On the Hamilton-Waterloo Problem for bipartite 2-factors *

Darryn Bryant The University of Queensland Department of Mathematics Qld 4072, Australia Peter Danziger Department of Mathematics Ryerson University Toronto, Ontario, Canada M5B 2K3

Matthew Dean The University of Queensland Department of Mathematics Qld 4072, Australia

Abstract

Given two 2-regular graphs F_1 and F_2 , both of order n, the Hamilton-Waterloo Problem for F_1 and F_2 asks for a factorisation of the complete graph K_n into α_1 copies of F_1 , α_2 copies of F_2 , and a 1-factor if n is even, for all non-negative integers α_1 and α_2 satisfying $\alpha_1 + \alpha_2 = \lfloor \frac{n-1}{2} \rfloor$. We settle the Hamilton-Waterloo problem for all bipartite 2-regular graphs F_1 and F_2 where F_1 can be obtained from F_2 by replacing each cycle with a bipartite 2-regular graph of the same order.

1 Introduction

For definitions of standard graph theoretic terminology used here see [48]. Given a 2-regular graph F of order n, the well-known *Oberwolfach Problem* asks for a factorisation of the complete graph K_n into copies of F if n is odd, or into copies of F and a 1-factor if n is even. More generally, given two 2-regular graphs F_1 and F_2 , each of order n, and two non-negative integers α_1 and α_2 satisfying

^{*}This research was supported under the Australian Research Council's Discovery Projects funding scheme (project numbers DP0770400, DP0662946), the first author is the recipient of an Australian Research Council QEII Fellowship.

 $\alpha_1 + \alpha_2 = \lfloor \frac{n-1}{2} \rfloor$, the Hamilton-Waterloo Problem asks for a factorisation of K_n into α_1 copies of F_1 and α_2 copies of F_2 if n is odd, or into α_1 copies of F_1 , α_2 copies of F_2 and a 1-factor if n is even.

For even *n*, the graph obtained from K_n by removing the edges of a 1-factor is denoted by $K_n - I$. The 2-regular graph consisting of (vertex-disjoint) cycles of lengths m_1, m_2, \ldots, m_t will be denoted by $[m_1, m_2, \ldots, m_t]$. We may also use $[m_1^{\alpha_1}, m_2^{\alpha_2}, \ldots, m_t^{\alpha_t}]$ to denote the 2-regular graph consisting of α_i cycles of length m_i $(i = 1, 2, \ldots, t)$. So, for example, the 2-regular graph order 14 consisting of two 4-cycles and a 6-cycle may be denoted by either [4, 4, 6] or $[4^2, 6]$.

The only 2-regular graphs for which the Oberwolfach problem is known to have no solution are $[3^2]$, $[3^4]$, [4,5] and $[3^2,5]$, and a solution exists for every other 2-regular graph of order at most 40 [18]. In [12], the Oberwolfach Problem is completely solved for infinitely many odd values of n and for infinitely many even values of n. For any 2-regular graph F with isomorphic connected components, except $F \cong [3^2]$ and $F \cong [3^4]$, the Oberwolfach Problem has a solution [4, 5, 29]. The Oberwolfach Problem is also known to have a solution whenever F is bipartite [10, 27]. There are numerous other results on the Oberwolfach Problem, dealing with various special families of 2-regular graphs, see [9, 13, 14, 25, 28, 31, 33, 40, 42, 43, 45, 47] and see [11] for a survey of results up to 2006. Various generalisations of the Oberwolfach Problem have also been considered, for example see [15, 21, 26, 37, 38, 41, 44].

If a 2-regular graph F_1 can be obtained from a 2-regular graph F_2 by replacing each cycle of F_2 with a 2-regular graph on the same vertex set, then F_1 is said to be a *refinement* of F_2 . For example, $[4, 8^3, 10^2, 12]$ is a refinement of [4, 16, 18, 22], but $[4, 18^2, 20]$ is not. Of course, every 2-regular graph of order n is a refinement of an n-cycle. In this paper we settle the Hamilton-Waterloo Problem in the case where the two given 2-regular graphs are bipartite and one is a refinement of the other, see Theorem 28. We obtain this result as a consequence of two more general results concerning factorisations of K_n into specified numbers of copies of given bipartite 2-regular graphs and a 1-factor, see Theorems 26 and 27.

For non-isomorphic 2-regular graphs F_1 and F_2 , both of order n, and non-negative integers α_1 and α_2 satisfying $\alpha_1 + \alpha_2 = \lfloor \frac{n-1}{2} \rfloor$, the problem of finding a factorisation of the complete graph K_n into α_1 copies of F_1 and α_2 copies of F_2 , or into α_1 copies of F_1 , α_2 copies of F_2 and a 1-factor, is denoted by $HW(F_1, F_2; \alpha_1, \alpha_2)$. If such a factorisation exists, then $HW(F_1, F_2; \alpha_1, \alpha_2)$ is said to have a solution. In addition to the four above-mentioned instances of the Oberwolfach Problem which have no solution, it is known that the following instances of the Hamilton-Waterloo Problem have no solution.

$$\begin{split} \mathrm{HW}([3,4],[7];2,1) \quad \mathrm{HW}([3,5],[4^2];2,1) \quad \mathrm{HW}([3,5],[4^2];1,2) \quad \mathrm{HW}([3^3],[4,5];2,2) \\ \\ \mathrm{HW}([3^3],F;3,1) \text{ for } F \in \{[4,5],[3,6],[9]\} \quad \text{and} \\ \\ \mathrm{HW}([3^5],F;6,1) \text{ for } F \in \{[3^2,4,5],[3,5,7],[5^3],[4^2,7],[7,8]\}. \end{split}$$

Every other instance of the Hamilton-Waterloo Problem has a solution when $n \leq 17$ and odd [1, 22, 23], and when $n \leq 10$ and even [1, 6].

The Hamilton-Waterloo Problem has also been partially solved in the case of bipartite 2-regular graphs [10, 27]. In [27] it is shown that for bipartite 2-regular graphs F_1 and F_2 of order $n \equiv 2 \pmod{4}$, HW($F_1, F_2; \alpha_1, \alpha_2$) has a solution whenever α_1 and α_2 are both even. In [10] it is shown that for bipartite 2-regular graphs F_1 and F_2 or order $n \equiv 0 \pmod{4}$, HW($F_1, F_2; \alpha_1, \alpha_2$) has a solution except possibly when $\alpha_1 = 1$ or when $\alpha_2 = 1$. Our result finishes off these two partial results on the problem, but with the added restriction that F_1 is a refinement of F_2 .

Apart from the above mentioned results, essentially all existing results on the Hamilton-Waterloo Problem concern special cases of the problem in which each 2-factor consists of isomorphic connected components. In [19, 20, 30], $HW([3^{\frac{n}{3}}], [n]; \alpha_1, \alpha_2)$ is shown to have a solution for all odd n except that $HW([3^3], [n]; 3, 1)$ has no solution, and the existence of a solution is undecided when $\alpha_2 = 1$ and n is any one of fourteen values in the range $93 \le n \le 249$. A partial solution to $HW([3^{\frac{n}{3}}], [n]; \alpha_1, \alpha_2)$ for n even is given in [36]. In [16], $HW([3^{\frac{n}{3}}], [4^{\frac{n}{4}}]; \alpha_1, \alpha_2)$ is completely solved except for several cases when n = 24 and n = 48. The Hamilton-Waterloo Problem $HW(F_1, F_2)$ has also been completely solved when

- $F_1 \cong [4, 4, \dots, 4]$ and $F_2 \cong [2t, 2t, \dots, 2t]$ for all $t \ge 3$ [24];
- $F_1 \cong [2t, 2t, \dots, 2t]$ and $F_2 \cong [4t, 4t, \dots, 4t]$ for all $t \ge 2$ [24];
- $F_1 \cong [4t, 4t, \dots, 4t]$ and $F_2 \cong [n]$ for all $t \ge 1$ and all $n \equiv 0 \pmod{4t}$ [35].

Other results on the Hamilton-Waterloo Problem can be found in [2, 13, 32, 34], and a survey of results up to 2006 can be found in [11].

2 Notation, definitions and existing results

We now introduce some notation, definitions, and existing results that we will be using.

Let Γ be a finite group and let S be a subset of Γ such that the identity $e \notin S$ and such that S is inverse-closed, that is S = -S. The *Cayley graph* on Γ with *connection set* S, denoted $\text{Cay}(\Gamma, S)$, has the elements of Γ as its vertices and there is an edge between vertices g and h if and only if g = h + s for some $s \in S$.

We need the following two results on Hamilton cycle decompositions of Cayley graphs. The first was proved by Bermond et al [7], and the second by the third author of the current paper [17]. Both results address the open question of whether every connected Cayley graph on a finite abelian group has a Hamilton cycle decomposition [3].

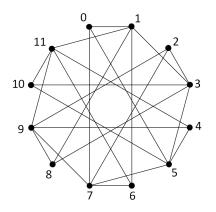
Theorem 1 ([7]) Every connected 4-regular Cayley graph on a finite abelian group has a Hamilton cycle decomposition.

Theorem 2 ([17]) Every 6-regular Cayley graph on a cyclic group which has a generator of the group in its connection set has a Hamilton cycle decomposition.

A Cayley graph on a cyclic group is called a *circulant graph* and we will be using these, and certain subgraphs of them, frequently. Thus, we introduce the following notation.

The length of an edge $\{x, y\}$ in a graph with vertex set \mathbb{Z}_m is defined to be either x - y or y - x, whichever is in $\{1, 2, \ldots, \lfloor \frac{m}{2} \rfloor\}$ (calculations in \mathbb{Z}_m). For even m and $s \in \{1, 2, \ldots, \frac{m}{2}\}$, we call $\{\{x, x+s\} : x = 0, 2, \ldots, m-2\}$ the even edges of length s and we call $\{\{x, x+s\} : x = 1, 3, \ldots, m-1\}$ the odd edges of length s. Note that half the edges of length s are even and half are odd, except when $m \equiv 2 \pmod{4}$ and $s = \frac{m}{2}$, and in this case each edge of length s is both even and odd.

