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Abstract. Browsers and their users can be tracked even in the absence
of a persistent IP address or cookie. Unique and hence identifying pieces
of information, making up what is known as a fingerprint, can be col-
lected from browsers by a visited website, e.g. using JavaScript. However,
browsers vary in precisely what information they make available, and
hence their fingerprintability may also vary. In this paper, we report on
the results of experiments examining the fingerprintable attributes made
available by a range of modern browsers. We tested the most widely
used browsers for both desktop and mobile platforms. The results reveal
significant differences between browsers in terms of their fingerprinting
potential, meaning that the choice of browser has significant privacy
implications.

1 Introduction

Browser fingerprinting is a technique that can be used by a web server to
uniquely identify a platform; it involves examining information provided by the
browser, e.g. to website-originated JavaScript. The notion of browser fingerprint-
ing was first discussed by Eckersley [5]. Since Eckersley’s seminal work, the range
and richness of fingerprinting information retrievable from a browser has sub-
stantially increased [10]. Of course, web cookies and/or the client IP address can
be used for the same purposes, but browser fingerprinting is designed to enable
browser identification even if cookies are not available and the IP address is
obfuscated, e.g. through the use of anonymising proxies.

This paper is intended to help understand whether, and to what degree, widely-
used browsers vary in the quantity and quality of the fingerprinting attributes they
make available. This would enable us to learn their relative fingerprintability. We
describe a series of systematic tests performed on currently available browsers,
which show that some browsers reveal substantially more fingerprinting informa-
tion than others; hence users of the least privacy-respecting browsers can be more
readily be identified and/or tracked. We performed the tests using a specially
established website https://fingerprintable.org1. This website does not retain any
1 All the scripts used in our experiments are publicly available — see Appendix A.
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data recovered from visiting browsers, but simply displays the information that it
is able to collect from the currently employed browser. We hope that this site will
be a useful tool in promoting general understanding of the privacy threat arising
frombrowser fingerprinting, andmore generally from some of the features provided
by today’s browsers when executing JavaScript.

Over the last five or six years, a number of authors have performed detailed
studies of the effectiveness of a range of browser fingerprinting techniques (e.g.
[2,5,7,11,13,14]). In this paper, we use a selection of known fingerprinting
approaches to compare the fingerprintability of widely used web browsers on
both desktop and mobile platforms. Since desktop browsers differ significantly
from their mobile counterparts in their capabilities and features (e.g. plugins
cannot be installed on mobile browsers), we made parallel studies for these two
platform types.

The remainder of the paper is structured as follows. We start in Sect. 2 with
the methodology used in our experiments. In Sect. 3 we discuss the experimen-
tal results, followed by an analysis in Sect. 4. In Sect. 5 we discuss methods to
maintain privacy while browsing and give concluding remarks.

2 Methodology

We performed our experiments on five of the latest and most widely used plat-
form types. Specifically, we chose to examine browsers running on Windows 10
and Mac OS X 10.12 (Sierra) for desktop platforms, and Android 7.0 (Nugget),
iOS 10.2.1 and Windows 10 Mobile for mobile devices. Further details of the
methodology we employed to examine browser fingerprintability, including the
set of browsers we examined, are given below. Precise details of the versions of
operating systems and browsers used are given in AppendixB.

2.1 Browsers

As noted above, given the major functional differences between desktop and
mobile browsers, we made parallel studies of the two classes. For both mobile
and desktop platforms, we chose to examine the five most widely used browsers
according to netmarketshare.com2.

– The desktop browsers we examined were Chrome, Internet Explorer,
Firefox, Edge and Safari.

– The mobile browsers used in our tests were Chrome, Safari, Opera Mini,
Firefox and Edge. We excluded Mobile Internet Explorer and Android
Browser because they are no longer being developed or included with new
devices. Specifically, Google has replaced its native Android browser with
Chrome, and Microsoft has replaced Internet Explorer with Edge in Win-
dows 10 Mobile.

