
Completeness in Languages for

Attribute-Based Access Control

by

Conrad Eason Williams

A thesis submitted in fulfilment of the requirements for the Degree of

Doctor of Philosophy

August 2017

Information Security Group

Royal Holloway, University of London

Declaration of Authorship

I, Conrad Eason Williams, hereby declare that this thesis and the work pre-

sented in it is entirely my own. Where I have consulted the work of others,

this is always clearly stated.

Signed:

Date:

2

Abstract

Access control restricts the interactions that are possible between users (or

programs operating under the control of users) and sensitive resources, and is

an essential component of any security architecture in multi-user computing

systems. The most common means of implementing access control is to define

an authorization policy, specifying which requests (that is, attempted user-

resource interactions) are authorized and can thus be allowed. In recent years,

we have seen the emergence of attribute-based access control (ABAC), in part

to cater for open, distributed computing environments where it is not neces-

sarily possible to authenticate all entities directly. The primary goal of this

thesis is to improve the understanding and specification of ABAC languages.

Our approach focuses on the connection between multi-valued logics

(MVLs) and many ABAC languages present in the literature. We intro-

duce the necessary theoretical foundations to analyse and reason about va-

rious properties of ABAC languages. This enables us to show that XACML,

the predominant language for authoring ABAC policies, exhibits a number

of shortcomings. We present extensions to the ABAC language PTaCL, and

demonstrate how it may be modified to address the shortcomings identified

in XACML. Later, we extend our foundations to lattice-based logics and lan-

guages, establishing new results about Belnap logic and its associated ABAC

languages.

Another major difficulty encountered in many ABAC languages is how to

construct a desired policy using the operators defined in the given language.

Even in languages that are known to be functionally complete, this is in general

a non-trivial task. We present a novel solution to this problem: specifying

policies in a tabular form. We demonstrate why representing policies in this

manner is convenient, intuitive and flexible for policy authors, and provide a

method for automatically compiling policy tables into a form that is machine-

enforceable.

3

To my grandparents

Ray and Patricia Bowler.

Words cannot describe the appreciation

I have of your continual love, support and

encouragement, without which, this thesis

would never have been written.

4

Contents

Abstract 3

Contents 5

List of Figures 9

List of Tables 10

Acknowledgements 11

1 Introduction 12

1.1 Attribute-based access control 13

1.2 Multi-valued logics . 15

1.3 Outline of thesis . 16

1.3.1 Thesis audience . 18

1.4 Publications . 20

2 Preliminaries 21

2.1 Tree-structured languages . 21

2.1.1 Obligations . 25

2.1.2 Error handling . 25

2.2 XACML . 25

2.2.1 Rule, policy and policy set evaluation 26

2.2.2 Rule- and policy-combining algorithms 27

2.2.3 Architecture . 29

2.3 PTaCL . 30

2.3.1 Syntax and semantics. 31

2.3.2 Additional operators . 32

2.4 Other notable tree-structured languages 34

2.5 Multi-valued logics . 34

2.5.1 Theoretical foundations of canonical completeness . . . 35

2.5.2 Example multi-valued logics 38

2.6 Summary and discussion . 39

5

3 Completeness of XACML 40

3.1 Indeterminacy in XACML . 41

3.1.1 Versions 1.0 and 2.0 . 41

3.1.2 Version 3.0 . 44

3.2 Dependencies between the combining algorithms 46

3.3 Incompleteness . 49

3.4 Constructable binary operators 50

3.5 PTaCL operators . 54

3.6 Summary and discussion . 56

4 A Canonically Complete 3-valued PTaCL 57

4.1 Completeness of PTaCL . 59

4.2 PTaCL with Jobe’s logic . 60

4.3 The value of canonical completeness 62

4.4 Indeterminacy in PTaCL<
3 . 64

4.5 Obligations in PTaCL<
3 . 66

4.5.1 Defining obligations . 67

4.5.2 Computing obligations 67

4.5.3 Computing obligations for derived policy operators . . . 68

4.5.4 Indeterminacy and obligations 70

4.6 Obligations in XACML and other related work 72

4.7 Summary and discussion . 75

5 Canonical Completeness in Lattice-based Multi-valued Logics 76

5.1 Partially ordered sets and lattices 77

5.2 Belnap logic . 79

5.3 Canonical completeness for lattice-based logics 81

5.4 Canonical completeness of Belnap logic 84

5.5 A canonically complete 4-valued logic 85

5.5.1 The symmetric group and unary operators 87

5.5.2 New unary operators . 88

5.6 Canonically complete m-valued logics 90

5.7 Summary and discussion . 91

6 A Canonically Complete 4-valued PTaCL 92

6.1 PTaCL6
4 . 93

6.1.1 Decision set . 93

6.1.2 Operators and policies 94

6.1.3 An alternative method for policy specification 96

6.2 Indeterminacy in PTaCL6
4 . 97

6.3 Obligations in PTaCL6
4 . 98

6.4 Leveraging the XACML architecture 99

6.4.1 Automatic policy generation 101

6

6.5 Summary and discussion . 103

7 Attribute Expressions and Policy Tables 105

7.1 The AEPL language . 107

7.1.1 Attribute expressions . 107

7.1.2 Evaluating requests . 108

7.1.3 AEPL policies . 109

7.1.4 Policies in normal form 110

7.1.5 AEPL policy trees . 111

7.2 Policy compression . 112

7.2.1 Removing redundancies 113

7.2.2 Policies as Boolean functions 114

7.3 Comparison with XACML and PTaCL 115

7.3.1 XACML targets . 115

7.3.2 PTaCL targets . 116

7.3.3 XACML rules . 116

7.3.4 XACML policies . 117

7.4 Applications . 118

7.4.1 Complex policies as tables 118

7.4.2 ABAC policies for RBAC 120

7.4.3 Access control lists . 121

7.5 Summary and discussion . 121

8 Conclusions and Future Work 123

8.1 Future work . 126

8.1.1 Development of a custom XACML PDP 126

8.1.2 Software development 127

8.1.3 Usability study . 127

8.1.4 Other . 127

References 129

Appendix A Code Listings 134

A.1 XACML operator brute-force combinations 134

A.2 Automatic policy generation . 138

7

List of Figures

2.1 Simple policy tree . 23

2.2 Evaluating a policy . 24

2.3 XACML rule-combining algorithms do, po, dup, pud and fa . . 28

2.4 XACML data-flow model . 30

2.5 Decision operators and policy semantics in PTaCL 31

2.6 Evaluating a PTaCL policy . 33

2.7 Supplementary decision operators for PTaCL 34

2.8 Examples of selection operators in a 4-valued logic 36

2.9 Operators in Lukasiewicz’s logic L 38

2.10 Jobe’s logic J . 39

3.1 XACML 1.0 and 2.0 combining algorithms 42

3.2 Example indeterminate deny-overrides policy 43

3.3 Example deny-overrides policy 44

3.4 XACML 3.0 algorithms . 45

3.5 XACML rule-combining algorithms do, po, dup, pud and fa . . 46

3.6 Encoding fa using do and po . 47

3.7 Operator encodings . 48

3.8 Operators that cannot be constructed using XACML operators 49

3.9 The family of deny-overrides operators 52

3.10 Constructible Binary operators in XACML 55

4.1 Two combining operators for policies 58

4.2 Decision operators in PTaCL 59

4.3 Operators in Jobe’s logic J . 60

4.4 Decision operators and policy semantics in PTaCL<
3 61

4.5 Normal forms for the unary selection operators 63

4.6 Semantics for PTaCL<
3 with indeterminacy 64

4.7 Evaluating a PTaCL policy with indeterminacy 66

4.8 Obligation semantics and look-up table 68

4.9 Decisions and obligations for the PTaCL<
3 ∨p, po and do operators 69

4.10 Example policy and policy tree with obligations 69

4.11 Decisions and obligations for the XACML algorithms 70

4.12 PTaCL<
3 policy evaluation with indeterminacy and obligations 71

8

5.1 Hasse diagrams . 78

5.2 The Belnap Hasse diagram . 80

5.3 Operators in Belnap logic . 81

5.4 Examples of selection operators in Belnap logic 82

5.5 Encoding ⊕b using − and ⊗b 86

5.6 ∼0,∼1 and ∼> . 88

5.7 Expressing φ : 4→ 4 using operators in {∼0,∼1,∼>,⊗b,⊕b} . 89

6.1 Operators using > . 94

6.2 Decision operators and policy semantics in PTaCL6
4 94

6.3 Normal forms for the unary selection operators 95

6.4 Semantics for PTaCL6
4 with indeterminacy 98

6.5 Obligation semantics in PTaCL6
4 99

6.6 The PTaCL6
4 decision set in XACML syntax 100

6.7 Encoding ⊗b as an XACML combining algorithm 101

7.1 A simple tree-structured policy 106

7.2 Binary operators for attribute expressions 108

7.3 Converting a simple policy into a Boolean function 115

7.4 A simple tree-structured policy 117

9

List of Tables

1.1 Contributions of the thesis . 19

2.1 The XACML 3.0 rule-combining algorithms 27

3.1 Choices for �1, �2, �3 and ⊕ . 51

3.2 Operator constructions and alternative forms 53

4.1 Comparison of XACML, PCL and PTaCL<
3 73

7.1 A simple policy table . 105

7.2 Policy function defined as a table 110

7.3 Equivalence of selection operators 113

7.4 Reduced policy table . 114

7.5 Combining policies in another table 119

7.6 Age to role assignment . 120

7.7 Policy table . 120

10

Acknowledgements

I must first thank my PhD supervisor, Professor Jason Crampton, for expres-

sing an interest in taking charge of my supervision, and for persuading me

to reconsider my initial rejection. The guidance, support, wisdom and atten-

tion to detail that Jason has shared throughout the duration of this thesis

has been instrumental in the improvement of my ability to reason, think and

write about the exciting research that I have been involved in. The past four

years have been both challenging and rewarding, and filled with a great deal

of personal growth and development, to which I owe Jason a huge amount of

thanks for the role he played as my mentor. The quality of my work has been

constantly refined by the input of Jason, through countless hours of proof re-

ading, and I’m sure, many red pens. I am grateful for the patience he showed

as I slowly found my feet and developed my writing capabilities.

In addition, I would like to thank my parents Beth and Derek Williams

for their help in proof reading and comments on this thesis. I am extremely

fortunate to have a loving and supportive family, who take their belief in my

abilities to a somewhat absurd level. For them, there was never any doubt that

I was capable of completing a PhD, the four years were just a formality required

to become Dr Williams. This belief and encouragement played a fundamental

role in my success and for that, I am eternally thankful. Particular thanks goes

to my grandfather Ray Bowler, for his compelling arguments that convinced

me to pursue the opportunity to study towards a PhD.

I would like to thank Erik Rissanen for hosting me at Axiomatics. The

time I spent at Axiomatics provided me with a fresh, practical perspective

on the research I was conducting, and led to a number of novel contributions

presented in this thesis. I would also like to thank EPSRC for the funding and

support given to me during my time as a member of the Center for Doctoral

Training in Cyber Security at Royal Holloway.

Finally, I would like to thank all the academic and support staff at Royal

Holloway for their stimulating conversations and assistance.

11

Chapter 1

Introduction

In multi-user computing systems, the security of information and resources

is an essential component of any security architecture. As a result, a field

of research has grown around the design and implementation of methods to

secure information in a multi-user setting. This field of research is commonly

known in the community as access control. Access control then, restricts the

interactions that are possible between users (or programs operating under the

control of users) and sensitive resources.

The most common means of implementing access control is to define an aut-

horization policy, specifying which requests (that is, attempted user-resource

interactions) are authorized and can thus be allowed. In a typical implemen-

tation, all requests are intercepted and evaluated with respect to the policy

by trusted software components, often known as the policy enforcement point

and policy decision point, respectively.

Thus, in general terms, an authorization policy may be viewed as a function

P : Q → D, where Q is the set of requests and D is the set of authorization

decisions. We assume 0 and 1 belong to D, representing the “deny” and

“allow” decisions, respectively. Traditionally, Q was modelled as a set of

triples of the form (s, o, a), where s is a subject, o is an object, and a is an

action: a subject represents an authenticated entity, an object represents a

protected resource, and an action is the means by which the subject wishes to

interact with the object [6, 8, 27, 41, 43].

In recent years, we have seen the emergence of attribute-based access

control (ABAC), in part to cater for open, distributed computing environ-

ments where it is not necessarily possible to authenticate all entities di-

rectly [11, 12, 29, 37, 39]. (Opposed to the more traditional “closed”, centra-

lised systems in which the set of users was assumed to be known in advance.)

Subjects and objects are associated with attributes, requests are collections

of attributes associated with the subjects and objects, and these attributes

determine whether a request is authorized or not through evaluation of the

authorization policy, which is defined in terms of user and resource attributes.

The main goal of this thesis is to improve the understanding and specifi-

12

cation of ABAC languages. We demonstrate that multi-valued logics (MVLs)

are the fundamental “building blocks” of many ABAC languages, and through

the careful choice of multi-valued logic, desirable properties can be guaranteed

for new ABAC languages. We thereby provide a theoretical framework for the

development of new ABAC languages, which eliminate the disadvantages of

existing ABAC languages.

1.1 Attribute-based access control

In the context of attribute-based access control (ABAC), we assume there

exists a set of attributes, each of which can take a range of values. An autho-

rization request is specified in terms of attribute name-value pairs, associating

the subject and object with the relevant attributes. Given a set of requests,

an ABAC policy specifies whether each request is authorized or not.

Much of the research on ABAC policies assumes that policies are con-

structed from sub-policies. One sub-policy might, for example, specify that

some subset of requests is allowed, while another sub-policy specifies that some

subset of requests is denied. Defining policies in this way inevitably means

that the sub-policies may “clash”, so research in this area has focused on ways

of resolving the conflicts that may arise when combining policies [9, 34, 37].

There are two broad approaches, which we may label as “policy alge-

bras” [9, 34, 40, 46] and “tree-structured languages” [11, 12, 29, 37]. A policy

algebra defines the semantics of a policy in terms of the sets of requests it

allows and denies. Then sub-policies are combined by defining policy opera-

tors that are defined in terms of set operations (such as intersection, union

and set difference) on the sets of allowed and denied requests. In contrast, a

tree-structured language defines what decision to return for each sub-policy

and then combines the decisions arising from the evaluation of sub-policies

using decision-combining algorithms (or decision operators).

Of course, there are strong parallels between the two approaches, and it is

often possible to define exact correspondences between policy operators and

decision-combining algorithms. Nevertheless, the popularity and widespread

use of XACML [37] has led to more research on tree-structured languages in

recent years (in comparison to policy algebras) [11, 12, 29, 37]. As a result,

in this thesis we restrict our attention to tree-structured languages, and the

literature surrounding these languages. We formally define how we classify

ABAC languages as tree-structured in the preliminaries (Chapter 2), and in-

troduce a number of tree-structured languages from the literature, including

XACML [37], PTaCL [12] and PBel [10].

Despite the extensive research on tree-structured languages [11, 12, 29, 37],

we have identified three general issues with existing tree-structured languages.

First, we explore the issue of expressivity. Informally, we gauge the expressive

power of a language by the number of different policies that may be constructed

13

in it. We say a language is functionally complete if any arbitrary policy may

be constructed in the language. It is known that PTaCL [12] and PBel [10] are

functionally complete languages, and one of the contributions of this thesis is

to show that XACML [37] is not functionally complete. We believe that the

inability to express desired policies is a major drawback, as policy authors are

forced to either approximate the desired policy, or introduce custom combining

algorithms. Approximation of policies is clearly undesirable, as unintended

scenarios may be introduced. While XACML supports the specification of

custom combining algorithms, there is little to no support or guidance given

on how custom combining algorithms should be defined and used, and we

believe allowing policy authors unhindered freedom to define their own custom

combining algorithms in the native XACML framework is risky. For instance,

rigorous testing of any custom combining algorithms should be carried out, to

ensure these algorithm behave as intended. Both scenarios may lead to policy

misconfigurations, and ultimately, unauthorized access.

Secondly, we identify a problem that is inherent to the nature of tree-

structured languages. Policies in tree-structured languages are expressed in a

tree-like structure, where leaf nodes are attribute-decision pairs and interior

nodes are attribute-operator pairs.1 Essentially this means policies must be

constructed in a bottom-up fashion. In particular, if it is not possible to

express a policy using a single target and decision, the policy author must

engineer the desired policy by combining sub-policies using the set of operators

specified in the given language. This is a non-trivial task in general and makes

policy specification in tree-structured ABAC languages a challenging task, and

it can be difficult to anticipate how a policy will evaluate for all access requests

(due to the complex structure of policies).

In addition, this issue is further exasperated by the lack of a universal or

standard method for constructing policies in tree-structured languages such

as XACML. This means that, in practice, if two policy authors are given a

policy expressed in natural language and are asked to construct the policy in

XACML, it is possible that they will construct two different policies.

In this thesis we propose an alternative method for policy specification,

through specifying policies in tables indexed by sub-policies (and later, attri-

butes). We demonstrate that policies expressed in this manner can be au-

tomatically converted into a normal form, which is machine-enforceable. In

order to achieve this, we first note a similar method employed in traditional

2-valued propositional logic. One can use the truth table for an arbitrary

Boolean function to write down a logically equivalent formula in disjunctive

normal form. Another contribution of this thesis is the generalisation of this

method to multi-valued logics, and its application in generating policies for

ABAC languages.

1This is something of a simplification, but a good approximation of how such policies are
structured.

14

A further shortcoming of existing work on languages for attribute-based

access control is the way in which requests and attributes are matched via tar-

gets. Suppose we have an attribute name-value pair (n, v) and a request that

contains multiple name-value pairs, including (n, v) and (n, v′), where v′ 6= v.

Then one might argue the request matches the attribute (since it contains

(n, v)); on the other hand, one might argue it doesn’t match the attribute

(since it also contains (n, v′)). XACML always assumes the former interpre-

tation, which may be inappropriate if, for example, the policy author wishes

to insist that the request contains exactly one name-value pair for the named

attribute. Although PTaCL has a slightly more complex match semantics for

requests and attributes, it ignores several possible match semantics that might

be relevant in practice.

Furthermore, existing ABAC languages essentially have two layers of ab-

straction, in the form of targets and policies. The former must be evaluated

first, to determine the applicability of policies, which are then evaluated. We

believe that this separation is unnecessary, and can over-complicate policy spe-

cification. Chapter 7 explores this issue in more depth, where we propose an

alternative method for matching requests and attributes, and directly specify

policies in terms of attributes, removing the need for targets.

1.2 Multi-valued logics

The underlying foundations of this thesis are built on the study of multi-valued

logics. In the past, logic systems contained only two truth values “true” and

“false”, which correspond to our intuitive understanding of truth and falsity.

However, these systems rapidly expanded to incorporate more values, used to

represent values such as “unknown”, “lack of information” and “conflict” [7,

26, 38]. The truth values introduced in multi-valued logics often have intuitive

interpretations in access control, the “unknown” value may be interpreted as

“not-applicable” in the context of policies [10, 12]. Likewise, “conflict” can

be used to represent conflicting access control decisions in a policy [10]. As a

result, many tree-structured ABAC languages are based on well-known multi-

valued logics, and use operators from these logics as policy operators [10,

12, 32, 45]. We shall show that, in tree-structured languages, policies are

essentially terms in a logic-based formalism.

Certain tree-structured ABAC languages such as PTaCL [12] and PBel [10]

are known to be functionally complete, and the proofs of their functional com-

pleteness rely on the underlying functional completeness of the multi-valued

logic on which they are based. In other words, there is a strong relationship

between the properties of an ABAC language and the multi-valued logic on

which it is built.

In this thesis we expand upon this relationship, by introducing the theo-

retical foundations, based on results of Jobe [24], for characterising properties

15

of multi-valued logics. We define concepts such as canonical suitability, se-

lection operators, normal form and canonical completeness for multi-valued

logics, and show the application of these concepts to ABAC languages. We

demonstrate in Chapter 4 the value of canonical completeness in ABAC lan-

guages, and how this helps us to overcome the challenges discussed earlier for

tree-structured languages.

The results of Jobe are limited to logics in which the truth values are

assumed to be totally ordered; we call logics of this type total-ordered logics.

However, there are many partially ordered logics of interest, such as Belnap

logic [7], on which a number of tree-structured languages are based. We extend

Jobe’s results to lattice-based multi-valued logics in Chapter 5, and prove that

Belnap logic is not canonically complete. We then construct a 4-valued lattice-

based multi-valued logic that is canonically complete, and demonstrate its use

as the underlying logic for an ABAC language in Chapter 6.

1.3 Outline of thesis

In Chapter 2 we introduce some prerequisite material on tree-structured

attribute-based access control (ABAC) languages and multi-valued logics

(MVLs). In Section 2.1 we formally define the generic structure and eva-

luation semantics for targets and policies in tree-structured languages. We

also introduce the notions of obligations and indeterminacy, which we ex-

plore in more detail in Chapters 3 and 4. Section 2.2 introduces the OASIS

standard language XACML [37], which is referenced and used as a compara-

tive language throughout this thesis. We then formally define PTaCL [12] in

Section 2.3, which we will analyse and adapt extensively in this thesis. We

conclude the chapter with an introduction to multi-valued logics, highlighting

why they are fundamental in establishing properties of many ABAC languages.

We formally define various properties of multi-valued logics such as functional

completeness, canonical suitability, normal form and canonical completeness,

based on work by Jobe [24]. These properties will play a crucial role in this

thesis, and in the development of ABAC languages with desirable properties.

Chapter 3 is a comprehensive review of XACML. We summarise the histo-

rical development of the “indeterminate” decision, and draw attention to the

ambiguous behaviour of this decision in the XACML standard in Section 3.1.

In Section 3.2 we prove there are numerous dependencies and redundancies

between the XACML rule-combining algorithms, ultimately showing only two

algorithms are required to express the entire suite of XACML rule-combining

algorithms. We then extend our investigation to the overall expressivity of

XACML in Section 3.3, demonstrating that XACML is not a functionally

complete language: that is, there are policies of practical relevance that can-

not be constructed in XACML. We consider which binary operators may be

constructed in XACML in Section 3.4, and discuss the advantages of repla-

16

cing the XACML combining algorithms with the PTaCL policy operators in

Section 3.5.

Motivated by addressing the shortcomings exhibited in XACML standard,

we expand our attention to an ABAC language that is known to be functionally

complete, PTaCL. However, we demonstrate in Chapter 4 that, while functio-

nal completeness implies any conceivable policy may be constructed, doing so

in PTaCL is a non-trivial task. In Section 4.1 we formalise this observation,

showing that PTaCL is not canonically complete, which means PTaCL does

not permit a normal form for policies. Naturally, we then explore how PTaCL

may be modified to make it canonically complete. Section 4.2 shows, through a

simple substitution of operators, how we may produce a canonically complete

version of PTaCL, called PTaCL<
3 . We discuss the advantages of canonically

complete ABAC languages in Section 4.3. In Sections 4.4 and 4.5, we define

precise syntax and semantics for handling indeterminacy and obligations in

PTaCL<
3 , and provide a comparison with XACML and other languages in the

literature in Section 4.6.

Chapters 3 and 4 focus on ABAC languages defined over a 3-valued deci-

sion set. However a number of other languages in the literature are defined

over 4 values, in which the decision set is partially ordered [10, 32, 45]. In

Chapter 5 we expand our theoretical foundations to consider these 4-valued

languages. We formally define the necessary prerequisite material on partially

ordered sets, lattices and bilattices in Section 5.1. In Section 5.2 we review

Belnap logic [7], the logic on which the languages mentioned above are based.

We extend the definitions of canonical suitability, normal form and canonical

completeness to lattice-based logics in Section 5.3, enabling us to determine

whether Belnap logic and its associated ABAC languages have these proper-

ties. We show that Belnap logic, and thus any language based on Belnap

logic, is not canonically complete in Section 5.4. In Section 5.5 we identify

connections between the symmetric group and unary operators on the set of

authorization decisions, which enables us to construct a canonically complete

4-valued lattice-based logic. Finally, we conclude the chapter by demonstra-

ting how our construction may be applied to total-ordered logics, showing a

construction for a canonically complete m-valued total-ordered logic.

Chapter 6 demonstrates how we may use the canonically complete 4-valued

lattice-based logic from Chapter 5 as the foundation for an ABAC language.

We formally define a new 4-valued canonically complete ABAC language,

PTaCL6
4 , in Section 6.1, and present a novel method for constructing poli-

cies. Sections 6.2 and 6.3 extend methods for handling indeterminacy and

obligations to PTaCL6
4 , based on work from Chapter 4. In Section 6.4 we

demonstrate how we may leverage the well-defined parts of XACML, in par-

ticular its architecture, and combine these with PTaCL6
4 . Thus, we produce

a canonically complete ABAC language with a standardized, well-defined ar-

17

chitecture. Furthermore, we develop an algorithm which takes an arbitrary

policy expressed as a decision table as input, and outputs an equivalent nor-

mal form for the policy in Section 6.4.1. This may be implemented alongside

the customized XACML architecture, providing a means for simplified policy

specification, which produces policies that are machine-enforceable.

In Chapter 7 we define a new ABAC language, Attribute Expression Policy

Language (AEPL). AEPL is based on the accumulation of insights, intuitions

and results from the previous chapters. Section 7.1 formally defines the AEPL

language. We introduce the idea of an attribute expression, arguing why they

are more expressive than traditional targets, and provide semantics for eva-

luating requests with respect to attribute expressions. We then define AEPL

policies, and demonstrate why constructing policies in AEPL is intuitive and

preferable to the tree-structured policies found in XACML and PTaCL. In

Section 7.2 we demonstrate a number of methods for reducing the size of po-

licy tables in AEPL. We provide a comparison of AEPL with XACML and

PTaCL in Section 7.3, and show that AEPL is more expressive and intuitive

than both of these languages. Finally in Section 7.4, we show how existing

access control paradigms such as role-based access control and access cont-

rol lists may be enhanced through the use of policy tables, to make them

“attribute-aware”.

Finally in Chapter 8 we review the contributions of the thesis and discuss

the various opportunities for future research.

The contributions of this thesis are summarized in Table 1.1. Figures,

tables, commands and equations are numbered sequentially within each of the

eight chapters. Theorems, definitions and similar environments are numbered

sequentially within each section. Full details of the references are given at the

end of the thesis in alphabetical order by author.

1.3.1 Thesis audience

The work in this thesis tackles a number of different areas and challenges en-

countered in the design, specification and implementation of ABAC languages.

In the interests of clarity and to assist readers whose interests lay in specific

regions, we loosely group together related issues below, and summarise the

portions of the thesis that address them.

First, we address the syntactic and semantic definitions used to express

targets, policies and combining operators in ABAC languages. Chapter 3 ex-

tensively covers the syntax and semantics of XACML, shows how decisions

can be used to handle errors, how redundancies can arise from overlapping

definitions of combining algorithms, and ultimately that poor specification of

combining operators leads to a functionally incomplete language. In contrast,

PTaCL is an ABAC language which as formal, well-defined syntax and seman-

tics, which provides a firm foundation for developing new ABAC languages.

18

Section 3.2 Analysis of dependencies in XACML combining algorithms
Section 3.3 Proof that XACML is not functionally complete
Section 3.4 Construction of all possible XACML binary operators

Section 4.1 Proof that PTaCL is not canonically complete
Section 4.2 Definition of PTaCL<

3

Section 4.5 Syntax and semantics for computing obligations in PTaCL<
3

Section 5.3 Extension of canonical completeness to lattice-based logics
Section 5.4 Completeness results for Belnap logic and associated ABAC

languages
Section 5.5 Definition of a canonically complete 4-valued logic
Section 5.6 Construction of a canonically complete m-valued total-

ordered logic

Chapter 6 Definition of PTaCL6
4

Section 6.1.3 A novel method for policy specification
Section 6.4 Method for leveraging the XACML architecture
Section 6.4.1 An algorithm for automatic policy generation

Chapter 7 A novel ABAC language based on policy tables
Section 7.1 Definition of AEPL
Section 7.2 Methods for policy compression in AEPL
Section 7.3 Comparison of AEPL with XACML and PTaCL
Section 7.4 Applications of AEPL to role-based access control and ACLs

Table 1.1: Contributions of the thesis

We demonstrate in Chapter 4, through minor modification of PTaCL, how

we can construct a canonically complete ABAC language. In Chapter 7, we

presented revised syntax and semantics for targets, allowing greater control

over evaluation of requests.

The second focus of this thesis is the underlying multi-valued logics of

ABAC languages [10, 12, 32, 45]. We utilise theoretical foundations based

on results of Jobe [24], and show how these concepts may be leveraged to

construct ABAC languages with desirable properties, such as functional and

canonical completeness. This is covered primarily in Chapters 4,5 and 6.

Thirdly, we investigate the syntax and semantics for automatically compu-

ting obligations in Section 4.5. While our attention is restricted to an abstract

set of obligations and we do not consider how conflicting obligations, or tempo-

ral constraints are handled, the syntax and semantics are necessary precursors

and pave the way for future work to explore the other issues.

Finally, a recurring theme throughout this thesis is the focus on policy

specification and composition, primarily from the viewpoint of a policy aut-

hor. We present extensive arguments that policy specification is challenging

in existing languages such as XACML and PTaCL. Engineering an arbitrary

policy using the operators specified in the given language is a non-trivial task,

and little support or guidance is given on this matter. To counteract this pro-

blem, we introduce the notion of policy tables, an intuitive, simple method for

specifying arbitrary policies, and build back end support behind this idea to

19

enable automatic conversion from policy table to machine-enforceable policy.

Chapters 4, 6 and 7 contribute the majority of this work.

1.4 Publications

In the duration of this thesis we have published a total of four peer-reviewed

papers: one at the International Workshop on Security and Trust Manage-

ment (STM) [14], two at the ACM Symposium on Access Control Models and

Technologies (SACMAT) [15, 16], and one at the ACM Conference on Data

and Application Security and Privacy (CODASPY) [17]. Chronologically lis-

ted:

• Crampton and Williams, “Obligations in PTaCL” [14], provides the basis

for Sections 4.5 – 4.6.

• Crampton and Williams, “On Completeness in Languages for Attribute-

Based Access Control” [15], provides the basis for Sections 3.2 – 3.5 and

Sections 4.2 – 4.3.

• Crampton and Williams, “Canonical Completeness in Lattice-Based

Languages for Attribute-Based Access Control” [17], provides the ba-

sis for Chapters 5 and 6.

• Crampton and Williams, “Attribute Expressions, Policy Tables and

Attribute-Based Access Control” [16], provides the basis for Chapter 7.

20

Chapter 2

Preliminaries

The purpose of this chapter is to familiarize the reader with the prerequisite

material on tree-structured attribute-based access control (ABAC) languages

and multi-valued logics (MVLs).

Section 2.1 introduces the basic structure and evaluation semantics for

targets and policies in tree-structured languages. We also introduce the notions

of obligations and indeterminacy, which are fundamental to the material in

Chapters 3 and 4. Section 2.2 introduces the XACML standard [35, 36, 37],

which will be referenced and used as a comparative language throughout this

thesis. We describe how rules, policies and policy sets are evaluated, and

provide a brief introduction to the rule- and policy-combining algorithms,

which are investigated in more detail in Chapter 3. In Section 2.3 we formally

define PTaCL, an ABAC language that we will analyse extensively in this

thesis, later we adapt and develop variants of PTaCL.

We conclude the chapter with an introduction to multi-valued logics, iden-

tifying how they are fundamentally related to many ABAC languages. We

present the theoretical foundations, based on work by Jobe [24], for characte-

rising properties of multi-valued logics, which will be applied throughout this

thesis.

2.1 Tree-structured languages

Informally, we say a language is tree-structured if a policy is specified by a

policy operator (decision combining algorithm) and a set of child policies. A

request is evaluated with respect to a policy by first computing a decision for

each of the child policies and then combining those decisions using the policy

operator (decision-combining algorithm).

More formally, we assume the existence of a set of requests, defined in

terms of attributes. Each policy specifies a target predicate defining, in terms

of attribute values, the set of requests to which a policy applies. A target

t is evaluated with respect to a request q, and returns either “no-match” or

“match”, denoted by 0m and 1m respectively. We write τq(t) ∈ {0m, 1m} to

21

indicate the result of evaluating target t with respect to request q, where

τq(t) =

1m if the target is applicable,

0m otherwise.

We do not discuss here how target applicability is determined; the reader is

referred to the literature for further details [12, 37]. Throughout this thesis we

will use these semantics for target evaluation, later adding a third evaluation

possibility ?m when discussing indeterminacy (in languages such as PTaCL

and XACML). An example of a simplistic target that contains only one name-

value pair is t = {(deparment, purchasing)}. We say this target is matched

if user who is in the purchasing department makes an access request, that is,

the user supplies the attribute name-value pair (department, purchasing) as

part of their request.

Let D be a set of authorization decisions. Typically, we assume D con-

tains the values 0, 1 and ⊥ representing “deny”, “allow” and “not-applicable”,

respectively. We call 0 and 1 conclusive decisions. Let ⊕ be an associative

binary operator defined on D and − be a unary operator defined on D, and

let p and p′ be policies. Then

• d is an atomic policy ;

• p⊕ p′ and −p are policies;

• (t, p) is a policy.

The first stage in policy evaluation for a request q is to determine whether

a policy is “applicable” to q or not. Every (well-formed) request q, allows us

to assign a truth value to the target t. Specifically, if t evaluates to 1m, we

say the associated policy is applicable; otherwise the policy is not applicable.

Then, writing ρq(p) to denote the decision assigned to policy p for request q,

we define:

ρq(d) = d;

ρq(−p) = −ρq(p);

ρq(p⊕ p′) = ρq(p)⊕ ρq(p′);

ρq(t, p) =

ρq(p) if τq(t) = 1m,

⊥ otherwise.

It is easy to see that we may represent a policy as a tree. Hence, we

describe policy languages of this nature as tree-structured. The first stage in

policy evaluation corresponds to labelling the nodes of the tree applicable or

not applicable. We then compute a decision for non-leaf nodes in the tree by

combining the decisions assigned to their respective children.

22

In the interests of clarity, we now demonstrate a simple policy expressed in

natural language, followed by an abstract policy represented as logical terms.

Consider the policy:

A user in the purchasing department is authorized to raise a pur-

chase order, on the condition that they located on-site.

We express the attributes from this policy this in the following targets:

• t1 = {(department,purchasing),(purchase order,raise)}

• t2 = {(location,offsite)}

Note that t2 uses the location value “offsite”, which we use here as syntactic

sugar for the logical inverse of “on-site”. (An alternative method would be

to define t2 = {(location,not(on-site)}.) Then we can define the following

policies:

p1 = (t1, 1),

p2 = (t2, 0),

p3 = p1 ⊕ p2.

When a user makes a request to this policy, they supply a set of attributes,

which are first evaluated against the targets in each policy. If the user provides

the two attribute name-value pairs (department,purchasing) and (purchase

order,raise) in their request, target t1 is matched. Likewise, if a user provides

an attribute value for location that is offsite (not on-site), then target t2 is

matched. Hence, policy p1 will return an allow decision, and p2 will return

a deny decision. As the intention is to deny requests which originate from

locations that are not on-site, the combination of p1 ⊕ p2 = 1 ⊕ 0 should

return a deny decision. If policy p2 had returned a not-applicable decision,

representing that a user is on-site, then the combination of p1 ⊕ p2 = 1 ⊕ ⊥
should return allow. We shall see later that XACML’s deny-override operator

implements these precise semantics. Visually, we can imagine this policy as a

tree, shown in Figure 2.1.

(t2, 0)(t1, 1)

⊕

Figure 2.1: Simple policy tree

Figure 2.2 shows the tree for the more complex, abstract policy(
t6,
(
t4,−

(
t3, (t1, 1)⊕1 (t2, 0)

)
⊕2 (t5, 0)

))
23

and the evaluation of that policy for a request q such that τq(ti) = 1m for all

i except i = 2.

