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Abstract 
 
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease 

particularly characterised by degeneration of motor neurons from the ventral horn of the 

spinal cord. Such degeneration leads to muscle weakness and wasting (atrophy). Survival 

motor neuron (SMN) 1 gene is the SMA-determining gene, being absent or mutated in 

most people affected. SMN2 is a highly similar gene which produces low levels of SMN 

protein and allows survival in the absence of SMN1. Full-length SMN is a ubiquitous 

and essential cellular protein, and low levels of it result in a wide range of systemic 

pathologies in affected individuals. One avenue to treat SMA is gene therapy, a 

technology that uses genetic material to alter gene expression and can be applied to both 

inherited and acquired disorders. Gene addition therapy to replace the faulty SMN1 gene 

and thus increase the levels of SMN protein to a therapeutic threshold is one of the main 

strategies for treating SMA. Adeno-associated virus (AAV) vectors are currently being 

used in clinical trials to attempt such enhancement of SMN levels. A possible alternative 

may be provided by lentiviral vectors, which are widely used in basic research and 

clinical applications for gene transfer, including long-term expression. A previous study 

in Prof. Yáñez’s lab demonstrated that lentiviral vectors were significantly more 

effective for in utero transduction of motor neurons than AAV. Therefore, this study is 

focused on optimising a lentiviral expression system for SMN1 expression. A variety of 

integration-proficient and integration-deficient lentiviral vectors (IPLV and IDLV, 

respectively) with different promoters -either cytomegalovirus (CMV) or human 

synapsin (hSYN)- and transgenes -either wild-type or a novel codon optimised hSMN1- 

were produced to compare the efficiency of transgene expression and thus determine the 

lentiviral configuration resulting in the highest production of full-length SMN. Vectors 

were tested in a variety of proliferating and quiescent in vitro cell culture models for 
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quantitative estimation of full-length SMN production. The results of these experiments 

revealed that using integrating, CMV-driven, codon-optimised hSMN1 lentivector 

resulted in highest production of full-length SMN protein. In general, a comparison of 

expression levels revealed that IPLVs produced more transgenic protein than IDLVs. 

However, IDLVs achieved significant transgene expression levels, particularly in 

quiescent or growth-arrested cells, and they are expected to be significantly safer than 

IPLVs. Of note, overexpression by hSMN1 lentivectors restored gems in transduced type 

I SMA fibroblasts in a dose-dependent manner. Encouraged by the results of the cell 

culture work, we performed very preliminary in vivo experiments. As SMN-replacement 

therapy is particularly effective at early stages of post-natal development, we 

hypothesised that earlier treatment may be advantageous. We thus attempted to deliver 

control and our novel SMN1 lentivectors to the developing embryo of wild-type and 

SMA mice. While it is clear that this part of the work is at a very early phase, the outcome 

showed encouraging viability and lack of toxicity in treated animals. In conclusion, the 

results of this study suggest that lentiviral vectors are potent agents for transgenic 

expression of codon-optimised hSMN1, and that in utero delivery has significant 

potential as a therapeutic strategy for SMA.  
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1.1 Spinal muscular atrophy 
1.1.1 Spinal muscular atrophy pathology and molecular basis  
 
Spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality. 

The incidence of SMA is estimated at about 1 in 6,000 to 1 in 10,000 new-borns with a 

carrier frequency of approximately 1/40-1/60 (D’Amico et al., 2011).  

The defect caused by SMA disease is attributed to a reduced level of survival motor 

neuron (SMN) protein. SMA is primarily characterized by the degeneration of motor 

neurons in the spinal cord leading to progressive atrophy of skeletal muscles and 

generalized weakness. Initially it was thought that motor neurons were the only affected 

cells, but recent emerging evidence suggests that other tissues and cells are also affected 

by low levels of SMN protein (Bowerman et al., 2012; Gogliotti et al., 2012; Hua et al., 

2011; Martinez et al., 2012 and Park et al., 2010). α-motor neurons are the cells most 

affected by low levels of SMN protein, and SMN restoration in these cells is sufficient 

for some therapeutic benefit (Finkel et al., 2016 and Clinicaltrials.gov identifier 

NCT02122952). However an effective and successful therapy for SMA is likely to 

involves the consideration of SMA as a multi-system disorder (Gavrilina et al., 2008; 

Hamilton & Gillingwater, 2013 and Park et al., 2010).  

The level of SMN expression is not equal in all tissues and cells. A high expression level 

of this protein is found in motor neurons (Monani, 2005). Ribonucleic acid (RNA) 

analysis from different tissues such as lung, muscle, kidney and liver showed that 

survival motor neuron (SMN) is widely expressed and produces a 1.7 kb messenger RNA 

(mRNA) transcript and moderate levels of SMN protein are found in skeletal and cardiac 

muscle (Lefebvre et al., 1995 and Coovert et al., 1997).  

The full length SMN protein is 38 kDa, and is a ubiquitously expressed protein 

consisting of 294 amino acids, encoded by two highly similar genes called SMN1 and 
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SMN2. In the human genome, these genes are located on chromosome 5q in band 13.2 

(Figure 1.1). Healthy humans normally have one copy of telomeric SMN1 and one copy 

of centromeric SMN2 on chromosome 5 (Lefebvre et al., 1995). Heterogeneity in the 

number of SMN2 copies has been reported (Mailman et al., 2002). 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1: Location of SMN gene. 

SMN gene is located on the 5th chromosome at position q13.2. This gene is responsible 
for the production of SMN protein. Homozygous mutations and/or deletions in the 
SMN1gene cause SMA disease and subsequent reduction of the SMN protein. Taken 
from (Markowitz et al., 2004).    
 

 

SMN1 is also known as ‘SMN-determining gene’. SMN1 is absent or truncated in 98.6% 

of SMA patients while mutation in SMN2 cannot cause SMA disease (Coovert et al., 

1997 and Lefebvre et al., 1995). The length of SMN gene is roughly 20 kb and it consists 

of 8 exons interrupted by 7 intron (Markowitz et al., 2012).  

The telomeric and centromeric copies of SMN gene share more than 99.8% sequence 

homology. SMN1 and SMN2 can be distinguished from each other by 5 different 

nucleotides (Lefebvre et al., 1995). These nucleotides are placed in intron6, exon7, 
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intron7, and noncoding exon8, with only one of these five nucleotides placed in a coding 

region. Exon7 in SMN gene is a highly regulated region containing 54 nucleotides; the 

cytosine (C) is at position +6 of exon7 in SMN1 is a thymidine (T) in SMN2 ( Lorson et 

al., 1999 and Christian et al., 2010).  

SMN1 is transcribed into a full length SMN protein while SMN2 produces only 10% of 

the full-length SMN protein due to C to T substitution at position 840 in exon7. This 

substitution does not alter an amino acid but it affects the correct splicing of exon7 and 

results in the skipping of exon7 during transcription (Cifuentes-Diaz et al., 2002). This 

C to T transition in SMN2 results in a dramatic alteration in pre-mRNA splicing and 

causes the exon7 to be excluded from almost 90% of SMN2 mature transcripts (Jodelka 

et al., 2010). The translation termination signal to produce a full-length protein is placed 

in exon7 while in the case of exon-skipped SMN2 the translation termination region is 

at the 5´ end of exon 8. Lack of exon 7 decreases by ~ 2 KDa the molecular weight of 

SMN protein. Moreover, the truncated protein is unstable and also has reduced 

oligomerisation capacity, which is essential for its stability and proper function. 

Although SMN2 is present in all patients, it cannot compensate for the defect in SMN1 

(Coovert et al., 1997 and Lefebvre et al., 1995). Only 10% of SMN expressed by SMN2 

is full length and identical to the protein produced by SMN1 (Figure 1.2). 
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Figure 1.2: Schematic representation of differences between SMN1 and SMN2 gene 
and the effect of the C-to-T transition in exon 7 between these two genes on splicing.   

There are five nucleotide differences between SMN1 and SMN2. Only one of these 
nucleotide changes (840C T) is in the coding sequence (exon7). This alteration, but no 
other variations, in the SMN genes affects the splicing pattern of the gene and produces 
truncated SMN protein (lacking exon 7) from SMN2. The FL-SMN protein is a 38 KDa 
ubiquitously expressed protein and consist of 294 amino acids. Truncated protein lacks 
16 amino acids at the carboxyl terminal end generating an unstable protein, which cannot 
substitute for the full length SMN protein. Taken from (D’Ydewalle & Sumner, 2015). 
 

 

 

1.1.2 Types of spinal muscular atrophy 
 
Based on the age of onset and severity of disease, SMA can be classified into four 

different types: SMA type I (Werdnig-Hoffman disease), type II (intermediate), type III 

(mild, Kugelberg-Welander disease), and type IV (adult) (Munsat, 1991; Russman, 2007 

and Wang et al., 2007). 

SMA type I (or Werdnig-Hoffman disease) is the most severe and common type. 50% 

of SMA patients are diagnosed with this type. The onset of disease in this group occurs 

before 6 months of age and patients do not typically live longer than 2 years. Patients 

with SMA type I have profound hypotonia, making it difficult to control head 
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movements, and causing problems with breathing, swallowing and sucking. This group 

also suffers from increased risk of infection (Munsat, 1991 and Wang et al., 2007).  

In children affected with SMA type II (intermediate) the onset occurs between 7 and 18 

months of age, with an average survival of 2 or more years. They can sit without help 

but cannot walk or stand without help, and only a few are able to stand with leg braces. 

The respiratory process and swallowing are insufficient and weak (Munsat, 1991; 

Russman, 2007 and Wang et al., 2007).  

In SMA type III (mild, Kugelberg-Welander disease) the onset is after 18 months of age 

and the symptoms vary largely within the group. They can walk independently, however 

in some cases they need to use a wheelchair. Most patients have a productive adult life 

with minor muscular weakness. Scoliosis often develops in these patients (Munsat, 1991 

and Wang et al., 2007). 

In patients affected with SMA type IV (adult), the onset starts during the second or third 

decade of their life and these patients only present mild motor impairment. They can 

walk without help in adult years (Russman, 2007 and Wang et al., 2007). Table 1.1 

presents a summary of information about different type of SMA. 
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Table 1.1: Classification of Spinal Muscular Atrophy. 

Type Age of 
onset Highest function achieved Life span Reference 

SMA type I or Werdnig- 
Hoffman disease (severe) 0-6 months Cannot sit/stand <2 years (Munsat, 1991 and Wang et 

al., 2007) 

SMA type II (intermediate) 7-18 
months 

Can sit without help but need help 
while standing > 2years (Munsat, 1991; Russman, 

2007 and Wang et al., 2007) 

Type III or Kugelberg-Welander 
disease (mild) 

> 18 
months Can stand and walk without help Adult 

 
(Munsat, 1991 and Wang et 

al., 2007) 

Type IV Second or 
third decade Walking Adult (Russman, 2007 and Wang et 

al., 2007) 
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1.2 SMA diagnosis 
 
Electromyography, muscle enzyme creatine kinase, nerve conduction velocities, muscle 

biopsy, electrodiagnostic and magnetic resonance imaging (MRI) were standard tests 

used to diagnose SMA disease. However, since improvements in molecular genetic 

testing, it has become a standard tool for diagnosing different diseases, including SMA, 

and the aforemetioned methods are now largely redundant. The molecular genetic 

methods are more accurate, reliable and timely than non-molecular genetics based 

methods. The molecular genetic methods have become a standard and most up to date 

diagnostic tools (Arnold et al., 2015 Hausmanowa-Petrusewicz & Karwańska, 1986; 

Russman, 2007 and Wang et al., 2007). 

 

 

1.2.1 Molecular diagnosis  
 
To determine whether a patient is affected with SMA it is essential to establish the 

deletion or mutation in SMN1 gene. Single strand conformation polymorphism (SSCP) 

and restriction fragment length polymorphism (RFLP) methods were the first two 

methods used to detect SMN1 deletion and confirmation of SMA disease (Lefebvre et 

al., 1995). Soon after, in 1997, the SMN gene copy number was analysed using a 

quantitative PCR-based method by McAndrew (McAndrew et al., 1997). They 

diagnosed the type of SMA by determining the number of copies of SMN2 present in the 

patient. Real-time PCR has also been used to analyse number of SMN2 gene and 

determine the SMA type (Cuscó et al., 2002). 95% of SMA patients have homozygous 

SMN1 gene deletion (Lefebvre et al., 1995). The 5% remaining SMA patients are 

heterozygous, where one of the SMN1 alleles has been deleted and the other has an 
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intragenic mutation (Prior et al., 2011). A guide of SMA diagnostic tests is provided in 

Figure 1.3. 

 

 

 

 

Figure 1.3: A diagram of SMA diagnostic test. 

The first diagnostic test for a patient with suspected SMA should be the homozygous 
SMN1 deletion. The positive result of SMN1 deletion testing confirms SMA disease. The 
negative result will be used for analysing the number of SMN1 gene and sequencing of 
the remaining SMN1 gene to search for any mutation. Further diagnostic tests such as 
creatine kinase (CK), Electromyogram (EMG) and Nerve Conduction Studies (NCS) 
will be considered to detect SMA disease or any other motor neuron diseases, if the 
result of heterozygous deletion and mutation of SMN1 do not confirm the SMA diseases. 
Taken  from (Arnold et al., 2015).   
 
 
 
  



 26 

1.2.2 Carrier Screening and prenatal carrier screening  
 
The importance of genetic carrier screening tests is becoming clearer to the public, due 

to increased education. Currently over 60 laboratories worldwide carry out SMA 

diagnostic tests (Carré & Empey, 2016). Approximently 1 out of 47 to 1 in 72 SMA 

diagnostic tests are positive, with the frequency depending on the ethnicity studied 

(Hendrickson et al., 2009 and Sugarman et al., 2012). Determining the number of SMN1 

alleles is essential to give a person the status of ‘carrier.’ A SMA carrier status is 

allocated to a person who has only a copy of SMN1 gene. Dose analysis is applied to 

determine carrier status or not. This method is based on copy-number, thus it cannot 

distinguish between a carrier with “2+0” genotype and non-carriers with “1+1” 

genotype. In addition, this method cannot detect point mutations (Carré & Empey, 

2016). Specificity approaches 100% in case of the SMA carrier screening test (Scheffer 

et al., 2000) but the sensitivity of test is almost 90% (Prior, 2008). 

It is important to provide educational material to improve the public understanding of 

any genetic and inherited diseases such as SMA disease and to inform at-risk groups 

how this disease can pass to the next generation. A recommendation list was provided 

by the American College of Medical Genetics (ACMG) in 2008. As the SMA disease is 

not specific to any particular population, and SMA is a worldwide disease (Table 1.2), 

it is recommend that the carrier test should be made available for all couples regardless 

of race or ethnicity. Ideally the test should be carried out before conception or in early 

pregnancy. ACMG suggested formal genetic counselling services must be offered to 

anyone requesting this testing. They should have educational material regarding the 

basics of inherited genetic diseases and how they can pass between different members 

of a family. This is particularly important, as a carrier can have a faulty gene that does 

not affect them, but is at risk of passing the faulty gene on to their offspring. The 
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ACMG’s guidlines state that all carriers should be referred for follow-up perfectional 

genetic counselling and offered prenatal and preimplantation diagnosis testing (Prior, 

2008). In 2009, the American College of Obstetricians and Gynecologists (ACOG) 

published a list of recommendations. They do not recommend preconception and 

prenatal screening for SMA to be on offer to the general population at this time. Patients 

or couples with a family history of SMA or SMA- like diseases, and those who request 

SMA carrier screening after completing genetic counselling need to be referred to SMA 

carrier screening. Patients with positive results of SMA carrier screening follow up with 

genetic counselling to discuss prenatal and preimplantation diagnosis. An appropriate 

provider of prenatal genetic counseling and testing services needs to provide fetal testing 

for SMA for patients who request it (ACOG Committee Opinion, 2009). 

 

Table 1.2: Carrier frequency and detection rate by ethnicity. Taken from 
(Sugarman et al., 2012). 

Ethnicity Carrier frequency Detection rate 
Pan-ethnic 1/54 91.2% 
Caucasian 1/47 94.8% 

Ashkenazi Jewish 1/67 90.5% 
Asian Indian 1/52 90.2% 

Asian 1/59 93.3% 
Hispanic 1/68 90.0% 

African American 1/72 70.5% 
Overall 1/54 91.3% 
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1.2.3 Prenatal diagnosis 
 
Prenatal diagnosis should be offered to people who have a child affected with SMA or 

if both parents are known to be SMA carriers. The risk of a child affected with SMA in 

each pregnancy is 25% when both partners carry the faulty gene.  

Chorionic villus sampling (CVS) and amniocentesis are current tests which apply fetal 

DNA analysis to determine the copy number of SMN1 to clarify whether the unborn 

child is affected with SMA or not (Carré & Empey, 2016 and D’Amico et al., 2011). 

CVS tests can be carried out by removing a cell sample from the placenta and this 

particular test needs to be done between the 11th and 13th weeks of pregnancy. Between 

weeks 15  to 20 of preganacy, an amniocentesis test can be considered if required. 

However, it needs to be mentioned that both of these tests increase the risk of 

miscarriage, and cannot identify intragenic mutations. In addition, genotypic 

information of the parents is required for a more informative result (Carré & Empey, 

2016 and D’Amico et al., 2011). 

 

 

1.3 Financial cost of SMA  
 
SMA can cause tremendous physical and emotional suffering to the patient and their 

family. Additionally, a significant amount of funding is required to cover medical and 

supportive costs. This section will cover the information regarding the financial burden 

of the disease on affected SMA patients and their families, and the cost of prenatal 

screening tests. The patient and their family incur the financial burden, and insurance 

companies provide funds to treat the disease and cover non-medical accommodations 

related to the illness. A study was carried out by Lewin group to estimate the annual 

expenses of several muscular diseases including SMA in the United States. It was 
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estimated that there were 9,000 people affected with SMA, and one in every 10,000 

children born in the United States were affected by this disease. The average medical 

expenditure for privately insured patients whose disease onset occurred prior to three 

years of age is 121,682 US dollars annually, whereas mean annual medical costs for 

patients whose have onset after three years of age is $20,085. Moreover, SMA patients 

may incur nonmedical costs, such as caregiver salaries, wage loss and expenses of 

assistive devices to enhance the patient’s mobility and independence. Lewin group’s 

study believed 81.45% of patients whose disease onset occurred prior to three years of 

age require at least 16 hours of attendance per day so this will affect patients and their 

family’s wage. The cost of wage loss for these families is estimated at $35,623 per year. 

The estimate for families of patients with onset after three years of age is $11,110 (The 

Lewin Group, 2012). 

SMA patients and their family also need funding nonmedical expenditures, estimated at 

51,665 US dollars per year (onset before three years). This is needed to cover other 

nonmedical expenditures, such as home and vehicle modifications, and non-medical 

professional care. This cost comes down to $14,295 for patients whose onset occurred 

after three years of life. Altogether, the total annual cost for early-onset (before three 

years of life) SMA patients is estimated at $684 million and $273 million for SMA 

patients with an onset after three years of age (The Lewin Group, 2012). 

