grams of cobalt nitrate hexahydrate in 150 ml. water and 

450 grams of ammonium carbonate in 45 ml. water and 750 ml. concentrated aqueous 

ammonia (1 1.8 M). After cooling in an ice bath, the crystals were collected on a filter, 

washed sparingly with ice cold water, alcohol and ether, and dried at 50 OC. The product 

(crude) was recrystallized once from water, following a couple hours on a steam bath, and 

dried as before. 

The carbonato complex was dissolved in hot water and treated with 60% perchloric 

acid, with magnetic stirring, until all carbon dioxide evolution ceased. The wet residue, 

collected by filtration through fritted glass, was redissolved at 90 OC, and again treated with 

60% perchloric acid. Cooled to 0 "C for twelve hours, the complex was hrther recrystallized 

by dissolving it in water at 90 "C, adding 60% perchloric acid, and digesting on a steam bath 

for a couple hours. The product was filtered, washed sparingly with ice cold water, ethanol 



and ether, and dried in a vacuum desiccator. 

C. Reagents and Buffers 

Cobalt (111) hexaammine was purchased from Aldrich and used without further 

purification. Phosphoramidites were purchased from Applied Biosystems Inc. (Foster City, 

CA) or Cruachem (Dulles, VA). HPLC grade solvents were obtained from Aldrich. 

Nucleosides and mononucleotides were from Sigma. Solutions and buffers were made from 

water that had been deionized, passed through Barstead Thermolyne Organic Removal and 

Ultrapure Mixed Bed cartridges, distilled with a Wheaton Autostill 5, and filtered through 

0.45 micron cellulose membrane (Millipore). Phosphate buffer (5 mM, pH 7) with 50 mM 

NaCl and 0.05 mM EDTA was used throughout (standard phosphate buffer), except when 

otherwise noted. 

2.2 METHODS 

A. UV Spectra and Melts 

Spectroscopy of all samples were obtained with a Gilford Response I1 spectrometer 

(Ciba-Corning, Oberlin, OH) with a thermostated cell holder. Absorbance readings and 

spectra were obtained at 25 OC, except when otherwise noted. The thermal program used to 

obtain a melt absorbance profile monitored a specific wavelength while the samples were 

slowly heated at about 0.3 CO/minute from a native temperature to a denaturing temperature, 

typically from 20 OC to 95 "C. To degas the solutions, the room temperature eppendorf tubes 

were placed in a Savant SpeedVac Concentrator under vacuum for 1-2 minutes. Some small 

oligonucleotide sequences can readily form structures other than the duplex (i.e. hairpins) if 

left in solutions of low ionic strength. In order to maximize the duplex state in the case of Z8, 



(SmedC-dG),, the oligomer solutions were loaded hot and annealed in the cells right before 

starting the melt. The empty cells were heated in the sample holder to 76 "C while the 

solutions, in eppendorftubes, were heated to 80 "C in a dry bath. The hot oligomer solutions 

were pipetted into the hot cells which were then inserted into the 76 "C holder. Thermal 

programming was run from 95 "C to 20 "C at about 4.0 C"/minute to anneal the samples. Not 

only does this "loading hot" procedure minimize hairpin structures, but also the thorough 

degassing of the solution and the cooling of the cell dead volume air bubble can result in 

improvement in lower and upper base lines. 

The melt profiles were transferred to an external PC as an ASCII file via Procomm 

Software version 2.4.1 (Datastorm Technologies Inc., Columbia, MO), sorted and reheaded 

in order to be analyzed by GOMELT and GODIFF software (Turbo-Basic, Borland 

International) for transition temperatures and thermodynamic parameters (Marky & 

Breslauer, 1 987). The program GOMELT can be used to obtain melting temperatures, T,, 

provided the lower and upper base lines are low in noise and well indicated. The midpoint 

of the transition is calculated after left and right margins, typically at 35 "C and 90 "C 

respectively, are used to define the baselines. The program GODIFF can be used to calculate 

the first derivative, or T,,, , of the melt profile. Larse DNA, such as sonicated calf thymus, 

melts in a cooperative fashion. The big duplex polyelectrolyte separates into single strands 

while spanning approximately a 10 CO change or less in temperature. The phase transition is 

a sharp one and the first derivative analysis is unambiguous. In the case of small oligomers, 

the fraying ends or end efects are not negligible, making its thermal transition less concerted 

than that of larse DNA. The resulting first derivative often is a small change hidden by noise. 



The options in the GODIFF program offer flexibility when applied to the uncertain first 

derivatives of small oligomers. This program allows local pseudo maxima, which arise from 

noise in the melt, to be removed one at a time. Thus, a melt which has ambiguous baselines 

and relatively high noise can be analyzed provided the transition is dramatic enough. 

GODIFF uses an NPI, or number of points interval, to calculate the first derivative. A higher 

interval results in a more smoothed derivative curve. Depending on the data set, values for 

NPI can be set at intervals of 5 degrees through the range from about 20 to 100, or higher. 

The derivative sets, for which a good representative apex value surfaces, can number as many 

as 15. Removing false maxima eliminates the effects of obvious noisy points. Small subtle 

errors from noise can remain and affect the calculated T,,, . By smoothing with a range of 

NPI values, unnoticed bad points are calculated in with different sized averages. The highest 

and lowest figures then are likely to be unrepresentative of the set of derivative values 

because of how the noise near the true derivative of the curve slants the analysis. So in 

addition to averaging all the derivatives, removing the highest and lowest extreme numbers 

(in a manner similar to jury selection) before averaging can produce a T,,, which is less 

affected by noise. 

In the case of nucleosides, a series of spectra were taken after the temperature was 

increased 10 "C and allowed to equilibrate for 10 minutes. This set of thermal scans was an 

alternative to a programmed melt in order to monitor the effect of temperature on solutions. 

B. Circular Dichroism Spectroscopy 

CD spectra were recorded on an Aviv 62A DS circular dichroism spectropolarimeter 

(Aviv Associates Inc., Lakewood, NJ). Each spectrum was usually taken as a single scan 



with a time averagin~ constant of 2.0 seconds and a 1.0 nm step size. AAer the buffer 

background was subtracted, the zero offset was checked a~ainst 320 nm where no absorbance 

occurs. Aviv Software (version 4.lt) was used to smooth the curve by least squares 

polynomial fit (up to 10"'order). Nearly all spectra were obtained with temperature control. 

C. Equilibrium Dialysis 

Dialysis was carried out in Spectrum SpectraPor molecular porous membrane tubing. 

Tubing #6, with molecular weight cutoff of 1,000, was used with 12-mer or smaller 

oligomers, while tubing #3, MWCO 3,500, was used with larger oligonucleotides. Calf 

thymus DNA, sonicated or not, required the higher MWCO 8,000 of SpectraPor tubing #7. 

In addition to SpectraPor closure clips, the dialysis tubing was also tied on the outside of the 

clips with dental floss to keep sample loss to a minimum. When divalent or trivalent cations 

were involved with oligonucleotides, the dialysis was run first against three changes of 0.2 M 

NaCl followed by three changes against distilled water. 

D. Atomic Absorption 

Graphite hrnace atomic absorption spectra were recorded at the Analytical Research 

Department ofMerck and Co. Inc. (Rahway, NJ) with a Polarized Zeeman Spectrometer Z- 

8270 from Hitachi using a platform graphite tube with Argon purge. The temperature 

program involved drying from 80 "C to 140 OC for a 30 second hold, and then atomizing at 

2700 "C and reading the absorbance at 240.7 nrn. Readings were performed in triplicate using 

a standard SSC-300 Hitachi Autosampler and compared to an external standard curve at 20, 

50, and I00 ppb. 



E. HPLC 

DNA oligomers were purified with a Radial Pak reverse phase C-18 HPLC column. 

The still tritylated (full sequence) strands are separated from failure sequences and protecting 

groups by a trityl select reverse phase HPLC using triethylammonium acetate buffer (0.1 My 

pH 7.0) in which the amount of acetonitrile, CH,CN, was varied between 15% and 35% 

(Figure 3). Acetic acid (0.1-M) detritylates the full strands within an hour. Most of the free 

dimethoxytrityl alcohol is removed by extraction with diethylether. A final reverse HPLC 

preparative run, which uses an CH,CN range of 8% to 20%, removes any DMTr-OH from 

the pure oligonucleotide (Figure 4). 

Mononucleosides were analyzed with a Radial Pak reverse phase Novapak HPLC 

column. Adequate separation of the peaks of the principle mononucleosides was obtained by 

varying the acetonitrile between 2% and 15% (Figure 5). It should be noted here that under 

the conditions used, 5medC eluted just before dG, with a slight peak overlap in that there was 

not a return to baseline. The elution order is: dC, (SinedC), dG, dT, SBrdC, dA. 



Figure 3. Preparative HPLC of DMTr-GC-site and Analytical Runs of GC-site detritylation. 

Preparative RP C-18 HPLC of DMTr-GC-site (A) shows peaks for the detritylated 
failure sequences, protection groups, and tritylated product. Preparative runs are typically 
monitored with the least sensitive detector range of 2.0 AUFS at 280 nm, for which the DNA 
extinction coefficient values are about half that at 260 tun. Analytical HPLC traces follow the 
acid-catalyzed detritylation of GC-site, in which (B) the peaks correspond to trityl-fi-ee 
oligonucleotide, protection groups, and DMTr-DNA. After 15 minutes (C) the peak profile 
differs in that the last peak cluster is smaller. 



Figure 4. Preparative HPLC of GC-site. 

The center portion of the preparative RP HPLC, which contains the best cut of 
oligonucleotide product, is surrounded by various peaks and shoulders. The material 
contained therein is cut into separate fractions. All absorbances are collected since the high 
concentrations of unique polymers can result in unforeseen I-IPLC anomalies and 
unexplainable elutions (N. Kallenbach, conversation in person). Analytical HPLC is used to 
determine the peak purity of secondary fractions. 



Figure 5. Analytical RP NovaPak C-18 HPLC of a mixture of nucleosides which elute in the 
order dC, dG, dT, SBrdC, and dA. 

The chart paper was scrolled at 0.5 centimeters per minute and the absorbance was 
monitored with a sensitivity range set at 1.0 AUFS at 260 nm. 



CHAPTER I11 

RESULTS AND DISCUSSTON 

The interactions of the cobalt complex pentaammineaquocobaIt(III), 

[CO(NH~),(OH~)]~', with DNA has been examined by UV absorption, circular dichroism, 

HPLC, atomic absorption, and melting temperature (T, of helix-coil transition) studies. The 

results are presented below. 

3.1 A Labile Cobalt Complex 

The preliminary work focused on the interaction of pentaammineaquocobaIt(III), 

[CO(NH,),(OH,)]~', with a known Z-forming DNA oligomer, (5medC-dG), , or 28 (Table 

I). Circular dichroism (CD) studies indicated that this olisomer will assume a right-handed 

B conformation at low NaCl concentrations (a monovalent salt) and a left-handed 2 

conformation at a NaCl concentration of 2.0 M or at a [Co(NH,),I3+ concentration of 200 

pM. This can be seen for the most part in UV spectra as the Z form of I has a larger 

absorbance shoulder at about 280 nm than the B form (Figure 1, dash). Heat-annealing (2 

minutes at 80 "C, followed by slow cooling) 28 in the presence of 200 pM of [Co(NH,),I3+ 

produces a CD spectrum (Figure 2, dash) characteristic of Z-DNA with a trough at 295 nm 

and a peak at 275 nm (Sheardy, 1991). During heat-annealing, the temperature is raised 

enough so that all strands separate. Upon slow cooling, the oligomers form the most stable 

structure possible, which for I, is a duplex. However, after heat-annealing 28 with 200 pM 

pentaammineaquocobaIt(III), the UV spectrum is hyperchromic throughout but it does not 

have the pronounced 2-shoulder at 280 nm (Figure 1, dash-dot). CD spectra confirmed that 



Table I 

Synthesized DNA Oligomers 

Oligonucleotide Sequence 

111. 

