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Abstract 

Classical molecular dynamics (MD) simulations were. used to study the relative stability 

among several known human G- quadruplex structures, find the equilibrium structure of 

Carboxyl Terminus (CT) of Bacteriorhodopsin (bR) and observe the interactions of CT in 

equilibrium with bR. 

In the case of quadruplex DNA, recent experimental results indicate that the 

(7TAGGG) 4 q u a d ~ p k x  undergoes isomerization to an intermediate state upon melting 

in potassium solution. To help establish the likely structural state of this intermediate, we 

have undertook MD simulations to determine the relative stability of several candidate 

isomers which differ in the secondary folding structure. Total energy, solvent accessible 

surface area, heat capacity and root-mean-squaredisplacements of the nucleic acid 

portion of the simulation ensemble indicate that the proposed initial state suggested in 

previously published experimental results is correct and that an intermediate state might 

exist. 

Bacteriorhodopsin (bR) exists as a 7-helix trans-membrane protein with a 23- 

residue sequence C-terminus (CT) exposed to the aqueous intracellular environment. The 

presence of the CT has been shown to contribute to the overall stability and function of 

bR; however, to date XRD crystal data indicate that the CT lacks a welldefined 

equilibrium structure. All-atom MD simulations of the CT in aqueous ionic solution have 

been undertaken to help establish the likely structure of the CT as a function of solvent 

salt concentration. High temperature simulated annealing was used to mitigate initial 

state effects as well as to promote sampling of a broader space. All MD simulations 

included explicit water, a host lipid membrane matrix and solvent ions. The solvent 



accessibility and rqot- mean- square -deviations o f  the CT in equilibrium are presented, 

which show that the overall stability of the transmembrane portion of bR is enhanced by 

interactions with the CT. The investigations include a comparison of CT-bR interactions 

with the CT bound and unbound to bR. 

xii 



CHAPTER 1 

Molecular Dynamics simulations of Guanine Quadruplexes 



1.1 Introduction 

1.1.1 Nucleic acids 
The most commonly recognized function of a cell's genotype is to store the code 

required to obtain the protein phenotype and to pass on this code along to successive 

generations.' The process of protein generation involves translating the double stranded 

DNA into a complementary single strand RNA that is transcribed by a ribosome into the 

corresponding protein. 

In 1953, Watson and Crick discovered the first of several three-dimensional 

structures of DNA.' Their model is a double helix with the base pairs A (Adenine)-T 

(Thymine) or C (Cytosine)-G (Guanine) forming the interior "steps" of a ladder and the 

deoxyribose-phosphate "backbone" forming the external "rungs" of the ladder (Figure 1). 

Watson and Crick found that the hydrogen bonded base pairs between G and C and A and 

T, are those that fit best within the struct~re.~ It is important to note that three hydrogen 

bonds can form between G and C, but only two can form between A and T. This 

structure (termed the " B  form), which is the most common form under physiological 

conditions, is a right-handed double helix with the base pairs approximately normal to the 

helical axis. An "A" form can occur under conditions of low solvation in which the base 

pairs are canted by about 20 degrees to the helix axis. Other duplex forms of DNA have 

been identified but occur only under strained conditions. In all these structures the 

comparatively hydrophobic purine and pyrimidine bases are found in the interior of the 

polymer with the polar sugar-phosphate structures exteriorly located in contact with the 

aqueous solvent. 



The structural composition of a nucleotide includes three basic components: 

nitrogenous base, pentose sugar, and phosphate. The structure of B DNA is shown in 

Figure 1. 

*. 

Figure 1: Structure of DNA 

A nucleotide lacking phosphate group is named a nucleoside.' The nitrogenous 

bases belong to one of the two groups, either pyrmidine or purine. The bases and pentose 

sugar groups of the ordinary nucleotides are heterocyclic complexes. Both DNA and 

RNA contain two main purine bases (A) and (G). The pyrimidines are (C) and (T) in 

DNA and (C) and (U) Uracil in RNA. The structures of the four major nucleotides of 

DNA are shown in Figure 2. 



a: Adenine 

P c: Cytosine 

b: Guanine 

d: Thymine 

Figure 2: Major bases in DNA 

Nucleic acids have two kinds of pentoses. The recurring deoxyribonucleotide 

units of DNA contain deoxy-D-ribose and the ribonucleotide units of RNA contain D- 

ribose. 

An important structural aspect of duplex DNA is that the complementary strands 

of the duplex run antiparallel in the sense of the standard numbering scheme of the 

deoxyribose subunit as shown in Figure 1. 

1.1.2 Quadrupkxes 
In regions of a DNA sequence that contain a high fraction of Guanine residues, an 

alternate structural form of DNA can occur.3 These structures contain a quadruplex of 



guanine residues as shown in Figure 3. The H-bonding arrangement contains strained 

elements not found in duplex DNA base pairs and is stabilized by the formation of 

several such Quadruplexes stacked together and by the presence of cations (usually Na' 

or K+) in the tetrad center. In general, at least 2-3 such Quadruplexes are needed to 

stabilize the structure. The structures have been found to be more prominent in particular 

areas of the sequence such as toward the ends of the DNA molecule. They have been 

implicated in the aging process in as much that they are believed to help maintain the 

structural integrity of the genotype. These sequences have been observed in important 

areas of eukaryotic DNA such as telomeres and the regulatory segments of genes.4 

Because pronounced formation of G-quadruplexes has been observed in tumors, anti- 

cancer therapeutic strategies based on G-quadruplex-drug binding is an exceedingly 

active focus of investigation. Hence, it is essential to fully understand the structural 

characteristics of G-quadruplexes if rational drug design targeting these structures is to be 

successf~l.~ 



Figure 3: GTetrad 

1.1.2.1 Quadruplex structures in the human genotype 
Numerous areas in the human genome can assume Gquadruplex structures. 

These consist of telomeric ends, and non-telomeric sections including: immunoglobulin 

switch regions, mutational hot spots, and regulatory elements with oncogene promoters.6 

Some of the salient aspects of these regions are described below. 

1.1.2. I .  I Telomeres 
Telomeric DNA in human cells, which is normally is 5-8 kilobases (kb) in length, 

was shown to contain replicates of the sequence (TTAGGG) with a single-stranded 

overhang of 10&200 bases.' In Na' solution, NMR studies indicate an antiparallel 

basket-type G-quadmplex structure that has diagonal and lateral 'ITA loops. In Kt 

solution, a propeller-type Gquadruplex was observed with Guanine columns in a 

uniform all-parallel design.' Since the conformation in K' solution is believed to be 

physiologically more significant, several structural studies of the telomeric G-quadmplex 



in K' solution were completed and a number of additional structures were discovered 

which are not in agreement with the XRD crystal ~tructure.~- '~ 

The conformation observed for G-quadruplexes in Kf solution can be further 

modified. For example, with platinum based cross-linking methods the basket-type 

9 125 structure can be formed with other quadruplex sequences in Na' and K' solution. I- 

radioprobing results indicate that a chair-type structure is the predominant species in K' 

so~ution.'~ More recently, sedimentation and fluorescence studies have shown that the 

XRD-determined basket-form crystal conformation of telomeric DNA is not the 

predominant species in K' solution and a variety of other energetically equivalent forms 

have been observed." A mixture of chair-type and parallellantiparallel hybrid structures 

was reported in K' solution.12 AntiparalleVparallel strands with one propeller and two 

lateral loops in Kt solution (hybrid-kind) were shown in at least two NMR ~tudies. '~- '~ It 

was recently shown that human telomeric DNA can form all-parallel stranded G- 

quadruplexes in K' solution.15 Furthermore, other studies have suggested a dense stacking 

conformation for multimers containing a hybrid-kind and parallel-type telomeric DNA. 

Telomeres are non-coding DNA (i.e., they do not contribute to the phenotype) 

found at the termini of linear chromosomes and are capable of forming defensive 

structures at these regions. In this capacity, telomers help prevent DNA from forming 

double-strand breaks which could result in degradati~n.~ Strict control of telomere length 

is vital for cell cycle control, cellular immortalization, and tumor genesis.16 Maintaining 

telomere length prevents the initiation of p53 and Rb tumor suppressor pathways and 

cellular senescence that would lead to tumor suppression." Telomere-induced senescence 

was shown to be successlid in inducing apoptosis aimed at diminishing cancer 



incidence,18-l9 by inhibiting oncogene-expressing cells from progressing to malignancy.20 

Normal human somatic cells display weak telomerase activity, which is inadequate to 

keep up a constant telomere length, whereas more than 90% of human tumor cell 

populations have high telomerase activity and show a range of telomere ~en~ths?I- '~ 

The folding and stabilization of a variety of G-quadruplexes in G-rich sequences 

at the end of telomeres may influence telomere length and therefore the normal regulation 

of telomeres in the cell cycle or other events. The effects of stabilization of these 

structures by small ligands have been broadly investigated over the past decade. The 

interactions of G-quadruplexes with ligands augment the various effects on telomere 

functions. For example, many small ligands capable of stabilizing G-quad~plexeS are 

successful in telomerase inhibition, which is the most common parameter for evaluating 

the telomeric G-quadmplex Other reported effects of ligands binding to G- 

quadruplexes are shortening of telomere length," induction of senescence and inhibition 

of cell g r o ~ t h ? ~ " ~  Furthermore, end-to-end fusions of chromosomes have been observed 

with telomeres in the presence of Gquadmplex ligands?' Recently, some Gquadmplex 

ligands have been found to interfere with the conformation and length of the telomeric G- 

overhang.32 Other studies have also shown that some G-quadmplex ligands may function 

by dissociation of the telomere binding proteins POT1 (protection of telomeresl) and 

TRF2 (telomeric repeat binding factor 2), and by uncapping telomeres to make them 

available for 

In addition, the biological function of telomeres is expected to be dependant on 

the variety oftheir diverse conformational states.I2 



1.1.2.1.2 Non -telonu?ric Quadruplexes 
Quadmplexes were observed in double-stranded non-telomeric parts of the human 

genome such as in promoter and immunoglobulin switch regions and in recombination 

hot spot.23 TWO groups investigated the presence of quadruplex-forming sequences in the 

human and such sequences are found throughout the genome. 

There is significant interest in searching for the presence of quadmplex sequences 

in promoter sequences due to the elevated level of G bases3' The observance of 

quadmplex sequences in the promoter areas of several cancer genes has motivated several 

structural studies. A variety of possible quadmplex sequences, which are typically 

located exactly upstream of the start codon site, in a series of cancer related genes are 

reported.39 

The hypothesis that quadruplex creation may supply a transcriptional regulatory 

signal was motivated by studies of quadruplex levels in Escherichia coli and other 

prokaryotic genomes,40 where G4 sequences are frequently seen in promoter sections 

close to the transcription start codon. Quadruplex sequences in mammalian pre-mRNA 

sequences were also been investigatd4' At present, little experimental information on 

RNA quadmplexes is available. It was suggested that the fragile X mental retardation 

protein (FMRP) has great affinity for G-rich mRNA which has the ability to make 

quadmp~exes.42 A survey was done on all 16,654 genes in the human genome database 

which showed that there is a correlation between the frequency of quadmplex structures 

and the gene c1ass.4~ Specifically, proto-oncogenes have an elevated potential for making 

quadmplexes but tumor suppressor genes have considerably lower potential. 

In addition, potential quad~pk~-fOrming sequences were observed in 

chromosomal translocations. One case for this phenomenon is the breakpoint section on 



human chromosome 1 4 . ~  The section immediately downstream of the breakpoint has G- 

rich tracts, which are capable of quadruplex formation. Similar G-tracts have been seen 

in the breakpoint section ofthe SHANK3 gene.45 

Non-telomeric quadruplex sequences are linked with abnormally high cell growth. 

