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Abstract

Given two 2-regular graphs F1 and F2, both of order n, the Hamilton-Waterloo Problem for

F1 and F2 asks for a factorisation of the complete graph Kn into α1 copies of F1, α2 copies of F2,

and a 1-factor if n is even, for all non-negative integers α1 and α2 satisfying α1 + α2 = bn−12 c.

We settle the Hamilton-Waterloo problem for all bipartite 2-regular graphs F1 and F2 where F1

can be obtained from F2 by replacing each cycle with a bipartite 2-regular graph of the same

order.

1 Introduction

For definitions of standard graph theoretic terminology used here see [48]. Given a 2-regular graph

F of order n, the well-known Oberwolfach Problem asks for a factorisation of the complete graph Kn

into copies of F if n is odd, or into copies of F and a 1-factor if n is even. More generally, given

two 2-regular graphs F1 and F2, each of order n, and two non-negative integers α1 and α2 satisfying
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α1 + α2 = bn−1
2
c, the Hamilton-Waterloo Problem asks for a factorisation of Kn into α1 copies of F1

and α2 copies of F2 if n is odd, or into α1 copies of F1, α2 copies of F2 and a 1-factor if n is even.

For even n, the graph obtained from Kn by removing the edges of a 1-factor is denoted by Kn−I.

The 2-regular graph consisting of (vertex-disjoint) cycles of lengths m1,m2, . . . ,mt will be denoted

by [m1,m2, . . . ,mt]. We may also use [mα1
1 ,m

α2
2 , . . . ,m

αt
t ] to denote the 2-regular graph consisting

of αi cycles of length mi (i = 1, 2, . . . , t). So, for example, the 2-regular graph order 14 consisting of

two 4-cycles and a 6-cycle may be denoted by either [4, 4, 6] or [42, 6].

The only 2-regular graphs for which the Oberwolfach problem is known to have no solution are

[32], [34], [4, 5] and [32, 5]}, and a solution exists for every other 2-regular graph of order at most

40 [18]. In [12], the Oberwolfach Problem is completely solved for infinitely many odd values of

n and for infinitely many even values of n. For any 2-regular graph F with isomorphic connected

components, except F ∼= [32] and F ∼= [34], the Oberwolfach Problem has a solution [4, 5, 29]. The

Oberwolfach Problem is also known to have a solution whenever F is bipartite [10, 27]. There are

numerous other results on the Oberwolfach Problem, dealing with various special families of 2-regular

graphs, see [9, 13, 14, 25, 28, 31, 33, 40, 42, 43, 45, 47] and see [11] for a survey of results up to

2006. Various generalisations of the Oberowlfach Problem have also been considered, for example

see [15, 21, 26, 37, 38, 41, 44].

If a 2-regular graph F1 can be obtained from a 2-regular graph F2 by replacing each cycle of

F2 with a 2-regular graph on the same vertex set, then F1 is said to be a refinement of F2. For

example, [4, 83, 102, 12] is a refinement of [4, 16, 18, 22], but [4, 182, 20] is not. Of course, every 2-

regular graph of order n is a refinement of an n-cycle. In this paper we settle the Hamilton-Waterloo

Problem in the case where the two given 2-regular graphs are bipartite and one is a refinement

of the other, see Theorem 28. We obtain this result as a consequence of two more general results

concerning factorisations of Kn into specified numbers of copies of given bipartite 2-regular graphs

and a 1-factor, see Theorems 26 and 27.

For non-isomorphic 2-regular graphs F1 and F2, both of order n, and non-negative integers α1

and α2 satisfying α1 + α2 = bn−1
2
c, the problem of finding a factorisation of the complete graph Kn

into α1 copies of F1 and α2 copies of F2, or into α1 copies of F1, α2 copies of F2 and a 1-factor, is

denoted by HW(F1, F2;α1, α2). If such a factorisation exists, then HW(F1, F2;α1, α2) is said to have

a solution.
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In addition to the four above-mentioned instances of the Oberwolfach Problem which have no

solution, it is known that the following instances of the Hamilton-Waterloo Problem have no solution.

HW([3, 4], [7]; 2, 1) HW([3, 5], [42]; 2, 1) HW([3, 5], [42]; 1, 2) HW([33], [4, 5]; 2, 2)

HW([33], F ; 3, 1) for F ∈ {[4, 5], [3, 6], [9]} and

HW([35], F ; 6, 1) for F ∈ {[32, 4, 5], [3, 5, 7], [53], [42, 7], [7, 8]}.

Every other instance of the Hamilton-Waterloo Problem has a solution when n ≤ 17 and odd

[1, 22, 23], and when n ≤ 10 and even [1, 6].

The Hamilton-Waterloo Problem has also been partially solved in the case of bipartite 2-regular

graphs [10, 27]. In [27] it is shown that for bipartite 2-regular graphs F1 and F2 of order n ≡

2 ( mod 4), HW(F1, F2;α1, α2) has a solution whenever α1 and α2 are both even. In [10] it is shown

that for bipartite 2-regular graphs F1 and F2 or order n ≡ 0 ( mod 4), HW(F1, F2;α1, α2) has a

solution except possibly when α1 = 1 or when α2 = 1. Our result finishes off these two partial results

on the problem, but with the added restriction that F1 is a refinement of F2.

Apart from the above mentioned results, essentially all existing results on the Hamilton-Waterloo

Problem concern special cases of the problem in which each 2-factor consists of isomorphic connected

components. In [19, 20, 30], HW([3
n
3 ], [n];α1, α2) is shown to have a solution for all odd n except

that HW([33], [n]; 3, 1) has no solution, and the existence of a solution is undecided when α2 = 1 and

n is any one of fourteen values in the range 93 ≤ n ≤ 249. A partial solution to HW([3
n
3 ], [n];α1, α2)

for n even is given in [36]. In [16], HW([3
n
3 ], [4

n
4 ];α1, α2) is completely solved except for several cases

when n = 24 and n = 48. The Hamilton-Waterloo Problem HW(F1, F2) has also been completely

solved when

• F1
∼= [4, 4, . . . , 4] and F2

∼= [2t, 2t, . . . , 2t] for all t ≥ 3 [24];

• F1
∼= [2t, 2t, . . . , 2t] and F2

∼= [4t, 4t, . . . , 4t] for all t ≥ 2 [24];

• F1
∼= [4t, 4t, . . . , 4t] and F2

∼= [n] for all t ≥ 1 and all n ≡ 0 ( mod 4t) [35].

Other results on the Hamilton-Waterloo Problem can be found in [2, 13, 32, 34], and a survey of

results up to 2006 can be found in [11].
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2 Notation, definitions and existing results

We now introduce some notation, definitions, and existing results that we will be using.

Let Γ be a finite group and let S be a subset of Γ such that the identity e /∈ S and such that S

is inverse-closed, that is S = −S. The Cayley graph on Γ with connection set S, denoted Cay(Γ, S),

has the elements of Γ as its vertices and there is an edge between vertices g and h if and only if

g = h+ s for some s ∈ S.

We need the following two results on Hamilton cycle decompositions of Cayley graphs. The first

was proved by Bermond et al [7], and the second by the third author of the current paper [17]. Both

results address the open question of whether every connected Cayley graph on a finite abelian group

has a Hamilton cycle decomposition [3].