IV. 

v. 

CGCGATATCGCG 

GCGCTATAGCGC 

AATATAATAGCTATTAT 

TATTATCGATAATATAA 

AATATAATACGTATTAT 

TATTATGCATAATATAA 

Shortened Name 

2 8  



[CO(NH,),(OH,)]~' at 200 pM did not induce the B to Z transition in 28, but rather leaves 

the oligomer in an altered B-like structure with a peak at 279 nm and a trough at 255 nm 

(Figure 2, dash-dot). This suggests that this reagent is modifjring the DNA oligomer in such 

a manner as to prevent the B to Z conformational transition. 

When this heat-annealed treated 2 8  was subjected to exhaustive dialysis against 200 

mM NaCl and then water to remove excess cobalt complex, the resultant CD spectrum 

remained that of an altered B-like structure. Hence, the modification apparently is 

irreversible. For comparison, oligomer I with inert hexaamminecobalt(111) sample was 

dialyzed two ways. One portion underwent equilibrium dialysis versus water alone, while 

another was dialyzed against 200 mM NaCl and water as above. The CD spectrum of the 

water-only dialyzed oligomer retained its Z-like character, indicating the inert complex 

remained bound to 2 8  (Gessner et al., 1985), while the CD spectrum of the salt-dialyzed 

oligomer completely returned to B-like conformation. Since the salt dialysis is able to remove 

all of the electrostatically bound trivalent cations from DNA (Hicks et al., 1997b), and the 

structure and charge density of the two cobalt complexes are nearly identical, then the 

differences are due to the labile ligand. This suggests that the pentaammine complex is 

covalently bound to the DNA. 

The transition of 2 8  fiom B form to Z form can be monitored via CD spectra of the 

oligomer which was heat-annealed in increasing concentrations of hexaamminecobalt(111) 

(Figure 8). A [co(NH,),]~' concentration of 150 pM or higher results in the loss of the B 

form trough at 255 nm and a conversion of oligomer to the Z form. Thermal denaturation 

of the duplex oligomer in these conditions by a programmed melt, which is a slow heating of 



the sample to 95 "C followed by a slow cooling back to 25 97, has no effect on the 

conformation of the oligomer as depicted by CD. Taking heat annealed I in the presence of 

[Co(NH,)J3+ slowly to the single stranded state with denaturing temperature and back to the 

duplex is reversible. Heat-annealing 28 in increasing concentrations of [CO(NH,),(OH,)]~' 

induces a conformational transition which is complete at 150 pM in cobalt complex (Figure 

9). However, the new conformation is not left handed Z but still "B-like." The trough at 255 

nm is deeper at the low cobalt concentrations that in the absence of cobalt complex. This may 

indicate a tightening of the helix turn by the binding of the trivalent complex at low 

concentrations. Subsequent nielting of heat-annealed 28 in the presence of this labile cobalt 

complex alters the secondary structure further only at the lower cobalt concentrations. The 

spectra at 150 and 200 pM cobalt complex are quite similar before and after melting, 

following a smooth trend from "completely" altered-B fomi to untreated I. This indicates that 

both processes of heat-annealing and thermally denaturing of 28 in the presence of 

pentaarnrnineaquocobaIt(II1) modifL the DNA oligomer in an irreversible fashion. This two 

part process, when carried out consecutively with the reactive cobalt complex, is referred to 

here as melt treatment, heat treatment, or heat-annealing treatment. 

Since the water ligand is labile at elevated temperatures and the nucleophilic N7 of 

guanine bases is accessible in B form DNA and single stranded DNA, it is suggested that this 

modification is through covalent attachment of the cobalt complex to the DNA molecule via 

displacement of the water forming a cobalt-to-G:N7 linkage. 



3.2 Mononucleoside Studies 

The possibility of a reaction between guanine N7 and pentaammineaquocobalt(111) 

prompted us to investigate the behavior of this cobalt complex in the presence of nucleosides 

under similar conditions as above. Samples of nucleoside (i.e., dA, dC, dG, dT, and 5medC) 

in buffer with 200 pM [CO(NH,),(~H~)]~' were placed in a UV/VIS spectrophotometer and 

gradually heated, in 10 CO increments, from 25 "C to 85 OC. After equilibration for 15-20 

minutes at each temperature, the UV spectrum was recorded. At temperatures above 55"C, 

spectral changes were observed for deoxyguanosine only: a dramatic hypochromism (circa 

50%) at all wavelengths from 240 to 290 nm. Upon cooling back to 25"C, the spectrum 

remained unchanged from the higher temperature spectra, i.e., the dG sample remained 

hyperchromic (Figure 10). No precipitate was visible in the cell, eliminating the possibility 

that less material was simply in the pathlength. The dG solution, after heating, was placed 

in eppendorf tubes and centrifuged. After 20 minutes there was no precipitate visible. The 

spectrum of dC showed little difference (Figure I I). The other nucleosides, dA, dT, & 

SmedC, also exhibited only the slight change found with deoxycytosine. In a separate study, 

the absorbance of a new deoxyguanosine sample in 200 pM pentaammineaquocobalt(III) at 

two different wavelengths was monitored as a function of time at 75OC. At both 

wavelengths, the absorbances dropped off to minimum values in approximately 15 minutes. 

These results suggested a possible heat induced modification of the G nucleoside, but only 

the G nucleoside, by the cobalt complex. 

There are studies (Marzilli et a]., 1974) of cobalt complexes binding to 

mononucleotides. The structures resolved by NMR all show binding to the charged 



phosphate. This gives an indication of the interaction with phosphate buffer of the cobalt 

complex. The interactions between [co(NH,),(oH,)]~' and phosphate, both in the DNA 

backbone and as the buffer, had to be examined more. 

Mononucleosides were separated on a NOVA Pak reverse phase HPLC column. The 

peaks were resolved and eluted at reproducible times (Table 11). The monomers which were 

heated in the presence of pentaammineaquocobaIt(I1I) had identical elution times as the 

control monomers. When a new sample of deoxyguanosine was heated up to 75 "C with the 

complex, exhibiting the UV spectral changes, an aliquot was cooled slightly and then injected 

onto the column, the resultant elution time of the single peak remained unchanged. If a 

charged metal complex were to bind to an uncharged monomer one would expect a noticeable 

difference in elution time on a reverse phase HPLC column. The modification at high 

temperatures to the dG which is indicted by UV spectra may be only a reversible binding 

interaction. The interaction between deoxyguanosine and the labile cobalt complex must be 

different from the interaction of the complex to a DNA oligomer by virtue of the 

polyelectrolyte lattice (Drew & Dickerson, 198 1 ). 

3.3 PentaammineaquocobaIt(II1) And Other Buffers 

Since the interaction of various cobalt complexes with phosphate had been reported 

(Marzilli et al., 1974), the effect of phosphate on the labile complex was a concern. Perhaps 

another biological range buffer could be used in the presence of the labile cobalt complex. 

The common pH 7 buffers HEPES, MES, PEPES, and TRIS were examined by UV spectra 

with pentaamrnineaquocobaIt(III) at increased temperatures. TRIS buffer is a poor candidate 

for temperature studies since the pH can change with temperature. All exhibited great 



Table I1 

Mononucleoside HPLC Retention Times 

Monomer E at 260 nm (cm-'M")* Lx retention time (minutes) 

dC 9,000 271 nm 1.47 

5medC - 277 nm 2.14 

dG 13,000 259 nm 2.16 

dT 9,650 267 nm 2.43 

5BrdC - 288 nm 3.24 

d A 15,000 259 nm 4.17 

*(Cantor & Washaw, 1970) 



changes in their absorbance profiles as binding interactions caused energies of transitions to 

enter into the monitored range (240-350 nm). PentaammineaquocobaIt(II1) will form 0x0- 

bridged complexes and precipitate out of solution if kept basic. The synthesis of the cobalt 

complex ended with crystallization out of perchloric acid. To evaluate if the large absorbance 

changes were due to a change in the complex other than binding, acetate (pH 3.5) and borate 

(pH 10) buffers were used. Equally large spectral changes were the result. Compared to 

ligand properties of the alternative buffers, phosphate at the concentration of 5 mM exhibits 

a small interaction with [CO(NH,),(OH~)]~' as monitored by UV spectroscopy. In a buffered 

solution of an oligonucleotide, the polyelectrolyte has the advantage over the phosphate ion 

with respect to a persistent encounter with the cobalt complex. The interaction between 

pentaammineaquocobaIt(III) and phosphate does not occur much when the phosphate buffer 

concentration is 5 IM. 

Spectra of the con~plex dissolved in water alone, in the pH range 5 to 7.5, indicate 

changes at elevated temperatures conlparable to that observed in standard phosphate buffer. 

These are due to the cobalt complex forming dimers and polymers (Cotton & Wilkinson, 

1988) and precipitating from solution. The extent to which the cobalt complex reacts with 

itself in water is small at concentrations of less than 400 pM provided that there is a 

polyelectrolyte oligomer in solution to compete with self-chemistry. Thus the blanks which 

contained cobalt, but no DNA, distorted the melting profiles of an oligomer (Figure 12). At 

pentaammineaquocobaIt(111) concentrations of 300 pM or higher, enough precipitate is 

produced that some of it remains in the bottom of the cell or eppendorf tube after heating or 

incubating near room temperature. The precipitate is a very fine powder which readily passes 



through the membrane and gets dialyzed away. Stock solutions of [co(NH,),(oH~)]~+ in 

water at millimolar concentrations will form a precipitate if kept at room temperature rather 

than 5 "C. For this reason, stock solutions of [Co(NH,),(OH,)] 3' were made fresh and the 

concentrations were checked spectrophotometrically with an epsilon at 492 nm of 47.5 cm-' 

M' (Dixon et al., 198 1). 

3.4 Sequences Subject to Crosslinking 

The effect of this potential modification on the thermodynamic stability of specific 

DNA oligomers was examined by a series of thermal denaturation studies (melts). The 

following molecules were included: self-complementary [(SmedC-dG),], or 28, self- 

complementary [(CG),ATAT(CG)J2 or 12-mer, and the a and b strand duplex 

[(ACTG),]:[(TGAC),], designated 24-mer. The 24-mer is distinguished by not having a G 

as a neighbor to G on either strand (Table 1). All oligomers gave very unusual melting 

profiles (after heat-annealing) in the presence of 200 pM [CO(NH,),(OH~)]~'. The thus 

treated oligomers were subjected to exhaustive dialysis against water to remove excess cobalt 

complex, lyophilized to powder, dissolved in fresh buffer, and remelted. The melt profiles of 

the treated (heat-annealed, melted, then dialyzed) samples indicate a much lower degree of 

hyperchromism upon denaturation than the analogous untreated controls. The actual melting 

profiles in the presence of 200 pM cobalt complex indicate the cobalt complex in the blank, 

finding no DNA, is more readily undergoing chemistry with itself and with phosphate. During 

the melt, the dimerizing and polymerizing of the cobalt complex through an 0x0-bridge 

(Cotton & Wilkinson, 1988) forms the light scattering clouds of settling precipitate. 