Little et al., 2010 investigated the cost-effectiveness of prenatal screening. They 

estimated $4.9 million for universal prenatal screening for SMA per quality-adjusted life 

year. Based on their study, prenatal screening for SMA is not cost-effective if offered to 

the public, and it might only be cost-effective in cases of high risk, such as those with a 

family history. 
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Overall, this information underscores the need for effective therapeutics and early 

intervention for SMA disease (The Lewin Group, 2012). 

 

 

1.4 Regulation of SMN gene 
 
Germain-Desprez et al., 2001 demonstrated that the two SMN genes (SMN1 and SMN2) 

are regulated transcriptionally during cell growth and differentiation stage. SMN 

promoter activity depends on the cell types at different developmental stages. For the 

first time ever, they showed that SMN promoter activity is reduced during cellular 

differentiation and the level of this reduction is four times greater than undifferentiated 

cells. Analysis of promoter region of SMN1 and SMN2 genes demonstrates identical 

promoter sequences for both genes and cis-regulatory elements located within the 

regulatory promoter. These elements are required for initiating and controlling 

transcription. There are two strong transcription initiation sites indicated in SMN gene: 

the first transcription initiation site is placed 163 base pair (+1) and the second site is 

located 246 base pair (-79) upstream of the transcription initiation site in exon 1 

(Germain-Desprez et al., 2001). The analysis of different tissues show the same SMN 

gene transcription initiation sites for different type tissues of the same developmental 

stage, while the initiate transcription sites are different depending on developmental 

stage: fetal stage (_79) or adulate (+1). Germain-Desprez et al., 2001, demonstrated 

RNA from SMN during fetal period have a longer 5′ untranslated region (5′UTR) which 

seems to be the primary product of the SMN1 gene. Therefore, SMN1 and SMN2 are 

subject to transcriptional regulation during cellular differentiation (Germain-Desprez et 

al., 2001). 
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1.5 Survival motor neuron protein  
 
As previously mentioned, the full-length SMN protein is a 294 amino acid protein with 

a molecular weight of 38kDa. SMN protein can be detected in all tissues and cell types 

but the level of SMN expression is not equivalent (Gabanella et al., 2005). High levels 

of SMN expression are detected in the brain, liver, spinal cord, kidneys, and moderate 

expression in cardiac and skeletal muscle (Coovert et al., 1997). A comparison between 

the level of SMN protein in the spinal cord of a SMA type I patient and healthy person 

of same age showed the level of SMN protein was 100-fold less in spinal cord of SMA 

I patient (Lefebvre et al., 1997). 

SMN protein has been suggested to have a variety of biological activities, with roles 

proposed in transcription, pre-mRNA splicing, stress responses, RNA stability, snRNA 

biogenesis, axonal RNA trafficking (Burghes & Beattie, 2009) and apoptosis (Parker et 

al., 2008). The role of SMN protein in these biological activities is described in the 

following section.  

 

 

1.6 Biological properties of survival motor neuron  
 
Self-association is a key factor of the importing process of SMN protein into the nucleus 

(Morse et al., 2007). Morse et al., 2007 demonstrated that the inhibition of SMN self-

association can result in the accumulation of SMN protein in cytoplasm, which suggests 

the presence of oligomeric SMN in the active import complex. The mechanism of SMN 

nuclear import is still unknown, however, in 2004, Narayanan et al., reported that the 

SMN nuclear import depends on the presence of Sm snRNPs and that deficiency in self-

association of SMN protein can prevent the binding of Sm proteins. 



 32 

Moreover, self-association domains of SMN protein play an essential role for all SMN 

functions including RNA splicing, because most SMN binding partners will not interact 

with monomeric SMN (Lorson et al., 1998 and Young et al., 2000). There are two 

separate self-association domains in exon6 and 2b of SMN protein ( Lorson et al., 1998 

and  Young et al., 2000). Exon 6 contains an evolutionarily highly conserved YG box 

domain at C terminal which mediates self-association of SMN protein ( Lorson et al., 

1998; Morse et al., 2007 and Talbot et al., 1997). ʻPAKKNKSQKʼ is a nine amino acid 

motif within exon 2b that encodes the self-association domain. In addition to coding the 

self-association domain, this sequence (ʻPAKKNKSQKʼ) also has an integral role in 

Cajal body targeting (Morse et al., 2007 and Young et al., 2000). 

Exon7 is responsible for the stability of SMN protein and in vitro experiments, 

demonstrating that the lack of exon7 results in a two-fold shorter half-life for SMN 

protein (Burnett et al., 2009). Exon7 also contains a five amino acid sequence: Gln-Asn-

Gln-Lys-Glu (QNQKE). It has been suggested by Zhang et al., 2007 that this sequence 

(QNQKE) plays a role in cytoplasmic localisation of SMN protein and also has axonal 

function.  

  

 

1.6.1 SMN complex  
 
The SMN complex consists of at least six other proteins called Gemins. This complex is 

large, 60 S. It remains very stable for many hours, and is resistant to a high concentration 

of salt and detergents (Paushkin et al., 2002 and Pellizzoni et al., 2002). This 

macromolecular complex appears to have a stabilising effect on SMN protein, whereas 

the failure of truncated SMN protein to form this complex could explain the shorter half-

life of truncated SMN protein compared to the full-length SMN protein. Self-
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oligomerisation of SMN protein is necessary to form this macromolecular complex 

while truncated SMN proteins produced from the SMN2 gene show a greatly reduced 

ability to self-associate. SMN protein is placed at a lynchpin position at the heart of this 

large complex that forms through interaction with all Gemins and SMN protein (Battle 

et al., 2007).   

Gemin2 with 32 kDa molecular weight and no homology to any other proteins is one of 

the proteins essential for forming SMN complex (Liu et al., 1997). Gemin2 is involved 

in two different SMN complexes: a SMN complex forms by binding all of the Gemins 

and SMN protein and the other complex contains only SMN protein and Gemin2 (Battle 

et al., 2007). Battle et al., 2007 suggested the interaction of SMN protein and Gemin2 

protein forms a stable core for SMN complex and these two proteins regulate each 

other’s cellular stability. Direct interaction of Gemin2 with SMN protein formed by 

overlapping of an amino-terminal nucleic acid-binding domain in exon 2a 2b of SMN 

protein with interaction region of Gemin2 (Bertrandy et al., 1999 and Young et al., 

2000). 

Gemin3 is a DEAD-box RNA helicase with 92 kDa molecular weight, and sharing 

homology with DEXDc superfamily. Gemin3 binds with full length SMN protein 

directly via its non-conserved COOH-terminal domain. In addition to interaction 

between Gemin3 and SMN protein, Gemin3 protein also interacts with SmB, SmD2, and 

SmD3. The DEAD box serves as catalytic activity which has a critical role in the 

function of the SMN complex in RNA metabolism (Charroux et al., 1999). In 2000 

Charroux and his colleague introduced Gemin4 as a novel component of the SMN 

complex. Gemin4 is a 120 kDa protein with no homology with any other proteins. 

Gemin4 interacts with SMN protein indirectly via its interaction with the DEAD box 

protein Gemin3. 
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The other component of the SMN complex is Gemin5 protein, which interacts with SMN 

protein and several Sm core proteins directly. Gemin5 is a RNA-binding protein (RBP) 

and a large multi-domain protein with 168 kDa molecular weight containing 13 WD 

repeats, which are placed at the amino terminal end of this protein, this protein shares 

homology with WD40 protein superfamily. The Gemin5 protein recognizes the small 

nuclear RNAs (snRNA) through its fifth WD repeat domains and derive from them a 

SMN complex, allowing the assembly of the small nuclear ribonucleoproteins (snRNPs) 

(Piñeiro et al., 2015). 

Gemin6 is another protein component of the SMN complex with 19 kDa molecular 

weight which interacts with SMN protein indirectly and via Gemin7 (Pellizzoni et al., 

2002). In 2002 Baccon et al., introduced Gemin7 as a novel protein component of the 

SMN complex. Gemin7, with a 15 kDa molecular weight, interacts with SMN complex 

and Gemin6 directly. Gemin6 and 7 interact with several Sm proteins of spliceosomal 

small nuclear ribonucleoproteins (Baccon et al., 2002 and Pellizzoni et al., 2002). The 

structure of both Gemin6 and Gemin7 contain folds that are similar to those observed in 

the spliceosomal Sm proteins.  

Gemin8 was described by Carissimi et al., 2006. The molecular weight of this protein is 

29 kDa and this protein has no homology with any other proteins. Gemin8 interacts with 

SMN complex directly as well as a heterodimer of Gemin6 and Gemin7. Direct 

interaction of Gemin8 with Gemin6 and Gemin7 heterodimer and, together with unrip 

to form a heteromeric subunit of the SMN complex. Gemin8 interact with Sm proteins, 

and Gemin8 containing SMN complexes are an essential component for snRNP 

assembly (Carissimi et al., 2006). 
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1.6.2 Roles of SMN protein 
 
SMN protein serve many functions, such as R-loop resolution (Zhao et al., 2016), 

translational regulation (Sanchez et al., 2013), roles in small nuclear ribonucleoprotein 

(snRNP) assembly and Precursor mRNA (pre-mRNA) splicing (Zhang et al., 2008), 

regulation of actin dynamics and transport of β-actin mRNA (Mélissa Bowerman et al., 

2009 and Mélissa Bowerman et al., 2010) and secretion vesicles (Rossoll et al., 2003 

and Ting et al., 2012).  

mRNA is synthesized as a precursor, pre-mRNA. Pre-mRNA is an immature single 

strand of mRNA, which after further processing, results in the mature mRNA (Campbell 

et al., 2008). Initially, it was expected that the SMN protein would have a direct role in 

pre-mRNA splicing, but it has since been described as the SMN playing an indirect role 

in pre-mRNA splicing process through its involvement in the formation and maturation 

of snRNP particles (Coady & Lorson, 2011). RNA polymerase II transcribe both introns 

and exons from the DNA molecule, therefore the pre-mRNA contains translated (exons) 

and non-translated (introns) regions, while the mRNA molecule that enters cytoplasm is 

an abridged version (Campbell et al., 2008). In the RNA splicing process, the introns 

(non-translated region) are cut out from the pre-mRNA molecule and the exons joined 

together, forming a mRNA molecule, thus the mRNA synthesis of fully translated 

regions (Campbell et al., 2008). 

The signal for RNA splicing is a short nucleotide sequence at each end of an intron 

recognised by particles called snRNPs (Campbell et al., 2008). snRNPs are located in 

the cell nucleus and are composed of protein molecules and one or two small nuclear 

RNA (snRNA); each molecule is about 150 nucleotides long and are uridine-rich U1, 

U2, U4, U5 and U6. There are two sets of proteins molecules that bind to snRNPs: one 

set are common proteins to all snRNPs and the other set is protein specific to each snRNP 
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(Will & Lührmann, 2001). The common proteins to all snRNPs are called Sm proteins 

(SmB/B′, SmD1, SmD2, SmD3, SmE, SmF and SmG) within the cytoplasm. The Sm 

proteins are expressed by seven genes: SM B/B′, D1, D2, D3, E, F and G F and G and 

bind into a conserved uridine-rich sequence on the snRNAs called Sm site to form a 

heptameric ring (Battle et al., 2006 and Will & Lührmann, 2001). The SMN/ Gemin 

complex interacts with Sm protein and mediates the formation of a ring-like structure 

around the Sm site of snRNAs. In the cytoplasm, the SMN complex binds directly to 

both snRNAs and Sm protein. The SMN protein binds to symmetrical dimethyl-arginine 

residues in SmB, SmD1 and SmD3 (Battle et al., 2007). Except that Gemin2, the other 

component of the SMN complex, will bind directly to Sm proteins. In addition to binding 

SMN complex with Sm site, the SMN complex binds to snRNAs itself through Gemin5 

at the 3′-end of snRNAs (Battle et al., 2006 and Pellizzoni et al., 2002). In an ATP-

dependent reaction, there is interaction between the Sm protein, Gemins proteins and the 

SMN proteins, thereby the SMN complex assembles all seven Sm proteins into a 

heptameric Sm site onto the Sm site within the snRNA (Meister et al., 2002). Forming 

Sm core act as a nuclear imported signal which interact with β nuclear import receptor 

(Palacios et al., 1997). Then SMN/ Gemin/ Sm core complex interact with other part of 

nuclear import complex which is sunrportin-1. This combination resulting to transport 

the entire complex into the nucleus. U-snRNP releases the imported complex into the 

nucleus and then sunrportin-1 molecule is shuttled back into the cytoplasm. U-snRNPs 

require further modifications and additional subdomains to be able to associate with pre-

mRNA splicing. 

The SMN complex has a critical role in the maturation process of snRNPs that are 

involved in general cellular function and survival of any cells and tissues (Narayanan et 

al., 2002 and Rexach & Blobel, 1995) . The low level of snRNP detected in cell line 
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derived from SMA patients is a consequence of the low level of SMN protein (Wan et 

al., 2005). The key role of SMN protein in the RNA splicing process is essential for all 

cell types.  

Many systems and organs are affected by SMA, such as the autonomic nervous system  

(Araujo et al., 2009), the skeletal muscle system (Hayhurst et al., 2012), the heart (Bevan 

et al., 2010), liver (Hua et al., 2011), and pancreas (Bowerman et al., 2012). This is due 

to SMN protein deficiency. However, motor neuron cells are the most sensitive and the 

most strongly affected by the defect of SMN protein ( Burns et al., 2016). Motor neurons 

have a temporal requirement for SMN protein in order to be fully functional and to 

survive (Kariya et al., 2014). Many studies have focused on why selective motor neurons 

degenerate due to low level of SMN protein which is a ubiquitously expressed protein. 

However, our knowledge of the causes of the motor neuron pathology in SMA is still 

limited. It is not clear why motor neuron cells are highly sensitive to the level of SMN 

protein and why a low level of SMN protein results in the degeneration of motor neuron 

cells (Rossoll et al., 2002 and Rossoll et al., 2003). Studies suggested that the low level 

of SMN protein was not sufficient to support the crucial cellular mechanisms required 

for the survival and maintanace of motor neuron cells (Kariya et al., 2014 and Lefebvre 

et al., 1995). Additionally, the level of SMN expression in motor neurons is not 

equivalent in different developmental stages. As described above, SMN complex is 

critical and links with snRNP biogenesis. When the snRNP level was found to be high 

at the embryonic stage, so was the level of SMN protein (d’Ydewalle & Sumner, 2015). 

The highest level of SMN protein manifested in the gestational and early neonatal stages, 

however the expression level reduced  to basal levels (d’Ydewalle & Sumner, 2015 and 

Soler-Botija et al., 2005). In prenatal and perinatal stages, the level of SMN protein is 

high. In these stages, the diameter of developing motor axons are small but they reach 
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to their target muscles. As a result, neuro muscular junctions are not developed 

completely. It has been demonstrated that the high level expression of SMN protein 

decreased sharply at postnatal day 17. It is during this developmental stage that the 

mature neuron muscular junctions are fully formed. The low level of SMN protein 

associated with SMA disease causes the incomplete maturation of the motor unit and 

degeneration of the motor neuron and axon (Kariya et al., 2014). Thus, this finding 

stresses the crucial role of SMN protein in the maturation and maintenance of neuron 

muscular junction. 

 

 

Figure 1.4: SMN is indispensable for development and maintenance of the motor 
unit. 

The graphic above shows the expression of SMN gene as it changes in different 
developmental stages. There is a decrease in levels of SMN protein between prenatal 
and early postnatal periods in the spinal cord. The highest level of SMN protein is in the 
prenatal and perinatal stages. High levels of SMM protein are required for developing 
motor axons in these two developmental stages of life. In these stages, the diameter of 
axons is small but they reach to their targeted muscles, and a low level of SMN protein 
causes immature synaptic inputs and neuromuscular junctions. The level of SMN protein 
is reduced to a normal level once the motor unit is fully developed and this level of SMN 
protein is essential for the maintenance of motor unit function. Incomplete maturation 
of the motor unit, immuration development of synaptic inputs and partial development 
of neuromuscular junctions occurred in the SMA affected patient, due to low levels of 
SMN protein. Taken from (d’Ydewalle & Sumner, 2015). 
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As the SMN protein is an essential molecule in the RNA splicing process, it has been 

suggested that defects in mRNA biogenesis due to low level of SMN protein might 

activate intracellular stress signaling pathways, which might lead motor neurons to 

degenerate in SMA disease (Ahmad et al., 2016). It is not clear what intracellular 

pathways are and how they are involved in the degeneration of motor neurons, however, 

it needs to be mentioned that by using in vivo and in vitro model it has recently been 

established that low levels of SMN protein activate Rho-kinase (ROCK) and the c-Jun 

NH(2)-terminal kinase (JNK) signaling pathway (Ahmad et al., 2016). JNK signaling 

pathway is found to be active in the motor neurons of SMA patients and SMA mice 

model (Genabai et al., 2015). Sunayama et al., 2005 demonstrated knockdown of SMN 

will activate the JNK signaling pathway in motor neuron culture. JNKs belong to the 

MAPK family, JNKs play a role in neuronal cell growth, apoptosis, synaptic plasticity, 

on brain development, the adult brain, memory and brain morphology. Cellular stress 

will strongly activate the JNK pathway (Coffey, 2014). ROCK belongs to the AGC 

family of kinases, which play a role in the regulation of the cytoskeleton, neuronal 

growth, degeneration, differentiation and path finding in motor neurons. In vitro 

experiments showed the low level of SMN results in the activation of ROCK pathway 

(Bowerman et al., 2007 and Nölle et al., 2011). 

In 2002, Rossoll et al., described a novel binding partner for SMN protein. SMN protein 

interacts with the highly related RNA-binding heterogeneous nuclear ribonucleoprotein 

(hnRNP-R). A high level of hnRNP-R protein was detected in motor neuron axons and 

a lower level of hnRNP-R expression observed in sensory axons (Rossoll et al., 2002). 

The high level of SMN protein is localised in axon and growth cones motor neuron cells. 

The SMN protein is not colocalised with Gemin2 in axons. Considering the interaction 
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of SMN protein and Gemin2 is an indispensable complex’s components for assembling 

snRNPs, but  the fact the SMN protein is not binding with Gemin2 suggests that SMN 

performs a different and specific function in in axons of motor neurons (Jablonka et al., 

2001 and Rossoll et al., 2003).  

In 2003, Rossoll and his colleague demonstrated that only full length SMN protein and 

its binding partner hnRNP-R could form a complex. This complex interacts with 3′ UTR 

of β-actin mRNA and translocates to axon and growth cones of motor neuron cells. 

Therefore, low levels of SMN protein cause the alteration of β-actin protein and mRNA 

localisation in axon and growth cones of motor neurons. Binding of SMN with hnRNP-

R is essential for association of hnRNP-R with β-actin mRNA. The effect of SMN 

protein levels in the interaction of hnRNP-R with β-actin mRNA could explain the 

relatively high sensitivity of motor neurons in SMA disease (Rossoll et al., 2003). In 

addition to axon growth, developing motor neuron junctions require a high level 

accumulation of β-actin mRNA, and the interaction of SMN with hnRNP-R is key for 

this β-actin accumulation. Thus, a low level of SMN protein has a direct effect on the 

accumulation of β-actin. It reduces the level of β-actin accumulation and causes poorly 

developed motor neuron junctions (Coady & Lorson, 2011).  