Their biological role is not fully understood but they may take part in the gene expression 

management. Non-telomeric quadruplex structures have diversity both in topology and 

molecular conformation-4647 as described below. 

1.1.2.1.2.1 Topology and Structure of non-Telomeric Sequences 
Quadruplex development has been studied in vitro in a number of non-telomeric 

sequences. The NHE 1111 G-rich sequence in the promoter region of the C-myc 

oncogene, which is responsible for 8@90% of transcriptional action, has been 

particularly well studied. A quadruplex in this promoter area was reported.z3-24 Later 

studies recognized a connection among quadruplex stabilization in this sequence and 

suppression of C-myc transcriptional activitie~.~' Solution phase NMR studies were used 

to establish the topology and full structures of several C-myc quadruplex ~ e ~ u e n c e s . ~ ~ - ~ ~  

Non-telomeric G-rich regions frequently have more than four uninterrupted G4-tracts. 

The conformational rearrangements are different between human telomere and C-myc 

quadruplexes. Myc-2345 and Myc-1245 each have four G4-tracts and form very stable 

quadruplexes in solution.49 These G4-tracts join through propeller loops, and all Guanines 

in the G4 tracts have an anti c~nformation.~~ Hence, these structures have similar 

properties to the human telomeric crystal structure.' 

NMR methods were used to demonstrate the existence of quadruplexes in the 

promoter region of the C-kit kinase Interestingly, NMR studies show just a 



single quadruplex species in Ki ~olution.~' Subsequently, another quadruplex sequence 

was recognized in the promoter region of the C-kit gene.50 Both of these quadruplexes are 

highly preserved between vertebrate species suggesting a practical function for them. 

Chemical foot printing and CD techniques were applied to distinguish quadruplex 

species observed in a nuclease hypersensitive sequence within the vascular endothelial 

growth factor (VEGF) promoter section which is necessary for basal promoter activity in 

human cancer cells.5z A quadruplex was also observed in a sequence in the hypoxia- 

inducible factor 1 a (HIF-IA) promoter region, based on foot printing and CD data.s3 

This sequence has two possible single nucleotide loops. The bcl-2 oncogene has a main 

transcriptional promoter sequence upsheam of the transcription start codon that has been 

identified as having quadruplex feat~res.'~"~ The suggested loop sequence in this 

quadruplex section has the same sequence as one of the C-kit sequences5' and this 

sequence was estimated to have a high incidence of oc~urrence.~' 

NMR studies of the bcl-2 quadruplex54 show that one of the topologies for this 

mixed paralleVanti-parallel quad~plex has two side loops and one propeller loop which 

is similar to one of the telomeric quadruplex t ~ p o l o ~ i e s , ' ~ - ' ~  but with a inverted loop 

order. Potential quadruplexes have also been suggested in the k-raJ6 and neuroblastoma 

oncogenes." 

A recent NMR shvctural study of the G-quadruplex from the C-myc promoter 

sequence with five ~ 4 - t r a c t s ~ ~  demonshates that the existence of a fifth G4-hact can 

permit surprising and important variation in topology compared to similar sequences with 

only four G4-tracts. 



1.1.2.2. Physical Properties of Quadruplexes 

1.1.2.2.1 Structural Properties 

The formation of Gquadruplexes from G-rich sequences can result in several 

folding patterns. This study focuses on three-layer tetrads, so discussion is limited to 

forms of the type (GGG)4. The tetrads can be formed from 1-4 separate strands, which 

may run parallel or antiparallel along adjacent strands. Furthermore, the target materials 

in this study are all single strand type formed from the sequence 

TTAGGGTTAGGGTTAGGGTTAGGG (thereafter, (TTAGGGk). Basic combinatorial 

principles show that starting from the first TTAGGG section; the next section can bind 

either parallel or antiparallel in one of two adjacent comers of the tetrad or the opposite 

comer (2 x 3 = 6 total). The third section may bind in one of the two remaining comers 

(2 x 2 = 4 total) and the final section must occupy the remaining comer (2 total). This 

3 

makes 6 x 4 x 2 or x 2 i  = 48 possible structural states. Most of these states are far too 
,=I 

unstable to represent a significant fraction of a physiological population and therefore are 

discounted. In fact, only a few have ever been experimentally o b s e r ~ e d . ~ , ' ~ , ~ ~  These 

studies are intended to help elucidate the results of an experimental study, which were 

conducted in K+ solution. One of the published structures was done in Na' solution and 

is only included in these simulations for comparison. The other structures, described in 

greater detail below, were all found for K+ solutions and so are reasonable candidates for 

possible structures in Figure 4. 



A l l  Pnrsllel Hybrid 1 Hybrid 2 

Figure 4: Different forms of folding of human quadruplexes 

Beyond the essential requirement that quadmplex structures can only form in G- 

rich regions of the genome, a wide variety of stable structures have been observed. These 

structures are stabilized by the presence of cations located at the center of the tetrad. 

Other stabilizing characteristics include the G base orientation, the loop sequence, and the 

polarity (5' 3 3') of the backbone in adjacent strands. The effects of these constraints 

impose considerable structural polymorphism compared to duplex DNA. Moreover, the 

local environment can also affect the stability of the quadmplexes. In particular, 

solvation, the presence of metal ions, ligands, or molecular crowding may also control the 

topology of quadmplexes. Below, these effects are examined in more detail. 

1.1.2.2.2 Cation Induced Stability 
G-quadmplexes are generally stabilized by the presence of cations, particularly 

K' and Na'. These cations are centered between layers with a typical stoichiometry of 

one ion per tetrad. The bounding tetrads may have ions but are typically coordinated 

with solvent ions.823'4,60 The center region among G-tetrad is well suited to coordinating 

cations of this ionic size since the two planes of adjacent tetrads are lined up with eight 

carbonyl 0-6 atoms, which generate a central negatively charged channel inside the G- 

tetrad stack. 



1.1.2.2.3 Moleculariiy and Sequence Effects 
G-quadmplexes can be folded from a single G-rich sequence unimolecularly or by 

the intermolecular association of two (dimeric) or four (tetrameric) separate strands. 

Formation of a unimolecular quadmplex would necessarily impose greater constraints of 

the loop sequence and environmental effects than would dimeric or tetrameric 

quadmplexes since the loop region in the latter are more flexible. 

1.2.2.2.4 Strand Polarity 
Strand polarity can also give rise to structural polymorphism. For example, the 

polarities of the four strands in a G-quadruplex can be parallel (all 5' + 3'), three parallel 

and one antiparallel, adjacent parallel, or alternating parallel, resulting in different 

conformations. These structure types are termed all parallel, propeller (for mixed 

polarity), and antiparallel quadmplexes respectively. 8.23.24.60 

Variations in strand polarity also affect the location of the loops between G-rich 

segments. For example, parallel G-strands need a linking loop to connect the bottom of 

one G-sequence with the top of the adjacent sequence, leading to propeller-type loops. 

Antiparallel G-strands can be associated by diagonal or lateral edgewise loops, depending 

on whether the strands are nearby or diagonally opposed. Overall, the sequence and 

dimensions of the loops help determine the topology of quadruplexes. In addition, the 

loop residues can form stacking and hydrogen bonding interactions further stabilizing or 

destabilizing G-quadmplex A recent molecular dynamics simulation has 

demonstrated that the sequences of the linking loops in quadruplexes are a key aspect in 

determining quadmplex flexibility and may be the possible candidate sites for drug 

binding.23 



1.1.2.2.5 Base Oripntation 
The guanine glycosidic torsion angles are another important parameter in 

characterizing G-quadruplexes. All parallel quadmplexes have guanine glycosidic 

torsion angles that are characteristic of an anti conformation, whereas guanine tetrads in 

antiparallel quadruplexes are found to adopt both syn and anti conformations ( ~ i g u r e 5 ) . ~ ~  

Figure 5: Anti and syn conformations in hybrid quadruplexes 

1.2 Experimental Methods for Structure Determination of Quadruplexes 
Circular Dichroism (CD) spectroscopy is capable of differentiating quadmplexes 

according to their topologies and finding dissimilarities between parallel and anti-parallel 

strand orientations. CD is a helpful and quick method for exploring the overall fold of a 

CD studies for quadmplexes have been largely used to distinguish the 

conditions under which parallel or antiparallel structures for a given sequence are 

observed. 

X-ray crystallography (XRD) and high-field NMR spectroscopy provided a 

wealth of structural information for quadnrplexes.s.'4.54-59 Structural determinations by 

NMR methods require the presence of (ideally) a single thermodynamically stable 



species in solution. The presence of multiple species limits the structural information that 

can be gained. In XRD, the species must be able to crystallize into a periodic pattern. The 

presence of non-periodic features in the crystal structure will not, in general, provide any 

structural data. Hence, the results from any NMR or crystal structure methods need to be 

considered carefully. Nevertheless, the availability of reliable structural data is essential 

for any simulation or molecular dynamics method. 

1.2.1 Motivation for the Present study 
The presence of telorneres in eukaryotic chromosomes is of great interest for 

structure-function relationships, particularly due to the observed, enhanced maintenance 

of these structures in cancer cells.z3 Human telomeres are known to be G-rich in 

(TTAGGG)4 sequences;59 hence, effort has been directed at determining the folding 

structure of this sequence under physiological conditions. Prior experimental studies by 

Cuesta, ei al. and by Antonacci, ei al. of oligirner quadruplexes with the unimolecular 

sequence (TTAGGG)4 were aimed at elucidating the structural characteristics of this 

This study focused on the thermodynamic melting temperature using CD 

and calorimetry to determine the equilibrium state of the sequence. The authors 

suggested a likely equilibrium structure and the presence of an alternate intermediate 

folding state at higher temperature before finally melting into an unfolded final state. 

The key aspect of this study was to identify the low temperature (310K) ground state. In 

our study, we utilize these studies to hypothesize the structure of the ground and 

intermediate states and by using simulation methods, the likely identity of these states 

will be investigated. 



1.2.2 Objectives for our Research 
Prior thermodynamic studies on the human telomeric repeat ('ITAGGG)4 in the 

presence of potassium ion indicate that the hansition from the initial low temperature 

(310K) state to the high temperature unfolded "random coil" state is accompanied by 

transition to an intermediate state at 310 K . ~ ~  The nature of this intermediate state is not 

clearly known at present. In these studies, we utilized MD simulations to investigate the 

relative stability of several candidate structures. The transition from one state to another 

state can only occur from high stability structure to comparably lower stability structure 

(Gfo,) and AGform is negative for this transition. We performed MD simulations to 

determine the equilibrium structure and energy in order to make comparisons among the 

known structures. The outcome of this study will allow the development of new drugs 

that specifically bind to the quadruplex once the structure is clearly identified. 

1.2.3 Methodology for Quadruplex Simulations 
The reader is directed to the Appendix I for background details of MD simulation 

techniques. In this section the simulation details, which are specific to quadruplex DNA 

studies are described. 

The starting structures for creating the initial pdh and psf input structure and 

topology files were obtained from published structures for G-quadruplexes. The AGGG 

(TTAGGG), sequence structure has been obtained using XRD structure (pdb code 

IKFI*) and NMR structures (pdb code 2gku14, pdb code ~ J P Z ' ~ )  in solution with two or 

three potassium ions, between the tebads. The IKFl structure is an all-parallel structure. 

The 2gku(hybridl) and 2JPZ (hybrid2) are hybrid shuctures. A schematic of the folding 

pattern is shown in Figure 4. 



In order to provide a comparison to the energies of the structured states and an 

unfolded state, we prepared structure with the same primary sequence as the others but 

with no specific folding pattern. 

In all cases, the primary sequence was the same except for the starting bases. In 

order to make comparisons of the same structure, we edited out any dissimilar bases so 

that our simulated structures all had the ('ITAGGG)4 sequence. 