UV spectra of an oligonucleotide at 20•‹C and 95•‹C reveals hyperchromicity of the 

bases (Figure 13). At low temperature, the paired (hydrogen-bonded) and stacked structure 

restricts the bases, allowing their transition dipoles to interact which in turn reduces the 

absorbances. Though linked by the sugars, at high temperature the strands are filly separated 

and the bases are free to move. The transition dipoles then are parts of independent 

chromophores that absorb nearly as readily as the mononucleotides. 

Comparing the UV spectra at 20•‹C and 95•‹C of untreated and treated 28 shows a 

large reduction in hyperchromicity, as well as an elevated or distorted low temperature 

profile, in the treated case (Figure 14). Temperature difference spectra, obtained as 

absorbance at 95 OC minus 25 %, highlight only the reduction in hyperchromicity (Figure 15). 

The UV spectra and difference profiles for 12-mer and 24-mer show changes that are less 

dramatic than those in I (Figures 16-21). The difference spectra of Z8 and 12-mer (Figures 

15 & 18) both have reductions at about 280 nm. This "GC shoulder" region is a result of the 

run of alternating cytosine and guanine bases common to both molecules. While the 

temperature difference spectra of 24-nier also shows a reduction in hyperchromicity after 

treatment, it is not centered around 280 nm (Figure 21). Close examination of the 95 "C 

spectra of both untreated and treated 24-mer reveals that they are nearly identical. That 

indicates that, at denaturing conditions, what can be expected to be single stranded 24-mer 

shows no UV spectral changes when modified by the cobalt complex. The change in the 

temperature difference spectra (Figure 21) is due to a slight hyperchromism in the 20 "C 

spectrum of treated 24-mer with respect to the control 24-mer. Treatment of 24-mer with 

[CO(NH,),(~H~)]~+ causes a modification which distorts the oligomer when it is the duplex 



state, but not when the modified oligomer is single stranded. 

A thermal denaturation monitors the change in hyperchromicity with incremental 

increases in temperature. The optimal wavelength at which to record the melt is apparent 

fiom temperature difference spectra. The melt of treated 2 8  changes much less than that of 

untreated (Figure 22). The third trace is the absorbance of the pentaammine complex and the 

oligomer as it undergoes melt treatment. The unusual melt profile is due to the formation of 

inorganic dirner and polymer precipitate. 12-mer also has a largely reduced transition upon 

treatment (Figure 23), while 24-nier does not (Figure 24). The differences in the third traces 

reflect the change in formation of the cobalt precipitate. The fact that precipitate forms early 

in the melt during treatment of 24-nier indicates that the complex binds less to that oligomer, 

which allows more of the cobalt to find itself in solution and dimerizelpolymerize. 

111 not only binds less cobalt, but also is less affected upon treatment. Since this 

oligomer has its G bases on the same strand separated by three bases and those on the 

opposite strand separated by one base, a cobalt complex can only mod@ an isolated "single- 

hit" site. These results suggest that all the duplex and single strands have been permanently 

modified by pentaatnrnineaquocobalt(III). One possibility for this modification, in the strands 

containing neighboring G bases, is either interstrand or intrastrand crosslinking. Intrastrand 

crosslinks occur between bases from within the same strand, as in GpG and GpNpG 

sequences. Interstrand crosslinks, formed only in a duplex, would occur between a base on 

the Watson strand and a base on the Crick strand, such as the guanines in a GpC site. Both 

oligomers I and I1 have -GC- in their sequences. Crosslinking with [CO(NH,),(OH,)]~+ 

requires two binding sites on the metal, however, and would only be possible through initial 



loss of water followed by loss of an ammine. 

It has been demonstrated that cisplatin crosslinks DNA at GpC sites in an interstrand 

motif (Hopkins et al., 1991). Although compounds of platinum(I1) are square planar and 

those of cobalt(II1) are octahedral, the geometries reveal the possibility of interstrand 

crosslinking at GpC sites in our oligomers with pentaammineaquocobaIt(111) (Figure 25). As 

in cisplatin, the leaving ligands could be at 90 " to each other. Also, the ammines occupying 

the positions above and below the plane occupied by the leaving groups should not interfere 

with the interaction due to their small van der Waal's radii. In fact, the binding may even be 

enhanced by their presence due to possible hydrogen bonding interactions between these 

ammines and acceptor sites on the GpC dinucleotide subunit as observed in the binding of 

cobalt (111) hexaammine to (dC-dG), (Gessner et al., 1985; Seeman et a]., 1976). 

To test the possibility of crosslinking, we synthesized two DNA oligomers that have 

been used to model the interstrand crosslinking of DNA by cis-Pt(NHJzCIz (Hopkins et a]., 

1991). These oligomers, desiynated GC-site and CG-isomer, are 17 bases long and have a 

self-complementary string of 14 bases (Table I). Oligomer IV, or GC-site, has a single GpC 

site while oligomer V, or CG-isomer, has a single CpG site. Like 24-mer, CG-isomer 

contains no GpC sites. 

The difference in the middle two base pairs alone affects the helix stability. The pur- 

pyr-pur-pyr run of the -ACGT- sequence in V has better base stacking than the pur-pur-pyr- 

pyr sequence (-AGCT-) found in IV (Saenger, 1984; Dickerson et a]., 1994). After heat 

treatment and dialysis, these two oligomers were melted along with control strands (Figure 

26). At the same conditions, CG-isomer oligolner melts at a temperature nearly 6 degrees 



higher than GC-site (30.3 "C and 24.5 "C, respectively). 

As for the effect of heat-annealing with [CO(NH,),(OHJ]~', treated GC-site shows 

much lower hyperchromism than the untreated GC-site. In contrast, treated and untreated 

CGisomer show little difference in their melt profiles. This result indicates that CG-isomer 

is modified by pentaarnrnineaquocobaIt(II1) in a different way than GC-site oligomer. As in 

the case of cisplatin, this rules out the 1 5 A's and T's as reaction sites for this cobalt complex 

since these residues are the same in both molecules. Comparisons of percent hyperchromicity 

are listed in Table 111. Oligonler V is the only molecule which, after treatment, showed little 

change in hyperchrornism between double stranded and single stranded denaturing conditions. 

While the treated 24-mer exhibits an absorbance increase comparable to the treated 

oligomers KI and IV, it has characteristics which set it apart from the other duplexes. The 24- 

mer has 12 guanine bases, each a possible single binding site for [CO(NH,),(OH,)]~'. The six- 

fold repeating sequence also makes 111 a more uniform polymer in a conformational sense. 

The -ACTG- sequence, with its pur-pur-pyr-pyr repeat, could be more readily distorted by 

a bound charged complex than the other oligomers, even if the modification was only via 

single hits (Saenger, 1984). Ifthe -ACTG- sequence has some local feature, such as a wedge 

step conformation, the repeated motif would enhance the quirky nature of the structure 

(Crothers et al., 1990). 

The first differentials of the thermal denaturations reveals the inflection point or T,,, 

temperature of quickest melting (steepest slope). Treated GC-site melts over six desrees 

higher than the GC-site control (Figure 27). This noteworthy stabilization of the double 

stranded helix is due to the modification by pentaa~nmineaquocobalt(111). It is unlikely that 



Table I11 

Percent Hyperchromicity in Untreated and Treated Oligomers 

CONTROL TREATED Lh FRACTION CG 

I 28 34% 12.8% 280 nm 1 

I1 12-mer 3 1% 14% 280 nm 213 

I11 24-mer 34% 17.5%" 272 nm 1 /2 

IV GC-site 24% 11% 260 nm 118 

V CG-isomer 2 1 % 18% 260 nm 118 

(* 28% according to Gilford files #0222 S#2 & #0223 S#2) 



the presence of 1 or 2 cobalt complexes bound to the central guanine bases in GC-site would 

stabilize the helix by shielding electrostatic repulsive forces. If this were the case, then for the 

same reasons the CG-isomer pair would exhibit a similar shift in T, , which they do not 

(Figure 28). The unaltered hyperchromism and the similar melts in CG-isomer, which lacks 

a GpC, indicate that the GpC unit allows for a distinct modification by the cobalt complex in 

oligomers 28 (I), 12-mer (11), and GC-site (IV). The mathematical analysis of the thermal 

denaturation data is in Table IV as T, values or midpoints of the transitions (Markey & 

Breslauer, 1987). The oligomers which contain GpC sites, I, 11, & IV, exhibited higher 

melting temperatures in their treated samples than for their control strands. The other 

molecules, one containing a CpG site (V) and I11 which has separated guanines, had lower 

melts with the treated samples. These sequences are limited to only singular binding modes 

with the cobalt complex. A single hit modification of the DNA may distort the nucleotide, 

but the presence ofthe bound trivalent cation would not stabilize the two strands as much as 

an interstrand crosslink would. When the 24-mer data are analyzed by inflection point or 

T,,,, the control melts at or just slightly lower than the treated sample. This change in the 

determined melting temperatures is due to the strange shape of the melt of 24-mer. The 

unsymmetric denaturation of this oligomer (Figure 29) alters the drawn baselines for the 

determination of the transition midpoint T,,, . There is the possibility that the nature of the 

repeated sequence in 111 simply is manifested in this way. 



Table IV 

Melting Temperatures of Untreated and Treated Oligomers 

2 8  

Treated 2 8  

12-mer 

Treated 12-nier 

24-mer 

Treated 24-mer 

GC-site 

Treated GC-site 

CG-isomer 

Treated CG-isomer 

*Via first derivative (Godiff) : 24-mer 61.6 "C, Treated 24-mer 61.9 "C. 



3.5 Sonicated Calf Thymus DNA 

In order to test for the possibility of crosslinking, sonicated calf thymus DNA was 

treated in a fashion with [CO(NH,),(OH,)]~' at various DNA to cobalt ratios (Table V). The 

high temperature treatments employed earlier could not be applied to the long polymer since 

the heat would irreversibly disrupt the large duplex structure. Destroying the target DNA 

would prevent the analysis of any cobalt chemistry modifications via the thermal denaturation 

method. Instead, the treated samples were incubated at 37 "C for 48 hours, exhaustively 

dialyzed versus water to remove excess cobalt complex, evaporated to dryness and then 

reconstituted in the same buffer without any added cobalt complex. 

All samples were vortexed both at the start and finish of the incubation. Some fibrous 

precipitate remained in the dialysis bags after harvest, but these amounts were small and were 

discarded. Some precipitate is to be expected with the combination of multivalent cations and 

long polyelectrolytes (Braunlin et al., 1987). Sample 5, with high end amounts of both DNA 

and cobalt, showed some precipitation upon addition of the cobalt complex and, therefore, 

was diluted with water and vortexed before dialysis. Another sample, which contained 400 

pM cobalt and 1,000 pM DNA, was unworkable after the incubation. At the end of the 

incubation period, the higher ratio samples were vortexed and even sonicated briefly in an 

attempt to transfer the most amount of material onto dialysis against water, where it is 

reasonable that most purely electrostatic associations due to the trivalent complex would be 

reversed. Some precipitated material may have clung to the dialysis membrane during the 

harvest, reducing the yield. Only solubilized product was quantified and used in the melts. 