(t2, 0)(t1, 1)

(t3,⊕1)

(t4,−) (t5, 0)

(t6,⊕2)

(a) Policy tree

(0m, 0)(1m, 1)

(1m,⊕1)

(1m,−) (1m, 0)

(1m,⊕2)

(b) Target evaluation

⊥1

1⊕1 ⊥

−(1⊕1 ⊥) 0

−(1⊕1 ⊥)⊕2 0

(c) Policy evaluation

Figure 2.2: Evaluating a policy

We will make use of the following terminology [11] when describing policy

(decision) operators.

Definition 2.1.1. Let ⊕ : D ×D → D be a policy operator. Then

• ⊕ is commutative if d⊕ d′ = d′ ⊕ d for all d ∈ D;

• ⊕ is idempotent if d ⊕ d = d for all d ∈ D, and quasi-idempotent if

d⊕ d = d for all d ∈ {0, 1};

• ⊕ is conclusive if d⊕ d′ ∈ {0, 1} for all d, d′ ∈ D, and quasi-conclusive

if d⊕ d′ ∈ {0, 1} for all d, d′ ∈ {0, 1};

• ⊕ is a ∪-operator if d⊕⊥ = d = ⊥⊕ d for all d ∈ D;

• ⊕ is a ∩-operator if d⊕⊥ = ⊥ = ⊥⊕ d for all d ∈ D;

• ⊕ is well-behaved if it is either a ∪- or an ∩-operator.

24

We say two policies p and p′ are equivalent, denoted by p ≡ p′, if ρq(p) =

ρq(p
′) for all requests q. We now briefly introduce the concepts of obligations

and error handling (indeterminacy) in the context of tree-structured ABAC

languages.

2.1.1 Obligations

In addition to the specification of access control requirements, such as which

users are allowed to access which objects, access control mechanisms can im-

pose obligation requirements that specify what actions a user or system is

obliged to perform. An obligation then, is a mandate on what must be carried

out before or after an access is approved or denied, and they are used to meet

formal requirements of systems such as non-repudiation [22, 23]. One example

of an obligation would be to log access to a resource when an access request

is made.

Usually, each access control policy will have associated obligations, rather

than having obligations as separate functions, so obligations may be thought

of as a function of the access request. Due to this relationship between access

control policies and obligations, methods for evaluating obligations alongside

policies have been proposed in the literature [3, 12, 29, 37]. We discuss methods

for computing obligations in more detail in Chapter 4.

2.1.2 Error handling

Given the distributed, connected nature of modern access control mechanisms,

it is important to consider scenarios where policy evaluation may fail. This

may occur for a number of reasons: (i) missing attributes in the request or

policy; (ii) network errors while attempting to retrieve policies or attributes;

(iii) division by zero during policy evaluation; and (iv) syntax errors in the re-

quest or policy. Broadly speaking, we refer to these cases as encountering “in-

determinacy”, representing policy evaluation is unsure on how to proceed. An

important aspect of authorization languages is how they handle indeterminacy,

and there are varying methods employed in the literature [11, 12, 29, 33, 37].

We present and review these methods in Chapters 3 and 4.

2.2 XACML

XACML [35, 36, 37] is a commonly used authorization language for imple-

menting attribute-based access control in the real world. XACML is a stan-

dardized XML-based language, currently in its 3rd version [37]. Due to its

widespread use, XACML has been the focus of a number of works in the litera-

ture [29, 34, 40], and is often used as a comparative language. Throughout this

section we will demonstrate why XACML may be viewed as a tree-structured

language.

25

We begin by formally defining the evaluation semantics for XACML rules,

policies and policy sets and introduce the rule and policy-combining algo-

rithms specified in the XACML standard. In this thesis we do not consider

XACML “conditions”, mostly because this notion is inadequately constrained

in XACML 3.0. Indeed, a condition can be any Boolean expression, including

arbitrarily complex functions, which in practice means that it is possible to

write a full program in the condition of a rule. In particular, the notion of

condition makes the notion of target redundant, because any target can be

expressed as a condition. The extent to which conditions are used in practice

is unclear and their generality means they are rarely, if ever, discussed in the

academic literature. Furthermore, during the preliminaries, we do not con-

sider indeterminacy in XACML. We dedicate a section of Chapter 3 to the

discussion and analysis of how XACML handles indeterminacy.

2.2.1 Rule, policy and policy set evaluation

An XACML rule is defined by a target and an effect : the target determines

whether a policy is “applicable” to a request;1 and the effect is either “deny”

or “permit”. For brevity, we write 0 and 1 to denote “deny” and “permit”,

respectively. An XACML policy is defined by a target, one or more rules and a

rule-combining algorithm: the target determines when a policy is “applicable”

to a request or not; and the decision returned for request q with respect to a

policy is obtained by computing a decision for q with respect to each rule, and

combining those decisions using the rule-combining algorithm.

More formally, for an XACML target t, we write τq(t) to indicate the result

of evaluating target t with respect to request q, where

τq(t) =

1m if the target is applicable,

0m otherwise.

We then write ρq(r) to denote the decision returned by evaluating rule r for

request q. An XACML rule may be represented as a pair (t, e), where t is a

target and e ∈ {0, 1} is the effect of the rule. Then we define

ρq(t, e) =

e if τq(t) = 1m,

⊥ otherwise.

where ⊥ denotes the “not-applicable” decision. An XACML policy may be

represented as a triple (t, A, r), where t is a target, A is a rule-combining

1We do not discuss how target applicability is determined; the reader is referred to the
XACML standard [37] for further details.

26

algorithm and r = 〈r1, . . . , rk〉 is a tuple of rules. Then we define

ρq(t, A, r) =

A(ρq(r1), . . . , ρq(rk)) if τq(t) = 1m,

⊥ otherwise.

An XACML policy set is a triple of the form (t, A, p), where p = 〈p1, . . . , pk〉 is

a tuple of policies, t is a target, and A is a policy-combining algorithm. Then

ρq(t, A, p) =

A(ρq(p1), . . . , ρq(pk)) if τq(t) = 1m,

⊥ otherwise.

In other words, an XACML policy set is evaluated in exactly the same way as

an XACML policy: (recursively) evaluate the “child” policies and then com-

bine the decisions. It it worth noting that the semantics for target evaluation

in XACML are similar to those of generic tree structured languages defined

in Section 2.1. In addition, the evaluation semantics for rules are identical to

those for “atomic policies” (with a target t).

2.2.2 Rule- and policy-combining algorithms

XACML 3.0 defines 11 rule-combining algorithms, summarized in Table 2.1.

XACML defines ordered and unordered versions of most of the algorithms and

also provides backward compatibility with previous versions of XACML [35,

36]. The one algorithm that is non-commutative (that is, the order of rule

evaluation matters) is first-applicable (fa).

Algorithm Ordered? Order-dependent eval?

Deny-overrides (do) No No
Permit-overrides (po) No No
Legacy Deny-overrides (ldo) No No
Legacy Permit-overrides (lpo) No No
Deny-unless-permit (dup) No No
Permit-unless-deny (pud) No No

Ordered-deny-overrides (odo) Yes No
Ordered-permit-overrides (opo) Yes No
Legacy Ordered-deny-overrides (lodo) Yes No
Legacy Ordered-permit-overrides (lopo) Yes No

First-applicable (fa) Yes Yes

Table 2.1: The XACML 3.0 rule-combining algorithms

The XACML rule-combining algorithms take an arbitrary number of inputs

but process the inputs sequentially. As such, an XACML rule-combining algo-

rithm can be thought of as a family of k-ary operators, k > 2, on the decision

set {0, 1,⊥}. It is convenient, in terms of formal exposition, to assume that a

decision-combining algorithm is implemented using binary decision operators.

27

do 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 1 ⊥

po 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 0 1 ⊥

dup 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 0 1 0

pud 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 1 1

fa 0 1 ⊥
0 0 0 0
1 1 1 1
⊥ 0 1 ⊥

(a) Decision tables

Operator Idempotent ∪-operator Commutative Conclusive

do, po Yes Yes Yes No
dup, pud No No Yes Yes
fa Yes Yes No No

(b) Properties

Figure 2.3: XACML rule-combining algorithms do, po, dup, pud and fa

(Thus, we would apply a binary decision operator k − 1 times to evaluate a

call to a decision-combining algorithm with k inputs.)

Any binary operator on the decision set {0, 1,⊥} can be represented as

a 3 × 3 array, as shown in Figure 2.3a for the deny-overrides (do), permit-

overrides (po), deny-unless-permit (dup), permit-unless-deny (pud), and first-

applicable (fa) operators. The decision tables for the ordered, unordered and

legacy versions of do, po, dup and pud are identical for the decision set {0, 1,⊥}.
Henceforth, we will treat the XACML rule-combining algorithms as decision-

combining binary operators, as defined in Figure 2.3a.

All five of the XACML decision operators in Figure 2.3a are ∪-operators

and quasi-conclusive (and thus well-behaved). Other properties of the XACML

decision operators are summarized in Figure 2.3b.

All of the XACML rule-combining algorithms have associated policy-

combining algorithms which have identical properties and produce the same

decision tables2, the only difference is that they act on policies as opposed

to rules. Thus, the features and properties shown in Figure 2.3 also hold

true for the XACML policy-combining algorithms. There is one additional

policy-combining algorithm – only-one-applicable – which does not have an

associated rule-combining algorithm. We do not consider this algorithm here

as it introduces a fourth indeterminate decision when combining decisions in

the set {0,⊥, 1}, and for reasons we will discuss in Chapter 3.

To summarise, we express the XACML rule-combining algorithms as (bi-

nary) decision operators on the set D = {0, 1,⊥}, corresponding to the decisi-

ons “deny”, “permit” and “non-applicable”, respectively. And we compute a

2For reference see Appendix C in the XACML standard [37].

28

k-ary operator by applying a binary operator k − 1 times. Hence, we assume

that XACML policies can be represented in the form (t, r ⊕ r′), where ⊕ is a

binary operator on D and

ρq(t, r ⊕ r′) =

ρq(r)⊕ ρq(r′) if τq(t) = 1m,

⊥ otherwise.

This representation of XACML policies is equivalent to the representation of

policies introduced in Section 2.1, thus justifying our classification of XACML

as a tree-structured language.

2.2.3 Architecture

The reference architecture for evaluating access requests forms a significant

portion of the XACML standard. We now provide a high level summary of

the XACML architecture, describing the key components and interactions.3

First, we describe the main components of the XACML architecture:

• The Policy Administration Point (PAP) is the administration interface,

which provides a means for authoring and deploying policies, and acts

as a repository for the access control policies.

• The Policy Enforcement Point (PEP) is the interface of the whole en-

vironment to the outside world. The PEP receives the access requests

and enforces the decision of the PDP with the help of the other main

components, and either permits or denies access.

• The Policy Decision Point (PDP) is the main decision point for access

requests. The PDP collects all the necessary attributes and carries out

the policy evaluation.

• The Policy Information Point (PIP) is the main point where attributes

for policy evaluation are retrieved, from internal and external sources.

• The Context Handler acts as an interface between the components listed

above.

When an access request is made by a user, it intercepted by the PEP.

The PEP then sends the request to the context handler, which transforms the

request (which may be in the format specific to the application environment)

into an XACML request comprising attributes and sends the request to the

PDP. Upon receiving a request, the PDP will look up the policies deployed on

it and establish which policies are applicable to the specific request. During

3The focus of this thesis is primarily on policy languages, rather than the architecture that
implements such languages. However, a basic understanding of how access control policies
are enforced will provide some benefit to the reader.

29

policy evaluation, the PDP may require additional attributes, and will occa-

sionally send attribute queries to the context handler. The context handler

will retrieve these attributes via the PIP, and return them to the PDP. The

PDP will then decide if the access request is allowed, denied, not-applicable

or report an error. This decision is returned to the PEP, which enforces the

decision and fulfils any obligations if they exist.

The major components in the XACML domain are shown in the data-flow

diagram of Figure 2.4.

Access
requestor

PDP

PAP

PEP

Context
handler

PIP

Subjects

Obligations
service

Resource

Environment

2. access
request

3. request 12. response

1. policy

4. request
notification

5. attribute
queries

10. attributes

11. response
context

6. attribute
query

8. attribute

7a. subject
attributes

9. resource
context

7b. environment
attributes

7c. resource
attributes

13. obligations

Figure 2.4: XACML data-flow model

2.3 PTaCL

PTaCL [12] is a tree-structured language, intended to provide a generic frame-

work for specifying target-based policy languages. Like XACML, it is defined

(without indeterminacy) over a three-valued decision set. Hence, PTaCL may

30

be used to provide a more formal point of comparison with XACML, thereby

facilitating the analysis of XACML and identifying weaknesses in its specifica-

tion. PTaCL defines a policy target language (PTL), for specifying targets in

terms of attributes (of users and resources), and a policy combining language

(PCL), for combining (the decisions associated with the evaluation of) sub-

policies. As previously mentioned, in this thesis we do not discuss how target

applicability is determined. In the remainder of this section we discuss the

policy combining language of PTaCL, the reader is referred to the literature

for further details on the policy target language of PTaCL [12].

2.3.1 Syntax and semantics.

PTaCL policies are defined inductively with respect to a set of policy decisions

D. We assume that D contains decisions 0 and 1, corresponding to “deny” and

“allow”, respectively. For now, we assume D = {0, 1,⊥}, where the decision

⊥ denotes that a policy is not applicable to a request. (We consider more

complex decision sets in Chapter 4). Then 0 and 1 are (atomic) policies.

Moreover, if p, p1 and p2 are policies and t is a target, then the following are

policies:

¬ p (negation) p1 ∧p p2 (join)

∼ p (deny-by-default) (t, p) (selection)

The semantics of a PTaCL policy are defined by applying the operators

¬, ∼ and ∧p (defined on the set of decisions) to the decisions returned by the

evaluation of sub-policies.4 The evaluation tables for ¬, ∼ and ∧p are shown

in Figure 2.5a.

d ¬ d ∼ d
0 1 0
⊥ ⊥ 0
1 0 1

∧p 0 ⊥ 1

0 0 0 0
⊥ 0 ⊥ ⊥
1 0 ⊥ 1

(a) ¬,∼ and ∧p

ρq(0) = 0;

ρq(1) = 1;

ρq(¬ p) = ¬ ρq(p);
ρq(∼ p) = ∼ ρq(p);

ρq(p1 ∧p p2) = ρq(p1) ∧p ρq(p2);

ρq(t, p) =

{
ρq(p) if τq(t) = 1m,

⊥ otherwise.

(b) Policy semantics

Figure 2.5: Decision operators and policy semantics in PTaCL

The unary operators ¬ and ∼ simply modify the decision: the former

switches the values of 0 and 1, leaving ⊥ unchanged; the latter transforms ⊥
to 0, leaving 0 and 1 unchanged. These operators are used to implement policy

negation and deny-by-default policies, respectively. The binary operator ∧p
4We use the subscript p to distinguish ∧p from other ∧ operators that will be used

throughout this thesis.

31

is strong conjunction in the Kleene three-valued logic [25]. It returns 0 if

at least one of the operands is 0, 1 if both operands are 1, and ⊥ otherwise.

(The operator ∧p may also be considered as the greatest lower bound operator

under the ordering 0 < ⊥ < 1.) Given a request q, we write ρq(p) to denote the

decision returned by policy p for request q. The semantics of PTaCL policies

are defined in Fig. 2.5b.

Any PTaCL policy may be represented as a policy tree, in which leaf nodes

are 0 or 1 decisions and internal nodes may be a target, one of the unary

operators ¬ or ∼, or the binary operator ∧p. We introduce a special target all

where

τq(all) = 1m for all requests q.

We assume that targets on the operators ¬ and ∼ always use the target all as

these operators only change decision values. Thus, we may assume that every

policy has the form (t, p). Figure 2.6a shows the policy tree representing the

policy

∼
(
t5,
(
¬(t3, (t1, 1) ∧p (t2, 0)

)
∧p (t4, 1)

))
.

Request evaluation may be described in terms of policy trees and comprises

two phases. The first phase evaluates the targets. The second phase propagates

the decisions of sub-policies up to the root of the policy tree using the policy-

combining operators at the internal nodes and the semantics defined in Fig. 2.5.

Consider the policy depicted in Fig. 2.6a and suppose that

τq(t1) = τq(t4) = τq(t5) = 1m and τq(t2) = τq(t3) = 0m.

The first phase of request evaluation results in the tree shown in Fig. 2.6b;

recall that the targets for ∼ and ¬ are all and thus necessarily evaluate to 1m.

The second phase of policy evaluation is shown in Fig. 2.6c. Note that the

evaluation of the sub-trees with roots t3 and t5 consider the combination of a

1 and ⊥ decision, and ⊥∧p 1 = ⊥. At the root, the ∼ operator converts the ⊥
decision into a 0 decision, which is the final decision returned for this policy.

PTaCL defines syntax and semantics for handling indeterminacy, that is,

errors encountered during target evaluation. Informally, when target evalua-

tion fails, PTaCL assumes that either τq(t) = 1m or τq(t) = 0m could have

been returned, and returns the unions of the (sets of) decisions that would

have been returned in both cases. We omit the formal definition, syntax and

semantics of indeterminacy in PTaCL in the preliminaries; we will cover these

in Chapter 4.

2.3.2 Additional operators

Crampton and Morisset showed that PTaCL is functionally complete [12]. In

practical terms, this means we can introduce new binary operators to combine

policies, which act as syntactic sugar, knowing that any such operator may be

32

(t2, 0)(t1, 1)

(t3,∧p)

(all,¬) (t4, 1)

(t5,∧p)

(all,∼)

(a) PTaCL policy tree

(0m, 0)(1m, 1)

(0m,∧p)

(1m,¬) (1m, 1)

(1m,∧p)

(1m,∼)

(b) Target evaluation

⊥1

⊥

⊥ 1

⊥

0

(c) Policy evaluation

Figure 2.6: Evaluating a PTaCL policy

constructed using the PTaCL operators. In particular, we define three new

operators: ∨p, po and do, where

d ∨p d′
def
= ¬((¬d) ∧p (¬d′));

d po d′
def
= (d ∨p (∼ d′)) ∧p ((∼ d) ∨p d′);

d do d′
def
= ¬((¬d) po (¬d′)).

It is easy to show that these operators have the evaluation tables shown in

Fig. 2.7. The operators po and do correspond to the XACML permit-overrides

and deny-overrides combining algorithms, respectively (over the 3-valued de-

cision set {0, 1,⊥}.

33

∨p 0 ⊥ 1

0 0 ⊥ 1
⊥ ⊥ ⊥ 1
1 1 1 1

po 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 0 1 ⊥

do 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 1 ⊥

Figure 2.7: Supplementary decision operators for PTaCL

2.4 Other notable tree-structured languages

We now briefly introduce other notable tree-structured languages in the lite-

rature that we will discuss and review throughout this thesis. Li et al. [29]

proposed a policy combining language (PCL), with the intention of providing

a formal method for specifying new policy-combining algorithms for langua-

ges such as XACML [37]. While XACML supports the specification of custom

combining algorithms, little to no help is given about the structure, syntax or

semantics that custom combining algorithms should use or conform to. The

choice is left entirely to the policy author, which can lead to policy misconfi-

gurations. PCL addresses this problem, providing semantics for constructing

additional policy combining algorithms through the use of policy combining

operators (binary policy operators) and linear constraints. However, Li et al.

admit that PCL is not fully expressive, that is, there are policy combining al-

gorithms that cannot be constructed using either policy combining operators

or linear constraints. This provides us with motivation to investigate ABAC

languages that are known to be functionally complete, such as PTaCL [12].

In Chapters 3 and 4, we restrict our attention to 3-valued ABAC languages;

primarily XACML and PTaCL. Later, in Chapters 5 and 6, we expand our

research to consider ABAC languages that contain four decisions. A number of

these languages are based on Belnap’s 4-valued logic [7], including PBel [10],

BelLog [45] and Rumpole [32]. We focus primarily on PBel, developed by

Bruns and Huth [10]. Like PTaCL, PBel is functionally complete, since the

policy operators in PBel are based on a logic that is known to be functionally

complete. Furthermore, PBel assumes a lattice-ordering on its decisions, in

contrast to the previously discussed 3-valued languages. We will discuss PBel

and Belnap logic in more detail in Chapter 5.

2.5 Multi-valued logics

Traditionally, logic systems contained only two truth values: true or false;

which correspond to our intuitive understanding of truth and falsity. Howe-

ver, the need to reason logically about systems that contain more than two

truth values became apparent, leading to the inception of multi-valued logics

(MVLs). Multi-valued logics then, are logical calculi in which there are more

than two possible truth values. The first multi-valued logics were proposed by

34

 Lukasiewicz [30], which included a third truth value “unknown”. Various work

in the literature extended Lukasiewicz’s work; perhaps the most well known

3-valued logics being Kleene’s logic [26] and Priest’s “Logic of Paradox” [38].

For now, we restrict our attention to 3-valued multi-valued logics, as both

PTaCL and XACML operate over a 3-valued decision set. We expand our

scope to more general multi-valued logics from Chapter 5 onwards.

Multi-valued logics are the fundamental “building blocks” for many ABAC

languages, and the choice of multi-valued logic plays a crucial role in establis-

hing properties of a new ABAC language. The choice of operators in ABAC

languages is important, since we can reason about the functional completeness

of a set of operators and truth values, and thus the functional completeness of

the associated language. This is because, in tree-structured languages, policies

are, essentially, terms in a logic-based formalism. For example, PTaCL is defi-

ned over the 3-valued decision set {0,⊥, 1}, and uses operators from Kleene’s

3-valued logic.

The main purpose of this section is to introduce the theoretical foundati-

ons, based on results of Jobe [24], for characterising properties of multi-valued

logics, such as canonical suitability, functional completeness, selection opera-

tors, normal form and canonical completeness. A number of the contributions

of this thesis will leverage the completeness properties of multi-valued logics

introduced by Jobe, and utilise them in the context in ABAC languages to

construct languages with desirable properties (in terms of completeness, ease

of policy specification and automatic generation of policies). Later in Chap-

ter 5, we will extend these concepts to lattice-based multi-valued logics. This

will allow us to analyse Belnap’s 4-valued logic [7], which forms the basis for a

number of ABAC languages including PBel [10], BelLog [45] and Rumpole [32].

2.5.1 Theoretical foundations of canonical completeness

Let L = (V,Ops) be a logic associated with a set of truth values V and a set

of logical operators Ops. We assume that V is a totally ordered set of m truth

values, {0, . . . ,m− 1}, with 0 < 1 < · · · < m − 1. We omit V and Ops when

no ambiguity can occur. We write Φ(L) to denote the set of formulae that can

be written in the logic L.

We say that L is canonically suitable if and only if there exist formulae

φmax and φmin of arity 2 in Φ(L) such that φmax(x, y) returns max {x, y} and

φmin(x, y) returns min {x, y}. If a logic is canonically suitable, we will write

φmax and φmin using infix binary operators as g and f respectively.

Example 2.5.1. Standard propositional logic with truth values 0 and 1, and

operators ∨ and ¬, representing disjunction and negation, respectively, is ca-

nonically suitable: φmax(x, y) is simply x ∨ y, while φmin(x, y) is ¬(¬x ∨ ¬y)

(that is, conjunction).

35

A function f : V n → V is completely specified by a truth table containing

n columns and mn rows. However, not every truth table can necessarily be

represented by a formula in a given logic L = (V,Ops). L is said to be

functionally complete if for every function f : V n → V , there is a formula

φ ∈ Φ(L) of arity n whose evaluation corresponds to the truth table.

A selection operator Sj
(a1,...,an)

(x1, . . . , xn) is an n-ary operator defined as

follows:

Sj
(a1,...,an)

(x1, . . . , xn) =

j if (x1, . . . , xn) = (a1, . . . , an),

0 otherwise.

We will write a to denote the tuple (a1, . . . , an) ∈ V n when no confusion can

occur. Note that S0
a is the same for all a ∈ V n, and S0

a(x) = 0 for all x ∈ V n.

Illustrative examples of unary and binary selection operators (for a 4-valued

logic) with minimal truth value 0 are shown in Figure 2.8.

x S2
0(x) S1

3(x)

0 2 0
1 0 0
2 0 0
3 0 1

y
S2
(1,1)(x, y) 0 1 2 3

x

0 0 0 0 0
1 0 2 0 0
2 0 0 0 0
3 0 0 0 0

Figure 2.8: Examples of selection operators in a 4-valued logic

Selection operators play a central role in the development of canonically

complete logics because an arbitrary function f : V n → V can be expressed

in terms of selection operators. Consider, for example, the function

f(x, y) =

1 if x = 0, y = 2,

2 if x = y = 1,

3 if x = 3, y = 0,

0 otherwise.

Then it is easy to confirm that

f(x, y) ≡ S1
(0,2)(x, y) g S2

(1,1)(x, y) g S3
(3,0)(x, y),

since S1
(0,2)(x, y) returns 1 if x = 0 and y = 2, and 0 otherwise, and so forth for

S2
(1,1)(x, y) and S3

(3,0)(x, y). (There is one selection operators for each “row” or

“line” in f(x, y).) Moreover, Sc
(a,b)(x, y) ≡ Sc

a(x) f Sc
b(y) for any a, b, c, x, y ∈

V . Thus,

f(x, y) ≡
(
S1
0(x) f S1

2(y)
)
g
(
S2
1(x) f S2

1(y)
)
g
(
S3
3(x) f S3

0(y)
)
.

36

In other words, we can express f as the “disjunction” (g) of “conjunctions”

(f) of unary selection operators.

More generally, given the truth table of function f : V n → V , we can write

down an equivalent function in terms of selection operators. Specifically, let

A = {a ∈ V n : f(a) > 0} ;

then, for all x ∈ V n,

g(x) =
j

a∈A
S
f(x)
a (x).

Simple inspection of g(x) confirms that this logical formula expressed in terms

of selection operators is equivalent the truth table of the function f : V n → V ,

that is

g(x) ≡ f(x).

Jobe established a number of results connecting the functional completeness

of a logic with the unary selection operators, summarized in the following

theorem.

Theorem 2.5.1 (Jobe [24, Theorems 1, 2; Lemma 1]). A logic L is functi-

onally complete if and only if each unary selection operator is equivalent to

some formula in L.

The proofs of Jobe’s results are by induction and constructive. Informally,

if each unary selection operator is equivalent to some formula in L, then we can

construct a formula (in L) for any selection operator; and if we can construct

a formula for any selection operator, then we can construct a formula for an

arbitrary truth table (function).

Definition 2.5.1. The normal form of formula φ in a canonically suitable

logic is a formula φ′ that has the same truth table as φ and has the following

properties:

• the only binary operators it contains are g and f;

• no binary operator is included in the scope of a unary operator;

• no instance of g occurs in the scope of the f operator.

In other words, given a canonically suitable logic L containing unary ope-

rators]1, . . . ,]`, a formula in normal form has the form

rj

i=1

sk

j=1

]i,jxi,j

where]i,j is a unary operator defined by composing the unary operators in

]1, . . . ,]`. In the usual 2-valued propositional logic with a single unary operator

(negation) this corresponds to disjunctive normal form.

37

Definition 2.5.2. A canonically suitable logic is canonically complete if every

unary selection operator can be expressed in normal form.

2.5.2 Example multi-valued logics

Having introduced the definitions for canonical suitability, functional comple-

teness and canonical completeness, we now discuss the relationships between

these properties for multi-valued logics. It is clear that a functionally com-

plete logic L is canonically suitable, as the existence of the formulae φmax

and φmin is implied by functional completeness. Intuition may suggest that

functional completeness also implies canonical completeness: since every pos-

sible function can be represented as a formulae in L, it should be possible

that there are equivalent formulae that are in normal form. However, the

existence of a normal form is not guaranteed by functional completeness, as

the following results will show. It is known that there are canonically suitable

3-valued logics that are: (i) not functionally complete [24, 30]; (ii) functionally

complete but not canonically complete [24, Theorem 4]; and (iii) canonically

complete (and hence functionally complete) [24, Theorem 6].

 Lukasiewicz [30] defined a 3-valued logic, which is not functionally com-

plete. S lupecki [44] extended this logic, showing Lukasiewicz’s logic could be

made functionally complete through the addition of one unary operator. The

decision set for Lukasiewicz’s extended logic L is {1, 2, 3} with total ordering

1 < 2 < 3, and operators defined in Figure 2.9. However, Jobe [24, Theorem

4] showed that the extended Lukasiewicz logic L is not canonically complete,

despite being canonically suitable and functionally complete.

x N(x) T (x)

1 3 2
2 2 2
3 1 2

(a) N and T

⊃ 1 2 3

1 3 3 3
2 2 3 3
3 1 2 3

(b) ⊃

Figure 2.9: Operators in Lukasiewicz’s logic L

As a result, Jobe defined a canonically complete 3-valued logic [24]. The

decision set for Jobe’s logic J is {1, 2, 3} with total ordering 1 < 2 < 3, and

operators defined in Figure 2.10. It is easy to establish that

xf y ≡ x ∧j y and xg y ≡ E2(E2(x) ∧j E2(y)).

Thus J is canonically suitable [24, Theorem 6]. Henceforth, we will write

x∨j y to denote E2(E2(x)∧j E2(y)). The normal form formulae for the unary

selection operators are shown in Figure 2.10b. (Note that S1
i is the same for

all i.) Thus J is functionally and canonically complete [24, Theorem 7].

38

x E1(x) E2(x)

1 2 3
2 1 2
3 3 1

∧j 1 2 3

1 1 1 1
2 1 2 2
3 1 2 3

(a) Operators

S1
i (x) x ∧j (E1 x) ∧j (E2 x)

S2
1(x) (E2E1 x) ∧j (E1 x)
S2
2(x) x ∧j (E2 x)
S2
3(x) (E1E2 x) ∧j (E1E2E1 x)

S3
1(x) (E1E2 x) ∧j (E2 x)
S3
2(x) (E2E1 x) ∧j (E1E2E1 x)
S3
3(x) x ∧j (E1 x)

(b) Normal forms for the unary selection operators

Figure 2.10: Jobe’s logic J

2.6 Summary and discussion

In this chapter we have laid the necessary theoretical foundations and intro-

duced the core concepts that will be explored and discussed throughout this

thesis. First, we defined the general syntax and semantics of tree-structured

ABAC languages, and introduced the notions of obligations and indetermi-

nacy, which are investigated extensively in Chapters 3 and 4.

Then, we introduced the XACML standard, which we will investigate in-

depth in the following chapter. In Chapter 3 we provide a comprehensive

review of XACML, covering the role of the indeterminate decision, redundan-

cies between the combining algorithms and ultimately show that XACML is

not functionally complete. We also introduced the tree-structured language

PTaCL, an ABAC language intended to provide a generic framework for speci-

fying target-based policy languages. In the duration of this thesis, we analyse

and modify PTaCL significantly, suggesting a number of alterations to improve

the overall functionality of the base PTaCL language.

Finally, we introduced multi-valued logics, and formally defined key con-

cepts based on results of Jobe [24], for characterising properties of multi-valued

logics, such as canonical suitability, functional completeness, selection opera-

tors, normal form and canonical completeness. These concepts are integral

to the work presented in this thesis, and enable us to leverage properties of

multi-valued logics to design tree-structured ABAC languages with desirable

properties.

39

Chapter 3

Completeness of XACML

XACML [35, 36, 37] is the most commonly used authorization language for

implementing attribute-based access control in the real world. Given its popu-

larity, the XACML standard has been the focus of a significant amount of work

in the literature [29, 34, 40]. A number of these highlight the various shortco-

mings of XACML, such as: the ambiguous behaviour of the “indeterminate”

decision, and the poorly defined and counter-intuitive semantics [29, 34]. The

main contribution of this chapter is to extend this work, showing that XACML

is not functionally complete and that the set of extended indeterminate values

is not a suitable method for handling errors in an unambiguous and uniform

way.

In the following section, we summarise the historical development and role

of the indeterminate decision in XACML, highlighting the undesirable be-

haviour that the indeterminate decision exhibits during policy evaluation in

XACML versions 1.0 and 2.0. In an attempt to fix these issues, XACML 3.0

introduces the extended indeterminate decision set. However, we argue that

this extended decision set is still inadequate, as it confuses the role of error

reporting with authorization decisions, and suffers from poorly defined seman-

tics. In Section 3.2 we prove there is significant duplication and redundancy

in the XACML 3.0 rule- and policy-combining algorithms. In particular, we

show only two XACML rule-combining algorithms are required to express all

of the XACML rule-combining algorithms. We then conduct a detailed in-

vestigation into the expressiveness of these algorithms, demonstrating that

XACML is not functionally complete in Section 3.3. We consider which bi-

nary operators can be constructed using the XACML operators in Section 3.4.

Finally, in Section 3.5 we briefly discuss the advantages of replacing the XA-

CML combining algorithms with the PTaCL operators, through the use of

custom combining algorithms to make XACML functionally complete.

We have published the majority of the work presented in Sections 3.2 –

3.5 [15].

40

3.1 Indeterminacy in XACML

We briefly introduced the indeterminate decision in Section 2.2, however we

now explore in more detail the evolution of the indeterminate decision through

versions 1.0 to 3.0 of the XACML standard.

3.1.1 Versions 1.0 and 2.0

The XACML 1.0 standard [35] introduces a fourth authorization decision “in-

determinate” (in addition to the standard allow, deny and not-applicable de-

cisions found in many access control languages), and the use of this decision

is continued in the XACML 2.0 standard [36]. The indeterminate decision,

which we denote by ?, is used to indicate that errors have occurred during

policy evaluation, meaning a decision could not be reached. There are four

combining algorithms defined in XACML 1.0 that use the indeterminate value:

• deny-overrides;

• permit-overrides;

• first-applicable;

• only-one-applicable.

The first three combining algorithms listed are defined for rules and policies,

while the latter is defined only for policies. XACML 2.0 defines two additional

combining algorithms, ordered versions of deny- and permit-overrides, whose

behaviour is identical to the unordered version with one exception: the order

in which the collection of rules (policies) is evaluated must match the order

listed in the policy (policy set).

In XACML versions 1.0 and 2.0 the combining algorithms for deny-

overrides and permit-overrides behave differently, dependent on whether they

are combining rules or policies. The rule-combining algorithms (RCA) and

policy-combining algorithms (PCA) differ with respect to how they handle

errors during evaluation. This is reflected in their use of the indeterminate

decision. When evaluating the combination of rules, the RCA looks at the

effect (decision) of the rule where an error occurred, and uses this in the

evaluation of subsequent rules. We represent the decision from a rule that

encounters an error which could have evaluated to 0 (1) by the notation ?0

(?1). These decisions are commonly referred to as “Indeterminate Deny” and

“Indeterminate Permit” respectively. We use the subscripts r and p to dif-

ferentiate the RCA and PCA versions of do and po. The decision tables for

deny-overrides, permit-overrides, first-applicable and only-only-applicable are

depicted in Figure 3.1.

Looking at the effect of a rule which encountered an error during evaluation

was the first attempt by XACML at using the “extended set of indeterminate

41

dor 0 1 ⊥ ?0 ?1
0 0 0 0 0 0
1 0 1 1 ? 1
⊥ 0 1 ⊥ ? ?
?0 0 ? ? ? ?
?1 0 1 ? ? ?

(a) Deny-overrides RCA

dop 0 1 ⊥ ?

0 0 0 0 0
1 0 1 1 0
⊥ 0 1 ⊥ 0
? 0 0 0 0

(b) Deny-overrides PCA

por 0 1 ⊥ ?0 ?1
0 0 1 0 0 ?
1 1 1 1 1 1
⊥ 0 1 ⊥ ? ?
?0 0 1 ? ? ?
?1 ? 1 ? ? ?