For any $m \ge 2$ and any $S \subseteq \{1, 2, \ldots, \lfloor \frac{m}{2} \rfloor\}$, we denote by $\langle S \rangle_m$ the graph with vertex set \mathbb{Z}_m and edge set consisting of the edges of length s for each $s \in S$ (that is, $\langle S \rangle_m = \operatorname{Cay}(\mathbb{Z}_m, S \cup -S)$). For m even, if we wish to include only the even edges of length s then we give s the superscript "e". Similarly, if we wish to include only the odd edges of length s then we give s the superscript "o". For example, the graph $\langle \{1^e, 2^o, 5\} \rangle_{12}$ is shown below.



The graph $\langle \{1^{\rm e}, 2^{\rm o}, 5\} \rangle_{12}$

The wreath product $G \wr H$ of graphs G and H is the graph with vertex set $V(G) \times V(H)$ and edge set given by joining (g_1, h_1) to (g_2, h_2) precisely when g_1 is joined to g_2 in G or $g_1 = g_2$ and h_1 is joined to h_2 in H. For each even $m \ge 6$, we shall use G_{2m} to denote the graph $\langle \{1, 3^e\} \rangle_m \wr \langle \{1\} \rangle_2$, and use $G_{2m} - I$ to denote the graph $\langle \{1, 3^e\} \rangle_m \wr \langle \emptyset \rangle_2$. Thus, G_{2m} is 7-regular of order $2m \ge 12$, and $G_{2m} - I$ is 6-regular of order $2m \ge 12$.

We will be dealing frequently with the wreath product of a graph K and the empty graph with vertex set \mathbb{Z}_2 , so we introduce the following special notation for this graph. The graph K^{\Box} is defined by $V(K^{\Box}) = V(K) \times \mathbb{Z}_2$ and $E(K^{\Box}) = \{\{(x, a), (y, b)\} : \{x, y\} \in E(K), a, b \in \mathbb{Z}_2\}$. Thus, $G_{2m} - I = \langle\{1, 3^e\}\rangle_m^{\Box}$. If $\mathcal{F} = \{F_1, F_2, \ldots, F_t\}$ is a set of graphs then we define $\mathcal{F}^{\Box} = \{F_1^{\Box}, F_2^{\Box}, \ldots, F_t^{\Box}\}$. Observe that if \mathcal{F} is a factorisation of K, then \mathcal{F}^{\Box} is a factorisation of K^{\Box} .

We need the following four results. Lemma 3 is a very useful result proved by Häggkvist [27], Lemma 4 was proven independently in [8] and [46], Theorem 5 is a special case of the main result in [8], and Theorem 6 was proved in [10].

Lemma 3 ([27]) For each 2-regular bipartite graph F of order 2m, there is a 2-factorisation of C_m^{\Box} into two copies of F.

Lemma 4 ([8],[46]) For each $m \ge 5$ and every 2-regular graph F of order m, there is a factorisation of $\langle \{1,2\} \rangle_m$ into a Hamilton cycle and copy of F.

Theorem 5 ([8]) For each $m \ge 3$ and each 2-regular graph F of order m, there is a factorisation of K_m into $\frac{m-3}{2}$ Hamilton cycles and copy of F when m is odd, and there is a factorisation of K_m into $\frac{m-4}{2}$ Hamilton cycles, a copy of F, and a 1-factor when m is even.

Theorem 6 ([10]) If F_1, F_2, \ldots, F_t are bipartite 2-regular graphs of order n and $\alpha_1, \alpha_2, \ldots, \alpha_t$ are non-negative integers such that $\alpha_1 + \alpha_2 + \cdots + \alpha_t = \frac{n-2}{2}, \alpha_1 \ge 3$ is odd, and α_i is even for $i = 2, 3, \ldots, t$, then there exists a 2-factorisation of $K_n - I$ in which there are exactly α_i copies of F_i for $i = 1, 2, \ldots, t$.

In [10], the following complete solution to the Oberwolfach Problem for bipartite 2-regular graphs is established as an easy consequence of Häggkvist's result (Lemma 3) and Theorem 6.

Theorem 7 ([10, 27]) If F is a bipartite 2-regular graph of order n then there is a factorisation of K_n into $\frac{n-2}{2}$ 2-factors which are isomorphic to F and a 1-factor.

3 Preliminary results

Lemma 8 For each even $m \ge 6$ and each 2-regular graph F of order m, there is a factorisation of K_m into $\frac{m-6}{2}$ Hamilton cycles, a copy of F, and a copy of $\langle \{1, 3^e\} \rangle_m$; except that there is no such factorisation when m = 6 and F = [6] nor when m = 8 and F = [3, 5].

Proof For m = 6, $\langle \{1, 3^e\} \rangle_m$ is $K_{3,3}$ and the graph that remains when the edges of a copy of $K_{3,3}$ are removed from K_6 is [3,3]. This proves the result for m = 6. For m = 8, $\langle \{1, 3^e\} \rangle_m$ is the 3-cube and the graph that remains when a 3-cube is removed from K_8 consists of a pair of vertex-disjoint copies of K_4 joined by a perfect matching. It is straightforward to decompose this graph into two Hamilton cycles, or into a Hamilton cycle and a pair of vertex-disjoint 4-cycles. It is also easy to see that it does not contain the 2-factor [3, 5]. This proves the result for m = 8.

We now deal with the case m = 10. The permutation (0)(1573)(2684)(9) is an isomorphism from $\langle \{1, 3^e\} \rangle_{10}$ to $\langle \{1, 5\} \rangle_{10}$. Thus, it is sufficient to show that $\langle \{2, 3, 4\} \rangle_{10}$ can be factorised into two Hamilton cycles and a copy of F for each 2-regular graph F of order 10. There are five such graphs: [10], [3, 7], [4, 6], [5, 5] and [3, 3, 4]. For $F \cong [10]$ we can use Theorem 2. For the remaining four graphs we have the decompositions given below.

$F \cong [3, 3, 4]$	$F \cong [3,7]$	$F \cong [4, 6]$	$F \cong [5,5]$
$(0,3,6) \cup (2,5,9) \cup (1,7,4,8)$	$(0,3,6) \cup (2,8,4,7,1,5,9)$	$(0,3,9,6) \cup (1,5,2,8,4,7)$	$(0,2,4,6,8) \cup (1,3,5,7,9)$
$(0,\!2,\!4,\!6,\!8,\!5,\!3,\!1,\!9,\!7)$	(0,7,9,1,3,5,2,4,6,8)	(0,7,5,3,1,9,2,4,6,8)	(0, 3, 9, 5, 1, 7, 4, 8, 2, 6)
(0,4,1,5,7,3,9,6,2,8)	(0, 2, 6, 9, 3, 7, 5, 8, 1, 4)	(0, 2, 6, 3, 7, 9, 5, 8, 1, 4)	(0,4,1,8,5,2,9,6,3,7)

We now deal with $m \ge 12$. By Lemma 4, the result follows if there is a factorisation of K_m into $\frac{m-8}{2}$ Hamilton cycles, a copy of $\langle \{1,2\} \rangle_m$, and a copy of $\langle \{1,3^e\} \rangle_m$. We now show that such a factorisation exists, by dealing separately with the cases $m \equiv 0 \pmod{4}$ $(m \ge 12)$ and $m \equiv 2 \pmod{4}$ $(m \ge 14)$.

For $m \equiv 2 \pmod{4}$ observe that the mapping

is an isomorphism from $\langle \{1, 3^e\} \rangle_m$ to $\langle \{1, \frac{m}{2}\} \rangle_m$, and that $\langle \{1, 2\} \rangle_m$ is isomorphic to $\langle 4, \frac{m}{2} - 2 \rangle_m$. So in the case $m \equiv 2 \pmod{4}$ it is sufficient to show that $\langle \{1, 2, \ldots, \frac{m}{2}\} \setminus \{1, 4, \frac{m}{2} - 2, \frac{m}{2}\} \rangle_m$ has a decomposition into Hamilton cycles. This is straightforward as $\{\langle \{2, 3\} \rangle_m, \langle \{5, 6\} \rangle_m, \langle \{7, 8\} \rangle_m, \ldots, \langle \{\frac{m}{2} - 6, \frac{m}{2} - 5\} \rangle_m, \langle \{\frac{m}{2} - 4, \frac{m}{2} - 3, \frac{m}{2} - 1\} \rangle_m \}$ is a factorisation of $\langle \{1, 2, \ldots, \frac{m}{2}\} \setminus \{1, 4, \frac{m}{2} - 2, \frac{m}{2}\} \rangle_m$ in which each 4-factor has a Hamilton cycle decomposition by Theorem 1, and the 6-factor has a Hamilton cycle decomposition by Theorem 2 (since $\gcd(\frac{m}{2} - 4, m) = 1$ when $m \equiv 2 \pmod{4}$).

We now deal with the case $m \equiv 0 \pmod{4}$. First observe that for $m \equiv 0 \pmod{4}$, $\langle \{1, 2\} \rangle_m$ is isomorphic to $\langle \{2, \frac{m}{2} - 1\} \rangle_m$, and that $\{\langle \{4, 5\} \rangle_m, \langle \{6, 7\} \rangle_m, \dots, \langle \{\frac{m}{2} - 4, \frac{m}{2} - 3\} \rangle_m\}$ is a 4-factorisation of $\langle \{4, 5, \dots, \frac{m}{2} - 3\} \rangle_m$ in which each 4-factor has a Hamilton cycle decomposition by Theorem 1. Thus it is sufficient to show that $\langle \{3^{\circ}, \frac{m}{2} - 2, \frac{m}{2}\} \rangle_m$ has a Hamilton cycle decomposition. But it is easy to see that $\langle \{3^{\circ}, \frac{m}{2} - 2, \frac{m}{2}\} \rangle_m \cong$ $\operatorname{Cay}(\mathbb{Z}_{\frac{m}{2}} \times \mathbb{Z}_2, \{(\frac{m}{4} - 1, 0), (\frac{m}{4}, 0), (0, 1)\})$ and so the result follows by Theorem 1.

Lemma 9 If $m \ge 3$ is odd and F is any 2-regular graph of order m, then there is a factorisation of K_{2m} into $\frac{m-3}{2}$ copies of C_m^{\Box} and a copy of $F \wr K_2$.