Table V 

Calf Thymus DNA and [CO(NH,),(OH,)]~' Incubations 

-- 

Sample [DNA] pM [Co] pM DNAlCo T, OC (50.3 OC)* 

1. 280 0 -- 75.2 

2. 560 200 2.8 70.6 

3. 280 200 1.4 69.2 

4. 140 200 0.7 65.9 

5. 560 400 1.4 86.1 

- - -- 

*Melts were done after dialysis against water and reconstitution in standard buffer. 



For the thermal denaturation experiments, the concentration of DNA was adjusted to 

ca. 1.0 x lo-'' M in base pairs and the resultant melting profiles are shown. As means of 

normalizing the transitions, the melting data is plotted as 8 (fraction of absorbance change) 

= (k, - A,,)/(&, - A,,) where AT is the absorbance at temperature T and A,, and &, are the 

initial and final absorbances at 25 "C and 95 OC, respectively (Figure 30). Samples 2, 3, and 

4 indicated lower melting temperatures than untreated DNA, in which the increase in the 

cobalt to DNA ratio correlated with the extent of destabilization. On the other hand, sample 

5 had a higher T, than untreated DNA (Table V). Thus at the higher total DNA and 

pentaammineaquocobaIt(II1) concentrations, the modification of the DNA was quite different 

from the other samples. Here the transitions are cooperative and sharp, so the T, values are 

the inflection points from the first derivative. Sample five never reached an upper baseline, 

so the Gomelt program for transition midpoints could not be applied. The other profiles are 

symmetric enough that either method of analysis gave similar transition values. 

All five samples were reannealed by slow cooling to room temperature and allowed 

to equilibrate at 4 OC for several days. The samples were then melted once again. The 

remelting profiles are shown with all experimental conditions and sample numbers identical 

to that for the previous data (Figure 3 1).  Inspection of these profiles reveals that only sample 

5 showed some sigmoidality, indicating quasi reversibility in its reannealing. Reversibility in 

the denaturation of polymeric native DNA could only be possible through interstrand 

crosslinking, which would allow the bases to pair with their original partner upon reannealing 

(Geiduschek, 1961). From the slope of the first melt of sample 5 (in contrast to the flat upper 

baselines of the other samples), it is apparent that the strands had not f d l y  denatured even at 



95 "C. The extent of modification apparently retained some duplex structure and allowed the 

DNA to return to register upon renaturation. The heterogeneous length and sequence of this 

natural DNA made for an imperfect target to demonstrate the effect of reactive complex. 

However, these samples did indicate that pentaammineaquocobaIt(III) would mod@ DNA 

in a reasonable amount of time at the gentle conditions of a 37 "C incubation. 

There are some studies on the interactions of multivalent cations with large DNA (Pett 

et al., 1985; Thomas & Bloomfield, 1983). The concern is that the trivalent metal complex 

in appreciable concentrations causes aggregation and possibly precipitation of the DNA. At 

the most extreme scenario, should any crosslinking then occur, it is possible that 

intern~olecrde interstrand residues could be involved. There was some precipitation while 

mixing the samples with higher Co/DNA ratios, but after vortex-mixing until 

pseudohomogeneity, the samples were set afloat in the temperature bath. These samples afier 

incubation were dialysed against water and /tot versus a sodium chloride solution. It is likely 

that electrostatically bound pentaa~nmineaquocobalt(III) remained associated with the 

polymer after dialysis removed the cations from the bulk solvent. The possibility exists that 

complexes, which were only reversibly bound, underwent reactions with the DNA during the 

thermal denaturation. This is a valid criticism which raises the question if the modification 

occurs here strictly during the 37 "C incubation. However, this does not diminish the 

conclusion that sonicated calf thymus DNA was modified by [CO(NH,),(OH,)]~' in an 

irreversible manner. 



3.6 28  Incubated with PentaammineaquocobaIt(111) 

The modification of sonicated calf thymus DNA demonstrated that incubation 

treatment with pentaammineaquocobaIt(111) can modi@ oligonucleotides during conditions 

that allow the DNA to remain fully duplexed. This should be beneficial in demonstrating that 

crosslinking is occurring since having all the nucleic acid in a duplex would promote the 

maximum amount of interstrand crosslinks. Oligomer IV melts too low to be double-stranded 

during the incubation. 28 and 12-mer both have a high enough melting temperature, but I 

has three -GC- sites compared to only two in the 12-mer. The effect of concentration of 

cobalt complex on DNA modification was examined by incubating one "OD" of 28 in one 

milliliter (approximately 40 yM in basepairs) for 48 hours at 37 "C at concentrations of 100 

to 400 pM [CO(NH,),(OH,)]~+, followed by exhaustive dialysis against salt solution, then 

against water. An "OD" or optical density is the amount of DNA contained in one milliliter 

of solution such that it gives an absorbance of l .OO at 260 nm and in a one centimeter 

pathlength cell. 

W spectra at 25 "C and 95 "C of oligomer I follows the hyperchromicity of the bases 

(Figure 32). Note the difference in temperature from the spectra taken in the heat treatment 

studies (Figure 13). Again less hyperchromicity was found with increasing concentration of 

cobalt complex in the incubation (Figure 33). There is a striking similarity between the 

spectra of the incubation at 300 yM [Co(NH,),(OH,)]" (Figure 34) and that of the heat- 

annealed treated with 200 pM [CO(NH,),(OH,)I~' (Figure 14). An overview of the changes 

in the W spectra can be depicted by taking the difference between the absorbances of each 

treated sample and the control at 25 "C (Figure 35) and at 95 OC (Figure 36). The spectra 



were normalized at 260 nm (at 25 "C), so the apparent iso-point at AA=O is the 

consequence. In order to do this, an assumption had to be made that the molar extinction 

coefficients at 260 nm did not differ by much upon modification and through the range of 

modification that results from the complex reacting with the oligomer. The changes in 

hyperchromicity are shown through temperature difference spectra (Figure 37). The sample 

incubated at 400 pM in cobalt appears to be off trend and instead coincides with a sample of 

lower concentration. 

Changes in the UV spectrum reflect the amount of stacked and paired (duplexed) 

bases. CD spectra are sensitive to changes in secondary structure. Though the base stacking 

is the dominant director in helix conformation (Dickerson et al., 1994), some differences 

might be better observed by CD. The CD spectra (Figure 38) indicate that increasing the 

concentration of [Co(NH,),(OHJ]" fioni 100 to 300 pM increases the molar ellipticity at 255 

nrn relative to untreated 2 8 .  The 255 nm trough becomes less negative as the right-handed 

B form becomes more altered. A similar overview of the changes in ellipticity is depicted by 

CD difference spectra at 25 "C (Figure 39) and at 95 C (Figure 40). The changes in 

ellipticity that arise from the conformation at low and high temperatures (double and single 

strands) are shown through temperature difference spectra (Figure 41). The sample incubated 

at 400 pM is again off the trend. 

Thermal denaturations were done on these samples. The reduction in hyperchromicity 

in the UV spectra and the increase in melting temperature depend upon increasing complex 

concentration up to 300 pM (Figure 42). The values for the incubation at 400 pM in cobalt 

appear in a reverse trend because the precipitation of pentaammineaquocobalt(lI1) dimers and 



polymers occurs more readily at the higher concentrations of complex (Cotton & Wilkinson, 

1988). Therefore the incubation sample which begins with 400 pM [CO(NH&OH~)]~+, in 

time, has a time-averaged cobalt concentration which is lower than 300 pM because of 

precipitation. After centrifbging in an eppendorf tube, one can easily notice the red powdery 

precipitate of the cobalt complex dimers and polymers. The precipitate readily goes into 

suspension, but when put in the dialysis bags, it disperses and is dialyzed away through the 

membrane. It is unlikely that oligomer is precipitating with the red inorganic precipitate. The 

dialysis bags can hide precipitated losses, but the yields in the higher concentration samples 

were, at the most, only slightly lower. This suggested that the concentration of 200 to 300 

pM pentaammineaquocobalt(1II) was a good conlpromise between loss of sample and low 

degree of modification. This concentration seemed to offer greater promise for a more 

preparative scale application. 

The incubation of 2 8  in the presence of 200 pM [CO(NH,),(OH,)]~' at 37 OC for the 

times ranging from 8 to 72 hours was carried out in order to assess the effect of incubation 

time on the alteration of the oligomer. As shown in Figure 43, increasing the time of 

incubation from 8 to 5 1 hours increases the molar ellipticity at 255 nm relative to untreated 

28. The degree of alteration apparently levels off after 51 hours. The incubation time has 

a similar effect on the T,,; the melting temperature increases with increasing reaction time and 

then levels off (Figure 44). At short reaction times (< 15 hours) the T, does decrease. This 

demonstrates that the incubation conditions described, in two days, modifies 2 8  by covalent 

binding of cobalt in such a manner as to stabilize the duplex while altering the B-form 

character of the helix. 



3.7 Direct Evidence of Binding by Atomic Absorption 

Incubation of 28 in the presence of 200 pM [CO(NH,),(OH,)]~' at 37 "C for times 

ranging fiom 8 to 72 hours, followed by exhaustive dialysis, was carried out in order to assess 

any uptake by the oligomer. In order to test for the presence of tightly bound cobalt, atomic 

absorption analysis was performed. The results presented in Figure 45 indicate a rapid uptake 

of cobalt by Z8 at reaction times less than 30 hours with a leveling off in the uptake at longer 

reaction times. The amount of tightly bound cobalt increases with increasing time for the first 

two days of incubation. In addition, the oligonier is apparently saturated with cobalt at one 

cobalt for every 3.5 to 4 base pairs. Hence, the binding of one cobalt results in a site 

exclusion effect such as that noted for simple intercalators, including daunomycin, for which 

a site size of 2.8 to 3.6 base pairs has been reported (Chaires et al., 1987). Atomic absorption 

was done on samples of an oligomer that had been incubated with cobalt(II1) hexaammine to 

eliminate the possibility of cobalt complex remaining because of electrostatic binding. After 

up to 96 hours of incubation, followed by dialysis against 0.2 M NaCI, then water, AA 

established that no [CO(NH,),]~' had remained bound to the DNA (Hicks et al., 1997b). The 

directly observed trend of cation uptake that takes place during approximately two days is 

therefore the result of cobalt binding covalently to the DNA oligomer. 

3.8 Salt Dependence of Melting Temperature 

The shift in melting temperature in treated Z8 and treated GC-site oligomer indicates 

the cobalt is stabilizing the duplex. The cobalt is bound and affecting the thermodynamics of 

the oligomer. Extensions of polyelectrolyte theory quantitatively describe the thermodynamic 

linkage between cation binding and charged ligand binding to the DNA lattice (Friedman and 



Manning, 1984). The binding of a charged ligand affects cation binding, and the cation 

binding affects the ligand binding. By quantitjling the release of sodium ions, it is possible to 

determine the presence of the +3 charged cobalt complex on the treated oligomer. The 

manner in which this experiment is carried out is by melting both the untreated and treated 

oligomer in various NaCl concentrations. The change in the melting temperature will show 

sensitivity to the salt concentration such that it can be quantified by means of a plot of T, 

versus log [NaCI], which can be expected to give a straight line. 