From the edited structure files, pdb and psf input files were prepared which 

contained approximately 3,800 explicit water molecules and sufficient K+ ions to make 

100 mM [Kt] in VMD?' 

In all cases, periodic boundary conditions were used and the Ewald Particle Mesh 

method was used for electrostatic potentials. All timesteps were set to 1.0 fs. The 

annealing processes were run under canonical ensemble conditions (constant NVT). 

Each production run was performed under isothermal, isobaric ensemble conditions 

(NPT). The simulations were run as follows: 

1) Equilibration at T = 3 1 OK for 500 ps (500,000 steps). 

2) Annealing with rigid bonds at T = 600K for 2 ps followed by 2 ps at T = 550K, 

2 ps at 500K, 2 ps at 450K, 2 ps at 400K, 2 ps at 350K and finally 2 ps at 

310K 

3) Production runs were performed using a short 5 ps run at 310K with rigid 

bonds followed by 10 ns (total) at 310K without bond constraints. 

All simulations were run on parallel high performance computer servers in parallel. 

Typical compute timings were 2 ns per day ofwall clock time. 



1.3 Results and Discussion 
All systems investigated were run until equilibration was achieved as determined 

by stabilized total energy, volume, and pressure. In each case, equilibration was 

determined when the fluctuations in these parameters was less than 1% of the total value. 

Snapshot images from the trajectories are shown Figures 6-9. 
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Figure 6: Snapshot of parallel stranded quadruplex ( l a )  in lOns of simulation 

Figure 7: Snapshot of hybrid I (2gku) in 10 ns simulation 



Figure 8: Snapshot of hybrid II (2JPZ) in lOns simulation 

Figure 9: Snapshot of unfolded quadruplex in 10 ns simulations 



1.3.1 Average Total Energy 
We calculated the average total energies for different models of human 

quadruplexes. As we see in Figure 10, the lowest energy is for the unfolded form of 

Quadruplex. The hybrid structures total energies are similar. The total energy for parallel 

stranded structure is lower than hybrid structures. 

- 1 kfl - Hybrid 1 

Hybrid2 -Unfolded 

Figure 10: Average total energies for different models of quadruplexes 

From the trajectory data, the average solvent accessible surface area (S), change 

in heat capacity, and root- mean -square -deviations were determined. These analyses are 

described below. 

1.3.2 Average SASA and relative stability 
The SASA (see Appendix 11) is a measure of the surface area of the molecule that 

is exposed to solvent. The SASA for each of the model systems after 10 ns of simulation 

are shown in Figure1 I .  As can be seen in the Figure, the unfolded structure (uf) of 



quadruplex shows the largest SASA. This is expected since the unfolded state has no G- 

G interactions and essentially the entire surface of the structure is exposed to the solvent. 

In contrast, the hybrid structures (2jpz, 2gku) have almost the same SASA. Finally, the 

all-parallel state (Ikfl) shows an intermediate SASA compared to the hybrid and 

unfolded states. One likely explanation for this is that the hybrid states both exhibit 

"tighter" structures particularly for the loop residues whereas the all-parallel state has 

comparably "looser" loop residues. 

The loop residues in the all-parallel state are far more constrained since they must 

traverse along the diagonal length of the quadruplex and the loop residues on the hybrid 

states must only traverse the edge of the quadmplex. Hence, the all-parallel state has loop 

regions that are considerably more exposed to the solvent than those of the hybrid states. 

The unfolded state is essentially "all loop" and so would be expected to have a higher 

SASA. We also note that the unfolded state has greater variability over the trajectory. 

This is likely due to the greater flexibility of this state. It is important to note that since 

no known structure of the unfolded state has been reported h m  experiment, we can only 

treat the SASA (or any other property) for this state in a qualitative manner. Actual 

calculated values for this state can only be taken as indicative of a maximal value. 



Shown in Table I are the total energy of each state exclusive of the solvent and 

ions along with the average SASA. The average total energies and average SASA with 

the standard deviations are shown in Table I. As we see the unfolded quadruplex has the 

lowest energy and highest SASA and one of the hybrid structures (2JPZ) has the highest 

total energy but another hybrid structure (2gku) has the lowest SASA. The average 

SASA values were taken from a linear time average from each trajectory. The average 

SASA for the unfolded states was taken from the final 4 ns of the trajectory in order to 

avoid the fluctuation from being too large. For the energy of each state, the more 

negative the energy, the more stable is the structure. Hence, the unfolded state, with the 

most positive energy (-560 kcal), is the least stable structure, as expected. The most 

stable structures are the hybrid states, and the parallel state has intermediate stability. 

Table I 
Average total energies and average SASA values of different models of 

We also note that the more stable hybrid structure also exhibit, smaller average 

SASA. We interpret this trend as resulting &om the extra energy cost derived from the 

loop residues being strained in the parallel structure as described above. Moreover, since 

the parallel state loop residues have higher exposure to the solvent, they must also exhibit 

greater exposure of the hydrophobic regions further destabilizing the parallel state. 



Hence, we find that the relative stability of the states and the average SASA values are 

consistent. 

Although we note differences in the stability (-825 kcal and -857 kcal) as well as 

the corresponding SASA, the fluctuations over the trajectory as reflected in the standard 

deviation essentially eliminate any real difference between these two states. 

1.3.3 Determination of ACp 
As described in Appendix I1 the change in the SASA from one state to another 

can be related to the change in heat capacity for the transition. This analysis allows for a 

direct comparison to experimental heat capacity studies. To do this, the total SASA for 

the states must be further evaluated in terms of the SASA for the polar and nonpolar 

portions of the molecule. In essence, the change in heat capacity is most affected by 

relative changes in solvent exposure to the nonpolar regions since the polar solvent must 

assume a greater degree of structure around exposed nonpolar residues. The reasoning 

follows from a consideration of the change in solvent entropy accompanying the 

transformation from one state to another. Shown in Table I1 are the SASA values for the 

polar and nonpolar portions of the models studied. 

Table 11 
SASA of hydrophilic and hydrophobic part of different models of human telomere 

quadruplexes 



As expected, the unfolded state has the largest nonpolar SASA. Also, consistent 

with the stability and total SASA described above, the nonpolar SASA for the hybrid 

states are measurably lower than that of the parallel state. Between the hybrid states, the 

2jpz state shows the lowest nonpolar SASA. Here again, distinctions between the two 

hybrid states may not be realistic given the overlapping standard deviations of these two 

states. 

Among the investigated states, there are several types of state-to-state transitions 

that can be studied. These include transitions between folded states and between folded 

states and the unfolded state. These possible candidates are. then calculated in terms of 

the ACp using the method described in Appendix I and compared with experimental 

values. The possible transition types among the four states 011, h2, p, u) are shown in 

Table 111. The value of B, was 0.34 and that for Bp was 0.14 taken from the work of 

Table III 
Calculated A Cp for different isomers of human telomere quadruplexes in (caV 

Using the data in table 111, we can estimate the AC, of six different transitions that 

accommodate an intermediate and have an unfolded final state. Clearly, any such process 

should have an overall positive AC, for the process (AC, = d~ ln > 0). Hence we 



can eliminate the process hl 3 p 3 u since AC,for this process would be equal to -22.1 

callmol1K. Among the remaining five, if we eliminate the ones which have a negative 

AC, for statel + state2 under the assumption that each step might be expected to have 

AC,> 0 for transition to a higher temperature state, we are left with h2 3 hl + u, p 3 

h2 3 u, and hl + p 3 u. If we include the total energy data from above, which 

indicates that the parallel state is less stable than either the hl or h2 states, our results 

indicate that the most likely process is hi + p 3 u. For this process we calculate AC,= 

+24.4 cal/mol/ K for the process initial state 3 intermediate + final state, and AC,= 

+9.75 callmol /K for the process intermediate 3 final state. It is important to recognize 

that experimental results for AC,are extremely difficult to determine due to the limited 

temperature range between the intermediate 3 final state transition temperature and the 

solvent boiling point; hence, any comparison between experimental and computed values 

for AC,are not reliable. 

1.3.4 Root -Mean- Square Deviations of Different models of Quadruplexes 
In order to assess the comparative conformational stability of different folding 

isomers of human telomere quadruplexes, the (RMSD) were determined for each 

simulation. The calculation of RMSD is described in Appendix 11. The reference frame 

for the RMSD calculations was the final frame. The results for these analyses are shown 

in Table IV. Also, Collie et al." used variations in RMSD between the telomeric RNA 

and DNA quadruplexes during MD simulations as a measure of comparative structural 

stability. They argued that the structures with lower RMSD exhibit greater stability. 



As seen in Table IV, the unfolded structure showed the greatest RMSD as 

expected. Hybrid structures 1 and 2 showed the lowest RMSD and the parallel structure 

showed intermediate values. The parallel state, being intermediate between the unfolded 

and hybrid states, is consistent with our total energy and AC,analysis above. This 

suggests that the most stable structures are the hl and h2 isomers with the parallel isomer 

being the intermediate state. Between these two most stable isomers, we find that h2 has 

slightly greater stability. Our analysis of the transition from initial state + intermediate 

+ final state as described above indicates that the most likely initial state is hl in contrast 

with the RMSD analysis. However, if we consider the standard deviation of these two 

states, the RMSD difference is not significant 

1.4 Concluding Remark 
The total energy, SASA, (AC,), and RMSD results of the investigated human 

Table IV 
Average RMSD per residue for dserent models of human telomere quadruplexes 

quadruplex models consistently and independently show that the equilibrium low 

temperature state of the human telomere quadruplex (TTAGGG )4 in K+ solution can not 

be the all-parallel structure and that the ground state must be a hybrid structure, most 

likely the hl state. 

Standard 

deviation 

0.88 

0.42 

0.38 

0.18 

Structure 

Unfolded State 

l k f l w  

2gku (31) 

2jpz (h2) 

RMSD A 

3.53 

2.14 

1.87 

1.46 



Our molecular dynamic stimulations suggest that the mixed parallel and 

antiparallel hybrid states are the most stable and probably the most favorable 

conformation. The parallel conformation is the next favorable structure in K' solution. 

Previously reported results of thermal denaturation indicate that an intermediate 

of indeterminate structure appears prior to unfolding to the denatured random coil state.67 

Our results indicate that this intermediate state is probably the all-parallel state and it has 

sufficient stability to occur as a defined intermediate. 

The identity of the ground (low temperature) state is identified as the hl hybrid 

conformation, which can be used in rational drug design to target this particular structure 

in the development of anticancer therapeutics. 



CHAPTER I1 

Molecular Dynamics Simulations of the Bacteriorhodopsin Membrane 
Protein 



2.1. Introduction 
The cell membrane performs a great variety of functions including separation of 

intra- and extra-cellular components, protection,' and perhaps, most importantly, 

provides a matrix in which membrane proteins can function. Membrane proteins in 

eukaryotic cells provide control for the passage of material into and out of the cell and 

also provide a key regulatory mechanism for cell function. In every cell, the membrane 

incorporates associated proteins that function as sensors, allowing the cell to efficiently 

adapt to environmental changes. 

All biological membranes have a common structure that is an extremely thin coat 

of lipid and protein molecules. The lipid layer is typically a bilayer composed of 

amphoteric lipid molecules that have the polar "head group" facing outward and the 

nonpolar region in the membrane interior. This arrangement causes the solvent molecules 

to be excluded from the membrane and can not pass freely from one side to the other. 

Membrane proteins are not covalently bound to the lipid molecules and therefore 

can translate in two dimensions within the membrane. Membrane proteins in the lipid 

bilayer perform specific functions such as transferring molecules or participating in ATP 

production. Various membrane proteins can help to bind the membrane to the 

cytoskeleton and some of them act as receptors and participate in chemical signaling. 

