
Cryptographic controls: The heart of cyber security 

  
Abstract: Cryptography lies at the heart of all cyber security technologies and appreciating the 
role it plays is vital to understanding how to secure cyberspace. In this chapter, we review the 
basic tools provided by cryptography, and how they are used to provide the core security 
services of confidentiality, data integrity and entity authentication in cyberspace.  
 
Introduction 
 
Cryptography provides a set of mathematical tools for providing the fundamental security 
required in cyberspace. From these basic tools, we are able to construct more complex security 
protocols, such as secure messaging, secure access to web sites, secure payment systems, etc. 
Without cryptography, none of this would be remotely conceivable. 
 
To appreciate what cryptography does, it is worth considering how information is secured in 
the physical world. This is done through a combination of physical mechanisms, which include 
protection of an object containing information (locking a document in a safe), modification 
detection techniques (watermarks on a bank note) and physical identification (face and voice 
recognition). Security is also supported by the context in which things happen in the physical 
world (to break into an office you need to physically get to the office and circumvent any access 
controls). In cyberspace we lose both the ability to deploy physical security mechanisms and 
the physical context. In theory, a computer can be broken into by anyone, anywhere, who is 
connected to the same network.  
 
In order to provide security in cyberspace we thus need very different mechanisms from which 
notions of security can be constructed. Cryptography provides these mechanisms. Each 
mechanism implements a specific security service. The most important of these services are: 
 

 Confidentiality, which is the assurance that data cannot be viewed by an unauthorized 
entity. This is sometimes known as secrecy, and allows the control of who can see what 
information in cyberspace. 

 Data integrity, which is the assurance that data has not been altered in an unauthorized 
manner since the point at which it was created. Cryptography provides a range of different 
tools for this, depending on how strong an assurance is required. 

 Entity authentication, which is the assurance that a given entity is involved and active in a 
communication session in cyberspace. This provides answers to the question ``who is out 
there?’’ in cyberspace. 

 
We first explain the core principles behind cryptography, then review the most common 
cryptographic tools for implementing these security services. We also discuss the wider system 
within which these tools need to be deployed in order to provide cyber security. 
 
Fundamentals of cryptography 
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Cryptographic fundamentals are best illustrated by considering the features of a physical lock. 
 
Firstly, the mechanical methods behind the workings of a physical lock tend to be well-known. 
This allows everyone to understand whether a physical lock is of good quality or not, as well as 
to develop a notion of what it would take to defeat the lock. The cryptographic equivalent of 
this is a cryptographic algorithm, which provides a specification of how a particular 
cryptographic tool works. Most cryptographic algorithms are published and developers can use 
this specification to implement them. Everyone can inspect a cryptographic algorithm and then 
reason about its security. 
 
To provide security, however, there must be something that differentiates one instantiation of 
a security technology from another. For a physical lock, this differentiator is the key. Front 
doors might all have the same type of lock fitted, which all work in the same way, but any 
specific lock requires a unique key to open it. So, too, does a cryptographic algorithm typically 
involve a key. A cryptographic key is a (normally) secret piece of data which serves as an input 
into the cryptographic algorithm. Inputting two different cryptographic keys into the same 
cryptographic algorithm results in a different output, thus allowing cryptographic keys to be 
used to provide entities in cyberspace with unique capabilities that others do not have. 
 
To break a physical lock, an attacker needs to find a key with the right settings to push down 
the tumblers that will free the bolt. A good physical lock will have so many possible settings 
that this task is difficult. The same is true for a cryptographic key. However, computers are 
much faster at conducting computations than burglars of a physical lock, so the number of 
possible cryptographic keys that could be input into a cryptographic algorithm needs to be 
massive. As an illustration, many of the cryptographic tools we use today have around 2128 
possible keys, which is so big that the world’s fastest supercomputer would take billions of 
years to try them all out. 
 
Confidentiality tools 
 
Possibly the most well-known use of cryptography is the provision of confidentiality, through a 
process often referred to as encryption. The basic model of an encryption mechanism is shown 
in Figure 1. 
 