An indirect method to establish binding of cobalt to the DNA oligomers is 

determination of the T, of a specifically treated sample as a function of Na' concentration. 

Three different samples were prepared in standard buffer with a range of NaCl concentrations, 

between 125 to 400 rnM, and subjected to thermal denaturation. Control 28 was used in 

contrast to heat-annealed Z8, as well as 2 8  which had been incubated for 48 hours. Both 

treatments were done with 200 pM [Co(NH,),(OHJ](CIO,),, followed by exhaustive dialysis. 

Plots of T, versus log [NaCI] for the three samples are shown in Figure 46. Both treated 

DNA oligomers have lower T,, values than the untreated oligomer at NaCl concentrations 

greater than 125 rnM. The slopes of the least squares regression lines (r" 0.955 for all 

regressions) for the treated samples are quite different from that of the untreated sample as 

well as quite different from each other. Hence, the treated samples have a dramatic decrease 

in the salt dependence on their stabilities relative to the untreated sample. 

The lower T,values for the modified oligomers arising from the incubation of I with 

increasing concentrations of [Co(NH,),(OHJ]" suggest that they are less stable than the 

unmodified oligomer. In order to evaluate the thermodynamic parameters of the untreated 



and treated 2 8  samples, curve analyses of the melting profiles was carried out according to 

Marky and Breslauer (1987). For a self-complementary DNA oligomer 

AH0 = 6~~,'(6a/6~),,,, (10) 

AGO = AHO(l -T/T,) (1 1) 

A So = (A H0 - AgO)/T (12) 

where AH0 is the standard enthalpy change, T, is the inflection point of the a versus T 

melting profile, a is the fraction of single stands, AGO and AS0 are the standard free energy 

and entropy changes, respectively and T is 298 K. Thermodynamic comparisons of untreated 

2 8 ,  heat-annealed 2 8 ,  or 2 8  incubated for 48 hours in the presence of 200 pM 

[co(NH,),(OH~)]~+ followed by exhaustive dialysis are revealed in Table VI. At 200 rnM 

NaCI, the different samples have unique T, values, but the enthalpies of thermal denaturations 

are quite similar. Hence, the T, values alone cannot be used to assess thermodynamic 

stability. 

The coordination of cobalt (111) metal to the DNA substrate would dramatically alter 

the charge density of the oligomer. According to the terms of the polyelectrolyte theories 

(Manning, 1978; Record et al., 1978; Record et al., 198 l), this alteration should thus change 

the number of sodium counterions bound to the lattice. At low concentrations of NaCl (less 

than 400 mM), there is a linear relationship between T, and log [NaCI]; the slope of the 

resultant line reflects the linkage between Na binding and the duplex to single strand 

transition. Record et al. (1978) have shown that 

6Tm/6 log [NaCI] = {2.303RT,,?AH)An (13) 

where An is the differential ion binding term. The A n  term represents the release of 



Table VI 

Influence of NaCl on the Thermal Denaturation of 

Untreated and Treated 28" 

Sample 1, TC) bH" (kcal/mol) GT,/GLo,g(NaCI) 

28 69.6 t0 .4  

Untreated control 

Treated 28 67.7 A0.4 48.0 52.4 

Heat-Annealed and Melt Treated 

Treated 28, 68.5 50.4 45.0 5 2 . 2  

Incubated 

- -- 

"Values determined for 2 8  in 200 rnM NaCl 



counterions upon denaturation (i.e., double stranded DNA has a higher charge density than 

single stranded DNA). With the experimentally determined slopes (6TJ6 log [NaCI]) for the 

oligomer samples untreated Z8, heat-annealed 28  and incubated 28, combined with the 

values of T, and AH at 200 mM NaCI, An values were determined (Table VI). There is a 

dramatic decrease in the differential ion binding term (An) for both treated DNA oligomers. 

For untreated 28, An = 1.83, indicating that 1 .83 sodium ions are released per 8 base-pair 

duplex upon melting. This value corresponds to 0.13 sodium ions released per phosphate, 

a value near to that reported (0.12) for 16 base-pair duplex DNA oligomers (Sheardy et al., 

1994). In contrast, only 0.48 Na'lduplex (0.034 sodium ions per phosphate) for heat- 

annealed 2 8  and 0.28 Na'lduplex (0.020 Na'lphosphate) are released for incubated 28. 

These data also point to tightly bound cobalt. 

The results presented here strongly suggest that [CO(NH,),(OH,)]~+ binds to DNA in 

an manner consistent with coordination of G-N7 with the cobalt metal center. Tajmir et al. 

(1993) observed direct metal-base binding via IR spectroscopy when calf thymus DNA was 

treated with cobalt (111) pentammine at high cobalthase pair ratios. The UV and CD spectra 

at 95 "C and the dramatic decreases in hyperchromicity for 2 8  incubated with 

[CO(NH,),(OH~)]~' suggest that this DNA oligomer possessing contiguous GpC sites may 

also undergo interstrand crosslinking by [Co(NH,),(OH 31,' in a manner similar to that of 

cisplatin. Binding to phosphate is ruled out due to the lability of the phosphate-cobalt bond 

(Cotton & Wilkinson, 1988) . The most likely site is N7 of guanine bases, such as that 

observed in the reaction of calf thymus DNA with [Ru(NH,),(OH,)]" (Clark et al., 1986). 

This would allow the cobalt center to reside in the major groove where hydrogen bonding 



from the ammines to the DNA would be favorable (Seeman et al., 1976). We propose a two 

step reaction: 

[co(NH,),(OH,)]~+ + GN7 ----> [CO(NH,),-GN~]~' + H,O (1) 

[co(NH,),-~~71,' + GN7 ----> [co(NH,),-(GN~),]~+ + NH, (11) 

where GN7 is position N7 of a guanine base. The first step involving the loss of the labile 

aquo group is the fast reaction occurring at reaction times of less than 30 hours. The second 

step with loss of the less labile ammine group is a slow reaction requiring around 48 hours for 

completion. The GN7 of the second step must be unmodified and, should it be on the strand 

opposite the first GN7, then step 2 would result in a GN7:Co:GN7 interstrand cross link. The 

second guanine could be on the same strand, as in the prefered target for cis-Pt(NH,),CI,, but 

the molecules studied here do not contain the d(-GG-) sequence (Eastman, 1986). 

The pK, of the [CO(NH,),(OH~)]~* complex is 6.2 (Hicks et al., 1997a; Hicks et al., 

1997b). According to the Henderson-Hasselbach equation, at standard buffer conditions of 

pH 7, the aquo to hydroxo ratio is 0.16, or 84% ionized. That predicts that there is over six 

times more hydroxo complex, [Co(NH,),(OH)]", than there is aquo complex, 

[CO(NH,),(OH,)]~+ present in solution. The first reaction step may then have hydroxide as 

the leaving group. The second step, in which the covalently bound ion now has a +2 charge 

in a formal sense, would still result in the loss of the ammine and formation of the bridged 

complex. However, in the vicinity of the DNA, it is likely that the complex will get (or 

remain) protonated because of the H+ ions that are associated with the polyelectrolyte. The 

environment in the grooves and near the phosphates differs from that found in bulk solution. 

For this reason one can expect that there is not six times more hydroxo than aquo complexes 



near the DNA. 

The same site selectivity was found by the behavior of pentaammineaquocobaIt(I11) 

toward DNA as is the case for that of cisplatin, namely, GpC sites are favored over CpG sites. 

As a result of the right handed helical twist, there are two features which distinguish these 

two pairs of interstrand guanine residues. The distance between N7's of the guanines in GpC 

sites is 8 4 while that in CpG sites is 9 A. The size of the gap, which the bridging complex 

has to span, is not the only consideration. The guanine nitrogens in a GpC sequence are both 

on the groove side of the helical axis, while the N7's of CpG sites are buried in the opposite 

sides of the axis from the major groove. To reach the two nitrogens of a CpG step, any 

complex would have to extend into the groove almost up to the helical axis, and in doing so 

it would encounter the steric hindrance of many hnctional groups. The CpG site has been 

reported to be especially malleable in solution structures, exhibiting a difference in twist angle 

(2 axis) and base roll (y axis) depending upon the flanking base sequence (Lefebvre et al., 

1995). It is worth asking the question if this observation can be extended to indicate 

accommodation, on the part of the CpG base overlap, in order to allow better GpC 

geometries of the guanines in I upon binding of the cobalt complex. 

A covalent bond between N-7 of guanine and the Co (111) center, via displacement of 

the water, is highly likely. The data for Z8, 12-mer, GC-site, and calf thymus DNA are also 

consistent with cobalt mediated interstrand crosslinking. As with cisplatin, the GpC sequence 

provides the crosslinkable site. Crosslinking through cobalt would only be possible through 

loss of one of the ammines. 



The GpC sequence raises some questions. This sequence causes a 6 degree lower 

melting point when comparing GC-site to CG-isomer (Figure 26). One possible factor is the 

presence of a GpC step, at which the DNA conformation is altered to take advantage of 

improved base overlap. The shape of the grooves and phosphate backbone is altered by a 

large helical twist angle of 40' (Kabsch et al., 1982). This may present better geometries for 

metal to DNA bond formation. Another consideration is the bases that flank the central 

guanines. A less stable stack can be more available for binding and reactivity. The -AGCT- 

stacking of a pur-pur-pyr-pyr sequence (in IV) is less stabilizing than the pur-pyr-pur-pyr of 

-ACGT- (Saenger, 1984). 

Lastly, in the heat annealing of Z8 with cobalt (111) hexaammine, the guanine bases 

flip over, about their C1-N9 bonds (from m i  to syn), to form a left handed Z helix. Whether 

this occurs while the oligomer is still single stranded or after reforming a B-form duplex is 

unclear. With the reactive pentaammineaquocobaIt(II1) complex, the oligomer retains the 

right-handed conformation when returned to the duplex state after reannealing. Since the first 

modification is likely a single hit of the cobalt to one or more of the 8 guanines, this can 

happen to the oligonier while in the single stranded state (at 80 OC or slightly cooler) or after 

reannealing. Either way, possibly the bound cobalt complex is too bulky to allow the G base 

to swing from the anti to s y  confornlation. It is plausible that the covalently bound cobalt 

complex could form specific interactions with the phosphate and the sugar, which favors the 

allti base orientation, and in turn maintains a B-like structure in the (formed or forming) 

duplex. 



3.9 Future Directions 

Other oligonucleotides, which can be used as better cobalt targets, would include 

sequences that contain single GpC, CpG, and GpG sites as well as isolated G's (G flanked by 

A and/or T). The design must consider the conflicting trends involving molecular size. It 

should be small enough so that NMR studies would be solvable and synthesis costs moderate, 

while it must be large enough to be a substrate for enzyme cleavage studies and to have a T, 

well above room temperature, not withstanding so few G:C hydrogen bonds (Hicks et al., 

1997a). 

Modifying the best oligomer target on a preparative scale would allow for enzyme 

digest and isolation of the modified cobalt adduct by HPLC (Fichtinger-Schepman et a]., 

1984; Fichtinger-Schepman et al., 1985). Short of attaining that, enzyme cleavage studies 

could show inhibition by the complex, reduced rates of enzyme reaction, or even enzyme 

mediated complex removal. 