Theorem 1 ([7]) Every connected 4-regular Cayley graph on a finite abelian group has a Hamilton

cycle decomposition.

Theorem 2 ([17]) Every 6-regular Cayley graph on a cyclic group which has a generator of the group

in its connection set has a Hamilton cycle decomposition.

A Cayley graph on a cyclic group is called a circulant graph and we will be using these, and certain

subgraphs of them, frequently. Thus, we introduce the following notation.

The length of an edge {x, y} in a graph with vertex set Zm is defined to be either x − y or

y−x, whichever is in {1, 2, . . . , bm
2
c} (calculations in Zm). For even m and s ∈ {1, 2, . . . , m

2
}, we call

{{x, x+s} : x = 0, 2, . . . ,m−2} the even edges of length s and we call {{x, x+s} : x = 1, 3, . . . ,m−1}

the odd edges of length s. Note that half the edges of length s are even and half are odd, except

when m ≡ 2 ( mod 4) and s = m
2

, and in this case each edge of length s is both even and odd.

For any m ≥ 2 and any S ⊆ {1, 2, . . . , bm
2
c}, we denote by 〈S〉m the graph with vertex set Zm

and edge set consisting of the edges of length s for each s ∈ S (that is, 〈S〉m = Cay(Zm, S ∪ −S)).

For m even, if we wish to include only the even edges of length s then we give s the superscript “e”.

Similarly, if we wish to include only the odd edges of length s then we give s the superscript “o”.

For example, the graph 〈{1e, 2o, 5}〉12 is shown below.
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The graph 〈{1e, 2o, 5}〉12

The wreath product G oH of graphs G and H is the graph with vertex set V (G)×V (H) and edge

set given by joining (g1, h1) to (g2, h2) precisely when g1 is joined to g2 in G or g1 = g2 and h1 is

joined to h2 in H. For each even m ≥ 6, we shall use G2m to denote the graph 〈{1, 3e}〉m o 〈{1}〉2,

and use G2m− I to denote the graph 〈{1, 3e}〉m o 〈∅〉2. Thus, G2m is 7-regular of order 2m ≥ 12, and

G2m − I is 6-regular of order 2m ≥ 12.

We will be dealing frequently with the wreath product of a graph K and the empty graph with

vertex set Z2, so we introduce the following special notation for this graph. The graph K� is defined

by V (K�) = V (K)×Z2 and E(K�) = {{(x, a), (y, b)} : {x, y} ∈ E(K), a, b ∈ Z2}. Thus, G2m− I =

〈{1, 3e}〉�m. If F = {F1, F2, . . . , Ft} is a set of graphs then we define F� = {F�
1 , F

�
2 , . . . , F

�
t }. Observe

that if F is a factorisation of K, then F� is a factorisation of K�.

We need the following four results. Lemma 3 is a very useful result proved by Häggkvist [27],

Lemma 4 was proven independently in [8] and [46], Theorem 5 is a special case of the main result in

[8], and Theorem 6 was proved in [10].

Lemma 3 ([27]) For each 2-regular bipartite graph F of order 2m, there is a 2-factorisation of C�
m

into two copies of F .

Lemma 4 ([8],[46]) For each m ≥ 5 and every 2-regular graph F of order m, there is a factorisation

of 〈{1, 2}〉m into a Hamilton cycle and copy of F .

Theorem 5 ([8]) For each m ≥ 3 and each 2-regular graph F of order m, there is a factorisation of

Km into m−3
2

Hamilton cycles and copy of F when m is odd, and there is a factorisation of Km into

m−4
2

Hamilton cycles, a copy of F , and a 1-factor when m is even.
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Theorem 6 ([10]) If F1, F2, . . . , Ft are bipartite 2-regular graphs of order n and α1, α2, . . . , αt are

non-negative integers such that α1+α2+· · ·+αt = n−2
2

, α1 ≥ 3 is odd, and αi is even for i = 2, 3, . . . , t,

then there exists a 2-factorisation of Kn−I in which there are exactly αi copies of Fi for i = 1, 2, . . . , t.

In [10], the following complete solution to the Oberwolfach Problem for bipartite 2-regular graphs

is established as an easy consequence of Häggkvist’s result (Lemma 3) and Theorem 6.

Theorem 7 ([10, 27]) If F is a bipartite 2-regular graph of order n then there is a factorisation of

Kn into n−2
2

2-factors which are isomorphic to F and a 1-factor.

3 Preliminary results

Lemma 8 For each even m ≥ 6 and each 2-regular graph F of order m, there is a factorisation of

Km into m−6
2

Hamilton cycles, a copy of F , and a copy of 〈{1, 3e}〉m; except that there is no such

factorisation when m = 6 and F = [6] nor when m = 8 and F = [3, 5].

Proof For m = 6, 〈{1, 3e}〉m is K3,3 and the graph that remains when the edges of a copy of K3,3

are removed from K6 is [3, 3]. This proves the result for m = 6. For m = 8, 〈{1, 3e}〉m is the 3-cube

and the graph that remains when a 3-cube is removed from K8 consists of a pair of vertex-disjoint

copies of K4 joined by a perfect matching. It is straightforward to decompose this graph into two

Hamilton cycles, or into a Hamilton cycle and a pair of vertex-disjoint 4-cycles. It is also easy to see

that it does not contain the 2-factor [3, 5]. This proves the result for m = 8.

We now deal with the case m = 10. The permutation (0)(1 5 7 3)(2 6 8 4)(9) is an isomorphism

from 〈{1, 3e}〉10 to 〈{1, 5}〉10. Thus, it is sufficient to show that 〈{2, 3, 4}〉10 can be factorised into

two Hamilton cycles and a copy of F for each 2-regular graph F of order 10. There are five such

graphs: [10], [3, 7], [4, 6], [5, 5] and [3, 3, 4]. For F ∼= [10] we can use Theorem 2. For the remaining

four graphs we have the decompositions given below.

F ∼= [3, 3, 4] F ∼= [3, 7] F ∼= [4, 6] F ∼= [5, 5]

(0,3,6) ∪ (2,5,9) ∪ (1,7,4,8) (0,3,6) ∪ (2,8,4,7,1,5,9) (0,3,9,6) ∪ (1,5,2,8,4,7) (0,2,4,6,8) ∪ (1,3,5,7,9)

(0,2,4,6,8,5,3,1,9,7) (0,7,9,1,3,5,2,4,6,8) (0,7,5,3,1,9,2,4,6,8) (0,3,9,5,1,7,4,8,2,6)

(0,4,1,5,7,3,9,6,2,8) (0,2,6,9,3,7,5,8,1,4) (0,2,6,3,7,9,5,8,1,4) (0,4,1,8,5,2,9,6,3,7)
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We now deal with m ≥ 12. By Lemma 4, the result follows if there is a factorisation of Km into m−8
2

Hamilton cycles, a copy of 〈{1, 2}〉m, and a copy of 〈{1, 3e}〉m. We now show that such a factorisation exists,

by dealing separately with the cases m ≡ 0 ( mod 4) (m ≥ 12) and m ≡ 2 ( mod 4) (m ≥ 14).