The goal of encryption is to render some data, the plaintext, only readable to anyone who has 
been given the capability to do so. The data is thus converted into an unreadable form, known 
as the ciphertext, by feeding it through an encryption algorithm. The encryption algorithm takes 
as input the plaintext and an encryption key. The resulting ciphertext can now be passed over 
an insecure channel, such as the Internet, since it appears to be random data. Only someone 
with the corresponding decryption key can reconvert the ciphertext back into plaintext by 
feeding the ciphertext and the matching decryption key into a decryption algorithm. 
 
The encryption and decryption algorithms are essentially the ``recipes’’ for scrambling and 
unscrambling the data, thus are closely related to one another. In most cases these algorithms 



are open standards, as is the case for the Advanced Encryption Standard (AES), which is the 
most widely deployed encryption algorithm. The critical secret, knowledge of which 
distinguishes a desired recipient of a confidential message from everyone else, is the decryption 
key. This value must be carefully protected. In modern technologies, decryption keys are 
usually securely stored in hardware such as smartcards, tokens, key fobs, or sometimes 
generated from passwords or passphrases. 
 
There is, however, no inherent reason why an encryption key needs to be a secret value. 
Indeed, whether it is secret or not is the distinguishing feature of two major classes of 
encryption mechanism: 
 

 In symmetric encryption, the encryption and decryption keys are the same value, which 
means the encryption key also needs to be kept secret. Symmetric encryption emulates the 
type of physical locking mechanism that requires the same key to both lock and unlock. 

 In public-key encryption, the encryption key can be made publicly available. Public-key 
encryption emulates the likes of a padlock, where anyone can snap it shut but only the key 
holder can unlock. 

 
These two types of encryption mechanism have very different features. Symmetric encryption 
requires the secret key to be distributed in advance to both the sender of a confidential 
message and the intended recipient (this is known as the key distribution problem). Public-key 
encryption is simpler in this regard, since the encryption key does not require secure 
distribution. However, symmetric encryption algorithms are much faster to run than public-key 
encryption algorithms, making them far more desirable to implement in practice. 
 
The advantages and disadvantages of these two different types of encryption mechanism tend 
to lead to two different ways of deploying them in real systems: 
 
1. If the key distribution problem is relatively easy to overcome then only the faster symmetric 

encryption will be used. This is the case, for example, in mobile phone and payment card 
networks, where symmetric keys can be issued in advance to users on their SIM and 
payment cards. 

2. In applications where it is not straightforward to solve the key distribution problem, such as 
when setting up a secure connection with a website (where the user may not have any prior 
relationship with the site), then a hybrid solution is adopted. The relatively slow public-key 
encryption is used to encrypt a symmetric key, which then encrypts the bulk data using 
symmetric encryption. The recipient first decrypts the symmetric key, then decrypts the 
main message. 

 
Symmetric encryption algorithms are themselves classified into block ciphers, which encrypt 
chunks of data (typically 128 bits) at a time, and stream ciphers, which encrypt each bit of data 
individually. The AES is the most common block cipher and is a good general purpose 
encryption mechanism. Stream ciphers have special properties that make them more desirable 
for applications such as protecting voice traffic and streaming. An example is the A5 family of 



stream ciphers used for encrypting mobile phone calls. Well-known public-key encryption 
algorithms include RSA and algorithms based on elliptic-curves. 
 
Data integrity tools 
 
For many applications, including financial transactions, it is arguably more important to ensure 
the data is correct than keep it secret. A data integrity mechanism does not prevent data from 
being altered, but does enable modification to be detected. Cryptography provides a number of 
different types of data integrity mechanism, each of which subtly vary in the assurances they 
provide. 
 
The weakest tool is a cryptographic hash function. This tool simply generates a short digest of 
some data, known as a hash. In other words, a cryptographic hash function takes an arbitrary 
amount of data as an input, and compresses this data into a short hash. The hash function is 
carefully designed so that even a single bit change to the input will result in a completely 
different hash being output. 
 
In principle, this means that hash functions could be used to provide a degree of data integrity. 
If we send some data alongside its hash, the recipient can recalculate the hash locally and check 
that the received hash matches the locally computed one. This process will detect accidental 
errors. However, hash functions are unusual cryptographic algorithms because they do not 
involve a secret key, which means that anyone can compute the hash of some data. Hence, an 
attacker intercepting some data could modify it, compute a new hash, and then replace the 
original hash with the modified one. This is not a flaw, because cryptographic hash functions 
are not explicitly designed to be data integrity tools. In fact they have many different uses in 
cryptography, mainly as components of other cryptographic algorithms and protocols. 
Examples of hash functions include MD5, SHA-2 and SHA-3. 
 