Electrophoresis gels can reveal differences in enzymic cleavage of the treated and 

untreated oligomers. Polyacrylamide gel elecrophoresis (PAGE) may be able to demonstrate 

a change in migration of the complex treated oligomer itself due to the charge difference of 

the bound metal or by a conformational change in the DNA (Yohannes et a]., 1993). 

Thermodynamics of helix stability can be quantified by melting an oligomer at different 

concentrations of DNA. The midpoint of a bimolecular transition, such as a single strand 

annealing to double strand, is sensitive to concentration, and can be analyzed with van't Hoff 

plots. It also follows that a unimolecular transition, such as the melting of a hairpin structure, 

is insensitive to concentration. One half of the duplex stem is covalently bound by the loop 



to its complementary strand. This is also encountered in a crosslinked oligomer. The two 

strands are covalently bound by some linking agent. Therefore, crosslinked strands, to the 

extent that the crosslinking reaction was complete, should show melting temperatures which 

are insensitive to concentration. AAer demonstrating the dependence of concentration on 

melting temperature for the controls, the treated oligomer would exhibit a different 

concentration dependence. This would indicate that, as in the case of a hairpin, the 

complementary strands are not free single strands but rather are linked by the rective complex 

because the transition is now unimolecular. In practice, this type of experiment has a fatal 

flaw. Modifications such as crosslinking reduce the hyperchromicity of the duplex to single 

strand transition since the final state is not hl ly single stranded. Thus the smaller change that 

one has to follow limits the range of usefd concentrations of DNA which will give a 

measurable signal. With less of a transition to measure against noise, and a limited range 

available, the linear relationship is not supported by enough data. Perhaps a longer sequence, 

which can be crosslinked toward one end and thus allow for more than half of the molecule 

to melt, would be a more hairpin-like mimic and a better candidate for concentration effects 

in melting and modification. 

A blocking study should be performed to demonstrate that the complex binds to N7 

of guanine. Dimethyl sulfate is used to methylate N7 of guanines as a means to pick out the 

G bases in the Maxam and Gilbert sequencing method. If the complex only reacts and 

crosslinks through the N7 position, no modification will result in an oligomer whose guanines 

are blocked by methyl groups (Ezaz-Nikpay & Verdine, 1992). 



The first anti-tumor drug, cisplatin, has been studied for nearly thirty years to 

determine the structure and mechanism of its interaction with DNA. There still are arguments 

and new perspectives on how it looks and acts (Takahara et al., 1995; Huang et al., 1995). 

Changing the other ligands in cisplatin was done over the years, but no substitution was more 

effective. In the case of octahedral cobalt(III), there are more positions to change than the 

four in square planar platinum(I1). Varying the ammines with other ligands could change the 

binding selectivity or reactivity of the complex compared to [CO(NH,),(OH~)]~'. A single 

change in a ligand could shift the pK, of the leaving aquo group which could, even in the 

vicinity of the DNA, change the rates of the reactions with the organic bases. The 

continuation of these studies could lead to a useful therapeutic drug or simply a mechanism 

to explain the interaction between DNA and [CO(NH,),(OH,)]~'. 



Figure 6. Dependence of the UV Spectrum of 28 on Cobalt Complex Treatment. 

The UV spectra of 28 in standard phosphate buffer with 50 rnM NaCl at 25 "C: in 
buffer alone (solid line); heat annealed in the presence of 200 pM [Co(NH,)J3+ without 
subsequent dialysis (dash); heat annealed in the presence of 200 pM [Co(NH,),(OHJl3' 
(dash-dot); incubated in the presence of 200 pM [CO(NH,),(OH,)]~', followed by exhaustive 
dialysis, lyophilization and reconstitution in standard buffer with 50 mM NaCl (dot). The 
concentration of DNA for these samples was ca. 4.2 x lom5 M in base pairs. 



Figure 7. Dependence of the CD Spectrum of Z8 on Cobalt Complex Treatment. 

The CD spectra of Z8 in standard phosphate buffer with 50 m M  NaCl at 25 "C: in 
buffer alone (solid line); heat annealed in the presence of 200 pM [CO(NH,),]~+ without 
subsequent dialysis (dash); heat annealed in the presence of 200 pM [CO(NH,),(OH,)]~+ 
(dash-dot); incubated in the presence of 200 pM [CoCNH,),(OH,)I3+, followed by exhaustive 
dialysis, lyophilization and reconstitution in standard buffer with 50 rnM NaCl (dot). The 
concentration of DNA for these samples was ca. 4.2 x 10" M in base pairs. 



NANOMETERS 

Figure 8. CD Spectra of 2 8  Heat-Annealed with Hexaamminecobalt(111) 

The CD spectra at 25 OC of 28 which was heat annealed in buffer with [CO(NH,),]~+ 
at the concentrations 0 (bottom line at 255 nm), 25 pM, 50 pM, 100 pM, 200 pM and 150 
pM (top line at 255 nm). The samples with the highest concentration of complex (150 pM 
& 200 pM) are virtually identical and indicate that the oligomer is in the Z-conformation. 



NANOMETERS 

Figure 9. CD Spectra of Z8 Heat-Annealed with Pentaammineaquocobalt(111) 

- The CD spectra at 25 "C of 28 which was heat annealed in buffer with 
[CO(NH,),(OH~)]~+ at the concentrations 50 pM (bottom line at 255 nm), 100 pM, 0 (no 
added complex - middle line at 255 nm), 200 pM, & 150 pM (top line at 255 nm). At 
[CO(NH,),(OH~)]~' concentrations of less than 100 pM, the spectra are quite similar to that 
of the oligomer in the absence of any cobalt complex. The trough at 255 nm actually is 
deeper for the samples with 50 pM and 100 pM [Co(NH3),(OH2)J3+. The samples with the 
highest concentration of complex (150 pM & 200 pM) are similar to each other, but quite 
different from the oligomer alone or with the hexaammine complex. The reactive cobalt 
complex also induces a conformational transition in 28 which is complete by 150 pM, but the 
oligomer remains in an altered B-like conformation. 



Wavelength 

Figure 10. UV Spectra of dG with 200 pM [CO(NH,),(OH,)]~+ 
The W spectra of dG in the presence of 200 pM [Co(NH3),(OH3J3' before heating 

(upper line), and after slow heating and slow reannealing (lower). 
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Figure 11. UV Spectra of dC with 200 pM [Co(NH3),(OH,)I3+ 
The W spectra of dC in the presence of 200 pM [CO(NH,),(OH,)]~' before heating 

(lower line), and after slow heating and slow reannealing (upper). 



Figure 12. Melt of 28 and [Co(NH,),(OH,)]" with Metal Added to the Blanks. 

The thermal denaturation profiles for 28 in buffer with [CO(NH,),(OH~)]~+ at the 
concentrations 25 pM (top line at 90•‹C), 50 pM, 150 pM, & 200 pM (bottom line) 
referenced against buffer with the corresponding cobalt complex concentration. The unusual 
profiles indicate that the cobalt complex is undergoing a reaction in the blank to a greater 
extent than is occurring in the solutions which also contain DNA. The cobalt complex is 
binding to the DNA, reducing the amount of free [CO(NH,),(OH,)]~+ which can interact with 
[CO(NH,),(OH,)]~+ or with phosphate. 



Figure 13. UV Spectra of Untreated 2 8  at 20 "C and 95 "C 

The effect of temperature on UV absorption spectra of untreated 28. The difference 
between the 20 "C (solid) and the 95 'C (dash-dot) spectra is due to hyperchromic shift. The 
concentration of DNA for these data was ca. 6.5 x 10-' M in base pairs. 



Figure 14. UV Spectra of Melt-Treated 28 at 20 "C and 95 "C 

The effect of temperature on UV absorption spectra of 2 8  which was heat-annealed 
and melt-treated in the presence of 200pM [Co(NH3),(OH,)J3' and then exhaustively 
dialyzed. The difference between the 20 "C (solid) and the 95 "C (dash-dot) spectra is due 
to hyperchromic shift. The concentration ofDNA for these data was ca. 6.5 x M in base 
pairs. 



Figure 15. UV Temperature Difference Spectra of Z8 

The effect of temperature on UV absorption spectra of 28 which was heat-annealed 
and melt-treated in the presence of 200pM [Co(NH,),(OH,)13+ and then exhaustively 
dialyzed. The UV temperature difference spectra for untreated 28 (solid) and melt-treated 
28 (dash) are plotted as: AA = &,, - A2,, where the subscripts designate the temperature 
at which the spectra were recorded. The concentration of DNA for these data was ca. 6.5 
x lo-* M in base pairs. 



Figure 16. UV Spectra of Untreated 12-mer at 20 "C and 95 "C 

The effect of temperature on UV absorption spectra of untreated 12-mer. The 
difference between the 20 "C (solid) and the 95 "C (dash-dot) spectra is due to hyperchromic 
shift. The concentration of DNA for these data was ca. 6.5 x M in base pairs. 



Figure 17. UV Spectra of Melt-Treated 12-mer at 20 OC and 95 "C 

The effect of temperature on UV absorption spectra of 12-mer which was heat- 
annealed and melt-treated in the presence of 200pM [Co(NH,),(OH,)I3+ and then exhaustively 
dialyzed. The difference between the 20 "C (solid) and the 95 OC (dash-dot) spectra is due 
to hyperchromic shift. The concentration of DNA for these data was ca. 6.5 x M in base 
pairs. 



Figure 18. UV Temperature Difference Spectra of 12-mer 

The effect of temperature on UV absorption spectra of 12-mer which was heat- 
annealed and melt-treated in the presence of 200pM [CO(NJ!I&OHJ]~+ and then exhaustively 
dialyzed. The UV temperature difference spectra for untreated 12-mer (solid) and melt- 
treated 12-mer (dash) are plotted as: AA = &,, - A,,,, where the subscripts designate the 
temperature at which the spectra were recorded. The concentration of DNA for these data 
was ca. 6.5 x lu5 M in base pairs. 



Figure 19. UV Spectra of Untreated 24-mer at 20 "C and 95 "C 

The effect of temperature on UV absorption spectra of untreated 24-mer. The 
difference between the 20 "C (solid) and the 95 "C (dash-dot) spectra is due to hyperchromic 
shift. The concentration of DNA for these data was ca. 6.5 x M in base pairs. 



Figure 20. UV Spectra of Melt-Treated 24-mer at 20 "C and 95 "C 

The effect of temperature on UV absorption spectra of 24-mer which was heat- 
annealed and melt-treated i11 the presence of 200pM [CO(NH,)XOH,)]~' and then exhaustively 
dialyzed. The difference between the 20 "C (solid) and the 95 "C (dash-dot) spectra is due 
to hyperchromic shift The concentration of DNA for these data was ca. 6.5 x lo-' M in base 
pairs. 



Figure 21. UV Temperature Difference Spectra of 24-mer 

The effect of temperature on UV absorption spectra of 24-mer which was heat- 
annealed and melt-treated in the presence of 200pM [Co(NH,),(OHJI3+ and then exhaustively 
dialyzed. The UV temperature difference spectra for untreated 24-mer (solid) and melt- 
treated 24-mer (dash) are plotted as: AA = A)5C - AZW, where the subscripts designate the 
temperature at which the spectra were recorded. The concentration of DNA for these data 
was ca. 6.5 x M in base pairs. 