Proof Let \mathcal{F} be a factorisation of K_m into $\frac{m-3}{2}$ copies of C_m and a copy of F, which exists by Theorem 5. Then \mathcal{F}^{\square} is a factorisation of $K_{2m} - I$ into $\frac{m-3}{2}$ copies of C_m^{\square} and a copy of F^{\square} . If we add the edges of the removed 1-factor to the copy of F^{\square} , then we obtain $F \wr K_2$ and hence the required factorisation of K_{2m} . \square

Lemma 10 If $m \ge 6$ is even and $F \notin \{[6], [3, 5]\}$ is a 2-regular graph of order m, then there is a factorisation of K_{2m} into $\frac{m-6}{2}$ copies of C_m^{\square} , a copy of $F \wr K_2$, and copy of $G_{2m} - I$, and there is a factorisation of K_{2m} into $\frac{m-6}{2}$ copies of C_m^{\square} , a copy of F^{\square} , and copy of G_{2m} .

Proof Let \mathcal{F} be a factorisation of K_m into $\frac{m-6}{2}$ Hamilton cycles, a copy of F, and a copy of $\langle \{1, 3^e\} \rangle_m$, which exists by Lemma 8 (since $F \notin \{[6], [3, 5]\}$). Then \mathcal{F}^{\square} is a factorisation of $K_{2m} - I$ into $\frac{m-6}{2}$ copies of C_m^{\square} , a copy of F^{\square} , and copy of $G_{2m} - I$. We obtain the first required factorisation of K_{2m} by adding

the edges of the removed 1-factor to the copy of F^{\Box} , and the second by adding the edges of the removed 1-factor to the copy of $G_{2m} - I$.

Lemma 11 If $m \ge 3$ and F is any bipartite 2-regular graph of order 2m, then there exists a factorisation of $C_m \wr K_2$ into a copy of F, a Hamilton cycle, and a 1-factor.

Proof Define three graphs F_1 , F_2 and F_3 , each with vertex set $\mathbb{Z}_m \times \mathbb{Z}_2$, by

- $E(F_1) = \{\{(x,i), (x+1,i)\} : x \in \mathbb{Z}_m, i \in \mathbb{Z}_2\};$
- $E(F_2) = \{\{(x,i), (x+1,i+1)\} : x \in \mathbb{Z}_m, i \in \mathbb{Z}_2\}; \text{ and }$
- $E(F_3) = \{\{(x,0), (x,1)\}\} : x \in \mathbb{Z}_m\}.$

It is clear that $\{F_1, F_2, F_3\}$ is a factorisation of $C_m \wr K_2$ in which F_1 and F_2 are 2-factors and F_3 is a 1-factor. We obtain the required factorisation by making alterations to this factorisation. If $F = [2m_1, 2m_2, \dots, 2m_t]$, then define S_1 and S_2 by

$$S_1 = \{ \{(m_1 + m_2 + \ldots + m_i, 0), (m_1 + m_2 + \ldots + m_i + 1, 0)\}, \\ \{(m_1 + m_2 + \ldots + m_i - 1, 1), (m_1 + m_2 + \ldots + m_i, 1)\} : i = 1, 2, \ldots, t\}$$

and

$$S_2 = \{ \{(m_1 + m_2 + \ldots + m_i - 1, 1), (m_1 + m_2 + \ldots + m_i, 0)\}, \\ \{(m_1 + m_2 + \ldots + m_i, 1), (m_1 + m_2 + \ldots + m_i + 1, 0)\} : i = 1, 2, \ldots, t\}$$

Define new 2-factors F'_1 and F'_2 by $E(F'_1) = (E(F_1) \setminus S_1) \cup S_2$ and $E(F'_2) = (E(F_2) \setminus S_2) \cup S_1$. Then $\{F'_1, F'_2\}$ is a 2-factorisation of C_m^{\Box} in which each of F'_1 and F'_2 is isomorphic to F (this is the construction used in [27] to prove Lemma 3). If we let $\{I_1, I_2\}$ be any 1-factorisation of F'_1 , then $\{I_1 \cup F_3, F'_2, I_2\}$ is the required factorisation of $C_m \wr K_2$ with $I_1 \cup F_3$ being a Hamilton cycle, F'_2 being a 2-factor isomorphic to F, and I_2 being a 1-factor.

Lemma 12 Let F_2 be any bipartite 2-regular graph of order $2m \ge 6$, say $F_2 \cong [4^r, 2m_1, 2m_2, \ldots, 2m_t]$ with $3 \le m_1 \le m_2 \le \cdots \le m_t$. If F_1 is any bipartite refinement of F_2 , and F is the 2-regular graph of order m given by

- $F \cong [2r]$ if F_2 consists entirely of 4-cycles;
- $F \cong [2r + m_1, m_2, \dots, m_t]$ otherwise,

then there is a factorisation of $F \wr K_2$ consisting of a 1-factor, a 2-factor isomorphic to F_1 and a 2-factor isomorphic to F_2 .

Proof If F_2 consists of 4-cycles only, then so does F_1 and the result follows immediately by applying Lemma 3 with $F \cong C_{2r}$. Thus, we can assume $F_2 \cong [4^r, 2m_1, 2m_2, \ldots, 2m_t]$ where $t \ge 1, r \ge 0, m_i \ge 3$ for $i = 1, 2, \ldots, t$ and $2r + m_1 + m_2 + \cdots + m_t = m$. Let $F \cong [2r + m_1, m_2, \ldots, m_t]$ so that $F \wr K_2$ consists of t components: $[2r + m_1] \wr K_2$ and $[m_i] \wr K_2$ for $i = 2, 3, \ldots, t$.

Now, F_1 consists of t vertex-disjoint 2-regular graphs G_1, G_2, \ldots, G_t where G_1 is a bipartite refinement of $[4^r, 2m_1]$ and G_i is a refinement of $[2m_i]$ for $i = 2, 3, \ldots, t$. By Lemma 11, there is a factorisation of $[m_i] \wr K_2$ consisting of a 1-factor, a $2m_i$ -cycle, and a 2-factor isomorphic to G_i for $i = 2, 3, \ldots, t$. Thus, the result follows if there is a factorisation of $[2r + m_1] \wr K_2$ into a 1-factor, a 2-factor isomorphic to $[4^r, 2m_1]$, and a 2-factor isomorphic to G_1 . We now show that such a factorisation exists.

Let $s = 2r + m_1$ and let $K \cong [s] \wr K_2$ be the graph with vertex set $\mathbb{Z}_s \times \mathbb{Z}_2$ and edge set

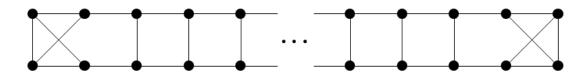
$$\{ \{(x,0),(x,1)\} : x \in \mathbb{Z}_s \} \cup \{ \{(x,i),(x+1,j)\} : x \in \mathbb{Z}_s, i \in \mathbb{Z}_2, j \in \mathbb{Z}_2 \}.$$

Let $H \cong [4^r, 2m_1]$ be the 2-factor of K consisting of the 4-cycle ((x, 0), (x + 1, 0), (x, 1), (x + 1, 1)) for $x = 1, 3, \ldots, 2r - 1$ and the $2m_1$ -cycle with edge set

$$\{ \{(0,0), (0,1)\}, \{(2r+1,0), (2r+1,1)\} \} \cup$$

$$\{ \{(x,0), (x+1,1)\} \{(x,1), (x+1,0)\} : x = 2r+1, 2r+2, \dots, 2r+m_1-1 \}.$$

Let G be the graph obtained from K by removing the edges of H. Then G is a 3-regular graph consisting of r-1 copies of K_4 and one copy of the graph of order $2m_1 + 4$ shown below.



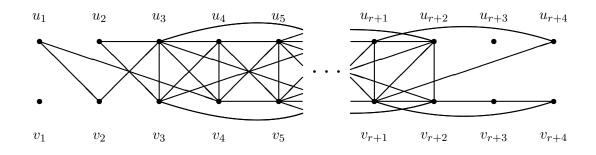
It is easy to see that this graph contains every bipartite 2-regular graph of order $2m_1 + 4$ and it follows that there is a factorisation of G into a 1-factor I and a 2-regular graph H' that is isomorphic to G_1 . Thus, $\{H, H', I\}$ is the required factorisation of $K \cong [s] \wr K_2$.

4 Factorisations of $G_n - I$

The purpose of this section is to prove Lemma 16 below, which gives factorisations of $G_n - I$ into three copies of almost any bipartite 2-regular graph of order n. To achieve this we introduce classes of subgraphs

of G_n . For each even r we define J_{2r} (see the figure below) to be the graph with vertex set $V(J_{2r}) = \{u_1, u_2, \dots, u_{r+4}\} \cup \{v_1, v_2, \dots, v_{r+4}\}$ and edge set

$$\begin{split} E(J_{2r}) &= \{\{u_i, v_i\} : i = 3, 4, \dots, r+2\} \cup \\ \{\{u_{i+1}, u_{i+2}\}, \{v_{i+3}, v_{i+4}\}, \{u_i, v_{i+1}\}, \{v_{i+1}, u_{i+2}\} : i = 1, 2, \dots, r\} \cup \\ \{\{u_{i+2}, u_{i+5}\}, \{v_{i+2}, v_{i+5}\}, \{u_i, v_{i+3}\}, \{v_{i+2}, u_{i+5}\} : i = 1, 3, 5, \dots, r-1\}. \end{split}$$



We define $J_{2r} - I$ to be the graph obtained from J_{2r} by removing the edges $\{\{u_i, v_i\} : i = 3, 4, ..., r+2\}$. Notice that for $r \ge 6$, if we take the graph J_{2r} or $J_{2r} - I$ and identify u_i with u_{r+i} and v_i with v_{r+i} for each $i \in \{1, 2, 3, 4\}$, then the resulting graph is isomorphic to G_{2r} or $G_{2r} - I$ respectively.

Let F be a 2-regular graph of order 2r. We write $J_{2r} - I \mapsto F$ if there is a decomposition $\{F_1, F_2, F_3\}$ of $J_{2r} - I$ such that $F_1 \cong F_2 \cong F_3 \cong F$ and the following conditions (1), (2) and (3) hold.