A hash function can be converted into a more useful data integrity tool by introducing a secret 
key. This is the idea behind a message authentication code (MAC), which is illustrated in Figure 
2.  
 
As for symmetric encryption, a MAC requires the sender and receiver of some data to share a 
secret key in advance. The sender inputs the data and key into the MAC algorithm, which 
outputs a MAC. The data is then sent to the receiver alongside the MAC. The receiver inputs the 
data and the key into the same MAC algorithm and checks whether the output matches the 
MAC that was sent. If it does then the receiver can be confident that the data has not been 
altered, since nobody else knows the key and so could not have computed a false MAC. Note 
that a MAC not only provides data integrity, but also provides a clear indication of who sent the 
message, since only a legitimate key holder can compute a MAC. This property is often called 
data origin authentication. Examples of commonly deployed MACs include CMAC and HMAC. 
 
A sometimes undesirable feature of a MAC is that it cannot be used to distinguish between 
legitimate holders of the key. While it provides data integrity, the creator of the MAC can be 



any of the holders of the MAC key. On occasions where we wish to link data explicitly to a single 
entity, then a digital signature scheme can be used. This the public-key equivalent of a MAC, 
where a digital signature on some data is created by inputting the data (or, more commonly, a 
hash of the data) and a secret signature key into a signature algorithm. The recipient uses a 
public verification key to check whether the received signature matches the message that was 
sent. Since the signature key is not shared by any other parties, successful verification indicates 
that the data is not just unchanged, but links the data to the unique holder of the signature key. 
A digital signature can thus, in theory, be presented before a judge as evidence that a particular 
entity sent it. This property is sometimes called non-repudiation. The most commonly deployed 
digital signature algorithms are RSA and DSA. 
 
Entity authentication tools 
 
The invisibility of cyberspace makes it is extremely important to know who is on the end of a 
communication channel. Thus almost all uses of cryptography begin with some form of entity 
authentication. While not all entity authentication mechanisms, such as passwords and 
biometrics, are cryptographic, most of the strongest are. 
 
The commonest way of providing entity authentication using cryptography is to require the 
authenticating party to provide evidence that they know a secret cryptographic key. For 
example, this is how mobile operators authenticate customers. The authenticating party is 
issued with a key in advance (in this case on a SIM card). The customer (phone) is then asked to 
perform a cryptographic computation using the key that was issued to them. The operator then 
checks whether this computation is correct. If it is, they believe that it must be the entity they 
issued the key to that is currently trying to communicate. A similar principle applies to accessing 
an online back account, opening a modern car door, etc. There are many different ways in 
which this basic idea is instantiated in practice. 
 
Cryptosystems 
 
We have discussed a number of cryptographic mechanisms that can be used to provide specific 
security services in cyberspace. In practice, real applications typically combine these in different 
ways. For example, securing a web connection involves establishing entity authentication of the 
server, then encrypting and providing data origin authentication for all subsequently exchanged 
messages. 
 
It is important to recognize that cryptography will only deliver these security services if 
considered as part of a wider system. Consider, for example, the case of two parties using 
encryption to provide confidentiality of a file attachment exchanged by email. Assuming they 
have chosen a good encryption algorithm, the true security of this process also depends on: 
 

 End point security. The file is only encrypted during transit, but will potentially exist in 
unencrypted form at both ends of the communication. 



 Implementation. If the encryption scheme is not implemented correctly then the file 
protection might not be as secure as intended. 

 Key management. If the decryption key management is compromised in any way (leaked 
during distribution or stolen from storage) then an attacker might also be able to decrypt 
the file. 

 
Taking this system view of how cryptography is deployed is critical. Cryptography alone does 
not secure cyberspace. But cyberspace cannot be secure without cryptography. 
 
Further reading 
 
Piper and Murphy [1] is a brief and accessible introduction to cryptography. A more 
comprehensive introduction, aimed at security practitioners and avoiding the mathematical 
detail, is Martin [2]. Another good guide for security practitioners is Ferguson, Schneier and 
Kohno [3]. Paar and Pelzl [4] is one of the more accessible introductions that includes some of 
the mathematics behind cryptography. 
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