2 https://www.netmarketshare.com/browser-market-share.aspx [accessed on 03/03/
2017].

https://www.netmarketshare.com/browser-market-share.aspx
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2.2 Installation Options

The use of add-ons and plugins can both increase and decrease the informa-
tion available for fingerprinting. The presence of add-ons inherently increases
fingerprinting capabilities, since the set of add-ons (information that is typically
available to executing JavaScript) helps individualise a browser; in addition,
some add-ons reveal information that can identify the user or browser [8]. On
the other hand, specially designed anonymizing add-ons can be used to conceal a
browser’s fingerprint [8]. To avoid biasing the results, in our tests we used clean
installations of browsers so that they did not include any add-ons or plugins
other than those installed and enabled by default. We could have chosen to dis-
able even those add-ons that are present and enabled by default, but we chose
to leave them on the basis that many users will not change the browser default
settings; hence testing the browser “out of the box” gives the fairest assessment
of its privacy properties.

In fact, the browsers we examined come with very few installed and enabled
add-ons; Edge and Internet Explorer are the only browsers we tested that come
with the Flash plugin installed and enabled by default. Although Chrome comes
with the Flash plugin installed, it is disabled.

The mobile browsers require various permissions to be set as part of their
installation. In addition, browsers may request extra permissions while execut-
ing, depending on the features of a visited website (e.g. to request permission
to take pictures and record video). For testing purposes, we did not grant any
permissions other than those needed for browser installation.

2.3 Experimental Scripts

To test the fingerprintability of the selected browsers, a web page containing
JavaScript was constructed, intended to be served by our experimental website
(https://fingerprintable.org). Whenever the website is visited by a client browser,
e.g. one of those being tested, the scripts in the web page interrogate the browser
to learn the values of a set of identifying attributes (as discussed in Sect. 2.4).
Technical details of the scripts are provided in AppendixA. The scripts used
in the experiments were largely based on those available in the GitHub open
repositories.

The web page displayed by the browser contains a summary of the finger-
printing information gathered by the script, and thereby provides an instant
summary of the privacy properties of the browser. As mentioned elsewhere, this
site is publicly available, and is open for general use. A partial screenshot of a
typically displayed page is shown in Fig. 1.

The total size of the script used is approximately 70 kB; in informal tests it
loaded and displayed the results without any noticeable delay.

2.4 Attributes

The original goal of our experiments was to sample all the attributes that can
be collected from a web browser. Any attribute that is not fixed for all browsers

https://fingerprintable.org
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Fig. 1. The Fingerprintability page

has potential value for fingerprinting. However, a large number of attributes have
Boolean values (e.g. Java installed?) or one of a very limited set of values (e.g.
Java version) and hence they typically give relatively little identifying informa-
tion. Given the significant number of such attributes, we therefore omitted such
attributes from our tests, and focused on those that have the potential to give
significantly more information.

We also omitted attributes that, according to Laperdrix et al. [10], take more
than a few seconds to collect (e.g. font metrics [7]), or are unreliable for finger-
printing purposes (e.g. battery level [14]). Additionally, we omitted attributes
that are made available by all tested browsers as part of their typical function-
ality (e.g. screen resolution). It is worth noting that some attributes are related
to the user’s machine and thus can be used to help identify a specific platform
even if a user subsequently switches browsers [4]. Others are browser-specific,
and hence can only be used for fingerprinting as long as the same browser is
used.

We next discuss in detail the six fingerprinting attributes used in our tests.

Fonts Through Flash. If the Adobe Flash plugin is installed and enabled, it
can be used to reveal the set, and installation order, of fonts installed on the
user platform; this is known to be a highly discriminating attribute (see, for
example, Eckersley [5]). Moreover, this attribute can be used to fingerprint a
platform even if multiple browsers are used. However, of the desktop browsers
we examined, only Edge and Internet Explorer have Flash installed and enabled
by default. In this respect, Edge is therefore significantly less privacy-protecting
than its competitors, since learning the set of installed fonts without using Flash
is non-trivial.
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None of the mobile browsers we examined support Flash, so the set of
installed fonts is not used when comparing the fingerprintability of this class
of browsers. Furthermore, the most widely used mobile OSs (i.e. Android and
iOS) do not give the user the option to install fonts.

There is another, albeit less accurate, method of discovering the set of
installed fonts using website-supplied JavaScript [13]. However, we do not con-
sider it as part of our comparison since it works in the same way for all the
tested browsers.

Device ID(s). The use of a device ID as a fingerprintable attribute was pro-
posed by an anonymous developer on BrowserLeaks.com3. According to this
website, a device ID is a hash value generated by a browser by applying a cryp-
tographic hash function to the unique ID of a hardware component in the user
platform (combined with other data values); it is retrieved by requesting the
WebRTC hardware ID attribute. WebRTC4 is a set of communications proto-
cols and APIs that provides browsers and mobile applications with Real-Time
Communications (RTC) capabilities via simple APIs.