- (1) $V(F_1) = \{u_5, u_6, \dots, u_{r+1}\} \cup \{u_2, u_3, u_{r+4}\} \cup \{v_3, v_4, \dots, v_{r+2}\}.$
- (2) $V(F_2) = \{u_3, u_4, \dots, u_r\} \cup \{u_1, u_{r+2}\} \cup \{v_2, v_3, \dots, v_{r+1}\}.$
- (3) $V(F_3) = \{u_3, u_4, \dots, u_{r+2}\} \cup \{v_5, v_6, \dots, v_{r+4}\}.$

It is easy to see that the next result follows immediately from the discussion in the preceding two paragraphs, as conditions (1)-(3) ensure that the subgraphs F_1 , F_2 and F_3 become 2-factors upon the above-described identification of vertices of $J_{2r} - I$ to form $G_{2r} - I$.

Lemma 13 If $J_{|V(F)|} - I \mapsto F$, then $G_{|V(F)|} - I$ factorises into three copies of F.

For each integer $k \ge 0$ define the mapping ϕ_k on $\{u_1, u_2, \ldots\} \cup \{v_1, v_2, \ldots\}$ by

$$\phi_k(u_i) = u_{i+k}$$
 and $\phi_k(v_i) = v_{i+k}$

and for any subgraph H of J_{2r} define $\phi_k(H)$ to be the graph with vertex set $\{\phi_k(x) : x \in V(H)\}$ and edge set $\{\phi_k(\{x,y\}) : \{x,y\} \in E(H)\}$. Thus, $J_{2r+2s} = J_{2r} \cup \phi_r(J_{2s})$. Moreover, if F is the union of vertex disjoint 2-regular graphs F' and F'', $\{F'_1, F'_2, F'_3\}$ is a decomposition $J_{2r} - I \mapsto F'$ and $\{F''_1, F''_2, F''_3\}$ is a decomposition $J_{2r} - I \mapsto F''$ (where F'_i and F''_i satisfy condition (i) above for i = 1, 2, 3), then it is clear that $\{F'_1 \cup \phi_r(F''_1), F'_2 \cup \phi_r(F''_2), F'_3 \cup \phi_r(F''_3)\}$ is a decomposition $J_{2r+2s} - I \mapsto F$. Hence we have the following result.

Lemma 14 If F is the union of vertex disjoint 2-regular graphs F' and F'', $J_{|V(F')|} - I \mapsto F'$, and $J_{|V(F'')|} - I \mapsto F'$, then $J_{|V(F)|} - I \mapsto F$.

Lemma 15 For each graph F in the following list we have $J_{|V(F)|} - I \mapsto F$.

- (i) [k] for each $k \in \{8, 12, 16, \ldots\}$
- (ii) [k, k'] for each $k \in \{6, 10, 14, \ldots\}$ and each $k' \in \{10, 14, \ldots\}$
- (iii) [4, k] for each $k \in \{4, 8, 12, \ldots\}$
- (iv) [4, k, k'] for each $k \in \{6, 10, 14, \ldots\}$ and each $k' \in \{10, 14, \ldots\}$
- (v) [4, 4, 4]
- (vi) [6, 6, k] for each $k \in \{8, 12, 16, \ldots\}$
- (vii) [6, 6, k, k'] for each $k \in \{6, 10, 14, \ldots\}$ and each $k' \in \{6, 10, \ldots\}$
- (viii) [4, 6, 6, k] for each $k \in \{4, 8, 12, \ldots\}$
- (ix) [4, 6, 6, k, k'] for each $k \in \{6, 10, 14, \ldots\}$ and each $k' \in \{6, 10, \ldots\}$
- (x) [4, 4, 4, 6, 6]

Proof We introduce the twelve graph decompositions shown in Figure 1 which we call *pieces*. Each piece has three subgraphs indexed by the subscripts 1, 2 and 3. In each piece the subgraph indexed by subscript 1 is shown with thin solid lines, the subgraph indexed by subscript 2 is shown with dotted lines, and the subgraph indexed by subscript 3 is shown with thick solid lines.

If $\mathcal{X} = \{X_1, X_2, X_3\}$ and $\mathcal{Y} = \{Y_1, Y_2, Y_3\}$ are two pieces, we define the *concatenation* of piece \mathcal{X} with piece \mathcal{Y} , denoted by $\mathcal{X} \oplus \mathcal{Y}$, to be the decomposition $\{X_1 \cup Y_1, X_2 \cup Y_2, X_3 \cup Y_3\}$ of the graph obtained by identifying each of the four right-most vertices, say $u_{z-1}, v_{z-1}, u_z, v_z$ of \mathcal{X} , with the corresponding left-most vertex, say u_1, v_1, u_2, v_2 respectively, of \mathcal{Y} . For example, Figure 2 shows the concatenation $\mathcal{L}_1 \oplus \mathcal{C}_1 \oplus \mathcal{R}_1$. Notice that this particular concatenation is a decomposition $J_{16} - I \mapsto [16]$. Generally speaking, a left piece

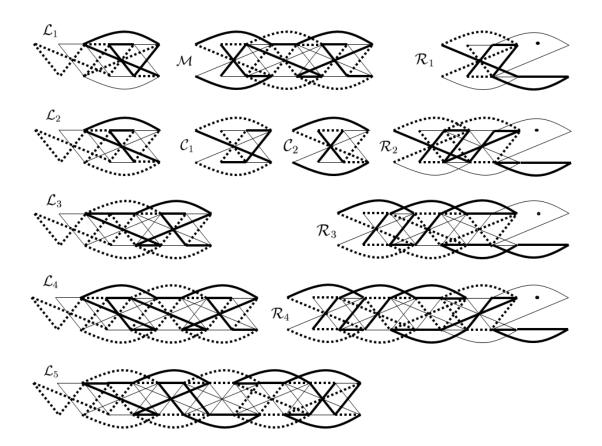


Figure 1: Twelve pieces

 (\mathcal{L}_i) , perhaps some middle pieces $(\mathcal{C}_1, \mathcal{C}_2 \text{ or } \mathcal{M})$, and then a right piece (\mathcal{R}_j) will be concatenated to yield a decomposition $J_{V(F)} - I \mapsto F$ for each required 2-regular graph F. We are now ready to construct each of the decompositions $J_{|V(F)|} - I \mapsto F$ listed in (i)-(x) as required to prove the lemma.

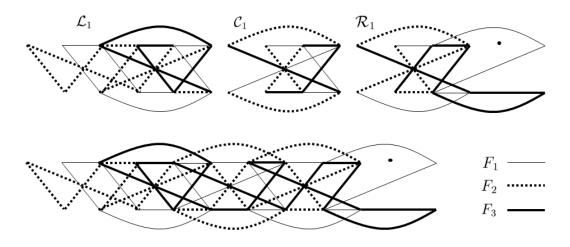


Figure 2: The concatenation $\mathcal{L}_1 \oplus \mathcal{C}_1 \oplus \mathcal{R}_1$ yields $J_{16} - I \mapsto [16]$

(i) The small case $J_8 - I \mapsto [8]$ is shown in Figure 3. For $k \ge 12$, the concatenation $\mathcal{L}_1 \oplus \mathcal{C}_1 \oplus \ldots \oplus \mathcal{C}_1 \oplus \mathcal{R}_1$ with $\frac{k-12}{4}$ occurrences of \mathcal{C}_1 gives a decomposition. The case k = 16 is shown in Figure 2.

(ii) If k = 6, then a decomposition is given by $\mathcal{L}_3 \oplus \mathcal{C}_1 \oplus \ldots \oplus \mathcal{C}_1 \oplus \mathcal{R}_1$ with $\frac{k'-10}{4}$ occurrences of \mathcal{C}_1 . If k = 10, a decomposition is given by $\mathcal{L}_4 \oplus \mathcal{C}_1 \oplus \ldots \oplus \mathcal{C}_1 \oplus \mathcal{R}_1$ with $\frac{k'-10}{4}$ occurrences of \mathcal{C}_1 . For $k \ge 14$, a decomposition is given by $\mathcal{L}_2 \oplus \mathcal{C}_2 \oplus \ldots \oplus \mathcal{C}_2 \oplus \mathcal{M} \oplus \mathcal{C}_1 \oplus \ldots \oplus \mathcal{C}_1 \oplus \mathcal{R}_1$ with $\frac{k-14}{4}$ occurrences of \mathcal{C}_2 and $\frac{k'-10}{4}$ occurrences of \mathcal{C}_1 .

(iii) Decompositions $J_8 \mapsto [4, 4]$ and $J_{12} \mapsto [4, 8]$ are given in Figure 3. For $k \ge 12$, the concatenation $\mathcal{L}_1 \oplus \mathcal{C}_1 \oplus \ldots \oplus \mathcal{C}_1 \oplus \mathcal{R}_2$ with $\frac{k-12}{4}$ occurrences of \mathcal{C}_1 gives the result.

(iv) A decomposition $J_{4+k+k'} - I \mapsto [4, k, k']$ is found by the same method as for $J_{k+k'} - I \mapsto [k, k']$ in case (ii) above, except that the piece \mathcal{R}_2 is required instead of \mathcal{R}_1 .

(v) A decomposition $J_{12} - I \mapsto [4, 4, 4]$ is given in Figure 3.

(vi) A decomposition $J_{20} - I \mapsto [6, 6, 8]$ is given in Figure 3. For $k \ge 12$, the concatenation $\mathcal{L}_3 \oplus \mathcal{C}_1 \oplus \ldots \oplus \mathcal{C}_1 \oplus \mathcal{R}_3$ with $\frac{k-12}{4}$ occurrences of \mathcal{C}_1 gives the decomposition.