For m ≡ 2 ( mod 4) observe that the mapping 0 1 2 3 4 5 6 7 8 · · · m− 3 m− 2 m− 1

0 m
2

m
2 + 1 1 2 m

2 + 2 m
2 + 3 3 4 · · · m

2 − 2 m
2 − 1 m− 1


is an isomorphism from 〈{1, 3e}〉m to 〈{1, m2 }〉m, and that 〈{1, 2}〉m is isomorphic to 〈4, m2 − 2〉m. So in the

case m ≡ 2 ( mod 4) it is sufficient to show that 〈{1, 2, . . . , m2 } \ {1, 4,
m
2 − 2, m2 }〉m has a decomposition into

Hamilton cycles. This is straightforward as {〈{2, 3}〉m, 〈{5, 6}〉m, 〈{7, 8}〉m, . . . , 〈{m2 − 6, m2 − 5}〉m, 〈{m2 −

4, m2 − 3, m2 − 1}〉m} is a factorisation of 〈{1, 2, . . . , m2 } \ {1, 4,
m
2 − 2, m2 }〉m in which each 4-factor has a

Hamilton cycle decomposition by Theorem 1, and the 6-factor has a Hamilton cycle decomposition by

Theorem 2 (since gcd(m2 − 4,m) = 1 when m ≡ 2 ( mod 4)).

We now deal with the case m ≡ 0 ( mod 4). First observe that for m ≡ 0 ( mod 4), 〈{1, 2}〉m is isomorphic

to 〈{2, m2 −1}〉m, and that {〈{4, 5}〉m, 〈{6, 7}〉m, . . . , 〈{m2 −4, m2 −3}〉m} is a 4-factorisation of 〈{4, 5, . . . , m2 −

3}〉m in which each 4-factor has a Hamilton cycle decomposition by Theorem 1. Thus it is sufficient to show

that 〈{3o, m2 − 2, m2 }〉m has a Hamilton cycle decomposition. But it is easy to see that 〈{3o, m2 − 2, m2 }〉m ∼=

Cay(Zm
2
× Z2, {(m4 − 1, 0), (m4 , 0), (0, 1)}) and so the result follows by Theorem 1. �

Lemma 9 If m ≥ 3 is odd and F is any 2-regular graph of order m, then there is a factorisation of K2m

into m−3
2 copies of C�

m and a copy of F oK2.

Proof Let F be a factorisation of Km into m−3
2 copies of Cm and a copy of F , which exists by Theorem

5. Then F� is a factorisation of K2m − I into m−3
2 copies of C�

m and a copy of F�. If we add the edges of

the removed 1-factor to the copy of F�, then we obtain F oK2 and hence the required factorisation of K2m.

�

Lemma 10 If m ≥ 6 is even and F 6∈ {[6], [3, 5]} is a 2-regular graph of order m, then there is a factorisation

of K2m into m−6
2 copies of C�

m, a copy of F oK2, and copy of G2m − I, and there is a factorisation of K2m

into m−6
2 copies of C�

m, a copy of F�, and copy of G2m.

Proof Let F be a factorisation of Km into m−6
2 Hamilton cycles, a copy of F , and a copy of 〈{1, 3e}〉m,

which exists by Lemma 8 (since F 6∈ {[6], [3, 5]}). Then F� is a factorisation of K2m − I into m−6
2 copies

of C�
m, a copy of F�, and copy of G2m − I. We obtain the first required factorisation of K2m by adding
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the edges of the removed 1-factor to the copy of F�, and the second by adding the edges of the removed

1-factor to the copy of G2m − I. �

Lemma 11 If m ≥ 3 and F is any bipartite 2-regular graph of order 2m, then there exists a factorisation

of Cm oK2 into a copy of F , a Hamilton cycle, and a 1-factor.

Proof Define three graphs F1, F2 and F3, each with vertex set Zm × Z2, by

• E(F1) = {{(x, i), (x+ 1, i)} : x ∈ Zm, i ∈ Z2};

• E(F2) = {{(x, i), (x+ 1, i+ 1)} : x ∈ Zm, i ∈ Z2}; and

• E(F3) = {{(x, 0), (x, 1))} : x ∈ Zm}.

It is clear that {F1, F2, F3} is a factorisation of Cm oK2 in which F1 and F2 are 2-factors and F3 is a 1-factor.

We obtain the required factorisation by making alterations to this factorisation. If F = [2m1, 2m2, . . . , 2mt],

then define S1 and S2 by

S1 = { {(m1 +m2 + . . .+mi, 0), (m1 +m2 + . . .+mi + 1, 0)},

{(m1 +m2 + . . .+mi − 1, 1), (m1 +m2 + . . .+mi, 1)} : i = 1, 2, . . . , t}

and

S2 = { {(m1 +m2 + . . .+mi − 1, 1), (m1 +m2 + . . .+mi, 0)},

{(m1 +m2 + . . .+mi, 1), (m1 +m2 + . . .+mi + 1, 0)} : i = 1, 2, . . . , t}

Define new 2-factors F ′1 and F ′2 by E(F ′1) = (E(F1)\S1)∪S2 and E(F ′2) = (E(F2)\S2)∪S1. Then {F ′1, F ′2}

is a 2-factorisation of C�
m in which each of F ′1 and F ′2 is isomorphic to F (this is the construction used in

[27] to prove Lemma 3). If we let {I1, I2} be any 1-factorisation of F ′1, then {I1 ∪ F3, F
′
2, I2} is the required

factorisation of Cm oK2 with I1 ∪ F3 being a Hamilton cycle, F ′2 being a 2-factor isomorphic to F , and I2

being a 1-factor. �

Lemma 12 Let F2 be any bipartite 2-regular graph of order 2m ≥ 6, say F2
∼= [4r, 2m1, 2m2, . . . , 2mt] with

3 ≤ m1 ≤ m2 ≤ · · · ≤ mt. If F1 is any bipartite refinement of F2, and F is the 2-regular graph of order m

given by

• F ∼= [2r] if F2 consists entirely of 4-cycles;

• F ∼= [2r +m1,m2, . . . ,mt] otherwise,
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then there is a factorisation of F oK2 consisting of a 1-factor, a 2-factor isomorphic to F1 and a 2-factor

isomorphic to F2.

Proof If F2 consists of 4-cycles only, then so does F1 and the result follows immediately by applying

Lemma 3 with F ∼= C2r. Thus, we can assume F2
∼= [4r, 2m1, 2m2, . . . , 2mt] where t ≥ 1, r ≥ 0, mi ≥ 3 for

i = 1, 2, . . . , t and 2r +m1 +m2 + · · ·+mt = m. Let F ∼= [2r +m1,m2, . . . ,mt] so that F oK2 consists of t

components: [2r +m1] oK2 and [mi] oK2 for i = 2, 3, . . . , t.

Now, F1 consists of t vertex-disjoint 2-regular graphs G1, G2, . . . , Gt where G1 is a bipartite refinement

of [4r, 2m1] and Gi is a refinement of [2mi] for i = 2, 3, . . . , t. By Lemma 11, there is a factorisation of

[mi] oK2 consisting of a 1-factor, a 2mi-cycle, and a 2-factor isomorphic to Gi for i = 2, 3, . . . , t. Thus, the

result follows if there is a factorisation of [2r + m1] oK2 into a 1-factor, a 2-factor isomorphic to [4r, 2m1],

and a 2-factor isomorphic to G1. We now show that such a factorisation exists.