In addition to SMN function in RNA metabolism, it has been suggested that SMN 

protein plays a role in the regulation of gene expression through an interaction of SMN 

protein with a nuclear transcription factor. Abnormal gene expression has been observed 

in SMA disease (Strasswimmer et al., 1999). 
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1.7 SMN is not only a motor neuron disease 
 
Recent studies have proven that SMN is not only a disease of the lower motor neuron 

and that motor neurons are not the only cells and tissues effected by the low level of 

SMN protein in SMA disease (Hamilton & Gillingwater, 2013 and Simone et al., 2016). 

Park et al., 2010 introduced mice models that expressed low levels of SMN protein 

specifically in motor neuron cells only. Their novel mouse model demonstrated that 

depleting the SMN protein in motor neuron cells results in a SMA-like phenotype rather 

than full-blown SMA disease and low levels of SMN protein in other cells and tissues 

are necessary to create SMA disease phenotype. The result of these studies clearly 

emphasized that in addition to motor neuron other cells and tissues contribute to SMA 

pathology, so SMA is a multi-system disorder and is not only a motor neuron disease 

(Hamilton & Gillingwater, 2013 and Park et al., 2010). Several different researchers 

presented the finding that SMN protein is critical to the normal function of organs such 

as muscles (Martinez et al., 2012), heart (Gogliotti et al., 2012) and pancreas 

development (Bowerman et al., 2012). Table 1.3 and Figure 1.5 represent a number of 

organs and cells affected by a low level of SMN protein in SMA pathogenesis.   

Even when it comes to the nervous system, motor neurons are not the only population 

affected by SMA disease in this system. Wishart and colleagues stressed the role of SMN 

in the development of the brain, and for the first time they demonstrated that perinatal 

growth and normal brain development require high levels of SMN protein (Wishart et 

al., 2010). Not all brain regions require the same level of SMN protein. Regionally 

selective modifications in brain morphology were apparent particularly in areas 

normally associated with higher SMN levels such as the hippocampus. Low levels of 

SMN protein cause modifications in morphology, modified expression levels of proteins 

regulating proliferation, reduced levels of cellular proliferation and postnatal 
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hippocampal neurogenesis, migration and developmental processes in hippocampus 

(Wishart et al., 2010). 

Hunter et al., 2014 claimed that low levels of SMN protein also affect Schwann cells. 

Schwann cells require a high level of SMN protein for functioning and normal 

development. Low levels of SMN in Schwann cells results in the failure of these cells to 

produce normal levels of key extracellular matrix proteins, including laminina2. This 

failure causes delayed maturation of axo–glial interactions, myelination defects and 

abnormal composition of extracellular matrix in peripheral nerve. In the light of the 

combined evidence, the development of a therapeutic strategy that targets the entire 

nervous system is required to treat SMA disease. 

Shanmugarajan et al., 2007 suggested lower motor neuron degeneration is not the only 

cause of bone disease in SMA patients and SMN protein has particular roles in bone cell 

function. Study of SMA mice skeletal phenotype showed abnormalities in the lower 

body, bone quality and poorly developed caudal vertebra in comparison to wild type 

mice. The level of bone area, bone mineral density and bone mineral content is 

substantially low in effected mice with SMA. Pelvic bone fracture was observed in SMA 

mice as well as other abnormalities. Moreover, the level of osteoblast differentiation 

marker, osteopontin, osteocalcin and osterix mRNA expression was lower in SMA mice 

than non-affected mice (Shanmugarajan et al., 2007, 2009). 

Another organ affected in SMA disease is the liver (Hua et al., 2011 and  Vitte et al., 

2004). A low level of SMN protein has a significant effect on the liver, which is not 

surprising as the level of SMN protein is high in the healthy liver. Investigation of SMA 

mice liver showed striking liver dysfunction, iron overloaded (Vitte et al., 2004). SMA 

mice are small in size, which could indicate growth retardation, and liver-derived 

insulin-like growth factor 1 (IGF-1) which is required to support both normal growth 
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postnatal and cardiac development and function. The enzyme-linked immunosorbent 

assay (ELISA) showed low levels of IGF-1 in SMA mice model. Low levels of IGF1 in 

SMA mice is likely because of low expression of Igfals gene expression. Igfals gene 

expresses IGF-binding-protein acid labile subunit (IGFALS), which is a hepatic protein 

that stabilises IGF-1. Low level of Igfals gene expression correlates with low levels of 

SMN protein in SMA disease (Hua et al., 2011). 

Thus, there is strong evidence to support the idea that SMA disease is not solely a result 

of motor neuron degeneration. Multiple systems become vulnerable in SMA disease 

because of a low level of SMN, so SMA is a multi-system disorder disease. In 

conclusion, a good understanding of different phenotypes subsequent to the low 

expression of SMN gene is crucial to develop a fully functional therapeutic strategy 

(Hamilton & Gillingwater, 2013). 
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Table1.3: Summary of peripheral organ defects in SMA pathogenesis. 

Biological function SMN-dependent intrinsic defects References 
Autonomic nervous 
system 

Cardiac dysfunction, bradycardia, abnormal fluctuation of blood pressure, 
high plasma concentration, vasculitis, coagulopathy and vascular 
abnormality.  

(Araujo et al., 2009; Bevan et al., 2010 
and Hachiya et al., 2005) 

Liver function Reduced hepatic Igfals expression, leading to a pronounced reduction in 
circulating insulin-like growth factor 1 (IGF1) and stunted growth 

(Hua et al., 2011) 

Muscle 
development 

Impaired satellite cell differentiation muscle weakness and delay in 
expression of mature isoforms of proteins important for muscle function. 

(Boyer et al., 2013 and Hayhurst et al., 
2012) 

Pancreas 
development 

Abnormalities in pancreatic islet cells with dramatic increase in glucagon-
producing α-cells than of insulin-producing β-cells, fasting hyperglycemia, 
hyperglucagonemia, glucose resistance  

(Bowerman et al., 2012, 2014) 

Neuromuscular 
junction function 
and maturation 
 

Abnormal neurofilament accumulation in the nerve terminals and poor 
terminal arborization, impaired maturation of the NMJ, defect post-natal 
development of the neuromuscular synapse, disrupted astrocyte functions 
and impaired normal development and function of Schwann cells. 
  

(Hunter et al., 2014; Kariya et al., 2008 
and Rindt et al., 2015) 

Brain Impaired hippocampal neurogenesis and brain development (Wishart et al., 2010) 
Lung Discolorations of the lungs  suggestive  of atelectasis  or pulmonary 

infarctions 
(Schreml et al., 2013) 

Intestine Intestinal edema (Schreml et al., 2013) 
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Figure 1.5: Example of non-motor neuronal tissue pathology in SMA: cardiac 
defects. 

SMA is caused due to loss of the SMN1 gene and results in low levels of full length SMN 
protein in all different tissue and cell types. Motor neurons require high levels of full 
length SMN protein for survival and normal development and function. But SMA is not 
only a motor neuron disease, and other cells and tissues contribute to SMA pathology.  
Taken and modified from (Simone et al., 2016). 
  



 46 

1.8 Current progress towards SMA therapy 
 
The most common and readily available treatment is the use of drugs or small molecules, 

which focus on increasing SMN2 gene expression, or transcription to increase the level 

of full length SMN protein. Histone deacetylase inhibitors (HDACis) were the first drugs 

used for treatment of SMA (Hahnen et al., 2006 and Lunke & El-Osta, 2013). HDACis 

increase endogenous SMN2 promoter activity, thus increasing the level of SMN protein 

in the cytoplasm and nuclei of cells. The result of testing this drug in SMA mice model 

showed improvement of life span for up to 38 days compared to untreated mice with an 

average survival of 13 days (Chang et al., 2001 and Narver et al., 2008). Moreover, this 

drug improved muscle pathology, cardiac phenotypes, motor performance and weight 

(Avila et al., 2007 and Heier et al., 2012). 

Valproic acid and phenylbutyrate are two other drugs that have undergone clinical trials 

but did not show very promising results (Mercuri et al., 2004 and Weihl et al., 2006). 

However, testing of valproic acid on patients affected with SMA III and IV showed some 

improvement in muscle strength (Weihl et al., 2006). 

Suberoylanilide hydroxamic acid (Hahnen et al., 2006) and Trichostatin A (Avila et al., 

2007) are two other drugs that have been considered for treatment of SMA and are 

undergoing clinical trials. 

Another therapeutic approach is the use of antisense oligonucleotides (ASOs). ASOs can 

be used to correct splicing of SMN2 transcripts and increase the level of SMN protein. 

These act by binding to SMN2 intronic splicing silencer, which increases SMN levels by 

avoiding skipping of exon 7. ASOs10-27 was tested in SMA mice model and showed 

promising results in improving neuromuscular pathology, weight, muscular fibro size 

and necrotic phenotypes. Furthermore, it increased the life span by up to 25-fold as 

compared to untreated mice (Hua et al., 2010, 2011; Passini et al., 2011and Williams et 
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al., 2009). This drug is under phase I clinical trials in individuals with SMA type I-III 

and it has been established that this drug can be directly injected into the cerebral spinal 

fluid via lumbar puncture. 

On December 2016, the U.S. Food and Drug Administration approved Spinraza 

(nusinersen). This is the first drug that has been approved to treat children and adults 

affected with SMA. Spinraza is an ASO, this drug increases the level of full length SMN 

protein by binding and altering the splicing of a single RNA from the SMN2 gene and 

enhancing the inclusion of exon 7 into the SMN protein. Spinraza is delivered directly 

into the cerebrospinal fluid via intrathecal injection (Finkel et al., 2016). The efficacy of 

Spinraza was studied in a clinical trial, with a participation group of 121 SMA patients. 

The results of the clinical trial demonstrated improvement in motor function. In addition, 

a greater number of patients treated with Spinraza survived, compared to untreated 

patients. The most common side effects found in treated patients were upper respiratory 

infection, lower respiratory infection, constipation, renal toxicity, neurotoxicity, 

coagulation abnormalities and thrombocytopenia (Finkel et al., 2016). This drug is 

available in the US and a wider distribution into more countries in 2017 is in progress. 

Naryshkin et al., 2014 identified three small molecules, SMN_C1, SMN_C2 and 

SMN_C3, that have therapeutic advantages for SMA disease and can be considered as a 

therapeutic strategy to treat SMA patients. These small molecules selectively modulate 

the inclusion of exon 7 in the SMN2 mRNA. These compounds can be administered 

orally and are able to cross the blood-brain barrier. The test for these compounds were 

performed on both in vitro and in vivo models. For in vitro expriments, the SMA I patient 

fibroblast cells were used and the treat the cells were treated with SMN_C1, SMN_C2 

and SMN_C3. The theraputic effect of these compounds was investigated 24 hours after 

the treatment and it demonstrated that the level of Δ7 mRNA decreased and the level of 
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FL SMN2 mRNA increased, thus the level of full length SMN protein increased in SMA 

I patient fibroblast cells.  Moreover, these compounds showed positive results when they 

were tested whether they are capable of increasing SMN protein level in disease- 

relevant cells which were motor neurons generated from SMA patients’s iPSCs. 

Analysis of result of Δ7 mices established that these three compounds increase SMN 

protein level, survival time, body weight and improved motor neuron function. These 

compounds increased the SMN protein level in vivo and vitro experiment in different 

cell types while they do not have major effect on the expression of genes other than 

SMN2 (Naryshkin et al., 2014). 

Roche (Basel, Switzerland), PTC Therapeutics (South Plainfield, New Jersey, United 

States) and SMA Foundation started a clinical trial to test a small molecule called 

RG7800. RG7800 acts as the first SMN2 splicing modifer in clinical trial phase (1b/2a). 

The clinical trial started in November 2014 but was halted in May 2015 due to safety 

concerns. The safety issue arose when unexpected side-effects were observed in the eyes 

of treated mice using RG7800, and the clinical trial was suspended immediately as a 

precautionary measure. It needs to be mentioned that no safety issue has been reported 

by SMA patients who were involved in this clinical trial. The SMA patients in this 

clinical trial were treated with a lower concentration than the dose that was used to treat 

animals. This study remains on hold and the safety issue is under investigation (Calder 

et al., 2016).  

A second SMN2 splicing modifer which encourages the production of more SMN 

protein called RG7916 was introduced soon after holding a clinical trial for RG7800. 

The small molecule was tested in healthy volunteers in a Phase I clinical trial in January 

2016. The purpose of this clinical trial is to evaluate the safety, pharmacokinetics and 

effect of this molecule in healthy volunteers. This clinical trial is ongoing and it is a 
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collaboration between Roche (Basel, Switzerland), PTC Therapeutics (South Plainfield, 

New Jersey, United States) and SMA Foundation (Calder et al., 2016). 

There are advantages associated with the use of small molecules for therapy purposes, 

namely that they are simply producable and orally available. However it is important to 

note the main limitaion of using small molecules, which is the risk of unexpected side 

effect and/or affecting non-targeted genes (Faravelli et al., 2015). 

Gene therapy is highlighted as a potential option for the treatment of SMA. As 

previously explained, SMA is caused by insufficient levels of SMN protein, which 

occurs as a response to mutation/deletion in SMN1, and although functional SMN2 is 

present, it cannot code for a sufficient amount of protein to maintain normal phenotype.  

The first study to use, a viral vector to deliver SMN gene into patient cells demonstrated 

that the adenoviral vector encoding the SMN gene could increase the level of SMN 

protein in SMAI fibroblast (DiDonato et al., 2003). This study also confirmed that the 

SMN protein expressed using SMN gene delivered by adenoviral vector is fully 

functional and interacts with its normal cellular binding pattern. Study of the number of 

gems in transduced SMA I fibroblast showed the number of gems restored in transduced 

SMA I fibroblast to the same or more than the number of gems in control fibroblast. 

Recent research in SMNΔ7 mouse fibroblast shows that SMA can be rescued by 

increasing the expression of SMN1 (Valori et al., 2010). Valori et al., 2010 demonstrated 

that level of SMN expression in fibroblast cells from type-1 SMA patients transduced 

with codon optimised-SMN1 is about 2-fold higher than the level of expression obtained 

from fibroblasts transduced with wild type-SMN1. Previously it has been shown that 

incubating SMA type-1 fibroblast with lentivectors containing human SMN1 gene can 

lead to an increase in the level of SMN protein (Azzouz et al., 2004). This extended the 

life span of mice by 3-5 days and decreased the death of MNs in SMA mice. 
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Interestingly, only a minimal immune response was noted in these mice at 7 days after 

injection. Hence, this provides a proof of principle for the use of lentiviral vectors to 

deliver SMN1 gene as a probable gene therapy option for treating SMA. 

Injected SMA mice with one dose of self-complementary adeno-associated virus 9 

(scAAV9-SMN) demonstrated very promising results in terms of rescuing 

neuromuscular physiology and motor neuron function and extend SMA mice life span 

(Foust et al., 2010). As one of the great approaches of this study is related to time point 

injection, this study will be explained in more details in the following section (Foust et 

al., 2010). 

Single intracerebroventricular injection of scAAV9 delivering human SMN gene under 

the control of the chicken β-actin promoter (CBA) carried out at postnatal day one SMA 

mice. The outcome of this study demonstrated the highest increase in survival time (282 

days) of SMA mice reported at the date of this publication. The improvement in survival 

correlated with an increase in body weight, motor neuron performance and behavioural 

improvement (Meyer et al., 2015). Meyer et al., 2015 demonstrated at least 20 to 40 

percent of motor neurons throughout the spinal cord have to be transduced for a 

considerable therapeutical effect. A maximum therapeutic effect will be achieved when 

half of the motor neurons in the spinal cord are transduced.  

In addition, pre-clinical experiments have been carried out on SMA non-human primate 

models. (Duque et al., 2015) established a large SMA animal model which could 

potentially be a useful model for the pre-clinical stage. To generate a SMA pig model 

the level of SMN protein in pig motor neuron cells was reduced efficiently by 

knockdown. In this study, SMN1 gene was knocked down in motor neuron five-day old 

pigs using intrathecal delivery of scAAV9-shRN. To our knowledge, this study is the 

first report of the large SMA model in the domestic pigs. Duque et al., 2015 
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demonstrated that a 73% knockdown in motor neurons postnatally is sufficient to 

generate an SMA-like phenotype. Key SMA symptoms appeared, such as muscle 

weakness, loss of motor neurons and abnormal posture appeared three or four weeks 

post injection. 

SMA pig model received scAAV9_hSMN intracisternally when onset of symptoms was 

determined in animals whose SMN gene was knowkdown. Delivery of human SMN had 

a marked impact on SMA disease progression. Therefore, their result indicated gene 

therapy was useful in SMA pig model at post-symptoms. 

A Phase I/II gene transfer clinical trial on affected children with SMA Type I is in 

progress. This study started in April 2014 in Nationwide Children’s Hospital in 

Columbus, Ohio. AAV9 carrying the SMN gene under the control of a hybrid CMV 

enhancer/ CBA promoter injected intravenously through a peripheral limb vein. Dr. Jerry 

R. Mendell, the leader of this study, presented data from this ongoing Phase I/II trial of 

AVXS-101 at the World Muscle Congress Brighton, United Kingdom – October 5, 2015. 

The preliminary observations in terms of safety and tolerability of the injected vectors 

in the nine patients studied to date are promising. A test designed to measure motor skills 

of patients affected with SMA Type I by The Children’s Hospital of Philadelphia Infant 

Test of Neuromuscular Disorders (CHOP-INTEND). All patients in this study are 

subjected to this test to determine whether there is any improvement in their motor 

function. The outcome of this test demonstrated that patients injected with 6.7 X 1013 

vg/kg of vectors have modest improvement in their motor function and greater 

improvement observed in the group of patients who received 2.0 X 1014 vg/kg of vector. 

This clinical trial is ongoing and estimated completion date for this study is December 

2017 

(https://clinicaltrials.gov/ct2/show/NCT02122952?term=NCT02122952&#x0026;rank
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=1 and http://investors.avexis.com/phoenix.zhtml?c=254285&p=irol-

newsArticle&ID=2166123, on 11.08.2016). 

Although the field of gene therapy has some promising approaches, there are some 

complications associated with the use of vectors: (i) vectors can lead to insertional 

mutagenesis if they integrate into the host chromosome, (ii) virus-based vectors can 

cause an immune response which reacts against the vector or in some cases neutralizes 

the delivered vectors; (iii) chance of the viral reactivation in the vector due to 

recombination events (Braun, 2013). 

 

 

1.9  Therapeutic time window 
 
Another subject which is under discussion in the field of SMA therapy is the best time 

to deliver SMN-targeted therapies. Intravenously injected scAAV9-SMN into SMA mice 

model at postnatal day 2 and 5 (P2 and P5) demonstrated different mean survival in 

treated animals (Foust et al., 2010). Animals which received injection at P2 increased 

mean survival from 14 days to 250 days. However, P5-injected animals survived 15 days 

longer than mean survival. 