The main intended application of such device IDs would appear to relate to
managing multimedia content, and the platform components whose identifiers
are used are typically the loudspeaker, microphone and/or camera. Since the
device ID is computed on other data in addition to a unique hardware identifier,
the value computed by a browser will typically change when accessed by different
websites. However, for a single website, the device ID appears likely to remain
constant (at least for some browsers) across multiple visits, giving it high value
for fingerprinting purposes. Moreover, a device ID seems to be constant when
queried in different ways; for example, we obtained the value via an iframe on a
different website, and it gave the same value as that for the framed site.

To the authors’ knowledge, there is no description in the literature of any
practical evaluations of this attribute as a technique for fingerprinting, and so its
robustness and usefulness for this purpose has yet to be determined. However,
experiments conducted as part of this research show that it has great promise
for use in fingerprinting. Nonetheless, further study is needed to investigate this
in greater detail. Gaining a better understanding of how exactly the device ID is
computed by the various browsers would certainly help in such an investigation,
although such information does not appear to be publicly available.

Canvas Image. The Canvas API is a recently introduced HTML5 API that
allows websites to render an image for display by the user browser, an alternative
to the commonly used technique of downloading an image file from the server [9].
Several studies [1,10,11] have demonstrated the possibility of uniquely finger-
printing browsers and their host platforms based on subtle differences in how an
image is rendered by the browser. We based our tests on the particularly effective
Canvas image fingerprinting approach due to Englehardt and Narayanan [6].

3 https://browserleaks.com/webrtc#webrtc-device-id [accessed on 03/03/2017].
4 https://webrtc.org [accessed on 03/03/2017].

https://browserleaks.com/webrtc#webrtc-device-id
https://webrtc.org
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The Canvas API allows the server to request the return of certain details of
a rendered image (e.g. the RGBA5 values of rendered image pixels) [11]. Since
each browser appears to have its own rendering algorithm, the returned image
will vary depending on the browser as well as the computing environment [11].
A simple means of using this fact for fingerprinting is to hash the returned
image details and use this hash value as an attribute. All the tested browsers
rendered the sample Canvas image provided by the test script (see Fig. 2), and as
a result give a fingerprint for that browser. Although not part of our comparative
experiments, it is interesting to observe that the Tor browser (a modified version
of Firefox that uses the Tor network) displays a warning and asks the user
for permission before rendering a Canvas image. However, none of the tested
browsers made such a request.

Fig. 2. Sample Canvas image used in our tests

Not only does this attribute enable fingerprinting based on the browser in use,
but in some cases it provides the ability to discriminate between two similar plat-
forms running the same browser. That is, in some cases the image rendered by the
same browser will differ given a small change in the computing environment.

WebGL Renderer. Some browsers provide access to the identity of the vendor
and the specific model of the user platform’s Graphics Processing Unit (GPU).
These two pieces of information are obtained by requesting the following WebGL
attributes: UNMASKED VENDOR WEBGL and UNMASKED RENDERER
WEBGL. These attributes could reveal the Central Processing Unit (CPU) type
if there is no GPU or if the GPU is not used by the browser.

We found that the UNMASKED VENDOR WEBGL either states the
browser vendor or the CPU/GPU vendor. In both cases it does not provide any
useful information that cannot be readily found from the UNMASKED REN-
DERER WEBGL (i.e. identifying a vendor is trivial once the full CPU/GPU
model details are known) or the user agent header (see Sect. 2.4) which reveals
the browser vendor. We shall therefore focus solely on the WebGL renderer.

5 Red green blue alpha (opacity).
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User Agent. This attribute consists of a data string included in the header of
HTTP response packets that gives information related to the browser, including
its type and version [10] (e.g. Mozilla/5.0 (Windows NT 10.0; WOW64; rv:50.0)
Gecko/20100101 Firefox/50.0 ). It is useful in enabling websites to tailor con-
tent to meet the needs of differing browsing platforms. Whilst a rich source of
fingerprinting information, all desktop browsers provide much the same level of
detail, and so this attribute is not useful in comparing their fingerprintability; we
therefore do not use this attribute when comparing desktop browsers. However,
it remains useful for comparing the fingerprintability of mobile browsers, since
in some browsers it includes an indication of the model of the mobile phone.