(vii) A decomposition $J_{24} - I \mapsto [6, 6, 6, 6]$ is given in Figure 3. For k = 6 and $k' \ge 10$, the concatenation $\mathcal{L}_5 \oplus \mathcal{C}_1 \oplus \ldots \oplus \mathcal{C}_1 \oplus \mathcal{R}_1$ with $\frac{k'-10}{4}$ occurrences of \mathcal{C}_1 gives a decomposition. Similarly, for k' = 6 and $k \ge 10$, the concatenation $\mathcal{L}_5 \oplus \mathcal{C}_1 \oplus \ldots \oplus \mathcal{C}_1 \oplus \mathcal{R}_1$ with $\frac{k-10}{4}$ occurrences of \mathcal{C}_1 suffices. If $k \ge 10$ and $k' \ge 10$, then we can write [6, 6, k, k'] as the vertex disjoint union of [6, k] and [6, k'] and use (ii) and Lemma 14 to obtain

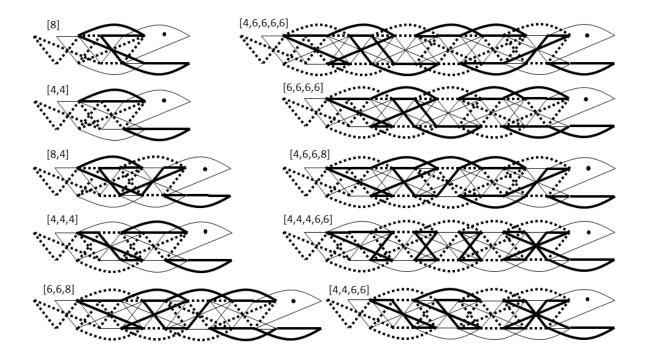


Figure 3: $J_{2r} - I \mapsto F$ for some small F

a required decomposition.

(viii) Decompositions $J_{20} - I \mapsto [4, 6, 6, 4]$ and $J_{24} - I \mapsto [4, 6, 6, 8]$ are given in Figure 3. For $k \ge 12$, the concatenation $\mathcal{L}_3 \oplus \mathcal{C}_1 \oplus \ldots \oplus \mathcal{C}_1 \oplus \mathcal{R}_4$ with $\frac{k-12}{4}$ occurrences of \mathcal{C}_1 gives a required decomposition. (ix) A decomposition $J_{28} - I \mapsto [4, 6, 6, 6, 6]$ is given in Figure 3. For k = 6 and $k' \ge 10$, the concatenation $\mathcal{L}_5 \oplus \mathcal{C}_1 \oplus \ldots \oplus \mathcal{C}_1 \oplus \mathcal{R}_2$ with $\frac{k'-10}{4}$ occurrences of \mathcal{C}_1 suffices. Similarly, for k' = 6 and $k \ge 10$, the concatenation $\mathcal{L}_5 \oplus \mathcal{C}_1 \oplus \ldots \oplus \mathcal{C}_1 \oplus \mathcal{R}_2$ with $\frac{k-10}{4}$ occurrences of \mathcal{C}_1 gives a decomposition. If $k \ge 10$ and $k' \ge 10$, then we can write [4, 6, 6, k, k'] as the vertex disjoint union of [4, 6, k] and [6, k'] and use (ii), (iv) and Lemma 14 to obtain a required decomposition.

(x) A decomposition $J_{24} - I \mapsto [4, 4, 4, 6, 6]$ is given in Figure 3.

We are now ready to prove the main result of this section.

Lemma 16 Let $n \equiv 0 \pmod{4}$ with $n \geq 12$. For each bipartite 2-regular graph F of order n, there is a factorisation of $G_n - I$ into three copies of F; except possibly when $F \in \{[6^r], [4, 6^r] : r \equiv 2 \pmod{4}\}$.

Proof Let F be a 2-regular graph of order 2m such that F is neither $[6^r]$ with $r \equiv 2 \pmod{4}$ nor $[4, 6^r]$ with $r \equiv 2 \pmod{4}$. We will show that F can be written as the vertex-disjoint union of 2-regular subgraphs H_1, H_2, \ldots, H_w where each H_i is covered by Lemma 15. The result then follows by application of Lemmas

13 and 14. Note that since m is even, $|V(F)| \equiv 0 \pmod{4}$ and so the number of cycles in F of length congruent to $2 \pmod{4}$ is also even, we will use this fact often in the remainder of the proof.

If F is any graph satisfying the conditions of the Lemma and containing at least four 6-cycles, then either $F \cong [6, 6, 6, 6], F \cong [4, 6, 6, 6, 6]$, or the graph obtained from F by removing four 6-cycles satisfies the conditions of the Lemma. Thus, since [6, 6, 6, 6] and [4, 6, 6, 6, 6] are covered by Lemma 15, we can assume that F contains at most three 6-cycles.

If F contains at most one 6-cycle, then it is clear that F can be written as a union of copies of graphs covered by (i)-(v) of Lemma 15. Noting that (vi)-(x) of Lemma 15 cover $[6, 6] \cup H$ for each H that is covered by (i)-(v) of Lemma 15, it is clear that we can deal similarly with the case where F contains either two or three 6-cycles. Note that $F \cong [6, 6]$ and $F \cong [4, 6, 6]$ are excluded by the conditions of the Lemma.

5 Factorisations of G_n

The purpose of this section is to prove Lemma 20 below, which gives factorisations of G_n into two copies of F', a copy of F, and a 1-factor, for each 2-regular graph F that has a refinement $F' \in \{[4, 6^r], [6^r] : r \equiv 2 \pmod{4}\}$. The need for these factorisations arises because of the listed possible exceptions in Lemma 16.

Let F be a bipartite 2-regular graph of order $2r \equiv 0$ or $4 \pmod{6}$ such that $[6^{\frac{2r}{6}}]$ is a refinement of Fwhen $2r \equiv 0 \pmod{6}$ and such that $[4, 6^{\frac{2r}{6}}]$ is a refinement of F when $2r \equiv 4 \pmod{6}$. We write $J_{2r} \searrow F$ if there is a decomposition $\{F_1, F_2, F_3, F_4\}$ of J_{2r} such that $F_3 \cong F$ and

- (1) $V(F_1) = \{u_5, u_6, \dots, u_{r+1}\} \cup \{u_2, u_3, u_{r+4}\} \cup \{v_3, v_4, \dots, v_{r+2}\}$
- (2) $V(F_2) = \{u_3, u_4, \dots, u_r\} \cup \{u_1, u_{r+2}\} \cup \{v_2, v_3, \dots, v_{r+1}\}$
- (3) $V(F_3) = \{u_3, u_4, \dots, u_{r+2}\} \cup \{v_5, v_6, \dots, v_{r+4}\}$
- (4) $F_1 \cong F_2 \cong [6^{\frac{2r}{6}}]$ if $2r \equiv 0 \pmod{6}$
- (5) $F_1 \cong F_2 \cong [4, 6^{\frac{2r}{6}}]$ if $2r \equiv 4 \pmod{6}$
- (6) F_4 is 1-regular with vertex set $\{u_3, u_4, \dots, u_{r+2}\} \cup \{v_3, v_4, \dots, v_{r+2}\}$

Note that conditions (1), (2) and (3) in the definition of $J_{2r} \searrow F$ are the same as conditions (1), (2) and (3) in the definition of $J_{2r} - I \mapsto F$. It is clear that we also have the following two results which are analogues of Lemmas 13 and 14.

Lemma 17 If $J_{|V(F)|} \searrow F$, then $G_{|V(F)|}$ factorises into two copies of H, one copy of F, and a 1-factor where $H \cong [6^{\frac{|V(F)|}{6}}]$ if $|V(F)| \equiv 0 \pmod{6}$ and $H \cong [4, 6^{\frac{|V(F)-4|}{6}}]$ if $|V(F)| \equiv 4 \pmod{6}$.

Lemma 18 If F is the union of vertex disjoint 2-regular graphs F' and F'' where at most one of F' and F'' has order congruent to $4 \pmod{6}$, $J_{|V(F')|} \searrow F'$, and $J_{|V(F'')|} \searrow F''$, then $J_{|V(F)|} \searrow F$.

Lemma 19 For each graph F in the following list, $J_{|V(F)|} \searrow F$.

- (i) [12k] for each $k \ge 1$
- (*ii*) [12j + 6, 12k + 6] for each $j \ge 0$ and each $k \ge 1$
- (*iii*) [6, 6, 12k] for each $k \ge 1$
- (iv) [6, 6, 12j + 6, 12k + 6] for each $j \ge 0$ and each $k \ge 0$
- (v) [4, 12k] for each $k \ge 1$
- (vi) [4, 12j + 6, 12k + 6] for each $j \ge 0$ and each $k \ge 0$
- (vii) [12k+4] for each $k \ge 1$
- (viii) [12j + 10, 12k + 6] for each $j \ge 0$ and each $k \ge 0$
- (ix) [6, 6, 12k + 4] for each $k \ge 0$
- (x) [6, 6, 12j + 6, 12k + 10] for each $j \ge 0$ and for each $k \ge 0$

Proof Suppose $\mathcal{F} = \{F_1, F_2, F_3, F_4\}$ is a decomposition $J_{2r} \searrow F$ for some F with the property that for some x, the edges $\{u_x, u_{x+1}\}$ and $\{v_x, v_{x+1}\}$ are in F_3 and the edges $\{u_x, v_x\}$ and $\{u_{x+1}, v_{x+1}\}$ are in F_4 . If we define F'_3 to be the graph obtained from F_3 by replacing the edges $\{u_x, u_{x+1}\}$ and $\{v_x, v_{x+1}\}$ with $\{u_x, v_x\}$ and $\{u_{x+1}, v_{x+1}\}$, and define F'_4 to be the graph obtained from F_4 by replacing the edges $\{u_x, v_x\}$ and $\{u_{x+1}, v_{x+1}\}$ with $\{u_x, u_{x+1}\}$ and $\{v_x, v_{x+1}\}$, then $\{F_1, F_2, F'_3, F'_4\}$ is a decomposition $J_{2r} \searrow F'$ (where $F' \cong F'_3$). We shall call this process *performing a 4-edge swap at* u_x , and denote the new decomposition by $\mathcal{F}(u_x)$.

We shall be performing 4-edge swaps at u_x when the edges $\{u_x, u_{x+1}\}$ and $\{v_x, v_{x+1}\}$ are in distinct cycles of F_3 . Thus, when we obtain a new decomposition $J_{2r} \searrow F'$ from $J_{2r} \searrow F$ by performing a 4-edge swap, F' will be isomorphic to a graph obtained from F by replacing an *a*-cycle and a *b*-cycle with a single (a + b)-cycle.