Figure 22. Melting Profiles of Z8 

Normalized melting profiles, monitored at 280 nm while heated at about 0.3 
Clrninute, of Z8 before treatment (solid), after melt-treatment and exhaustive dialysis (dash- 
dot), as well as during the actual melting in the presence of 200pM [CO(NH,),(OH,)]~' (dot). 
The down turn above 70 "C in the melting-treatment profile reveals that the 200pM 
[CO(NH,),(OH,)]~' in the buffer solution of the blank is causing an increase in absorbance 
andlor turbidity at 280 nm as it undergoes dimerization and polymerization. 



Figure 23. Melting Profiles of 12-mer 

Normalized melting profiles, monitored at 280 nm while heated at about 0.3 
CO/minute, of 12-mer before treatment (solid), after melt-treatment and exhaustive dialysis 
(dash-dot), as well as during the actual melting in the presence of 200pM [Co(NH3),(OH2)I3' 
(dot). The down turn above 40-45 OC in the melting-treatment profile reveals that the 200pM 
[CO(NH,),(OH~)]~+ in the buffer solution of the blank is causing an increase in absorbance 
andlor turbidity at 280 nm as it undergoes dimerization and polymerization. 
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Figure 24. Melting Profiles of 24-nier 

Normalized melting profiles, monitored at 272 nm while heated at about 0.3 
Co/minute, of 24-mer before treatment (solid), after melt-treatment and exhaustive dialysis 
(dash-dot), as well as during the actual melting in the presence of 200pM [CO(NH,),(OH,)]~' 
(dot). The decrease at all temperatures and the down turn above 46 "C in the melting- 
treatment profile reveals that the 200pM [CO(NH,),(OH,)]~' in the buffer solution of the 
blank is causing an increase in absorbance and/or turbidity at 272 nm as it undergoes 
dimerization and polymerization. 
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Figure 25. Comparison o f  Ligand Orientation in Platinum and Cobalt Complexes 

The octahedral cobalt(II1) complexes can, upon binding, present DNA with a 
molecular structure o f  similar geometry t o  that found for the associative binding o f  square 
planer platinum(I1) compounds. 



Temperature /C 

Figure 26. Melting Profiles of Untreated and Treated GC-site and CG-isomer 

Melting Profiles, monitored at 260 nrn while heated at about 0.3C"/minute, of GC-site 
before treatment (solid), GC-site after melt-treatment and exhaustive dialysis (dot, at top), 
CG-isomer before treatment (dash, at bottom), and CGisorner after melt-treatment and 
exhaustive dialysis (dash-dot). 



Figure 27. Differentials of Untreated and Treated GC-site Thermal Denaturation 
The first differentials of the melt profile of untreated GC-site (solid) and melt-treated 

GC-site (dash-dot). The maxima are the inflection point temperatures, or T,, . 



Figure 28. Differentials of Untreated and Treated CG-isomer Thermal Denaturation 
The first differentials of the melt profile of untreated CG-isomer (solid) and melt- 

treated CG-isomer (dash-dot). The maxima are the inflection point temperatures, or T,,, . 



Figure 29. Differential of 24-mer Thermal Denaturation 
The first differential of the melt profile of untreated 24-mer highlights the 

unsymmetric lower curve and baselines. The maximum is the inflection point temperature, 
or Tmas . 
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Figure 30. Melting Profiles of Incubation-Treated Sonicated Calf Thymus DNA 

Sonicated Calf Thymus DNA samples were incubated at 37 "C for 48 hours in buffer 
with [CO(N'H~),(OH,)]~' at the following concentrations (and DNAICo ratios): (1) [CT- 
DNA] = 280 pM, Control, (--) {solid); (2 )  [CT-DNA] = 560 pM, [[CO(NH,),(OH,)]~+] = 

200 pM, (2.8) {dash); ( 3 )  [CT-DNA] = 280 pM, [[CO(NH,),(~H~)]"] = 200 pM, (1.4) 
{dot); (4)  [CT-DNA] = 140 pM, [[co(NH~),(oH,)]~+] = 200 pM, (0.7) {dash-dot); (5) 
[CT-DNA] = 560 pM, [[Co(NH,),(OH,)J3'] = 400 pM, (1.4) {dash-dot-dot). After 
incubation, the samples were exhaustively dialyzed verses water, evaporated to dryness, and 
then reconstituted in buffer. Sample 5 had some precipitate, so it was diluted with water 
before dialysis. For the thermal denaturation experiments, the concentration of DNA was 
adjusted to ca. 1.0 x lo4 M in base pairs. The temperature was ramped from 25 "C to 95 "C 
at 0.3 CO/minute while monitored at 260 nm. The melting data are plotted as 8 (fraction of 
absorbance change) = (AT - A,,)/(& - Az,) where AT is the absorbance at temperature T and 
A,, and &, are the initial and final absorbances at 25 "C and 95 "C, respectively. The T, 
values (* 0.3 CO) obtained from the first derivative of the melt profiles are as follows: (1) 
75.2 "C; (2) 70.6 "C; (3) 69.2 "C; (4) 65.9 "C; and (5) 86.1 "C. 
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Figure 31. Remelting Profiles of Cobalt-Treated Sonicated Calf Thymus DNA 

The samples of untreated and treated sonicated calf thymus DNA, from Figure 30, 
were slowly reannealed to room temperature under thermal control in the Gilford 
spectrophotometer following the initial denaturation. The samples equilibrated at 4 OC for 
several days before the second thermal denaturation. All the samples, with the same 
conditions in Figure 30, were remelted, as before, by ramping the temperature from 25 OC to 
95 "C at 0.3 C"/minute while monitoring at 260 nm. The melting data are plotted as 0 
(fraction of absorbance change) = (AT - A,,)/(&, - A,,) where AT is the absorbance during 
the remelt at temperature T, and A,, and 4, are the initial and final absorbances from the 
initial melting (Figure 30) at 25 OC and 95 OC, respectively. Thus the remelt data is 
normalized according to the profiles of the initial melt. 



Figure 32. UV Spectra of Untreated ZS at 25 "C and 95 "C 

The effect of temperature on UV absorption spectra of untreated ZS. The difference 
between the 25 "C (solid) and the 95 "C (dash-dot) spectra is due to hyperchromic shift. The 
concentration of DNA for these data was ca. 4.3 x M in base pairs. 



Figure 33. UV Spectra of Treated 28; 250 pM [Co(NH,),(OH,)13+ at 25 "C and 95 "C 

The effect of temperature on W absorption spectra of Z8 which was incubated with 
250pM [CO(NHJ,(OH,)]~+ at 37 "C for 48 hours, and then exhaustively dialyzed. The 
difference between the 25 "C (solid) and the 95 "C (dash-dot) spectra is due to the 
hyperchromic shift. The concentration of DNA for these data was ca. 4.3 x 10'' M in base 
pairs. 



Figure 34. UV Spectra of Treated 28; 300 pM [CO(NH,),(OHJ]~' at 25 "C and 95 "C 

The effect of temperature on UV absorption spectra of 28 which was incubated with 
300pM [CO(NH,),(OH,)]~' at 37 "C for 48 hours, and then exhaustively dialyzed. The 
difference between the 25 "C (solid) and the 95 "C (dash-dot) spectra is due to the 
hyperchromic shift. The concentration of DNA for these data was ca. 4.3 x lo-, M in base 
pairs. 



Figure 35. UV Difference Spectra at 25 "C of Treated and Untreated Z8 

The effect of increasing the concentration of [CO(NH,),(OH,)]~' in the incubation of 
28 at 37 "C for 48 hours, followed by exhaustive dialysis, on UV absorption spectra of the 
oligomer in standard buffer with 200 m M  NaCl at 25 "C. The UV absorption difference 
spectra are plotted as: AA = A, - A,,, where A, and A,, are the absorbances of treated and 
untreated oligomer, respectively. The concentrations of [CO(NH,),(OH,)]~+ in the incubation 
were 100 pM (solid), 200 pM (dash), 250 pM (dot), 300 pM (dash-dot), and 400 prnM 
(dash-dot-dot). The concentration of DNA for these data was ca. 4.3 x M in base pairs. 
The spectra were normalized at 260 nm before calculating their differences. 



Figure 36. UV Difference Spectra at 95 "C of Treated and Untreated 28 

The effect of increasin~ the concentration of [Co(NH,),(OH,)13' in the incubation of 
28 at 37 "C for 48 hours, followed by exhaustive dialysis, on UV absorption spectra of the 
oligomer in standard buffer with 200 rnM NaCl at 95 "C, which is at denaturing conditions. 
The UV absorption difference spectra is plotted as: AA = A, - &, where A, and A, are the 
absorbances of treated and untreated oligomer, respectively. The concentrations of 
[CO(NH,),(OH,)]~' in the incubation were 100 pM (solid), 200 pM (dash), 250 pM (dot), 
300 pM (dash-dot), and 400 pmM (dash-dot-dot). The concentration of DNA for these data 
was ca. 4.3 x 10-'M in base pairs. The 95 "C spectra were normalized at 260 nm, according 
to the 25 "C spectra, before calculating their differences. 



Figure 37. UV Temperature Difference Spectra for Incubated 2 8  

The effect of increasing the concentration of [CO(NH,),(OH,)]~' in the incubation of 
28 at 37 "C for 48 hours, followed by exhaustive dialysis, on UV absorption spectra. The UV 
temperature difference spectra for untreated and treated 28 are plotted as: AA = &,, - A,,,, 
where the subscripts designate the temperature at which the spectra were recorded. The 
concentrations of [CO(NH,),(OH,)]~' in the incubation were 0 (solid), 100 pM (short dash), 
200 pM (dot), 250 pM (long dash), 300 pM (dash-dot), and 400 pM (dash-dot-dot). The 
concentration of DNA for these data was ca. 4.3 x M in base pairs. 
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Figure 38. CD Spectra of 28 Incubated with Various Concentrations of [Co(NH3),(OH2)13+ 

The effect of increasing the concentration of [Co(NH,),(OH2)13+ in the incubation of 
2.8 at 37 "C for 48 hours, followed by exhaustive dialysis, on CD spectra. The concentrations 
of [CO(NH,),(OH,)]~' in the incubation were 0 (bottom line at 255 nm), 100 pM, 200 pM 
(middle line at 255 nrn), 400 pM, and 300 pM (top line at 255 nm). For the CD spectra, the 
samples were kept at 25 "C. 



Figure 39. CD Difference Spectra at 25 "C of Treated and Untreated 28 

The effect of increasing the concentration of [Co(NH3),(OH,)13' in the incubation of 
28 at 37 "C for 48 hours, followed by exhaustive dialysis, on the molar ellipticity of the 
oligomer in standard buffer with 200 rnM NaCl at 25 "C. The CD difference spectra are 
plotted as: A 8  = 8, - 8,, where 8, and 8, are the molar ellipticities of treated and untreated 
oligomer, respectively. The concentration of [Co(NH3),(OH,)I3' in the incubation was 100 
pM (solid), 200 pM (dash), 250 pM (dot), 300 pM (dash-dot), and 400 pM (dash-dot-dot). 
The concentration of DNA for these data was ca. 4.3 x M in base pairs. 