(c) Permit-overrides RCA

pop 0 1 ⊥ ?

0 0 1 0 0
1 1 1 1 1
⊥ 0 1 ⊥ ?
? 0 1 ? ?

(d) Permit-overrides PCA

fa 0 1 ⊥ ?

0 0 0 0 0
1 1 1 1 1
⊥ 0 1 ⊥ ?
? ? ? ? ?

(e) First-applicable

ooa 0 1 ⊥ ?

0 ? ? 0 ?
1 ? ? 1 ?
⊥ 0 1 ⊥ ?
? ? ? ? ?

(f) Only-one-applicable

Figure 3.1: XACML 1.0 and 2.0 combining algorithms

values”, which was formally defined in the XACML 3.0 standard [37]. Howe-

ver, in XACML versions 1.0 and 2.0 it is done on an ad hoc basis, the extended

indeterminate values ?0 and ?1 are only present during evaluation, they are

never returned as a final decision nor are they visible to the user. As a result,

information is lost by the reduction from ?0 and ?1 to the basic indeterminate

decision ?.

Furthermore, the definitions of dop and pop are not consistent with each

other. In dop no indeterminate decisions are returned by policy evaluation,

the algorithm is defined to take a “deny-by-default” approach if an indeter-

minate decision is encountered (final row and column of Figure 3.1b). On

the other hand, pop returns an indeterminate decision for the evaluations

? pop ⊥ = ⊥ pop ? = ? pop ?. There seems to be little sense in returning

an indeterminate decision, when dop, the “logical opposite” of pop does not.

Perhaps then, adopting the approach of dop, pop should return 1 instead of ?

for these evaluations. However, this approach is undesirable, as the combina-

tion of a not-applicable policy with a policy that encounters an error returns

a permit decision, which could be utilised by malicious actors. A malicious

actor may then attempt to force an error in policy evaluation (by supplying

42

incorrectly formed attributes for example) in conjunction with a policy that

they know will not be applicable, to gain a permit decision. Thus we suggest a

more conservative approach, adopting the “deny-by-default” approach of dop.

The idea of looking at the decision of a rule whose evaluation produced

an error, and using this decision in the subsequent evaluation is not new [11,

12]. Similar methods are employed as a way to allow policy evaluation to

“fail gracefully”. There are scenarios where encountering an error in policy

evaluation need not produce an error for the entire policy, it may still be

possible to reach a conclusive decision. Consider, for example, the policy

shown in Figure 3.2, which contains two rules r1 = (t1, 0) and r2 = (t2, 1), and

suppose that

τq(t1) = 1m and τq(t2) =?m.

(t2, 1)(t1, 0)

dor

(a) Policy tree

(?m, 1)(1m, 0)

dor

(b) Target evaluation

?10

0

(c) Policy evaluation

Figure 3.2: Example indeterminate deny-overrides policy

The first phase of request evaluation results in the tree shown in Fi-

gure 3.2b. The second phase of policy evaluation is shown in Figure 3.2c.

As the rule r2 encountered an error in evaluation and the contained effect

is permit, the rule returns the indeterminate permit value ?1. When this is

combined with 0 using dor, the policy returns 0. Hence, a conclusive decision

was reached, despite rule r2 producing an error. Furthermore, the decision re-

turned is the intuitively “correct” decision. If r2 had evaluated without issue,

it would return either 1 (if the rule was applicable) or ⊥ (if the rule was not-

applicable). In either case, we have 0 dor 1 = 0 dor ⊥ = 0, the same outcome

obtained from the evaluation which contained an error.

While the example presented in Figure 3.2 demonstrates the merit of the

indeterminate decision, there are cases when an unintended decision is retur-

ned. Li et al. [29] constructed an example which highlights the issue in ha-

ving different rule- and policy-combining algorithms defined for deny-overrides.

43

Consider the policy shown in Figure 3.3a and suppose that

τq(t1) = 0m and τq(t2) =?m and τq(t3) = 1m.

(t2, 1)(t1, 0)

dor (t3, 1)

dop

(a) Policy tree

(?m, 1)(0m, 0)

dor (1m, 1)

dop

(b) Target evaluation

?1⊥

? 1

0

(c) Policy evaluation

Figure 3.3: Example deny-overrides policy

The result from evaluating this policy is 0 (shown in Figure 3.3c), however

this is undesirable since the only deny rule (t1, 0) is not applicable, and there

is a policy (t3, 1) which permits the request. In addition, if (t2, 1) had evalu-

ated without error, it would return either 1 (if the rule was applicable) or ⊥
(if the rule was not applicable). In either case, the resulting policy evaluation

would return 1. The introduction of the indeterminate value causes this unde-

sirable behaviour, coupled with the fact that the rule- and policy-combining

algorithms for deny-overrides differ.

3.1.2 Version 3.0

As a result of the work by Li et al. [29] and other work in the literature [34]

highlighting the undesirable behaviour of the indeterminate decision ? and the

differing rule- and policy-combining algorithms, changes were made in the XA-

CML 3.0 standard [37]. An extended set of indeterminate values {?0, ?1, ?01}
was introduced, where

• ?0 – represents an indeterminate decision from a policy or rule which

could have evaluated to 0 but not 1;

• ?1 – represents an indeterminate decision from a policy or rule which

could have evaluated to 1 but not 0;

44

• ?01 – represents an indeterminate decision from a policy or rule which

could have evaluated to 1 or 0.

In addition to the introduction of the extended set of indeterminate values,

the deny- and permit-overrides rule- and policy-combining algorithms from

XACML versions 1.0 and 2.0 were deprecated to “legacy” versions. These

versions were only included to provide backwards compatibility with existing

systems, the use of these legacy algorithms is strongly discouraged. New

versions of deny- and permit-overrides where introduced, which made use of

the extended set of indeterminate values. The decision tables for the updated

algorithms are shown in Figure 3.4.

do 0 1 ⊥ ?0 ?1 ?01
0 0 0 0 0 0 0
1 0 1 1 ?01 1 ?01
⊥ 0 1 ⊥ ?0 ?1 ?01
?0 0 ?01 ?0 ?0 ?01 ?01
?1 0 1 ?1 ?01 ?1 ?01
?01 0 ?01 ?01 ?01 ?01 ?01

(a) Deny-overrides 3.0

po 0 1 ⊥ ?0 ?1 ?01
0 0 1 0 0 ?01 ?01
1 1 1 1 1 1 1
⊥ 0 1 ⊥ ?0 ?1 ?01
?0 0 1 ?0 ?0 ?01 ?01
?1 ?01 1 ?1 ?01 ?1 ?01
?01 ?01 1 ?01 ?01 ?01 ?01

(b) Permit-overrides 3.0

Figure 3.4: XACML 3.0 algorithms

However, the indeterminate decision is used in XACML 3.0 for more than

reporting errors. XACML uses the indeterminate value in two distinct ways:

1. as a decision returned (during normal evaluation) by the “only-one-

applicable” policy-combining algorithm; and

2. as a decision returned when some (unexpected) error has occurred in

policy evaluation.

In the second case, the indeterminate value is used to represent alternative

outcomes of policy evaluation (had the error not occurred). We believe that

the two situations described are quite distinct and require different policy se-

mantics. However, the semantics of indeterminacy in XACML are confused

because (i) the indeterminate value is used in two different ways, as described

above, and (ii) there is no clear and uniform way of establishing the values

returned by the combining algorithms when an indeterminate value is encoun-

tered.

Thus, in the remainder of this chapter we restrict the scope of the XA-

CML combining algorithms to the decision set {0,⊥, 1}, omitting the exten-

ded indeterminate values. In Chapters 5 and 6 we explore the use of a fourth

authorization decision representing a “conflict”, which can be used in ope-

rators such as only-one-applicable and unanimity. In addition, we propose

an alternative method to indeterminate decisions to handle errors in policy

45

evaluation, through the use of sets of decisions. Hence, we separate the two

scenarios discussed above, providing well-defined semantics for each, opposed

to the approach taken in the XACML standard.

3.2 Dependencies between the combining algo-

rithms

In this section, we investigate what decision operators can be constructed

using the XACML 3.0 combining algorithms. In doing so, we characterize

the expressive power of XACML policies. Having restricted the scope of the

XACML combining algorithms to the 3-valued decision set {0,⊥, 1}, we note

that the decision tables for the ordered, unordered and legacy versions of do,

po, dup and pud are identical for the decision set {0,⊥, 1} (see Section 2.2.2).

Hence, for investing the expressivity of the XACML combining algorithms,

we may restrict our attention to do, po, dup, pud and fa (and ignore the

ordered and legacy versions). We reiterate Figure 2.3 from Section 2.2.2 in

Figure 3.5 for ease of reference, as the results presented in this section will

rely on information contained in Figure 3.5.

do 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 1 ⊥

po 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 0 1 ⊥

dup 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 0 1 0

pud 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 1 1

fa 0 1 ⊥
0 0 0 0
1 1 1 1
⊥ 0 1 ⊥

(a) Decision tables

Operator Idempotent ∪-operator Commutative Conclusive

do, po Yes Yes Yes No
dup, pud No No Yes No
fa Yes Yes No No

(b) Properties

Figure 3.5: XACML rule-combining algorithms do, po, dup, pud and fa

We begin our investigation into dependencies with the following remark:

Remark 3.2.1. Any operator constructed using fa, po and do will be an idem-

potent ∪-operator, since x⊕⊥ = ⊥⊕x = x for ⊕ ∈ {fa, po, do}. A corollary of

this observation is that the operators do, po and fa are indistinguishable when

one of the arguments is ⊥.

This seems somewhat counterintuitive, creates redundancy, and also sug-

46

gests that combinations of XACML operators will tend to behave in similar

ways. In the rest of this section, we confirm these observations.

Interestingly, despite the fact that do and po are commutative operators,

it is possible to construct non-commutative operators by combining these two

operators. Specifically, we have the following, somewhat unexpected, result,

which asserts that the fa algorithm is redundant.

Proposition 3.2.1. For all rules r and r′,

r fa r′ ≡ r po (r do r′).

Proof. The proof follows by inspection of the decision table in Figure 3.6.

d1 d2 d1 do d2 d1 po (d1 do d2) d1 fa d2
0 0 0 0 0
0 1 0 0 0
0 ⊥ 0 0 0
1 0 0 1 1
1 1 1 1 1
1 ⊥ 1 1 1
⊥ 0 0 0 0
⊥ 1 1 1 1
⊥ ⊥ ⊥ ⊥ ⊥

Figure 3.6: Encoding fa using do and po

Remark 3.2.2. The ability to construct fa from do and po arises from the

fact that do and po do not obey the identity x ⊕ (y ⊗ z) = (x ⊕ y) ⊗ (x ⊕ z),
usually known as the distributive law. Specifically,

0 po (1 do⊥) = 0 po 1 = 1,whereas

(0 po 1) do (0 po⊥) = 1 do 0 = 0;

and

1 do (0 po⊥) = 1 do 0 = 0,whereas

(1 do 0) po (1 do⊥) = 0 po 1 = 1.

We now show that dup and pud are also redundant. We first define the

rules 1 and 0, where, for all requests q,

ρq(1) = 1 and ρq(0) = 0.

Rule 1 may be realized in XACML by defining a rule such that the rule is

applicable to every request and its effect is “permit”; rule 0 may be realized

47

in an analogous way. We can then define the unary operators deny-by-default

(dbd) and permit-by-default (pbd), where

dbd(r) ≡ (0 po r) and pbd(r) ≡ (1 do r).

Note that dbd and pbd may be viewed as unary operators on the decision

set {0, 1,⊥}, where dbd(x) = pbd(x) = x if x ∈ {0, 1}; dbd(⊥) = 0; and

pbd(⊥) = 1. We can use dbd and pbd to construct pud and dup.

Proposition 3.2.2. For all rules r and r′,

r pud r′ ≡ pbd(r do r′) and r dup r′ ≡ dbd(r po r′).

Proof. The proof for pud follows by inspection of the decision table in Fi-

gure 3.7a. A similar decision table for dup can be seen in Figure 3.7b.

d1 d2 d1 do d2 pbd(d1 do d2) d1 pud d2
0 0 0 0 0
0 1 1 0 0
0 ⊥ 1 0 0
1 0 0 0 0
1 1 1 1 1
1 ⊥ 1 1 1
⊥ 0 0 0 0
⊥ 1 1 1 1
⊥ ⊥ ⊥ 1 1

(a) pud using do and pbd

d1 d2 d1 po d2 dbd(d1 po d2) d1 dup d2
0 0 0 0 0
0 1 1 1 1
0 ⊥ 0 0 0
1 0 1 1 1
1 1 1 1 1
1 ⊥ 1 1 1
⊥ 0 0 0 0
⊥ 1 1 1 1
⊥ ⊥ ⊥ 0 0

(b) dup using po and dbd

Figure 3.7: Operator encodings

We have shown there is a significant amount of duplication and redundancy

between the 11 XACML rule-combining algorithms (defined in Table 2.1). In

particular, we have shown it is sufficient, for the purposes of constructing new

decision operators, to consider the decision operators do and po, together with

48

the constant rules 0 and 1, and the unary operators dbd and pbd.

3.3 Incompleteness

Any XACML policy set is constructed by combining XACML policies using

policy-combining algorithms. The decision obtained by evaluating an XACML

policy set is determined by the action of the policy-combining algorithm on

decisions. Given the way in which policy evaluation works in XACML, this is

equivalent to asking what functions can we build using {0,1, dbd, pbd, do, po}.
We have seen that do and po essentially act as logical AND and OR on the

set {0, 1}; and we have seen that we can define two unary operators (dbd and

pbd) for policies, which correspond to unary operators on {0, 1,⊥}.
There are two types of operators, likely to be useful in practice, that cannot

be constructed using the XACML operators.

• A ∩-operator ⊕ has the property that x ⊕ ⊥ = ⊥ ⊕ x = ⊥ for any

x ∈ {0, 1,⊥}. In this context, we do not make a conclusive decision

if at least one of the inputs is unknown. The operators do′ and po′ in

Figure 3.8 are examples of this type of operator.

• The second type of operator has the property that a conclusive decision

is returned whenever one is implied by at least one of the arguments. In

this context, ⊥ is interpreted as a value that could be either 0 or 1 but

is not known at the time of evaluation. Thus 1 po⊥ = ⊥ po 1 = 1, since

1 po x = x po 1 = 1 for any x ∈ {0, 1}; similarly 0 do ⊥ = ⊥ do 0 = 0.

The operators do′′ and po′′ in Figure 3.8 are examples of this type of

operator. Note that do′′ is equivalent to ∧p (the conjunction operator in

PTaCL).

do′ 0 1 ⊥
0 0 0 ⊥
1 0 1 ⊥
⊥ ⊥ ⊥ ⊥

do′′ 0 1 ⊥
0 0 0 0
1 0 1 ⊥
⊥ 0 ⊥ ⊥

po′ 0 1 ⊥
0 0 1 ⊥
1 1 1 ⊥
⊥ ⊥ ⊥ ⊥

po′′ 0 1 ⊥
0 0 1 ⊥
1 1 1 1
⊥ ⊥ 1 ⊥

Figure 3.8: Commutative, idempotent operators that cannot be constructed
using XACML operators

More formally, we have the following result.

Proposition 3.3.1. It is not possible to construct ∩-operators using the XA-

CML operators.

49

Proof. The proof follows from the following observations: (i) all the binary

XACML operators are ∪-operators; (ii) any combination of ∪-operators is

itself a ∪-operator (since x⊕⊥ = x for any x ∈ {0, 1,⊥} and any ∪-operator

⊕); (iii) the two unary operators pbd and dbd remove ⊥; and (iv) x⊕⊥ 6= ⊥
and ⊥⊕ x 6= ⊥ for any x ∈ {0, 1} for any ∪-operator ⊕. Thus it is impossible

to construct an operator in which x⊕⊥ = ⊥ for any x 6= ⊥.

Thus, we immediately have the following corollary.

Corollary 3.3.1. XACML is not functionally or canonically complete.

We have shown there is a significant amount of duplication and redundancy

in the XACML rule-combining algorithms. Specifically, only do and po are

required to express all 11 combining algorithms. We have also shown that

XACML is not functionally or canonically complete. In particular, there are

operators of practical relevance that cannot be constructed using the XACML

operators, and XACML does not permit a normal form representation for

policies. It is interesting to note that there is no way to negate policy decisions

in XACML. Quite apart from the general incompleteness of XACML, the

inability to negate decisions seems to be significant practical drawback to

XACML, as negation is a useful unary policy operator in practice.

We note that the result presented in Corollary 3.3.1 applies to a simplified

version of XACML, without indeterminate decisions or conditions, and exclu-

des the use of custom combining algorithms. Throughout this chapter we have

justified these assumptions: (i) the exclusion of the indeterminate decision is

based on the logic that it is used for conflicting purposes within XACML,

sometimes as a method for handling errors in policy evaluation, and someti-

mes as a core decision in combining algorithms; (ii) conditions in XACML are

inadequately restricted, a condition can be any Boolean expression, including

arbitrarily complex functions, which in practice means that it is possible to

write a full program in the condition of a rule; and (iii) the use of custom

combining algorithms needs to be carefully applied and used to avoid policy

misconfigurations.

3.4 Constructable binary operators

We now consider which binary operators can be constructed using the XACML

operators. We will write + and − to denote pbd and dbd, respectively, in order

to simplify the notation. There are four possible idempotent, ∪-operators

that can be constructed using the XACML operators: for all x ∈ D,x ⊕ x,

x ⊕ ⊥ and ⊥ ⊕ x are pre-determined; only 0 ⊕ 1 and 1 ⊕ 0 may vary. These

operators are do, po, fa and what we might call “last-applicable” (la).1 We

1Although fa (and hence la) is a redundant operator, we continue their use as a compact
way of expressing operators (and later families of operators) instead of the lengthy expressions
using do and po.

50

have r1 la r2 ≡ r2 fa r1, so we can construct each of these operators using the

XACML operators. The commutative, idempotent ∪-operators are do and po.

We now consider operators having the general form �1((�2 d1) ⊕ (�3 d2))
where �1, �2, �3 ∈ {−,+, “”} (“” is used to denote the absence of a unary

operator) and ⊕ ∈ {do, po, fa, la}. If either �2 or �3 are − or +, the application

of �1 has no effect as the operator (�2 d1) ⊕ (�3 d2) will be conclusive (since

� d ∈ {0, 1} and x ⊕ ⊥ = ⊥ ⊕ x = x for any ⊕ ∈ {do, po, fa, la} and any

x ∈ {0, 1}). This has the effect of limiting the number of possible operators of

this form. The possible choices for �1, �2, �3 and ⊕ are tabulated in Table 3.1,

which results in 44 quasi-idempotent operators.

�1 �2 �3 ⊕ Possible Ops

“” + 3 4 12
“” − 3 4 12
“” “” 2 4 8
3 “” “” 4 12

Table 3.1: Choices for �1, �2, �3 and ⊕

However, not all of these operators are unique, given the following equiva-

lences between operators.

Proposition 3.4.1. For any x, y ∈ {0, 1,⊥},

(−x) po y = x po (−y) = −(x po y) = (−x) po (−y);

(+x) po y = (+x) po (−y);

x po (+y) = (−x) po (+y);

(+x) do y = x do (+y) = +(x do y) = (+x) do (+y);

(−x) do y = (−x) do (+y);

x do (−y) = (+x) do (−y).

These results follow by inspection of the relevant decision tables. The

intuition behind the first three results is that 0 pox = ⊥pox for all x ∈ {0, 1};
an analogous observation holds for the second three.

Then we can construct the following operators using do and different com-

binations of the unary operators − and +:

x do0 y
def
= x do y x do1 y

def
= (−x) do (−y)

x do2 y
def
= (−x) do y x do3 y

def
= x do (−y)

x do4 y
def
= −(x do y) x do5 y

def
= +(x do y)

These operators comprise what we call the deny-overrides family of operators.

These operators are all distinct and operate on {0, 1} in exactly the same way

51

as do. Moreover,

0 doi ⊥ = ⊥ doi 0 = 0

for all i. They differ in their effect on elements in {1,⊥}, as shown in Fi-

gure 3.9. Notice that do5 is equivalent to three other operators (by Proposi-

tion 3.4.1). Note that do2 and do3 are not commutative.

do0 1 ⊥
1 1 1
⊥ 1 ⊥

do1 1 ⊥
1 1 0
⊥ 0 0

do2 1 ⊥
1 1 1
⊥ 0 0

do3 1 ⊥
1 1 0
⊥ 1 0

do4 1 ⊥
1 1 1
⊥ 1 0

do5 1 ⊥
1 1 1
⊥ 1 1

Figure 3.9: The family of deny-overrides operators

Analogously, we can define a family of six permit-overrides operators which

act on {1,⊥} in exactly the same way as the deny-overrides operators in

Figure 3.9. Therefore, in total, we can construct six quasi-idempotent deny-

overrides operators and six quasi-idempotent permit-overrides operators, of

which one is idempotent and four are commutative.

In a similar manner we can identify the first-applicable and last-applicable

families, consisting of operators obtained using fa and la respectively. We

observe the following equivalences between operators.

Proposition 3.4.2. For any x, y ∈ {0, 1,⊥}, � ∈ {−,+},

(�x) fa y = (�x) fa (−y) = (�x) fa (+y);

− (x fa y) = x fa (−y);

+ (x fa y) = x fa (+y);

x la (� y) = (−x) la (� y) = (+x) la (� y);

− (x la y) = (−x) la y;

+ (x la y) = (+x) fa y.

These results follow by inspection of the relevant decision tables. Unlike

the deny-overrides and permit-overrides families, we obtain only five distinct

operators for the first/last-applicable families. This is clear from the restricti-

ons placed on the decision tables, and follows immediately from the equiva-

lences in Proposition 3.4.1. Thus, in total, the 44 possible operators actually

represent 22 distinct binary operators. The 44 operators and their duplicate

forms are tabulated in Table 3.2.

Thus far, we only considered operators having the form

�1((�2 d1)⊕ (�3 d2)).

52

Op Construction Alternative forms

do0 x do y
do1 (−x) do (−y)
do2 (−x) do y (−x) do (+y)
do3 x do (−y) (+x) do (−y)
do4 −(x do y)
do5 +(x do y) (+x) do (+y), (+x) do y, x do (+y)

po0 x po y
po1 (+x) po (+y)
po2 (+x) po y (+x) po (−y)
po3 x po (+y) (−x) po (+y)
po4 −(x po y)
po5 +(x po y) (−x) po (−y), (−x) do y, x do (−y)

fa0 x fa y
fa1 (−x) fa y (−x) fa (−y), (−x) fa (+y)
fa2 (+x) fa y (+x) fa (−y), (+x) fa (+y)
fa3 −(x fa y) x fa (−y)
fa4 +(x fa y) x fa (+y)

la0 x la y
la1 x la (−y) (−x) la (−y), (+x) la (−y)
la2 x la (+y) (−x) la (+y), (+x) la (+y)
la3 −(x la y) (−x) la y
la4 +(x la y) (+x) la y

Table 3.2: Operator constructions and alternative forms

It is not obvious that these are the only forms that yield new, distinct binary

operators. These forms only contain single instances of each decision variable

d1 and d2, which raises the question of whether new operators can be con-

structed from forms which contain multiple instances of d1 and d2. Recall

the definition of fa (x fa y ≡ x po (x do y)), which is constructed using more

than one instance of x. We now investigate whether the inclusion of multiple

instances of d1 and d2 yields any further operators.

To answer this question, we developed a program with the aim of enumera-

ting all constructible binary operators by brute force (see Appendix A.1). The

program works by generating all operators that can be created by combining

other operators. The program generates all binary operators which have the

general form �x⊕M y where �,M∈ {−,+, “”} and ⊕ ∈ {do, po}. Note we omit

fa and la from the set of binary operators, as these operators (being expressible

in terms of do and po) will be generated automatically as we recursively cre-

ate operators. We initialize the array variables x = [0, 0, 0, 1, 1, 1,⊥,⊥,⊥] and

y = [0, 1,⊥, 0, 1,⊥, 0, 1,⊥]. We store the decision table of a binary operator

in a similar array variable. We generate the 3× 2× 3 = 18 decision tables for

operators of the form �x⊕M y, of which 6 are duplicates. We remove the du-

plicates, storing the decision tables for the remaining 12 operators in an array.

53

The process is repeated with each item in the array being reused as an input

for x and y in the general form of a binary operator. This second iteration

generates 122 × 18 = 2592 operators, of which 22 are distinct operators. We

once again reuse these operators as inputs for x and y, yielding the the same

22 distinct operators. As no new operators are generated, the program termi-

nates. The 22 operators discovered via exhaustive search correspond exactly

to the operators we constructed above. The decision tables for these operators

are listed in Figure 3.10.

To summarise, there are only 22 binary quasi-idempotent operators that

can be constructed from the XACML operators (of the 192 that are possible).

These operators fall into one of four families: (i) six do operators; (ii) six po

operators; (iii) five fa operators; and (iv) five la operators.

3.5 PTaCL operators

Crampton and Morisset [12] showed that the three-valued logic expressed over

the set {0, 1,⊥} and defined by the operators ∧p,¬ and ∼ (see Figure 2.5) is

functionally complete. Essentially, they proved that the PTaCL operators

correspond to the operators of a logic that was known to be functionally

complete.

Given that PTaCL is functionally complete, there appears to be a good

case for using the PTaCL operators in a language like XACML. The unary

operator ∼ is already implicitly defined in XACML (as dbd), thus we only

need to consider adding ∧p and ¬ to the minimal set of XACML combining

algorithms {do, po}. (Recall fa, pud and dup can be defined in terms of do

and po.) It is easy to see that we cannot achieve functional completeness by

adding just ¬ or just ∧p to the set of XACML operators. In the case of ¬,

we would still be unable to construct ∩-operators, as there is still no operator

that can change a conclusive decision into ⊥. On the other hand, if we include

∧p but not ¬, we are unable to reverse the 0 and 1 decisions. In short, we must

include both operators if we wish to make XACML functionally complete.

Given that PTaCL is functionally complete anyway, it seems pointless to

provide po or do (nor any of the other 10 XACML operators). In particular,

recall the following operators defined in Section 2.3.2:

d ∨p d′
def
= ¬((¬d) ∧p (¬d′));

d po d′
def
= (d ∨p (∼ d′)) ∧p ((∼ d) ∨p d′);

d do d′
def
= ¬((¬d) po (¬d′)).

In other words, there appears to be a good case, at least from the perspective of

functional completeness, for defining only three policy operators in an ABAC

language such as XACML: negation, deny-by-default, and a form of deny-

54

do0 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 1 ⊥

do1 0 1 ⊥
0 0 0 0
1 0 1 0
⊥ 0 0 0

do2 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 0 0

do3 0 1 ⊥
0 0 0 0
1 0 1 0
⊥ 0 1 0

do4 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 1 0

do5 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 1 1

(a) Deny-overrides family

po0 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 0 1 ⊥

po1 0 1 ⊥
0 0 1 1
1 1 1 1
⊥ 1 1 1

po2 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 1 1 1

po3 0 1 ⊥
0 0 1 1
1 1 1 1
⊥ 0 1 1

po4 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 0 1 0

po5 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 0 1 1

(b) Permit-overrides family

fa0 0 1 ⊥
0 0 0 0
1 1 1 1
⊥ 0 1 ⊥

fa1 0 1 ⊥
0 0 0 0
1 1 1 1
⊥ 0 0 0

fa2 0 1 ⊥
0 0 0 0
1 1 1 1
⊥ 1 1 1

fa3 0 1 ⊥
0 0 0 0
1 1 1 1
⊥ 0 1 0

fa4 0 1 ⊥
0 0 0 0
1 1 1 1
⊥ 0 1 1

(c) First-applicable family

la0 0 1 ⊥
0 0 1 0
1 0 1 1
⊥ 0 1 ⊥

la1 0 1 ⊥
0 0 1 0
1 0 1 0
⊥ 0 1 0

la2 0 1 ⊥
0 0 1 1
1 0 1 1
⊥ 0 1 1

la3 0 1 ⊥
0 0 1 0
1 0 1 1
⊥ 0 1 0

la4 0 1 ⊥
0 0 1 0
1 0 1 1
⊥ 0 1 1

(d) Last-applicable family

Figure 3.10: Constructible Binary operators in XACML

55

overrides that only returns 1 when both arguments are 1.

It would be easy to write three custom XACML combining algorithms to

implement the PTaCL operators. (The front-end of an XACML-based system

could continue to expose specific algorithms (such as the usual deny-overrides

and permit-overrides), if required by the application, but these can be com-

piled down into the three basic operators.) More complex policy-combining

algorithms can be constructed, as required, from the three basic operators. We

explore this in more detail in Chapter 6, demonstrating how we may leverage

the well-defined parts of the XACML architecture and combine these with a

functionally complete set of operators.

3.6 Summary and discussion

We have presented a number of shortcomings in the XACML standard in

this chapter. First, we summarised the historical development and role of

the indeterminate decision in XACML, originally intended as a way to handle

errors in policy evaluation. However, the indeterminate decision is used for

more than error handling, there are instances where it is used as a core policy

decision where no errors have been encountered during evaluation. We believe

this confuses the role of error handling and policy decisions, and is a symptom

of poorly defined semantics.

Next, we highlighted various redundancies between the combining algo-

rithms in XACML. In doing so, we characterise the expressive power of XA-

CML, showing that XACML is not a functionally complete ABAC language.

There are several policy operators including negation which cannot be expres-

sed in XACML without the use of custom combining algorithms, which we

believe is a significant drawback for the language.

In the interests of completeness, we demonstrated which binary policy

operators can be constructed in XACML. Ultimately, after identifying various

equivalences and through the use of a brute force algorithm, we showed only

22 quasi-idempotent operators can be constructed from the XACML operators

(of a possible 192).

Finally, we argued for the replacement of the XACML combining algo-

rithms with operators from an ABAC language that is known to be functio-

nally complete, PTaCL. In doing so, we are able to leverage the XACML ar-

chitecture and construct any policy operator using the functionally complete

set {∧p,¬,∼}. However, it is still far from obvious how one would express an

arbitrary policy as a policy defined using the PTaCL operators. We consider

this issue in more detail in the following chapter.

56

Chapter 4

A Canonically Complete

3-valued PTaCL

One of the main difficulties with using a tree-structured language is writing

the desired policy using the operators provided by the given language. In

particular, if it is not possible to express a policy using a single target and

decision, the policy author must engineer the desired policy by combining sub-

policies using the set of operators specified in the given language. This is a

non-trivial task, in general. Moreover, in XACML it may be impossible to

write the desired policy due to its functional incompleteness. Thus, a policy

author may be forced to write a policy that approximates the desired policy,

which may lead to unintended or undesirable decisions for certain requests.

An alternative approach, supported by XACML, is to define custom com-

bining algorithms. However, there is no guarantee that the addition of a new

combining algorithm will make XACML functionally complete. Thus, more

and more custom algorithms may be required over time. This, in turn, will

make the design decisions faced by policy authors ever more complicated, the-

reby increasing the chances of errors and misconfigurations.

In other words, we believe it is preferable to define a small number of ope-

rators having unambiguous semantics and providing functional completeness.

A functionally complete ABAC language, such as PTaCL, can be used to con-

struct any conceivable policy using the operators provided by the language.

However, policy authors still face the challenge of finding the correct way to

combine sub-policies using those operators to construct the desired policy.

For example, PTaCL defines three policy operators ¬,∼ and ∧p. To ex-

press XACML’s deny- and permit-overrides in PTaCL requires significant ef-

fort. In Section 2.3.2 we showed that:

d po d′ ≡ (d ∨p (∼ d′)) ∧p ((∼ d) ∨p d′), and

d do d′ ≡ ¬((¬d) po (¬d′)).

The operators po and do are equivalent to the permit- and deny-overrides

57

policy-combining algorithms in XACML. As can be seen, the definitions of

these operators in terms of the PTaCL operators are complex, and, more

generally, it is a non-trivial task to derive such formulae.

We believe there will be, perhaps many, situations where the policy writer

knows what decision should be returned for each authorization request, but

is unable to construct the desired policy using the operators provided by the

policy language. As a simple example, suppose we have policies defined by

the tables in Figure 4.1. Here we are assuming there are two sub-policies P1

and P2, whose targets partition the set of all authorization requests. The rows

represent values that are returned by evaluating P1, while the columns repre-

sent values that are returned by evaluating P2. Thus, if P1 and P2 evaluate to

0 and 1, respectively, the final result should be 1 if the policies are combined

using ⊕1 and ⊥ if combined using ⊕2.

⊕1 0 ⊥ 1

0 0 0 1
⊥ 0 ⊥ 1
1 1 1 1

⊕2 0 ⊥ 1

0 0 0 ⊥
⊥ 0 ⊥ ⊥
1 ⊥ ⊥ 1

Figure 4.1: Two combining operators for policies

Since PTaCL is functionally complete, it is possible, in principle, to con-

struct the policies P1⊕1P2 and P1⊕2P2 by combining copies of P1 and P2 using

the PTaCL operators {¬,∼,∧p}. It is also possible in XACML to define cu-

stom policy-combining algorithms to directly construct ⊕1 and ⊕2. However,

it would be useful, both in theory and in terms of implementation, to develop

an authorization language which is functionally complete, like PTaCL, and

which enables a policy writer to write down any desired policy directly using

the operators of the language. In propositional logic, for example, one can

use the truth table for an arbitrary Boolean formula to write down a logically

equivalent formula in disjunctive normal form. In short, in this chapter we

wish to develop a policy authorization language that has a “normal form” in

which any desired policy can be expressed.

In order to do this, we apply concepts introduced by Jobe [24] (see

Section 2.5.1) in the study of multi-valued logics to the development of a

policy language for attribute-based access control. The functional complete-

ness of PTaCL implies that every unary selection operator has an equivalent

formula in PTaCL. However, it is not clear that every unary selection operator

has an equivalent formula in PTaCL that is in normal form. Faced with this

issue, we can adopt one of two approaches:

• We could try to determine whether each selection operator does indeed

have an equivalent PTaCL formula that is in normal form, thus establis-

hing that PTaCL is canonically complete.

58

• Alternatively, we can ask whether the PTaCL operators could be repla-

ced with the operators from a logic that is known to be functionally and

canonically complete.

In the next section, we explore the first option, ultimately showing that

PTaCL is not a canonically complete ABAC language. Following this, in

Section 4.2, we investigate the second option, replacing the PTaCL operators

with the operators from Jobe’s logic J , which is known to be canonically com-

plete. We develop a variant of PTaCL, denoted by PTaCL<
3 , and illustrate

how this language addresses the problems faced in policy specification for lan-

guages like XACML and PTaCL discussed above. In Section 4.4 we introduce

a method for handling indeterminacy in PTaCL<
3 , which uses decision sets

to allow policy evaluation to “fail gracefully” and present a comparison with

XACML. Finally, we take inspiration from the XACML standard and formally

define syntax and semantics for evaluating obligations in PTaCL<
3 .

We have published the majority of the work presented in Sections 4.2 –

4.3 [15], and Sections 4.5 – 4.6 [14].

4.1 Completeness of PTaCL

We start by exploring the first option; determining whether or not PTaCL

is canonically complete. Recall that PTaCL is defined on the decision set

{0,⊥, 1}, and has three operators {¬,∼,∧p}, defined in Figure 4.2. Canonical

suitability for a 3-valued logic, depends on the ordering chosen on the set

of truth values. Henceforth, we will assume a total ordering 0 < ⊥ < 1.