In contrast, two separate studies by Foust et al., 2010 and  Hua et al., 2011 demonstrated 

injected SMA mice model at P8 (onset of obvious symptoms) provide very little 

amelioration of disease symptoms.  

Furthermore, in 2014 Robbins et al., injected SMA mice with scAAV9-SMN1 vector via 

intracerebroventricular (ICV) at different early time points. In this study SMN mice were 

administered a single injection of 1 X 1011, on a single day from P2 to P8. Injection at 

earlier time points demonstrated a greater therapeutic benefit than the injection at later 

time point. In terms of survival time, the SMA mice that received injection at P2 survived 
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more than 130 days. It needs to be mentioned that the therapeutic effect of viral vector 

injection steadily declined at late time point injection, however they lived significantly 

longer than non-transduced SMA mice. In terms of weight gain, the injected SMA mice 

showed higher increased weight compared with non-injected SMN mouse. On the other 

hand, comparing how injection at different time points is relevant with body weight 

showed injected animals can be divided into two group based on similar weight gain 

from birth to their peak. Animals injected at P2-P4 were placed into one group and 

animals injected at P5-P7 were placed into the other. Study of motor neuron function 

confirmed that injection at the early time point produced stronger motor function. 

Thus, taken together, it is clear that maximal therapeutic benefit will be achieved when 

treatment is applied at very early stage of postnatal. This therapeutic time window leaves 

one question unanswered: what happens at the early stage of SMA disease which makes 

it necessary to have a time limit for treatment. Therefore, diagnosis of SMA disease in 

newborn babies is critical, in order to start treatment as soon as possible to achieve robust 

therapeutic benefits. 
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1.10  Gene therapy 
 
Gene therapy is defined as the use of genetic material to prevent / to correct disease. This 

can be achieved by the introduction of genetic material into host cells (Verma & 

Weitzman, 2005). The basis of molecular genetics and gene transfer in bacteria was 

established in the 1960s, and was soon followed by the transfer of genes of interest into 

animals and humans using genetically modified cultured cells and virus-based vectors 

(Wolff & Lederberg, 1994). Delivering genes to mammalian cells offers great possibility 

to the treatment of human disease. By the end of 1990, gene therapy began to make 

serious progress with two ex vivo gene therapy trials approved in the US. However, in 

1999, a patient who suffered from ornithine transcarbamylase deficiency and 

participated in the trial died within 98 hours. The patient was injected with an adenoviral 

vector carrying corrected copy of the gene. The patient died due to systemic 

inflammation, intravascular coagulation, and multi-organ failure (Raper et al., 2003 and 

Wilson, 2009). Several other cases were reported around the first clinical trials due to 

insertional mutagenesis of viral vectors used (Browning & Trobridge, 2016). This 

hampered the success of gene therapy clinically, but the field is continually improving 

for effective clinical application (Scollay, 2001). 

Gene therapy can be broadly classified into: (1) Somatic cell gene therapy, which 

involves modification of the somatic cells or tissue, and (2) germ-line gene therapy, in 

which genetic changes are employed into a gamete, zygote, or an early embryo. 

Modifications in germ-line therapy are permanent and are passed on to the next 

generation. However, germ-line gene therapy is illegal due to ethical considerations 

(Nielsen, 1997). Various gene therapy approaches have been employed for the 

treatments of different diseases, such as gene addition, gene correction, gene silencing, 

reprogramming and cell elimination. Gene addition involves transferring the relevant 
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genes into cells using a vector at non-homologous chromosomal sites. The gene of 

interest and its control signals are packaged into either non-viral or viral vectors and 

delivered into the host cell. The new gene has its own control signals including start and 

stop codons. This strategy is most used in diseases arising due to the loss of function of 

genes. In contrast, in gene correction, defective genes or gene fragments are exchanged 

with a corrected portion of gene with or without supplemental recombinant machinery 

that efficiently recombines with the defective gene at its chromosomal location 

(Mulligan, 2011 and Verma & Weitzman, 2005). 

Gene silencing involves interruption or suppression of gene expression at either 

transcriptional or translational levels. This method is usually used to turn-off specific 

genes in diseases in which, for example, tissues produce too much protein from a specific 

gene. Cell elimination strategies involve the use of suicide genes, oncolytic viruses, anti-

angiogenesis agents, or toxic proteins that can mount an immune response to the 

unwanted cells. This strategy is widely used for treatment of cancer and overgrowth of 

certain cell types (Bast, 2004; Dykxhoorn & Lieberman, 2005 and Seilicovich et al., 

2005).  

Transfer of genetic material of interest in a cell can take place either in vivo or ex vivo. 

In ex vivo models, the gene transfer involves genetic modification of target cells in the 

laboratory, which are then returned to the patients. This method can be applied to a 

defined cell population such as T-lymphocytes, hematopoietic stem cells, or tumour 

cells. In in vivo models, the gene is transferred to the recipient cells directly, Figure 1.6. 

In both strategies, a vector delivers the genetic material to the intracellular site where it 

can function (Verma & Weitzman, 2005 and Wolff & Lederberg, 1994). 
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1.10.1  Gene therapy vectors  
 
An effective gene delivery system should be capable of efficient, stable gene transfer 

into a wide verity of cells, tissues and organs without causing any associated pathogenic 

effect (Verma & Weitzman, 2005). Carriers in gene therapy are classified into two major 

types: viral and non-viral vectors. Viral vectors are derived from either RNA or DNA 

viruses. The non-viral delivery system vectors consist of naked DNA delivered to cells 

ex vivo either via electroporation or by intravascular delivery. Mostly naked DNA 

methods have been used for genetic immunization studies (Verma & Weitzman, 2005). 

Figure 1.6: Ex vivo and in vivo gene transfer. 

Ex vivo gene therapy involves the harvesting of a patient’s cells. The collected cells are 
maintained in the laboratory. The cells are modified using the viral vectors carrying the 
therapeutic gene. The transduced cells are transplanted back into the patient’s body. 
Conversely, in vivo gene therapy can be carried out by direct injection of a virus carrying 
the gene of interest into the patient’s body. Taken from (Kaufmann et al., 2013). 
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Naked or plasmid DNA are used only for 17.9% of gene therapy clinical trials while the 

majority (45%) of trials use viral vectors (http:// www.wiley.co.uk/genmed/clinical/ on 

21.03.2016).     

Viral vectors can be divided into two categories, based on their genetic material. The 

most commonly administered RNA viral vectors are derived from retroviruses and these 

were among the very first viral delivery systems to be developed for gene therapy 

purposes. Adenovirus, the adeno-associated virus, Poxviruses, Baculovirus and Herpes 

Simplex are DNA viral systems, Table1.4 provides key information about different types 

of viral vector.  

 

 

Table1.4: viral vectors for gene therapy. 

Viral 
system 

Particle 
size 

Genetic 
materia
l 

Size of 
genome 

Maximum 
transgene 
capacity  

References 

Adenovirus 70-100 
nm dsDNA 26-40 kb Up to 36 kb 

(Choudhury et al., 
2016 and Warnock et 

al., 2011) 

Retrovirus 80-100 
nm ssRNA 7-12 kb 7-8 kb 

(Choudhury et al., 
2016 and Warnock et 

al., 2011) 

Lentivirus 100 nm ssRNA 7-12 kb 7-9 kb 
(Choudhury et al., 

2016 and Warnock et 
al., 2011) 

Adeno-
associated 

virus 

20-25 
nm ssDNA 4.7 kb 4.7 kb 

 

(Choudhury et al., 
2016) 

Baculoviru
s 

40-50 
nm dsDNA 80 to 180 

kb Up to 134kb (Sung et al., 2014) 

Herpes 
simplex 

virus 

120-300 
nm dsDNA 152 kb Up to 150 

(Choudhury et al., 
2016 and Warnock et 

al., 2011) 

Poxvirus 200-300 
nm dsDNA 190kb 25kb (Vannucci et al., 

2013) 
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An ideal vector to deliver genes of interest should be safe, easy to produce at high 

concentration and to purify using simple techniques, able to transduce dividing and non-

dividing cells, be stable and provide high levels of therapeutic genes in target tissue 

without any immunological response, toxicity, or damage to the surrounding matrix and 

tissue (Mohan et al., 2013). The advantages and disadvantages of different viral delivery 

systems for gene therapy are summarised in Table 1.5.   
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Table 1.5: Advantages and disadvantages of most common viral vectors.  

Vectors Advantages Disadvantages References  

Adenovirus 

•Ability to transduce both 
dividing and quiescent cells 
• Large insert capacity 
• Non-oncogenic 
• Stability of recombinant 
vectors 
• High-level transgene 
expression 
• Easy production with ready 
to use packaging cell 
• Vector particles produced at 
high titer  

• High level of pre-
existing immunity  
• Highly immunogenic   
• The vector genome 
does not integrate into 
the host genome 
• Transient expression of 
the transgene  
 

(Sung et al., 
2014; 
Vannucci et 
al., 2013 and 
Warnock et al., 
2011) 

Retrovirus 

• The vector genome 
integrates into host cell 
genome  
• Engineering fairly simple   
• Wild cellular tropism 
• Low immunogenicity 
• No (or very low) pre-
existing immunity  
• Theoretically stable 
transgene expression 
 

• Inability to transduce 
non-dividing cells 
• Cellular targeting 
difficult to achieve 
• High risk of insertional 
mutagenesis 
• Random integration of 
the retroviral genome  
• Limited insert size  
• Require transfection of 
multiple plasmids into 
packaging cells for 
vector production 
• Transgene prone to 
silencing 

(Sung et al., 
2014 and 
Vannucci et 
al., 2013) 

Lentivirus 

• Ability to transduce both 
dividing and quiescent cells  
• The vector genome 
integrates into host genome 
• Integration-defective vectors 
available  
• Stable transgene expression  
• Absence of pre-existing 
immunity 

• Possible insertional 
mutagenesis   
• Transient expression of 
the transgene with 
integration-defective 
vectors   
• Limited insert size  
• Requiring transfection 
of multiple plasmids into 
packaging cells for 
vector production 
 

(Sung et al., 
2014 and 
Vannucci et 
al., 2013) 

Adeno-
associated 
virus 

• Ability to transduce both 
dividing and quiescent cells 
• Low immunogenicity 
• Broad host cell type tropism 
range 
• Non-pathogenic  

• Pre-existing immunity 
• Smaller size limits the 
amount of foreign genes 
that can be inserted 
• Possible transgene 
integration  

Sung et al., 
2014; 
Vannucci et 
al., 2013 and 
Warnock et al.,  
2011) 
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• Capable of long term 
transgene expression 

• Requiring transfection 
of multiple plasmids into 
packaging cells for 
vector production 

Poxvirus 
 

• Multiple sites of transgene 
insertion  
• Particularly apt as attenuated 
recombinant vaccine 
• Well suited as oncolytic 
vectors 
•low level of pre-existing 
immunity 
 

• Potentially cytotoxic  
• Highly immunogenic 
• Heterologous promoter 
difficult to use 
• Generation of 
recombinants 
complicated 
•Transient expression of 
the transgene 
 

(Vannucci et 
al., 2013) 

Herpes 
simplex 
virus 

• Wild-type cellular tropism 
• Large insert capacity 
• Natural tropism for neuronal 
(HSV-vectors) or B lymphoid 
cells (EBV) 
• Well suited as oncolytic 
vector 
 

• Possible residual 
cytotoxicity 
• The vector genome 
does not integrate into 
the host genome 
• Transient expression of 
the transgene 
• Risk of recombination 
in latently herpes simplex 
virus-infected cells 
• High level of pre-
existing immunity 

Vannucci et 
al., 2013) 

Baculovirus 

• Non-pathogenic to human 
• DNA degradation and lack 
of integration that improve 
safety 
• No-pre-existing immunity 
• Easy production by infection 
in BSL-1 facilities  
• Large cloning capacity 

• Transient transgene 
expression 
• Vulnerable to 
mechanical force and 
loss of virus titer during 
virus concentration and 
purification 
• Inactivated by serum 
complement 

(Sung et al., 
2014)| 

 

Each viral vector has an inherent set of attributes that affects its suitability for a specific 

form of gene therapy. For instance, in some forms of gene therapy long term expression 

from a relatively small number of cells is enough but in other cases it might need 

expression in a large number of cells for effective treatment (Kay et al., 2001). Thus, it 

is unlikely that only one viral vector will emerge as a suitable vector to treat all diseases, 

as they have different abilities and structures. Therefore, a range of vectors will be 
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required to fulfill the objective of each disease; Table 1.6 lists the gene therapy clinical 

trials that used different type of viral vectors to deliver gene of interest. 

The life cycle and structure of viruses represent highly evolved natural tools that could 

be exploited to engineer recombinant vectors to deliver therapeutic genes into a range of 

hosts. The life cycle of a virus can be divided into two-phases, infection and replication, 

which leads to the introduction of viral genes into host genetic material and resulting 

into pathogenesis. Converting a virus into a vector is based on the ability to separate the 

components that are necessary for causing disease from those that are involved in 

replication (Verma & Weitzman, 2005). 

Problems that might arise when using vectors for gene therapy include toxicity from the 

infusion materials, humoral immune responses against the therapeutic gene product, 

cellular immune responses directed against the transduced cells and possibility of 

insertional mutagenesis by certain integration vectors (Kay et al., 2001). But in recent 

years, remarkable progress has been made in developing and improving gene therapy 

into an applicable treatment. The number of candidate diseases to be targeted with gene 

therapy has increased significantly (Walther & Schlag, 2013). As only lentiviral vectors 

were employed in this thesis, the following sections focus mainly on them.
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       Table 1.6: Examples of viral vectors in gene therapy trials 

Disease Vector Transgene Phase Trial code 

Alzheimer AAV Nerve Growth Factor I/II NCT00087789,  

NCT00876863 

Spinal Muscular Atrophy Type 1 AAV Survival Motor Neuron I NCT02122952 

Leber Congenital Amaurosis AAV Retinoid isomerohydrolase I/II NCT02781480 

Pleural Malignancies Adenoviral Interferon-beta I NCT00299962 

Severe Combined Immunodeficiency Retrovirus Adenosine deaminase II NCT00794508 

Beta-thalassemia Lentivirus Human Beta-globin I/II NCT02453477 

Parkinson Lentivirus Aromatic amino acid 
decarboxylase, Tyrosine 
hydroxylase, GTP-cyclohydrolase 
1 

I/II NCT00627588 

Glioblastoma multiforme (GBM), other 
gliomas 

Oncolytic 
poliovirus 

 I NCT00805376,  

NCT01956734 

Cancer Pain Herpes 
Simplex Virus 

Preproenkephalin I NCT00804076 
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1.10.1.1 Retroviral vectors 
 
The most commonly used viral vectors employed in gene therapy are derived from the 

retrovirus family. Retrovirus-based vectors are used to deliver various genes of interest 

into humans and animals in vitro or in vivo because they are unique in their properties 

to integrate their genome into the host genome. This family of viruses is equipped with 

an enzyme called reverse transcriptase, which transcribes a RNA template into DNA, 

providing RNA to DNA information flow, which is the reverse flow of genetic 

information. The unusual phenomenon is the source of the name retroviruses (retro 

meaning backward) (Hacein-Bey-Abina et al., 2003 and Hendrie & Russell, 2005). 

Retroviruses are lipid-enveloped particles comprising a homodimer of linear, signal 

strand RNA genome of 7 to 11 kilobases and positive-sense. The retrovirus family 

includes several subfamilies such as oncovirinae, lentivirinae (such as human 

immunodeficiency virus (HIV) and other immunodeficiency viruses), and spumavirinae. 

The viral envelope glycoprotein dictates the variety of host range via their interaction 

with receptor on the host cells. In other word, viruses identify host cells by a “lock and 

key” fit between viral surface protein and specific receptor molecules located externally 

to the cell surface (Kay et al., 2001and Mohan et al., 2013). 

 

 

1.10.1.2 Lentiviral vectors 
 
Lentiviruses are a genus within the retrovirus family, and are known as complex 

retroviruses based on the details of the viral genome. The genome structure of lentiviral 

vector consists of two identical single-strand RNA molecules (Frankel & Young, 1998). 

Lentiviruses have potential to transduce both dividing and non-dividing cells, thus 

making them an attractive tool for gene therapy. Vectors derived from lentiviruses have 
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been proven efficient gene delivery vehicles as they integrate into the host’s 

chromosomes and show continued expression for a long time (Blömer et al., 1997). They 

also have a relatively large cloning capacity for forging genomic material, which is 

sufficient for most clinical purposes. Lentiviral vectors are able to be pseudotyped with 

different viral envelope proteins that influence tropism and transduction efficiency of 

this viral vector (Frankel & Young, 1998 and Picanco-Castro et al., 2012). 

Lentiviral vectors are based on HIV-1 and have interesting properties to be used as an 

effective vector system. The outermost envelope of the HIV consists of two envelope 

glycoproteins: gp120 and gp41: these envelop protein mediated entry of HIV virus into 

host cells, Figure 1.7. Inside the viral envelopes is a bullet-shaped core called (CA), with 

each CA containing roughly 2,000 molecules per virion. HIV’s genome is roughly 10 

kb long and contains two single strands of RNA capped by long terminal repeats (LTRs) 

at both ends, Figure 1.8. LTRs play an important role in reverse transcription of viral 

genome, control production of new viruses, and integration into host (Frankel & Young, 

1998).  

 

  

Figure 1.7: Structure of mature HIV virion 

 Structural elements of HIV-1 virus are MA: matrix protein; NC: nucleocapsid protein; CA: 
structural capsid protein; RT: reverse transcriptase; IN: integrase; PR: protease, glycoprotein 
gp120; glycoprotein gp41; protease (PR). Taken from (Teixeira et al., 2011).   
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HIV genome consists of three open reading frames containing the structural genes gag, 

pol and env. These genes are common to all retroviruses. Gag encodes a polyprotein that 

is cleaved into matrix (MA), CA and nucleocapsid (NC) protein. Env gene cods for 

glycoprotein gp160, which is cleaved to gp120 and gp41, the outer membrane proteins 

of HIV virions. These two glycoprotein (gp120 and gp41) are essential for normal 

infection of CD4 cells by wild type HIV virus. Pol gene encodes for various viral 

enzymes protease (PR), reverse transcriptase (RT) and integrase (IN) that are essential 

for viral replication and survival (Frankel & Young, 1998). 

In addition to the structural proteins, HIV also codes for 6 other genes that regulate 

replication and viral pathogenesis. These include tat, rev, nef, vpr and vpu, Figure 1.8. 

Rev and tat genes express regulatory proteins that activate viral transcription and 

regulate the splicing and nuclear exports of viral transcripts respectively. Vif, Vpr, Vpu 

and Nef genes encode for accessory proteins. Vpr plays a pivotal role in viral life cycle 

and transport of viral genome to the host nucleus. Vpu and Nef have a similar function 

and they also increase virus budding. The viral genome is flanked by LTRs. The flanking 

LTRs are required for viral transcription, reverse transcription and integration processes, 

Figure 1.8. The genome dimerisation and packaging signal ‘Ψ’ is placed between the 

gag gene and 5´-LTR (Frankel & Young, 1998 and Sakuma et al., 2012). 