The lipid and protein design of the interior and exterior sides of the cell vary from each 

other and this distinguishes the diverse operations on the two sides of the membrane. 

2.1.1 Membrane Proteins 
The quantity and type of proteins in a membrane are extremely dependent on the 

type of the cell, For example, in the myelin membrane, which forms an electrical 



insulating layer for nerve cell axons, only 25% of the membrane mass is protein, but in 

some membranes %75 is comprised of protein. Most membranes have approximately 

50% by weight protein composition. Membrane proteins are commonly glycosylated with 

oligosaccharide chains bounded to them." 

2.1.2 Membrane proteins and lipid bilayer 
There are three basic types of membrane proteins depending on their association 

with the membrane. Some membrane proteins are located completely in the cytoplasm 

and are linked to the bilayer solely by one or a few covalently bonded fatty acid chains or 

different types of lipid chains named prenyl groups. These are referred to as peripheral 

membrane proteins and are associated with only one side of the membrane (intra- or 

extra-cellular). Integral membrane proteins are embedded into the lipid membrane. 

Some integral membrane proteins, because of their amphoteric nature extend to both 

sides of cell membrane and are referred to as "trans-membrane". Their hydrophobic 

sections exist primarily within the membrane and interact with the hydrophobic ends of 

the lipid bilayers in the core of the h i~a~er s .~ '  Their hydrophilic sections are exposed to 

the aqueous solvent on both sides of the membrane. The hydrophobicity of a number of 

membrane proteins is increased by covalent addition of a fatty acid chain. Figure 12 

illustrates different kinds of membrane proteins and an example of G coupled receptor 

protein is provided in Figure 13. 



Figure 12: Different forms of membrane proteins 
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Figure 13: G coupled receptor protein 

2.13 Alpha Helical Arrangement of Trans-membrane Proteins 
Trans-membrane proteins have specific orientations in the membrane.' This 

asymmetrical structure is determined by the role the protein has in the membrane. The 

secondary structure of the protein is commonly composed of a helices in which the 

helices are oriented approximately normal to the membrane plane and form a kind of 

interior tube which excludes both solvent and lipids.7' In single-pass trans-membrane 

proteins, a single a helix polypeptide passes through the membrane, whereas in multi- 

pass trans-membrane proteins, several (commonly seven) a helices transect the 

membrane. 

Since transmembrane proteins are exceedingly dificult to crystallize, only a small 

number of them have been studied completely by (XRD). The three-dimensional 



structures of the majority of them have not elucidated.' However, the primary sequence 

of membrane proteins were determined using DNA cloning and sequencing  method^.'^ 

2.1.4 Bacteriorhopsin 
Bacteriorhodopsin (bR) is considered to be the ideal model for investigating 

transmembrane proteins. First of all, several XRD structures have been p~blished.73-75 

Second, it has been long studied to better understand its photophysical properties, 

therefore a great deal is already known about it. The Halobacterium salinarium, which is 

found in salt mines and salt lakes and represents a particularly rich source of bR since this 

organism expresses the protein at extremely high rates. Bacterioopsin is the product of 

the bop gene in the Halobacterium salinarium genome and has 248 amino acids with a 

molecular weight of 26 Its tertiary structure is composed of seven alpha helices 

(named A to G) joined through loops on both sides of the membrane. Retinal is enclosed 

by the helices in the center of the protein. Further Retinal is covalently bonded to the 

protein through a protonated Schiff base with Lys216. Three molecules of bR are 

clustered into trimers which are arranged into a hexagonal 2dimensional lattice.78 

In the dark-adapted ground state of bR, the conformation of the retinal molecule is 

in equilibrium between the all trans and 13-cis forms with a ratio of 1 :2 respectively.79 In 

the dark-adapted state the absorbance maximum of is 558 nm. Upon illumination, the 

dark-adapted bR state is activated to produce the light adapted form, with an absorbance 

maximum of 568 nm. Retinal is surrounded by the hydrophobic and aromatic residues of 

the protein, which undergo a cascade of events that result in proton transfer. Among the 

nearest neighbor residues to the retinal are aromatic amino acids like Trp (86, 138, 182, 

189) and Tyr (57, 83, 185). These residues are bulky and appear to be essential to 



prevent the retinal 6om adopting static conformations that would prevent the 

conformational changes needed in the photocycle. 73.80-83 Some polar and hydrophilic 

residues (Thr90, Asp212, Asp85) are located in the retinal binding pocket as well. 

Hydrophobic residues appear to have a structural function while more hydrophilic 

residues are believed to play a functional role in the photocycle. Figure 14 shows bR in 

dark adapted ground state (pdb 1C3W). 

Figure 14: Structure of Bacteriorhodopsin in the ground state 

Residues Thr90 or Pro1 86 have no connection with the proton pathway but can be 

considered as accommodating conformational variations in the retinal. Asp85, Asp212, 

and Arg82 are not part of the retinal binding pocket, but are able to provide a counter-ion 

charge, which protects the positive charge of the Schiff Base. A number of water 

molecules are associated with these counter ion^.^^-^^ 

Following light stimulation, the retinal changes its conformation from all trans in 

the dark-adapted state to a cis isomer, leading to a cascade of structural modifications in 

the protein interior. The result is that charge transfer produces proton flow from the 

cytoplasm inner part to the external side of the protein.89 These protons are subsequently 

consumed by ATP synthase to generate ~ ~ p . 8 ~  



In an anaerobic atmosphere, H salinarium discontinues growth and generates a 

purple membrane. This type of membrane is seen in patches in the membrane and takes 

up approximately 50% of the membrane plane as shown in Figure 15. It is called purple 

membrane because of its purple color.89 bR accounts for up to 75% of the mass of the 

purple membrane, with the remainder composed of lipids such as squalene, glycolipids 

sulfate, and phosphatidyl glycerolphosphates.90 

Figure 15: Purple membrane of Bacteriorbodopsin 

2.1.4.1 Major differences between helixes of Bacteriorhodopsin 
As described above, bR is a transmembrane protein with the majority of the 

secondary structure in the a helical conformation. All the important residues, such as 

Asp85, Asp96, and Arg82, which are engaged in proton transfer, are found in Helix C. 

Trp86, Arg82, Leu93, and Tyr83 are residues, which help to develop the retinal binding 

pocket and are also located in Helix C. The retinal molecule is a Schiff-base bound to 

Lys216 in Helix G .  

Helixes G, F, B and C demonstrate a number of dissimilarities from each ~ t h e r . ~ '  

Helix G possesses Lys216, which is attached to retinal. Helixes B, C and F have a praline 

residue near the middle of the helix. In substitution defect studies, shows the praline in 

these was helixes substituted with another residue but did not result in structural changes 

in the Hence, the functional role of these pralines is unknown. But proline 

breaks the a helical secondary structure of proteins. 



2.1.4.2 Bacteriorhodopsin CT 
Helix G has a 23-residue peptide sequence following the final residue in the helix, 

which extends into the cytoplasm (Figure 16). Since this sequence is on the carboxyl 

terminus, it is referred from here on as the (CT). To date, no X-ray studies of bR have 

indicated a defined structure for the CT. Hence, there can be no structural insight into the 

possible functional or structural role it might play. Only a few studies using mutagenic 

analysis of specific amino acids in the C T . ~ ~ - ~ ~  The results of these studies are discussed 

in section 1.2.3 below. 

-N-SRAIFGEAEAPEPSG~GAAATS-C- 
Figure 16: Amino acids of C terminus of Bacteriorhodopsin. Nan-polar residues are 
indicated in red, acidic residues are indicated in underlined blue, and basic residues 
are indicated in blue italics. 

2.1.4.3 bR Photocycle 
The process that initiates with the absorption of a photon and ends with the 

transfer of a proton across the membrane is referred to as the photocycle. Upon 

illumination at 568 nm, a photon is absorbed by retinal, initially in the all trans state.98 

After excitation, retinal undergoes structural isomerization to the cis isomer, which 

causes a proton to transfer t7om the Schiff base N& to a neighboring Asp residue. The 

cascade of events leading to the proton transfer across the membrane are described below. 

Starting fiom the ground state of bR, the cycle comprises six intermediate steps 

labeled J, K, L, M, N and 0. Some crystallographic structures for these photo 

intermediates were reported. 74.99-104 Some studies, applying diverse techniques for 

105-108 crystallizing bR, show inconsistencies for the structures of the same intermediate.10y 

However, the important chara~teristics"~ of the intermediate states are shown here. 



bR: This is the resting state, which is called bR. Retinal is in the all trans 

conformation and the Schiff base N atom is protonated in this phase. 111-112 

J: Retinal remains in the all trans form and the Schiff base is protonated. A 

reformation of the electronic density of retinal among C=C and C-C is observed. 

Some evidence for the presence of torsion of the polyenic chain was reported."3 

K: The Schiff base remains protonated and retinal isomerizes from all trans to 

~ 3 4 s , ~ i 3 - ' ~ 4  

L: Water molecules located between Asp96 and the Schiff base undergo 

rearrangement subsequent to retinal isomerization, which modifies the local 

environment around  ASP^^."^ These movements result in relaxation in the 

helixes such that the new conformation of the retinal is s tabi l i~ed.~~ 

M: M intermediate has two photo intermediates, known as M1 and M2. The 

116-117 main aspect of this intermediate is the Schiff base deprotonation. The proton 

dissociated from the Schiff base moves to Asp85, which becomes protonated. 

MI: The Schiff base deprotonates and the proton relocates to ~ ~ ~ 8 5 . ' ' ~  This 

move causes discharge of a proton to the extracellular area through a residue or a 

complex known as X or proton release group of undetermined structure. 

M2: The helixes F and G change in a way that the cytoplasmic half of the protein 

expands to an open channel to accommodate the entrance of water mole~ules."~ 

N: In this step, the retinal is reprotonated from Asp 96 and flexes again. The 

movement of helixes F and G opens a narrow channel through which Asp 96 is 

reprotonated. 

0: Asp96 becomes protonated and the retinal switches to its all trans structure. 



The source for Asp96 reprotonation is not clear. Some hypotheses consider an antenna 

complex, which can attract the proton from the bulk, and then transfer it to Asp96. 

During 0, Asp85 stays protonated, later in the 0 3 bR step, this residue deprotonates 

and the proton release group protonates.'20 

All these actions are part of the photocycle and must be considered in order to 

find out the course of the proton through the protein. However, the crystal structures 

obtained recently allow a better understanding of the proton route and the structure of 

some intermediates. These intermediate structures were prepared at low temperatures 

and in non-physiological condition for the protein. However, some ideas can be inferred 

concerning the details of each intermediate in the photocycle. The photocyle of bR is 

shown in Figure 17. 
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Figure 17: Photoeyle of bR The letter designations for each state are the same as in the 
text description. The numbers indicate the absorption wavelength maximum (in nm) for 
each state. bR570 is the dark-adapted rest state investigated in this project. 



2.1.4.4 Experimental Studies of the CT of bR 
The mechanism for transferring protons into the cytoplasmic channel in bR was 

investigated using both structural analysiss6 and site-directed proton pulsing.'z1 Both of 

these methods indicate that some component ofthe loop sections at the cytoplasmic 

side of the channel draws protons from the solution (a "proton antenna"). Interestingly, 

the bR CT contains five amino acids with carboxylate Therefore, the bR CT 

would appear to be an interesting candidate for taking part in proton sequestration. 

Proteolytic deletion and spectroscopic analyses suggest that the CT is divided into 

domains with diverse properties.'22 

Turner et al. studied the role of different domains of the bR CT by using 

truncat i~n. '~~ Two truncations were done on the CT of bR: one of the truncations 

detached 12 amino acids from the distal region and another deleted 10 amino acids from 

the proximal part of the CT. Removal of the CT amino acids in the proximal section 

reduced the rate of proton uptake, while removal of the distal amino acids had no 

outcome on proton uptake. However, both truncations had a significant effect on the 

stability of bR. 