This assumption is justified by the behaviour of ∧p, which acts as a greatest

lower bound operator with this ordering. For brevity, we denote the three

valued decision set {0,⊥, 1} with total ordering 0 < ⊥ < 1 by 3. Hence, we

may formally represent the “PTaCL logic” as the logic L(3, {¬,∼,∧p}), and

explore whether this logic is canonically complete or not.

d ¬ d ∼ d
0 1 0
⊥ ⊥ 0
1 0 1

(a) ¬ and ∼

∧p 0 ⊥ 1

0 0 0 0
⊥ 0 ⊥ ⊥
1 0 ⊥ 1

(b) ∧p

Figure 4.2: Decision operators in PTaCL

It follows immediately from the functional completeness of {¬,∼,∧p} that

L(3, {¬,∼,∧p}) is canonically suitable. Indeed, it is trivial to show that

PTaCL is canonically suitable. Recall the following equivalence

x ∨p y = ¬(¬x ∧p ¬ y).

59

Canonical suitability follows immediately, since

xf y = x ∧p y and xg y = x ∨p y.

As 0 is the minimum truth value in the total ordering 3, the n-ary selection

operator Sj
a for 3 is defined by the following function:

Sj
a(x) =

j if x = a,

0 otherwise.

Functional completeness also implies all unary selection operators can be

expressed as formulae in the logic L(3, {¬,∼,∧p}). However, we have the

following result, which proves that PTaCL is not canonically complete.

Proposition 4.1.1. L(3, {¬,∼,∧p}) is not canonically complete.

Proof. It is impossible to represent all unary selection operators in normal

form. The statement follows from the following observations: (i) PTaCL defi-

nes two unary operators ¬ and ∼; (ii) the only binary operators that may be

used in normal form are ∧p (f) and ∨p (g); (iii) for any operator ⊕ ∈ {∧p,∨p}
we have 0 ⊕ 1 = 1 ⊕ 0 6= ⊥; and (iv) for any operator � ∈ {¬,∼} we have

� 0 6= ⊥ and � 1 6= ⊥. Thus it is impossible to construct a unary operator of

the form S⊥d for any d 6= ⊥.

4.2 PTaCL with Jobe’s logic

Having established that PTaCL is not canonically complete, we now investi-

gate the latter option, that is, replacing the operators in PTaCL with operators

from a canonically complete logic. In Section 2.5.2 we introduced Jobe’s logic

J , a canonically complete 3-valued logic. The decision set for Jobe’s logic J
is {1, 2, 3} with total ordering 1 < 2 < 3, and operators defined in Figure 4.3.

x E1(x) E2(x)

1 2 3
2 1 2
3 3 1

(a) E1 and E2

∧j 1 2 3

1 1 1 1
2 1 2 2
3 1 2 3

(b) ∧j

Figure 4.3: Operators in Jobe’s logic J

Using the operators in Jobe’s logic J as a replacement for the operators in

PTaCL is an intuitively reasonable choice for a number of reasons. Jobe’s logic

J and PTaCL both operate over a 3-valued decision set, and both assume a

total ordering on the set of decisions. In fact, two of the operators defined in

60

J and PTaCL are equivalent under the bijection 1→ 0, 2→ ⊥, 3→ 1:

x ∧j y ≡ x ∧p y and E2(x) ≡ ¬x.

Likewise, the decisions sets and ordering are equivalent under this bijection.

The only difference is in terms of the other unary operators, E1 and ∼. These

intuitions lead us to believe that Jobe’s logic J provides a suitable basis for a

canonically complete language for specifying ABAC policies. It it worth noting

that PTaCL was defined directly from Jobe’s logic J , however the operator

∼ was chosen instead of E1 as it had an intuitive use in ABAC policies; as a

deny-by-default operator for policies, and as a must-not-be-present operator

for targets. However, as we showed in Proposition 4.1.1, by choosing ∼, the

canonical completeness of PTaCL was sacrificed.

Thus, we now define a variant of PTaCL, denoted by PTaCL<
3 , which uses

Jobe’s logic as a basis. In regards to the notation, 3 represents the decision set

{0,⊥, 1} and < represents the total ordering. We use this notation throughout

this thesis, and it is intended to easily distinguish variants PTaCL based on

their (i) decision set; and (ii) ordering on the decision set. Later, in Chapter 6,

we define a variant of PTaCL in which the decision set is partially ordered,

and denote this by the notation PTaCL6.

We define the set of operators for PTaCL<
3 to be {¬, ‡,∧p}, where ‡ is

equivalent to E1 from Jobe’s logic J . The evaluation tables for ¬, ‡ and ∧p
are shown in Figure 4.4a. The PTaCL<

3 language, defines atomic policies and

policies in exactly the same way as PTaCL. That is, an atomic policy has the

form (t, d), where t is a target and d ∈ {0, 1}. The semantics of PTaCL<
3

policies are defined in Figure 4.4b.

d ¬ d ‡ d
0 1 ⊥
⊥ ⊥ 0
1 0 1

∧p 0 ⊥ 1

0 0 0 0
⊥ 0 ⊥ ⊥
1 0 ⊥ 1

(a) ¬, ‡ and ∧p

ρq(d) = d;

ρq(¬ p) = ¬ ρq(p);
ρq(‡ p) = ‡ ρq(p);

ρq(p ∧p p′) = ρq(p) ∧p ρq(p′);

ρq(t, p) =

{
ρq(p) if τq(t) = 1m,

⊥ otherwise.

(b) Policy semantics

Figure 4.4: Decision operators and policy semantics in PTaCL<
3

Of course, given the function completeness of PTaCL, it is possible to

define the operator ‡ in terms of the PTaCL operators {¬,∼,∧p}. Indeed, we

identify the following equivalence

‡x ≡ (x ∨p ⊥) ∧p (∼(x ∨p ¬x)).

61

We could then substitute the above equivalence for E1 (‡) in Figure 2.10b, to

obtain representations for the unary selection operators in PTaCL, expressed

as operators from the set {¬,∼,∧p}. However, the unary selection operators

would not be in a normal form. Recall, the definition of the normal form of a

formula φ requires that no binary operator is included in the scope of a unary

operator. This is violated by the term ∼(x∨p¬x)). Hence, despite the ability

to define ‡ in PTaCL, PTaCL is not canonically complete (confirming our

previous result and justifying our replacement of ∼ with ‡, and the formation

of PTaCL<
3).

4.3 The value of canonical completeness

We now illustrate why having a normal form may make it simpler to construct

ABAC policies. Specifically, we represent the operator ⊕2 from Figure 4.1

in normal form using the PTaCL<
3 operators. To reiterate, it is impossible

to represent ⊕2 as any combination of XACML operators (without defining

custom combining algorithms) and it is difficult to see how to express ⊕2 using

the PTaCL operators (although it is theoretically possible to do so).

Using the truth table in Figure 4.1 and by definition of the selection ope-

rators and g, we have x⊕2 y is equivalent to

S0
(0,0)(x, y) g S0

(0,⊥)(x, y) g S⊥(0,1)(x, y)g

S0
(⊥,0)(x, y) g S⊥(⊥,⊥)(x, y) g S⊥(⊥,1)(x, y)g

S⊥(1,0)(x, y) g S⊥(1,⊥)(x, y) g S1
(1,1)(x, y).

Moreover, Sc
(a,b)(x, y) = Sc

a(x) f Sc
b(y). Hence, x⊕2 y is equivalent to

(
S0
0(x) f S0

0(y)
)
g
(
S0
0(x) f S0

⊥(y)
)
g
(
S⊥0 (x) f S⊥1 (y)

)
g(

S0
⊥(x) f S0

0(y)
)
g
(
S⊥⊥(x) f S⊥⊥(y)

)
g
(
S⊥⊥(x) f S⊥1 (y)

)
g(

S⊥1 (x) f S⊥0 (y)
)
g
(
S⊥1 (x) f S⊥⊥(y)

)
g
(
S1
1(x) f S1

1(y)
)
.

Each unary selection operator Sb
a can be represented in terms of the ope-

rators {¬, ‡,∧p}. We have derived expressions in normal form for the unary

selection operators Sb
a, which are shown in Figure 4.5. Note that S0

a(x) = 0

for all a, x ∈ {0,⊥, 1}.
Hence, we may replace each instance of Sb

a with the equivalent expression

in terms of {¬, ‡,∧p}, resulting in a formula in normal form for ⊕2. (We omit

the full expression of ⊕2 in terms of {¬, ‡,∧p} here, as it is lengthy and can

be produced via simple substitution.)

Of course, one would not usually construct the normal form by hand, as we

have done above. Indeed, it is easy to develop an algorithm that would con-

62

S0
i (x) x ∧p (‡x) ∧p (¬x)

S⊥0 (x) (‡x) ∧p (¬‡x)
S⊥⊥(x) x ∧p (¬x)
S⊥1 (x) (‡ ¬x) ∧p (¬‡¬x)

S1
0(x) (¬x) ∧p (‡ ¬x)
S1
⊥(x) (¬‡x) ∧p (¬‡¬x)
S1
1(x) x ∧p (‡x)

Figure 4.5: Normal forms for the unary selection operators

struct the normal form of a policy from its decision table. Moreover, since our

language is a tree-structured language, having exactly the same operational

semantics as XACML and PTaCL, we can implement the PTaCL<
3 operators

as custom XACML combining algorithms and then specify XACML policies

using these operators. Thus we can readily obtain a functionally and cano-

nically complete policy language, whose policies can be embedded in the rich

framework for ABAC provided by XACML (in terms of its languages for re-

presenting targets and requests) and its enforcement architecture (in terms

of the policy enforcement, policy decision and policy administration points).1

We provide details and an analysis of this algorithm, and demonstrate how

the XACML architecture may be leveraged in Chapter 6.

Using the structure and evaluation strategy for PTaCL policies and the

operators {¬, ‡,∧p} makes it possible to define arbitrary policies and to re-

present them in normal form. We believe that this provides a number of

advantages, in addition to those mentioned above, which we now briefly dis-

cuss. First, it is known that policy misconfigurations can be costly, both in

terms of data leakage (when actions that should not be possible are authori-

zed by the policy) and in terms of administration (when actions that should

be possible are not authorized and the policy needs to be updated) [5]. We

believe that the use of a canonically complete policy language is likely to make

policy specification easier to understand for policy authors, thereby reducing

the number of errors and policy misconfigurations. We investigate this further

in Chapter 7.

Second, policies in normal form may be more efficient to evaluate. Given a

formula in a 3-valued logic expressed in normal form, any literal that evaluates

to 0 causes the entire clause to evaluate to 0, while any clause evaluating to 1

means the entire formula evaluates to 1. We may also be able to apply some of

the equivalences described by Jobe to minimize the size of a formula in normal

form, thereby further reducing the effort required to evaluate it.

1This is contrast to proposals in the literature, which require the use of non-standard
components, such as multi-terminal binary decision diagrams [40] or non-deterministic finite
automata [29].

63

4.4 Indeterminacy in PTaCL<
3

Since PTaCL and PTaCL<
3 differ only in the choice of the unary operators

∼ and ‡, it is trivial to extend the method for handling indeterminacy in

PTaCL to PTaCL<
3 . PTaCL<

3 handle errors in target evaluation (and thus

indeterminacy) using sets of possible decisions [11, 12, 29]. Informally, when

target evaluation fails, denoted by τq(t) = ?m, PTaCL<
3 assumes that either

τq(t) = 1m or τq(t) = 0m could have been returned, and returns the union of

the (sets of) decisions that would have been returned in both cases. The formal

semantics for policy evaluation in PTaCL<
3 in the presence of indeterminacy

are defined in Figure 4.6.

ρq(d) = {d} ;

ρq(¬ p) = {¬ d : d ∈ ρq(p)} ;

ρq(‡ p) = {‡ d : d ∈ ρq(p)} ;

ρq(p1 ∧p p2) = {d1 ∧p d2 : di ∈ ρq(pi)} ;

ρq(t, p) =

ρq(p) if τq(t) = 1m,

{⊥} if τq(t) = 0m,

{⊥} ∪ ρq(p) if τq(t) = ?m.

Figure 4.6: Semantics for PTaCL<
3 with indeterminacy

The semantics for the operators {¬, ‡,∧p} operate on sets, rather than

single decisions, in the natural way. The unary operators ¬ and ‡ are applied to

each decision in the set, while ∧p takes the Cartesian product of each decision

set from p1 and p2. A straightforward induction on the number of operators in

a policy establishes that the decision set returned by these extended semantics

will be a singleton if no target evaluation errors occur; moreover, that decision

will be the same as that returned by the standard semantics. We formalise

this result below.

Lemma 4.4.1. Let p be a policy which contains targets t1, . . . , tn and let q be

a request. If τq(ti) 6= ⊥m for all i, then ρq(p) = {x} for some x ∈ {0, 1,⊥}.

Proof. By induction on the structure of policies.

Base case: an atomic policy p = d for some d ∈ {0, 1}. Then ρq(p) = {d}
for all q.

Induction hypothesis: assume that the policies p, p1 and p2 return a sing-

leton decision set.

Inductive step: we will now show that the addition of a policy operator

¬ or ‡ does not introduce a non-singleton decision set for a policy p. By

assumption ρq(p) = {x} for some x ∈ {0, 1,⊥}. Then for all q,

ρq(¬ p) = {¬ d : d ∈ ρq(p)} = {¬x}

64

which is a singleton decision set. Likewise, for all q,

ρq(‡ p) = {‡ d : d ∈ ρq(p)} = {‡x}

which is a singleton decision set. We now show that the combination of two

policies p1 and p2 using ∧p does not introduce a non-singleton decision set.

By assumption ρq(p1) = {x} for some x ∈ {0, 1,⊥} and ρq(p2) = {y} for some

y ∈ {0, 1,⊥}. Then for all q,

ρq(p1 ∧p p2) = {d1 ∧p d2 : di ∈ ρq(pi)} = {x ∧p y} = {z}

for some z ∈ {0, 1,⊥}, which is a singleton decision set. Finally, we show that

the addition of a target tk with policy p does not introduce a non-singleton

decision set. By assumption τq(tk) 6= ⊥m and ρq(p) = {x} for some x ∈
{0, 1,⊥}. Then for all q

ρq(tk, p) =

{x} if τq(tk) = 1m,

{⊥} if τq(tk) = 0m.

Handling indeterminacy through the use of decision sets permits policy

evaluation to “fail gracefully” [11, 12]. We now demonstrate, through the

use of an example [29], how a failure in target evaluation need not effect the

evaluation of the entire policy. Consider the policy shown in Figure 4.7a and

suppose that

τq(t1) = 0m and τq(t2) =?m and τq(t3) = 1m.

The first phase of request evaluation results in the tree shown in Fi-

gure 4.7b. The second phase of policy evaluation is shown in Figure 4.7c.

As the target t2 encountered an error, the policy p2 = (t2, 1) returns a set

of decisions rather than a singleton. PTaCL<
3 policy evaluation assumes that

either τq(t2) = 1m or τq(t2) = 0m could have been returned, resulting in the

decisions 1 and ⊥ respectively. As this set is combined further up the policy

tree, ⊥ do {1,⊥} returns the set {1,⊥}, since ⊥ do 1 = 1 and ⊥ do⊥ = ⊥. At

the top level of the policy, we have 1 do {1,⊥}, which returns a single conclu-

sive decision 1, as 1 do 1 = 1 do ⊥ = 1. Thus, despite encountering errors in

target evaluation, the policy was able to return a conclusive decision.

Furthermore, the decision returned is the “correct” decision, irrespective

of the failure encountered during target evaluation. If t2 had returned 0m,

then the overall policy would return 1, the same is true if t2 had returned

1m. In fact, the policies show in Figure 4.7 and Figure 3.3 (which highlighted

the undesirable behaviour of indeterminacy in XACML versions 1.0 and 2.0)

65

(t2, 1)(t1, 0)

(all, do) (t3, 1)

(all, do)

(a) PTaCL policy tree

(?m, 1)(0m, 0)

(1m, do) (1m, 1)

(1m, do)

(b) Target evaluation

{1,⊥}⊥

{1,⊥} 1

1

(c) Policy evaluation

Figure 4.7: Evaluating a PTaCL policy with indeterminacy

are equivalent. However, PTaCL<
3 returns the “correct” decision, that is, 1,

unlike XACML. Hence, we argue that the method for handling indeterminacy

in PTaCL<
3 addresses the shortcomings exhibited in XACML; by handling

indeterminacy in a precise and desirable manner.

4.5 Obligations in PTaCL<
3

We now define a method for incorporating obligations in PTaCL<
3 . In this

section, we are not concerned with the specific types of obligations, how they

will be provided by the policy information point, or how they will be enfor-

ced by the policy enforcement point. Instead, we focus on how they will be

combined by the policy decision point (following the approach taken by the

XACML standard). Thus, we simply assume the existence of some “abstract”

set of obligations O.

The method we define for computing obligations in PTaCL<
3 is inspired

by the XACML standard, and one of our results shows that the obligations

returned by a PTaCL<
3 policy will be the same as those returned by an equi-

valent XACML policy. While recognizing that there may be other ways of

computing obligations, we make the assumption that the behaviour specified

by the XACML standard is that expected by the practitioners who desig-

ned it and is, therefore, a reasonable proxy for the required behaviour of an

obligations-combining strategy.

66

4.5.1 Defining obligations

In XACML, each policy or policy set may be associated with one or more obli-

gations. An obligation is associated with an effect (a decision in PTaCL<
3),

which may be Permit or Deny (denoted by 1 and 0, respectively, in PTaCL<
3).

Thus, the obligation associated with Permit is applied when the effect of a

policy is Permit for a particular request. Informally, then, the result of evalu-

ating a request in XACML is a pair comprising a decision and an obligation.

Thus, we extend PTaCL<
3 syntax in the following ways.

• The PTaCL<
3 policy d, where d ∈ {0, 1}, may only return d, so it suffices

to extend the syntax for such policies to (d, o) (where o ∈ O).

• The unary policy operators ¬ and ‡ are used only to switch policy de-

cisions, so we will assume that obligations are not associated with these

operators. When evaluating policies with the operators ¬ and ‡ the

obligations from child nodes are passed up with no change.

• All other policies (generated using ∧p or targets) may return 0 or 1, so

we extend the syntax for a policy p to (p, o0, o1), where oi ∈ O is the

obligation that should be returned if the evaluation of p returns decision

i ∈ {0, 1}.

Henceforth, we will write σq(p) to denote the obligations returned by the

evaluation of policy p for request q. We may not wish to specify obligations

for every policy and every decision, so we assume the existence of a “null”

obligation, denoted by ε.

4.5.2 Computing obligations

In general terms, when a policy language includes obligations, the policy deci-

sion point will return a decision and a set of obligations as a result of evaluating

an access request. In terms of our notation, then, request evaluation will re-

turn the pair (ρq(p), σq(p)): ρq(p) is an element of D, as we have seen, and is

determined by applying the relevant binary operator to the decisions returned

by the child policies; σq(p) is a subset of O and, informally, is determined by

taking the union of the sets of obligations associated with particular child poli-

cies (together with any relevant obligation for the parent policy). This method

leverages the tree-structured, bottom-up evaluation strategy of PTaCL (and

XACML) to return obligations from the nodes in the policy tree that influence

the final decision returned by policy evaluation.

More formally, PTaCL<
3 obligation semantics are shown in Figure 4.8a.

The interesting case is policy conjunction, where we only take the obligations

from child policies that return a decision equal to that of the parent policy.

Thus we take obligations from both child policies if they return the same

decision (as well as the relevant obligation from the parent policy), and if

67

child policy pi returns 0 and the other does not then we return {o0} ∪ σq(pi).
(In all other cases, the decision returned is ⊥ and the obligation set is empty.)

We interpret {ε} as the empty set ∅.

σq(0, o) = σq(1, o) = {o}
σq(¬ p) = σq(‡ p) = σq(p)

σq(p1 ∧p p2, o0, o1) =

{o0} ∪ σq(p1) if ρq(p1) = 0 and ρq(p2) 6= 0

{o0} ∪ σq(p2) if ρq(p1) 6= 0 and ρq(p2) = 0

{o0} ∪ σq(p1) ∪ σq(p2) if ρq(p1) = 0 and ρq(p2) = 0

{o1} ∪ σq(p1) ∪ σq(p2) if ρq(p1) = 1 and ρq(p2) = 1

∅ otherwise

σq(t, p, o0, o1) =

{o0} ∪ σq(p) if τq(t) = 1m and ρq(p) = 0

{o1} ∪ σq(p) if τq(t) = 1m and ρq(p) = 1

∅ otherwise

(a) Obligation semantics in PTaCL<
3

0 ⊥ 1

0 (0, {O1, O2}) (0, {O1}) (0, {O1})
⊥ (0, {O2}) (⊥, ∅) (⊥, ∅)
1 (0, {O2}) (⊥, ∅) (1, {O1, O2})

(b) A look-up table for ∧p with decision-obligation pairs

Figure 4.8: Obligation semantics and look-up table

By an abuse of notation, we can build an evaluation table for ∧p, as shown

in Figure 4.8b (with the understanding that the relevant obligation needs

to be included from the parent policy, the set of obligations associated with

the decisions indexing the rows is O1 and the set of obligations indexing the

columns is O2).

4.5.3 Computing obligations for derived policy operators

Given that (i) we can define arbitrary policy operators in terms of ¬, ‡ and ∧p
and (ii) we have defined how obligations are computed for these operators, we

can extend our method of computing obligations to arbitrary policy operators.

For example, we can define the obligations that should be returned by ∨p, do

and po, as shown in Figure 4.9. (As in Figure 4.8b for ∧p, we assume that

the relevant obligation from the parent policy will be included during policy

evaluation; O1 and O2 are the obligations associated with the evaluation of

p1 and p2, respectively.) Note that ∼ is not explicitly defined in PTaCL<
3 ,

however we use it here as syntactic sugar. Indeed, it is easy to show that

∼ d ≡ d ∧p ‡ d.

68

p1 p2 p1 ∨p p2 p1 ∨p ∼ p2 ∼ p1 ∨p p2 p1 po p2 p1 do p2
0 0 (0, {O1, O2}) (0, {O1, O2}) (0, {O1, O2}) (0, {O1, O2}) (0, {O1, O2}))
0 1 (1, {O2}) (1, {O2}) (1, {O2}) (1, {O2}) (0, {O1})
0 ⊥ (⊥, ∅) (0, {O1}) (⊥, ∅) (0, {O1}) (0, {O1})
1 0 (1, {O1}) (1, {O1}) (1, {O1}) (1, {O1}) (0, {O2})
1 1 (1, {O1, O2}) (1, {O1, O2}) (1, {O1, O2}) (1, {O1, O2}) (1, {O1, O2})
1 ⊥ (1, {O1}) (1, {O1}) (1, {O1}) (1, {O1}) (1, {O1})
⊥ 0 (⊥, ∅) (⊥, ∅) (0, {O2}) (0, {O2}) (0, {O2})
⊥ 1 (1 {O2}) (1, {O2}) (1, {O2}) (1, {O2}) (1, {O2})
⊥ ⊥ (⊥, ∅) (⊥, ∅) (⊥, ∅) (⊥, ∅) (⊥, ∅)

Figure 4.9: Decisions and obligations for the PTaCL<
3 ∨p, po and do operators

Consider the policy shown in Figure 4.10, which extends our example from

Figure 4.7a with the addition of obligations. Note that the policy p3 does

not contain any parent obligations. Parent policies are not required to define

the parent obligations o0 and o1; however our semantics support them if they

are (see Figure 4.8a). Likewise, child nodes are not required to specify any

obligations, such is the case for p4.

p1 = (t1, 0, o1)

p2 = (t2, 1, o2)

p3 = (all, p1 do p2)

p4 = (t4, 1)

p5 = (all, p3 do p4, o5)

(a) Policy

(t2, 1, o2)(t1, 0, o1)

(all, do) (t4, 1)

(all, do, o5)

(b) Policy tree

(1, {o2})(0, {o1})

(0, {o1}) (1, ε)

(0, {o1, o5})

(c) Evaluation

Figure 4.10: Example policy and policy tree with obligations

We assume that τq(ti) = 1m for all i and, where obligations are not shown,

they are assumed to be ε. To evaluate this policy tree with obligations, we

use the do semantics for decisions and obligations taken from Figure 4.9. The

result of evaluating the policy with respect to q is (0, {o1, o5}), as illustrated in

Figure 4.10c. In particular, (0, {o1}) do (1, {o2}) = (0, {o1}). The root policy

has an obligation o5, which is always returned (irrespective of the decision),

so we return the set of obligations {o1, o5} along with the 0 decision.

69

Our approach to obligations thus provides considerably greater flexibility

than XACML, which only specifies how obligations should be computed for

the pre-defined rule- and policy combining algorithms. Moreover, it is easy to

show that the obligations computed by PTaCL for the po and do operators

are identical to those computed by XACML.

The set of obligations returned by XACML processing is, informally, the

set of obligations associated with those sub-policies that return the same de-

cision as the root policy. With that in mind, consider the obligations that

would be returned for a policy set that comprises two policies p1 and p2, asso-

ciated with obligations o1 and o2 respectively, and uses the permit-overrides

policy-combining algorithm. The set of obligations that would be returned

for this policy set is tabulated in Figure 4.11. By inspection, we can see that

the obligations returned for po in Figure 4.9 are identical to those for the

permit-overrides policy-combining algorithm in Figure 4.11. An analogous

result holds for computing obligations for do and the deny-overrides policy-

combining algorithm.

p1 p2 permit-overrides(p1, p2) deny-overrides(p1, p2)

0 0 (0, {o1, o2}) (0, {o1, o2})
0 1 (1, {o2}) (0, {o1})
0 ⊥ (0, {o1}) (0, {o1})
1 0 (1, {o1}) (0, {o2})
1 1 (1, {o1, o2}) (1, {o1, o2})
1 ⊥ (1, {o1}) (1, {o1})
⊥ 0 (0, {o2}) (0, {o2})
⊥ 1 (1, {o2}) (1, {o2})
⊥ ⊥ (⊥, ∅) (⊥, ∅)

Figure 4.11: Decisions and obligations for the XACML permit- and deny-
overrides combining algorithms

In other words, PTaCL is (i) consistent with XACML in terms of the

obligations returned for standard operators, and (ii) provides an extensible

mechanism for computing obligations for arbitrary policy operators.

4.5.4 Indeterminacy and obligations

When target evaluation fails, PTaCL<
3 returns a decision set as opposed to

a single decision. We can extend this method when obligations are included

in PTaCL<
3 . Without indeterminacy, request evaluation returns a decision-

obligation pair; with indeterminacy, therefore, it returns a set of decision-

obligation pairs. Consider the leaf policy (t, d, o). If τq(t) =?m, PTaCL<
3

assumes that either τq(t) = 1m or τq(t) = 0m could have been returned, and

thus returns the union of the sets of decision-obligation pairs that would have

70

been returned in both cases. More formally, we have

σq(t, d, o) = {⊥, ∅} ∪ {d, o} = {(⊥, ∅), (d, o)}

We now investigate how this method may be applied to more complex

policies. Consider the policy shown in Figure 4.10b and suppose that

τq(t1) = 0m and τq(t2) =?m and τq(t4) = 1m.

{(⊥, ∅), (1, {o2})}{(⊥, ∅)}

{(⊥, ∅), (1, {o2})} {(1, ∅)}

{(1, o5), (1, {o2, o5})}

(a)

{(1, {o2})}{(⊥, ∅), (0, {o1})}

{(0, {o1}), (1, {o2})} {(1, ∅)}

{(0, {o1, o5}), (1, {o2, o5})}

(b)

Figure 4.12: PTaCL<
3 policy evaluation with indeterminacy and obligations

The resulting policy evaluation is shown in Figure 4.12a and returns

{(1, o5), (1, {o2, o5})}. We see on this occasion that policy evaluation returns

the same decision but different obligation sets. The reason for this discrepancy

arises from the two alternative paths of the policy tree which affect the final

decision:

• {1, o5} – policies p1, p2 and p3 are not-applicable, hence the decision 1

comes only from p4 and o5 comes from the parent policy;

• {(1, {o2, o5})} – policy p2 is applicable, so the pair (1, {o2}) is carried

up the tree, and combined at the top with the right branch and parent

obligation.

Now suppose that, for the same policy, we have

τq(t1) =?m and τq(ti) = 1m for all other i.

71

The resulting policy evaluation is shown in Figure 4.12b. In this case, different

decisions and different obligation sets are obtained.

To summarise, when evaluating decisions and obligations in the presence of

indeterminacy, there are scenarios where the policy decision point will return:

(i) the same decision and obligation set, (ii) the same decision and different

obligation sets, and (iii) different decisions and different obligation sets. The

behaviour of the policy enforcement point would need to be defined for each

situation. For example, given the set {(1, {o5})(1, {o2, o5})}, a conservative

approach may be implemented by taking the union of all the obligation sets

and requiring that all obligations are enforced. Another possibility is to adopt

the use of a resolution function, as described by Crampton and Huth [11].

The approach taken is application and domain specific, and dependent on

the overall purpose, scope and management goal of an access control policy.2

Hence, we do not explore different approaches further in this thesis, leaving it

as a topic for future research.

4.6 Obligations in XACML and other related work

In XACML, each rule, policy and policy set may be associated with one or

more obligations. An obligation is defined by the FulfillOn attribute (whose

value is either “Permit” or “Deny”) and an action (such as “create audit

entry”). Policy evaluation returns a decision and a set of obligations to the

policy enforcement point, which is required to enforce the decision and execute

any obligations. The XACML 2.0 and 3.0 standards [36, 37] define how this

set of obligations is computed:

“When such a policy or policy set is evaluated, an obligation

SHALL be passed up to the next level of evaluation (the enclosing

or referencing policy, policy set or authorization decision) only if

the effect of the policy or policy set being evaluated matches the

value of the FulfillOn attribute of the obligation. . . ”

“. . . no obligations SHALL be returned to the PEP if. . . the decision

resulting from evaluating the policy or policy set does not match the

decision resulting from evaluating an enclosing policy set.”

“. . . If the PDP’s evaluation is viewed as a tree of policy sets and

policies, each of which returns “Permit” or “Deny”, then the set

of obligations returned by the PDP to the PEP will include only

the obligations associated with those paths where the effect at each

level of evaluation is the same as the effect being returned by the

PDP.”

2This is similar to the choice of which bias to use for a policy enforcement point in
XACML [37].

72

Like much of the XACML standard, this statement lacks formality and prior

work has indicated that the way in which policy-combining algorithms and

the way of computing obligations produces some counterintuitive results [29].

The XACML 2.0 standard [36] defines how obligations are returned when

target evaluation fails:

“. . . no obligations SHALL be returned to the PEP if the policies

or policy sets from which they are drawn are not evaluated, or if

their evaluated result is “Indeterminate” or “NotApplicable”. . . ”

Thus, obligations from any policy that evaluates to “Indeterminate” are lost

in the evaluation process. The XACML 3.0 standard has improved the way in

which decisions are computed in the presence of indeterminacy [37], but has

not changed how obligations are computed.

The specification and computation of obligations in PTaCL<
3 has some

similarities to, and some notable differences, from XACML, which we summa-

rize in Table 4.1. We also include a comparison with the work on obligations

by Li et al. [29], discussed below.

Feature XACML PCL PTaCL<
3

Obligations associated with different po-
licy decisions

Yes Yes Yes

Selective “inheritance” of obligations from
child policies by parent

No Yes No

Computation of obligations rigorously de-
fined

No Yes Yes

Obligations associated with rules Yes No Yes

Obligations returned when policy evalua-
tion is indeterminate

No No Yes

Obligations defined for all policy combi-
ning algorithms

No No Yes

Table 4.1: Comparison of XACML, PCL and PTaCL<
3

Arguably the two greatest improvements offered by the approach we pro-

pose are (i) the ability to return obligations when policy evaluation is indeter-

minate, and (ii) the ability to compute the set of obligations for any policy,

irrespective of the operators used. In the first case, it seems natural to allow

obligations to be returned even for indeterminate policies (and these could

be considered as “default obligations”) and provides more fine-grained cont-

rol over which requests are subject to indeterminacy. In the second case, we

believe it is important to specify the computation of obligations as comple-

tely and unambiguously as possible, thus minimizing the likelihood that an

implementation will be incorrect.

Other work exists that define methods for handling obligations in XA-

CML. Alqatawna et al. [3] introduce a way of using obligations to implement

73

a discretionary overriding mechanism in XACML. They do this by using two

algorithms, an effects-combining algorithm which is similar to standard policy-

combining algorithms and an obligations-combining algorithm, the implemen-

tation of the latter being left to the discretion of the policy author. We believe

it will be more useful, in general, to provide, as we have done, standardized me-

chanisms for combining obligations that are natural extensions of the existing

decision-combining algorithms.

Li et al. [29] defined semantics for handling obligations in XACML, largely

following the definition in the XACML standard where obligations are returned

only from paths which “contribute” to the final decision returned by the PDP.

Li et al. do define an algorithm for computing the set of obligations for an

arbitrary policy operator, although this algorithm requires the operator to

have certain properties. In contrast, our approach to obligations is completely

general: any policy operator can be defined using PTaCL<
3 and a decision

and a set of obligations can be computed. Like our definition of obligations

in PTaCL<
3 , if the outcome of policy evaluation is not-applicable then the

set of obligations is defined to be empty. Like XACML, if the outcome of

policy evaluation is indeterminate, then the set of obligations is defined to

be indeterminate. We would argue that it is more useful to return as much

information as possible to the PEP, which can then decide what obligations,

if any, should be enforced. The work by Li et al. differs when combining

obligations from two sub-policies that return the same decision, by allowing

for three different methods to be specified in the policy combining language:

both, first and either, leaving the choice to the policy author. There is some

merit gained by allowing this choice to be made by the policy author in terms

of the fine-grained control over obligation handling it provides. However, in

practice, ABAC policies may be large and complex, thus specifying this choice

each time sub-policies are combined will be time-consuming, and will require

a case-by-case analysis to ensure the correct obligations are computed.

Subsequently, Li et al. [28] developed an architecture extending the XA-

CML architecture in order to handle access control policies with different types

of obligations. The focus of their work is how to enforce the obligations once

they have been returned to the PEP, while we focus on which obligations

should be returned in the first place. A combination of Li et al.’s architecture

and our method for returning obligations may be an interesting and beneficial

solution to some of the issues in XACML. Finally, we note that there exists

work on dependencies between obligations and the effect these might have on

the ability to fulfil obligations [22, 23, 31]. These considerations are outside

the scope of this thesis, but may prove fruitful areas for future research.

74

4.7 Summary and discussion

We discussed many of the shortcomings of the XACML standard in Chapter 3:

it is functionally incomplete; there are numerous redundancies and dependen-

cies between the combining algorithms; and it has an ambiguous method for

handling indeterminacy. We believe that PTaCL<
3 addresses all of these shor-

tcomings.

Firstly, we have shown that PTaCL<
3 is functionally complete. This means

that any arbitrary policy is expressible in PTaCL<
3 , without needing to de-

fine custom combining algorithms (like XACML). Moreover, we proved that

PTaCL<
3 is canonically complete, and demonstrated how to convert arbitrary

operators to an equivalent normal form comprising the PTaCL<
3 operators. In

doing so, we overcame one of the main difficulties encountered in other tree-

structured languages, that is, writing the desired policy using the operators

provided in the given language.

Secondly, we defined precise semantics for handling errors in target evalua-

tion (indeterminacy) in PTaCL<
3 . Through a comparative example, we showed

that PTaCL<
3 can return a conclusive decision despite encountering errors; and

that this decision is the intuitively “correct” decision. This directly contrasts

the undesirable behaviour exhibited in the method for handling indeterminacy

XACML 2.0 standard, seen in Section 3.1.1.

Finally, we introduced syntax and semantics for evaluating obligations in

PTaCL<
3 , motivated by the XACML method for returning obligations. We

showed that our method is consistent with XACML, and more extensible; as

it provides a means for computing obligations for arbitrary policy operators.