Let s = 2r +m1 and let K ∼= [s] oK2 be the graph with vertex set Zs × Z2 and edge set

{ {(x, 0), (x, 1)} : x ∈ Zs } ∪ { {(x, i), (x+ 1, j)} : x ∈ Zs, i ∈ Z2, j ∈ Z2 }.

Let H ∼= [4r, 2m1] be the 2-factor of K consisting of the 4-cycle ((x, 0), (x + 1, 0), (x, 1), (x + 1, 1)) for

x = 1, 3, . . . , 2r − 1 and the 2m1-cycle with edge set

{ {(0, 0), (0, 1)}, {(2r + 1, 0), (2r + 1, 1)} }∪

{ {(x, 0), (x+ 1, 1)}{(x, 1), (x+ 1, 0)} : x = 2r + 1, 2r + 2, . . . , 2r +m1 − 1 }.

Let G be the graph obtained from K by removing the edges of H. Then G is a 3-regular graph consisting

of r − 1 copies of K4 and one copy of the graph of order 2m1 + 4 shown below.

It is easy to see that this graph contains every bipartite 2-regular graph of order 2m1 + 4 and it follows

that there is a factorisation of G into a 1-factor I and a 2-regular graph H ′ that is isomorphic to G1. Thus,

{H,H ′, I} is the required factorisation of K ∼= [s] oK2. �

4 Factorisations of Gn − I

The purpose of this section is to prove Lemma 16 below, which gives factorisations of Gn − I into three

copies of almost any bipartite 2-regular graph of order n. To achieve this we introduce classes of subgraphs
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of Gn. For each even r we define J2r (see the figure below) to be the graph with vertex set V (J2r) =

{u1, u2, . . . , ur+4} ∪ {v1, v2, . . . , vr+4} and edge set

E(J2r) = {{ui, vi} : i = 3, 4, . . . , r + 2} ∪

{{ui+1, ui+2}, {vi+3, vi+4}, {ui, vi+1}, {vi+1, ui+2} : i = 1, 2, . . . , r} ∪

{{ui+2, ui+5}, {vi+2, vi+5}, {ui, vi+3}, {vi+2, ui+5} : i = 1, 3, 5, . . . , r − 1}.

s s s s s
s s s s s
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u1 u2 u3 u4 u5 ur+1 ur+2 ur+3 ur+4

v1 v2 v3 v4 v5 vr+1 vr+2 vr+3 vr+4

We define J2r−I to be the graph obtained from J2r by removing the edges {{ui, vi} : i = 3, 4, . . . , r+2}.

Notice that for r ≥ 6, if we take the graph J2r or J2r − I and identify ui with ur+i and vi with vr+i for each

i ∈ {1, 2, 3, 4}, then the resulting graph is isomorphic to G2r or G2r − I respectively.

Let F be a 2-regular graph of order 2r. We write J2r − I 7→ F if there is a decomposition {F1, F2, F3}

of J2r − I such that F1
∼= F2

∼= F3
∼= F and the following conditions (1), (2) and (3) hold.

(1) V (F1) = {u5, u6, . . . , ur+1} ∪ {u2, u3, ur+4} ∪ {v3, v4, . . . , vr+2}.

(2) V (F2) = {u3, u4, . . . , ur} ∪ {u1, ur+2} ∪ {v2, v3, . . . , vr+1}.

(3) V (F3) = {u3, u4, . . . , ur+2} ∪ {v5, v6, . . . , vr+4}.

It is easy to see that the next result follows immediately from the discussion in the preceding two

paragraphs, as conditions (1)-(3) ensure that the subgraphs F1, F2 and F3 become 2-factors upon the

above-described identification of vertices of J2r − I to form G2r − I.

Lemma 13 If J|V (F )| − I 7→ F , then G|V (F )| − I factorises into three copies of F .

For each integer k ≥ 0 define the mapping φk on {u1, u2, . . .} ∪ {v1, v2, . . .} by

φk(ui) = ui+k and φk(vi) = vi+k

and for any subgraph H of J2r define φk(H) to be the graph with vertex set {φk(x) : x ∈ V (H)} and edge

set {φk({x, y}) : {x, y} ∈ E(H)}. Thus, J2r+2s = J2r ∪ φr(J2s). Moreover, if F is the union of vertex

10



disjoint 2-regular graphs F ′ and F ′′, {F ′1, F ′2, F ′3} is a decomposition J2r − I 7→ F ′ and {F ′′1 , F ′′2 , F ′′3 } is a

decomposition J2r−I 7→ F ′′ (where F ′i and F ′′i satisfy condition (i) above for i = 1, 2, 3), then it is clear that

{F ′1 ∪ φr(F ′′1 ), F ′2 ∪ φr(F ′′2 ), F ′3 ∪ φr(F ′′3 )} is a decomposition J2r+2s − I 7→ F . Hence we have the following

result.

Lemma 14 If F is the union of vertex disjoint 2-regular graphs F ′ and F ′′, J|V (F ′)|−I 7→ F ′, and J|V (F ′′)|−

I 7→ F ′′, then J|V (F )| − I 7→ F .

Lemma 15 For each graph F in the following list we have J|V (F )| − I 7→ F .

(i) [k] for each k ∈ {8, 12, 16, . . .}

(ii) [k, k′] for each k ∈ {6, 10, 14, . . .} and each k′ ∈ {10, 14, . . .}

(iii) [4, k] for each k ∈ {4, 8, 12, . . .}

(iv) [4, k, k′] for each k ∈ {6, 10, 14, . . .} and each k′ ∈ {10, 14, . . .}

(v) [4, 4, 4]

(vi) [6, 6, k] for each k ∈ {8, 12, 16, . . .}

(vii) [6, 6, k, k′] for each k ∈ {6, 10, 14, . . .} and each k′ ∈ {6, 10, . . .}

(viii) [4, 6, 6, k] for each k ∈ {4, 8, 12, . . .}

(ix) [4, 6, 6, k, k′] for each k ∈ {6, 10, 14, . . .} and each k′ ∈ {6, 10, . . .}

(x) [4, 4, 4, 6, 6]

Proof We introduce the twelve graph decompositions shown in Figure 1 which we call pieces. Each piece

has three subgraphs indexed by the subscripts 1, 2 and 3. In each piece the subgraph indexed by subscript

1 is shown with thin solid lines, the subgraph indexed by subscript 2 is shown with dotted lines, and the

subgraph indexed by subscript 3 is shown with thick solid lines.

If X = {X1, X2, X3} and Y = {Y1, Y2, Y3} are two pieces, we define the concatenation of piece X with

piece Y, denoted by X ⊕ Y, to be the decomposition {X1 ∪ Y1, X2 ∪ Y2, X3 ∪ Y3} of the graph obtained by

identifying each of the four right-most vertices, say uz−1, vz−1, uz, vz of X , with the corresponding left-most

vertex, say u1, v1, u2, v2 respectively, of Y. For example, Figure 2 shows the concatenation L1 ⊕ C1 ⊕ R1.