In Turner et 01. experiments,123 proton uptake at the end of the M stage (M 3 N) 

were found to be correlated with full truncation of the CT. They suggested that their 

results represented additional support for the idea that proton recruitment at the 

cytoplasmic surface of bR is tied to M state decay which was previously observed by 

Lanyi and ~ a l a s h o v . ' ~ ~ ~ ' ~ ~  The role of long-range electrostatic forces in bR is p r l y  

understood, at present. 126,127 The CT residues that contain mine  side chains (-NH;) can 

repel protons and the carboxylate-containing side chains could attract protons or make 

ion pairs with basic side chains, lipid head groups, or solvent cations. Either one of these 



phenomena, or a mixture of both could function to adjust the pKa's of acceptor proton 

groups positioned in or near the cytoplasmic proton channel. Some mutagenic studies 

suggest that Arg227, Gly231, and G1334, which are located in membrane proximal part 

of the CT, may be involved in proton uptake. 94,96,97 

Balashov er 01. has suggested that some or perhaps all of the five carboxyl 

terminal side chains in the CT which may act as a proton antenna.lz4 As described above, 

studies showed that deprotonation of the Schiff base and release of a proton to the 

128-129 extracellular part occurs at the end of the M step. It was also observed that mutation 

of Arg227, a carboxyl-terminal amino acid, caused a reduction in the rate of M state 

decay?' Some studies suggested that GI334 may also be involved in this process.96 The 

finding that Arg227 and GI334 have roles in the proton pumping mechanism is 

consistent with Turner et 01. analysis that the proximal part of the CT might be related to 

the reprotonation mechanism. 

2.2 Objectives of Our Research 
The above mentioned experimental studies have shown that removal of or 

truncation of the CT leads to a dramatic loss of stability and function of bR. Although 

the primary sequence of the CT and the primary, secondary, and tertiary structure of the 

transmembrane portion of bR have been resolved, the secondary and tertiary structure of 

the CT is currently unknown. Hence, the structure one of the most important portions of 

the molecule remains unknown. It should be emphasized that the lack of XRD data 

simply indicates that no long range periodic lattice is observed for the CT. This does not 

necessarily indicate that the CT does not adopt a particular folding structure, but that any 

such structure is not periodic in crystalline form under which XRD data must be collected. 



In the current study, MD is used to explore the equilibrium structure of the CT to help 

establish 1) a likely secondary structure, at least capable of determining intra-CT 

electrostatic or other short-range interactions, 2) the possible interactions and associations 

between the CT and the transmembrane portion of bR, 3) any possible interactions with 

the lipid membrane, and 4) the likely solvent associations that could lead to proton 

sequestration. In particular, we will investigate by MD simulations the equilibrium 

structure of the CT of bR by itself in solvent, in proximity to bR, and bound to bR. Also, 

the nature of any association of the CT with either the bR loop structure or lipid 

membranes is explored to help establish structural associations that could lead to the 

observed enhanced stability. The use of complementary computer simulations in 

studying these systems was shown to be well-validated and robust.'30 

2.3 me tho do log^ for simulation of the CT of bR 

The reader is directed to the Appendix I for background details of MD simulation 

techniques. In this section the simulation details specific to the CT of bR will be 

described. 

The starting structure for creating the initial pdb and psf input structure and 

topology tiles was built from known primary structure of the CT. In order to find the 

equilibrium structure of the CT, pdb and psf input files were prepared which contained 

approximately 12,182 explicit water mblecules and placed in different salt concentrations 

from 1 - 4 M [NaCI] as shown in Figurel8. Due to the inherent dilution effects of 

investigating small systems (even ones with 10 - 15 thousand solvent molecules), it tums 

out to be easier to prepare higher concentration salt solutions than dilute ones. Moreover, 



H salanarium archaea grow in 4 M [NaCI], so high salt concentration systems are 

consistent with typical physiological conditions. 

Figure 18: CT of bR 

In all cases, periodic boundary conditions were employed and the Ewald Particle 

Mesh method was used for long-range electrostatic potentials. All timesteps were set to 

1.0 fs. The annealing processes were run under canonical ensemble conditions (constant 

NVT). Each production run was performed under isothermal, isobaric ensemble 

conditions (NPT). The simulations were run as follows: 

1) Equilibration at T = 310 K for 500 ps (500,000 steps). 

2) Annealing with rigid bonds at T = 600 K for 2 ps followed by 2 ps at T = 550 K, 2 

ps at 500 K, 2 ps at 450 K, 2 ps at 400 K, 2 ps at 350 K, finally 2 ps at 310 K 



3) Production runs were performed using a short 5 ps run at 310 K with rigid bonds 

followed by 10 ns (total) at 310 K without bond constraints. 

All simulations were run on parallel high performance computer servers in parallel using 

the NAMD"' and CHARMM'~' forcefields. Typical compute timings were 2 ns per day 

of wall clock time. 

2.3.1 Methodology for Simulation of Different Models of bR 
The input models for all simulations of bR were created using the most complete 

available structures published in the Protein Data Bank (PDB)"~, As discussed above, no 

existing structure contains the CT, however, the primary structure is known for the entire 

248 residue sequence. The study included investigations of four system types: 1) the bR 

molecule without CT in a membrane (Figure 19), 2) the CT alone in solvent, 3) bR in a 

membrane with the CT close but not bound to bR (Figure 20), and 4) bR with the CT 

bound (Figure 21). Input structure files for the CT structure and lipid membrane were 

generated starting 6om the primary sequence. All other components of the studied 

systems were obtained from published structures. 

Figure 19: bR without earboxyl terminus 



Figure 20: bR with CT in proximity 
E 
i 

Figure21: bR with CT bound 

2.3.2 Building a Structural Model of Bacteriorhodopsin 
We used the 1C3W.pdb structure 6om the PDB database which contains the atom 

coordinates of bR in the ground state.'19 The published structure contained some water 

molecules and some remnants of cardiolipin lipids, which are components of the matrix 

used to crystallize the bR molecule. These waters and lipid molecules were first removed 



prior to generating the solvated psf and pdb files for the simulation. All psf and pdb files 

were generated using the VMD package as described in Appendix I. 

A 5050 mixture of dimyristoylphosphatidylcholine (DMPC) and 

dihexadecylphosphatidylcholine (DHPC) was used for generating the membrane of bR. 

This bilayer mixture mimics the physiological membrane into which bR is reconstituted 

prior to experimental investigations. This system was solvated and ions added to make a 

1 M of NaCI. The bilayer was first equilibrated for 1 ns at 310 K under fixed bond length 

constraints. Following this, the system was thermally annealed up to 600 K in 1 ns steps 

and quenched to 310 K under constant NVT (canonical) ensemble conditions. Finally, 

the bilayer system was equilibrated at 310K without constraints for 10 ns at isobaric, 

isothmnal (NPT) ensemble conditions. 

The bR protein was added to the membrane by removing sufficient lipids ftom the 

equilibrated DMPCBHPC bilayer and re-equilibrating this system similar to described 

above for the bilayer. A tcl script (lipwat.tcl) was used for this purpose. Systems with a 

salt concentration of 4 M NaCl were prepared. 

The systems containing bR1membrane and the CT (bound or unbound) were 

generated by adding the equilibrated CT structure from above into the bR1membrane 

structures with the proximal (N) terminus of the CT either near or bound to the C 

terminus of bR. 

2.3.3 Simulation of Bacteriorhodopsin 
All simulations are done using the CHARMM 27 force fields'" and the NAMD 

simulation package'3' with additional force fields for the lysine-retinal residue from Nina, 

et Each shucture was equilibrated using simulated annealing under NVT (to 



conserve water density) conditions followed by NPT (1 atm, 310 K) production runs 

sufficiently long to stabilize the energies, volume, pressure, and temperature. All NPT 

production runs used the Langevin temperature and pressure coupling algorithm'35 with 1 

fs time steps and unconstrained bond lengths, angles, and dihedrals and continued for 

1 Ons. 

We ran a "minimization" run, which places the system in the nearest local energy 

minimum. Energy minimization then proceeded by an equilibration with the protein 

constrained, to allow the bR to accommodate to the system environment. We measured 

the stability of the protein via calculation of the RMSD (Appendix II) of the resulting 

trajectories using VMD.~' 

2.4 Results and Discussion 

The goal of this study was to probe the interaction of the CT with the lipid head 

groups and exposed bR loop structure. The first part of the analysis was aimed at 

determining the presence of any intra-molecular interactions within the CT itself. In 

subsequent studies we investigated the interaction of the CT in proximity with and bound 

to the bR molecule. These results ace. discussed below. 

2.4.1 CT in solvent 
In this section we investigate the properties of the CT in solvent without the 

presence of the bR. These investigations include an analysis of the structure, the 

presence of H-bonding within the CT, and salt concentration dependence. 

2.4.1.1 Structure analysis 

The structure of the CT was first analyzed for the presence of any a or P secondary 

structure. Shown in Figure 22, is a trajectory snapshot of the CT in I and 4 M NaCI. 



Although the structure in 4M NaCl appears to be more compacted than in 1M salt, the 

results of the following analyses indicate that our simulations do not reveal significant 

structural or dynamical dependence on NaCl concentration. 

Figure 22: Snapshot of trajectories of CT of bR in 1 and 4M salt concentration in 10 
us simulation 

The value of the angles Psi and Phi, as described in Appendix ILiv describe how 

these can be used to predict the secondary structure of the protein. 

Figure 23 shows a Ramachandran plot for this equilibrium structure. It is evident 

that no clear evidence of a or p secondary structure is present. This is consistent with the 

XRD results that do not show any repeating pattern as well. Our results do indicate the 

presence of static coil structure near the ends of the CT. This is shown most clearly by 

the RMSD data described later. 
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Figure 23: Ramacbandran Plot of CT of bR in lM(A) and 4M@) salt concentration 
in 10 ns simulation 



2.4.1.2 H-bonding 
Shown in Figure 24 is a trajectory snapshot of the CT, indicating the H-bonding 

structure. As we see for CT in 4M salt concentrations more hydrogen bonding between 

residues are seen, which might be a reason that 4M salt concentration is a better 

environment for CT and these hydrogen bonds might help their stability. 

Figure 24: Hydrogen Bonding of CT in 1 and 4M salt concentration in lOns 
simulation 



2.4.1.3 RMSD and Diffusion constant analysis 
As described in Appendix 11, the RMSD can be used to help establish the stability 

of the solute. Shown in Figure 25 is the RMSD as a function of residue number for both 

concentrations of NaC1. 

Average Root Mean S q r p  Devistiom Per Residue for 
C'artnxyl Teamiraw of bR In I M and 4M salt concentration 

I 1 3 5 7 9 11 13 15 17 18 21 23 

Residue Number I 
Figure 25: Average RMSD per residue for the CT of bR 

We calculated the diffusion constant for the CT of bR in 1 M and 4 M NaCI. For 

1 M NaCI, the diffusion was found to be 1.093 x 10.'' mZ i' and in 4 M NaCI, it is 

0.6433 x mZ i'. The average diffusion constant is smaller in 4M than in IM salt 

although the reasons for this slight difference, if important, are not evident. 

2.4.1.4 SASA analysis 
The average SASA of the CT over 10 ns are shown in Figure 26. The average 

SASA diminishes 6om 2753.4 A2 to 24761.6 A2 for the CT in 4 M NaCl possibly 

indicating that the hydrophobic residues of the CT are less accessible to the solvent. The 

reduced SASA in 4M NaCI is consistent with the slightly compacted structure of the CT 

compared with IM NaCI, as observed in Figure 22. Comparisons of the SASA for the 

free CT and when in proximity to bR will be discussed below. 
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Figure 26: SASA of the CT of bR in different salt concentrations 

2.4.2 Analysis of bR without CT 
We investigate the properties of the bR in equilibrium in the absence of the CT in 

order to compare with the results in the following sections for bR with CT attached or in 

proximity. These investigations include an analysis of the structure, H-bonding, salt 

bridges, electrostatic energies, and SASA analysis. 