Furthermore, we extended the semantics for indeterminacy to incorporate obli-

gations, by returning a set of decision-obligation pairs.

There are many opportunities for future work in the administration of po-

licy enforcement points. In particular, the following challenges require investi-

gation: (i) resolution functions and methods for handling decision-obligation

pairs; and (ii) effective enforcement and fulfilment of obligations once they

have been returned to the policy enforcement point.

Thus far, we have restricted our attention to ABAC languages defined over

the decision set {0,⊥, 1}, and assumed a total ordering on this decision set of

0 < ⊥ < 1. (We omitted the indeterminate decision from XACML for reasons

discussed in Chapter 3). There are many ABAC languages that make use of a

fourth authorization decision, which we explore in more detail in the following

chapter.

75

Chapter 5

Canonical Completeness in

Lattice-based Multi-valued

Logics

Previously, in Chapter 4, during the development of PTaCL<
3 , we assumed a

total order on the set of decisions (0 < ⊥ < 1). This ordering does not really

reflect the intuition behind the use of 0, 1 and ⊥ in ABAC languages. In the

context of access control, 0 and 1 are incomparable conclusive decisions, while

⊥ represents the inability to reach a conclusive decision. This provides us with

motivation to explore other more intuitive orderings on the set of decisions,

such as partial orderings and lattices. Furthermore, we believe there is value

in having an ABAC language for which policy evaluation can return a fourth

value >, representing a ‘conflict’ or ‘excess’ amount of information. Indeed,

there are many languages such as PBel [10], BelLog [45] and Rumpole [32]

which utilize this fourth decision. We discuss the value of a fourth autho-

rization decision in more detail in Chapter 6. In this chapter, we focus on

formally defining lattice-based multi-valued logics and extending the concept

of canonical completeness to such logics.

The main contribution of this chapter is the construction of a canonically

complete latticed-based multi-valued logic. In the next section, we introduce

the necessary prerequisite formal definitions of partially ordered sets, latti-

ces and bilattices. We then review Belnap logic [7] in Section 5.2, the most

well known lattice-ordered logic in the literature. In Section 5.3 we extend

the definitions of canonical suitability, selection operators, normal form and

canonical completeness to lattice-based logics, enabling us to evaluate these

properties for lattice-based logics. We prove that Belnap logic, and any ABAC

authorization language which uses Belnap logic as the underlying logic, is not

canonically complete in Section 5.4. In Section 5.5 we identify connections

between the symmetric group and unary operators on the set of authorization

decisions, enabling us to construct a canonically complete 4-valued lattice-

76

based logic. Finally, in Section 5.6, we extend the work of Jobe [24], showing

a construction of a total-ordered, canonically complete m-valued logic.

We have published the majority of the work presented in Sections 5.2 –

5.6 [17].

5.1 Partially ordered sets and lattices

This section introduces the necessary definitions and terminology for lattices,

which are a special type of partially ordered sets. We begin with the definition

of a partially ordered set.

Definition 5.1.1. A pair (X,6), where 6 is a binary relation over a set of

values X, is a partially ordered set or poset if for all x, y, z ∈ X:

• x 6 x;

• x 6 y and y 6 x implies x = y; and

• x 6 y and y 6 z implies x 6 z.

In other words, 6 is a binary relation on X that is reflexive, anti-symmetric

and transitive. We refer to 6 as a partial order.

Definition 5.1.2. Let (X,6) be a partially ordered set and x, y ∈ X. We say

y covers x, or x is covered by y, denoted x l y, if x < y and for all z ∈ X,

x 6 z < y implies x = z.

A partially ordered set (X,6) is often represented by a Hasse diagram,

which is the graph of the covering relation on X. That is, each element of

X is represented by a node (or vertex), and an edge exists between x and y

if x l y. An edge is not drawn from a node to itself, nor is an edge drawn

between x and y if there exists z such that x < z < y. Typical convention

states that if x < y, then the node labelled x will be lower than the node

labelled y in the Hasse diagram. Examples of two partially ordered sets are

shown in Figure 5.1. Henceforth, when the ordering 6 is clear from context,

we will write X to mean the partially ordered set (X,6).

Definition 5.1.3. Let X be a partially ordered set, and let Y ⊆ X.

• An element u ∈ X is an upper bound of Y if y 6 u for all y ∈ Y .

• We say that u′ is a least upper bound or supremum of Y if u′ 6 u for

all upper bounds u of Y . We denote the supremum of Y by supY .

• An element v ∈ X is a lower bound of Y if v 6 y for all y ∈ Y .

• We say that v′ is a greater lower bound or infimum of Y if v 6 v′ for

all lower bounds v of Y . We denote the infimum of Y by inf Y .

77

a

b c

d

(a)

a

b c

d e

f

(b)

Figure 5.1: Hasse diagrams

Note that the least upper bound and greater lower bounds of Y (if they

exist) are unique.

Definition 5.1.4. A partially ordered set X is a lattice if, and only if, for all

x, y ∈ X there exists a least upper bound of x and y, denoted sup {x, y}, and

a greatest lower bound of x and y, denoted by inf {x, y}.

The least upper bound of x and y is written as x ∨ y (the “join” of x and

y) and the greatest lower bound is written as x ∧ y (the “meet” of x and y).

The partially ordered set represented in Figure 5.1a is a lattice. However, the

partially ordered set represented in Figure 5.1b is not a lattice, since {b, c}
does not have a least upper bound.

Definition 5.1.5. Let X be a lattice. If for all Y ⊆ X, supY and inf Y exist

in X, then X is a complete lattice.

If (X,6) is a finite lattice, as we will assume henceforth, then (X,6) has

a maximum element (that is, a unique maximal element) and a minimum

element. In other words, all finite lattices are complete.

In the final part of this section we define bilattices, proposed by Gins-

berg [20, 21] as a generalization of the Belnap [7] lattice (discussed in more

detail in Section 5.2). Ginsberg’s work on bilattices were extended by Fit-

ting [18, 19], who introduced pre-bilattices.

Definition 5.1.6. A pre-bilattice is a structure B = {B,6t,6k}, where

• B is a set containing at least four elements; and

• (B,6t) and (B,6k) are complete lattices.

The lattice (B,6t) is commonly known as the truth lattice or t-lattice,

and the order associated with it is called the truth ordering. The meet and

join of this lattice are denoted by ∧ and ∨ respectively. The lattice (B,6k) is

commonly known as the knowledge lattice or k-lattice, and the order associated

with it is called the knowledge ordering. The meet and join of this lattice are

denoted by ⊗ and ⊕ respectively.

78

Typically in pre-bilattices there is some connection between the two orders.

At least two ways of characterizing such connections between orders have

been explored in the literature. The first, introduced by Fitting [18], imposes

monotonic properties between the lattice operations.

Definition 5.1.7. A pre-bilattice B = {B,6t,6k} is interlaced if each of the

four lattice operations ∧,∨,⊗ and ⊕ are monotonic with respect to 6t and 6k.

That is, when the following equalities hold:

• x 6t y implies that x⊗ z 6t y ⊗ z and x⊕ z 6t y ⊕ z; and

• x 6k y implies that x ∧ z 6k y ∧ z and x ∨ z 6k y ∨ z.

The second characterization, introduced by Ginsberg [21], imposes distri-

butive properties between the lattice operations.

Definition 5.1.8. A pre-bilattice B = {B,6t,6k} is distributive when all

twelve distributive laws hold concerning the four lattice operations ∧,∨,⊗ and

⊕. That is, the following identities hold:

x ◦ (y • z) = (x ◦ y) • (x ◦ z) for every ◦, • ∈ {∧,∨,⊗,⊕}with ◦ 6= •.

Ginsberg [20] formally defined bilattices which expand the algebraic struc-

ture of pre-bilattices with a unary operator.

Definition 5.1.9. A bilattice is a structure B = {B,6t,6k,¬} such that

{B,6t,6k} is a pre-bilattice and negation ¬ is a unary operation satisfying

that for every x, y ∈ B:

• if a 6t b, then ¬b 6t ¬a;

• if a 6k b, then ¬a 6k ¬b; and

• a = ¬¬a.

The interlacing and distributive properties extend to bilattices in the ob-

vious way: we say that a bilattice is interlaced (distributive) when its pre-

bilattice is interlaced (distributive).

5.2 Belnap logic

Belnap logic [7] was developed with the intention of defining ways to handle

inconsistent and incomplete information in a formal manner. It uses the truth

values 0, 1, ⊥, and >, representing “false”, “true”, “lack of information” and

“too much information”, respectively. Henceforth, we will denote the four

valued decision set {⊥, 0, 1,>} by 4.

The truth values 0, 1, ⊥ and > have an intuitive interpretation in the

context of access control: 0 and 1 are interpreted as the standard “deny”

79

and “allow” decisions, ⊥ is interpreted as “not-applicable” and > represents a

conflict of decisions. There are certain situations where it is useful to have four

decisions available, and some ABAC languages, such as PBel [10], BelLog [45]

and Rumpole [32], use Belnap’s four truth values and logic as the underlying

logic for their language.

The set of truth values in Belnap logic admits two orderings: a truth orde-

ring 6t and a knowledge ordering 6k. In the truth ordering, 0 is the minimum

element and 1 is the maximum element, while ⊥ and > are incomparable in-

determinate values. In the knowledge ordering, ⊥ is the minimum element, >
is the maximum element while 0 and 1 are incomparable. Both (4,6t) and

(4,6k) are lattices, together forming the pre-bilattice (4,6t,6k), illustrated

as a Hasse diagram in Figure 5.2.

t

k

⊥

0 1

>

Figure 5.2: The Belnap Hasse diagram

We write the meet and join in (4,6t) as ∧b and ∨b, respectively; and the

meet and join in (4,6k) as ⊗b and ⊕b, respectively. (We use the subscript b

to differentiate the Belnap operators from the PTaCL operators ∧p and ∨p.)

In addition, Belnap logic defines a binary operator ⊃b and unary operator ¬.

The former is an extension of implication to the Belnap space, while the latter

has the effect of switching the values 0 and 1, leaving ⊥ and > fixed; in other

words, it acts like “classical” negation. The truth tables for the operators ∧b,

∨b, ⊗b, ⊕b,⊃b and ¬ are shown in Figure 5.3.

It is immediately clear that the structure (4,6t,6k,¬) is a bilattice, which

is often denoted as Four in the literature. Furthermore, the twelve distributive

laws hold for the operators ∧b,∨b,⊗b and ⊕b, as do De Morgan’s laws, and all

of these operators are monotone with respect to both the 6t and 6k orderings.

Specifically, for all x, y, z ∈ 4:

• x 6t y implies that x⊗b z 6t y ⊗b z and x ∨b z 6t y ∨b z; and

• x 6k y implies that x ∧b z 6k y ∧b z and x ∨b z 6k y ∨b z.

Hence, the Belnap bilattice (4,6t,6k,¬) is distributive and interlaced.

In Belnap logic, we may interpret values in 4 as operators of arity

0 (that is, constants). Then we can formally represent Belnap lo-

gic as the logic L(4, {¬,∧b,∨b,⊗b,⊕b,⊃b,⊥, 0, 1,>}). It is known that

L(4, {¬,∧b,∨b,⊗b,⊕b,⊃b,⊥, 0, 1,>}) is functionally complete [4, Theorem

80

∧b 0 ⊥ > 1

0 0 0 0 0
⊥ 0 ⊥ 0 ⊥
> 0 0 > >
1 0 ⊥ > 1

(a) ∧b

∨b 0 ⊥ > 1

0 0 ⊥ > 1
⊥ ⊥ ⊥ 1 1
> > 1 > 1
1 1 1 1 1

(b) ∨b

⊗b ⊥ 0 1 >
⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 ⊥ 0
1 ⊥ ⊥ 1 1
> ⊥ 0 1 >

(c) ⊗b

⊕b ⊥ 0 1 >
⊥ ⊥ 0 1 >
0 0 0 > >
1 1 > 1 >
> > > > >

(d) ⊕b

⊃b 0 ⊥ > 1

0 1 1 1 1
⊥ 1 1 1 1
> 0 ⊥ > 1
1 0 ⊥ > 1

(e) ⊃b

d ¬ d
0 1
⊥ ⊥
> >
1 0

(f) ¬

Figure 5.3: Operators in Belnap logic

12] and that {¬,⊕b,⊃b,⊥} is a minimal functionally complete set of opera-

tors [4, Proposition 17]. We will see however, that Belnap logic is not canoni-

cally complete.

5.3 Canonical completeness for lattice-based logics

Jobe’s definition of canonical suitability for multi-valued logics assumes a total

ordering on the set of truth values. Given that Belnap logic [7], is a 4-valued

logic in which the set of truth values forms a lattice, we seek to extend the defi-

nitions of canonical suitability, selection operators and canonical completeness

to lattice-based logics. This will enable us to establish the canonical comple-

teness (or incompleteness) of lattice-based logics. It is important to note that

the definitions below are similar to those for total-ordered logics (presented in

Section 2.5.1), the only difference lies in the definition of canonical suitability

and selection operators. We reiterate the remaining definitions here for the

interests of clarity and continuity, and recast the examples in the context of a

lattice-based logic.

Let L = (V,Ops) be a logic associated with a lattice (V,6) of truth values

and a set of logical operators Ops. We omit V and Ops when no ambiguity

can occur. We write Φ(L) to denote the set of formulae that can be written

81

in the logic L.

We say L is canonically suitable if and only if there exist formulae φmax and

φmin of arity 2 in Φ(L) such that φmax(x, y) returns sup{x, y} and φmin(x, y)

returns inf{x, y}. If a logic is canonically suitable, we will write φmax(x, y)

and φmin(x, y) using infix binary operators as xg y and xf y, respectively.

The existence of sup {x, y} and inf {x, y} is guaranteed in a lattice; this is

not true in general for partially ordered sets. And for a totally ordered (finite)

set, sup {x, y} = max {x, y} and inf {x, y} = min {x, y}, so our definitions are

compatible with those of Jobe’s for totally ordered sets of truth values.

A function f : V n → V is completely specified by a truth table containing

n columns and mn rows. However, not every truth table can be represented by

a formula in a given logic L = (V,Ops). L is said to be functionally complete

if for every function f : V n → V , there is a formula φ ∈ Φ(L) of arity n whose

evaluation corresponds to the truth table.

Let x denote the minimum value in (V,6). (Such a value must exist in

a finite lattice.) We will write a to denote the tuple (a1, . . . , an) ∈ V n when

no confusion can occur. Then, for a ∈ V n, the n-ary selection operator Sj
a is

defined as follows:

Sj
a(x) =

j if x = a,

x otherwise.

Note S
x
a(x) = x for all a,x ∈ V n. Illustrative examples of unary and binary

selection operators for the lattice (4,6k) (the Belnap knowledge ordering) with

minimal value ⊥ are shown in Figure 5.4.

x S0
0(x) S>1 (x)

⊥ ⊥ ⊥
0 0 ⊥
1 ⊥ >
> ⊥ ⊥

y
S0
(1,>)(x, y) ⊥ 0 1 >

x

⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ ⊥ ⊥ ⊥
1 ⊥ ⊥ ⊥ 0
> ⊥ ⊥ ⊥ ⊥

Figure 5.4: Examples of selection operators in Belnap logic

The construction of arbitrary functions using selection operators, Jobe’s

results, and definitions for normal form and canonical completeness for lattice-

based logics are identical to total-ordered logics. Nevertheless, we reiterate the

constructions, results and definitions here in interests of clarity.

Selection operators play a central role in the development of canonically

complete logics because an arbitrary function f : V n → V can be expressed

82

in terms of selection operators. Consider, for example, the function

f(x, y) =

> if x = 0, y = 1,

0 if x = y = 0,

1 if x = 1, y = ⊥,

⊥ otherwise.

Then it is easy to confirm that

f(x, y) ≡ S>(0,1)(x, y) g S0
(0,0)(x, y) g S1

(1,⊥)(x, y).

Moreover, Sc
(a,b)(x, y) ≡ Sc

a(x) f Sc
b(y) for any a, b, c, x, y ∈ V . Thus,

f(x, y) ≡
(
S>0 (x) f S>1 (y)

)
g
(
S0
0(x) f S0

0(y)
)
g
(
S1
1(x) f S1

⊥(y)
)
.

In other words, we can express f as the “disjunction” (g) of “conjunctions”

(f) of unary selection operators.

More generally, given the truth table of function f : V n → V , we can write

down an equivalent function in terms of selection operators. Specifically, let

A = {a ∈ V n : f(a) > ⊥} ;

then, for all x ∈ V n,

g(x) =
j

a∈A
S
f(x)
a (x).

Simple inspection of g(x) confirms that this logical formula expressed in terms

of selection operators is equivalent the truth table of the function f : V n → V ,

that is

g(x) ≡ f(x).

Theorem 5.3.1 (Jobe [24, Theorems 1, 2; Lemma 1]). A logic L is functi-

onally complete if and only if each unary selection operator is equivalent to

some formula in L.

Definition 5.3.1. The normal form of formula φ in a canonically suitable

logic is a formula φ′ that has the same truth table as φ and has the following

properties:

• the only binary operators it contains are g and f;

• no binary operator is included in the scope of a unary operator;

• no instance of g occurs in the scope of the f operator.

In other words, given a canonically suitable logic L containing unary ope-

83

rators]1, . . . ,]`, a formula in normal form has the form

rj

i=1

sk

j=1

]i,jxi,j

where]i,j is a unary operator defined by composing the unary operators in

]1, . . . ,]`. In the usual 2-valued propositional logic with a single unary operator

(negation) this corresponds to disjunctive normal form.

Definition 5.3.2. A canonically suitable logic is canonically complete if every

unary selection operator can be expressed in normal form.

5.4 Canonical completeness of Belnap logic

Having extended the definitions of canonical suitability, selection operators

and canonical completeness to lattice-based logics, we now investigate how

these concepts can be applied to Belnap logic [7]. The meet and join opera-

tors of the two lattices (4,6t) and (4,6k) defined in Belnap logic are different.

Canonical suitability for a 4-valued logic, defined as it is in terms of the orde-

ring on the set of truth values, will thus depend on the ordering we choose on

4. Consequently, the f and g operators, along with the selection operators,

will differ depending on the lattice that we choose.

In Chapter 6, we will argue in more detail for the use of a lattice-based

ordering on 4 to support a tree-structured ABAC language. For now, we state

that we will use knowledge-ordered lattice (4,6k). The intuition is that the

minimum value in this lattice is ⊥ (rather than 0 in (4,6t)) and that this

value should be the default value for a policy (being returned when the policy

is not applicable to a request). In the interests of brevity, we will henceforth

write 4t and 4k, rather than (4,6t) and (4,6k) respectively. Hence, we now

explore whether the logic L(4k, {¬,⊕b,⊃b,⊥}) is canonically complete or not.

Note that we choose to use the minimal functionally complete set of Belnap

operators [4]. It is standard for ABAC authorization languages to specify as

few operators as possible, to limit the number of operators that are required

in an implementation [10, 12].

It follows from the functional completeness of {¬,⊕b,⊃b,⊥} that

L(4k, {¬,⊕b,⊃b,⊥}) is canonically suitable. Indeed, it is trivial to show that

the knowledge-ordered Belnap logic is canonically suitable, since

xf y = x⊗b y and xg y = x⊕b y.

As ⊥ is the minimum truth value in the lattice 4k, the n-ary selection

84

operator Sj
a for 4k is defined by the following function:

Sj
a(x) =

j if x = a,

⊥ otherwise.

Functional completeness also implies all unary selection operators can be

expressed as formulae in the logic L(4k, {¬,⊕b,⊃b,⊥}). However, we have

the following result, from which it follows that this logic is not canonically

complete.

Proposition 5.4.1. L(4k, {¬,∧b,∨b,⊗b,⊕b,⊃b,⊥, 0, 1,>}) is not canoni-

cally complete.

Proof. It is impossible to represent all unary selection operators in normal

form. The statement follows from the following observations: (i) Belnap logic

defines one unary operator ¬; (ii) the only binary operators that may be used

in normal form are ⊕b (f) and ⊗b (g); (iii) for any operator ⊕ ∈ {⊗b,⊕b}
we have ⊥ ⊕ ⊥ = ⊥; and (iv) we have ¬⊥ = ⊥. Thus it is impossible to

construct a unary operator of the form Sd
⊥ for any d 6= ⊥.

Corollary 5.4.1. Any logic L = (4k,Ops) where

Ops ⊆ {¬,∧b,∨b,⊗b,⊕b,⊃b,⊥, 0, 1,>} is not canonically complete.

Proof. Since the logic L(4k, {¬,∧b,∨b,⊗b,⊕b,⊃b,⊥, 0, 1,>}) is not canoni-

cally complete, any logic which uses a subset of these operators is trivially not

canonically complete.

As a result of Corollary 5.4.1, we can immediately establish that any ABAC

authorization language that uses Belnap logic as the underlying logic is not

canonically complete. In other words, languages such as PBel [10], BelLog [45]

and Rumpole [32] are not canonically complete. It is worth noting that results

analogous to those presented above for the knowledge ordering can be obtained

for the truth ordering.

5.5 A canonically complete 4-valued logic

Belnap logic is the underlying logic in many authorization languages [10, 32,

45] found in the literature. However, we have proven that Belnap logic is

not canonically complete, thus none of these languages are able to utilise the

advantages that arise from using a canonically complete logic. Hence, we now

investigate how to construct a canonically complete 4-valued logic in which

the set of truth values forms a lattice.

In the proof of Proposition 5.4.1, we were unable to construct all unary

selection operators using operators from the set {¬,⊗b,⊕b}, because there is

no operator in which ⊥ ⊕ ⊥ 6= ⊥. This suggests that we will require at least

85

one additional unary operator −, say, such that −⊥ 6= ⊥. Accordingly, we

start with the unary operator −, sometimes called “conflation” [18], such that

−⊥ = >, −> = ⊥, −0 = 0, and −1 = 1.

Conflation is analogous to negation ¬, but inverts knowledge values rather

than truth values. In addition to −, we include the operator ⊗b in our set of

operators, since this is the join operator for 4k.

Proposition 5.5.1. L(4k, {−,⊗b}) is canonically suitable.

Proof. The following equivalence holds [4]:

d⊕b d
′ ≡ −(− d⊗b − d′).

The decision table establishing this equivalence is given in Figure 5.5.

Hence, we conclude that the set of operators {−,⊗b} is canonically suitable,

since f corresponds to ⊗b and g corresponds to ⊕b.

d d′ − d − d′ − d⊗b − d′ −(− d⊗b − d′) d⊕b d
′

⊥ ⊥ > > > ⊥ ⊥
⊥ 0 > 0 0 0 0
⊥ 1 > 1 1 1 1
⊥ > > ⊥ ⊥ > >
0 ⊥ 0 > 0 0 0
0 0 0 0 0 0 0
0 1 0 1 ⊥ > >
0 > 0 ⊥ ⊥ > >
1 ⊥ 1 > 1 1 1
1 0 1 0 ⊥ > >
1 1 1 1 1 1 1
1 > 1 ⊥ ⊥ > >
> ⊥ ⊥ > ⊥ > >
> 0 ⊥ 0 ⊥ > >
> 1 ⊥ 1 ⊥ > >
> > ⊥ ⊥ ⊥ > >

Figure 5.5: Encoding ⊕b using − and ⊗b

Proposition 5.5.2. L(4k, {−,⊗b}) is not functionally complete.

Proof. The proof follows from the following observations: (i) for the operators

− and ⊗b, −(0) = 0 and 0 ⊗b 0 = 0; and (ii) for any operator ◦ which is a

combination of − and ⊗b, we have 0◦0 = 0. Thus it is impossible to construct

an operator in which 0 ◦ 0 6= 0.

86

To summarize: L(4k, {¬,∧b,∨b,⊗b,⊕b,⊃b,⊥, 0, 1,>}) is not canonically

complete and L(4k, {−,⊗b}) is not functionally complete. We now investigate

what additional operators should be defined to construct a set of operators

which is canonically complete (and hence functionally complete).

Given that we cannot use any operators besides g and f in normal form, we

focus on defining additional unary operators on 4k. An important observation

at this point is that any permutation (that is, a bijection) π : 4 → 4 defines

a unary operator on 4. Accordingly, we now explore the connections between

the group of permutations on 4 and unary operators on 4.

5.5.1 The symmetric group and unary operators

The symmetric group (SX , ◦) on a finite set of |X| symbols is the group whose

elements are all permutations of the elements in X, and whose group operation

◦ is function composition. In other words, given two permutations π1 and π2,

π1 ◦ π2 is a permutation such that

(π1 ◦ π2)(x)
def
= π1(π2(x)).

We write πk to denote the permutation obtained by composing π with itself

k times.

A transposition is a permutation which exchanges two elements and keeps

all others fixed. Given two elements a and b in X, the permutation

π(x) =

b if x = a,

a if x = b,

x otherwise,

is a transposition, which we denote by (a b). A cycle of length k > 2

is a permutation π for which there exists an element x in X such that

x, π(x), π2(x), . . . , πk(x) = x are the only elements changed by π. Given a, b

and c in X, for example, the permutation

π(x) =

b if x = a,

c if x = b,

a if x = c,

x otherwise,

is a cycle of length 3, which we denote by (a b c). (Cycles of length two are

transpositions.) The symmetric group SX is generated by its cycles. That is,

every permutation may be represented as the composition of some combination

of cycles.

In fact, stronger results are known. We first introduce some notation.

87

Let X = {x1, . . . , xn} and let Sn denote the symmetric group on the set of

elements {1, . . . , n}. Then (SX , ◦) is trivially isomorphic to (Sn, ◦) (via the

mapping xi 7→ i).

Theorem 5.5.1. For n > 2, Sn is generated by the transpositions

(1 2), (1 3), . . . , (1n).

Theorem 5.5.2. For 1 6 a < b 6 n, the transposition (a b) and the cycle

(1 2 . . . n) generate Sn if and only if the greatest common divisor of b− a and

n equals 1.

In other words, it is possible to find a generating set comprising only

transpositions, and it is possible to find a generating set containing only two

elements.

5.5.2 New unary operators

We now define three unary operators ∼0,∼1 and ∼>, which swap the value of

⊥ and the truth value in the operator’s subscript. The truth tables for these

operators are shown in Figure 5.6. Note that ∼> is identical to the conflation

operator −. However, in the interests of continuity and consistency we will

use the ∼> notation in the remainder of this section.

d ∼0 d ∼1 d ∼> d
⊥ 0 1 >
0 ⊥ 0 0
1 1 ⊥ 1
> > > ⊥

Figure 5.6: ∼0,∼1 and ∼>

Notice that ∼0, ∼1 and ∼> permute the elements of 4 and correspond

to the transpositions (⊥ 0), (⊥ 1) and (⊥>), respectively. Thus we have the

following elementary result.

Proposition 5.5.3. Any permutation on 4 can be expressed using only ope-

rators from the set {∼0,∼1,∼>}.

Proof. The operators ∼0,∼1 and ∼> are the transpositions (⊥ 0), (⊥ 1) and

(⊥>) respectively. By Theorem 5.5.1, these operators generate all the per-

mutations in S4.

Lemma 5.5.1. It is possible to express any function φ : 4 → 4 as a formula

in L(4k, {∼0,∼1,∼>,⊗b,⊕b}).

Proof. For convenience, we represent the function φ : 4→ 4 as the tuple

(
φ(⊥), φ(0), φ(1), φ(>)

)
= (a, b, c, d).

88

Then, given x, y, z ∈ 4, we define the function

φyx(z) =

x if z = y,

⊥ otherwise.

Thus, for example, φ⊥a = (a,⊥,⊥,⊥). Then it is easy to see that for all x ∈ 4

φ(x) = φ⊥a (x)⊕b φ
0
b(x)⊕b φ

1
c(x)⊕b φ

>
d (x).

That is φ = φ⊥a ⊕b φ
0
b ⊕b φ

1
c ⊕b φ

>
d .

Thus, it remains to show that we can represent φ⊥a , φ0b , φ
1
c and φ>d as formu-

lae using the operators in {∼0,∼1,∼>,⊗b,⊕b}. First consider the permuta-

tions φa,0, φa,1 and φa,>, represented by the tuples (a,⊥, b1, c1), (a, b2,⊥, c2)
and (a, b3, c3,⊥), respectively.1 Since φa,0, φa,1 and φa,> are permutations,

we know they can be written as some combination of the unary operators.

Moreover,

φ⊥a ≡ φa,0 ⊗b φa,1 ⊗b φa,>

Clearly, we can construct φ0b , φ
1
c and φ>d in a similar fashion. The result now

follows.

To give the reader some visual aide for the proof of Lemma 5.5.1, we depict

the decision tables showing the construction of φ⊥a and φ in Figure 5.7.

x φa,0 φa,1 φa,> φa,0 ⊗b φa,1 ⊗b φa,>
⊥ a a a a
0 ⊥ b2 b3 ⊥
1 b1 ⊥ c3 ⊥
> c1 c2 ⊥ ⊥

(a) φ⊥a

x φ⊥a φ0b φ1c φ>d φ⊥a ⊕b φ
0
b ⊕b φ

1
c ⊕b φ

⊥
d

⊥ a ⊥ ⊥ ⊥ a
0 ⊥ b ⊥ ⊥ b
1 ⊥ ⊥ c ⊥ c
> ⊥ ⊥ ⊥ d d

(b) φ

Figure 5.7: Expressing φ : 4→ 4 using operators in {∼0,∼1,∼>,⊗b,⊕b}

Theorem 5.5.3. L(4k, {∼0,∼1,∼>,⊗b,⊕b}) is functionally and canonically

complete.

Proof. By Lemma 5.5.1, it is possible to express any function φ : 4 → 4 as

a formula using operators from the set {∼0,∼1,∼>,⊗b,⊕b}. In particular,

1Note that the specific values of bi and ci are not important: it suffices that each of φa,0,
φa,1 and φa,> are permutations; once bi is chosen such that bi 6∈ {a,⊥}, then ci is fixed.

89

all unary selection operators can be expressed in this way. Hence by Theo-

rem 5.3.1, the set of operators {∼0,∼1,∼>,⊗b,⊕b} is functionally complete.

Moreover, all formulae constructed in the proof of Lemma 5.5.1 contain

only the binary operators ⊕b(g) and ⊗b(f), and unary operators defined

as compositions of ∼0,∼1 and ∼>. Thus, by definition, the unary selection

operators are in normal form.

Corollary 5.5.1. L(4k, {∼0,∼1,∼>,⊗b}) is functionally and canonically

complete.

Proof. The conflation operator − and ∼> are identical. Hence

d⊕b d
′ ≡ −(− d⊗b − d′) ≡ ∼>(∼> d⊗b ∼> d′).

Therefore, the set of operators is canonically suitable, and, by Theorem 5.5.3,

it is functionally and canonically complete (since we can construct ⊕b).

Corollary 5.5.2. Let � be the unary operator corresponding to the permuta-

tion given by the cycle (⊥ 0 1>). Then L(4k, {∼>, �,⊗b}) is functionally and

canonically complete.

Proof. By Theorem 5.5.2, ∼> and � generate all permutations in S4. The

remainder of the proof follows immediately from Lemma 5.5.1 and Theo-

rem 5.5.3, via replacement of {∼0,∼1,∼>} with {∼>, �}.

It is important to note that we could choose any transposition (a b), such

that gcd(b − a, n) = 1. We specifically selected the transposition (⊥>), as

this has the effect of reversing the minimum and maximum knowledge values.

Another choice for this transposition is one which swaps 0 and 1, specifically

the transposition (0 1). This transposition is the truth negation operator ¬,

which in the context of access control is also a useful operator, since it swaps

allow and deny decisions.

5.6 Canonically complete m-valued logics

Having shown the construction for a canonically complete 4-valued logic, in

which the set of logical values forms a lattice, we briefly return to totally

ordered logics. We now construct a totally ordered, canonically complete m-

valued logic (thus extending the work of Jobe [24], who only showed how to

construct a canonically complete 3-valued logic).

Let V be a totally ordered set of m truth values, {1, . . . ,m}, with 1 <

· · · < m. We define two unary operators † and �, which are the transposition

(1m) and the cycle (1 2 . . . m), respectively. In addition, we define one binary

operator ∧t, where x ∧t y = min {x, y} for all x, y ∈ {1, . . . ,m}.

90

Proposition 5.6.1. Any permutation on V can be expressed using only ope-

rators from the set {†, �}.

Proof. The operator † is the transposition (1m) and the operator � is the cycle

(1 2 . . . m). By Theorem 5.5.2, these operators generate all the permutations

in SV .

Proposition 5.6.2. L(V, {†, �,∧t}) is canonically suitable.

Proof. Clearly x f y ≡ x ∧t y, it remains to show the operator g can be

expressed in L. By Proposition 5.6.1 we can express any permutation of V

in terms of † and �. In particular, we can express the permutation f , where

f(i) = m − i + 1, which swaps the values 1 and m, 2 and m − 1, and so on.

We denote the unary operator which realizes this permutation by l. Then

xg y ≡ x ∨t y ≡ l(lx ∧t l y).

Theorem 5.6.1. L(V, {†, �,∧t}) is functionally and canonically complete.

We omit the proof, as it proceeds in an analogous manner to those for

Lemma 5.5.1 and Theorem 5.5.3. It is interesting to note that we have con-

structed a canonically complete m-valued logic which uses only two unary

operators. This is somewhat unexpected; intuition might suggest that m − 1

unary operators would be required for a canonically complete m-valued logic.

5.7 Summary and discussion

The primary goal of this chapter was to extend our understanding of canonical

completeness to lattice-based multi-valued logics. In doing so, we are able to

determine properties of well-known lattice-based logics such as Belnap logic,

upon which a number of ABAC languages are based.

We first showed how Jobe’s theoretical foundations may be extended to

encompass lattice-based logics, enabling us to reason about the canonical suit-

ability and completeness of such logics. Then, we demonstrated that Belnap

logic is not canonically complete, and hence any ABAC language based the

Belnap set of operators is not canonically complete.

Given that Belnap logic is not canonically complete, we then explored how

we may define a 4-valued canonically complete lattice-based logic. To do so,

we identified connections between the symmetric group and unary operators

on the set of authorization decisions. This enabled us to leverage theorems

from symmetric group theory to precisely define unary operators which create

a 4-valued canonically complete logic. Our approach may be trivially genera-

lised to m values, and we showed how the same construction can be used to

constructed an m-valued totally-ordered logic.

In the following chapter, we show the practical use of a 4-valued canonically

complete lattice-based logic, and formally define the language PTaCL6
4 which

makes use of four unique authorization decisions.

91

Chapter 6

A Canonically Complete

4-valued PTaCL

In Chapter 5, we proved that Belnap logic is not canonically complete. As

a direct result, any ABAC authorization language based on Belnap logic is

also not canonically complete. In other words, languages such as PBel [10],

BelLog [45] and Rumpole [32] are unable to

• express policies in a normal form;

• trivially support the specification of any desired policy; and

• automatically convert policies into machine-enforceable form.

While PTaCL<
3 (Chapter 4) is a canonically complete ABAC authorization

language, we have already discussed how the total ordering on the set of de-

cisions (0 < ⊥ < 1) does not accurately reflect the intuition behind the use

of these decisions in access control. In this chapter, we present a canonically

complete ABAC authorization language in which the set of decisions forms a

lattice, and argue why this is a more intuitive structure to use for decisions in

an ABAC language. We use the canonically complete logic L(4k, {∼>, �,⊗b})
as a foundation, and develop a 4-valued, latticed-ordered variant of PTaCL,

denoted by PTaCL6
4 .