Private IP Address(s). The local IP address of a user platform can be discov-
ered if the executing JavaScript is able to ping a STUN server6. This possibility
was apparently first observed by Roesler7. This fingerprinting technique works
for browsers that support WebRTC [6]. Potentially, the revealed IP address(es)
could include the client’s local IPv4 address as well as one, or more, of the client’s
unique local addresses (ULAs)8 thus making it more fingerprintable.

Ideally, a website cannot discover the real public IP address of a user platform
that is employing a VPN. However, as discussed by Perta et al. [15], a website
can learn the public IP address as well as the IP address assigned by NAT or
VPN of a visiting browser by exploiting a feature of its WebRTC implementation
[3]. However, it was previously reported [15] that an IP address leak does not
occur in all VPN implementations.

2.5 Performing the Experiments

Platforms of the specified types, running the chosen operating systems, were
equipped with the relevant browsers (clean installs, as discussed above). The
browser was then made to visit the test website (https://fingerprintable.org) and
the data generated by the script was collected and recorded. The 10 datasets
(five for the desktop platform and five for the mobile platform) generated were
then processed and used to derive the information given in Sect. 3 below.

Attribute Processing. Each browser was tested for the retrievability of dis-
criminating information for each of the six fingerprinting attributes described in
Sect. 2.4. For most attributes, it was straightforward to determine whether or
not the browser returned any fingerprintable values. However, some attributes
required some processing to be useful. For example, an attribute such as User
Agent always returns a string of information. The key difference between one
6 A STUN server (i.e. a Session Traversal of User Datagram Protocol Through Net-

work Address Translators (NATs) server) allows a NAT client to set up interactive
communications such as a phone call to a VoIP provider hosted outside the local
network.

7 https://diafygi.github.io/webrtc-ips/.
8 The ULA is the approximate IPv6 counterpart of the IPv4 private address; see

https://tools.ietf.org/html/rfc4193 [accessed 03/03/2017].

https://fingerprintable.org
https://diafygi.github.io/webrtc-ips/
https://tools.ietf.org/html/rfc4193
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browser and another was whether it included information specific to the system
hosting it. These differences were observed and noted.

The device ID was tested for both its existence as well as its persistence. We
observed that the browsers that calculate such a value, at some point calculate a
new value. The main difference between browsers in this respect is in the nature
of the trigger that causes recalculation. This means that some browsers have a
more persistent device ID, i.e. one that is more valuable for fingerprinting, than
others.

The Canvas image typically returns the same hash value when tested on
identical platforms. Some browsers also give the same hash value when running
on two devices that have relatively similar specifications. To find these cases we
tested and compared Canvas rendered images of each browser on two devices
with similar hardware (for device specifications see AppendixC).

Fingerprintability Index. For comparison purposes, we rank each attribute
as having a high (3), medium (2) or low (1) Fingerprintability Index (FI), where
higher FI indicates an attribute giving more information useful for fingerprinting.
These assignments are based on previous work as well as our own qualitative
estimations. We have refrained from using the term entropy or precise entropy
values taken from the prior art, as values are not available for all the attributes
we consider in our study. It is important to note that, regardless of the ranking
of attributes, all attributes in our study provide relatively high entropies, as
explained earlier in the paper.

The fonts attribute is ranked as high as it is a highly discriminating piece of
information [5]. Device IDs also have the potential of being highly discriminating;
however, as discussed earlier, browsers that provide device IDs differ in terms
of the persistence of the values. This attribute is therefore assigned high if the
browser shows no signs of changing this value under typical browser usage, and is
assigned medium if a browser provides a new value with every browsing session.
It is assigned low if a browser provides a new value with every visit or page
refresh.

We rank the Canvas API attribute as medium, based on the analysis of
Laperdrix et al. [10]. However, we as rank it as low for any browser that
returns the same image hash value on two devices with similar specifications.
The WebGL information is ranked as low, as Alaca et al. [3] argue that it pro-
vides relatively little information useful for fingerprinting. This is expected since
many devices could be using an identical CPU and/or GPU.

The user agent string reveals a lot of information valuable for fingerprinting
[3,4,10]. However, we rank it only as medium since we focus here purely on
whether or not it includes information on the mobile phone model. We assign a
rank of low to the leaking of private IP addresses. This is because most clients are
assigned local IPv4 addresses in the 192.168.0.x range [3] and such IP addresses
tend to be dynamically assigned and so can change regularly. However, we assign
a medium ranking to any browser that reveals one, or more, of the client’s ULAs
in addition to the aforementioned IPv4 address.