 

 

 

Figure 1.8: Schematic representation of the HIV genome.  

The viral RNA contains three essential genes (gag, pol and env), regulatory (rev and tat) 
and accessory (vif, vpr, vpu and nef) genes flanked by LTRs. The Gag gene encodes for 
matrix protein (MA), capsid protein (CA), nucleocapsid protein (NC) and P6. The pol 
gene encodes three essential replication enzymes protease (PR), reverse transcriptase 
(RT) and integrase (IN) while the env gene encodes for transmembrane (TM) and surface 
subunit (SU) parts of the envelope glycoprotein. Taken from (Sakuma et al., 2012).    
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It is clear that lentiviral vectors are important and useful in gene therapy, but lentiviral 

vectors are derived from the HIV virus. This virus can produce very serious diseases that 

are almost untreatable. Therefore, the biosafety of HIV-based vectors is a major 

consideration for use in a clinical environment (Zufferey et al., 1998). Also, there is a 

possible risk of insertional mutagenesis and position effect variegation for the host 

because of the integration of a viral vector into host’s gene. Research reports insertional 

mutagenesis and high level of aberrantly spliced chimeric transcript in the gene of 

interest due to severe side effects of using lentiviral vector (Hacein-Bey-Abina et al., 

2003 and Moiani et al., 2012). Hacein-Bey-Abina et al., 2003 reported insertional 

mutagenesis in two patients almost three years after gene therapy that resulted in aberrant 

transcription and expression. Moiani et al., 2012 demonstrated unexpected high level of 

abnormally spliced transcripts upon integration in target genes result in side effect of 

using a lentiviral vectors. Using a stable non-integrating vector system can minimize 

these risks, as described in detail below. Also, several other different structure 

modifications in the HIV-1 have been made to improve the safety and to promote the 

efficiency of vectors (Picanco-Castro et al., 2012). These improvements are explained 

in following sections. 

The most common method of lentiviral vector production is based on transient 

transfection of three or four plasmids into a cell line, Figure 1.9 (Verma & Weitzman, 

2005). Human embryonic kidney cells (HEK293T), is the cell line mostly used for viral 

vector production because it is easily and highly transfectable. Additionally, these cell 

lines normally grow adherent (monolayer culture) in the presence of 10% fetal bovine 

serum but these cells can easily be adapted to serum-free suspension culture. These 

features make this cell line a very promising candidate for lentiviral vectors production 

on a large scale. Essential genes of lentivirus must be expressed in HEK293T to allow 
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the generation of lentiviral particles, thus the HEK293T cells are transfected with certain 

amount of transgene, packaging, REV and vesicular stomatitis virus glycoprotein 

envelope (VSV-G) plasmids (Picanco-Castro et al., 2012). The transgene is placed 

between the lentiviral long terminal repeats (LTRs) to allow for target cell integration. 

To improve vector biosafety and avoid risk of viral genome integration into host 

genome, LTRs are replaced with a strong promoter such as cytomegalovirus (CMV) 

promoter and self-inactivation LTR hybrids. Using VSV-G envelope allows the 

production of high titer lentiviral vectors, more details provided on their development in 

lentiviral section. The most common chemical compound to transfect the virus 

production cells is calcium phosphate, which offers fine transfection efficiency and it is 

very cost-effective method to produce lentiviral vectors. Recombinant lentiviral vectors 

were harvested from the cell supernatant three days after transfection of HEK 293T cells. 

The concentration of viral vectors can be achieved by precipitation or ultracentrifugation 

(Picanco-Castro et al., 2012). 

Figure 1.9: Strategy to engineer a virus into a vector.  

The principle of engineering a virus into safe delivery system relies on the identification 
of the viral sequences required for replication, assembly of viral particles, packaging of 
the viral genome and delivery of the transgene into the target cell, and pathogenicity. 
The latter must be removed to make the vector non-pathogenic. The viral genetic 
material required in cis is inserted into the vector construct, together with the gene of 
interest. The packaging cassette encodes for genes essential for replication and 
production of structural proteins. The packaging and vector constructs are delivered into 
the packaging cells, where the packaging construct produces proteins and particles 
required for replication and assembly viral vector. Taken from (Verma & Weitzman, 
2005). 



 68 

Lentivirus infects host cells by associating with a surface receptor/s on the host cell. The 

glycoproteins of the viral envelope are attracted to a specific cellular receptor/s. 

Following binding, the viral envelope fuses with the host membrane leading to the 

release of the virus core into the cytoplasm (Sakuma et al., 2012). Soon after this 

internalization, the viral RNA is then reverse transcribed into DNA, which is 

incorporated into the host genome by the enzyme reverse transcriptase. The viral DNA 

is then imported into the host cell’s nucleus where it is inserted to the host genome by 

the viral enzyme integrase. In this stage, the infection is in the targeted cells and is, for 

all intents and purposes, permanent and the expression of the recombinant protein can 

be detected one or two days after the integration of the proviral DNA (Teixeira et al., 

2011). At this stage, the virus is known as provirus. During the next stage, the viral 

genome synthesis begins with the transcription, by RNA polymerase of the proviral 

DNA into RNA. The LTRs flanked at the ends of the viral genome regulate transcription 

and polyadenylation of viral mRNAs. The LTR located at the 5′-end of genome acts as 

a combined enhancer and promoter for transcription by infected host cell RNA 

polymerase while the other LTR end at the 3′-end stabilised these transcripts by 

mediating their polyadenylation (Sakuma et al., 2012). The transcripted RNA from 

proviral DNA which contains the code to produce the capsid proteins, other proteins 

needed for viral assembly, envelope proteins and other auxiliary proteins are transported 

outside the nucleus for translation by ribosome. Two exported copies of the viral 

genomic RNA and newly produced viral proteins are assembled together at the plasma 

membrane to form a new virus. After release from the host cell membrane, the virion is 

initially non-infectious and is known as an immature virion. The immature virions 

convert into mature infection viruses by activation of PR to cleave the Gag and Gag-Pol 

polyproteins into their four structural proteins and the PR, RT and IN functional enzymes 
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(Teixeira et al., 2011). A viral vector does not have capabilities for replication and 

infection because most of the viral genes are excluded from the packaged genome 

(Cockrell & Kafri, 2007).  

 

 

1.10.1.3 Developments in lentiviral vector production 
 
Many structural modifications in the HIV-1 have been made in order to improve the 

efficiency and the safety of the HIV-1 based vectors. Since HIV-1 Env glycoprotein has 

a highly restricted host range and it recognizes cells containing CD4 and co-receptors, 

the development of retrovirus vectors pseudotyped with a variety of envelope proteins 

such as VSV-G was a significant improvement (Burns et al., 1993). VSV-G interacts 

with a ubiquitous cellular “receptor” on cells and by substituting HIV-1 envelope with 

VSV-G, offers transduction of several tissues and cells type of different hosts, even 

including non-mammalian hosts (fish), both in vivo and in vitro experiments. Infections 

in the HIV-1 pseudotyped with VSV-G were increased by 20- to 130-fold more than 

wild type virus (no VSV-G pseudotyped) (Aiken, 1997). It also reduces the requirements 

for viral accessory proteins for full infectivity by directing lentiviral vector entry to an 

endocytic pathway (Cronin et al 2005). The other advantage of VSV-G is that this 

envelope is more stable than a retroviral or lentiviral envelope and it can withstand the 

shear forces that allow for concentration of viruses by ultracentrifugation to a higher titer 

than before. In addition, it makes viruses resistant to freeze/thaw cycling and they can 

be stored for several years at -80°C ( Burns et al., 993).  

However, there are disadvantages to using VSV-G pseudotyped lentivirus vectors for 

clinical application, because there is complement and antibody in human serum which 

mediates an immune response against VSV-G envelopes, thus inactivating the vector 
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(Croyle et al., 2004). In 2004, Croyle et al., demonstrated conjugation of 

monomethoxypoly (ethylene) glycol to VSV-G envelope protein of a VSV-G 

pseudotyped HIV-based vector, to protect the vector from inactivation in complement-

active human and mouse sera. This modification does not affect transduction efficiency. 

This approach was established to extend the rate of vector half-life (by 5-fold) and 

reduced the vector inactivation in the serum by a factor of 1,000 in vivo. In order to 

increase safety, optimise transduction and limit vector entry to target cell and tissue, 

using various envelope proteins is a potential tool and continues to be a significant 

challenge in gene therapy area. 

Vector mobilization, insertional mutagenesis of replication competent lentiviral vectors 

(RCLs), and germ-line transmission of vector sequences are all possible hazards that 

need to be considered during generating and production of lentiviral vectors (Manilla et 

al., 2005).  

 

 

1.10.1.3.1  First-generation lentiviral vector 
 
The first-generation of HIV-1 packaging cassette was introduced by Naldini et al., 1996. 

In this generation, three separate plasmids are used to produce a lentiviral vector, Figure 

1.10. This expressing system allows the delivery of the genes of interest into target cells 

without expressing viral proteins. Also, using three different plasmids means reducing 

the chance of generating RCLs because at least two recombination events are required 

to yield a RCL. The expression system for vector preparations was composed by a 

packaging construct, a transfer vector genome construct and an Env plasmid encoding a 

viral glycoprotein. The packaging plasmid expresses tat and rev for regulatory protein, 

vif, vpr, vpu and nef for accessory protein and gag and pol protein from a strong 
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mammalian promoter (usually the CMV promoter) to express viral particles in the host 

cell. In the envelope plasmid the native HIV-1 envelope was replaced with a viral 

glycoprotein, such as VSV-G, to provide a receptor binding protein to the vector 

particles. These two plasmids have been modified and all the cis-elements removed, thus 

they do not have a packaging signal, LTRs or a primer binding site. This specific 

modification is to avoid their transmission into vector particles and also to reduce 

chances of generating RCLs in vector production. Removing the cis-elements from 

delivery package curtails the generation of RCLs by avoiding the packaging of the full-

length mRNA encoding trans-elements into the vector. 

The transgene plasmid contains a gene of interest and all of the cis-acting elements 

(LRT, Ψ and Rev-response element (RRE)), which are required for efficient packaging, 

reverse transcription, nuclear import and integration but expresses no HIV protein. The 

transgene cassette expresses the full length vector RNA and the gene of interest under 

the control of either the viral LTR or an internal promoter in transduced cells (Naldini 

et al., 1996; Naldini et al., 2012 and Sakuma et al., 2012). 

 

 

1.10.1.3.2  Second generation lentiviral vectors 
 
The biosafety of lentiviral vector increased by deletion of all accessory genes from the 

original plasmid, Figure 1.10. Nef, vif, vpr and vpu are called accessory genes because 

they are dispensable for virus replication in cell culture. However, the proteins encoded 

by accessory genes are essential for the HIV propagation/virulence in primary cells or 

in vivo. These deletion in the packaging system are indispensable for the efficient gene 

transduction by a lentiviral vector and for avoiding HIV-1 propagation and virulence. In 
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the second generation, lentiviral vectors contain only four of the nine HIV genes. The 

new packaging plasmid only expresses gag, pol, tat and rev genes (Zufferey et al., 1997).  

 

 

1.10.1.3.3  Third-generation lentiviral vectors 
 
The safety of lentiviral vectors significantly improved in the third generation. Tat and 

rev are essential for HIV-1 replication, and replacing the U3 promoter region in 5´ LTR 

of the transfer vector with a strong viral promoter such as CMV can offset the 

requirement for Tat. In 1998, Dull et al., established that the deletion of REV gene is 

indispensable for the expression of gag and pol and cannot be eliminated from the 

system. Thus, the system is dependent on REV while independent of Tat. These results 

introduced the third generation system. In this system, the lentiviral vector is based on 

four non-overlapping expression cassettes,: (i) gag and pol genes are placed on one 

expression cassette, (ii) a cassette expressing rev gene, (iii) an Env (VSV-G) cassette, 

and (iv) an expression construct which contains the gene of interest under control of a 

heterologous strong promoter, Figure 1.10. The new packaging system has only three of 

the nine genes of HIV, which are gag, pol and rev, and lacks all the accessory proteins 

that are necessary for the pathological abilities of HIV-1. Using four separate plasmids 

in this generation minimizes the chance of RCLs generation. In this case, at least three 

recombination events are required to generate a RCLs (Dull et al., 1998 and Sakuma et 

al., 2012). Escarpe et al., 2003 designed a sensitive assay for detection of RCLs in large-

scale preparations of HIV-based lentiviral vectors. They ran a test and scanned a total of 

1.4 x 1010 transducing units of vector from 10 independent 14-litre production lots to 

detect RCLs. Their result demonstrated there is no RCLs in scanned samples. Therefore, 
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this result strongly supports the significant safety improvements of lentiviral vectors in 

the third generation. 

 
 
 
 
1.10.1.3.4  Self-inactivating vectors 
 
The presence of LTRs on both sides of the HIV-1 vector genome allows the possibility 

of transcriptional activity from the LTRs, as they include viral enhancers and promoter 

regions, and was used in early vectors. In addition, the virus requires the LTRs for 

reverse transcription and integration into the host genome. The LTRs have an enhancer-

promoter in U3, and a polyadenylation signal. The U3 region includes TATA-box-, Sp1-

, NF-κB- and NFAT (nuclear factor of activated T-cells)-binding sites, which were 

removed to produce self-inactivating vectors (Iwakuma et al., 1999 and Miyoshi et 

al.,1998), Figure 1.10. Through the process of reverse transcription of the lentiviral 

vector system, the deletion in the U3 region of the 3´ LTR is transposed to the U3 region 

of 5´ LTR in the provirus, resulting in the transcriptional inactivation of the LTR 

promoter, which no longer expresses a full-length vector RNA. This deletion improves 

the biosafety of the lentiviral vector by resulting in transcriptional inactivation of 

potentially homologous to wild type virus in transduced host cell. It also reduces 

insertional activation of cellular oncogenes by residual promoter activities of integrated 

LTRs (Zufferey et al., 1998). 

 

 

  
  



 74 

1.10.1.3.5  Woodchuck hepatitis virus post-transcriptional regulatory element 
(WPRE) 

 
Lentiviral vectors can efficiently transduce a variety of cells, but transgene expression 

can be improved by further engineering. The Woodchuck hepatitis virus post-

transcriptional regulatory element (WPRE) is a cis-acting RNA element that has been 

used to improve lentiviral vector expression. Insertion of WPRE in sense orientation in 

the 3’ untranslated region (3´ UTR) of a transgene significantly improves level of 

expression (Zufferey et al., 1999) . Zufferey et al., 1999 demonstrated using WPRE in 

the construction of vectors will improve their functionality in terms of expression of 

gene of interest, which is delivered by vectors. Moreover, WPRE activity is not cell type 

or species dependent and can be used to stimulate transgene expression in several cell 

lines, primary cells and in vivo. 
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Figure 1.10: Schematic of constructs required in the production of different 
generations of lentiviral vectors. 

(A) In the first generation lentiviral vector, the packaging plasmid expresses all viral 
proteins except Env. VSV-G is an envelope glycoprotein, expressed by Env encoding 
plasmid. The vector plasmid flanked by LTRs expresses the transgene. (B) The different 
between first and second generation is the elimination of all accessory genes except Tat 
and Rev from packaging plasmid. (C) In third generation, Rev was placed in a separate 
expression cassette and tat was eliminated. The other strategy to improve biosafety in 
third generation vectors was deletion of most of the U3 region from the 3´-LTR to make 
the vector self-inactivating and minimise the likelihood of generating RCLs. Moreover, 
a strong promoter such as CMV is placed in the vector plasmid for expression of the 
RNA to be packaged. Taken from (Sakuma et al., 2012). 
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1.10.1.4 Integration-deficient lentiviral vectors 
 
Genetic insertion of lentiviral DNA into the host genome is mediated by the viral enzyme 

integrase encoded by the pol gene. The integration mechanism is a multi-step procedure. 

Firstly, integrase produces a staggered cut at the att sites of the viral LTRs and the host 

genome, and then the viral DNA is inserted into host genome. This is followed by the 

repair of any gap between viral and host genome by host cell enzymes. However, during 

the proviral integration process, a significant amount of liner DNA is converted into two 

circular forms called episomes by nuclear proteins. These two episomal circular DNA 

are known as the by-products of the integration process. Episomal DNA circles are 

formed either by non-homologous end joining (NHEJ) or homologous recombination. 

NHEJ pathway ligates the 5´ and 3´ end of the liner DNA and form 2-LTR circles. While 

in the homologous recombination pathway viral 5´ and 3´-LTR can produce 1-LTR 

episomes (Cara et al., 1996). Due to the way episomes are generated, they contain one 

or two copies of the viral LTR and are metabolically stable. For a long time, viral 

episomes were thought of as non-active products (Li et al., 2001) but research showed 

these episomes have gene expression activity, although lower than the integration-

proficient form (Wanisch & Yáñez-Muñoz, 2009). They do not carry any replication 

signals but they remain stable in non-dividing cells and are continuously diluted with 

successive rounds of cell divisions. 

Mutations within the genetic structure of integrase in lentiviral vectors impair the 

proviral integration into the host genome. There are two classes of such mutation: class 

I and class II. In class I, specific amino acids of integrase are mutated to avoid 

integration. In this class, one of the three amino acids of the catalytic triad-aspartic acid 

placed at position 64, 116 and one glutamic acid residue at position 152 mutate to inhibit 

the proviral integration process. In class II, mutation is carried out by deletion into the 
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integrase region of pol gene: while both these mutations inhibit the integration process, 

class II also has a modifying effect on reverse transcription, replication, nuclear entry 

and gene transfer process in lentiviral vector. In class I, the mutation does not make any 

changes to normal DNA synthesis or reverse transcription process (Engelman, 1999).  

Integration-deficient lentiviral vectors (IDLVs) produced by class I mutation (D64V) 

have been shown to mediate efficient transfer and expression of Enhanced Green 

Fluorescence Protein (eGFP) in ocular and brain tissue of rodents. In addition, no 

difference was noted between expressions obtained from either integrating or non-

integrating viral vectors. Furthermore, long-term expression was mediated by IDLVs 

with high levels of transgene expression in vivo to rescue mouse models of retinal 

dystrophies (Yáñez-Muñoz et al., 2006). Therefore, IDLVs can be utilized to transfer 

genes into dividing and non-dividing cells without vector integration, which would 

reduce risk associated with insertional mutagenesis (Peluffo et al., 2013 and Saeed et 

al., 2014). 

The main advantages of using IDLVs include (a) their relatively large transgene capacity 

(b) low immunogenicity (c) minimal risk of insertional mutagenesis (d) and RCL 

generation. As IDLVs remain episomal they do not integrate, but retain the transduction 

efficiency of standard integrating lentiviral vector both in vitro and in vivo. These 

important combinations make IDLVs efficient and safe delivery vectors and an attractive 

tool for clinical applications, particularly in quiescent tissues (Yáñez-Muñoz et al., 

2006). 
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1.11  Applications of lentiviral vectors in gene therapy  
 
Due to their unique advantages, lentiviral vectors are at the forefront of gene delivery 

systems for research and clinical applications. (Picanco-Castro et al., 2012).  