In the following section, we formally define the syntax and semantics for

PTaCL6
4 , demonstrating how to construct policies, and present a different

method to expressing policies as trees. In Section 6.2 we discuss why XACML’s

way of handling indeterminacy is flawed, and present an alternative way of

handling indeterminacy in PTaCL6
4 . Then, in Section 6.3 we explore how the

syntax and semantics of PTaCL6
4 may be extended to incorporate obligations,

an important aspect of many access control mechanisms. We then demonstrate

how we may leverage the well-defined parts of XACML, and combine these

with the canonically complete language PTaCL6
4 to produce a canonically

complete ABAC language with a standardized, well-defined architecture in

Section 6.4. Finally, we develop an algorithm which takes an arbitrary policy

92

expressed as a decision table, and outputs the equivalent normal form for the

policy expressed using the PTaCL6
4 operators in Section 6.4.1. This algorithm

enables us to automatically convert policies into machine-enforceable form.

We have published the majority of the work presented in Sections 6.1 and

6.4 [17].

6.1 PTaCL6
4

In Chapter 4, we showed how the operators in PTaCL can be replaced with

an alternative set of operators, taken from Jobe’s logic J , to obtain the cano-

nically complete 3-valued ABAC language PTaCL<
3 . We now adopt a similar

approach, replacing the decision set and operators in PTaCL with the decision

set and operators from L(4k, {∼>, �,⊗b}).

6.1.1 Decision set

A fourth decision value (in addition to 0, 1 and ⊥) is used in many ABAC

languages. The XACML 1.0 standard includes a fourth authorization decision

“indeterminate” [35]. This is used to indicate errors have occurred during

policy evaluation, meaning that a decision could not be reached. The XACML

3.0 standard extends the definition of the indeterminate decision to indicate

decisions that might have been reached, had evaluation been possible [37]. Its

use is somewhat ad hoc and confusing since it can be used to indicate (a) an

error in policy evaluation, or (b) a decision that arises for a particular operator

during normal policy evaluation. More generally, a conflict decision is used in

PBel [10] (and languages such as Rumpole [32] and BelLog [45]) to indicate

that two sub-policies return different conclusive decisions.

We will use this fourth value to denote that (normal) policy evaluation

has led to conflicting decisions (and we do not wish to use deny-overrides or

similar operators to resolve the conflict at this point in the evaluation). Thus,

the decision set for PTaCL6
4 is {0, 1,⊥,>}, which is identical to the Belnap

decision set 4. We explain how we handle indeterminacy arising from errors in

policy evaluation in Section 6.2. Two specific operators, “only-one-applicable”

(ooa) and “unanimity” (un) could make use of >: the ooa operator returns

the value of the applicable sub-policy if there is only one such policy, and >
otherwise; whereas the un operator returns> if the sub-policies return different

decisions, and the common decision otherwise. The decision tables for these

operators are shown in Figure 6.1.

In the context of access control, 0 and 1 are incomparable conclusive deci-

sions, and ⊥ and > are decisions that reflect the inability to reach a conclusive

decision either because a policy or its sub-policies are inapplicable (⊥) or be-

cause a policy’s sub-policies return conclusive decisions that are incompatible

in some sense (>). Moreover, we can subsequently resolve ⊥ and > into one of

93

ooa ⊥ 0 1 >
⊥ ⊥ 0 1 >
0 0 > > >
1 1 > > >
> > > > >

un ⊥ 0 1 >
⊥ ⊥ > > >
0 > 0 > >
1 > > 1 >
> > > > >

Figure 6.1: Operators using >

two (incomparable) conclusive decisions using unary operators such as “deny-

by-default” and “permit-by-default”. Due to this intuition, we chose to use

the knowledge-based ordering on 4 from Belnap logic as the ordering for deci-

sions in PTaCL6
4 . (The truth-based ordering on 4 does not correspond nearly

so well to the above intuitions.)

6.1.2 Operators and policies

We define the set of operators for PTaCL6
4 to be {∼>, �,⊗b}, which we esta-

blished is canonically complete in Corollary 5.5.2. Recall that ∼> is equivalent

to conflation −; we will use the simpler notation − in the remainder of this

chapter. An atomic policy has the form (t, d), where t is a target and d ∈ {0, 1}.
(There is no reason for an atomic policy to return > – which signifies a conflict

has taken place – in an atomic policy.) Then we have the policy semantics

defined in Figure 6.2b.

d −d � d
⊥ > 0
0 0 1
1 1 >
> ⊥ ⊥

⊗b ⊥ 0 1 >
⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 ⊥ 0
1 ⊥ ⊥ 1 1
> ⊥ 0 1 >

(a) −, � and ⊗b

ρq(d) = d;

ρq(−p) = −ρq(p);
ρq(� p) = � ρq(p);

ρq(p⊗b p
′) = ρq(p)⊗b ρq(p

′);

ρq(t, p) =

{
ρq(p) if τq(t) = 1m,

⊥ otherwise.

(b) Policy semantics

Figure 6.2: Decision operators and policy semantics in PTaCL6
4

Representing ooa in other languages such as PTaCL and PBel is possible

due to their functional completeness, however it is a non-trivial task to do so

using the operators defined in each language. We now show how to represent

the operator only-one-applicable (ooa) in normal form. Using the truth table

in Figure 6.1 and by definition of the selection operators and g, we have

94

x ooa y is equivalent to

S⊥(⊥,⊥)(x, y) g S0
(⊥,0)(x, y) g S1

(⊥,1)(x, y) g S>(⊥,>)(x, y)g

S0
(0,⊥)(x, y) g S>(0,0)(x, y) g S>(0,1)(x, y) g S>(0,>)(x, y)g

S1
(1,⊥)(x, y) g S>(1,0)(x, y) g S>(1,1)(x, y) g S>(1,>)(x, y)g

S>(>,⊥)(x, y) g S>(>,0)(x, y) g S>(>,1)(x, y) g S>(>,>)(x, y).

Moreover, Sc
(a,b)(x, y) = Sc

a(x) f Sc
b(y). Hence, x ooa y is equivalent to

(
S⊥⊥(x) f S⊥⊥(y)

)
g
(
S0
⊥(x) f S0

0(y)
)
g
(
S1
⊥(x) f S1

1(y)
)
g
(
S>⊥(x) f S>>(y)

)
g(

S0
0(x) f S0

⊥(y)
)
g
(
S>0 (x) f S>0 (y)

)
g
(
S>0 (x) f S>1 (y)

)
g
(
S>0 (x) f S>>(y)

)
g(

S1
1(x) f S1

⊥(y)
)
g
(
S>1 (x) f S>0 (y)

)
g
(
S>1 (x) f S>1 (y)

)
g
(
S>1 (x) f S>>(y)

)
g(

S>>(x) f S>⊥(y)
)
g
(
S>>(x) f S>0 (y)

)
g
(
S>>(x) f S>1 (y)

)
g
(
S>>(x) f S>>(y)

)
.

Each unary selection operator Sb
a is a function φ : 4 → 4, which can be

represented in terms of the operators {−, �,⊗b}. Indeed, we have derived

expressions in normal form for the unary selection operators Sb
a, which are

shown in Figure 6.3. (In Lemma 5.5.1 we only showed that such expressions

exist.) Note that S⊥a (x) = ⊥ for all a, x ∈ {0, 1,⊥,>}.

S⊥a (x) x⊗b (�−x)⊗b (�−�−x)

S0
⊥(x) (�x)⊗b (−�−�−x)⊗b (−�−�x)
S0
0(x) x⊗b (−x)⊗b (−�−x)
S0
1(x) (�−�−x)⊗b (−�−�−x)⊗b (�x)
S0
>(x) (�−x)⊗b (−�−x)⊗b (� �−�x)

S1
⊥(x) (�−�x)⊗b (−�−�x)⊗b (� �x)
S1
0(x) (�x)⊗b (−�x)⊗b (�−x)
S1
1(x) x⊗b (−x)⊗b (� �−�x)
S1
>(x) (�−�−x)⊗b (−�−�−x)⊗b (� �−x)

S>⊥(x) (−�−x)⊗b (−�−�−x)⊗b (−x)
S>0 (x) (�−�−x)⊗b (�−�x)⊗b (� �x)
S>1 (x) (�x)⊗b (�−x)⊗b (�−� �−�x)
S>>(x) x⊗b (−�x)⊗b (−�−�x)

Figure 6.3: Normal forms for the unary selection operators

Hence, we may replace each instance of Sb
a with the equivalent expression

in terms of {−, �,⊗b}, resulting in a formula in normal form for ooa. (We

omit the full expression of ooa in terms of {−, �,⊗b} here, as it is lengthy and

can be produced via simple substitution.)

95

6.1.3 An alternative method for policy specification

Functional completeness implies we can write any binary operator (such

as XACML’s deny-overrides policy-combining algorithm) as a formula in

L(4k, {−, �,⊗b}), and hence we can use any operator we wish in PTaCL6
4

policies. However, canonical completeness and the decision set 4k allows for

a completely different approach to constructing ABAC policies. Suppose for

example, a policy administrator has identified three sub-policies p1, p2 and p3

and wishes to define an overall policy p in terms of the decisions obtained by

evaluating these sub-policies. Then the policy administrator can tabulate the

desired decision for all relevant combinations of decisions for the sub-policies,

as shown in the table below. The default decision is to return ⊥, indicating

that p is “silent” for other combinations.

p1 p2 p3 p

⊥ 0 0 0

0 0 0 0

1 0 0 >
1 1 0 1

1 1 1 1

Then, treating p as a function of its sub-policies, we have

p ≡ S0
(⊥,0,0) g S0

(0,0,0) g S>(1,0,0) g S1
(1,1,0) g S1

(1,1,1).

(We omit the arguments (p1, p2, p3) from the notation of each selection opera-

tor, it is obvious from context.) The construction of p as a “disjunction” (g)

of selection operators ensures that the correct value is returned for each com-

bination of values (in the same way in which disjunctive normal form may be

used to represent the rows in a truth table in traditional 2-valued propositional

logic). Note that if p1, p2 and p3 evaluate to a tuple of values other than one

of the rows in the table, each of the selection operators will return ⊥ and thus

p will evaluate to ⊥. Each operator of the form Sd
(a,b,c) can be represented as

the “conjunction” (f) of unary selection operators (specifically Sd
a fS

d
b fS

d
c).

We may then substitute each Sb
a with the equivalent expressions in terms of

{−, �,⊗b} from Figure 6.3, in an analogous way to the construction of ooa.

Thus, we have developed an alternative method for specifying policies,

that is simple and intuitive for policy authors. By representing a policy as a

decision table, it is obvious to the policy author how the policy will behave

under each different evaluation of the sub-policies, something that is not clear

in conventional tree-structured policies and languages (we reinforce this point

in Chapter 7). Furthermore, we can convert policies expressed as tables into

expressions that comprise entirely of the operators defined in PTaCL6
4 , which

are in normal form and machine-enforceable. In Chapter 7 we extend this idea

96

further, developing an ABAC authorization language centred around decision

tables.

Of course, one would not usually construct the normal form representation

of policies by hand, as we have done above. Indeed, we have developed an al-

gorithm which takes an arbitrary policy expressed as a decision table as input,

and outputs the equivalent normal form expressed in terms of the operators

{−, �,⊗b}. We present and analyse this algorithm in Section 6.4.1.

6.2 Indeterminacy in PTaCL6
4

As we have discussed throughout this thesis, XACML uses the indeterminate

value in two distinct ways:

1. as a decision returned (during normal evaluation) by the “only-one-

applicable” policy-combining algorithm; and

2. as a decision returned when some (unexpected) error has occurred in

policy evaluation.

In the second case, the indeterminate value is used to represent alternative

outcomes of policy evaluation (had the error not occurred). We believe that

the two situations described above are quite distinct and require different

policy semantics. However, the semantics of indeterminacy in XACML are

confused because (i) the indeterminate value is used in two different ways, as

described above, and (ii) there is no clear and uniform way of establishing the

values returned by the combining algorithms when an indeterminate value is

encountered.

We have seen how > may be used to represent decisions for operators such

as ooa and un. We handle errors in target evaluation (and thus indeterminacy)

using sets of possible decisions [11, 12, 29]. (This approach was adopted in

a rather ad hoc fashion in XACML 3.0, using an extended version of the

indeterminate decision.) Informally, when target evaluation fails, denoted by

τq(t) = ?m, PTaCL assumes that either τq(t) = 1m or τq(t) = 0m could have

been returned, and returns the union of the (sets of) decisions that would have

been returned in both cases.

We may easily extend this same technique to PTaCL6
4 . The formal se-

mantics for policy evaluation in PTaCL6
4 in the presence of indeterminacy are

defined in Figure 6.4.

The semantics for the operators {−, �,⊗b} operate on sets, rather than

single decisions, in the natural way. A straightforward induction on the num-

ber of operators in a policy establishes that the decision set returned by these

extended semantics will be a singleton if no target evaluation errors occur;

moreover, that decision will be the same as that returned by the standard

semantics (see Lemma 4.4.1).

97

ρq(d) = {d} ;

ρq(−p) = {−d : d ∈ ρq(p)} ;

ρq(� p) = {� d : d ∈ ρq(p)} ;

ρq(p1 ⊗b p2) = {d1 ⊗b d2 : di ∈ ρq(pi)} ;

ρq(t, p) =

ρq(p) if τq(t) = 1m,

{⊥} if τq(t) = 0m,

{⊥} ∪ ρq(p) if τq(t) = ?m.

Figure 6.4: Semantics for PTaCL6
4 with indeterminacy

6.3 Obligations in PTaCL6
4

In Section 4.5, we formally defined syntax for obligations in PTaCL<
3 , seman-

tics for computing obligations, and demonstrated the ease with which obli-

gations can be computed for arbitrary policy operators. We now extend the

semantics of PTaCL6
4 to incorporate obligations, taking an identical approach

to the one taken in Section 4.5. The only extra considerations we make are:

how the inclusion of a fourth decision, >, affects obligations, and how the

policy operator ⊗b should compute obligations. Once again, we assume the

existence of some “abstract” set of obligations O. Then, we extend PTaCL6
4

syntax in the following ways.

• The PTaCL6
4 policy d, where d ∈ {0, 1}, may only return d, so it suffices

to extend the syntax for such policies to (d, o) (where o ∈ O). (Recall

that atomic policies can not return >.)

• The unary policy operators − and � are used only to switch policy de-

cisions, so we will assume that obligations are not associated with these

operators. When evaluating policies with the operators − and � the

obligations from child nodes are passed up with no change.

• All other policies (generated using ⊗b or targets) may return 0, 1,⊥ or

>, so we extend the syntax for a policy p to (p, o0, o1, o>), where oi ∈ O
is the obligation that should be returned if the evaluation of p returns

decision i ∈ {0, 1,>}.

The PTaCL6
4 obligation semantics are shown in Figure 6.5. Similar to

PTaCL<
3 , the interesting case is the operator ⊗b, which acts as a greatest

lower bound operator. Keeping with the approach of the XACML standard

and PTaCL<
3 , we take only the obligations from child policies that return a

decision equal to that of the parent policy. Thus we take obligations from both

child policies if they return the same decision (as well as the relevant obligation

from the parent policy). The addition of > introduces new combinations of

98

decisions and obligations. More formally, if a child policy pi returns d ∈ {0, 1}
and the other policy returns >, then we return {od} ∪ σq(pi). If both child

policies return >, then we return only the conflict obligation o> from the

parent policy (and no obligations from the child policies). In all other cases,

the decision returned is ⊥ and the obligation set is empty. We interpret {ε}
as the empty set ∅.

σq(0, o) = σq(1, o) = {o}
σq(−p) = σq(� p) = σq(p)

σq(p1 ⊗b p2, o0, o1, o>) =

{o0} ∪ σq(p1) if ρq(p1) = 0 and ρq(p2) = >
{o0} ∪ σq(p2) if ρq(p1) = > and ρq(p2) = 0

{o0} ∪ σq(p1) ∪ σq(p2) if ρq(p1) = 0 and ρq(p2) = 0

{o1} ∪ σq(p1) if ρq(p1) = 1 and ρq(p2) = >
{o1} ∪ σq(p2) if ρq(p1) = > and ρq(p2) = 1

{o1} ∪ σq(p1) ∪ σq(p2) if ρq(p1) = 1 and ρq(p2) = 1

{o>} if ρq(p1) = > and ρq(p2) = >
∅ otherwise

σq(t, p, o0, o1, o>) =

{o0} ∪ σq(p) if τq(t) = 1m and ρq(p) = 0

{o1} ∪ σq(p) if τq(t) = 1m and ρq(p) = 1

{o>} if τq(t) = 1m and ρq(p) = >
∅ otherwise

Figure 6.5: Obligation semantics in PTaCL6
4

The remainder of the techniques introduced in Section 4.5 can be directly

applied to PTaCL6
4 in combination with the semantics from Figure 6.5. That

includes techniques for: (i) building evaluation tables for operators, (ii) com-

puting operators for derived policy operators, and (iii) computing obligations

in the presence of indeterminacy. Hence we do not reiterate these here for

PTaCL6
4 .

6.4 Leveraging the XACML architecture

XACML is a well-known, standardized language, and many of the compo-

nents and features of XACML are well-defined. However, we demonstrated

in Chapter 3 that XACML is not functionally complete, meaning there are

certain policies that cannot be expressed in XACML (without the use of cu-

stom combining algorithms). Furthermore, it has been shown that the rule-

and policy-combining algorithms defined in the XACML standard suffer from

some shortcomings [29], notably inconsistencies between the rule- and policy-

combining algorithms. Lastly, we showed that there are significant redundan-

cies between the rule- and policy-combining algorithms. PTaCL, on which

99

PTaCL6
4 is based, is a tree-structured ABAC language that is explicitly de-

signed to use the same general policy structure and evaluation methods as

XACML. However, PTaCL differs substantially from XACML in terms of po-

licy combination operators and semantics.

Thus, we suggest that PTaCL6
4 operators could replace the rule- and

policy-combining algorithms of XACML, while those parts of the language

and architecture that seem to function well may be retained. Specifically,

we use the XACML architecture to: (i) specify requests; (ii) specify targets;

(iii) decide whether a policy target is applicable to a given request; and (iv) use

the policy decision point to evaluate policies. In addition, we would retain the

enforcement architecture of XACML, in terms of the policy decision, policy

enforcement and policy administration points, and the relationships between

them (see Section 2.2.3).

We believe it would be relatively easy to modify the XACML PDP to

• handle four decisions, extending the current set of values (“allow”,

“deny” and “not-applicable”) to include “conflict”;

• implement the policy operators {−, �,⊗b} as custom combining algo-

rithms; and

• work with decision sets, in order to handle indeterminacy in a uniform

manner.

In Figures 6.6 and 6.7 we illustrate how PTaCL6
4 extensions could be incor-

porated in XACML by encoding the PTaCL6
4 decision set and ⊗b operator

using the syntax of the XACML standard.

1 <xs : element name= ‘ ‘ Dec is ion ’ ’ type= ‘ ‘ xacml : DecisionType ’ ’/>
2 <xs : simpleType name= ‘ ‘DecisionType ’ ’>
3 <xs : r e s t r i c t i o n base= ‘ ‘ xs : s t r i ng ’ ’>
4 <xs : enumeration value = ‘ ‘Permit ’ ’/>
5 <xs : enumeration value = ‘ ‘Deny’ ’/>
6 <xs : enumeration value = ‘ ‘ Con f l i c t ’ ’/>
7 <xs : enumeration value = ‘ ‘ NotApplicable ’ ’/>
8 </xs : r e s t r i c t i o n >
9 </xs : simpleType>

Figure 6.6: The PTaCL6
4 decision set in XACML syntax

The main difference to end-users would be in the simplicity of policy aut-

horing. Using standard XACML, policy authors must decide which rule- and

policy-combining algorithms should be used to develop a policy or policy set

that is equivalent to the desired policy. This can be error-prone, and it may

not even be possible to express the desired policy using only the XACML com-

bining algorithms (due to the functional incompleteness of XACML). Using

XACML with the policy-combining mechanisms of PTaCL6
4 , we can present

an entirely different interface for policy authoring to the end-user. The policy

author would first specify the atomic policies (XACML rules), then combine

100

1 Dec i s i on ptaclCombiningAlgorithm (Node [] c h i l d r en)
2 {
3 Boolean atLeastOneDeny = f a l s e ;
4 Boolean atLeastOnePermit = f a l s e ;
5 f o r (i=0 ; i < l engthOf (ch i l d r en) ; i++)
6 {
7 Dec i s i on d e c i s i o n = ch i l d r en [i] . eva luate () ;
8 i f (d e c i s i o n = = NotAppl icable)
9 { r e turn NotAppl icable ; }

10 i f (d e c i s i o n = = Permit)
11 {
12 atLeastOnePermit = true ;
13 cont inue ;
14 }
15 i f (d e c i s i o n = = Deny)
16 {
17 atLeastOneDeny = true ;
18 cont inue ;
19 }
20 i f (d e c i s i o n = = Con f l i c t)
21 { cont inue ; }
22 }
23 i f (atLeastOneDeny & & atLeastOnePermit)
24 { r e turn NotAppl icable ; }
25 i f (atLeastOneDeny)
26 { r e turn Deny ; }
27 i f (atLeastOnePermit)
28 { r e turn Permit ; }
29 r e turn Con f l i c t ;
30 }

Figure 6.7: The PTaCL6
4 operator ⊗b encoded as an XACML combining

algorithm

atomic policies using decision tables to obtain more complex policies (as illus-

trated in Section 6.1.2). Those policies can be further combined by specifying

additional decision tables. At each stage a back-end policy compiler can be

used to convert those policies into policy sets (using PTaCL6
4 operators) that

can be evaluated by the XACML PDP.

6.4.1 Automatic policy generation

We demonstrated in Section 6.1.3 how to convert policies expressed as decision

tables into expressions that use only the operators defined in PTaCL6
4 , and

mentioned an algorithm for automating this process. We now present said

algorithm.

The output of our automatic policy generation algorithm only contains

operators from the set {−, �,⊗b}. Taking the approach discussed above, that

is, replacing the XACML combining algorithms with custom combining al-

gorithms that implement {−, �,⊗b}, our algorithm then outputs “machine-

enforceable” policies that can be parsed by the (custom) policy enforcement

point in XACML. Our implementation of the algorithm, comprising just 185

lines of Python code (see Appendix A.2), shows the ease with which con-

struction of policies can be both automated and simplified, utilizing the nu-

merous advantages of a canonically complete language that have have been

discussed throughout this thesis.

101

We present the pseudo code for our algorithm in Algorithm 1. The input

of our algorithm is an r × c decision table, stored as a 2-dimensional array,

where r is the number of rows and c is the number of columns. Lines 4 to 6

convert each row in the decision table into their equivalent representation as

unary selection operators. The for-loop runs over r rows, which splits each

row into c − 1 variables, thus the time complexity is O(r(c − 1)). Lines 7

to 11 convert each unary selection operator into an equivalent expression in

terms of the PTaCL6
4 operators {−, �,⊗b}. A nested for-loop is required, to

convert each entry of the 2-dimensional array (which contain individual unary

selection operators) into their equivalent expression. The time complexity for

this nested for-loop is O(r(c − 1)). Finally, lines 12 to 15 concatenate each

row of the decision table with the g operator, and return the final expression

in normal form. A single for-loop is used, resulting in a time complexity of

O(r).

To summarise, the total time complexity of our algorithm is O(rc). In the

worst case scenario, O(4c) rows will be required, however in practice this is

very unlikely as rows which return ⊥ may be omitted by design (as ⊥ is the

default policy decision).

Algorithm 1 Convert a decision table to normal form

1: function ConvertPolToNormalForm(PolArr)
2: Input: A 2-dimensional policy array PolArr, with r rows and c columns
3: Output: Equivalent normal form in terms of −, � and ⊗b

4: for each row in PolArr do
5: PolArr(row) ← ConvertStringToUnarySelop(PolArr(row)) . converts a string 010⊥|1 to

S1
0 f S1

1 . . .
6: end for
7: for each row in PolArr do
8: for each col in PolArr do
9: PolArr(row,col) ← ConvertUnarySelopToPTaCLOps(PolArr(row,col)) . converts S1

0
to (x f (�x))

10: end for
11: end for
12: for each row in PolArr do
13: OutputNF ← ConcatenatePolArr(PolArr(row)) . Joins each row ((xf (�x)f (−x)) . . .)

with g
14: end for
15: return OutputNF
16: end function

We can also calculate the space complexity required by our algorithm.

Initially, we require space complexity O(rc) to store the input 2-dimensional

policy array. Lines 4 to 6 require space complexity O(r(c − 1)) to store each

unary selection operator; the final column is lost from the 2-dimensional policy

array as this is the superscript in each unary selection operator. Likewise, lines

7 to 11 require space complexity O(r(c−1)) to store each equivalent expression

of the unary selection operators. Lines 12 to 15 require space complexity O(r)

to store the concatenated string, which is the final policy output in normal

form. In summary, the total space complexity of our algorithm is O(rc).

It is worth noting the ease in which our algorithm can be adapted to handle

any canonically complete language. Indeed, the only part of our algorithm

102

that needs changing is line 9, that is, the conversion of the unary selection

operators into equivalent expressions in terms of the PTaCL6
4 operators. The

equivalent expressions for the unary selection operators may be replaced with

those from another language. For example, we may use the normal forms for

the unary selection operators for PTaCL<
3 shown in Figure 4.5. Hence, our

algorithm can be used to automatically generate policies in PTaCL<
3 , and any

other conceivable canonically complete authorization language.

6.5 Summary and discussion

In this chapter, we have shown how the canonically complete set of operators

{−, �,⊗b} can be used as the foundation of an ABAC language, and present

the advantages of doing so. In particular, we are no longer forced to use a

totally ordered set of three decisions to obtain canonical completeness (as is the

case in PTaCL<
3). Moreover, the overall design of PTaCL, and hence PTaCL6

4 ,

is compatible with the overall structure of XACML policies. We discussed

how the XACML decision set and combining algorithms can be modified to

support PTaCL6
4 . Doing so enables us to retain the rich framework provided

by XACML for ABAC, alongside the benefits of a canonically complete ABAC

language.

Thus, we are able to propose an enhanced XACML framework within which

any desired policy may be expressed. Moreover, the canonical completeness of

PTaCL6
4 means that the desired policy may be represented in simple terms by

a policy author (in the form of a decision table) and automatically compiled

into a PDP-readable equivalent policy. We demonstrated an algorithm for this

conversion, and commented on the ease in which it can be adapted for any

canonically complete ABAC language (for instance, PTaCL<
3).

Our work paves the way for a considerable amount of future work. In

particular, we intend to develop a modified XACML PDP that implements

the PTaCL6
4 operators. We also hope to develop a policy authoring interface

in which users can simply state what decisions a policy should return for a

particular combination of decisions from sub-policies. This would enable us

to evaluate the usability of such an interface and compare the accuracy with

which policy authors can generate policies using standard XACML combining

algorithms compared with the methods that PTaCL6
4 can support.

On the more technical side, we would like to revisit the notion of monotoni-

city [12] in targets and how this affects policy evaluation in ABAC languages.

The definition of monotonicity is dependant on the ordering chosen for the de-

cision set and existing work on monotonicity assumes the use of a total-ordered

3-valued set (comprising 0, ⊥ and 1). So it will be interesting to consider how

the use of a 4-valued lattice-ordered decision set affects monotonicity. Motiva-

tion can be taken from work by Crampton and Morisset [13], which explores

monotonically complete languages.

103

In the following chapter we further develop the idea of using decision tables

to specify policies (opposed to specifying them as trees), and build a new

ABAC language with the core foundations based on decision tables (rather

than modifying an existing tree-structured language like PTaCL to support

decision tables). We will also explore methods for reducing the size of decision

tables (policy compression), since these tables can grow quickly in size as more

sub-policies are specified. The compression techniques we develop may also

be applied to decision tables found in PTaCL<
3 and PTaCL6

4 .

104

Chapter 7

Attribute Expressions and

Policy Tables

Traditionally in attribute-based access control, subjects and objects are asso-

ciated with attributes, requests are collections of attributes associated with

the subjects and objects, and these attributes determine whether a request is

authorized or not. We may imagine representing a policy as a table in which

columns are indexed by attributes, rows represent the presence or otherwise

of the respective attribute in a request, with the final column in the table

indicating the authorization decision associated with a particular collection of

attributes.

A simple example is shown in Table 7.1, where 1 indicates the presence of

the attribute in the request and 0 indicates the attribute is absent; the dash

indicates that the presence or otherwise of a particular attribute is irrelevant

to the decision. Thus the first row of the table indicates that the deny decision

(0) should be returned if attributes a1 and a2 are present in a request. If no

row exists for a particular combination, then we assume that the decision is

⊥ (“not-applicable”); that is, the policy is “silent” for such a request and

does not return a conclusive decision. Thus, for example, the decision is ⊥ if

attribute a1 is not present in the request.

a1 a2 a3 d

1 1 − 0
1 0 1 1

Table 7.1: A simple policy table

While it is certainly convenient and intuitive to represent authorization

policies in tabular form, this representation is not compatible with many lan-

guages that have been discussed through this thesis. XACML [37], PTaCL [12]

and PBel [10], for example, are tree-structured languages, where policies are,

essentially, terms in a logic-based formalism. These terms may be represented

by trees, in which leaf nodes are attribute-decision pairs and interior nodes

105

are attribute-operator pairs.

Figure 7.1 illustrates the policy
(
(a1, do), ((a2, 0), (a3, 1))

)
. (Recall, the

operator do represents the XACML “deny-overrides” operator.) A request is

evaluated by first pruning the nodes that are not matched by the attributes

in the request. Then the decisions in the remaining leaf nodes are combined

using the policy combining operator(s). If, for example, all attributes are

present in a request (so no pruning is performed), then the resulting decision

is 0 do 1 = 0, corresponding to the first line in Table 7.1.

(a2, 0) (a3, 1)

(a1, do)

Figure 7.1: A simple tree-structured policy

In fact, the tree in Figure 7.1 represents an equivalent policy to the one

tabulated in Table 7.1, although this is not immediately apparent. It is this

gap – between (i) how one is likely to conceive of a policy, and (ii) how one

must construct the policy using existing languages for attribute-based access

control – that provides the motivation for the work in this chapter.

A further shortcoming of existing work on languages for attribute-based

access control is the way in which requests and attributes are matched. Sup-

pose we have an attribute name-value pair (n, v) and a request that contains

multiple name-value pairs, including (n, v) and (n, v′), where v′ 6= v. Then

one might argue the request matches the attribute (since it contains (n, v)); on

the other hand, one might argue it doesn’t match the attribute (since it also

contains (n, v′)). XACML always assumes the former interpretation, which

may be inappropriate if, for example, the policy author wishes to insist that

the request contains exactly one name-value pair for the named attribute. Alt-

hough PTaCL has a slightly more complex match semantics for requests and

attributes, it ignores several possible match semantics that might be relevant

in practice.

In this chapter, we use our previous work on canonical completeness to

develop a new way of defining authorization policies using policy tables. In

doing so, we support all possible match semantics for an attribute and request,

thereby facilitating much greater control over policy specification. In the next

section we formally define our Attribute Expression Policy Language (AEPL).

Then, we demonstrate various methods for reducing the size of policy tables

in AEPL in Section 7.2. We compare AEPL with XACML and PTaCL in

Section 7.3, and show that AEPL is more expressive and intuitive than both

of these languages. Finally, we show how such policy tables can be used to

enhance existing access control paradigms, such as access control lists and

role-based access control, by making them “attribute-aware” in Section 7.4.

106

We will use the logic L(4k, {−, �,⊗b}) as the underlying logic when we develop

our new policy authorization language.

We have published the majority of the work presented in this chapter [16].

We note that Section 7.1 formalises various concepts presented throughout

this thesis, such as policy tables, and introduces methods for target evaluation

that act as syntactical sugar. The material in Sections 7.2 - 7.4 is based upon

fundamentally new concepts.

7.1 The AEPL language

An authorization policy may be represented as a function P : Q→ D, where

Q is the set of requests and D is the set of decisions. In other words, P (q)

represents the result of evaluating policy P for request q, thereby determining

whether q is authorized by policy P .

In attribute-based access control, a request is assumed to be a set of name-

value pairs, where a name is an attribute and a value is taken from some

domain over which the binary relations =, 6=, <, 6, > and > are defined.

We assume it is possible to determine whether a pair of values belongs to a

given relation efficiently. In particular, we assume henceforth that all attribute

values are strings of bounded length defined over some alphabet Σ.

It is usually impossible to specify an attribute-based policy P by specifying

a decision for every possible request, given the size of the domain of P . Thus,

it is usual to specify P in terms of the relationship between a policy and

the attribute name-value pairs that constitute a request. This relationship

is typically expressed in terms of “targets”, which are predicates specified in

terms of attributes values and whose truth values are determined by comparing

the attribute values specified in the target with those present in the request.

7.1.1 Attribute expressions

Our attribute-expression policy language, AEPL, is based on the idea of an

attribute expression. Informally, the input to P is a tuple of logical values,

and those values are determined by “matching” a request to a set of attribute

expressions. More formally, we define an attribute expression to be a tuple

(n, v,∼,⊕), where n is an attribute name, v is an attribute value or regular

expression, ∼ is an associative, commutative, binary relation, and⊕ is a binary

operator.

Given a binary relation R defined over some domain V , we write R to

denote the complement of R: that is (a, b) ∈ R iff (a, b) 6∈ R. We will usually

write R as an infix relation ∼ and R as �. Typical examples of R and R

include = and 6=, < and ≮ (that is, >).

In many cases, v will be an attribute value and ∼ will be a comparison

operator, such as equality or greater-than. However, the use of regular expres-

107

sions means that more complex attribute expressions may be defined. Given

a regular expression e (defined over Σ), let L(e) denote the set of strings that

match e. Then we define ∼e to be the set of pairs {(e, w) : w ∈ L(e)}. Mo-

reover, for any regular expression e, there exists a regular expression e, the

complement of e, such that w 6∈ L(e) if and only if w ∈ L(e).

In the interests of clarity of exposition, we will assume henceforth that ∼
is always = (corresponding to exact string matching). Note that this does not

affect the generality of our approach: we only require that it is efficient to

determine whether a pair belongs to the relation ∼.

The operator ⊕ determines the result of evaluating a request in which

some name-value pairs match the attribute expression and some don’t. (This

contrasts with the approach taken in XACML and PTaCL.) We discuss this

in more detail in Section 7.1.2.

We define three binary operators in Figure 7.2: ∨ and ∧ are defined on the

set {0, 1,⊥}; and ! is defined on {0, 1,⊥,>}. Since ⊕ ∈ {∧,∨, !} is associative

and commutative, the expression

(. . . ((x1 ⊕ x2)⊕ x3)⊕ · · · ⊕ xk−1)⊕ xk)

may be written without ambiguity as
⊕k

i=1 xi.

∧ ⊥ 0 1

⊥ ⊥ 0 1
0 0 0 0
1 1 0 1

∨ ⊥ 0 1

⊥ ⊥ 0 1
0 0 0 1
1 1 1 1

! ⊥ 0 1 >
⊥ ⊥ 0 1 >
0 0 0 > >
1 1 > 1 >
> > > > >

Figure 7.2: Binary operators for attribute expressions

7.1.2 Evaluating requests

A request is a set of name-value pairs of the form (n, v). The evaluation of

a request q = {(n1, v1), . . . , (n`, v`)} with respect to an attribute expression

α = (n, v,∼,⊕) is denoted by eval(q, α). Informally, eval(q, α) is determined

by combining the results of evaluating the elements of the request (ni, vi) using

⊕. More formally, we define:

eval(∅, (n, v,∼,⊕)) = ⊥m;

eval(
{

(n′, v′)
}
, (n, v,∼,⊕)) =

1m if n = n′ and v ∼ v′,

0m if n = n′ and v � v′,

⊥m otherwise.