Not All Browsers are Created Equal 113

3 Results

We next summarise the results of our experiments. We divide the discussion
into two parts, first addressing the tests on desktop platforms and second the
experiments using mobile devices.

3.1 Desktop Browsers

Overview. We summarise below the key observations arising from our exami-
nation of desktop browsers.

– Chrome did not reveal the set of installed fonts through Flash probing
despite the presence of the Flash plugin; this was because the plugin is dis-
abled by default. Chrome is unique in generating a very discriminating device
ID. The value remained the same for at least a month, and seems unlikely to
change until the browser cache is cleared.

Canvas image rendering in Chrome resulted in the same hash on both test
machines. We made the same observation on the mobile version of Chrome.

When requested for the WebGL attributes, Chrome gave the full details
of the CPU model. The local IPv4 address was also revealed.

– Because Internet Explorer comes with the Flash plugin installed and
enabled by default, it can be used to determine the set of installed fonts.
Internet Explorer does not disclose any device IDs (due to its lack of WebRTC
support). The hash of the image produced using the Canvas API was the same
as that generated by Edge on both test machines. Internet Explorer revealed
the exact model of the CPU. However, Internet Explorer did not reveal the
local IP address.

– Firefox does not include the Flash plugin, and hence it does not reveal the
list of installed fonts through Flash probing. It generated device IDs, although
this attribute is less discriminating than in Chrome as the device ID changes
with every browser session.

Firefox produced two different hashes for the Canvas images on the two
test machines. The WebGL probing simply gave Mozilla for both the vendor
and model of CPU. However, it reveals the local IPv4 address of the user.

– Safari revealed no information for most of the attributes we tested. This is
mainly because of its lack of full WebRTC support and the absence of the
Flash plugin. However, it does support the Canvas API and produced the
same image hashes on the two test devices. Safari also revealed the WebGL
renderer details.

– Just like Internet Explorer, Edge comes with the Flash plugin installed and
enabled by default. This reveals the set of fonts installed on the computer,
which is highly valuable for fingerprinting. It provides device IDs but they
change every time a website is revisited or even refreshed. It gave the same
Canvas hash value as Internet Explorer on the test machines. It also revealed
the exact GPU model. Moreover, amongst tested desktop browsers, it was
unique in exposing both the client’s local IPv4 address and ULA.
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Table 1. Desktop browser fingerprintability

Attribute/Browser Chrome Internet Explorer Firefox Edge Safari

Fonts - high - high -

Device ID high - medium low -

Canvas low low medium low low

WebGL Renderer low - low low -

Local IP low - low medium -

Total attributes 4 2 4 5 1

Fingerprintability Index 6 4 6 8 1

Discussion. The results of our tests are summarised in Table 1. Only Chrome,
Firefox, and Edge provided device IDs. The fingerprintability of this attribute
varies significantly between tested browsers. Chrome device IDs are consistent
and do not change unless the user selects the privacy mode9 feature or clears the
browser cache. The Firefox device ID remained the same during multiple visits
in a single browsing session, but changed once the browser was reopened. Of the
browsers revealing a device ID, Edge gave the value that changed most readily;
merely refreshing a web page caused Edge to generate a new value. This makes
this attribute in Edge of very limited use for fingerprinting.

All the tested browsers support the Canvas API and rendered the scripted
image in our test, i.e. they all reveal this fingerprinting attribute. However, in
the case of Firefox, the image resulted in a different hash when rendered on the
two test machines. As a result, the Canvas attribute is more fingerprintable in
Firefox than the other tested browsers.

With the exception of Safari, all the tested browsers exposed the client’s
local IPv4 address. However, Edge was the only tested browser to also reveal the
client’s ULAs. Overall, Edge was the most fingerprintable (FI: 8) and Safari the
least (FI: 1).

3.2 Mobile Browsers

Overview. Summarised below are the main observations arising from our exam-
ination of mobile browsers.

– The Chrome user agent header revealed the specific phone model. Just like
its desktop counterpart, Chrome provided persistent device IDs. Chrome’s
rendering of the Canvas image resulted in the same hash on both testing
devices. It also revealed the vendor and model of the GPU, and the local
IPv4 address.