Genetically engineered animal models recapitulate aspects of the selected human 

disease. Animal models are employed in almost all fields of biomedical research to help 

researchers to discover disease mechanisms, understand gene function, model human 

diseases, biological process, validate drug target or to test therapeutic strategies.  

Lentiviral vectors are applicable to engineer an animal model for in vivo research, which 

is an essential stage of investigation of a therapeutic strategy before moving on to a 

clinical trial (Jucker, 2010). Lentiviral vectors are utilised to generate transgenic animals 

successfully. Lentiviral vectors can generate animal models from a wide range of species 

including birds, cows, monkeys, pigs, and mice, because of their high gene transfer 

efficiencies into zygotes or early progenitor cells (Pfeifer & Hofmann, 2009 and Singer 

& Verma, 2008). Lentiviral vectors have been commonplace in experimental research 

and these viral vectors successfully treat or cure disease in animal models (Mátrai et al., 

2010). 

Lentiviral vectors have been utilised to treat disease in several animal models, such as, 

SCID (Throm et al., 2009), β-thalassemia (Zhao et al., 2009), Wiskott-Aldrich syndrome 

(Mantovani et al., 2009), metachromatic leukodystrophy (Biffi & Naldini, 2007), 

haemophilia (Brown et al., 2007), Fanconi anaemia (Jacome et al., 2009) and liver 

disease (Menzel et al., 2009). Lentiviral vectors have now moved beyond the preclinical 

stage into clinical trials, and they have been successfully utilised in the clinical trial. The 

first lentiviral vector clinical trial was approved in December 2002 by the US Food and 

Drug Administration (D’Costa et al., 2009) and then several other clinical trials have 

been approved to treat patients with both infectious and genetic diseases, using viral 
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vectors. Many human diseases have been targeted for treatment with lentiviral vectors, 

such as monogenic diseases (Metachromatic Leukodystrophy, Inherited Skin Disease 

Netherton Syndrome, X linked cerebral adrenoleukodystrophy, X-Linked Chronic 

Granulomatous Disease, Wiskott-Aldrich Syndrome, mucopolysaccharidosis type VII, 

Fanconi Anemia Complementation Group A, Hemophilia A, X-Linked Severe 

Combined Deficiency, Adenosine Deaminase Deficient Severe Combined 

Immunodeficiency, β-thalassemia, Sickle cell anemia, Parkinson’s disease, various 

cancers and Stargardt Macular Degeneration (Naldini, 2015 and Tomás et al., 2013). 

Several clinical trials using lentiviral vectors are explained in detail in this section. The 

first ever Phase I clinical trial gene therapy using lentiviral vectors for AIDS was carried 

out in the US in 2003. The sponsor of this clinical trial was VIRxSYS Corporation, 

which is a private biotechnology company, which focused on the development of gene 

therapy treatments for diseases such as HIV/AIDS. The aim of this trial was to 

repopulate the immune system of the patient with genetically modified cells that can 

support a patient’s immune system against HIV and other infections. In this pilot study, 

lentiviral vector expressed a 937-base long antisense gene (VRX496) against HIV env. 

The antisense used in this study blocks HIV replication in CD4 T-cells, and makes them 

resistant to the wild type HIV virus to prevent the destruction of CD4 T-cells cells by 

this virus Five HIV + patients participated in phase I of this trial and they received a 

single dose of approximately 1.0 × 1010 lentivirus-transduced CD4 T-cells. This study 

moved to multiple Phase II trials and 60 HIV + patients participated after successful 

completion of Phase I trial. The collected results demonstrated primary human T Cells 

transduced with VRX496 resistant to wild type HIV virus replication, thus the number 

of CD4 T-cells and immune response improved in treated HIV + patients. (Levine et al., 

2006 and McGarrity et al., 2013). Lentiviral vector encoding ABCD1 gene was used to 
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treat X- linked adrenoleukodystrophy (X-ALD). Cartier et al., 2009 treated two 7-year 

old boys who had X-ALD. Extracted bone-marrow cells from these two patients were 

transduced with lentiviral vectors with the ABCD1 gene, then the subjects received an 

infusion of their own genetically modified stem cells carrying the normal gene. There 

was no ALD protein in blood cells of these patients before treatment, while nearly two 

years after transplantation 9-14% of peripheral blood cell of patients expressed ALD 

protein and neurological function had stabilised. Bank et al., 2010 carried out a phase 

I/II clinical trial utilising lentiviral vectors expressing β-globin gene to treat β – 

thalassaemia in Paris in 2007. The aim of this experiment was to harvest bone marrow 

from patients, then transduce isolated CD34+ cells with lentiviral encoding β-globin 

gene. Genetically modified cells were introduced into the patients as an autologous 

transplant. The treated patients have corrected β-globin gene and stable blood 

haemoglobin level approximately 3 years after treatment.  

Lentiviral vectors were employed in 5.6% (n=135) of gene therapy clinical trials 

(http://www.wiley.com/legacy/wileychi/genmed/clinical/ on 17.09.2016). 

Several gene therapy clinical trials based on the use of lentiviral vectors are on-going or 

approved. A list of some gene therapy trials using lentiviral vectors is provided in Table 

1.7. 
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Table 1.7 : Summary of clinial trials using lentiviral vecotor by disease 

Disease Status Transgene Phase Trial code 
Lymphoma Active, not 

recruiting 
Encoding Multiple Anti-HIV 
RNAs 

pilot clinical 
trial 

NCT00569985 

Fabry Disease Recruiting Alpha-Galactosidase A I NCT02800070 
Leukemia, Myeloid, Acute Unknown CD80 and RFUSIN2-AML1 I NCT00718250 

Adenosine deaminase (ADA)-Deficient 
Severe Combined Immunodeficiency 
(SCID) 

Active, not 
recruiting 

human adenosine deaminase I/II NCT01852071 

Acute Myeloid Leukemia Recruiting Interleukin 12 I NCT02483312 
 

Wiskott-Aldrich Syndrome Recruiting Wiskott–Aldrich syndrome I/II NCT02333760 
 

X-linked Chronic Granulomatous Disease Recruiting G1XCGD I/II NCT02234934 
Metachromatic Leukodystrophy Active, not 

recruiting 
Arylsulfatase A gene I/II NCT01560182 

B-cell acute lymphoblastic leukemia 
(ALL) 

Recruiting Chimeric antigen receptors I NCT01044069 

Cerebral Adrenoleukodystrophy (CCALD) Active, not 
recruiting 

ABCD1 (adenosine triphosphate 
(ATP)-binding cassette, subfamily 
D, member 1) 

II/III NCT01896102 

Parkinson's Disease Active, not 
recruiting 

ProSavin I/II NCT01856439 
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1.12  In utero gene therapy  
 
Many genetic diseases can cause a significant amount of irreversible damage to the fetus 

before birth, so treating these diseases in the very early stages of fetal development may 

be highly beneficial. At the current time, it is possible to diagnose genetic diseases at a 

very early stage of life, so it would be very reasonable to treat them immediately 

following diagnosis, in an attempt to avoid any further problems for patient. In utero 

gene therapy opens a very promising window to treat the disease before birth and it may 

allow the birth of a healthy infant who does not have special requirements or treatment, 

and can have a normal life. In utero gene therapy means delivering genes of interest to 

the fetus to correct genetic disease (Chauhan et al., 2004). There are many advantages 

for taking in utero gene therapy forward and improving the field, such as avoidance or 

slow of disease onset, less immune response against delivered vector or transgene 

products, high vector to cell ratio and possible chance of transducing stem and other 

progenitor cells (Chauhan et al., 2004 and Waddington et al., 2005). 

 

 

1.12.1  Immune response 
 
Producing antigen-specific immunity in a host body against delivered viral vectors and 

novel therapeutic gene products plays a substantial role in treatment and this is one of 

the difficulties of using gene therapy to treat adults. Each different vector has its own 

immunological hurdles for therapeutic usage. Type 2 adenovirus and adeno-associated 

virus (AAV) vectors are common vectors for gene therapy purposes, and deliver the 

gene of interest to the host body, but 50% of individuals worldwide have pre-existing 

humoral immunity to type 2 adenovirus and 35% to 80% have antibodies against AAV2 

(Chirmule et al., 1999).  
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Innate immune responses are prompted almost immediately after vector delivery and, 

following that, an immune response mounted against the novel therapeutic gene product. 

The therapeutic transgenes are recognized as a foreign antigen by the immune system of 

the host and the reaction of the immune system against the vector can lead to short-term 

expression and thus the correction of deficiency can be short lived (Seppen et al., 2006). 

Nguyen & Ferry, 2004 and Wang et al., 2004 reported the immune response against 

therapeutic transgene when gene therapy is applied. Seppen et al., 2006 used lentiviral 

vector encoding UDP glucuronosyltransferase family 1 member A1 (UGT1A1) to treat 

hyperbilirubinemia in neonatal Gunn rats. The animals were injected at the day of birth 

and treated for up to 18 weeks. A rapid reduction in therapeutic affect was observed as 

well as high levels of antibody against human UGT1A1 when the animals were 18 weeks 

old. The immune response against GFP has been reported by other studies in adult mice, 

rats and baboons (Inoue et al., 2005; Morris et al., 2004 and Stripecke et al., 1999). 

A possible solution to overcome this problem is to introduce the gene of interest in the 

fetal or neonatal period (Seppen et al., 2006). The in utero injection can be beneficial 

because it exploits the tolerization that occurs toward the antigens. This is because the 

immune system is not fully developed at these stages of life. For the first time ever in 

1953, Billingham et al., showed that tolerization can be achieved when the antigens are 

introduced into the host before the development of the faculty of immunological 

response. Waddington et al., 2003 and 2004 are two important studies in the in utero 

gene therapy field, which employed adenoviral and lentiviral vectors to deliver the 

transgene to fetuses. The outcome of these two studies demonstrates that introducing the 

gene of interest through in utero injection can tolerise the host immune system to foreign 

therapeutic proteins. Waddington et al., 2003 uses adenovirus to deliver the human 

factor IX (hFIX) transgene into fetuses, which results in immune tolerance of the 
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transgenic product. In this study, adult mice received the viral injection again, after 

prenatal viral injection, and 5 out of 9 injected mice were found to have persistence of 

blood hFIX and absence of hFIX antibodies. In contrast, viral vectors carrying the hFIX 

were administered to the adult mice, which had not received any prenatal vector 

injection. The result of these injections showed rapid loss of expression of delivered 

gene and the level of hFIX antibody was found to be high in the injected animal. These 

results confirm that in utero injection can achieve immune tolerance of vectors and 

transgene products, which will be very beneficial for gene therapy. Seppen et al., 2006 

found there is no antibody against GFP in sera from Gunn rats that received in utero 

injection of GFP lentiviral vectors. 

However, it needs to be mentioned that a few studies reported the immune response in 

fetuses that had undergone in utero injection. An immune response was reported against 

CMV promoter in prenatal children infected with viral vector carrying CMV promoter 

(Marchant et al., 2003). Jerebtsova et al., 2002 demonstrated injection of adenovirus or 

adeno-associated viral vector mounts an immune response and low titer of antibody to 

beta galactosidase detected in injected animals. Seppen et al., 2006 suggested that in 

utero injection does not always lead to tolerization. In their studies, they injected fetal 

and neonatal rats with UGT1A1 and GFP lentiviral vectors. The immune systems of all 

animals injected with UGT1A1 lentiviral vectors responded against delivered transgene 

and animals developed antibodies to UGT1A1. In contrast, animal that had been injected 

with lentiviral vectors encoding GFP did not mount an immune response, and antibodies 

against GFP were not detected in injected animals. These results suggested UGT1A1 is 

a highly immunogenic protein. 
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1.12.2  Avoidance of disease onset 
 
In many genetic diseases, the genetic default causes organ damage, which might be 

irreversible after birth, even if the genetic disease is treated in the affected individual. In 

utero gene therapy can be the only solution for those diseases such as urea-cycle 

disorder. Urea-cycle disorder is a genetic disorder caused by a single mutation, and this 

mutation will result in deficiency of one of the enzymes in the urea cycle. This disease 

occurs in 1 in 30,000. The urea cycle is not fully functional and the concentration of 

ammonia increases in the blood. The ammonia reaches the brain through the blood and 

this can cause irreversible brain damage, coma and/or death (Mian & Lee, 2002).  

 
 

 

1.12.3  Infection of Stem Cells and Progenitors 
 
In utero gene therapy can increase the possibility of transduction in stem or other 

progenitor cells which can result in expression of gene of interest in large number of 

daughter cells (Waddington et al., 2005). The permanent replacement of a faulty gene 

with a healthy gene into somatic stem cells would ensure daughter cells will carry the 

gene of interest, thus the genetic disorder is treated in utero and there is no need for 

further treatment for the affected individual (Larson & Cohen, 2000). Moreover, 

transduced progenitor cells in utero may give access to tissues that are difficult to access 

for treatment in adulthood (Waddington et al., 2005). MacKenzie et al., 2002 and 

Waddington et al., 2003 applied gene delivery in utero, injecting fetal mice with HIV-1 

or EIAV lentiviral vectors intravascularly. Their result demonstrated the expression of 

marker genes in the liver in focal clusters, a finding that suggests that they may have 

arisen from individual progenitors.  
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1.12.4  Vector dose scaling 
 
Another issue in the gene therapy field is the scaling of vector dose. It has been reported 

that it is difficult to scale the vector dose based only on the body mass of the host 

(Waddington et al., 2005). Two studies were done by Chuah et al., 2003 and Harding et 

al., 2004, in which a large animal model was used and demonstrated that scaling the 

vector dose based on animal weight would not have the same result as achieved in a 

small animal. In these two studies, dogs and mice were injected with high-capacity (HC) 

adenoviral vectors encoding FVIII (Chuah et al., 2003) and recombinant adeno-

associated virus serotype 2 (rAAV2) vectors encoding human FIX (Harding et al., 2004). 

The dog model received an equivalent or higher dose of vectors per kilogram of body 

weight than mice, but the outcome showed reduction of circulating concentration of 

clotting factor in injected dog model than injected mice. In conclusion, the small body 

size of the fetus is useful for in utero gene therapy in terms of vector scaling and also 

the small body mass of the fetus increases the chance of vector biodistribution 

(Waddington et al., 2005).   

 

 

 
1.12.5  Risks of in utero gene therapy  
 
There are several critical safety concerns regarding the application of in utero gene 

therapy for clinical purposes, which must be addressed. The risks of this method can be 

divided into two groups: the risks in the first group relate to fetal intervention, which 

include infection, preterm labour, fetal loss and the possibility that manipulating the 

fetus can alter normal organ development. The second risk group is linked to the risk of 

gene transfer itself, and includes insertional mutagenesis, germline transmission and the 
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type of vector used in the treatment process to deliver the gene of interest (Almeida-

Porada, Atala, & Porada, 2016; Recombinant DNA Advisory Committee, 2000; Pearson 

& Flake, 2013). Mattar et al., 2011 administered AAV delivered human Factor IX 

(hFIX) into nonhuman primate fetuses. The result demonstrated that the AAV vector 

could cross the blood/placental barrier, enter the maternal circulation, and transduce 

multiple tissues of the mother. These possible issues need to be investigated in more 

detail, and alternatives, such as the utility of different vectors, needs to be explored 

before heading into clinical trial (Almeida-Porada et al., 2016). 

Taken together, the goal of using gene therapy is to treat a particular disease or abnormal 

function but as with any potential therapeutic modality, the field is facing difficulties. 

However, significant improvement has been made in this field over the last two decades, 

but there are many other hurdles to overcome before in utero gene therapy becomes a 

mainstream clinical modality (Almeida-Porada et al., 2016). The key factors needed to 

improve the prenatal gene therapy field are explained in following section.  

 

 

1.12.5.1 Timing of in utero gene transfer 
 
Time of in utero injection is a critical factor, which is key to the safety and transduction 

efficiency of fetal gene therapy. Tarantal et al., 2001 injected fetal rhesus monkeys with 

lentiviral vectors encoding enhanced green fluorescent protein (eGFP). The first 

trimester during the embryonic stage of development (55 days gestation) and the early 

second trimester (70 days gestation) had been chosen as two different time points to 

inject the fetuses. After analysing the transduction efficiency in animals that had 

received the injection at 55 days gestation, the outcome of the experiment demonstrated 

that many other organs had been transduced in addition to the targeted organ (lung). 
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Conversely, less transduction of non-pulmonary tissue was observed in animals injected 

during the early second trimester (70 days gestation) and injection was more restricted 

to the lung.  

Thus, more information on organ-specific gene expression is needed to enhance the 

safety and usefulness of in utero injection. It is possible that increasing gestational age 

in addition to using tissue-specific promoters may be beneficial (Tarantal et al., 2001). 

 

 

1.12.5.2 Choosing the appropriate vector for in utero gene transfer  
 
An important key to achieving effective and safe fetal gene therapy is choosing the 

appropriate vector system (Coutelle et al., 2003).  

 

 

1.12.5.2.1  Adenoviral Vectors for in utero gene transfer 
 
Adenoviral vectors are a potential system to employ to transfer genes of interest into 

fetuses. These vectors have a very good infection capability and can infect a wide range 

of fetal tissue depending on the route of administration. These vectors do not integrate 

into the host genome; therefore they will be dilute rapidly in case of active cellular 

proliferation (Lipshutz et al., 1999).These vectors are also highly immunogenic but, in 

some cases, it has been reported by Lipshutz et al., 2000 and Waddington et al., 2003 

that fetal administration demonstrated immune tolerance to the transgene and vector. 

Taken together, these vectors are not good candidates for permanent correction of a 

genetic disease. However, they are a good candidate to investigate an immune response 

against vectors and transgenes after in utero delivery, as they are highly immunogenic. 
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1.12.5.2.2  Adeno-associated Virus for in utero gene transfer 
 
Another possible viral vector to employ for fetal gene therapy purposes is adeno-

associated virus (AAV). AAV vectors have low toxicity or immunogenicity in 

comparison to early generation adenovirus vectors. Jerebtsova et al., 2002 observed 

immune response against viral vector or transgene product in mice after in utero 

injection of adeno-associated virus between 13 and 15 days post-conception. AAV 

vectors are a good potential candidate for in utero gene therapy as they demonstrated 

long term expression of the gene of interest in murine following fetal administration at 

day 14 gestation (Bouchard et al., 2003). However, as AAV vectors are non-integrating, 

in case of fetal gene therapy AAV vectors will lose the permanent or long term gene 

expression as a consequence of a rapidly expanding fetal cell population (Waddington 

et al., 2005).  