We say a name-value pair (n′, v′) matches an attribute expression α

if eval({(n′, v′)} , α) = 1m; and we say (n′, v′) does not match α if

108

eval({(n′, v′)} , α) = 0m. Throughout this section, we use the subscript m

(for “match”) to denote explicitly logical values that arise from the evalua-

tion of attribute expressions (request matches). In Section 7.1.3, we use the

subscript d to denote logical values that arise from policy evaluation (authori-

zation decisions). When no ambiguity can occur we will omit the subscripts.

A request q = {(n1, v1), . . . , (n`, v`)} may contain two name-value pairs,

one of which matches α = (n, v,∼,⊕) and one which doesn’t. The choice

of operator ⊕ determines how the results of the matches will be combined.

Formally, we have

eval(q, (n, v,∼,⊕)) =
k⊕

i=1

eval({(ni, vi)} , (n, v,∼,⊕)).

Thus, we have the following possibilities.

• eval(q, (n, v,∼,∨)) = 1m if there exists i such that eval({(ni, vi)} , (n, v,∼
,∨)) = 1m; in other words, if the request contains at least one name-value

pair that matches the attribute expression.

• eval(q, (n, v,∼,∧)) = 0m if there exists i such that eval({(ni, vi)} , (n, v,∼
,∧)) = 0m; in other words, if the request contains at least one name-value

pair that does not match the attribute expression.

• eval(q, (n, v,∼, !)) = >m, indicating conflict, if there exist i and j such

that eval({(ni, vi)} , (n, v,∼, !)) = 0m and eval({(nj , vj)} , (n, v,∼, !)) =

1m.

It is worth noting that neither XACML nor PTaCL provide this level

of control over how a request is evaluated with respect to singular targets

(the concept analogous to an attribute expression). Roughly speaking, target

evaluation in both languages only returns 0m or 1m and (effectively) always

assumes the use of ∨ when a request contains attribute values that both match

and don’t match a target. We discuss later how one could use multiple targets

together to distinguish conflicts in PTaCL target evaluation.

7.1.3 AEPL policies

A policy in AEPL is a pair P = (A(P), F (P)), where

• A(P) = {α1, . . . , α`} is a set of attribute expressions,

• Di ⊆ {⊥m, 0m, 1m,>m} is the range of values that eval(q, αi) can take,

and

• F (P) : D1 × · · · ×D` → {⊥d, 0d, 1d,>d} is a function.

Then we define:

P (q) = F (eval(q, α1), . . . , eval(q, α`)).

109

We will write A and F for A(P) and F (P), respectively, when P is clear

from context. We will also write eval(q, A) for eval(q, α1), . . . , eval(q, α`) where

no confusion can occur.

We may visualize F as a table having `+ 1 columns. The first ` columns

are indexed by the attribute expressions in A. The entries in the ith column

are the possible values that eval(q, αi) can take. The final entry in the row

with entries d1, . . . , d` is F (d1, . . . , d`). In other words, policies are defined in

the form suggested in the introduction and illustrated in Table 7.1. Thus we

specify an AEPL policy in two steps: define the relevant attribute expressions;

and then define the policy table. Note that a policy is defined directly in terms

of the match relationships that exist between the elements of a request and

the policy’s attribute expressions.

In the remainder of the chapter, we use an example of a simple policy

containing two attribute expressions. Let Pex = (Aex, Fex) be a policy, where

Aex = {α1, α2} = {(n1, v1,=,∧), (n2, v2,=,∧)}

and Fex is defined in Table 7.2.

x1 = eval(q, α1) x2 = eval(q, α2) Fex(x1, x2)

⊥m ⊥m ⊥d

⊥m 0m ⊥d

⊥m 1m 1d
0m ⊥m 0d
0m 0m 0d
0m 1m 0d
1m ⊥m 1d
1m 0m 0d
1m 1m 1d

Table 7.2: Policy function defined as a table

The decisions in the final column of Table 7.2 are determined by the policy

author, for each combination of attribute expression matches. This allows for

precise specification of how the policy Pex should behave under each different

outcome of attribute expression evaluation, and differs significantly from the

evaluation of targets in XACML and PTaCL. We discuss this in more detail

in Section 7.3.

7.1.4 Policies in normal form

In Chapters 4 and 6, we extended work by Jobe [24] to develop a method for

converting arbitrary tables representing functions of the form F : Dn → D,

where D is the set of values in a multi-valued logic, into an equivalent logical

formula using selection operators. We now show how this method can be

applied to AEPL policies to generate standardized policy representations that

110

can be evaluated automatically. We use the canonically complete 4-valued

logic L(4k, {−, �,⊗b}) as the underlying logic in AEPL.

We write D to denote D1× · · ·×D`. Given (x1, . . . , x`) ∈ D, we will write

x where no ambiguity can occur. For each row in the table representing F ,

we may construct an equivalent logical formula comprising a “disjunction” of

selection operators. Specifically, if F (a) = d for a ∈ D, then, we may write

this as Sd
a(x). Let D+ = {x ∈ D : F (x) 6= ⊥}. Then

F (x) =
∨

a∈D+

Sd
a(x) and Sd

(a1,...,a`)
(x) ≡

∧̀
i=1

Sd
ai .

Hence F may be represented as a disjunction of conjunctions of unary selection

operators.

Consider Fex, and let x1 = eval(q, α1) and x2 = eval(q, α2). Then, we may

express the policy Pex(q) = Fex(x1, x2) as a disjunction of selection operators:

Fex(x1, x2) ≡ S⊥(⊥,⊥)(x1, x2) g S⊥(⊥,0)(x1, x2) g S1
(⊥,1)(x1, x2)

g S0
(0,⊥)(x1, x2) g S0

(0,0)(x1, x2) g S0
(0,1)(x1, x2)

g S1
(1,⊥)(x1, x2) g S0

(1,0)(x1, x2) g S1
(1,1)(x1, x2).

This, in turn, may be represented as a disjunction of conjunctions of unary

selection operators (as described above).

Earlier in Chapter 6, we derived expressions for the unary selection ope-

rators in terms of the operators {−, �,⊗b} (see Figure 6.3). Hence, we can

derive a formula in normal form for the policy Pex = (Aex, Fex). Of course, one

would not usually construct the normal form by hand, as we have done above.

Indeed, we may reuse the algorithm we developed for PTaCL6
4 policies (see

Section 6.4.1), which takes an arbitrary policy expressed as a table as input,

and outputs the equivalent normal form expressed in terms of the operators

{−, �,⊗b}.

7.1.5 AEPL policy trees

An AEPL policy is a pair (A,F). While this method of policy specification

provides an intuitive and flexible method for defining policies, it will not scale

to situations where many attribute expressions need to be specified and evalu-

ated. In this case, it makes sense to use the policy-combining operators found

in XACML and other tree-structured authorization languages to combine the

results of evaluating multiple policies, each using a small number of attribute

expressions. Thus, the set of attribute expressions in each policy will act in

the same way as a target in a language like XACML.

In this section we revise the syntax and semantics for policy evaluation of

the tree-structured ABAC language PTaCL6
4 . We use the operators −, � and

111

⊗b from PTaCL6
4 (defined in Chapter 6) and demonstrate how policies of the

form (A,F) can be used in tree-structured policies, and how we may replace

targets with attribute expressions.

We define an attribute expression based target, or simply an AE-target, to

be a pair (A, T), where A = {α1, . . . , α`} is a set of attribute expressions and

T ⊆ D1× · · · ×D`, where Di is the set of values that eval(q, αi) can take. If q

is a request and T is an AE-target such that eval(q, A) ∈ T then q is said to

match T .

Given an AEPL policy P = (A,F), then P , �P and −P are AEPL policy

trees, where

(�P)(q)
def
= �P (q) and (−P)(q)

def
= −P (q).

If P1 and P2 are AEPL policy trees and T is an AE-target, then (T, P1 ⊗b P2)

is a AEPL policy tree, where

(T, P1 ⊗b P2)(q)
def
=

P1(q)⊗b P2(q) if eval(q, A) ∈ T ,

⊥ otherwise.

The ability to use AEPL policies (A,F) as leaf nodes (atomic policies) in

AEPL policy trees provides us with a number of advantages (over PTaCL6
4).

We get the additional expressive power of policy specification for leaf nodes,

together with the full power and functional completeness of PTaCL6
4 . By

facilitating high-level operators in addition to specifying policies via a policy

table and attribute expressions, we provide a hybrid means of constructing

policies, which can be both bottom-up and top-down. This provides a great

deal of flexibility and expressivity for policy authors. We can support low level

policies specified by functions, and merge the policies using high-level policy

operators. In addition, we have greater control of the applicability of policies

due to the use of targets based on attribute expression (over “traditional”

targets in PTaCL6
4). We discuss PTaCL6

4 targets and their limitations in

more depth in Section 7.3.2.

7.2 Policy compression

While representing a policy P as a pair (A,F) is more concise and an easier

task than specifying a decision for every possible request, the policy tables

will be large when many attribute expressions are involved. To tackle this

problem, we now investigate methods for policy compression, with the aim of

reducing the size of these policy tables.

112

7.2.1 Removing redundancies

We begin with the following two remarks about methods for merging and

omitting rows from policy tables.

Remark 7.2.1. Suppose F (a, x2) = d for all x2 ∈ D2, as illustrated in the

policy table fragment below.

x1 x2 F (x1, x2)

a ⊥ d

a 0 d

a 1 d

a > d

Then it is easy to show that

Sd
(a,⊥)(x1, x2) g Sd

(a,0)(x1, x2) g Sd
(a,1)(x1, x2) g Sd

(a,>)(x1, x2)

is equivalent to Sd
a(x1). (This equivalence is formally established in Table 7.3.)

And this may be represented in tabular form as a single row, shown below,

where we use − to signify that x2 can take any value.

x1 x2 F (x1, x2)

a − d

x1 x2 Sd
(a,⊥)(x1, x2) Sd

(a,0)(x1, x2) Sd
(a,1)(x1, x2) Sd

(a,>)(x1, x2) Sd
a(x1)

a ⊥ d ⊥ ⊥ ⊥ d
a 0 ⊥ d ⊥ ⊥ d
a 1 ⊥ ⊥ d ⊥ d
a > ⊥ ⊥ ⊥ d d

Table 7.3: Equivalence of selection operators

Remark 7.2.2. We may omit any rows from the policy table in which the

final column contains the value ⊥. Recall

Sd
a(x) =

d if x = a,

⊥ otherwise.

Moreover, (⊥g x) = (xg⊥) = x for all x ∈ {0, 1,⊥,>}. Thus

Sd1
a1

(x) g Sd2
a2

(x) g . . .g Sdn
an

(x) = ⊥,

except when x ∈ {a1, . . . ,an}.

Thus, we may assume the policy returns ⊥ if the table does not contain an

113

entry for a particular tuple x. In this case, we say the policy is not applicable

for any request q such that eval(q,A) = x.

Returning to our example policy Pex, we apply the results from the remarks

above to reduce the size of the policy table which defines the function Fex.

First, note that

Fex(0,⊥) = Fex(0, 0) = Fex(0, 1) = 0.

Thus, by Remark 7.2.1, we may merge these three rows into a single row,

represented by Fex(0,−) = 0. In addition, by Remark 7.2.2, we may omit the

rows Fex(⊥,⊥) and Fex(⊥, 0) since they contain ⊥ in the final column. Hence,

we have the reduced policy table shown in Figure 7.4.

x1 = eval(q, α1) x2 = eval(q, α2) Fex(x1, x2)

⊥m 1m 1
0m − 0
1m ⊥m 1
1m 0m 0
1m 1m 1

Table 7.4: Reduced policy table

Expressing the policy Pex(q) = Fex(x1, x2) as a disjunction of selection

operators, we have

Fex(x1, x2) ≡ S1
(⊥,1)(x1, x2) g S0

0(x1) g S1
(1,⊥)(x1, x2) g

S0
(1,0)(x1, x2) g S1

(1,1)(x1, x2).

It is worth noting that we may apply Remark 7.2.1 directly during policy

specification. If, for example, a policy author decides during the construction

of a policy table that if x1 = 0 then the value of x2 is irrelevant, the policy

should return 0 (the case in our example). In other words, we can, if desired,

directly encode a deny-overrides or permit-overrides in the policy table when

certain attribute expressions are matched or not matched. And we can allow

the policy author to use − as syntactic sugar for a “decision” in the policy

table, thereby saving the policy author from entering multiple rows (as seen

in Table 7.2).

7.2.2 Policies as Boolean functions

We now demonstrate that it is possible to reduce certain policies to Boolean

functions. Specifically, if F (x) ∈ {0, 1} for all x ∈ D, then we can eliminate

the values ⊥ and > from the policy table. In particular, we may replace an

attribute expression α = (n, v,∼,⊕) with two simpler attribute expressions

α1 = (n, v,∼) and α2 = (n, v,�). We then encode the semantics of ⊕ directly

in a policy table only containing 0s and 1s.

114

Consider the example in Figure 7.3. There are four values in the decision

set D = {⊥, 0, 1,>}, and there are four unique combinations of 0 and 1,

represented by the four rows in Figure 7.3b. Each of these values arises because

of matches or the absence of matches, thus allowing us to encode the semantics

of ⊕ directly in a policy table only containing 0s and 1s.

(n, v,∼, !) F

⊥ 0
0 0
1 1
> 0

(a) Policy containing ⊥ and >

(n, v,∼) (n, v,�) F

0 0 0
0 1 0
1 0 1
1 1 0

(b) Policy using only 0 and 1

Figure 7.3: Converting a simple policy into a Boolean function

There are a number of advantages in expressing an attribute expression

α = (n, v,∼,⊕) as a combination of two attribute expressions (n, v,∼) and

(n, v,�) and encoding the semantics of ⊕ directly. In particular, the resulting

policy table contains only binary values. Hence, we may employ existing

techniques for Boolean function minimization [2].

7.3 Comparison with XACML and PTaCL

Having defined the AEPL policy authorization language, we now provide a

brief summary of XACML and compare it with AEPL. We discuss the limi-

tations of targets in XACML and PTaCL, before showing how XACML rules

and policies may be represented in AEPL. We conclude by showing how an

XACML policy set may be represented using a single AEPL policy.

7.3.1 XACML targets

An XACML target, like an attribute expression, is expressed in terms of at-

tribute name-value pairs. It is used to determine whether a rule, a policy or

a policy set is applicable to a request.

A target is defined in terms of AllOf and AnyOf elements. The AllOf

element is used to group name-value pairs. Such an element is “matched”

by a request if the request matches each of the name-value pairs. The AnyOf

element is used to group AllOf elements. Such an element is matched if any

one of the AllOf elements is matched. Evaluation of an XACML target returns

one of two values (“matched” or “not-matched”), unlike the evaluation of an

attribute expression.

Moreover, evaluation of an XACML target disregards whether a request

contains a name-value pair that doesn’t match a target if it also contains

a name-value pair that does match. In other words, XACML provides less

115

control over target evaluation than our approach for the evaluation of attribute

expressions.

7.3.2 PTaCL targets

A PTaCL target is defined to be a tuple (n, v, f), where n is an attribute name,

v is an attribute value and f is a binary predicate. The key difference between

PTaCL targets and attribute expressions, comes in the choice of the binary

operator ⊕ present in attribute expressions. Attribute expressions allow this

operator to be selected from the set {∧,∨, !}, dependent on the way in which

conflicting attribute values should be handled. Targets in PTaCL implicitly

assume that the operator ∨ is always used. This makes it impossible to dis-

tinguish scenarios where there are two name value pairs (n′, v′) and (n′′, v′′)

such that n = n′, v = v′ and n = n′′, v 6= v′′, through the use of a single target.

However, we are able to use a combination of targets to structure a target

that can effectively detect conflicts between two name value pairs where n =

n′, v = v′ and n = n′′, v 6= v′′. Let t1, t2 and t3 be targets, where

t1 = (n, v,=),

t2 = (n, v, 6=),

t3 = t1 ∧p t2.

Then t3 will return 1m if a request contains two name value pairs (n′, v′) and

(n′′, v′′) such that n = n′, v = v′ and n = n′′, v 6= v′′, and thus can identify a

conflict of attribute values. While PTaCL can indirectly support the detection

of conflicts in attribute values in targets, we believe that our approach is AEPL

is more desirable for practical use. By using an explicit fourth decision > to

represent conflict, it becomes obvious to policy authors what is happening in

target evaluation, opposed to the use of three targets as described above.

7.3.3 XACML rules

An XACML rule is specified by a target t and a decision d (known as the

“effect” of the rule in XACML), which may be either “allow” or “deny”. The

evaluation of a rule for a given request returns d if the request matches the

target and “not-applicable” otherwise. Thus, an XACML rule may be encoded

as a particularly simple policy table. Specifically:

• each AllOf element is encoded as a row in the table, in which the last

entry is always d; and

• the AnyOf element is encoded by the different rows in the table.

Clearly, our policy tables can encode more general structures than XACML

rules. Informally, a policy table would have to be encoded using two XACML

116

rules, one for the rows for which the decision is 1 and one for the rows for which

the decision is 0. Even so, such an encoding could not, for example, return >.

In other words, AEPL provides a richer framework than the target-decision

paradigm for specifying the “leaf” policies in tree-structured languages such

as XACML or PTaCL.

7.3.4 XACML policies

We now illustrate how attribute expressions can be used to encode an entire

XACML policy set directly. Consider the tree-structured policy P illustra-

ted in Figure 7.4, where do and po represent the XACML deny-overrides and

permit-overrides combining algorithms respectively. This policy tree repre-

sents a XACML policy set (t1, do) which contains one policy (t3, po) and one

rule (t2, 0); and the policy (t3, po) in turn contains two rules (t4, 1) and (t5, 0)1.

We assume for simplicity that each target is a single name-attribute pair. In

Section 7.4.1 we explain how we can extend our method of specifying a policy

as a pair (A,F) to more complex scenarios.

(t5, 0)(t4, 1)

(t3, po) (t2, 0)

(t1, do)

Figure 7.4: A simple tree-structured policy

Then we can represent this policy as the following policy table, which is

created by considering every possible outcome of matching requests to targets.

We write xi to denote eval(q, ti), and − to signify the value of eval(q, ti) is

irrelevant.
x1 x2 x3 x4 x5 P (q)

0 − − − − ⊥
1 1 − − − 0

1 0 0 − − ⊥
1 0 1 1 − 1

1 0 1 0 1 0

1 0 1 0 0 ⊥

Hence, P may be represented by the pair (A,F), where A =

{t1, t2, t3, t4, t5} and F : {0, 1}5 → {⊥, 0, 1} is defined in the table above.

1This is a simplification in terms of the structure of XACML policy sets, policies and
rules but approximate enough for the sake of exposition. For explicit definitions the reader
is referred to the XACML standard [37].

117

Then

F (x1, . . . , x5) ≡ S0
(1,1)(x1, x2) g S1

(1,0,1,1)(x1, x2, x3, x4) g

S0
(1,0,1,0,1)(x1, x2, x3, x4, x5).

Note that we need not include the selection operators S⊥0 (x1),

S⊥(1,0,0)(x1, x2, x3) and S⊥(1,0,1,0,0)(x1, x2, x3, x4, x5) representing the first,

third and sixth rows, since the policy evaluates to ⊥ in these rows.

The representation of the policy tree in Figure 7.4 can be reduced to a

simple policy table, which in turn is reduced into a formula comprising just

three selection operators. By expressing this policy tree as a policy table, it

is much easier for a policy author to understand how this policy will behave

under each different result of target evaluation. Furthermore, we have a simple

formula that can be automatically converted into a machine-enforceable policy

and evaluated by a PDP.

7.4 Applications

We now demonstrate how complex policies can be built, enabling distributed

policy specification and evaluation (much as in XACML and PTaCL). Furt-

hermore, we explore how policy tables can be used to enhance existing access

control paradigms, such as role-based access control and access control lists.

Informally, in the first case, we show that a set of attribute expressions in an

AEPL policy table (each of which evaluates to an element in {0, 1,⊥,>}) may

be replaced with a set of policies. And in the second case, we show that the

policy decisions in an AEPL table can be replaced with a set of role identifiers

or similar.

7.4.1 Complex policies as tables

By specifying policies as a pair (A,F), we implicitly restrict the depth of poli-

cies (or policy trees) to one. However, this may not be the way in which some

policies are structured in the real world (indeed, most policy trees in XACML

have depth greater than one). We now develop a method for constructing

more complex policies from simple AEPL policies, using the structure of sim-

ple policies as a template. A complex policy P is a pair ({P1, . . . , P`} , F),

where Pi = (Ai, Fi) is a simple AEPL policy. We define

P(q) = F (P1(q), . . . , P`(q)).

Now, instead of the columns of the policy table representing the function

F being indexed by attribute expressions, they are indexed by policies. Each

row represents a possible combination of the values that may arise from the

evaluation of the respective policies P1, . . . , Pn. Of course, each of these po-

118

licies is itself defined by a set of attribute expressions and function (Ai, Fi),

which will need to be specified and evaluated first. The policy P, much like

previous policies, can be automatically converted into a machine-enforceable

form via the use of selection operators. Hence, we have developed a way in

which to combine arbitrary policies into machine-enforceable form. This ap-

proach can be easily scaled, providing the means to construct policies of any

desired depth (much in the same manner as XACML policies).

One of the main advantages in using this method for building up complex

policies, is the distributed nature in which it can be applied. For instance,

in a large organization, each department could construct their own complex

policy, which can be converted into a tree. Each department’s policy can

then become a node in a bigger tree, and be combined with other policies

through the use of another policy table. A simple example of this is shown

in Table 7.5, demonstrating how four individual policies P1, P2, P3 and P4

produced by each department can be combined in a policy table to create the

overall organizations policy Porg.

P1 P2 P3 P4 Porg

d1 d2 d3 d4 dorg
...

...
...

...
...

Table 7.5: Combining policies in another table

This policy table can be specified by someone who understands the com-

plete policy structure of the organization and can place adequate restrictions

on the interactions of policies between departments. Constructing policies

in this manner allows each department to design their own specific policy,

without the need to worry about how their policy interacts with other depart-

ment’s policies. The combination of policies is then moderated by a person

who understands the organization wide policy strategy. We believe this both

simplifies specification of complex corporate policies, and reduces the likely

number of misconfigurations and errors.

In addition to the distributed nature in which policies can be specified using

the approach, policy evaluation may also be distributed. In the real world it

is common practice for multiple PDPs to be deployed, and this architecture

may be leveraged by our method of specifying complex policies. For instance,

imagine the scenario where a central PDP is in charge of evaluating the or-

ganization’s policy Porg. This central PDP may then delegate the evaluation

of policies P1, . . . , P4 to other PDPs, and combine the resulting decisions that

are reported back by each PDP. There are many reasons why distributing the

evaluation of policies in this way could be advantageous: (i) the load on the

central PDP is reduced, (ii) free or available PDPs are fully utilised, (iii) the

evaluation time for policies is reduced, and (iv) in some instances requests

119

Age Role

≥ 3 Child

≥ 11 Juvenile

≥ 16 Adolescent

≥ 18 Adult

Table 7.6: Age to role assignment

may even be evaluated locally.

7.4.2 ABAC policies for RBAC

In role-based access control (RBAC) [42], we tend to assume that users are

authorized for roles on the basis of identity. With the emergence of attribute-

based access control, we have an alternative option: authorizing users on the

basis of their attributes. Al-Kahtani and Sandhu [1] created a model for

attribute-based user-role assignment, in which an enterprise defines a set of

rules that are triggered to automatically assign roles to users. The motivation

for a mechanism to do this, is to reduce the number of manual user-to-role

assignments that are required, which can become troublesome in large envi-

ronments such as utility companies and popular online websites [1].

We now demonstrate how we can automatically assign roles to users using

policies in AEPL. Previously, authorization policies were represented by a

function P : Q → D, where Q is the set of requests and D is the set of

decisions. Now, we represent a role assignment authorization policy by a

function P : Q → R, where Q is the set of requests and R is the set of roles.

The function P is used to determine how users are assigned to roles based

on their attributes. Consider the simple example for an attribute-role table

which assigns roles based on the attribute “age” for the purpose of filtering

age-restricted content, shown in Table 7.6 [1].

Let P be a policy which comprises of four attribute expressions α1, α2, α3

and α4, where α1 = (age, 3,≥), α2 = (age, 11,≥), α3 = (age, 16,≥) and α4 =

(age, 18,≥)2, with policy function F , defined in Table 7.7. (Note that we

abbreviate eval(q, (age, x,≥)) as age ≥ x in Table 7.7 in the interests of space.)

age ≥ 3 age ≥ 11 age ≥ 16 age ≥ 18 Role

1 0 0 0 Child
1 1 0 0 Juvenile
1 1 1 0 Adolescent
1 1 1 1 Adult

Table 7.7: Policy table

2The choice of operator ⊕ is irrelevant in this example, since requests will not contain
two pairs (n, v′) and (n, v′′) such that n is age and v′ 6= v′′, hence we omit it.

120

Hence, we have represented the age-to-role assignment as a policy P =

(A,F), which may in turn be represented as a combination of selection ope-

rators and converted into a machine-enforceable policy. It is easy to imagine

how this methodology could be extended and applied in a setting where it is

useful to automatically assign roles to users on the basis of attributes rather

than identity. Our approach is scalable, simple for policy authors to under-

stand and can be applied with various other techniques discussed throughout

this chapter such as ways to compress policies and using policies as leaf nodes

in tree-structured languages, to produce a machine-enforceable policy which

assigns roles to users.

7.4.3 Access control lists

In an access control system using access control lists based on identifiers, a

user is associated with one or more identifiers: a unique user identifier (UID)

and zero or more group identifiers (GIDs). Each object is associated with

an access control list (ACL). Each ACL may be modelled as a list of access

control entries (ACEs), where an ACE comprises an identifier and a set of

authorized actions. Finally, a request contains a UID and a set of GIDs, an

object identifier (OID) and a requested action. The UID and GIDs in the

request will be compared with those in the ACEs of the object’s ACL and a

decision will be reached based on the actions that are authorized by the ACEs

and those that have been requested.

We may extend this idea of identity-based ACLs to attribute-based ACLs.

Each ACE contains a group identifier, as before, which represents an attribute-

based policy. Then, we represent a group membership policy as a function

P : Q→ G, were Q is the set of requests and G is the set of group identifiers.

The policy P specifies the attributes that a user must have to be regarded

as a member of that group. We may represent this policy using a set of

attribute expressions A and a function F defined as a policy table, in an

identical manner to that illustrated in Section 7.4.2. Hence, we can use AEPL

to support attribute-based access control in a ACL-based system.

7.5 Summary and discussion

In this chapter, we have made important contributions to the development

of ABAC authorization languages. We defined attribute expressions, which

provide us with more fine-grained control over how requests are evaluated with

respect to attributes, compared to XACML and PTaCL. Thus we are able

to distinguish between scenarios where requests contain matching and non-

matching pairs of name-value pairs, and provide a choice of three semantics

for resolving the different name-value pairs.

Then, we specified policies as tables, in which the columns are indexed

121

by attribute expressions. By defining policies in this manner, we provided a

simple, intuitive method for specifying policies, in which it is obvious how a

policy will behave under each different evaluation of attribute expressions (un-

like standard tree-structured languages such as XACML and PTaCL). Furt-

hermore, we demonstrated how we may leverage a canonically complete logic

to compile policies expressed as tables into machine-enforceable policies. We

also explored various methods for policy compression, thus reducing the size

of policy tables (and these methods may also be applied to decision tables in

PTaCL<
3 and PTaCL6

4).

We then compared XACML and PTaCL with AEPL, showing how attri-

bute expressions provide more control over target evaluation than the tradi-

tional targets in XACML and PTaCL. In addition, we demonstrated how an

XACML policy represented as a policy tree may be converted into a policy ta-

ble. We argued that tabular representations of XACML policies make it easier

for policy authors to understand how policies will behave under each different

result of target evaluation. We concluded by showing some of the applications

of AEPL: building and evaluating enterprise-wide policies, and using policy

tables in RBAC and ACLs for role and group assignments respectively.

122

Chapter 8

Conclusions and Future Work

Broadly speaking, the main contributions of this thesis enhance our under-

standing of languages for attribute-based access control, and formalise the

underlying connections with multi-valued logics. In particular, we address the

three general difficulties in specifying and designing ABAC languages descri-

bed in the introduction: expressivity, policy specification and the matching of

requests with attributes via targets.

The development and specification of attribute-based access control lan-

guages such as XACML [37], PTaCL [12] and PBel [10] will continue to increase

to meet the demand for open, distributed, interconnected and dynamic sys-

tems. While XACML is a standardized language, and the “de facto” ABAC

language for practical implementations, in Chapter 3 we demonstrated nume-

rous flaws in XACML. Specifically, we proved that XACML is not functionally

complete, which means there are a number of operators which are useful in

practice (such as policy negation) that cannot be constructed using the XA-

CML rule- and policy-combining algorithms.

We recognise that XACML supports the specification of custom combi-

ning algorithms, however we believe that use of custom combining algorithms

needs to be carefully considered. There is no guarantee that the addition of

new combining algorithms will make XACML functionally complete. Thus,

to meet the requirements of policy authors, more and more custom combining

algorithms may be required over time. This has a twofold negative affect: the

implementation of XACML combining algorithms may become more cluttered

and many algorithms could become redundant, and the decisions faced by po-

licy authors will become more complicated, increasing the likelihood of errors

and misconfigurations. We believe that languages that specify a small number

of operators, that are known to be functionally complete, are of more interest

and will be easier for policy authors to use [10, 12].

This led naturally to the material in Chapter 4, where we focussed our at-

tention on PTaCL, a language that is known to be functionally complete [12].

However, despite being a functionally complete language, we argued that the

way in which PTaCL policies must be written because of the underlying struc-

123

ture of the language is not particularly helpful to policy authors. Indeed, it is

in general a non-trivial task to construct an arbitrary policy in PTaCL, and

the policies are often incredibly complex (for example, recall the definition of

XACML’s do and po in PTaCL, shown in Section 2.3.2).

To tackle the problem of expressing arbitrary policies in PTaCL, we applied

the theoretical foundations of Jobe [24] for multi-valued logics to PTaCL, esta-

blishing that PTaCL is not canonically complete. However, through a simple

replacement of a single unary operator, we developed a canonically complete

variant of PTaCL called PTaCL<
3 . We demonstrated a method for converting

any policy expressed as a table into a normal form, using only the operators

defined in PTaCL<
3 . (The method is similar to converting a truth table for an

arbitrary formula to a logically equivalent formula in disjunctive normal form

in propositional logic.) We believe that specifying policies in this manner is

both intuitive and easier for policy authors, and we developed an algorithm

for automatically converting policy tables into a normal form that is machine-

enforceable. In addition, we extended the syntax and semantics of PTaCL<
3

to incorporate obligations, showing that our method is both consistent with

XACML and more extensible.

During the development of the canonically complete PTaCL<
3 we assumed

a total-ordering on the set of authorization decisions, 0 < ⊥ < 1. We acknow-

ledge that this assumption is not consistent with the intuitive interpretation

of access control decisions, in which 0 and 1 are incomparable, conclusive de-

cisions, while ⊥ represents the inability to reach a conclusive decision. Furt-

hermore, there are many ABAC languages that utilise a fourth authorization

decision [10, 32, 45], to represent a conflict in decisions. XACML also uses a

fourth decision, but does so in an ad hoc manner for the only-one-applicable

combining algorithm, by reusing the indeterminate error decision. However,

in this instance, the indeterminate decision is returned when more than one

policy is applicable, which by itself is not an error.

Recognising the value of a fourth authorization decision, we extended

Jobe’s theoretical foundations to lattice-based logics. We proved that Bel-

nap logic [7] is not canonically complete, and thus any ABAC language which

is based on Belnap logic is also not canonically complete. Hence languages

such as PBel [10], BelLog [45] and Rumpole [32] are not canonically complete,

and suffer from the same difficulty encountered in PTaCL, that is, the chal-

lenge in constructing arbitrary policies using the operators specified in the

given language.

In Chapter 5 we developed a canonically complete 4-valued lattice-based lo-

gic L(4k, {−, �,⊗b}), without having to explicitly construct the unary selection

operators in normal form (unlike Jobe [24]). By identifying the connection be-

tween the generators of the symmetric group and the unary operators of logics,

we have developed a simple and generic method for identifying a set of unary

124

operators that will guarantee the functional and canonical completeness of

m-valued lattice-based logics. We also showed that there is a set of operators

containing only three connectives which is functionally complete for Belnap

logic, in contrast with the set of size four identified by Arieli and Avron [4].

Naturally, in Chapter 6 we defined a canonically complete 4-valued ABAC

language, PTaCL6
4 , based on the logic L(4k, {−, �,⊗b}) and presented the

advantages in doing so. We introduced a novel method for policy specification,

in which sub-policies index columns in a table, and the policy author can

tabulate the desired decision for all relevant combinations of decisions for

sub-policies. Specifying policies in this manner is both simple and intuitive,

policy authors can easily see how different combinations of sub-policies interact

and specify behaviour for each case, something that is difficult to do in tree-

structured languages such as XACML and PTaCL.

We also discussed how the XACML decision set and combining algorithms

may be modified to support PTaCL6
4 . Doing so enables us to retain the

rich framework provided by XACML for ABAC (in terms of its languages for

representing targets and requests) and its enforcement architecture (in terms

of the policy enforcement, policy decision and policy administration points).

Thus, we are able to propose an enhanced XACML framework within which

any desired policy may be expressed. Moreover, the canonically completeness

of PTaCL6
4 means that the desired policy may be represented in simple terms

by a policy author (in the form of a decision table) and automatically compiled

into a PDP-readable equivalent policy.

In Section 6.4.1 we provided details of the algorithm for converting po-

licy tables into a PDP-readable equivalent policy, and showed the time- and

space-complexities are order O(rc), where r is the number of rows and c is the

number of columns. In the worst case scenario, O(4c) rows will be required for

expressing policies, however in practice this is unlikely as rows which return ⊥
may be omitted by design (as ⊥ is the default policy decision). We commen-

ted on the ease in which our algorithm may be adapted for any canonically

complete ABAC language, thereby facilitating the automatic construction of

any arbitrary policy in any canonically complete language.

We defined a novel ABAC language AEPL in Chapter 7, which repre-

sents the accumulation of contributions made throughout this thesis, in terms

of the expressive power, and ease of policy specification in ABAC languages.

First, we defined attribute expressions, which provide greater control over how

requests are evaluated, compared to XACML and PTaCL. Attribute expressi-

ons remove the unnecessary two layers of abstraction present in current ABAC

languages, which exist in the form of targets and policies, by combining the

two. We then specified policies as tables, in which the columns are indexed

by attribute expressions. In doing so, we leverage all the previously discus-

sed advantages of expressing policies in this manner, in terms of reducing the

125

number of policy misconfigurations and errors, and the ability to automatically

compile policies.

Then, we compared XACML and PTaCL with AEPL, showing that AEPL

provides more control over target evaluation than XACML and PTaCL. Furt-

hermore, we showed how an XACML policy can be converted into a policy

table. By representing XACML policies in tabular form, it becomes easier for

a policy author to understand how policies will behave under each different

result of target evaluation. Finally, we demonstrated the various applications

of AEPL. We showed how complex policies can be constructed as tables, thus

enabling a distributed method for building and evaluating enterprise-wide po-

licies. We also showed how policy tables can be used in RBAC [1, 42] and

ACLs for role and group assignments respectively, making these paradigms

“attribute-aware”.

In this thesis we have addressed several issues in languages for attribute-

based access control by examining the underlying connections with multi-

valued logics. While existing ABAC languages leverage properties of multi-

valued logics to achieve functional completeness, they do not utilise any of the

other properties of multi-valued logics. Through the application of Jobe’s [24]

concept of canonical completeness to ABAC languages, we have developed

an extensible framework for specifying ABAC languages that are functionally

complete, and permit a normal form. We believe that the results presented

throughout this thesis have been encouraging, and address a number of con-

cerns in the development and implementation of ABAC languages.