9 All tested browsers feature a privacy mode; however, every browser has a different
name for it. In the case of Chrome, it is called incognito.
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– Safari mobile did not reveal much information except the fingerprinting infor-
mation derivable from rendering the Canvas image and the CPU model in the
WebGL attributes.

– The Opera Mini user agent string revealed the phone model. It provided
device IDs that were similar to Firefox in terms of calculating a new value
with every new browsing session. Moreover, it revealed the GPU model as
well as the local IPv4 address.

– Firefox did not reveal the phone model in the user agent header, which makes
this attribute significantly less revealing. However, Firefox did provide device
IDs. It also rendered unique Canvas images on tested devices and allowed the
retrieval of the local IPv4 address of the user.

– The Edge user agent string included the model of the phone. Edge provided
device IDs but, like its desktop counterpart, the IDs change with every page
refresh or revisit. It also revealed the model of the GPU. The Canvas image
rendered was the same on both test devices. Unlike its desktop version, Edge
did not expose any private IP addresses.

Discussion. The results of our tests are summarised in Table 2. Chrome, Opera
Mini, Firefox and Edge included the phone model as part of the user agent string.
They also calculated device IDs.

Although all tested browsers rendered the Canvas image, Chrome, Safari,
and Edge (both desktop and mobile) rendered exactly the same image on the
test devices with similar specifications. This makes Chrome, Safari and Edge
Canvas images less fingerprintable than the other tested browsers.

Chrome, Opera Mini, and Firefox exposed the local IPv4 addresses. However,
no mobile browser exposed any ULAs. Overall, Chrome and Opera Mini were the
most fingerprintable browsers (FI: 9). Just like its desktop counterpart, Safari
was the least fingerprintable (FI: 2).

Table 2. Mobile browser fingerprintability

Attribute/Browser Chrome Safari Opera Mini Firefox Edge

User Agent medium - medium - medium

Device ID high - medium medium low

Canvas low low medium medium low

WebGL Renderer low low low - low

Local IP medium - medium medium -

Total attributes 5 2 5 3 4

Fingerprintability Index 9 2 9 6 5



116 N.M. Al-Fannah and W. Li

3.3 Other Remarks

It seems reasonable to expect that browser fingerprinting based on the Flash
plugin will soon become irrelevant given the imminent disappearance of Flash
[10]. It is important to note that it is not the rendering aspect of the Canvas API
that endangers user privacy but the ability to retrieve details of the rendered
image. If this feature was removed from Canvas API, it would eliminate any
possible fingerprinting based on it, at least using current methods.

Device IDs have a high potential to endanger user privacy, especially con-
sidering their persistence in Chrome. Moreover, Chrome’s persistent device IDs
seem unnecessary, as evidenced by Edge’s approach of constantly providing new
values.

4 Circumventing Fingerprinting

A number of authors have considered the problem of reducing the degree to
which a browser can be fingerprinted (e.g. [5,8]). Indeed, a range of tools exist
which are designed to make browsing more anonymous [2,12]. We, therefore,
do not explore this topic in detail, but simply mention four simple measures
that can be employed to reduce the usefulness of the fingerprinting attributes
we studied in this paper.

– Disable the Canvas API. Despite significant variations in the amount of
information that can be collected depending on the browser, the Canvas fin-
gerprint is supported by them all. This fingerprint alone can make any browser
highly fingerprintable. Currently, Canvas support in the tested browsers can
be blocked by specialised add-ons such as CanvasBlocker10.

– Disable Flash. The number of websites that use Adobe Flash is reducing,
and most web browsers are discontinuing support for it [10]. So, anyone using
a desktop browser that has the Flash plugin installed and enabled may wish
to consider disabling it. This will prevent a website using Flash to discover
the installed fonts, and the order in which they were installed.

– Disable WebRTC. This feature is relatively new, and the discovery of secu-
rity vulnerabilities, such as those discussed in this paper, is perhaps to be
expected. Disabling WebRTC would prevent a website from easily retriev-
ing a client’s local IP address(es) or public IP address when using a VPN.
Disabling WebRTC is typically possible through the browser user settings.

– Anonymizing Add-ons. There are many anonymizing add-ons available
for browsers (e.g. Privacy Badger11 and NoScript12) that reduce or disguise
a browser fingerprint. These add-ons, and others, have been tested and dis-
cussed in detail by Fiore et al. [8].