2.4.2.1 Structure analysis 
Shown in Figwe 27, is a Ramachandran Plot (explained in Appendix 11) of bR 

without the CT. As expected, the plot shows mostly a helical structure which is 

consistent with the known secondary structure of b ~ . " ~  The non- a components are 

primarily the loop structure, which has no defined secondary structure. In addition, there 

are nine proline residues which are also outside the a region. 



Figure 27: Ramachandran Plot of bR without CT 

2.4.2.2 Electrostatic Energies 
The electrostatic energies for the bR system only include interactions between the 

bR protein and the lipids. Figure 28 shows the overall electrostatic interaction energy 

between bR and the lipid membrane. The trajectory average is -276.83 kcal/mol. This 

result will be compared with results for bR with CT in the next sections. 

Figure 28:Electrostatic energy between membrane lipids and bR without the CT 



2.4.2.3 Hydrogen Bonding 
Out simulations revealed the presence of 219 internal H-bonds in the bR 

molecule. The number of H-bonds external to bR between the molecule and the lipid was 

found to be 26. 

2.4.2.4 Salt bridges 
We determined the number of and type of salt bridges internal to the bR molecule 

which is listed below, 

GLU9-ARG7 
GLU204-ARG82 
ASP21 2-LYS216 
ASP85-LYS216 
GLUI 94-ARG134 
GLU 194-ARG82 
ASP38-ARGI 64 

2.4.2.5 SASA analysis 
The SASA is calculated for bR without the CT model and the results are shown in 

Figure 29. The average total SASA for the trajectory are distributed into polar and non- 

polar as 651 1.94 A2 and 5048.13 A2 respectively. 

Figure 29:SASA of bR without the CT 

2.4.3 Analysis of bR with the CT in Proximity (bR (CT)) 
The results above provide a benchmark from which comparisons with the CT near 

or bound to bR are made. We investigate the properties of the CT in equilibrium, in 



proximity to but not bound to bR. These investigations include an analysis of the CT 

structure, the presence of H-bonding within the CT and between the CT and bR and the 

presence of salt bridges. We also report results of the electrostatic energy of interaction 

between the membrane lipids and bR, SASA analysis, and heat capacity in 4M salt 

concentrations. Since H Saherium typically grows in 4 M NaCI, we chose this salt 

concentration for our studies. 

2.43.1 Structure analysis 
It is apparent that after 10 ns that the CT appears to be stabilized near bR and that 

some interactions are likely to be present between the CT and bR. To establish the 

presence of any new secondary structural motifs, we searched for likely a or P forms 

using a Ramachandran plot as shown in Figures 30-32. The Ramachandran plot for bR 

shows that it is mostly ahelical as expected. The plot for the CT does not indicate any 

new alpha or beta structure also as expected. 



Figure 30: Ramachandran Plot of bR and the CT in proximity 



Figure 31: Ramachandran plot of bR without the CT in bR and the CT in Proximity 



Figure 32:Ramachandran plot of the CT in bR and the CT in Proximity 

2.4.3.2 Electrostatic Energies 
In high concentration protein systems such as bR prior reports suggest that 

significant lipid-protein electrostatic interactions occur in purple membrane (PM) . '~?~  

order to help elucidate the effects of electrostatic lipid-protein interactions, we calculated 

the electrostatic energies between bR without the CT [bR], with the CT in proximity, and 

with the CT bound [bR (CT)]. In this section, we report the electrostatic interactions 

between bR and the lipid in the absence of and presence of unbound CT. Figure 33 

shows a plot of the electrostatic energy interactions between bR and lipid in bR and the 

CT in proximity and bR without the CT models. It must be noted that the total 

electrostatic energy of the bR (CT) would be expected to more negative simply because 

they have more amino acids present to contribute to this energy. Moreover, it is clear that 

the bR system has significantly greater fluctuations over time than the bR (CT) system 

and so the trajectory averages are not a reliable metric for comparison. As described 

below for the bR-CT system (with the CT attached), the fact that the bR system 



undergoes greater fluctuations is an indication that the presence of the CT may help 

promote enhanced stability over time. It is apparent that the CT induces some effect 

(either bound or unbound) that reduces fluctuations in the elechostatic interactions that 

could lead to shonger interactions of bR with the lipids membrane. 

Figure 33: Electrostatic energies between membrane lipids and bR witb CT in 
proximity and bR without the CT 

2.4.3.3 Hydrogen Bonding 
Previous studies have shown that there exist direct correlations between the 

number and type of H-bonds for various thermophilic and mesophilic proteins.'37 In our 

studies we investigate the change in H-bond content in bR with the CT present and 

compare with the CT absent. Some of these H-Bonds are between bR and the CT. In 

order to quantify the effect of the CT presence, we report the change in H-bonds in bR 

and between bR and the CT in Table V. The number of H-bonds external to bR between 

the molecule and the lipid was found to be 33. 



Table V 
#of H-bonds between bR and the CT in proximity 

Model I #H-bonds 
bR in bR and CT in Proximitv 1 21 1 
CT in bR and CT in Proximity I I I 
bR and CT In Proximitv (total) 1 220 I 

1 Surplus I +2 I 

2.43.4 Salt Bridges 
Proteins from thermophiles and hyperthermophiles exhibit more, and frequently 

networked, salt bridges than proteins from their mesophilic counterparts.'38 Increasing the 

thermal stability of proteins by optimization of charge charge interactions is a good 

example for an evolutionary solution utilizing physical factors. 

We calculated the number of salt bridges between bR with the CT in proximity. 

The results are shown in Table VI. It is evident that the number of salt bridges within bR 

significantly increases in the presence of the CT, even though none of these new bridges 

occur between the CT and the bR protein. We also note that one salt bridge appears 

between GLU237 and ARG227 in the CT and that no salt bridge was found for the CT 

alone. Since the occurrence of salt bridges indicates enhanced stability, it is apparent that 

the presence of the CT increases the overall stability of bR. 



Table VI 
Comparison of number, location, and type of salt bridges in bR alone and witb the 

System 

,R alone 

>R witb CT 

:proximity) 

CT in droximity 
Salt bridges 

ASP38-ARC164 
GLU204-ARC82 
GLU237-ARC227 (within the CT) 
ASP212-LYS2 16 
ASP38-LYS4 1 
CLU166-ARC164 
GLU9ARC7 
ASP1 02-ARC164 
ASP85-LYS216 
GLU 194-ARC82 
CLUl94-ARC134 
ASP102-LYS41 
ASP38-ARGI 64 

2.4.3.5 SASA analysis 
A folded protein normally has its hydrophobic amino acid side chains shielded 

from the polar solvent. In this case, the intracellular loop regions of bR would be 

expected to be partially shielded k m  the solvent by the CT. Shown in Figure 34 is the 

SASA plot for bR and for bR with the CT in proximity and bR with no CT. The average 

SASA for bR without CT is 1156.14 A'. 

These plots were made using a 1.4 A probe sphere. It is clear that the CT shields 

bR and, as described further below, the SASA for the CT is also reduced. Hence, it is 

clear that the loop region of bR is shielded from the solvent. 



Figure 34: Average SASA of bR in the CT with proximity and bR with no CT 

2.43.6 Heat Capacity 
From the calculated SASA values, we distinguish the hydrophilic and 

hydrophobic SASA for bR alone and for bR with the CT in proximity. Then, by using 

the coefficients for the polar and nonpolar SASA parts of the proteins (0.32 and 0.14, 

respectively) reported by Spolar et 01.,6~ and using the equation for calculating A C, (see 

Appendix 11), we report AC, = +1.66 callmol K. The results are shown in Table VII. 

Clearly the small value for AC, indicates only small thermodynamic energy change for 

the solvent when the CT is not attached to the bR molecule. This is consistent with our 

result showing that the SASA value for free CT and that for bR alone are essentially the 

same as that for the CT (bR) system. 



2.4.4 Analysis of bR with bound CT (bR-CT) 
The final system investigated was the membrane bound bR molecule with the CT 

Table W 
Average SASA for hydrophobie and hydrophilic residues and calculated A Cp 

during lOns of simulations in 4M NaCl for hR without CT and bR with the CT in 
proximity 

covalently bound. These investigations include an analysis of the structure, the presence 

Molecule 

bR without CT 

CT (in solvent) 

hR with CT close 

of H-bonding and salt bridges, SASA analysis, and heat capacity of this model in 4M salt 

concentration. 

2.4.4.1 Structure analysis 
It is obvious that after 10 ns the CT appears to be stabilized by the of 

A ~p ( d m 0 1  K) 

+1.66 

SAS&P (AZ) 
65 1 1.94 

1017.15 

7527.86 

interactions between the CT and bR. To establish the presence of any new secondary 

SASAp (A4 
5048.13 

1383.07 

6416.52 

structural motifs, we searched for likely a or P structural forms, as expected, using a 

Ramachandran plot. The Ramachandran plot for hR shows that it is mostly ahelical as 

expected (Figures 35-37). The plot for the CT does not indicate any new a or P structure, 

also as expected. Our results indicate that the CT secondary structure is essentially 

"random" in the free form when near or attached to the bR molecule. Since XRD 

structure refinements do not clearly show the presence of the CT, our results are 

consistent with this, albeit negative conformation. 



Figure 35: Ramachandran Plot of bR and CT bound 

Figure 36: Ramachandran Plot of bR without CT in bR and CT bound Model 

64 



Figure 37: Ramachandran Plot of CT in bR and the CT bound model 

2.4.4.2 Electrostatic Interactions 
As previously discussed in 2.4.3.2, a significant lipid-protein interaction may 

occur between bR-CT and the lipid membrane.'36 In order to further elucidate the effects 

of the presence of the CT on electrostatic lipid-protein interactions, we calculated the 

electrostatic energies between bR-CT and the lipid membrane. In this section we 

compare the electrostatic interactions between bR-CT with the lipid and bR with the lipid. 

Figure 38 shows a plot of this comparison. As previously discussed in section 2.4.3.2 for 

the bR and bR(CT) systems, the trajectories showed a high degree of fluctuation during 

the run, particularly for the bR without CT (in blue). This may indicate that the presence 

of the CT reduces structural fluctuations over time which may lead to an overall increase 

in stability. A direct comparison of the electrostatic energy indicates that the bR-CT 

system was generally more negative (indicating greater stability) compared with the bR 



alone. However, since there was greater fluctuation in the bR compared to the bR-CT 

system, a simple time average of the electrostatic energy is not a reliable metric. It is 

apparent, however, that the CT induces some structural modifications that lead to reduced 

fluctuations over time. This appears to be the case whether the CT is absent or is present 

but not bound to the bR molecule. Again, even though the reason for this remains 

uncertain, this could be a contributing factor in the experimental finding by Turner et al. 

123 that the CT helps increase overall stability of the protein. 

Figure 38: Electrostatic energies between membrane lipids and bR with CT 

attached 

2.4.4.3 Hydrogen Bonding 
Previous studies have shown that there exist direct correlations between the 

number and type of H-bonds for various thermophilic and mesophilic proteins and 

protein stability."' In our studies, we investigated the change in H-bond content in hR- 

CT with bR. These values are collected in Table VIII. We find that the number of H- 

bonds in the entire CT-bR complex contains 17 additional H-bonds compared with the 

CT or bR portions separately. These 17 additional H-bonds all occur between the CT and 



the bR. Hence, we observe tbat there is some additional stabilization afforded by the 

presence of the CT in the form of H-bonds. 