Notice that this particular concatenation is a decomposition J16− I 7→ [16]. Generally speaking, a left piece

11



Figure 1: Twelve pieces
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(Li), perhaps some middle pieces (C1, C2 orM), and then a right piece (Rj) will be concatenated to yield a

decomposition JV (F ) − I 7→ F for each required 2-regular graph F . We are now ready to construct each of

the decompositions J|V (F )| − I 7→ F listed in (i)-(x) as required to prove the lemma.

Figure 2: The concatenation L1 ⊕ C1 ⊕R1 yields J16 − I 7→ [16]

(i) The small case J8− I 7→ [8] is shown in Figure 3. For k ≥ 12, the concatenation L1⊕C1⊕ . . .⊕C1⊕R1

with k−12
4 occurrences of C1 gives a decomposition. The case k = 16 is shown in Figure 2.

(ii) If k = 6, then a decomposition is given by L3 ⊕ C1 ⊕ . . . ⊕ C1 ⊕ R1 with k′−10
4 occurrences of C1. If

k = 10, a decomposition is given by L4 ⊕ C1 ⊕ . . . ⊕ C1 ⊕ R1 with k′−10
4 occurrences of C1. For k ≥ 14, a

decomposition is given by L2⊕C2⊕ . . .⊕C2⊕M⊕C1⊕ . . .⊕C1⊕R1 with k−14
4 occurrences of C2 and k′−10

4

occurrences of C1.

(iii) Decompositions J8 7→ [4, 4] and J12 7→ [4, 8] are given in Figure 3. For k ≥ 12, the concatenation

L1 ⊕ C1 ⊕ . . .⊕ C1 ⊕R2 with k−12
4 occurrences of C1 gives the result.

(iv) A decomposition J4+k+k′ − I 7→ [4, k, k′] is found by the same method as for Jk+k′ − I 7→ [k, k′] in

case (ii) above, except that the piece R2 is required instead of R1.

(v) A decomposition J12 − I 7→ [4, 4, 4] is given in Figure 3.

(vi) A decomposition J20− I 7→ [6, 6, 8] is given in Figure 3. For k ≥ 12, the concatenation L3⊕C1⊕ . . .⊕

C1 ⊕R3 with k−12
4 occurrences of C1 gives the decomposition.

(vii) A decomposition J24 − I 7→ [6, 6, 6, 6] is given in Figure 3. For k = 6 and k′ ≥ 10, the concatenation

L5⊕C1⊕ . . .⊕C1⊕R1 with k′−10
4 occurrences of C1 gives a decomposition. Similarly, for k′ = 6 and k ≥ 10,

the concatenation L5 ⊕ C1 ⊕ . . .⊕ C1 ⊕R1 with k−10
4 occurrences of C1 suffices. If k ≥ 10 and k′ ≥ 10, then

we can write [6, 6, k, k′] as the vertex disjoint union of [6, k] and [6, k′] and use (ii) and Lemma 14 to obtain
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Figure 3: J2r − I 7→ F for some small F

a required decomposition.

(viii) Decompositions J20 − I 7→ [4, 6, 6, 4] and J24 − I 7→ [4, 6, 6, 8] are given in Figure 3. For k ≥ 12, the

concatenation L3 ⊕ C1 ⊕ . . .⊕ C1 ⊕R4 with k−12
4 occurrences of C1 gives a required decomposition.

(ix) A decomposition J28− I 7→ [4, 6, 6, 6, 6] is given in Figure 3. For k = 6 and k′ ≥ 10, the concatenation

L5⊕C1⊕. . .⊕C1⊕R2 with k′−10
4 occurrences of C1 suffices. Similarly, for k′ = 6 and k ≥ 10, the concatenation

L5 ⊕ C1 ⊕ . . .⊕ C1 ⊕R2 with k−10
4 occurrences of C1 gives a decomposition. If k ≥ 10 and k′ ≥ 10, then we

can write [4, 6, 6, k, k′] as the vertex disjoint union of [4, 6, k] and [6, k′] and use (ii), (iv) and Lemma 14 to

obtain a required decomposition.

(x) A decomposition J24 − I 7→ [4, 4, 4, 6, 6] is given in Figure 3. �

We are now ready to prove the main result of this section.

Lemma 16 Let n ≡ 0 ( mod 4) with n ≥ 12. For each bipartite 2-regular graph F of order n, there is a

factorisation of Gn − I into three copies of F ; except possibly when F ∈ {[6r], [4, 6r] : r ≡ 2 ( mod 4)}.

Proof Let F be a 2-regular graph of order 2m such that F is neither [6r] with r ≡ 2 ( mod 4) nor [4, 6r]

with r ≡ 2 ( mod 4). We will show that F can be written as the vertex-disjoint union of 2-regular subgraphs

H1, H2, . . . ,Hw where each Hi is covered by Lemma 15. The result then follows by application of Lemmas
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13 and 14. Note that since m is even, |V (F )| ≡ 0 ( mod 4) and so the number of cycles in F of length

congruent to 2 ( mod 4) is also even, we will use this fact often in the remainder of the proof.

If F is any graph satisfying the conditions of the Lemma and containing at least four 6-cycles, then

either F ∼= [6, 6, 6, 6], F ∼= [4, 6, 6, 6, 6], or the graph obtained from F by removing four 6-cycles satisfies the

conditions of the Lemma. Thus, since [6, 6, 6, 6] and [4, 6, 6, 6, 6] are covered by Lemma 15, we can assume

that F contains at most three 6-cycles.

If F contains at most one 6-cycle, then it is clear that F can be written as a union of copies of graphs

covered by (i)-(v) of Lemma 15. Noting that (vi)-(x) of Lemma 15 cover [6, 6]∪H for each H that is covered

by (i)-(v) of Lemma 15, it is clear that we can deal similarly with the case where F contains either two or

three 6-cycles. Note that F ∼= [6, 6] and F ∼= [4, 6, 6] are excluded by the conditions of the Lemma. �

5 Factorisations of Gn

The purpose of this section is to prove Lemma 20 below, which gives factorisations of Gn into two copies

of F ′, a copy of F , and a 1-factor, for each 2-regular graph F that has a refinement F ′ ∈ {[4, 6r], [6r] : r ≡

2 ( mod 4)}. The need for these factorisations arises because of the listed possible exceptions in Lemma 16.

Let F be a bipartite 2-regular graph of order 2r ≡ 0 or 4 ( mod 6) such that [6
2r
6 ] is a refinement of F

when 2r ≡ 0 ( mod 6) and such that [4, 6
2r
6 ] is a refinement of F when 2r ≡ 4 ( mod 6). We write J2r ↘ F

if there is a decomposition {F1, F2, F3, F4} of J2r such that F3
∼= F and

(1) V (F1) = {u5, u6, . . . , ur+1} ∪ {u2, u3, ur+4} ∪ {v3, v4, . . . , vr+2}

(2) V (F2) = {u3, u4, . . . , ur} ∪ {u1, ur+2} ∪ {v2, v3, . . . , vr+1}

(3) V (F3) = {u3, u4, . . . , ur+2} ∪ {v5, v6, . . . , vr+4}

(4) F1
∼= F2

∼= [6
2r
6 ] if 2r ≡ 0 ( mod 6)

(5) F1
∼= F2

∼= [4, 6
2r
6 ] if 2r ≡ 4 ( mod 6)

(6) F4 is 1-regular with vertex set {u3, u4, . . . , ur+2} ∪ {v3, v4, . . . , vr+2}

Note that conditions (1), (2) and (3) in the definition of J2r ↘ F are the same as conditions (1), (2)

and (3) in the definition of J2r − I 7→ F . It is clear that we also have the following two results which are

analogues of Lemmas 13 and 14.
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Lemma 17 If J|V (F )| ↘ F , then G|V (F )| factorises into two copies of H, one copy of F , and a 1-factor

where H ∼= [6
|V (F )|

6 ] if |V (F )| ≡ 0 ( mod 6) and H ∼= [4, 6
|V (F )−4|

6 ] if |V (F )| ≡ 4 ( mod 6).