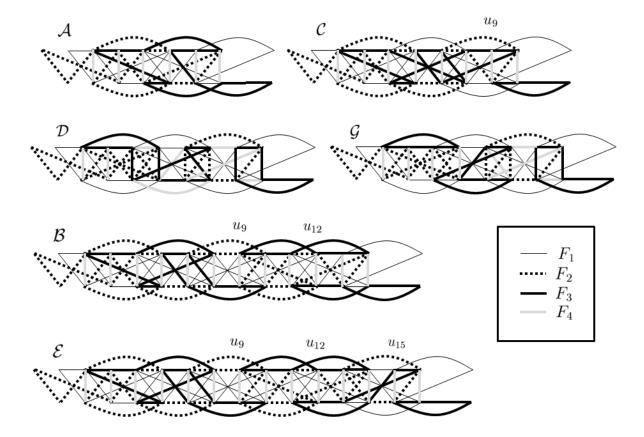


Figure 4: Some small decompositions $J_{2r} \searrow F$

Decompositions $J_{12} \searrow [12]$, $J_{24} \searrow [6,6,6,6]$, $J_{16} \searrow [12,4]$, $J_{16} \searrow [10,6]$, $J_{28} \searrow [6,6,6,6,4]$, and $J_{16} \searrow [4,6,6]$ are given by $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}$ and \mathcal{G} respectively in Figure 4.

Moreover, it is straightforward to check that

Suppose \mathcal{F}' and \mathcal{F}'' are any two of the above thirteen decompositions, that \mathcal{F}' is a decomposition $J_{2r} \searrow F'$, that \mathcal{F}'' is a decomposition $J_{2s} \searrow F''$, and that \mathcal{F} is the decomposition given by applying Lemma 18 to \mathcal{F}' and \mathcal{F}'' . We can then perform a 4-edge swap at u_{r+3} in \mathcal{F} to obtain the new decomposition $\mathcal{F}(u_{r+3})$. We denote any such new decomposition obtained in this manner by $\mathcal{F}' * \mathcal{F}''$. We are now ready to construct the decompositions needed to prove the lemma.

(i) A decomposition $J_{12k} \searrow [12k]$ for $k \ge 1$ is given by $\mathcal{A} * \mathcal{A} * \ldots * \mathcal{A}$ with k occurrences of \mathcal{A} .

(ii) A decomposition $J_{12j+12k+12} \searrow [12j+6, 12k+6]$ for $j \ge 0$ and $k \ge 1$ is given by $\mathcal{A} * \ldots * \mathcal{A} * \mathcal{B}(u_9, u_{12}) * \mathcal{A} * \ldots * \mathcal{A}$ with j occurrences of \mathcal{A} to the left of $\mathcal{B}(u_9, u_{12})$ and k-1 occurrences of \mathcal{A} to the right.

(iii) A decomposition $J_{12k+12} \searrow [6, 6, 12k]$ for $k \ge 1$ is given by $\mathcal{B}(u_{12}) * \mathcal{A} * \ldots * \mathcal{A}$ with k-1 occurrences of \mathcal{A} .

(iv) For all $j \ge 0$, a decomposition $J_{12j+24} \searrow [6, 6, 12j+6, 6]$ is given by $\mathcal{B} * \mathcal{A} * \ldots * \mathcal{A}$ with j occurrences of \mathcal{A} . Thus, we may assume $j, k \ge 1$. In this case, we can write [6, 6, 12j+6, 12k+6] as the vertex-disjoint union of [6, 12j+6] and [6, 12k+6] and use (ii) and Lemma 18 to obtain the required decomposition.

(v) A decomposition $J_{12k+4} \searrow [4, 12k]$ for $k \ge 1$ is given by $\mathcal{A} * \ldots * \mathcal{A} * \mathcal{C}$ with k-1 occurrences of \mathcal{A} .

(vi) A decomposition $J_{16} \searrow [4, 6, 6]$ is given by \mathcal{G} in Figure 4. A decomposition $J_{28} \searrow [4, 6, 18]$ is given by $\mathcal{E}(u_9, u_{12})$ and a decomposition $J_{40} \searrow [4, 18, 18]$ is given by $\mathcal{A} * \mathcal{E}(u_9, u_{12})$. This covers the cases where j and k are both in $\{0, 1\}$. Hence (by the symmetry between j and k) we can assume $k \ge 2$. The decomposition $\mathcal{A} * \ldots * \mathcal{A} * \mathcal{B}(u_9, u_{12}) * \mathcal{A} * \ldots * \mathcal{A} * \mathcal{C}$ with j occurrences of \mathcal{A} to the left of $\mathcal{B}(u_9, u_{12})$, and k-2 occurrences to the right is the required decomposition $J_{12j+12k+16} \searrow [4, 12j + 6, 12k + 6]$ for $j \ge 0$ and $k \ge 2$.

(vii) A decomposition $J_{12k+4} \searrow [12k+4]$ for $k \ge 1$ is given by $\mathcal{A} * \ldots * \mathcal{A} * \mathcal{C}(u_9)$ with k-1 occurrences of \mathcal{A} .

(viii) A decomposition $J_{12j+12k+16} \searrow [12j+10, 12k+6]$ for $j \ge 0$ and $k \ge 0$ is given by $\mathcal{A} * \ldots * \mathcal{A} * \mathcal{D} * \mathcal{A} * \ldots * \mathcal{A}$ with j occurrences of \mathcal{A} to the left of \mathcal{D} and k occurrences to the right.

(ix) We have already noted the existence of a decomposition $J_{16} \searrow [4, 6, 6]$ in (vi), and $J_{12k+16} \searrow [6, 6, 12k+4]$ for $k \ge 1$ is given by $\mathcal{E}(u_{12}, u_{15}) * \mathcal{A} * \ldots * \mathcal{A}$ with k-1 occurrences of \mathcal{A} .

(x) A decomposition $J_{12j+12k+28} \searrow [6, 6, 12j+10, 12k+6]$ for $j \ge 0$ and $k \ge 0$ is given by $\mathcal{A} * \ldots * \mathcal{A} * \mathcal{E}(u_{15}) * \mathcal{A} * \ldots * \mathcal{A}$ with j occurrences of \mathcal{A} to the right of $\mathcal{E}(u_{15})$ and k occurrences to the left. \Box

We are now ready to prove the main result of this section.

Lemma 20 Let $n \equiv 0 \pmod{4}$ with $n \geq 12$. If F is a 2-regular graph of order n having a refinement $F' \in \{[4, 6^r], [6^r] : r \equiv 2 \pmod{4}\}$, then there is a factorisation of G_n into two copies of F', a copy of F, and a 1-factor.

Proof Let F_3 be a 2-regular graph of order 2m, which has a refinement isomorphic to $[6^r]$ or $[6^r, 4]$ where $r \equiv 2 \pmod{4}$. Note that since r is even, F_3 contains an even number of cycles of length congruent to $6 \pmod{12}$. We will be using this fact implicitly in the remainder of the proof.

We deal first with the special case where $F_3 \cong [6^r]$. It is easy to see that $G_{12} \cong \langle \{1,3,5,6\} \rangle_{12}$ and that the orbit of the 2-factor consisting of the two 6-cycles (0,1,7,10,11,6) and (2,5,8,3,4,9) under the permutation $x \mapsto x + 4 \pmod{12}$ is a factorisation of $\langle \{1,3,5,6\} \rangle_{12}$ into three copies of $[6^2]$ and a 1-factor. Also, it was shown in [10] that there is a factorisation of G_n into three copies of $[6^r]$ and a 1-factor for all $r \equiv 2 \pmod{4}$ with $r \ge 6$. Hence, the result holds when $F_3 \cong [6^r]$ so we may assume that $F_3 \ncong [6^r]$.

For $F_3 \ncong [6^r]$, we will show that F_3 can be written as a vertex-disjoint union of 2-regular subgraphs $H_1, H_2, \ldots H_w$ where each subgraph H_i is listed in Lemma 19 (and where at most one of the subgraphs has order congruent to 4 (mod 6)). It then follows by Lemma 18 that $J_{2m} \searrow F_3$, and consequently by Lemma 17 that G_{2m} has the required decomposition.

Clearly, we can write F_3 as a union of vertex disjoint graphs isomorphic to [6, 6, 6, 6] and a graph satifying the conditions of the lemma and having at most three 6-cycles. Hence, since [6, 6, 6, 6] is covered by Lemma 19, we can assume that F_3 contains at most three 6-cycles (and $F_3 \ncong [6, 6]$).

The proof now splits into the following five cases which we deal with one at a time.

- (1) $[6^r]$ is a refinement of F_3 and F_3 contains zero or one 6-cycles.
- (2) $[6^r]$ is a refinement of F_3 and F_3 contains two or three 6-cycles.
- (3) $[4, 6^r]$ is a refinement of F_3 and F_3 contains a 4-cycle.

- (4) $[4, 6^r]$ is a refinement of F_3 , F_3 does not contain a 4-cycle, and F_3 contains zero or one 6-cycles.
- (5) $[4, 6^r]$ is a refinement of F_3 , F_3 does not contain a 4-cycle, and F_3 contains two or three 6-cycles.

(1) It is easy to see that if $[6^r]$ is a refinement of F_3 and F_3 contains zero or one 6-cycles, then F_3 can be written as the union of copies of graphs covered by (i) and (ii) of Lemma 19. We will refer back to this observation.

(2) If $[6^r]$ is a refinement of F_3 where F_3 contains two or three 6-cycles, then F_3 can be written as the union of a graph covered by either (iii) or (iv) of Lemma 19, and a graph which falls into case (1).

(3) If $[4, 6^r]$ is a refinement of F_3 and F_3 contains a 4-cycle, then F_3 can be written as the union of a graph covered by either (v) or (vi) of Lemma 19, and a graph which falls into case (1).

(4) If $[4, 6^r]$ is a refinement of F_3 , F_3 does not contains a 4-cycle and F_3 contains zero or one 6-cycles, then F_3 can be written as the union of a graph covered by either (vii) or (viii) of Lemma 19, and a graph which falls into case (1).

(5) If $[4, 6^r]$ is a refinement of F_3 , F_3 does not contains a 4-cycle and F_3 contains two or three 6-cycles, then F_3 can be written as the union of a graph covered by either (ix) or (x) of Lemma 19, and a graph which falls into case (1).