Table W I  
Number of H-bonds in studied systems 

Model I #H-bonds 

bR in bR-CT 1 263 1 
I 

CT in bR-CT 1 26 
bR-CT (total) 1 272 

I 

Surplus 1 +17 

The number of H-bonds external to bR between the protein and the lipid was 

found to be 40. This is greater than either of the systems of bR alone (26) or bR(CT) 

2.4.4.4 Salt Bridges 
Thermophile and hyperthermophile proteins frequently exhibit more salt bridges 

than mesophilic proteins, as we mentioned in section 2.4.3.4.'38 We calculated the 

number of salt bridges between bR and CT in bR-CT. The results are shown in Table IX. 

It is evident tbat the number of salt bridges within bR significantly increases in the 

presence of the CT and three of these new bridges (indicated in red) occurred between the 

CT and the bR protein. Since the occurrence of salt bridges promotes enhanced stability, 

it is apparent that the presence of the CT increases the overall stability of bR through the 

formation of salt bridges as well. 



Table M 
een CT and bR 

Salt bridges 

GLU9-ARC7 
GLU204-ARC82 
ASP2 12-LY S2 16 

ASP85-LYS2 16 
GLU 194-ARC 134 
GLU194-ARC82 

2.4.4.5 SASA analysis 
In this section we describe comparisons of SASA measurements (see Appendix 11) 

between bR-CT and bR. Figure 39 shows the SASA trajectory for bR-CT and bR. The 

average SASA for bR is 11 1,56.1 AZ and for bRCT it is 13,616.1 A2. From section 

2.4.1.4, the SASA for the CT alone was 2,476.6 A2; hence, the solvation surface of the 

CT when it is attached to bR is essentially the same. This indicates that even though we 

find clear evidence of H-bond and electrostatic interactions between the CT and bR. the 



space between the CT and the bR loop region is still solvated to roughly the same extent 

as the CT alone in solvent. 

Figure 39: Average SASA of bR in the presence and absence of CT 

2.4.4.6 Heat Capacity 
We distinguished the SASA for the hydrophilic and hydrophobic residues of bR 

and CT for the bR-CT system. Using 0.32 and 0.14 for the polar and nonpolar residues 

respectively (Appendix II), we obtain values for AC, as shown in Table X. 

Table X 
Average SASA for hydrophobic and hydrophilic residues and calculated ACp for 

bR and bR-CT 
Molecule I sASAmp (A2) ( SASAp (A2) ( A Cp (caUmoU K) 
bR without CT 1 65 1 1.94 1 5048.13 I 
CT (in solvent) ( 10 17.15 ( 1383.07 
bR with CT 1 7759.63 1 6297.57 1 
bound 

1 +55.06 

These results indicate that, compared to bR (CT), the attached CT-bR system has 

a larger (measurable) AC, indicating that there exists a greater degree of association (as 



indicated by the exclusion of solvent between the CT and bR) between the CT and bR 

when the CT is bound. 

2.5 Concluding Remarks 
Experimental resu~ts''~ suggested that the CT plays a crucial role in the overall 

stability and function of bR. 

The solvent accessible surface area and the root-mean-square- 

displacement analyses indicated that the bR-CT is more stable in 4 M 

NaCl than IM NaCI, which is consistent with experimental results. 

The sum of the SASA for the CT alone and for bR alone is 

approximately equivalent to the SASA of bR-CT bound. This 

suggests that any interaction resulting from H-bonding or other 

electrostatic forces does not require the exclusion of solvent from the 

interfacial region between bR and the CT. 

Heat capacity analysis indicated that AC, was more positive for bR 

with the CT bound. This indicates that bR is stabilized by the presence 

of the CT. 

Electrostatic (salt bridges, H-bonding) analyses indicate significant 

interaction between the CT and bR. 

The degree of H-bonding between the transmembrane part of bR and 

the lipid bilayer was found to increase as a function of the presence of 

the CT, even though no particular H-bonding was noticed between the 

CT and the lipids. 



These results demonstrate that the CT does help stabilize the bR molecule in 

general and causes greater interactions between the lipid membrane and the 

transmembrane portion of bR. The experimental results, which indicate that truncation or 

elimination of the CT leads to loss of stability, are confirmed. The likely causes of this 

enhanced stability are manifest in several interactions that appear to be directly correlated 

with the presence of the CT. 
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I. Molecular Dynamics Simulations 
Molecular dynamics (MD) simu~ations'~~ continue to contribute a considerable 

share in molecular biology. h4D programs extensively used are CHARMM,'~' 

GROMOS,'~' and  AMBER,'^^ which are capable of modeling systems consisting of up to 

1 o5 or more atoms. An essential approach of reducing the computational demand is via 

parallel computer architectures. Numeral MD programs, such as X-PLOR and 

CHARMM,'~' have been customized to allow them to exploit the power of parallel 

computers. These programs have undergone significant revision from the original serial 

code in order to allow parallel computational methods to be employed. In contrast, the 

program NAMD'~' was specifically designed for distributed memory parallel computers 

and so has become the application of choice for most modem simulations. 

The program makes use of a spatial decomposition scheme to split the region in a 

manner that put forward the peak scalability. Self-regulating threads of control are 

consumed to offer extendable load-balancing capacities at the same time sustaining a 

non- problematical, even decomposition design. Message-driven scheduling can be put 

into operation to put together the execution of these threads of control in a manner that 

weakens the power of communication latency. These regulations lead to an elevated 

performance between large amounts of processors. The goal of MD simulations is to 

record the evolution of an ensemble subject to a set of thermodynamic constraints using 

well-validated equations of motion.'43 The ensemble may be any set of particles, which 

can he defined in terms of their fundamental properties. At basis, the state of the system 

would be defined in terms of a few fimdamental properties including mass (m), position 

(r(x, y,z) ), velocity (v(r)) and forces acting on them (F(m. v) ) yielding nine variables 

plus mass for each particle. The standard notation of bold for vectors and dots for time 



derivatives are used throughout. Once the forces are computed, the Newtonian equations 

of motion are used to determine a displacement vector that would relocate each particle at 

r (t) to a new location at r(t + dt) in a given length of time, dt (timestep). The process is 

repeated until the ensemble evolves to an equilibrium state and a sufficiently long 

trajectory is generated to allow property calculations from it. Starting from an initial 

ensemble configuration, the system follows a path toward least total energy.'43 The 

integrated Newton's equations of motion, as applied to MD simulations take the form of 

the following relations: 

r(t + dt) = r(t) + v(t)dt + +a(t)dt2 

v(t + dt) = v(t) +a(t)dt 

To determine a new location at r(t + dr), one needs to determine the force on the 

particle from the fourth equation based on the time derivative of a predetermined 

potential V. This force is then used to calculate the acceleration (a), the velocity (v) and 

location r (t + dt). In the initial step, no velocities are set and the usual approach is to set 

the initial velocities using a stochastic algorithm (based on a random number). 

To determine the resulting forces on the ensemble components, several levels of 

approximation are typically used as dictated by the complexity of the ensemble and the 

properties sought. For small systems (10' - ld atoms), quantum mechanical (QM) 

approximations can be used, particularly if electronic properties are needed. In this case, 

the forces would be computed from solution of the many-body SchrGdinger equation. 

The ensembles investigated in this work encompass on the order of 10) - lo5 particles, 



which require the use of classical models and parameterized forcefields. The advantage 

of classical MD methods over QM methods are that long simulation times of several 

millions of time steps can be accomplished over a reasonable timeframe @om days to 

weeks). 

The timesteps typically used in MD simulations are of the order of 1 to 2 

femtoseconds. Such a short timestep helps ensure that the typical vibrational periods 

(10.'~ - s) are well resolved. The simulation (wall clock) time can be estimated 

from the following scenario: There are 9 variables that must be handled for each atom (3 

position, 3 velocity, and 3 force). For lo4 atoms this gives about 10' variables that must 

be processed by the computer. In addition, the intermolecular (two-body) interactions are 

also processed for each time step. These interactions may amount to lo3 or so. Typical 

processor speeds are lo9 floating point operations per second (flops). Hence, to process 

one timestep it takes approximately 10' operations or approximately lo4 seconds. For a 

nanosecond (lo9 timesteps) it takes 10' seconds or approximately one day of wall clock 

time per nanosecond of simulation time. Using advanced algorithms incorporated into 

NAMD, typical processing speeds for the simulations reported in this work were 

approximately 2 dayslns. 

Classical MD parameterized forcefields have been developed to model the most 

important interactions among the particles in the ensemble, including long-range 

electrostatic (Coulomb) forces, short-range dispersive forces (van der Waals) between 

molecular particles, and intra-molecular forces (2-body bond length, 3-body angle, and 4- 

body dihedral and improper angles). These forcefields are superior to hard-sphere elastic 

interaction potentials, which cannot include soft interactions that significantly contribute 



interaction potentials, which cannot include soft interactions that significantly 

contribute to the thermodynamic properties of the ensemble. In the following section, the 

details of the inter- and intra-molecular forcefields are described. 

LA Potential Energy Functions 

i. Intra-molecular Forcefield 
Potential energy functions correspond to all bonded and non- bonded interactions 

of the system through the use of parameterized forcefields. These forcefields are 

generally produced using quantum mechanical methods, which are used to determine the 

forces and charges of all atoms in a particular molecule. The potentials are well validated 

against published experimental results of several properties. Among the available 

forcefield potentials are the AMBER,'" CHARMM,'~~. '". 14' and GROMACS'~ force 

fields. 

In ow study we used CHARMM potential fuction and we added the forcefield for 

retinal moiety of bR, which was optimized to work with CHARMM forcefield. 

ii. CHARMM Potential Energy Function 
The form of the potential energy function, which is used in CHARMM for intra- 

and intermolecular interactions of atoms, is shown below: 

2 V = z r,(r -r,,)' + z ~ ~ ( 9 - g o )  + z r [l+cos(ng-l)] 
bonds angles dihed (P 



moved. The second term in the equation accounts for the bond angles where k,the angle 

force is constant and 8 - 8, is the angle from equilibrium between 3 bonded atoms. 

The third term is for the dihedral (torsion angles) where k, is the dihedral force 

constant, n is the multiplicity of the function,q, is the dihedral angle and 6 is the phase 

shift. The fourth term accounts for the improper angles, i.e., out of plane bending, where 

k, is the force constant and w - w o  is the out of plane angle. The Urey-Bradley 

component (cross-term accounting for angle bending using 1-3 nonbonded interactions) 

comprises the fifth term, where k, is the respective force constant and u is the distance 

between the 1 and 3 atoms in the harmonic potential. 

Nonbonded interactions between pairs of atoms i, j are represented by the 6Ih and 

7Ih terms. By definition, the nonbonded forces are only applied to atom pairs separated 

by at least three bonds. The van der Wads non-bonded energy is calculated with a 

standard 12-6 Leonard-Jones potential and the elecbostatic energy with a Columbic 

potential. In the Leonard-Jones potential above, 0 is the separation distance in the 

function where the potential goes to zero and E is the energy minimum at the bottom of 

the potential well. 

The electrostatic interactions are handled by the 7' term, which is essentially 

Coulomb's law. The only fitting parameter in this term is the ionic charge assigned to 

each atom. These charges are generally determined from quantum mechanical 

calculations. Since the Coulombic term is very long range, it is generally necessary to 

include large interaction distances in its calculation. This can result in a significant slow- 

down in the calculation speed and, therefore, alternative methods have been developed. 



The most common method to improve electrostatic computational speed is the 

Ewald meth~d. '~ '  This is a technique for calculating the interaction energies of periodic 

systems. This summation is a unique case of the Poisson summation formula, 

substituting the summation of interaction energies in real space with an equivalent 

summation in Fourier space. The benefit of this method is the fast convergence of the 

Fourier-space summation relative to its real-space analogue particularly when the real- 

space interactions are long-range. Because electrostatic energies include both short- and 

long-range interactions, it is greatly beneficial to separate the interaction potential into a 

short-range &action summed in real space and a long-range part summed in Fourier space. 