Lemma 18 If F is the union of vertex disjoint 2-regular graphs F ′ and F ′′ where at most one of F ′ and

F ′′ has order congruent to 4 ( mod 6), J|V (F ′)| ↘ F ′, and J|V (F ′′)| ↘ F ′′, then J|V (F )| ↘ F .

Lemma 19 For each graph F in the following list, J|V (F )| ↘ F .

(i) [12k] for each k ≥ 1

(ii) [12j + 6, 12k + 6] for each j ≥ 0 and each k ≥ 1

(iii) [6, 6, 12k] for each k ≥ 1

(iv) [6, 6, 12j + 6, 12k + 6] for each j ≥ 0 and each k ≥ 0

(v) [4, 12k] for each k ≥ 1

(vi) [4, 12j + 6, 12k + 6] for each j ≥ 0 and each k ≥ 0

(vii) [12k + 4] for each k ≥ 1

(viii) [12j + 10, 12k + 6] for each j ≥ 0 and each k ≥ 0

(ix) [6, 6, 12k + 4] for each k ≥ 0

(x) [6, 6, 12j + 6, 12k + 10] for each j ≥ 0 and for each k ≥ 0

Proof Suppose F = {F1, F2, F3, F4} is a decomposition J2r ↘ F for some F with the property that for

some x, the edges {ux, ux+1} and {vx, vx+1} are in F3 and the edges {ux, vx} and {ux+1, vx+1} are in F4.

If we define F ′3 to be the graph obtained from F3 by replacing the edges {ux, ux+1} and {vx, vx+1} with

{ux, vx} and {ux+1, vx+1}, and define F ′4 to be the graph obtained from F4 by replacing the edges {ux, vx}

and {ux+1, vx+1} with {ux, ux+1} and {vx, vx+1}, then {F1, F2, F
′
3, F

′
4} is a decomposition J2r ↘ F ′ (where

F ′ ∼= F ′3). We shall call this process performing a 4-edge swap at ux, and denote the new decomposition by

F(ux).

We shall be performing 4-edge swaps at ux when the edges {ux, ux+1} and {vx, vx+1} are in distinct

cycles of F3. Thus, when we obtain a new decomposition J2r ↘ F ′ from J2r ↘ F by performing a 4-edge

swap, F ′ will be isomorphic to a graph obtained from F by replacing an a-cycle and a b-cycle with a single

(a+ b)-cycle.
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Figure 4: Some small decompositions J2r ↘ F
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Decompositions J12 ↘ [12], J24 ↘ [6, 6, 6, 6], J16 ↘ [12, 4], J16 ↘ [10, 6], J28 ↘ [6, 6, 6, 6, 4], and

J16 ↘ [4, 6, 6] are given by A, B, C, D, E and G respectively in Figure 4.

Moreover, it is straightforward to check that

C(u9) yields J16 ↘ [16]

B(u12) yields J24 ↘ [6, 6, 12]

B(u9, u12) yields J24 ↘ [6, 18]

E(u9) yields J28 ↘ [6, 12, 6, 4]

E(u9, u12) yields J28 ↘ [6, 18, 4]

E(u15) yields J28 ↘ [6, 6, 6, 10]

E(u12, u15) yields J28 ↘ [6, 6, 16].

Suppose F ′ and F ′′ are any two of the above thirteen decompositions, that F ′ is a decomposition

J2r ↘ F ′, that F ′′ is a decomposition J2s ↘ F ′′, and that F is the decomposition given by applying Lemma

18 to F ′ and F ′′. We can then perform a 4-edge swap at ur+3 in F to obtain the new decomposition

F(ur+3). We denote any such new decomposition obtained in this manner by F ′ ∗ F ′′. We are now ready

to construct the decompositions needed to prove the lemma.

(i) A decomposition J12k ↘ [12k] for k ≥ 1 is given by A ∗ A ∗ . . . ∗ A with k occurrences of A.

(ii) A decomposition J12j+12k+12 ↘ [12j + 6, 12k + 6] for j ≥ 0 and k ≥ 1 is given by A ∗ . . . ∗ A ∗

B(u9, u12) ∗ A ∗ . . . ∗ A with j occurrences of A to the left of B(u9, u12) and k − 1 occurrences of A to the

right.

(iii) A decomposition J12k+12 ↘ [6, 6, 12k] for k ≥ 1 is given by B(u12)∗A∗ . . .∗A with k−1 occurrences

of A.

(iv) For all j ≥ 0, a decomposition J12j+24 ↘ [6, 6, 12j+6, 6] is given by B∗A∗ . . .∗A with j occurrences

of A. Thus, we may assume j, k ≥ 1. In this case, we can write [6, 6, 12j + 6, 12k + 6] as the vertex-disjoint

union of [6, 12j + 6] and [6, 12k + 6] and use (ii) and Lemma 18 to obtain the required decomposition.

(v) A decomposition J12k+4 ↘ [4, 12k] for k ≥ 1 is given by A ∗ . . . ∗ A ∗ C with k − 1 occurrences of A.

(vi) A decomposition J16 ↘ [4, 6, 6] is given by G in Figure 4. A decomposition J28 ↘ [4, 6, 18] is given by

E(u9, u12) and a decomposition J40 ↘ [4, 18, 18] is given by A∗E(u9, u12). This covers the cases where j and

k are both in {0, 1}. Hence (by the symmetry between j and k) we can assume k ≥ 2. The decomposition

A∗ . . .∗A∗B(u9, u12)∗A∗ . . .∗A∗C with j occurrences of A to the left of B(u9, u12), and k−2 occurrences

to the right is the required decomposition J12j+12k+16 ↘ [4, 12j + 6, 12k + 6] for j ≥ 0 and k ≥ 2.

(vii) A decomposition J12k+4 ↘ [12k+ 4] for k ≥ 1 is given by A∗ . . . ∗A ∗ C(u9) with k− 1 occurrences

of A.
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(viii) A decomposition J12j+12k+16 ↘ [12j + 10, 12k+ 6] for j ≥ 0 and k ≥ 0 is given by A∗ . . . ∗A ∗D ∗

A ∗ . . . ∗ A with j occurrences of A to the left of D and k occurrences to the right.

(ix) We have already noted the existence of a decomposition J16 ↘ [4, 6, 6] in (vi), and J12k+16 ↘

[6, 6, 12k + 4] for k ≥ 1 is given by E(u12, u15) ∗ A ∗ . . . ∗ A with k − 1 occurrences of A.