 

 

1.12.5.2.3  Retroviral Vectors for in utero gene transfer 
 
Retroviral vectors are another possible vector system to be used for fetal gene therapy 

purposes. Retroviral vectors were used by Stuhlmann's group for the first time in 1984 

for in utero delivery. In their study, Moloney murine leukemia virus was used to deliver 

the bacterial Eco gpt gene as marker gene into mouse embryo, and they successfully 

transduced almost 50% of embryonic cells. Hatzoglou et al., 1990 employed retroviral 

vectors to transduce rat embryo with gene of interest. In this study, they observed the 

expression of delivered gene for up to 8 months after injection. Therefore, the fact that 

retroviral vectors are capable of integrating efficiently into the host genome makes them 

ideal candidates for long-term expression in the developing embryo. However, it must 

be mentioned that inserting the delivered gene into the host genome carries a risk of 
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insertional mutagenesis/oncogenesis. As mentioned earlier, lentiviruses have the ability 

to transduce a variety of dividing and non-dividing cells. Additionally, pseudotyped 

lentiviral vectors with other virus’s envelope proteins can modify the tropism of 

lentiviral vectors and allow the vectors a wider tropism. An in utero study was carried 

out by MacKenzie et al., 2002, in which they investigated the efficacy of lentiviral 

vectors with different pseudotypes to transfer gene of interest into tissues. MacKenzie 

and her collaborates injected fetuses at 14-15 days gestation with lentiviral vectors 

carrying the transgene lacZ under the control of the CMV promoter. The lentiviral 

vectors were administered into fetal mice by intramuscular or intrahepatic injection. The 

lentiviral vectors were pseudotyped with vesicular stomatitis virus (VSV-G), with 

Mokola, or with Ebola envelope proteins. The result of their experiments demonstrated 

that Mokola and Ebola pseudotyped were more efficient in transducing myocytes 

whereas lentiviral vectors pseudotyped with VSV-G envelope proteins strongly 

transduced hepatocytes. Therefore, pseudotyped lentiviral vectors with different viral 

envelopes allow for various degrees of transduction efficiency and specificity.  

 

 

1.12.6  Candidate Diseases for Prenatal Gene Therapy 
 
The National Institutes of Health Recombinant DNA Advisory Committee published a 

report regarding what types of diseases can be candidates for prenatal gene therapy 

(Recombinant DNA Advisory Committee, 2000). This report concluded any candidate 

disease for prenatal gene therapy should have serious morbidity and mortality risks for 

the fetus either in utero or postnatally. The candidate disease should not have effective 

postnatal therapy. Also, a candidate disease should not be associated with serious 

abnormalities that are not corrected by the transferred gene. Moreover, the selected 
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disease for prenatal gene transfer is required to be definitively diagnosed in utero, and 

the genotype/phenotype relationship should be well defined. There must be 

demonstration of effective gene transfer in utero in an animal model that recapitulates 

the human disease or disorder (Recombinant DNA Advisory Committee, 2000). Some 

of the diseases that may be suitable for fetal treatment are listed in Table 1.8.  
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Table 1.8: Some candidate diseases for prenatal gene therapy. 

Disease Therapeutic gene product Target cells/ 
organ 

Age of onset incident Life 
expectancy 

References 

Cystic fibrosis 
 

 CF transmembrane 
conductance regulator 

Airway and 
intestinal 
epithelial cells  

In utero 1:2000 32 years (Stallings, 
2003) 

Spinal muscular 
atrophy 

Survival motor neuron protein Motor neurons 6 months 
(type I) 

1:10000 2 years (Russman et 
al., 2003) 

Lysosomal storage 
disease 

Glucocerebrosidase in 
Gaucher disease 

Hepatocytes 9-11 years 1:9000 
overall 

<2 years (Beutler, 
2004) 

Urea cycle defects Ornithine transcarbamylase in 
ornithine transcarbamylase 
deficiency 

Hepatocytes 2 days 
(severe 
neonatal 
onset) 

1:30000 <1 month 
(severe 
neonatal 
onset) 

(Mian & Lee, 
2002) 

Duchenne muscular 
dystrophy 

Dystrophin Myocytes 2 years 1:4500 25 years (Eagle et al., 
2002) 

Severe combined 
immunodeficiency 
(SCID) 

γ c cytokine receptor 
(X-linked SCID); 
adenosine toxicity 

Haematopoietic 
precursor cells 

Birth 1:1000000 < 6 month if 
no bone 
marrow 
transplant 

(Qasim et al., 
2004) 
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1.12.7  Animal models for in utero gene transfer  
 
Different animal models have been used for in utero gene therapy. However, the mice 

model is the most common model used for prenatal vector delivery, due to their relative 

ease to use and handle. They need less complicated facilities for maintenance and 

breeding than any other animal. One of the advantages of using mice model is because 

of the number of fetuses, and how fetuses link together in each pregnancy. Mice usually 

carry between 6 and 12 fetuses in each pregnancy. Each individual fetus is surrounded 

by an interior amniotic membrane and provides nutrients to the exterior parietal yolk sac 

via the yolk sac vessels at 16 days gestation. Thus, each individual fetus can receive a 

different injection. In addition to mice model, rabbits and guinea pigs have been 

successfully used as small animal models for in utero gene therapy in some cases 

(Waddington et al., 2005). Different information like the length of gestation, mass of 

fetus at birth, size of litter and life span of animal are taken into consideration when 

choosing an animal model for in utero gene therapy, Table 1.9. 

Using larger animal models can better address areas such as the safety of treatment, 

delivery techniques and expression time of delivered transgene (David & Waddington, 

2012). Additionally, a large animal model has the advantage of serving as a more 

accurate model of a human pregnancy. Macaques (Tarantal et al., 2001) and sheep 

(Peebles et al., 2004) models have been successfully used for prenatal vector delivery. 

Longer-term gene transfers and a higher vector dose are required in large animals to 

translate the protein of interest compared to a small animal model. Therefore, it would 

give researchers a better understanding of how their hypothesis can be applied to humans 

(David & Waddington, 2012).  
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Table 1.9: Animal model for fetal studies. Taken from (Waddington et al., 2005). 

Species Gestation 
length in days 

[Median 
(range)] 

 

Litter 
size 

Approximate body 
weigh at birth (g) 

Lifetime 
(years) 

Mouse 19-21 6-12 1 1-3 
Rabbit 29-35 4-10 30-80 5-8 
Rat 20-22 7-11 5 2.5-3.5 
Rhesus macaque 130-180 1 550 20-30 
Sheep 144-151 1-3 5-5.5 kg 8-13 
Dog 57-71 3-10 100-400 7-15 
Guinea pig 60-65 2-4 70-90 4-6 
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1.13  Project aims  
 
For more than two decades, efforts have made to understand the structure of lentivectors 

derived from HIV-1 and to modify them to produce a safe delivery vector. The biosafety 

of lentiviral vectors has improved remarkably, and they have been employed widely in 

clinical trials. Lentiviral vectors are regarded as attractive gene-delivery vehicles 

because of their unique properties, such as: (a) being able to transduce both dividing and 

non-dividing cells, (b) being capable of transducing a wide range of cells, including 

critical target cell types for gene therapies; (c) not expressing viral proteins after vector 

transduction; (d) providing long-term gene expression via stable vector integration into 

the host genome, although a possible downside is the raised risk of insertional 

mutagenesis, which can lead to undesirable outcomes. Introducing integration-deficient 

lentivectors has significantly improved the bio-safety of viral vectors, with lower risks 

associated with lentiviral vector integration while preserving transgene expression in 

quiescent cells. 

The main goal of this study is to design and optimise lentiviral vectors to mediate 

therapeutic transgene replacement to ameliorate SMA disease.  

To achieve this goal, the study aimed to: 

(A) Design and produce different lentiviral vector configurations.  

(B)Test the produced vectors in different in vitro models and perform a 

comparative study on the effect of different factors on achieving maximisation 

of full-length SMN protein production. 

(C) Study the functional efficiency of SMN protein production from lentiviral 

vectors. 

(D) Carry out a preliminary assessment of in utero technology and the optimum 

viral vectors using an in vivo SMA model. 
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Chapter 2 Materials and methods 
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2.1 Material 
2.1.1 Biochemical reagents 
 
All molecular biology grade laboratory chemicals, DNA and protein size markers and 

media, along with their suppliers, are listed in Appendix 1. The storage conditions of all 

reagents were carried out according to the manufacturer’s recommendation.  

 

 

2.1.2 Biological kits 
 
The list of all biological kit which was used in this study is available in Appendix 1. 

 

 

2.1.3 Buffer, solution and completed medium 
 
A list of all buffers and solutions that were applied in western blot, bacterial work, 

immunofluorescences, lentivector production, agarose gel electrophoresis and buffer for 

isolation primary cells is provided in Appendix 2.  
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2.1.4 List of plasmids 
 

Plasmid name Description 

pMDLg/pRREintD64V A 8895 bp packaging plasmid containing 

cytomegalovirus (CMV) promoter and 

Integrase (IN) with class I mutation via 

replacing aspartic acid at position 64 with 

valine. The plasmid was made by Prof. Rafael 

J. Yáñez-Muñoz. 

pMDLg/pRRE A 8865 bp packaging plasmid containing 

CMV promoter and IN. Plasmid vector was a 

kind gift from Prof. Luigi Naldini’s laboratory. 

pRSV-Rev A 4174 bp plasmid in a pUC19 vector 

backbone. The Rous Sarcoma virus (RSV) 

promoter drives the expression of REV which 

is necessary for the nucleic acid transfer from 

the nucleus to the cytosol. This plasmid was a 

kind gift from Prof. Luigi Naldini’s laboratory.   

pMD2.VSV-G A 5824 bp envelope plasmid in a pUC18 

vector backbone, which was encoded with the 

glycoprotein from the vesicular stomatitis 

virus (VSV-G). Virus pseudo-typed with this 

envelope can infect both mammalian and non-

mammalian cells. Plasmid vectors were a kind 

gift from Prof. Luigi Naldini’s laboratory. 

pHR’sc_S_E_W A 9662 bp plasmid contains mutated 

Woodchuck hepatitis virus post transcriptional 

regulatory element (mWPRE) downstream of 

enhanced green fluorescent protein (eGFP) 

and under control spleen focus-forming virus 

(SFFV) promoter. Plasmid vectors were a kind 

gift from Prof. Adrian Thrasher’s laboratory.  

pRRLsc_C_mSmn_eleGFP-W A 9008 bp plasmid encoding mouse survival 

motor neuron (mSmn) tagged with FLAG sub-
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cloned downstream of CMV promoter, with 

eGFP under the action of an internal ribosome 

entry site (IRES). A WPRE was placed 

downstream of enhanced eGFP. The plasmid 

was made by Dr. Sherif Ahmed in Prof. 

Yáñez’s laboratory. 

pRRLsc_hSYN_mSMN_eleGFP_W A 8894 bp plasmid encoding mSmn 

downstream of human synapsin (hSYN) 

promoter, with eGFP under the action of an 

IRES. A WPRE was placed downstream of 

eGFP. The plasmid was made by Ms. Anila 

Iqbal in Prof. Yáñez’s laboratory.   

pscAAV_Cagh_SMN1 A 4841 bp plasmid encoding human Survival 

Motor Neuron 1 (hSMN1). The plasmid was 

made by Dr. Maria Gabriela Boza in Prof 

Yáñez’s laboratory. 

pscAAV_Cag_hSMN1NtF  A 4868 bp plasmid encoding hSMN1 with a N 

terminal FLAG tag. The plasmid was made by 

Dr. Maria Gabriela Boza in Prof. Yáñez’s 

laboratory. 

pscAAV_Cag_hSMN1CtF A 4865 bp plasmid encoding hSMN1 with a C 

terminal FLAG tag. The plasmid was made by 

MS. Pavlina Petrova in Prof. Yáñez’s 

laboratory. 

pRRLsc_C_mSmn_mW A 7690 bp plasmid encoding mSmn tagged 

with Flag downstream of the cytomegalovirus 

(CMV) promoter and upstream of mutated 

woodchuck hepatitis virus post transcriptional 

regulatory element (mWPRE). 

pRRLsc_hSYN_mSmn_mW A 7559 bp plasmid encoding mSmn 

downstream of the hSYN promoter and 

upstream of mWPRE. 
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pRRLsc_C_hSMN1-mW A 7446 bp plasmid encoding hSMN1 

downstream of the hSYN promoter and 

upstream of mWPRE.  

pRRLsc_C_hSMN1_NtF_mW A 7611 bp plasmid encoding hSMN1 with a N 

terminal flag-tag downstream of the CMV 

promoter and upstream of mWPRE. 

pRRLsc_hSYN_hSMN1_NtF_mW A 7473 bp plasmid encoding hSMN1 with a N 

terminal flag-tag downstream of the hSYN 

promoter and upstream of mWPRE.  

pRRLsc_C_hSMN1_CtF_mW A 7470 bp plasmid encoding hSMN1 with a C-

terminal flag-tag downstream of the CMV 

promoter and upstream of mWPRE. 

pRRLsc_hSYN_hSMN1_CtF_mW A 7470 plasmid encoding hSMN1 with a C-

terminal flag-tag downstream of the hSYN 

promoter and upstream of mWPRE. 

pRRLsc_C_Co_hSMN1_mW A 7590 bp plasmid encoding codon-optimised 

hSMN1 downstream of the CMV promoter and 

upstream of mWPRE. 

pRRLsc_hSYN_Co_hSMN1_mW A 7473 bp plasmid encoding codon-optimised 

hSMN1 downstream of the hSYN promoter 

and upstream of mWPRE. 

 

 

 
2.1.5 Accession number 
 
The GenBank accession number for wild type hSMN1 used in this study is 

NM_000344.3. Codon optimisation of wild-type hSMN1 was carried out using 

GENEART’s gene optimization system, however, the codon optimised hSMN1 

sequence is confidential and will not be disclosed in this thesis, as the results of the 

experiments are not yet published. 
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2.1.6 Cell lines 
 

Cell line Description 

HEK293T An adherent epithelial human embryonic 

kidney 293 cell line containing an 

integrated copy of the human adenovirus 

serotype 5, E1a gene and constitutive 

expression of SV40 Large T antigen 

(Graham et al., 1977).  

HeLa Human cervical adenocarcinoma cell line 

(Scherer, 1954). 

Chinese hamster ovary (CHO) The Chinese hamster ovary cell line was 

originally established from an inbred 

female laboratory animal in 1957 (Tjio & 

Puck, 1958). 

 
 
 
2.1.7 Primary cell culture:  
 
Motor neurons Motor neuron primary cells were isolated 

from 15 days old (SD) rat embryos by 

dissociation of spinal cord ventral horns. 

SD rats were purchased from Charles 

River, UK. 

Cortical neurons Cortical neuron primary cells were 

extracted from 18 days old CD1 mouse 

embryos. The CD1 mouse purchased 

from Charles River, UK. 

Human control and SMA type I 

fibroblasts 

These cells were obtained with informed 

consent from control or SMA patients in 

Santa Creu I Sant Pau Hospital by our 

collaborator Dr. Eduardo Tizzano 

(Barcelona, Spain). 
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2.1.8 Western blotting antibodies 
 
Primary antibodies for western blot used in this project 

Antibody Commercial 

source 

Catalogue 

number 

Dilution 

Mouse anti-survival motor 

neuron (SMN) 

BD Biosciences, 

UK 

610646 1 in 5000  

Rabbit anti-Alpha tubulin ABCAM, UK AB4074 1 in 2000  

Anti-GFP antibody  ABCAM, UK  ab290  1:1000  

 

 

 

 

 

Secondary antibodies for western blot used in this project 

Antibody Commercial 

source 

Catalogue 

number  

Dilution  

IRDye 800CW goat anti-

mouse 

LI-COR, UK 92632210  1 in 2000  

Goat anti-Rabbit Alexa 

Fluor 680 

Molecular 

Probes, UK 

A21076  1 in 5000  
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2.1.9 Immunofluorescence antibodies  
 
Primary antibodies for immunofluorescence staining used in this project 

Antibody Commercial source Catalogue 

number 

Dilution 

Mouse anti-NeuN Millipore, UK MAB377 1:500 

Goat anti gemin2 

polyclonal antibody 

Santa Cruz, UK ab6084 1:200 

goat IgG anti ChAT Milipore, UK AB144P 1:50 

Mouse anti-survival 

motor neuron (SMN) 

BD Biosciences, 

UK 

610646 1:500 

 

 

 

 

 

Secondary antibodies for immunofluorescence staining were used in this project 

Antibody Commercial 

source 

Catalogue 

number 

Dilution 

Goat anti-Mouse 

AlexaFluor555 

Invitrogen, UK A-21424  1:1000 

Goat anti-rabbit 

AlexaFluor680 

Invitrogen, UK A-21076 1:1000 

Goat anti-mouse 

AlexaFluor488 

Invitrogen, UK A-11001  1:1000 

Donkey anti-goat 

AlexaFluor555 

Santa Cruz, UK sc-362265 1:1000 
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2.1.10  List of restriction enzyme 
 

Restriction enzyme Commercial source Catalogue number 

XmaI 
New England Biolabs 

(NEB), UK 

R0180 

EcoRI NEB, UK R0101 

SacII NEB, UK R0157 

SmaI NEB, UK R0141 

Acc65I NEB, UK R0599 

NcoI NEB, UK R0193 

HindIII NEB, UK R0104 

AgeI NEB, UK R0552 

SbfI NEB, UK R0642 

PstI NEB, UK R0140 

NdeI NEB, UK R0111 

ApaI NEB, UK R0114 

BsrGI NEB, UK R0575 

AvaI NEB, UK R0152 

 
 
 
 
 
 
 
2.1.11   Software 
 

Software Commercial source 

Vector NTI Invitrogen, UK 

Rotor Gene Software 1.7 Corbett Life Science, UK 

Odyssey Infrared Imaging System 

Application Software V1 
Li-cor Bioscience, UK 

Axio Vision 4.8.1 carl Zeiss Image solution, UK 

BD FACSivaTM Software BD Bioscience, UK 

GraphPad Prism GraphPad, US 
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2.2 Molecular cloning method 
2.2.1 Agarose gel electrophoresis 
 
The amount of agarose and Tris-acetate-EDTA (TAE) to be used depends on the 

concentration of the gel required for analysis. Agarose gel of 0.8-1% concentration is 

normally adequate to analyse the polymerase chain reaction (PCR) products and DNA. 

To prepare 0.8 agarose gel, 0.4 g agarose powder (Invitrogen, UK) was dissolved in 49 

mL of 1 × Tris-acetate-EDTA (TAE) buffer (see appendix 2). 0.5 μg/mL of Ethidium 

bromide (EtBr) (Invitrogen, UK) was added into the mixture. Then the mixture was 

poured into a gel caster set that had been prepared earlier. The gel was left to solidify at 

room temperature for at least for 30 minutes. Once solidified, the gel was placed into an 

electrophoresis tank filled with 1 × TAE buffer and then the samples of interest were 

loaded on gel and run at 50 V for 1 hour.  