8.1 Future work

A general criticism that could be made of the work in this thesis is the lack of

implementation of the theoretical material. Therefore, one priority for future

work is the development of a custom XACML PDP, and development of soft-

ware that implements some of the ideas presented in this thesis. We discuss

this in more detail below. Another general criticism that may be levelled at

this thesis is the absence of any usability studies to test the hypothesis that

writing policies in a tabular manner is easier than writing tree-structured poli-

cies. In addition, Chapters 3 to 7 provide a number of opportunities for future

research.

8.1.1 Development of a custom XACML PDP

As noted throughout Chapters 4, 6 and 7, an essential extension to our work is

the development of a custom XACML policy decision point, that implements

a set of custom combining algorithms (and later a custom decision set). We

believe it is simple to modify the XACML syntax to support the operators from

either PTaCL<
3 or PTaCL6

4 . Indeed, we presented the encoding of ⊗b and the

126

decision set {0, 1,⊥,>} in XACML in Section 6.4. We also hope to modify

an XACML PDP to support the evaluation of attribute expressions, allowing

us to evaluate AEPL policies in the rich framework provided by XACML for

attribute-based access control.

8.1.2 Software development

We plan to develop policy authoring software that provides a graphical user

interface for policy authors, allowing them to specify attribute expressions or

regular policies (found in PTaCL<
3 or PTaCL6

4), and construct a table for the

desired policy. This table will then be automatically converted into a machine-

enforceable policy, using a version of the algorithm presented in Section 6.4.1.

We also plan to support the methods for reducing the size of policy tables

discussed in Section 7.2, allowing policy authors to directly encode deny- and

permit-overrides in the policy table. Naturally, we hope to use a modified

XACML PDP to evaluate the machine-enforceable policies produced by the

policy authoring software.

There is also motivation to develop a tool which converts a policy expres-

sed as a tree-structured policy into an equivalent policy table, much like the

example in Section 7.3.4. This well help facilitate the smooth transition from

XACML tree-structured policies to policies defined as tables.

8.1.3 Usability study

Throughout this thesis, we have assumed that expressing policies as tables is a

more intuitive and simple method for constructing ABAC policies (compared

to constructing policies in a bottom-up tree-structured manner in languages

like XACML and PTaCL). While it is clear that understanding how policies

will behave under each different result of target evaluation is easier in tabular

form compared to policy trees (see, for example, Section 7.3.4), we still need to

test the hypothesis for the construction of policies through a usability study.

Our vision of this study requires the participants to construct a policy

presented in natural language, first as a tree-structured XACML policy, and

then as a policy table in AEPL. We may then compare various elements such

as (i) the ease with which the testers could construct each policy, (ii) whether

the XACML and AEPL policy are equivalent, (iii) the “correctness” of each

policy (how close they are to the described policy in natural language), and

(iv) other metrics such as the time taken to construct each policy.

8.1.4 Other

In Chapters 4 and 6 we were not concerned with the specific type or scope of

obligations, nor how they are handled by the system after policy evaluation.

This is however an important aspect of obligations within authorization sys-

127

tems, and there has been extensive research into this area [22, 23, 28]. Future

work could extend PTaCL<
3 and PTaCL6

4 to handle different types of obliga-

tions and model the behaviour that occurs after a decision-obligation pair has

been returned to the PEP. Furthermore, when an error is encountered during

evaluation, a set of decision-obligation pairs is returned. Thus, a method for

handling sets of decision-obligations pairs will need to be defined for the PEP.

Inspiration may be taken from work by Crampton and Huth [11], who use

the idea of a resolution function when errors are encountered during policy

evaluation.

We would like to revisit the idea of monotonicity [12] in targets and how

this affects policy evaluation in ABAC languages. By definition, monotonicity

is dependant on the ordering chosen for the decision set, and existing work

by Crampton and Morisset [13] studies the effect of different orderings on

monotonicity. We plan to extend this work and investigate how monotonicity

of targets is affected by the use of a 4-valued lattice-ordered decision set, such

as the ones discussed through this thesis.

Finally, Jobe identifies a number of equivalences (between formulae in the

logic J) that may be applied to reduce the size of a normal form formula in

J . We plan to investigate the relevance of these equivalences to authorization

policies in PTaCL<
3 in future work. We would also like to investigate whether

these equivalences may be extended to the logic L(4k, {−, �,⊗b}) and, more

generally, to canonically complete m-valued logics.

128

References

[1] Mohammad A. Al-Kahtani and Ravi S. Sandhu. A model for attribute-

based user-role assignment. In 18th Annual Computer Security Applica-

tions Conference (ACSAC 2002), 9-13 December 2002, Las Vegas, NV,

USA, pages 353–362. IEEE Computer Society, 2002.

[2] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Mi-

chael E. Saks. Minimizing DNF formulas and AC0 circuits given a truth

table. In 21st Annual IEEE Conference on Computational Complexity

(CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages 237–251.

IEEE Computer Society, 2006.

[3] Ja’far Alqatawna, Erik Rissanen, and Babak Sadighi Firozabadi. Overri-

ding of access control in XACML. In 8th IEEE International Workshop

on Policies for Distributed Systems and Networks (POLICY 2007), 13-15

June 2007, Bologna, Italy, pages 87–95. IEEE Computer Society, 2007.

[4] Ofer Arieli and Arnon Avron. The value of the four values. Artif. Intell.,

102(1):97–141, 1998.

[5] Lujo Bauer, Scott Garriss, and Michael K. Reiter. Detecting and resolving

policy misconfigurations in access-control systems. ACM Trans. Inf. Syst.

Secur., 14(1):2, 2011.

[6] D Elliott Bell and Leonard J LaPadula. Secure computer systems: Mat-

hematical foundations. Technical Report MITRE 2547, Volume I, DTIC

Document, 1973.

[7] Nuel D Belnap Jr. A useful four-valued logic. In Modern uses of multiple-

valued logic, pages 5–37. Springer, 1977.

[8] Piero Bonatti, Nahid Shahmehri, Claudiu Duma, Daniel Olmedilla, Wolf-

gang Nejdl, Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana

Patti, Paolo Coraggio, et al. Rule-based policy specification: State of

the art and future work. Technical report, Working Group I2, EU NoE

REWERSE, August 2004.

129

[9] Piero A. Bonatti, Sabrina De Capitani di Vimercati, and Pierangela Sa-

marati. An algebra for composing access control policies. ACM Trans.

Inf. Syst. Secur., 5(1):1–35, 2002.

[10] Glenn Bruns and Michael Huth. Access control via Belnap logic: Intuitive,

expressive, and analyzable policy composition. ACM Trans. Inf. Syst.

Secur., 14(1):9, 2011.

[11] Jason Crampton and Michael Huth. An authorization framework resilient

to policy evaluation failures. In Dimitris Gritzalis, Bart Preneel, and

Marianthi Theoharidou, editors, Computer Security - ESORICS 2010,

15th European Symposium on Research in Computer Security, Athens,

Greece, September 20-22, 2010. Proceedings, volume 6345 of Lecture Notes

in Computer Science, pages 472–487. Springer, 2010.

[12] Jason Crampton and Charles Morisset. PTaCL: A language for attribute-

based access control in open systems. In Pierpaolo Degano and Joshua D.

Guttman, editors, Principles of Security and Trust - First International

Conference, POST 2012, Proceedings, volume 7215 of Lecture Notes in

Computer Science, pages 390–409. Springer, 2012.

[13] Jason Crampton and Charles Morisset. Monotonicity and completeness

in attribute-based access control. In Sjouke Mauw and Christian Dams-

gaard Jensen, editors, Security and Trust Management - 10th Interna-

tional Workshop, STM 2014, Wroclaw, Poland, September 10-11, 2014.

Proceedings, volume 8743 of Lecture Notes in Computer Science, pages

33–48. Springer, 2014.

[14] Jason Crampton and Conrad Williams. Obligations in PTaCL. In

Sara Foresti, editor, Security and Trust Management - 11th International

Workshop, STM 2015, Vienna, Austria, September 21-22, 2015, Procee-

dings, volume 9331 of Lecture Notes in Computer Science, pages 220–235.

Springer, 2015.

[15] Jason Crampton and Conrad Williams. On completeness in languages

for attribute-based access control. In X. Sean Wang, Lujo Bauer, and

Florian Kerschbaum, editors, Proceedings of the 21st ACM on Symposium

on Access Control Models and Technologies, SACMAT 2016, Shanghai,

China, June 5-8, 2016, pages 149–160. ACM, 2016.

[16] Jason Crampton and Conrad Williams. Attribute expressions, policy ta-

bles and attribute-based access control. In Elisa Bertino, Ravi Sandhu,

and Edgar Weippl, editors, Proceedings of the 22nd ACM on Symposium

on Access Control Models and Technologies, SACMAT 2017, Indianapo-

lis, USA, June 21-23, 2017, pages 79–90. ACM, 2017.

130

[17] Jason Crampton and Conrad Williams. Canonical completeness in lattice-

based languages for attribute-based access control. In Gail-Joon Ahn,

Alexander Pretschner, and Gabriel Ghinita, editors, Proceedings of the

Seventh ACM on Conference on Data and Application Security and Pri-

vacy, CODASPY 2017, Scottsdale, AZ, USA, March 22-24, 2017, pages

47–58. ACM, 2017.

[18] Melvin Fitting. Bilattices and the semantics of logic programming. J.

Log. Program., 11(1&2):91–116, 1991.

[19] Melvin Fitting. Kleene’s logic, generalized. J. Log. Comput., 1(6):797–

810, 1991.

[20] Matthew L. Ginsberg. Multi-valued logics. In Tom Kehler, editor, Pro-

ceedings of the 5th National Conference on Artificial Intelligence. Phi-

ladelphia, PA, August 11-15, 1986. Volume 1: Science., pages 243–249.

Morgan Kaufmann, 1986.

[21] Matthew L. Ginsberg. Multivalued logics: A uniform approach to re-

asoning in artificial intelligence. Computational Intelligence, 4:265–316,

1988.

[22] Manuel Hilty, David A. Basin, and Alexander Pretschner. On obligations.

In Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter Goll-

mann, editors, Computer Security - ESORICS 2005, 10th European Sym-

posium on Research in Computer Security, Milan, Italy, September 12-14,

2005, Proceedings, volume 3679 of Lecture Notes in Computer Science,

pages 98–117. Springer, 2005.

[23] Keith Irwin, Ting Yu, and William H. Winsborough. On the modeling

and analysis of obligations. In Ari Juels, Rebecca N. Wright, and Sabrina

De Capitani di Vimercati, editors, Proceedings of the 13th ACM Confe-

rence on Computer and Communications Security, CCS 2006, Alexan-

dria, VA, USA, Ioctober 30 - November 3, 2006, pages 134–143. ACM,

2006.

[24] William H. Jobe. Functional completeness and canonical forms in many-

valued logics. J. Symb. Log., 27(4):409–422, 1962.

[25] Stephen C. Kleene. Introduction to Metamathematics. D. Van Nostrand,

Princeton, NJ, 1950.

[26] Stephen C. Kleene, Nicolaas G. de Bruijn, Johannes de Groot, and Adri-

aan C. Zaanen. Introduction to Metamathematics, volume 483. van Nos-

trand New York, 1952.

[27] Butler W. Lampson. Protection. Operating Systems Review, 8(1):18–24,

1974.

131

[28] Ninghui Li, Haining Chen, and Elisa Bertino. On practical specification

and enforcement of obligations. In Elisa Bertino and Ravi S. Sandhu,

editors, Second ACM Conference on Data and Application Security and

Privacy, CODASPY 2012, San Antonio, TX, USA, February 7-9, 2012,

pages 71–82. ACM, 2012.

[29] Ninghui Li, Qihua Wang, Wahbeh H. Qardaji, Elisa Bertino, Prathima

Rao, Jorge Lobo, and Dan Lin. Access control policy combining: Theory

meets practice. In SACMAT 2009, 14th ACM Symposium on Access

Control Models and Technologies, Proceedings, pages 135–144, 2009.

[30] Jan Lukasiewicz. Philosophische Bemerkungen zu mehrwertigen Syste-

men des Aussagekalküls. Comtes rendus des séances de la Société des

Sciences et des Lettres de Varsovie, Classe III(vol. 23):55–57, 1930.

[31] Andrea Margheri, Massimiliano Masi, Rosario Pugliese, and Francesco

Tiezzi. A rigorous framework for specification, analysis and enforcement

of access control policies. CoRR, abs/1612.09339, 2016.

[32] Srdjan Marinovic, Naranker Dulay, and Morris Sloman. Rumpole: An

introspective break-glass access control language. ACM Trans. Inf. Syst.

Secur., 17(1):2:1–2:32, 2014.

[33] Charles Morisset and Nicola Zannone. Reduction of access control de-

cisions. In Sylvia L. Osborn, Mahesh V. Tripunitara, and Ian Molloy,

editors, 19th ACM Symposium on Access Control Models and Technolo-

gies, SACMAT ’14, London, ON, Canada - June 25 - 27, 2014, pages

53–62. ACM, 2014.

[34] Qun Ni, Elisa Bertino, and Jorge Lobo. D-algebra for composing access

control policy decisions. In Wanqing Li, Willy Susilo, Udaya Kiran Tu-

pakula, Reihaneh Safavi-Naini, and Vijay Varadharajan, editors, Procee-

dings of the 2009 ACM Symposium on Information, Computer and Com-

munications Security, ASIACCS 2009, Sydney, Australia, March 10-12,

2009, pages 298–309. ACM, 2009.

[35] OASIS. eXtensible Access Control Markup Language (XACML) Version

1.0, 2003. (Simon Godik and Tim Moses, editors).

[36] OASIS. eXtensible Access Control Markup Language (XACML) Version

2.0, 2005. (Tim Moses, editor).

[37] OASIS. eXtensible Access Control Markup Language (XACML) Version

3.0, 2012. (Erik Rissanen, editor).

[38] Graham Priest. The logic of paradox. J. Philosophical Logic, 8(1):219–

241, 1979.

132

[39] Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, and Flem-

ming Nielson. The logic of XACML. In Farhad Arbab and Peter Csaba

Ölveczky, editors, Formal Aspects of Component Software - 8th Internati-

onal Symposium, FACS 2011, Oslo, Norway, September 14-16, 2011, Re-

vised Selected Papers, volume 7253 of Lecture Notes in Computer Science,

pages 205–222. Springer, 2011.

[40] Prathima Rao, Dan Lin, Elisa Bertino, Ninghui Li, and Jorge Lobo. An

algebra for fine-grained integration of XACML policies. In SACMAT

2009, 14th ACM Symposium on Access Control Models and Technologies,

Stresa, Italy, June 3-5, 2009, Proceedings, pages 63–72, 2009.

[41] Jerome H. Saltzer and Michael D. Schroeder. The protection of infor-

mation in computer systems. Proceedings of the IEEE, 63(9):1278–1308,

1975.

[42] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. You-

man. Role-based access control models. IEEE Computer, 29(2):38–47,

1996.

[43] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst.

Secur., 3(1):30–50, 2000.

[44] Jerzy S lupecki. Der volle dreiwertige Aussagen-kalkül. Comtes rendus

des séances de la Société des Sciences et des Lettres de Varsovie, Classe

III(vol. 29):9–11, 1936.

[45] Petar Tsankov, Srdjan Marinovic, Mohammad Torabi Dashti, and Da-

vid A. Basin. Decentralized composite access control. In POST, volume

8414 of Lecture Notes in Computer Science, pages 245–264. Springer,

2014.

[46] Duminda Wijesekera and Sushil Jajodia. A propositional policy algebra

for access control. ACM Trans. Inf. Syst. Secur., 6(2):286–325, 2003.

133

Appendix A

Code Listings

A.1 XACML operator brute-force combinations

Listing A.1 shows the Python code of the algorithm used to brute force the

construction of all possible XACML binary operators, which have the general

form �x⊕ M y where �,M∈ {−,+, “”} and ⊕ ∈ {do, po}.
1 pr in t ’ 0 a a b 1 1 d c c ’

2

3 Binary = [0 , 1 , 2]

4

5 # 1 and bot c o l agree

6 a = b = c = d = 0

7 C = [0 , a , a , b , 1 , 1 , d , c , c]

8 D = []

9 count = 0

10 f o r i in range (2) :

11 C[1] = Binary [i]

12 C[2] = Binary [i]

13 f o r j in range (2) :

14 C[3] = Binary [j]

15 f o r k in range (2) :

16 C[7] = Binary [k]

17 C[8] = Binary [k]

18 f o r l in range (2) :

19 C[6] = Binary [l]

20 Temp = []

21 Temp. extend (C)

22 D. append (Temp)

23 count = count + 1

24 f o r s in range (0 , 3) :

25 pr in t C[s] ,

26 pr in t

27 f o r r in range (3 , 6) :

28 pr in t C[r] ,

29 pr in t

30 f o r t in range (6 , 9) :

31 pr in t C[t] ,

32 pr in t

33 pr in t

34 pr in t

35

36 pr in t count

37

134

38 # 1 and bot row agree

39 a = b = c = d = 0

40 C = [0 , a , b , c , 1 , d , c , 1 , d]

41 E = []

42 count = 0

43 f o r i in range (2) :

44 C[1] = Binary [i]

45 f o r j in range (2) :

46 C[2] = Binary [j]

47 f o r k in range (2) :

48 C[3] = Binary [k]

49 C[6] = Binary [k]

50 f o r l in range (2) :

51 C[5] = Binary [l]

52 C[8] = Binary [l]

53 count = count + 1

54 Temp = []

55 Temp. extend (C)

56 E. append (Temp)

57 f o r s in range (0 , 3) :

58 pr in t C[s] ,

59 pr in t

60 f o r r in range (3 , 6) :

61 pr in t C[r] ,

62 pr in t

63 f o r t in range (6 , 9) :

64 pr in t C[t] ,

65 pr in t

66 pr in t

67 pr in t

68

69 pr in t count

70

71 # 0 and bot c o l agree

72 a = b = c = d = 0

73 C = [0 , a , 0 , b , 1 , b , c , d , c]

74 F = []

75 count = 0

76 f o r i in range (2) :

77 C[1] = Binary [i]

78 f o r j in range (2) :

79 C[3] = Binary [j]

80 C[5] = Binary [j]

81 f o r k in range (2) :

82 C[6] = Binary [k]

83 C[8] = Binary [k]

84 f o r l in range (2) :

85 C[7] = Binary [l]

86 count = count + 1

87 Temp = []

88 Temp. extend (C)

89 F. append (Temp)

90 f o r s in range (0 , 3) :

91 pr in t C[s] ,

92 pr in t

93 f o r r in range (3 , 6) :

94 pr in t C[r] ,

95 pr in t

96 f o r t in range (6 , 9) :

97 pr in t C[t] ,

98 pr in t

135

99 pr in t

100 pr in t

101

102 pr in t count

103

104 # 0 and bot row agree

105 a = b = c = d = 0

106 C = [0 , a , b , c , 1 , d , 0 , a , b]

107 G = []

108 count = 0

109 f o r i in range (2) :

110 C[1] = Binary [i]

111 C[7] = Binary [i]

112 f o r j in range (2) :

113 C[2] = Binary [j]

114 C[8] = Binary [j]

115 f o r k in range (2) :

116 C[3] = Binary [k]

117 f o r l in range (2) :

118 C[5] = Binary [l]

119 count = count + 1

120 Temp = []

121 Temp. extend (C)

122 G. append (Temp)

123 f o r s in range (0 , 3) :

124 pr in t C[s] ,

125 pr in t

126 f o r r in range (3 , 6) :

127 pr in t C[r] ,

128 pr in t

129 f o r t in range (6 , 9) :

130 pr in t C[t] ,

131 pr in t

132 pr in t

133 pr in t

134

135 pr in t count

136

137 #Commutative Quasi Idem

138 a = b = c = d = 0

139 C = [0 , a , b , a , 1 , c , b , c , d]

140 H = []

141 count = 0

142 f o r i in range (2) :

143 C[1] = Binary [i]

144 C[3] = Binary [i]

145 f o r j in range (2) :

146 C[2] = Binary [j]

147 C[6] = Binary [j]

148 f o r k in range (2) :

149 C[5] = Binary [k]

150 C[7] = Binary [k]

151 f o r l in range (3) :

152 C[8] = Binary [l]

153 count = count + 1

154 Temp = []

155 Temp. extend (C)

156 H. append (Temp)

157 f o r s in range (0 , 3) :

158 pr in t C[s] ,

159 pr in t

136

160 f o r r in range (3 , 6) :

161 pr in t C[r] ,

162 pr in t

163 f o r t in range (6 , 9) :

164 pr in t C[t] ,

165 pr in t

166 pr in t

167 pr in t

168

169 pr in t count

170

171 #a = [1 , 2 , 3 , 4 , 5]

172 #b = [9 , 8 , 7 , 6 , 5]

173 #pr in t s e t (a) & s e t (b)

174 pr in t

175 pr in t

176

177 Superset = H + G + F + E + D

178 pr in t Superset

179 pr in t l en (Superset)

180

181 # D E F G H

182 pr in t

183 Al lDup l i c a t e s = [x f o r x in D i f x in E] + [x f o r x in D i f x in F] + [x

f o r x in D i f x in G] + [x f o r x in D i f x in H] + [x f o r x in E i f

x in F] + [x f o r x in E i f x in G] + [x f o r x in E i f x in H] + [x

f o r x in F i f x in G] + [x f o r x in F i f x in H] + [x f o r x in G i f

x in H]

184 pr in t A l lDup l i c a t e s

185 pr in t l en (A l lDup l i c a t e s)

186

187 UniqueDupl icates = []

188 f o r i in A l lDup l i c a t e s :

189 i f i not in UniqueDupl icates :

190 UniqueDupl icates . append (i)

191 pr in t UniqueDupl icates

192 pr in t l en (UniqueDupl icates)

193 # s i s the l i s t o f dup l i c a t e s

194 # Superset i s the complete l i s t

195

196

197

198 DuplicatesRemoved = []

199 f o r i in Superset :

200 i f i not in UniqueDupl icates :

201 DuplicatesRemoved . append (i)

202

203 pr in t DuplicatesRemoved

204 pr in t l en (DuplicatesRemoved)

Listing A.1: Python code to generate policies

137

A.2 Automatic policy generation

Listing A.2 shows the Python code of the algorithm used to automatically con-

vert arbitrary PTaCL6
4 polices expressed as decision tables into an equivalent

normal form expressed in terms of the operators {−, �,⊗b}.
1 import numpy

2 import time

3

4 s t a r t = time . time ()

5

6 ############## Functions ################

7

8 de f UnarySelectionOpsToPolicyOps (se lop , i t e r a t e) :

9 i f s e l op == ’ Sb b ’ :

10 temp = ’ d ’ + s t r (i t e r a t e) + ’ \minop (\ udia \ucon d ’ + s t r (i t e r a t e)

+’) \minop (\ udia \ucon\udia \ucon d ’ + s t r (i t e r a t e) +’) ’

11 r e turn temp

12 e l i f s e l op == ’ S0 b ’ :

13 temp = ’ d ’ + s t r (i t e r a t e) + ’ \minop (\ udia \ucon d ’ + s t r (i t e r a t e)

+’) \minop (\ udia \ucon\udia \ucon d ’ + s t r (i t e r a t e) +’) ’

14 r e turn temp

15 e l i f s e l op == ’ S1 b ’ :

16 temp = ’ d ’ + s t r (i t e r a t e) + ’ \minop (\ udia \ucon d ’ + s t r (i t e r a t e)

+’) \minop (\ udia \ucon\udia \ucon d ’ + s t r (i t e r a t e) +’) ’

17 r e turn temp

18 e l i f s e l op == ’ St b ’ :

19 temp = ’ d ’ + s t r (i t e r a t e) + ’ \minop (\ udia \ucon d ’ + s t r (i t e r a t e)

+’) \minop (\ udia \ucon\udia \ucon d ’ + s t r (i t e r a t e) +’) ’

20 r e turn temp

21 e l i f s e l op == ’ Sb 0 ’ :

22 temp = ’ (\ udia d ’ + s t r (i t e r a t e) + ’) \minop (\ ucon\udia \ucon\udia \
ucon d ’ + s t r (i t e r a t e) +’) \minop (\ ucon\udia \ucon\udia d ’ + s t r (

i t e r a t e) +’) ’

23 r e turn temp

24 e l i f s e l op == ’ S0 0 ’ :

25 temp = ’ d ’ + s t r (i t e r a t e) + ’ \minop (\ ucon d ’ + s t r (i t e r a t e) +’)

\minop (\ ucon\udia \ucon d ’ + s t r (i t e r a t e) +’) ’

26 r e turn temp

27 e l i f s e l op == ’ S1 0 ’ :

28 temp = ’ (\ udia \ucon\udia \ucon d ’ + s t r (i t e r a t e) + ’) \minop (\ ucon\
udia \ucon\udia \ucon d ’ + s t r (i t e r a t e) +’) \minop (\ udia d ’ + s t r (

i t e r a t e) +’) ’

29 r e turn temp

30 e l i f s e l op == ’ St 0 ’ :

31 temp = ’ (\ udia \ucon d ’ + s t r (i t e r a t e) + ’) \minop (\ ucon\udia \ucon
d ’ + s t r (i t e r a t e) +’) \minop (\ udia \udia \ucon\udia d ’ + s t r (

i t e r a t e) +’) ’

32 r e turn temp

33 e l i f s e l op == ’ Sb 1 ’ :

34 temp = ’ (\ udia \ucon\udia d ’ + s t r (i t e r a t e) + ’) \minop (\ ucon\udia \
ucon\udia d ’ + s t r (i t e r a t e) +’) \minop (\ udia \udia d ’ + s t r (

i t e r a t e) +’) ’

35 r e turn temp

36 e l i f s e l op == ’ S0 1 ’ :

37 temp = ’ (\ udia d ’ + s t r (i t e r a t e) + ’) \minop (\ ucon\udia d ’ + s t r (

i t e r a t e) +’) \minop (\ udia \ucon d ’ + s t r (i t e r a t e) +’) ’

38 r e turn temp

39 e l i f s e l op == ’ S1 1 ’ :

138

40 temp = ’ d ’ + s t r (i t e r a t e) + ’ \minop (\ ucon d ’ + s t r (i t e r a t e) +’)

\minop (\ udia \udia \ucon\udia d ’ + s t r (i t e r a t e) +’) ’

41 r e turn temp

42 e l i f s e l op == ’ St 1 ’ :

43 temp = ’ (\ udia \ucon\udia \ucon d ’ + s t r (i t e r a t e) + ’) \minop (\ ucon\
udia \ucon\udia \ucon d ’ + s t r (i t e r a t e) +’) \minop (\ udia \udia \ucon
d ’ + s t r (i t e r a t e) +’) ’

44 r e turn temp

45 e l i f s e l op == ’ Sb t ’ :

46 temp = ’ (\ ucon\udia \ucon d ’ + s t r (i t e r a t e) + ’) \minop (\ ucon\udia \
ucon\udia \ucon d ’ + s t r (i t e r a t e) +’) \minop (\ ucon d ’ + s t r (

i t e r a t e) +’) ’

47 r e turn temp

48 e l i f s e l op == ’ S0 t ’ :

49 temp = ’ (\ udia \ucon\udia \ucon d ’ + s t r (i t e r a t e) + ’) \minop (\ udia \
ucon\udia d ’ + s t r (i t e r a t e) +’) \minop (\ udia \udia d ’ + s t r (

i t e r a t e) +’) ’

50 r e turn temp

51 e l i f s e l op == ’ S1 t ’ :

52 temp = ’ (\ udia d ’ + s t r (i t e r a t e) + ’) \minop (\ udia \ucon d ’ + s t r (

i t e r a t e) +’) \minop (\ udia \ucon\udia \udia \ucon\udia d ’ + s t r (

i t e r a t e) +’) ’

53 r e turn temp

54 e l i f s e l op == ’ S t t ’ :

55 temp = ’ d ’ + s t r (i t e r a t e) + ’ \minop (\ ucon\udia d ’ + s t r (i t e r a t e)

+’) \minop (\ ucon\udia \ucon\udia d ’ + s t r (i t e r a t e) +’) ’

56 r e turn temp

57

58

59 # In t h i s funct ion , we take a nary s e l e c t i o n operator Sabc n X

60 # and convert i t i n to unary s e l e c t i o n ope ra to r s . We i t e r a t e over the

l ength

61 # of the s e l op −3 to remove X from the con s t ruc t i on .

62 # tempString s t a r t s at i+1 to i gnor e S , and we add X via ” ” + se l op

[−1]

63 de f convertNarySelect ionOptoUnary2 (s e l op) :

64 temp = []

65 Select ionOpLength = len (s e l op)

66 f o r i in range (Select ionOpLength − 3) :

67 tempString =’S ’ + se l op [i +1] + ” ” + se l op [−1]

68 temp . append (tempString)

69 r e turn temp

70

71 # This func t i on conver t s the numerica l rows in to s e l e c t i o n ope r t a t o r s

72 de f convertPol icyTableToSe lct ionOps (po l i c y) :

73 tempString = ’ ’

74 rows = len (po l i c y)

75 c o l s = len (po l i c y [0])

76 temp = []

77 f o r i in range (rows−1) :
78 f o r j in range (co l s −1) :
79 tempString = tempString + s t r (po l i c y [i +1] [j])

80 tempSelop = ’S ’ + tempString + ’ ’ + s t r (po l i c y [i +1] [j +1])

81 temp . append (tempSelop)

82 tempString = ’ ’

83 r e turn temp

84

85

86 ############## Core Code ################

87

88 # This i s the po l i c y d e c i s i o n tab l e we w i l l convert i n to normal form

139

89 pr in t

90 Pol icyArray = [[’ p 1 ’ , ’ p 2 ’ , ’ p 3 ’ , ’P ’] , [’ t ’ , ’ 0 ’ , ’ 1 ’ , ’ 0 ’] , [’ b ’ , ’ 0 ’ , ’ 1 ’ , ’ t

’] , [’ 0 ’ , ’ 1 ’ , ’ b ’ , ’ 1 ’] , [’ 1 ’ , ’ 0 ’ , ’ t ’ , ’ b ’] , [’ t ’ , ’ b ’ , ’ t ’ , ’ t ’]]

91 # Saving the Po l i cy d e c i s i o n tab l e in to a txt f i l e ready f o r input in

l a t e x

92 numpy . savetxt (” Po l i c y t a b l e 4 v a l u e s . txt ” , Pol icyArray , fmt=’%s ’ ,

d e l im i t e r=’ & ’ , newl ine=’ \\\\\n ’)

93

94

95 rows = len (Pol icyArray)

96 c o l s = len (Pol icyArray [0])

97

98 # Outputting the po l i c y d e c i s i o n tab l e

99 pr in t ’We are conver t ing the f o l l ow i n g Po l i cy Table in to S e l e c t i o n

Operators ’

100 f o r i in range (rows) :

101 f o r j in range (c o l s) :

102 pr in t Pol icyArray [i] [j] ,

103 pr in t

104

105 pr in t

106

107

108 # Converting the po l i c y d e c i s i o n tab l e i n to n−ary s e l e c t i o n ope ra to r s

combined with \maxop

109 Pol icyArrayAsSelect ionOps = convertPol i cyTableToSe lct ionOps (Pol icyArray)

110 pr in t ’ This po l i c y array i s s p e c i f i e d by the f o l l ow i n g combination o f

s e l e c t i o n ope ra to r s : ’

111 tempStr ingSelop = ’ ’

112 f o r i in range (l en (Pol icyArrayAsSelect ionOps)) :

113 i f i == len (Pol icyArrayAsSelect ionOps) −1 :

114 tempStr ingSelop = tempStr ingSelop + Pol icyArrayAsSelect ionOps [i]

115 e l s e :

116 tempStr ingSelop = tempStr ingSelop + Pol icyArrayAsSelect ionOps [i] + ’

\maxop ’

117 pr in t tempStr ingSelop

118 pr in t

119

120 # Converting each n−ary s e l e c t i o n operator in to t h e i r compos it ion o f

unary s e l e c t i o n ope ra to r s

121 UnarySelectionOpsArray = []

122 f o r i in range (l en (Pol icyArrayAsSelect ionOps)) :

123 temp = convertNarySelect ionOptoUnary2 (Pol icyArrayAsSelect ionOps [i])

124 UnarySelectionOpsArray . append (temp)

125

126 temp1 = ’ ’

127 temp2 = ’ ’

128 f o r i in range (l en (UnarySelectionOpsArray)) :

129 f o r j in range (l en (UnarySelectionOpsArray [0])) :

130 i f j == len (UnarySelectionOpsArray) −2 :

131 temp1 = temp1 + UnarySelectionOpsArray [i] [j]

132 e l s e :

133 temp1 = temp1 + UnarySelectionOpsArray [i] [j] + ’ \minop ’

134 i f i == len (UnarySelectionOpsArray) −1:
135 temp2 = temp2 + ’ \Big (’ + temp1 + ’ \Big) ’

136 e l s e :

137 temp2 = temp2 + ’ \Big (’ + temp1 + ’ \Big) \maxop ’

138 temp1 = ’ ’

139 pr in t ’ This can be expanded to an exp r e s s i on c on s i s t i n g o f unary

s e l e c t i o n ope ra to r s : ’

140 pr in t temp2

140

141 pr in t

142

143 UnRows = len (UnarySelectionOpsArray)

144 UnCols = len (UnarySelectionOpsArray [0])

145

146

147

148 f o r i in range (UnRows) :

149 f o r j in range (UnCols) :

150 UnarySelectionOpsArray [i] [j] = UnarySelectionOpsToPolicyOps (

UnarySelectionOpsArray [i] [j] , j +1)

151

152 #pr in t UnarySelectionOpsArray

153 # Converting each unary s e l e c t i o n operator to t h e i r equ iva l en t

exp r e s s i on compris ing o f E 1 , E 2 and \minop

154 #fo r i in range (UnRows) :

155 # UnarySelectionOpsArray [i] = ArrayOfSelectionOpsToPolicyOps (

UnarySelectionOpsArray [i] , i)

156

157 pr in t ’The r e s u l t ’

158 pr in t UnarySelectionOpsArray

159

160 temp1 = ’ ’

161 temp2 = ’ ’

162 f o r i in range (l en (UnarySelectionOpsArray)) :

163 f o r j in range (l en (UnarySelectionOpsArray [0])) :

164 i f j == len (UnarySelectionOpsArray) −1 :

165 temp1 = temp1 + UnarySelectionOpsArray [i] [j]

166 e l s e :

167 temp1 = temp1 + UnarySelectionOpsArray [i] [j] + ’ \minop ’

168 i f i == len (UnarySelectionOpsArray) −1:
169 temp2 = temp2 + ’ \Big (’ + temp1 + ’ \Big) ’

170 e l s e :

171 temp2 = temp2 + ’ \Big (’ + temp1 + ’ \Big) \maxop \\\\ ’
172 temp1 = ’ ’

173 pr in t ’ Converting the unary s e l e c t i o n ope ra to r s to exp r e s s i on s

compris ing o f E 1 , E 2 and \minop : ’

174 pr in t temp2

175

176 # Saving the unary s e l e c t i o n ope ra to r s output in a text f i l e ready f o r

input in to l a t e x

177 with open (’ Una r y s e l e c t i o n op e r a t o r s 4 v a l u e s . txt ’ , ’w ’) as f :

178 f . wr i t e (temp2)

179

180

181 pr in t ’ Blank Line ’

182

183 end = time . time ()

184 runtime = end − s t a r t

185 pr in t ’Time to execute : ’ + s t r (runtime)

Listing A.2: Python code to generate policies

141