1.B Ensemble Types 
An ensemble is a collection of all possible thermodynamic systems, which have 

diverse microscopic states but the same macroscopic or thermodynamic state. The 

properties of an ensemble are subject to specific constraints as listed below:143 

Microcanonical ensemble (TWE): The thermodynamic state can be described by 

a fixed number of atoms (N), volume (V) and energy (E). 

Canonical Ensemble (NVT): The thermodynamic state is defined with a fixed 

number of atoms (N), volume (V), and temperature (T). 

Isobaric-Isothermal Ensemble (NPT): This ensemble is characterized by a fixed 

number of atoms (N), pressure (P), and temperature (T). 

Grand canonical Ensemble (pVT): The thermodynamic state for this ensemble 

is distinguished by a fixed chemical potential (p), volume (V), and temperature 

(T). 



These ensembles and the corresponding statistical mechanical partition function are listed 

LC Controlling Pressure and Temperature in Ensembles 

below: 

Table XXI 
Different kinds of ensembles 

In order to control the temperature and pressure in canonical, grand, and isobaric- 

isothermal ensembles, several algorithms have been developed, including Berend~en,'~' 

~ o s e - ~ o o v e r , ' ~ ~  and , ~ a n ~ e v i n . ' ~ ~  Since the temperature is a function of the atom 

velocities: 

E='k 2 8 T=$mv 2 

hnsemble 

pXanonical 

Canonical 

Isobaric-isothermal 

Grand 

A common method for controlling temperature is to scale the velocities (up or 

down) in succeeding timesteps to maintain the temperature setpoint. Such modifications, 

on the other hand, can trigger the system to perform in a non -Newtonian behavior. So 

Constraint 

N, V, E 

N, V, T 

N, P, T 

P , V , T  

the Berendsen technique is able to diminish the rate of scaling by pairing to an outside 

kT. In (q) 

ST 

-A 

-G 

PV 

temperature source. The Nose- Hoover scaling temperature applies a thermal reservoir 



and friction expressions to the equations of motion. For pressure control, the box vectors 

and atom coordinates are scaled at every time step. 

1.D Periodic Boundaries 
Periodic boundary conditions make it possible for a simulation to be completed by 

a reasonably small number of particles using a procedure in which the particles are 

exposed to forces as if they were in a bulk fluid. Periodic boundary conditions are 

employed using a box of particles, which are replicated in all directions to give a periodic 

may. Increasing or decreasing integral multiples of the lattice vectors easily calculates 

the coordinates of the particles in the image boxes. If a particle leaves the box during the 

simulation, it is substituted with an image particle that comes in from the opposite side, 

as illustrated in Figure 1.1. Hence, the number of particles inside the central box is 

conserved. 

Figure 1.1: periodic boundary conditions 



1.E General Scheme for  Running Molecular Dynamics Simulations 

i. Initiation 
The initial state of the system is described by a set of position coordinates for 

each atom in the system. The initial state is constructed from a published structure for 

the molecular solute (protein or nucleic acid) from which the rest of the systems (lipids, 

solvent, ions) is constructed. The PDB database'50 contains the necessary initial state file 

and describes the 3-D starting positions of the biomolecules. It is also possible to make a 

theoretical structure by homology modeling and use that as the starting point. The initial 

structure should be as close to the desired structure as possible. In some cases (e.g., the 

CT), there is no initial structure but one can be built from the primary sequence provided 

the expected tertiary structure is not overly complex. The coordinate structure for the 

system is contained in a file formatted in the Protein Database structure (pdb). 

Next, one has to create a molecular topology of the molecule, which includes 

bond, angle, and dihedral, and charge information. In the NAMDNMD~*.'~' application, 

this information is contained in a formatted Protein Structure file (psQ that can be 

generated using VMD. The pdb and psf files are used to add solvent and ions to the 

system to create the simulation input files used by NAMD. 

ii. Equilibration 
Since the initial state of the system is often well away from equilibrium, it is 

essential to carefully bring the system into thermal, barometric, and energetic equilibrium 

through a series of equilibration steps. The general method is to relax the intermolecular 

positions first while holding the internal degrees of 6eedom (bond lengths, angles, etc.) 

fixed. In systems that contain solute secondary structures that were not originally 

obtained from structural methods (e.g., the CT and membrane lipids), it is advisable to 



conduct thermal annealing of the system. This is accomplished by running simulations at 

elevated temperatures under fixed volume (NVT) conditions so as to remove initial state 

artifacts that could bias the final state. Once the system equilibrates at elevated 

temperature, it is thermally quenched in a series of steps down to the desired simulation 

temperature (typically 300-310K). 

The equilibration phase of the simulation includes a run at fixed internal 

coordinates for the molecular solute and solvent followed by relaxation of the internal 

coordinates, which results in a fully equilibrated system ready for the production runs that 

yield the final results. 

iii. Production phase 
The simulation proceeds in the production period for a time that is determined by 

the type of analysis needed. This can be &om several hundred picoseconds to tens of 

nanoseconds during the production phase until the thermodynamic parameters are 

stabilized and sufficient trajectory states are recorded to allow reliable trajectory averages 

to be obtained. The general scheme for a simulation is described in the following 

flowchart. 



11 Initial Coordinates 11 

s 

I Heating Dynamics I 
Equilibration - 

Production Run Q 
1) Trajectory Analysis 1 

Flowchart 1: General flowchart for designing molecular dynamics simulations 

iv. Standard units 
When NAMD is in use, most important facts on the progress of the simulation can 

be demonstrated in a regular output on the console but this output might be written to a 

file (log file). The units in all output files report values in the following units: 

Energy: kcaVmol 

Time fs 

Length A 

Volume A3 

Pressure bar 
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ZZ. Analysis Methods 
Various software packages other than NAMD were used to evaluate simulation 

results including: 

VMD~' which is a molecular graphics program for visualizing trajectories and 

analyzing results 

2-D plotting program xmgrace, Matlab, Mathematica, or Excel for plotting data. 

A. Simulation properties 

i . Root-mean-square-displacement (RMSD) 
The RMSD distinguishes the extent that a particular particle translates from a 

defined reference point in the simulation system. The RMSD is calculated according to: 

Where r (to) is the reference position, r(t) is the location of a particle in timestep, t, and N 

is the simulation step. 

ii. Diffusion Constant 
The diffusion constant D is a measure of the rate of translation for a particle in the 

system and is calculated according to: 

Where t is the time of the current timestep. 

iii. Interaction energies 
The interaction energy between different solute molecules and between solute and 

solvent can be calculated over the course of the trajectories. This is accomplished by 



selecting the type or class of molecules to be considered for the calculation and are easily 

selected using the VMD package. 

iv. Ramachandran plots 
Protein secondary structure can he predicted from two angles in the peptide 

backbone. The two angles are shown below. 

Figure 11.1: Alpha and psi angle in protein 

It has been shown that particular combinations of these angles leads to particular 

secondary structure (e.g., beta-sheet, alpha-helix) and a plot of the angle P a s  a function 

of @, refered to as a Ramachandran plot'51, can be used to determine the propensity for a 

particular type of secondary structure. An example of a Ramachandran plot is shown in 

Figure 11.1. The regions of the plot, which suggest the various types of secondary 

structure, are indicated. In the example plot, a much large proportion of the protein is 

seen to be in the a -helix region as would be expected for this protein (bR). 
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Figure 11.2: A Ramachandran Plot of a protein 

v. H-bonds 

Formation of H-bonds between donors and acceptors is defined by two 

parameters: the distance between the donor and acceptor, and 2) the angle defined by 

%H-A. In our measurements, the distance cutoff was set at 3.0 A and the maximum 

angle was set to 20'. 

vi. Solvent accessible surface area (SASA) 
The solvent accessable surface area is defined as the surface area that would be 

exposed to the solvent. In general, the SASA is measured by assuming that the solvent 

molecules are shperes with a specific radius. These spheres are "rolled" over the solute 

surface such that the minimum separation between the solvent and solute atoms is the 

sum of the solvent radius and the van der Waals radius of the solute atoms. The 

measurement is described in Figure 11. 



Figure II.3 Calculating Solvent Accessible Surface Area 

vii. Heat capacity 
Calculation of the heat capacity at constant pressure (C,) can be used to directly 

compare with experimental DSC andlor ITC results. In general, a straightfonvard but 

difficult method to accomplish this is to use the trajectory energy fluctuations to 

determine the C, directly. From a trajectory, one can determine the trajectory average 

energy Eand  the energy of each step i Hi. to determine the heat capacity:143 

Although this method will work, it turns out that in order to get a reliable value for C,, 

the trajectories must be inordinately long (at least hundreds of ns). Fortunately, an 

alternative method was developed that does not require extremely large trajectory data 

sets and is particularly useful for native 3 unfolded phase transitions in biomo~ecules.~~~ 

In this method one must recognize the physical differences between the native folded and 

unfolded states. In the native (folded) state most (all) nonpolar residues are buried inside 

the protein so the solvent is only exposed to polar residues. Since in the isothermal- 

isobaric ensemble framework: 
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which relates C, to the partition function A. The value of A varies with the population of 

occupied quantum states, including translational, vibrational, rotational, and electronic 

states. Of these, the vibrational states make the largest contribution to the change in C, 

since the other modes do not change (comparatively) as much during the transition. 

There are two primary changes that occur during the unfolding process. 1) The 

vibrational states of the folded molecule in the native state are. coupled and form 

somewhat higher tkquency modes. Upon unfolding to the denatured state, these modes 

become less coupled and shift to lower frequencies transferring their energy to other bond 

vibrational modes. The increase in population of the higher frequency bond vibration 

modes leads to a larger A and, consequently, a larger C, compared to the native state. 2) 

Upon unfolding, residues that were previously shielded ffom the solvent become exposed 

to the polar solvent environment. Solvent molecules must form ~ t ~ c t u r e d  solvation 

shells around these nonpolar residues leading to fewer available solvent states and thus 

lower entropy. Importantly, the structure of these solvation shells decreases significantly 

with increasing temperature leading to a large positive C, = a%ln T , ,  for the "upper" 

unfolded state relative to the "lower" folded ~ t a t e . ' ~ ~ - ' ~ ~  



This formulism can be used to estimate the change in C, upon transition from the 

native to unfolded state. The method requires information on the change in the SASA of 

the polar and nonpolar residues in the two states: 153,154 

ACp = B , M ,  - B p M ,  
In this equation, AA, and AAp are the changes in SASA for the nonpolar and polar 

residues, respectively, for the melting transition. B,  and B, are fitting parameters taken 

from experimental values for the type of biomolecules under consideration. Typical 

values are B, = 0.32 and Bp = 0 . 1 4 . ~ ~  More data has been collected for proteins than 

nucleic acids and so the method has been mostly applied to the former. 

viii. Salt bridges 
Electrostatic interactions provide a standard method to determine the strength of 

interactions among charged groups. Their ionization state is dependent on pH and on the 

particular local environment, which includes interactions between the partial charges of 

polar but non-ionizable groups (dipoles) and formally charged groups. Generally, 

charged groups often are exposed to the solvent. In many cases, these negative and 

positive charged groups are sufficiently near each other to develop ionic pairs or salt 

bridges. It must be considered that chargecharge attractive or repulsive forces could be 

significant even if the geometrical centers of the functional groups are divided by spaces 

in excess of 4  A which is the distance commonly applied to determine the presence of a 

salt bridge. Long-range electrostatic forces are significant, not only for the overall 

stability of protein secondary and tertiary structure, but also are important for function. 
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