6 Factorisations of K_{12} and K_{16}

In this section we give some additional factorisations of K_{12} and K_{16} which we will need because our general approach does not work completely in these small cases. The following result is Theorem 4.1 in [2].

Theorem 21 ([2]) If F_1 and F_2 are non-isomorphic bipartite 2-regular graphs of order $n \leq 16$, each consisting of isomorphic connected components, then the Hamilton Waterloo Problem HW($F_1, F_2; \alpha_1, \alpha_2$) has a solution for all α_1, α_2 satisfying $\alpha_1 + \alpha_2 = \frac{n-2}{2}$.

Lemma 22 For each

 $(F_1, F_2) \in \{([4, 4, 4], [4, 8]), ([4, 4, 4], [12]), ([4, 8], [12]), ([6, 6], [12])\}$

there is a factorisation of K_{12} into a copy of F_1 , four copies of F_2 , and a 1-factor.

Proof For $(F_1, F_2) = ([4, 4, 4], [4, 8])$ we use a factorisation of K_6 into two Hamilton cycles and a 1-factor to obtain a factorisation of K_{12} into two copies of C_6^{\Box} , a copy of [4, 4, 4] and a 1-factor. By Lemma 3, each

copy of C_6^{\Box} can then be factored into two copies [4,8] to obtain the required factorisation of K_{12} . In all other cases, the result follows by Theorem 5.

Lemma 23 For each

 $(F_1, F_2) \in \{([4, 4, 4], [4, 8]), ([4, 4, 4], [12]), ([4, 8], [12]), ([6, 6], [12])\}$

there is a factorisation of K_{12} into a four copies of F_1 , a copy of F_2 , and a 1-factor.

Proof The cases $(F_1, F_2) \in \{([4, 4, 4], [12]), ([6, 6], [12])\}$ are covered by Theorem 21. We now deal with $(F_1, F_2) = ([4, 4, 4], [4, 8])$. Let \mathcal{F} be a factorisation of K_6 into a Hamilton cycle and three 1-factors. Then \mathcal{F}^{\Box} is a factorisation of $K_{12} - I$ into into a copy of C_6^{\Box} and three copies of [4, 4, 4]. If we add the edges of the removed 1-factor to the copy of C_6^{\Box} , then we obtain a factorisation of K_{12} into a copy of $C_6 \wr K_2$ and three copies of [4, 4, 4]. A factorisation of $C_6 \wr K_2$ into a copy of [4, 4, 4], a copy of [4, 8] and a 1-factor exists by Lemma 12. This yields the required factorisation of K_{12} when $(F_1, F_2) = ([4, 4, 4], [4, 8])$.

We now deal with $(F_1, F_2) = ([4, 8], [12])$. Let \mathcal{F} be a factorisation of K_6 into a Hamilton cycle and a copy of $\langle \{2, 3\} \rangle_6$. Then \mathcal{F}^{\Box} is a factorisation of $K_{12} - I$ into into a copy of C_6^{\Box} and a copy of $\langle \{2, 3\} \rangle_6^{\Box}$. Since C_6^{\Box} can be factored into two copies of [4, 8], the required factorisation of K_{12} can be obtained if there is a factorisation of $\langle \{2, 3\} \rangle_6^{\Box}$ into two copies of [4, 8] and one copy of [12]. This factorisation is given below where (a, b) is denoted by a_b .

$$\{ (0_0, 4_0, 1_0, 4_1) \cup (2_0, 5_1, 3_1, 1_1, 3_0, 5_0, 2_1, 0_1), \\ (0_0, 3_0, 0_1, 3_1) \cup (2_0, 4_0, 2_1, 4_1, 1_1, 5_1, 1_0, 5_0), \\ (0_0, 2_0, 4_1, 0_1, 4_0, 1_1, 5_0, 3_1, 1_0, 3_0, 5_1, 2_1) \}$$

Lemma 24 There is a factorisation of K_{16} into a copy of [4, 6, 6], six copies of [6, 10], and a 1-factor.

Proof Applying Lemma 10 with $F \cong [8]$, we obtain a factorisation of K_{16} into two copies of C_8^{\square} and a copy of G_{16} . We can factorise each copy of C_8^{\square} into two copies of [6, 10] using Lemma 3, and this leaves us needing a factorisation of G_{16} into two copies of [6, 10], a copy of [4, 6, 6], and a 1-factor. This factorisation is given below with (a, b) denoted by a_b .

$$\{ (0_0, 1_1, 0_1, 1_0) \cup (2_0, 7_0, 6_1, 5_0, 6_0, 7_1) \cup (2_1, 3_0, 4_1, 5_1, 4_0, 3_1), \\ (1_0, 2_1, 1_1, 4_1, 5_0, 4_0) \cup (0_0, 5_1, 0_1, 7_1, 6_1, 3_0, 2_0, 3_1, 6_0, 7_0), \\ (0_0, 5_0, 0_1, 7_0, 2_1, 7_1) \cup (1_0, 2_0, 1_1, 4_0, 3_0, 6_0, 5_1, 6_1, 3_1, 4_1) \}$$

Lemma 25 There is a factorisation of K_{16} into six copies of [4, 6, 6], a copy of [6, 10], and a 1-factor.

Proof In the proof of Lemma 24, we noted the existence of a factorisation of K_{16} into two copies of C_8^{\square} and a copy of G_{16} . We can factorise each copy of C_8^{\square} into two copies of [4, 6, 6] using Lemma 3, and this leaves us needing a factorisation of G_{16} into two copies of [4, 6, 6], a copy of [6, 10], and a 1-factor. This factorisation exists by Lemma 20.

7 Proofs of main results

Theorem 26 If F_1, F_2, \ldots, F_t are bipartite 2-regular graphs of order $n \equiv 2 \pmod{4}$, F_1 is a refinement of F_2 , and $\alpha_1, \alpha_2, \ldots, \alpha_t$ are positive integers such that $\alpha_1 + \alpha_2 + \cdots + \alpha_t = \frac{n-2}{2}$ with α_i even for $i = 3, 4, \ldots, t$, then K_n has a factorisation into α_i copies of F_i for $i = 1, 2, \ldots, t$ and a 1-factor.

Proof Let $m = \frac{n}{2}$. It follows from $n \equiv 2 \pmod{4}$ that α_1 and α_2 are either both even or both odd. If they are both even, then we let $F \cong C_m$, and if they are both odd, then we let F be a 2-regular graph of order m, which exists by Lemma 12, such that $F \wr K_2$ has a factorisation into a copy of F_1 , a copy of F_2 and a 1-factor. By Lemma 9, there is a factorisation of K_{2m} into $\frac{m-3}{2}$ copies of C_m^{\square} and a copy of $F \wr K_2$. The required factorisation of K_n can thus be obtained by applying Lemma 3 (when α_1 and α_2 are both even we first factorise $F \wr K_2$ into a copy of C_m^{\square} and a 1-factor).

Theorem 27 If $t \ge 3$, F_1, F_2, \ldots, F_t are bipartite 2-regular graphs of order n, and $\alpha_1, \alpha_2, \ldots, \alpha_t$ are positive integers such that

- F_1 is a refinement of F_2 ;
- $\alpha_1, \alpha_2, \alpha_3$ are odd with $\alpha_3 \geq 3$;
- α_i is even for $i = 4, 5, \ldots, t$;
- $\alpha_1 + \alpha_2 + \dots + \alpha_t = \frac{n-2}{2};$
- $F_2 \notin \{[4, 4, 4], [4, 8], [12], [4, 6, 6], [6, 10]\}; and$
- $F_3 \notin \{[6^r], [4, 6^r] : r \equiv 2 \pmod{4}\};$

then K_n has a factorisation into α_i copies of F_i for i = 1, 2, ..., t and a 1-factor.

Proof The conditions imply $n \equiv 0 \pmod{4}$ and $n \geq 12$. Let F be the 2-regular graph of order $m = \frac{n}{2}$, given by Lemma 12, such that $F \wr K_2$ has a factorisation into a copy of F_1 , and copy of F_2 , and a 1-factor. Since $F_2 \notin \{[4, 4, 4], [4, 8], [12], [4, 6, 6], [6, 10]\}$, we have $F \notin \{[6], [3, 5]\}$. Hence, by Lemma 10 there is a factorisation of K_{2m} into $\frac{m-6}{2}$ copies of C_m^{\Box} , a copy of $F \wr K_2$, and copy of $G_n - I$. We can thus obtain the required factorisation of K_{2m} by using the above-mentioned factorisation of $F \wr K_2$, using Lemma 16 to factorise $G_n - I$ into three copies of F_3 (as $F_3 \ncong [6^r]$ and $F_3 \ncong [4, 6^r]$), and using Lemma 3 to factorise each copy of C_m^{\Box} .

Theorems 26 and 27 together with the factorisations of K_{12} and K_{16} given in Section 6 allow us to prove our main result on the Hamilton-Waterloo Problem.

Theorem 28 If F_2 is a bipartite 2-regular graph of order n and F_1 is a bipartite refinement of F_2 , then for all non-negative α_1, α_2 satisfying $\alpha_1 + \alpha_2 = \frac{n-2}{2}$ there is a factorisation of K_n into α_1 copies of F_1, α_2 copies of F_2 , and a 1-factor.

Proof If $n \equiv 2 \pmod{4}$, then we can obtain the required factorisation by applying Theorem 26 with t = 2. The case n = 4 is trivial and the required factorisations for n = 8 are known to exist, see [11]. Thus, we can assume $n \equiv 0 \pmod{4}$ and $n \ge 12$. For $n \equiv 0 \pmod{4}$, exactly one of α_1 and α_2 is odd. If $\alpha_1 \ne 1$ and $\alpha_2 \ne 1$, then we can obtain the required factorisation by applying Theorem 6 with t = 2. This leaves only cases $\alpha_1 = 1$ and $\alpha_2 = 1$.