Figure 40. CD Difference Spectra at 95 OC of Treated and Untreated 2 8  

The effect of increasing the concentration of [Co(NH,),(OH2)I3' in the incubation of 
28  at 37 OC for 48 hours, followed by exhaustive dialysis, on the molar ellipticity of the 
oligomer in standard buffer with 200 mM NaCl at 95 "C, which is at denaturing conditions. 
The CD difference spectra are plotted as: A 8  = 8, - 8,, where 8, and 8, are the molar 
ellipticities of treated and untreated oligomer, respectively. The concentration of 
[Co(NH,)XOHL)I3+ in the incubation was 100 pM (solid), 200 pM (dash), 250 pM (dot), 300 
pM (dash-dot), and 400 pM (dash-dot-dot). The concentration of DNA for these data was 
ca. 4.3 x lo-' M in base pairs. 



Figure 41. CD Temperature Difference Spectra for Incubated 2 8  

The effect of increasing the concentration of [CO(NH,),(OH,)]~+ in the incubation of 
Z8 at 37 "C for 48 hours, followed by exhaustive dialysis, on the molar ellipticity of the 
oligomer in standard buffer with 200 rnM NaCI. The CD temperature difference spectra for 
untreated and treated 28 are plotted as: A 8  = 8,,, - 8,,,, where the subscripts designate the 
temperature at which the spectra were recorded. The concentration of [CO(NH,),(OH,)]~+ 
in the incubation was 0 (solid), 100 pM (short dash), 200 pM (dot), 250 pM (long dash), 300 
pM (dash-dot), and 400 pM (dash-dot-dot). The concentration of DNA for these data was 
ca. 4.3 x M in base pairs. 
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Figure 42. Dependence of the Hyperchromicity and AT, of Incubated 28 on the 
Concentration of [Co(NH,),(OH2)]" 

The effect of increasing the concentration of [CO(NH,),(OH,)]~' in the incubation of 
28  at 37 "C for 48 hours, followed by exhaustive dialysis, on the thermal denaturation. 
Thermal denaturation studies were carried out in standard buffer with 200 mM NaCl. 
Hyperchromicity (open circle) is calculated as (Az80,95c - A280,z5c)/A280,z5c, where A2,0,,5, and 
A28,,25c are the absorbances of the sample at 280 nm at 95 "C and 25 "C, respectively. The 
change in thermal denaturation temperature (filled circle), AT,, is T,, - T,, where T,! and 
T,, are the thermal denaturation temperatures of treated and untreated samples, respectively. 
The T, values were determined as the inflection point of absorbance versus temperature plots 
via first derivatives (Godiff software, Turbo-Basic). The DNA concentration for all samples 
for these data was ca. 4.3 x lo-' M in base pairs. 
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Figure 43. CD Spectra of 23 Incubated with [CO(NI~),(OHJ]~+ for Various Reaction Times 

The effect of increasing the reaction time in the incubation of ZS at 37 "C with 200 
pM [co(NH,),(OH~]~', followed by exhaustive dialysis, on CD spectra. The incubation 
times were 0 (bottom line at 255 nm), 6 hours, 13 hours, 27 hours, 5 1 hours, and 76 hours. 
For the CD spectra, the samples were kept at 25 "C. 
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Figure 44. Dependence of A Molar Ellipticity and AT, of 2 8  upon Incubation Reaction 
Time 

The effect of increasing the reaction time in the incubation of Z8 at 37 "C with 200 
pM [CO(NH,),(OH,)]~+, followed by exhaustive dialysis, on thermal denaturation and CD 
molar ellipticity at 25j nm. Thermal denaturation studies were carried out in standard buffer 
with 200 mM NaCI. The T,,, values (filled circles) were determined as the inflection point of 
absorbance versus temperature plots via first derivatives (Godiff software, Turbo-Basic). CD 
spectra were carried out at 25 "C in standard buffer with 200 rnM NaCI, and the B-trough 
values at 255 nm were replotted (open circles) as a measure of distortion and lessening of the 
right-handed helix. The DNA concentration for all samples for these data was ca. 4.3 x lo-' 
M in base pairs. 
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Figure 45. Dependence of Cobalt Uptake by 28 on Incubation Reaction Time 

The effect of incubation time for cobalt binding to 28 treated with 200 pM 
[CO(NH,),(OH,)]~' at 37 "C, followed by exhaustive dialysis. The binding ratio, R, is 
determined as the number of atoms of cobalt bound per base pair of DNA. The concentration 
of cobalt was determined by graphite hrnace atomic absorption spectroscopy as detailed in 
Materials and Methods. 



Figure 46. T, versus Log WaCI] for 28 under Various Cobalt Treatments 

Plots of T,,, versus log [NaCI] for the 28 samples ( 1 ) untreated 28 (circles); (2) 28 
heat-annealed in the presence of 200 pM [Co(NH3),(O~,)I3', followed by exhaustive dialysis 
(squares); (3)  28 incubated with 200 pM [Co(NH3),(OH 313' at 37 "C for 48 hours, followed 
by exhaustive dialysis (triangles). All DNA samples were prepared in 5 mM phosphate buffer, 
pH 7.0, with NaCl added to give VaCI] ranging from 125 to 400 mM ([DNA] = 4.3 x 
M in base pairs). Thermal denaturation studies and T, determinations were carried out as 
described in Materials and Methods. 



CHAPTER IV 

CONCLUSIONS 

The data presented here indicate that [C0(NH,),(0H~)]~'does not, in the manner of 

[Co(NH,)J3' , induce the B to 2-form transition in the alternating purine-pyrimidine oligomer 

(SmedC-dG), , or 28, but the complex with a labile ligand apparently does modifl the 

oligomer. The degree of modifkition depends upon the concentration of the cobalt complex, 

the method oftreatment (with respect to temperature), and the length of incubation. The UV 

and CD spectral data presented (Figures 6 & 7) suggest that heat-annealing 28  in the 

presence of [Co(NH3),(OH2)13' modifies the oligomer to an altered B-like conformation. 

Since the heat annealing was carried out at 80 "C for 2 minutes, it is likely that most of the 

oligomer was single stranded during that treatment. In order to investigate the interaction of 

[CO(NH,),(OH,)]~' with duplex DNA, the oligomer was incubated in the presence of the 

cobalt complex at 37 "C (the T, of Z8 under the conditions used is about 70 "C). As 

evidenced by the W and CD difference spectra (Figures 37 & 41), such incubation of 2 8  in 

the presence of increasing concentrations of [CO(NH,),(OH,)]~' also leads to modification to 

a B-like conformation even after exhaustive dialysis. 

Upon heating, [Co(NH,),(OHJI3+ in solution reacts with itself, forming a red powdery 

inorganic precipitate as a result of dimerization and polymerization (Cotton & Wilkinson, 

1988). However, for the protocols used at the concentrations of 200-300 pM in cobalt 

complex, binding to and modification of the DNA occurs before much cobalt to cobalt 

chemistry. 



Other oligomers are modified by the cobalt complex upon the heating and annealing 

treatment. The dodecamer [(CG),ATAT(CG),], , 12-mer, showed reduced UV hyper- 

chromicity after heat treatment. A pair of oligomers, which showed selectivity for cross- 

linking by cis-Pt(NH3),C1, (Hopkins et al., 1991), were modified by treatment with 

[CO(NH,),(OH,)]~'. These oligomers are 17 bases long, with 8 adenines and 7 thymines in 

a strand as well as a pair of guanines and cytosines. In the self-complementary 14 base 

region, one oligomer has a core sequence of -AGCT- (designated GC-site) and the other has 

-ACGT- at its center (CGisomer). Reduced UV hyperchromicity upon denaturation of 

treated oligomers, exhibited strongly for 28  and GC-site, coincides with GpC as part of the 

sequence. There are three such steps in 28. In the case of the 17-mers, modification of the 

central GpC site in GC-site causes a stabilization of the helix (higher T,) which is not 

exhibited with CGisomer under the same conditions. This is consistent with the GN7 to 

GN7 crosslink results reported with cis-Pt(NH3),C12 (Hopkins et al., 1991). A 24-mer 

oligomer, [(ACTG)6]:[(TGAC),], which contains 12 isolated guanines, has some reduced UV 

hyperchromicity after heat treatment with the complex, but showed no significant change in 

the temperature of thermal denaturation. This indicates that the separated guanines in the 24- 

mer are modified, but only by cobalt complexes which are non-bridging. 

The data presented clearly demonstrate that the treated oligomers 28, 12-mer, and 

GC-site, are conformationally distinct from untreated oligomer in both the native (i.e., at 25 

"C) and denatured (i.e. at 95 OC) states. The melting profiles indicate complete thermally 

induced transitions for both treated and untreated oligomers, as evidenced by establishment 

on an upper baseline at the high-end temperatures (Figures 22-24 & 26). 



Treatment of sonicated calf thymus DNA with [co(NH,),(oH,)]~+ via incubation at 

37 "C for 48 hours with 400 pM and 200 pM complex (140 - 560 pM DNA), followed by 

dialysis, modifies the natural polymer. Subsequent thermal denaturations show distorted 

DNA with lower T,'s with increasing complex (Figure 30). However, the sample of DNA 

which was incubated at the highest concentration of complex (and of DNA) did not hlly melt. 

Upon reannealing and remelting, that sample exhibited some sigmoidal nature in its thermal 

transition profile (Figure 31). This is in contrast to the other samples (and control) which 

appeared only as a random-coil structure. The incubation with [CO(NH,),(OH,)]~+ modifies 

natural DNA and the results are consistent with the earlier heat treatment studies of 

oligomers (Calderone et al., 1995). 

28 was incubated with 200 pM [CO(NH,),(OH,)]~', dialyzed and then monitored by 

thermal denaturation and CD spectropolarimetry. The modification of 28  by incubation 

reduces UV hyperchromism and distorts CD spectra to an extent proportional to time of 

incubation and concentration of complex (Figures 42 & 44). During the incubation with 200 

pM [co(NH,)~(OHJ]~+, 28 binds cobalt with time, up to one cobalt for every 4 base pairs 

after two days, as shown directly by atomic absorption (Figure 45). The salt dependence of 

melting temperature is shown for three oligomer samples: 28  control, Z8 heat-treated and 

dialyzed, and 28 incubated and dialyzed (Figure 46). From the slopes of the T, versus log 

[NaCl] plot, the differential ion binding term, An, can be calculated. The An term represents 

the release of counterions per duplex upon denaturation (in that double stranded DNA has 

a higher charge density than single stranded DNA). For the oligomers 2 8  control, 2 8  heat- 

treated, and 28 incubated, the An terms are 0.92,0.48, and 0.28, respectively. This is indirect 



evidence that the two methods of modification result in cobalt being tightly bound to the 

DNA The incubated sample has more bound metal (is more modified) in that fewer sodium 

ions are released upon melting. 

A covalent bond between N-7 of guanine and the Co (111) center, via displacement of 

the water, is highly likely. The data for 28, 12-mer, GC-site, and calf thymus DNA are also 

consistent with cobalt mediated interstrand crosslinking. At high concentrations of 

[CO(NH,),(OH,)]~' and long reaction times, the modification was more prevalent. As with 

cis-Pt(NH,),Cl,, the GpC sequence provides the crosslinkable site. Crosslinking through 

cobalt would only be possible through loss of one of the ammines. The interaction of 

[Co(NH,),(OHJI3' with ZS,12-mer, and GC-site modifies the conformational properties of 

the DNA oligomer at both 25 "C and 95 "C. The results suggest that other simple cobalt (111) 

complexes may have surprisingly interesting DNA binding properties. 
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