(x) A decomposition J12j+12k+28 ↘ [6, 6, 12j + 10, 12k + 6] for j ≥ 0 and k ≥ 0 is given by A ∗ . . . ∗ A ∗

E(u15) ∗ A ∗ . . . ∗ A with j occurrences of A to the right of E(u15) and k occurrences to the left. �

We are now ready to prove the main result of this section.

Lemma 20 Let n ≡ 0 ( mod 4) with n ≥ 12. If F is a 2-regular graph of order n having a refinement

F ′ ∈ {[4, 6r], [6r] : r ≡ 2 ( mod 4)}, then there is a factorisation of Gn into two copies of F ′, a copy of F ,

and a 1-factor.

Proof Let F3 be a 2-regular graph of order 2m, which has a refinement isomorphic to [6r] or [6r, 4] where

r ≡ 2 ( mod 4). Note that since r is even, F3 contains an even number of cycles of length congruent to

6 ( mod 12). We will be using this fact implicitly in the remainder of the proof.

We deal first with the special case where F3
∼= [6r]. It is easy to see that G12

∼= 〈{1, 3, 5, 6}〉12 and

that the orbit of the 2-factor consisting of the two 6-cycles (0, 1, 7, 10, 11, 6) and (2, 5, 8, 3, 4, 9) under the

permutation x 7→ x+ 4 ( mod 12) is a factorisation of 〈{1, 3, 5, 6}〉12 into three copies of [62] and a 1-factor.

Also, it was shown in [10] that there is a factorisation of Gn into three copies of [6r] and a 1-factor for all

r ≡ 2 ( mod 4) with r ≥ 6. Hence, the result holds when F3
∼= [6r] so we may assume that F3 6∼= [6r].

For F3 6∼= [6r], we will show that F3 can be written as a vertex-disjoint union of 2-regular subgraphs

H1, H2, . . . Hw where each subgraph Hi is listed in Lemma 19 (and where at most one of the subgraphs has

order congruent to 4 ( mod 6)). It then follows by Lemma 18 that J2m ↘ F3, and consequently by Lemma

17 that G2m has the required decomposition.

Clearly, we can write F3 as a union of vertex disjoint graphs isomorphic to [6, 6, 6, 6] and a graph satifying

the conditions of the lemma and having at most three 6-cycles. Hence, since [6, 6, 6, 6] is covered by Lemma

19, we can assume that F3 contains at most three 6-cycles (and F3 6∼= [6, 6]).

The proof now splits into the following five cases which we deal with one at a time.

(1) [6r] is a refinement of F3 and F3 contains zero or one 6-cycles.

(2) [6r] is a refinement of F3 and F3 contains two or three 6-cycles.

(3) [4, 6r] is a refinement of F3 and F3 contains a 4-cycle.
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(4) [4, 6r] is a refinement of F3, F3 does not contain a 4-cycle, and F3 contains zero or one 6-cycles.

(5) [4, 6r] is a refinement of F3, F3 does not contain a 4-cycle, and F3 contains two or three 6-cycles.

(1) It is easy to see that if [6r] is a refinement of F3 and F3 contains zero or one 6-cycles, then F3 can

be written as the union of copies of graphs covered by (i) and (ii) of Lemma 19. We will refer back to this

observation.

(2) If [6r] is a refinement of F3 where F3 contains two or three 6-cycles, then F3 can be written as the

union of a graph covered by either (iii) or (iv) of Lemma 19, and a graph which falls into case (1).

(3) If [4, 6r] is a refinement of F3 and F3 contains a 4-cycle, then F3 can be written as the union of a graph

covered by either (v) or (vi) of Lemma 19, and a graph which falls into case (1).

(4) If [4, 6r] is a refinement of F3, F3 does not contains a 4-cycle and F3 contains zero or one 6-cycles, then

F3 can be written as the union of a graph covered by either (vii) or (viii) of Lemma 19, and a graph which

falls into case (1).

(5) If [4, 6r] is a refinement of F3, F3 does not contains a 4-cycle and F3 contains two or three 6-cycles,

then F3 can be written as the union of a graph covered by either (ix) or (x) of Lemma 19, and a graph

which falls into case (1). �

6 Factorisations of K12 and K16

In this section we give some additional factorisations of K12 and K16 which we will need because our general

approach does not work completely in these small cases. The following result is Theorem 4.1 in [2].

Theorem 21 ([2]) If F1 and F2 are non-isomorphic bipartite 2-regular graphs of order n ≤ 16, each con-

sisting of isomorphic connected components, then the Hamilton Waterloo Problem HW(F1, F2;α1, α2) has a

solution for all α1, α2 satisfying α1 + α2 = n−2
2 .

Lemma 22 For each

(F1, F2) ∈ {([4, 4, 4], [4, 8]) , ([4, 4, 4], [12]) , ([4, 8], [12]) , ([6, 6], [12])}

there is a factorisation of K12 into a copy of F1, four copies of F2, and a 1-factor.

Proof For (F1, F2) = ([4, 4, 4], [4, 8]) we use a factorisation of K6 into two Hamilton cycles and a 1-factor

to obtain a factorisation of K12 into two copies of C�
6 , a copy of [4, 4, 4] and a 1-factor. By Lemma 3, each
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copy of C�
6 can then be factored into two copies [4, 8] to obtain the required factorisation of K12. In all

other cases, the result follows by Theorem 5. �

Lemma 23 For each

(F1, F2) ∈ {([4, 4, 4], [4, 8]) , ([4, 4, 4], [12]) , ([4, 8], [12]) , ([6, 6], [12])}

there is a factorisation of K12 into a four copies of F1, a copy of F2, and a 1-factor.

Proof The cases (F1, F2) ∈ {([4, 4, 4], [12]), ([6, 6], [12])} are covered by Theorem 21. We now deal with

(F1, F2) = ([4, 4, 4], [4, 8]). Let F be a factorisation of K6 into a Hamilton cycle and three 1-factors. Then

F� is a factorisation of K12 − I into into a copy of C�
6 and three copies of [4, 4, 4]. If we add the edges of

the removed 1-factor to the copy of C�
6 , then we obtain a factorisation of K12 into a copy of C6 oK2 and

three copies of [4, 4, 4]. A factorisation of C6 oK2 into a copy of [4, 4, 4], a copy of [4, 8] and a 1-factor exists

by Lemma 12. This yields the required factorisation of K12 when (F1, F2) = ([4, 4, 4], [4, 8]).

We now deal with (F1, F2) = ([4, 8], [12]). Let F be a factorisation of K6 into a Hamilton cycle and a

copy of 〈{2, 3}〉6. Then F� is a factorisation of K12 − I into into a copy of C�
6 and a copy of 〈{2, 3}〉�6 .

Since C�
6 can be factored into two copies of [4, 8], the required factorisation of K12 can be obtained if there

is a factorisation of 〈{2, 3}〉�6 into two copies of [4, 8] and one copy of [12]. This factorisation is given below

where (a, b) is denoted by ab.