If $\alpha_1 = 1$, then we can obtain the required factorisation by applying Theorem 27 with t = 3 and $F_3 \cong F_2$, except if $F_2 \in \{[4, 4, 4], [4, 8], [12], [4, 6, 6], [6, 10]\} \cup \{[6^r], [4, 6^r] : r \equiv 2 \pmod{4}\}$. In most of these exceptional cases the only bipartite refinement of F_2 is F_2 itself, which means that $F_1 \cong F_2$ and the result follows by Theorem 7. The exceptional cases where F_2 has a non-isomorphic bipartite refinement are precisely those covered by Lemmas 22 and 24.

If $\alpha_2 = 1$, then we can obtain the required factorisation by applying Theorem 27 with t = 3 and $F_3 \cong F_1$, except if $F_2 \in \{[4, 4, 4], [4, 8], [12], [4, 6, 6], [6, 10]\}$ or $F_1 \in \{[6^r], [4, 6^r] : r \equiv 2 \pmod{4}\}$. For $F_2 \in \{[4, 4, 4], [4, 6, 6]\}$, the only bipartite refinement of F_2 is F_2 itself, which means that $F_1 \cong F_2$ and the result follows by Theorem 7. For $F_2 \in \{[4, 8], [12], [6, 10]\}$, the required factorisations are precisely those given in Lemmas 23 and 25. For $F_1 = [6, 6]$ we have either $F_2 = [6, 6]$ or $F_2 = [12]$. In the former case, the result follows by Theorem 7, and in the latter case the required factorisation is given by Lemma 23 (as we have already noted in dealing with the case $F_2 = [12]$).

Finally, for $\alpha_2 = 1$ and $F_1 \in \{[6^r], [4, 6^r] : r \equiv 2 \pmod{4}\} \setminus \{[6, 6]\}$, we first apply Lemma 10 with $F \cong C_m$ (and $m = \frac{n}{2}$) to obtain a factorisation of K_n into $\frac{n-8}{4}$ copies of $C_{\frac{n}{2}}^{\square}$ and a copy of G_n . Using Lemma

3 we can then factorise each copy of $C_{\frac{n}{2}}^{\Box}$ into two copies of F_1 , and using Lemma 20 we can factorise G_n into two copies of F_1 , one copy of F_2 , and a 1-factor. This yields the required factorisation of K_n .

References

- P. Adams and D. Bryant, Two-factorisations of complete graphs of orders fifteen and seventeen, Australas. J. Combin., 35 (2006) 113–118.
- [2] P. Adams, E. J. Billington, D. Bryant and S. I. El-Zanati, On the Hamilton-Waterloo problem, Graphs Combin., 18 (2002) 31–51.
- [3] B. Alspach, Research problems, Problem 59, Discrete Math., 50 (1984) 115.
- [4] B. Alspach and R. Häggkvist, Some observations on the Oberwolfach problem, J. Graph Theory, 9 (1985) 177–187.
- [5] B. Alspach, P. J. Schellenberg, D. R. Stinson and D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, J. Combin. Theory Ser. A, 52 (1989) 20-43.
- [6] L. D. Anderson, Factorizations of graphs, in *The CRC Handbook of Combinatorial Designs*, 2nd edition, (Eds. C. J. Colbourn, J. H. Dinitz), CRC Press, Boca Raton (2007) 740–754.
- J-C. Bermond, O. Favaron, and M. Mahéo, Hamiltonian decomposition of Cayley graphs of degree 4, J. Combin. Theory Ser. B, 46 (1989) 142–153.
- [8] D. Bryant, Hamilton cycle rich two-factorisations of complete graphs, J. Combin. Des., 12 (2004) 147–155.
- [9] D. Bryant, On the Oberwolfach problem with two similar length cycles, Graphs Combin., 17 (2001) 199-206.
- [10] D. Bryant and P. Danziger, On bipartite 2-factorisations of $K_n I$ and the Oberwolfach problem, J. Graph Theory, 68 (2011) 22–37.
- [11] D. Bryant and C. A. Rodger, Cycle decompositions, in *The CRC Handbook of Combinatorial Designs*, 2nd edition, (Eds. C. J. Colbourn, J. H. Dinitz), CRC Press, Boca Raton (2007) 373–382.
- [12] D. Bryant and V. Scharaschkin, Complete solutions to the Oberwolfach problem for an infinite set of orders, J. Combin. Theory Ser. B, 99 (2009) 904-918.

- [13] M. Buratti and G. Rinaldi, On sharply vertex transitive 2-factorizations of the complete graph, J. Combin. Theory Ser. A, 111 (2005) 245-256.
- [14] M. Buratti and G. Rinaldi, 1-rotational k-factorizations of the complete graph and new solutions to the Oberwolfach problem, J. Combin. Des., 16 (2008) 87–100.
- [15] N. Cavenagh, S. El-Zanati, A. Khodkar and C. Vanden Eynden, On a generalization of the Oberwolfach problem, J. Combin. Theory Ser. A, 106 (2004) 255-275.
- [16] P. Danziger, G. Quattrocchi and B. Stevens, The Hamilton-Waterloo problem for cycle sizes 3 and 4, J. Combin. Des., 17 (2009) 342–352.
- [17] M. Dean, On Hamilton cycle decomposition of 6-regular circulant graphs, *Graphs Combin.*, 22 (2006) 331–340.
- [18] A. Deza, F. Franek, W. Hua, M. Meszka and A. Rosa, Solutions to the Oberwolfach problem for orders 18 to 40), J. Combin. Math. Combin. Comput., 74 (2010) 95-102.
- [19] J. H. Dinitz and A. C. H. Ling, The Hamilton-Waterloo problem: The case of triangle-factors and one Hamilton cycle, J. Combin. Des., 17 (2009) 160–176.
- [20] J. H. Dinitz and A. C. H. Ling, The Hamilton-Waterloo problem: The case of triangle-factors and Hamilton cycles: The case n = 3 (mod 18), J. Combin. Math. Combin. Comput., 70 (2009) 143–147.
- [21] S. I. El-Zanati, S. K. Tipnis and C. Vanden Eynden, A generalization of the Oberwolfach problem, J. Graph Theory, 41 (2002) 151-161.
- [22] F. Franek, J. Holub and A. Rosa, Two-factorizations of small complete graphs. II. The case of 13 vertices, J. Combin. Math. Combin. Comput., 51 (2004) 89-94.
- [23] F. Franek and A. Rosa, Two-factorizations of small complete graphs, J. Statist. Plann. Inference, 86 (2000) 435-442.
- [24] H. L. Fu and K.C. Huang, The Hamilton-Waterloo problem for two even cycles factors, *Taiwanese J. Math.*, **12** (2008) 933–940.
- [25] P. Gvozdjak, On the Oberwolfach problem for cycles with multiple lengths, Ph.D. Thesis, Simon Fraser University (Canada), (2004).
- [26] P. Gvozdjak, On the Oberwolfach problem for complete multigraphs, Discrete Math., 173 (1997) 61-69.

- [27] R. Häggkvist, A lemma on cycle decompositions, Ann. Discrete Math., 27 (1985) 227–232.
- [28] A. J. W. Hilton and M. Johnson, Some results on the Oberwolfach problem, J. London Math. Soc. (2),
 64 (2001) 513-522.
- [29] D. G. Hoffman and P. J. Schellenberg, The existence of C_k -factorizations of $K_{2n} F$, Discrete Math., 97 (1991) 243–250.
- [30] P. Horak, R. Nedela and A. Rosa, The Hamilton-Waterloo problem: the case of Hamilton cycles and triangle-factors, *Discrete Math.*, 284 (2004) 181–188.
- [31] C. Huang, A. Kotzig and A. Rosa, On a variation of the Oberwolfach problem, Discrete Math., 27 (1979) 261-277.
- [32] D. C. Kamin, The Hamilton-Waterloo problem with triangle and C_9 factors, *Masters Thesis*, Michigan Technological University, (2011).
- [33] G. Kaplan, A. Lev and Y. Roditty, Regular Oberwolfach problems and group sequencings, J. Combin. Theory Ser. A, 96 (2001) 1-19.
- [34] M. Keranen and S. Özkan, The Hamilton-Waterloo problem with 4-cycles and a single factor of n-cycles, (preprint).
- [35] H. Lei, H. Fu and H. Shen, The Hamilton-Waterloo problem for Hamilton cycles and C_{4k}-factors, Ars Combin., 100 (2011) 341–347.
- [36] H. Lei and H. Shen, The Hamilton-Waterloo problem for Hamilton cycles and triangle-factors, J. Combin. Des., published online 2011, doi: 10.1002/jcd.20311
- [37] J. Liu, The equipartite Oberwolfach problem with uniform tables, J. Combin. Theory Ser. A, 101 (2003) 20-34.
- [38] J. Liu and D. Lick, On λ -fold equipartite Oberwolfach problem with uniform table sizes, Ann. Comb., 7 (2003) 315-323.
- [39] X. Mi and H. Cao, Some results on the Oberwolfach problem OP₂(3^a, s^b), J. Nat. Sci. Nanjing Norm. Univ., **11** (2009) 11-16.
- [40] M. A. Ollis, Some cyclic solutions to the three table Oberwolfach problem, *Electron. J. Combin.*, 12 (2005) R58, 7pp.

- [41] M. A. Ollis and D. A. Preece, Sectionable terraces and the (generalised) Oberwolfach problem, *Discrete Math.*, 266 (2003) 399-416.
- [42] M. A. Ollis and A. D. Sterr, From graceful labellings of paths to cyclic solutions of the Oberwolfach problem, *Discrete Math.*, **309** (2009) 4877–4882.
- [43] M. A. Ollis and D. T. Willmott, On twizzler, zigzag and graceful terraces, Australas. J. Combin., 51 (2011) 243–257.
- [44] W. Piotrowski, The solution of the bipartite analogue of the Oberwolfach problem, *Discrete Math.*, 97 (1991) 339-356.
- [45] G. Rinaldi and T. Traetta, Graph products and new solutions to Oberwolfach problems, *Electron. J. Combin.*, 18(1) (2011) P52, 17pp.
- [46] C. A. Rodger, Hamilton decomposable graphs with specified leaves, Graphs Combin., 20 (2004) 541– 543.
- [47] Q. Sui and B. Du, The Oberwolfach problem for a unique 5-cycle and all others of length 3, Util. Math.,
 65 (2004) 243-254.
- [48] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ, 2001.