10 https://addons.mozilla.org/en-gb/firefox/addon/canvasblocker.
11 https://chrome.google.com/webstore/detail/privacy-badger/

pkehgijcmpdhfbdbbnkijodmdjhbjlgp.
12 https://addons.mozilla.org/en-gb/firefox/addon/noscript/.

https://addons.mozilla.org/en-gb/firefox/addon/canvasblocker
https://chrome.google.com/webstore/detail/privacy-badger/pkehgijcmpdhfbdbbnkijodmdjhbjlgp
https://chrome.google.com/webstore/detail/privacy-badger/pkehgijcmpdhfbdbbnkijodmdjhbjlgp
https://addons.mozilla.org/en-gb/firefox/addon/noscript/
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5 Conclusions

Our tests have investigated an aspect of browser fingerprinting that has not pre-
viously been explored in literature, namely looking at the differences between
browsers in terms of the amount of information they reveal. Some mobile
browsers seem to unnecessarily give out the specific phone model. Moreover,
WebRTC has introduced several privacy-compromising properties that need to
be revisited. Increasing numbers of browsers support WebRTC, and so, unless
the issues with it are addressed, browser fingerprintability seems set to increase.
Rendering images via the Canvas API provides a very discriminating fingerprint-
ing attribute, and all tested browsers support it. It would therefore be highly
desirable if all browsers asked for user permission before rendering a Canvas
image, or at least disabled the option that allows servers to retrieve details of
the rendered image.

Users concerned about their traceability via fingerprinting should also con-
sider selecting their browser with our results in mind. At the time we performed
our experiments, Safari would appear to be the best choice in this respect on
both mobile and desktop platforms. Despite Chrome being the most widely used
browser, it proved to be one of the most fingerprintable.

Acknowledgments. We would like to thank Professor Chris Mitchell for his guidance,
encouragement and advice. The second author was supported by the EPSRC, grant
number EP/N028554/1.

Appendices

A Test Code

The scripts used in our experiments were gathered from the following websites:

– https://clientjs.org
– https://github.com/spleennooname/GLeye
– https://github.com/muaz-khan/DetectRTC

Some scripts were modified to suit our testing. All the code we used for testing
is available at our website https://fingerprintable.org.

https://clientjs.org
https://github.com/spleennooname/GLeye
https://github.com/muaz-khan/DetectRTC
https://fingerprintable.org
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B Browser and OS Versions

Browser OS

Desktop

Chrome 56.0.2924.87 (64-bit) Windows 10.0.14393 Build 14393

Microsoft Internet Explorer 11.576.14393.0 Windows 10.0.14393 Build 14393

Firefox 51.2 (32-bit) Windows 10.0.14393 Build 14393

Microsoft Edge 38.14393.0.0 Windows 10.0.14393 Build 14393

Safari 10.0.3 (12602.4.8) macOS Sierra 10.12.3

Mobile

Chrome 56.0.2924.87 Android 7.0 (Build 39.2.A.0.374)

Safari 602.1 iOS 10.2.1(14d27)

Opera Mini 22.0.2254.113472 Android 7.0 (Build 39.2.A.0.374)

Firefox 51.0.3 Android 7.0 (Build 39.2.A.0.374)

Microsoft Edge 38.14393.693.0 Windows 10 Mobile (OS Build: 10.0.14393.693)

C Specifications of Devices Used for Experiments

OS CPU GPU RAM

Desktop

Windows Intel Core i7-4720HQ 2.6GHz NVIDIA GeForce GTX 960M 16.0GB

Windows Intel Core i5-5200U 2.2GHz Intel HD Graphics 5500 12.0GB

macOS Intel Core i5 2.7GHz Intel Iris Graphics 6100 8.0GB

macOS Intel Core i7 2.7GHz Intel HD Graphics 530 16.0GB

Mobile

Android Qualcomm Snapdragon 820 64-bit Adreno 530 3.0GB

Android Qualcomm Snapdragon 801 2.5GHz Adreno 330 3.0GB

iOS A8 chip 64-bit PowerVR GX6450 1.0GB

iOS A9 chip 64-bit PowerVR GT7600 2.0GB

Windows Qualcomm Snapdragon 400 1.2GHz Adreno 305 1.0GB

Windows Qualcomm Snapdragon 200 1.2GHz Adreno 302 1.0GB
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