{ (00, 40, 10, 41) ∪ (20, 51, 31, 11, 30, 50, 21, 01),

(00, 30, 01, 31) ∪ (20, 40, 21, 41, 11, 51, 10, 50),

(00, 20, 41, 01, 40, 11, 50, 31, 10, 30, 51, 21) }

�

Lemma 24 There is a factorisation of K16 into a copy of [4, 6, 6], six copies of [6, 10], and a 1-factor.

Proof Applying Lemma 10 with F ∼= [8], we obtain a factorisation of K16 into two copies of C�
8 and a

copy of G16. We can factorise each copy of C�
8 into two copies of [6, 10] using Lemma 3, and this leaves us

needing a factorisation of G16 into two copies of [6, 10], a copy of [4, 6, 6], and a 1-factor. This factorisation

is given below with (a, b) denoted by ab.

{ (00, 11, 01, 10) ∪ (20, 70, 61, 50, 60, 71) ∪ (21, 30, 41, 51, 40, 31),

(10, 21, 11, 41, 50, 40) ∪ (00, 51, 01, 71, 61, 30, 20, 31, 60, 70),

(00, 50, 01, 70, 21, 71) ∪ (10, 20, 11, 40, 30, 60, 51, 61, 31, 41) }

�
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Lemma 25 There is a factorisation of K16 into six copies of [4, 6, 6], a copy of [6, 10], and a 1-factor.

Proof In the proof of Lemma 24, we noted the existence of a factorisation of K16 into two copies of C�
8

and a copy of G16. We can factorise each copy of C�
8 into two copies of [4, 6, 6] using Lemma 3, and this

leaves us needing a factorisation of G16 into two copies of [4, 6, 6], a copy of [6, 10], and a 1-factor. This

factorisation exists by Lemma 20. �

7 Proofs of main results

Theorem 26 If F1, F2, . . . , Ft are bipartite 2-regular graphs of order n ≡ 2 ( mod 4), F1 is a refinement of

F2, and α1, α2, . . . , αt are positive integers such that α1 +α2 + · · ·+αt = n−2
2 with αi even for i = 3, 4 . . . , t,

then Kn has a factorisation into αi copies of Fi for i = 1, 2, . . . , t and a 1-factor.

Proof Let m = n
2 . It follows from n ≡ 2 ( mod 4) that α1 and α2 are either both even or both odd. If

they are both even, then we let F ∼= Cm, and if they are both odd, then we let F be a 2-regular graph of

order m, which exists by Lemma 12, such that F oK2 has a factorisation into a copy of F1, a copy of F2 and

a 1-factor. By Lemma 9, there is a factorisation of K2m into m−3
2 copies of C�

m and a copy of F oK2. The

required factorisation of Kn can thus be obtained by applying Lemma 3 (when α1 and α2 are both even we

first factorise F oK2 into a copy of C�
m and a 1-factor). �

Theorem 27 If t ≥ 3, F1, F2, . . . , Ft are bipartite 2-regular graphs of order n, and α1, α2, . . . , αt are positive

integers such that

• F1 is a refinement of F2;

• α1, α2, α3 are odd with α3 ≥ 3;

• αi is even for i = 4, 5, . . . , t;

• α1 + α2 + · · ·+ αt = n−2
2 ;

• F2 /∈ {[4, 4, 4], [4, 8], [12], [4, 6, 6], [6, 10]}; and

• F3 /∈ {[6r], [4, 6r] : r ≡ 2 ( mod 4)};

then Kn has a factorisation into αi copies of Fi for i = 1, 2, . . . , t and a 1-factor.
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Proof The conditions imply n ≡ 0 ( mod 4) and n ≥ 12. Let F be the 2-regular graph of order m = n
2 ,

given by Lemma 12, such that F oK2 has a factorisation into a copy of F1, and copy of F2, and a 1-factor.

Since F2 /∈ {[4, 4, 4], [4, 8], [12], [4, 6, 6], [6, 10]}, we have F /∈ {[6], [3, 5]}. Hence, by Lemma 10 there is a

factorisation of K2m into m−6
2 copies of C�

m, a copy of F o K2, and copy of Gn − I. We can thus obtain

the required factorisation of K2m by using the above-mentioned factorisation of F oK2, using Lemma 16 to

factorise Gn − I into three copies of F3 (as F3 6∼= [6r] and F3 6∼= [4, 6r]), and using Lemma 3 to factorise each

copy of C�
m. �

Theorems 26 and 27 together with the factorisations of K12 and K16 given in Section 6 allow us to prove

our main result on the Hamilton-Waterloo Problem.

Theorem 28 If F2 is a bipartite 2-regular graph of order n and F1 is a bipartite refinement of F2, then

for all non-negative α1, α2 satisfying α1 + α2 = n−2
2 there is a factorisation of Kn into α1 copies of F1, α2

copies of F2, and a 1-factor.

Proof If n ≡ 2 ( mod 4), then we can obtain the required factorisation by applying Theorem 26 with t = 2.

The case n = 4 is trivial and the required factorisations for n = 8 are known to exist, see [11]. Thus, we

can assume n ≡ 0 ( mod 4) and n ≥ 12. For n ≡ 0 ( mod 4), exactly one of α1 and α2 is odd. If α1 6= 1 and

α2 6= 1, then we can obtain the required factorisation by applying Theorem 6 with t = 2. This leaves only

cases α1 = 1 and α2 = 1.

If α1 = 1, then we can obtain the required factorisation by applying Theorem 27 with t = 3 and F3
∼= F2,

except if F2 ∈ {[4, 4, 4], [4, 8], [12], [4, 6, 6], [6, 10]}∪{[6r], [4, 6r] : r ≡ 2 ( mod 4)}. In most of these exceptional

cases the only bipartite refinement of F2 is F2 itself, which means that F1
∼= F2 and the result follows by

Theorem 7. The exceptional cases where F2 has a non-isomorphic bipartite refinement are precisely those

covered by Lemmas 22 and 24.

If α2 = 1, then we can obtain the required factorisation by applying Theorem 27 with t = 3 and

F3
∼= F1, except if F2 ∈ {[4, 4, 4], [4, 8], [12], [4, 6, 6], [6, 10]} or F1 ∈ {[6r], [4, 6r] : r ≡ 2 ( mod 4)}. For

F2 ∈ {[4, 4, 4], [4, 6, 6]}, the only bipartite refinement of F2 is F2 itself, which means that F1
∼= F2 and the

result follows by Theorem 7. For F2 ∈ {[4, 8], [12], [6, 10]}, the required factorisations are precisely those

given in Lemmas 23 and 25. For F1 = [6, 6] we have either F2 = [6, 6] or F2 = [12]. In the former case, the

result follows by Theorem 7, and in the latter case the required factorisation is given by Lemma 23 (as we

have already noted in dealing with the case F2 = [12]).

Finally, for α2 = 1 and F1 ∈ {[6r], [4, 6r] : r ≡ 2 ( mod 4)} \ {[6, 6]}, we first apply Lemma 10 with

F ∼= Cm (and m = n
2 ) to obtain a factorisation of Kn into n−8

4 copies of C�
n
2

and a copy of Gn. Using Lemma
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3 we can then factorise each copy of C�
n
2

into two copies of F1, and using Lemma 20 we can factorise Gn into

two copies of F1, one copy of F2, and a 1-factor. This yields the required factorisation of Kn. �
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