 

 

2.2.2 Restriction enzyme digestion 
 
For a restriction enzyme digestion reaction with final volume of 20 μL, 1× of the 

corresponding buffer (NEB, UK), 100μg/mL of Bovin serum albumin (BSA) (NEB, 

UK) and 500 ng of DNA were mixed with 2.5-5 U of restriction enzyme (NEB, UK) and 

then the mixture was incubated at 37°C for 1 hour. After incubation time the reaction 

was inactivated at 65 °C for 20 minutes. The presence of DNA fragments was visualized 

by running the digested products on agarose gel. 
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2.2.3 Determination of nucleic acid concentration 
 
The concentration and purity of DNA were measured using a Spectrophotometer. This 

technique is based on measuring the amount of light that was absorbed by the 1 μL of 

DNA solution placed in a NanoDropTM 1000 (Eppendorf, Germany). The purity of the 

sample was measured with wavelengths of 260 nm and 280 nm. A DNA sample is 

considered pure when its value assesses in a range of between OD260/280 1.8 to 2.0 

OD260/280. A reading of less than 1.8 or more than 2.0 indicates that the DNA sample 

might be contaminated. 

 

 

2.2.4 Cloning in plasmid vector 
2.2.4.1 Luria Bertani (LB) agar plates 
 
For preparation of LB agar, 2% Luria broth (Sigma, UK) and 1.5% bacteriological agar 

was mixed with sterile dH2O using a magnetic stirrer until the powder was completely 

dissolved (Sigma, UK). 

The mixture was then autoclaved at 121°C, 100 kPa for 15 minutes. After the 

sterilization step was completed, the mixture was cooled down under running tap water. 

Next, 100 μg/mL of Ampicillin (Sigma, UK) was added to the mixture. It was mixed 

well before 20 mL of the liquid agar was poured into 100 mm bacterial Petri dishes in a 

bacterial safety cabinet. All the plates were left to solidify for roughly 2 hours and then 

stored at 4°C. 
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2.2.4.2 Luria Bertani (LB) broth 
 
For preparation of LB broth medium, 2% Luria broth (Sigma, UK) was mixed with 1 L 

of sterile dH2O using a magnetic stirrer until all the powder was completely dissolved. 

The LB broth medium was autoclaved 14 121°C, 100 kPa for 15 minutes.     

 

 

2.2.4.3 Bacterial strains 
 
One Shot ® TOP10 E. coli is a genetically modified E. coli strain to obtain high 

transformation efficiency (Invitrogen, UK).  

Genotype: F– mcrA Δ (mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 

Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 nupG.   

 

 

2.2.4.4 Preparation of competent cells 
 
2 μL of One Shot ® TOP10 E. coli bacterial stock was cultured in 10 mL LB broth at 

37°C, with 220 rpm agitation for overnight. The next day, 1 mL of overnight culture was 

sub-cultured into a new 10 mL LB broth aliquot at 37°C with 220 rpm agitation for 

approximately 10 minutes until cell density reached OD600 value of 0.5. Once the 

desired cell density was reached, the sub-culture was transferred into a sterile 15 mL 

Falcon tube and left in ice for 30 minutes. After that, the samples were centrifuged at 

1,000 X g for five minutes at 4°C. Next, the supernatant was decanted before 5 mL of 

Tfb I solution (see appendix 2) was added. The pellet formed was re-suspended by gentle 

inversion on ice. The suspension was then incubated in ice for 20 minutes and was 

centrifuged at 1,000 X g for 15 minutes at 4°C. After decanting the supernatant, the 

pellet was re-suspended with 2 mL of Tfb II (see appendix 2) by gentle inversion on ice. 
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100 μL of the competent cell suspension was liquated into sterile 1.5 mL microcentrifuge 

tubes and were snap-frozen in liquid nitrogen for a few seconds before being stored in -

80°C for future use.     

 
 
 
 
2.2.4.5 Polymerase chain reaction 
 
Each PCR reaction consisted of 1× Phusion HF Buffer (Thermo Fisher Scientific, 

Germany), 200 μM dNTP (Thermo Fisher Scientific, Germany),  

0.5 uM of reverse and forward primers (Sigma, UK), 0.02 Units Phusion Hot Start II 

DNA Polymerase (Thermo Fisher Scientific, Germany) and 10 ng DNA sample in the 

final volume of 25 μL. 

PCR was carried out with initial denaturation set at 98°C for 5 minutes, annealing at 

60°C for one minute and extension at 72°C for one minute, followed by six cycles of 

denaturation at 98°C for 30 seconds, annealing at 60°C for one minute, extension at 72°C 

for 15 seconds, then followed by 35 cycles of denaturation at 98°C for 20 seconds, 

annealing at 70°C for 1 minute, extension at 72°C for 15 second followed by final 

elongation step at 72°C for five minutes. 

 

 

2.2.4.6 PCR purification 
 
PCR products were purified using QIAquick PCR Purification Kit (Qiagen, UK) 

following manufacture’s recommendations. 
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2.2.4.7 Preparative restriction enzyme digestion 
 
Restriction enzyme digestion was carried out in 50 μL of reaction volume in a sterile 1.5 

mL microcentrifuge tube. For a single reaction, 1× of corresponding Buffer (NEB, UK), 

100 μg/mL of BSA (NEB, UK) and appropriate concentration of DNA (5 μg of backbone 

plasmid or 10 μg donor plasmid) were mixed with the appropriate volume of restriction 

enzyme (NEB, UK) and then the mixture was incubated at 37°C for 3 hours. After 

incubation time, the reaction was inactivated by heating at 65°C for 20 minutes. 

 

 

2.2.4.8 Alkaline phosphatase treatment of DNA fragments 
 
For phosphatase reaction, 1μL of Antarctic phosphatase enzyme (NEB, UK) and 5 μL 

of Phosp buffer were added to the sample. Sample was then incubated at 37°C for 30 

minutes followed by inactivation at 65°C for 5 minutes. 

 

 

2.2.4.9 Purification of DNA by gel extraction 
 
DNA was purified using QIAquick Gel Extraction Kit (Qiagen, UK) following 

manufacture’s recommendations. 

 

 

2.2.4.10 DNA ligation 
 
The ligation reaction was set up in a final volume of 10 μL using 3 units of DNA ligase 

(Promega, UK), 1×T4 ligation buffer, and the appropriate volume of backbone and 

insert. The reaction was kept at 18°C overnight. The maximum number of corrected 
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clones was obtained by using 3:1 insert/vector molar ratios for cohesive termini while 

for blunt-end ligation reaction 5:1 insert/vector molar ratios were used. 

 

 

2.2.4.11 Heat–shock transformation method 
 
Half of the ligation product was mixed with 100 μL of competent cell before the tube 

was placed in ice for 30 minutes. The tube was then placed in a 42°C water-bath for 45 

seconds and immediately returned to ice for ten minutes. Subsequently, 900 μL of sterile 

LURIA broth (LB) broth medium was added into the tube and followed by incubation 

at 37°C for one hour with agitation at 180 rpm. Finally, cells were seeded onto agar 

plates containing an appropriate selective antibiotic for overnight. 

 

 

2.2.4.12 Screening of transformants 
 
Colonies were selected from the plates and each one was used to set up a 4 mL mini-

culture in LB with 100 μg/mL of Ampicillin (Sigma, UK). The samples were incubated 

at 37°C agitation at 220 rpm overnight. After incubation, DNA plasmid was extracted 

from 1.5 mL overnight culture using the QIAprep Spin Miniprep Kit (Qigen, UK). DNA 

plasmid was then subjected to restriction enzyme digestion for checking the plasmid as 

described in section 2.2. 

 

 

2.2.4.13 Purification of plasmid DNA 
 
Plasmid DNA was extracted in Mini, Maxi and Mega scales using QiAprep Spin 

Miniprep Kit, EndoFree Plasmid Maxi Kit and Endofree Plasmid Mega Kit (Qiagen, 
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UK) respectively. The experiments were carried out according to manufacturer’s 

instructions. 

 

 

2.2.4.14 Storage of bacteria 
 
Once successful transformed plasmid was confirmed using sequencing technology and 

analysing the sequencing results, then it was subjected to storage in -80°C for future 

work. 500 μL of the miniculture was mixed with 500 μL of 30% sterile glycerol stock 

to make glycerol stock of selected clone and stored it in -80°C.   

 

  

2.3 Tissue culture methods 
 
All cell culture and related works were carried out in sterile conditions in a class ΙΙ 

biosafety cabinet, unless otherwise stated. Cells were maintained in a tissue culture 

incubator at 37°C, 5% CO2 or frozen in aliquots stored in liquid nitrogen. 

 

 

2.3.1 Thawing frozen cells 
 
In order to retrieve frozen cells, the cell cryovial was placed into a 37°C water bath for 

approximately 3 minutes. The content of the vial was transferred into 9 mL of 

Dulbecco’s modified Eagle medium (DMEM) with stable glutamin and 4.5 g/l glucose 

(PAA, Austria) supplemented with 10 % (v/v) heat-inactivated fetal bovine serum (FBS) 

(Life Technologies, UK), 100 U/mL penicillin and 100 μg/mL streptomycin (Pen& 

strep) (PAA, Austria) (this basic culture medium will be titled to as full DMEM in next 

section), followed by centrifuging at 350 X g for 5 minutes. The supernatant was 
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removed after centrifuging, and the cells were re-suspended in full DMEM medium and 

transferred into a flask and incubated at 5% CO2 and 37°C. 

 

 

2.3.2 Cell lines  
2.3.2.1 Culture of HeLa and HEK293T cells 
 
HeLa and HEK293T cell were cultured in full DMEM. The cell line was incubated at 

5% CO2 and 37°C on 75 cm2 flask. Cells were passaged every 2-4 days once cells were 

80-90% confluent to avoid over-confluence of cells and to maintain a normal growth 

condition for cells. In order to split the cells, they were washed with Dulbecco’s PBS 

and then cells were detached from the culture surface using 0.1% trypsin (diluted in PBS/ 

EDTA) at 37°C for roughly 3 minutes. After incubation time, cells were subsequently 

collected in full DMEM and spun at 350 X g for 5 minutes. After centrifugation, the 

medium was removed and the cells were re-suspended in 10 mL of full DMEM. The 

required number of cells was transferred to the new flask with appropriated final volume 

of full DMEM. In order to count the number of cells, 10 μL of the re-suspended cells 

were mixed with 10 μL of 0.4% trypan blue then 10 μL of this mixture was placed in a 

haemocytometer and then the number of cells was counted under the microscope. 

 

 

2.3.2.2 Culture of CHO cells 
 
The standard medium used to grow CHO cells was DMEM, supplemented with 10% 

FBS, 0.02 g/l L-proline, 100 units/mL penicillin, and 100 μg/mL streptomycin. The 

maintenance conditions and the rest of general cell culture procedure, such as splitting 
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the cells and counting the number of cells for CHO cells, followed the same description 

as outlined in the tissue culture methods section.  

 

 
2.3.2.3 CHO cell-cycle arrest 
 
DMEM without methionine supplements with 2% FBS, 0.02 g/L- proline, 100 units/ mL 

penicillin, and 100 μg/mL streptomycin were used on purpose to arrest CHO cell line 

(Kymäläinen et al., 2014). The maintenance condition followed the same description in 

the tissue culture methods section. 

 

 

2.3.2.4 Culture of human control and SMA type fibroblasts 
 
The growth medium to culture fibroblast cells line contained 64.8% DMEM high 

glucose with stable glutamin 21% M-199 (Lonza, UK), 10% FBS, 10 ng/mL Fibroblast 

growth factor 2 (FGF2) (Miltenyi, Germany), 25 ng/mL Epidermal growth factor (EGF) 

(Miltenyi, Germany), 1μg/mL gentamicine. The maintenance condition and the rest of 

the general cell culture procedure, such as splitting the cells and counting number of 

cells for CHO cell followed the same description as outlined in the tissue culture methods 

section. 

 

 

2.3.2.5 Storage of cells 
 
Freezing medium was supplemented with 10% Dimethylsulfoxide (DMSO) to prevent 

ice crystals forming in cells, 50% FBS and 40% DEME (without any supplements) was 

used to freeze cells. Following the tryptinisation of a 80% confluent cultured cells, they 
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were stored by re-suspending in freezing medium. 106 of cell in 1 mL freezing medium 

was liquated into a cryovial and then the tubes were transferred into an isopropanol 

freezing container and stored at -80°C for overnight. The following day, the cryovials 

were transferred to a liquid nitrogen storage tank for long-term storage.   

 

 

2.3.3 Primary cells 
2.3.3.1 Isolation and culture of E18 mouse cortical neurons 
 
A CD1 (Charles River, UK) pregnant mouse on day 18 was killed using CO2 chamber, 

followed by cervical dislocation to confirm death. The embryos were transferred 

immediately into an ice-cold dissection buffer and kept on ice. The cortices were isolated 

using dissection of the brain. Mouse cortices were dissociated by 0.05% trypsin/EDTA 

in 37°C water bath for 20 minutes. The supernatant was aspirated and tissue pieces were 

washed with neuronal differentiation medium (see appendix 2) and then tissues were 

titred through pre-coating with inactivated FBS p100, p 200, p 10. In the next step, the 

cell suspension was then passed through a 100 μm cell strainer and cells were collected 

into a Falcon tube. The collected cells were centrifuged at 80 ×g for 5 minutes. 0.2% 

trypan blue was used to count the number of live cell suspension. Then 3 × 106 was 

seeded into a pre-coated 24-well plate with Poly D-Lysine (Sigma, UK). The primary 

cells were not passaged at all during experiments and they remained on pre-coated plates, 

which they seeded after isolation procedure. 
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2.3.3.2 Preparation of pure embryonic motor neuron primary cultures  
 
Embryos were extracted from a E 15 Sprague-Dawley (SD) (Charles River, UK) 

pregnant rat under sterile condition. The head and the tail were separated from embryo 

body to extract the spinal cord by introducing fine forceps into the spinal cord canal. 

Ventral spinal cords were stored in L15 medium (Invitrogen, UK). In the next stage, the 

isolated ventral spinal cords were cut into 10-15 pieces and transferred into 15 mL tubes 

and washed with PBS (PAA, UK). The PBS was discarded and 1 mL of PBS + Trypsin 

0.05% was added into samples and incubated for 12 minutes at 37C ° with frequent 

mixing. The trypsin + PBS was discarded and then 0.8 mL L15c medium (Invitrogen, 

UK) supplemented with 7.5% Sodium Bicarbonate (Sigma, UK), 7.2 % glucose (BDH 

Chemical, UK), 1% penicillin/ streptomycin (CSL, UK), 0.1% putrescine (ICN 

Biochemicals, UK), 1% conalbumin (Sigma, UK), 2% horse serum (CSL, UK), 0.1 % 

progesterone (Sigma, UK), 1% Insulin (Invitrogen, UK), 0.1% sodium selenite + 0.1mL 

BSA 4% (Sigma, UK) + 0.1 mL DNAse I (1000U/mL) (Promega, UK) was added into 

the samples and then the sample was mixed for 3 minutes until DNAse separated tissue 

fragment. In the next stage, tissue fragments were allowed to settle into the bottom of 

the tube and then the supernatant was transferred into 15 mL tubes. 0.9 mL L15c + 0.1 

mL BSA 4% + 20 µL DNAse I (1000U/mL) was added into samples and using 1 mL 

micropipette was pipetted gently six times. Supernatant was transferred into 15 mL tubes 

and then 11 mL of L15c was added into it. Before the samples were centrifuged at 300 

g for 10 minutes, 1 mL of BSA 4% was very slowly added into the bottom of the tubes 

using a glass Pasteur pipette. After centrifuging, the supernatant was discarded and the 

pellets were re-suspended 10 times into 1 mL L15c + 20 µL DNAse (1000U/mL). 2 mL 

L15c was added and then spilt into two 15 mL tubes with 1.5 mL each (1 tube per 4-5 

spinal cords). 2 mL of Optiprep (1:10 in L15) was very slowly added at the bottom of 
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each tube. In the following step, the samples were centrifuged at 800 xg for 15 minutes. 

0.9 mL of medium over the band of cells was discarded using 1 mL micropipette. The 

band of motor neurons was collected in 1 mL and added to the immunopanning plate 

containing secondary antibody against rat IgG (ICN, UK) and IgG192 (in-house made 

monoclonal antibody supernatant, against the rat p75 neurotrophin receptor, (see 

appendix 2)) and incubated at room temperature for 40 minutes. The plate was washed 

three times with L15, and then 4 mL of IgG 192 was added to the plate to detach the 

motor neurons. The detached neurons were transferred into a 15 mL tubes which were 

then filled with 11 mL of L15c. 1 mL of BSA 4% was added at the bottom of the tubes 

with a glass Pasteur pipette and the samples were centrifuged at 300 g for 10 minutes. 

The pellet was resuspended into 0.5 mL of L15c and then the number of cells was 

counted. The cells were seeded at a 300 cells/cm2 on a 12 well plate coated with 10 g/mL 

poly-d-lysine (Sigma, UK) and 10 g/mL laminin (Sigma, UK). 

 

2.4  Lentivector production  
2.4.1 Preparation of HIV vectors by calcium phosphate transfection 
 
HEK293T cells were seeded at 3×106 per 15 cm plate in 20 mL of full DMEM. The cells 

were transfected when they were 50-60% confluent. The media was replaced two hours 

prior to transfection. The DNA ratio of third generation vectors was followed 1:1:1:2 

(PACKAGING, REV, ENV, TRANSFER), so 12.5 μg of the packaging plasmid 

(pMELg/ pRRE (integration proficient) or pMDLg/ pRRE-intD64V (integration-

deficient through point mutation which inactivates the catalytic site of integrase), 7μg of 

ENV plasmid (pMD2.VSV- G) and 25 μg of TRANSFER plasmid was mixed together 

and made up the DNA mixture 1125 μL with TE buffer. After that, 125 μL of 2,5 M 

Calcium Chloride (CaCl2) was added to sample, the mixture vortexed and incubated for 
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5 minutes at room temperature. 1250 μL of 2× HBS (see appendix 2) was added to 

sample drop-wise while vortexing DNA-CaCl2, then the mixture was added to the cell 

immediately and mixed with medium. Afterward, the sample was incubated at 37°C and 

5% CO2 for 16 hours. After incubation time, the medium was removed and replaced with 

18 mL/ plate of fresh medium and subsequently the medium was harvested 48 and 72 

hours post-transfection. After the first harvest, 18 mL fresh medium was added to the 

cell. Harvested medium was centrifuged at 1000 X g for 10 minutes, room temperature 

and then supernatant was filtered through a 0.22μm Nalgene filter. After that, filtered 

medium was transferred to high-speed polyallomer centrifuge tubes and was centrifuged 

at 50,000 X g, 4 °C for 2 hours. After discarding the supernatant, 50 μL/tube of DMEM 

without supplement was added to the viral pellets and mixed by pipetting up and down 

~ 10 times to re-suspend the virus and transferred to an Eppendorf tube. The sample was 

centrifuged for 10 minutes at 1000 X g at room temperature to remove any debris. After 

that, supernatant was transferred into a new Eppendorf tube. The vector stock was 

adjusted to 10 mM (Magnesium Chloride) MgCl2 with 1M MgCl2 by adding 0.5 μL/50 

μL vector stock. 5 Unit/mL of DNAse was added to each sample, and then the samples 

were incubated at 37°C for 30 minutes. The viral vectors were liquated and frozen at -

80°C. 

 

 

2.4.2 Lentivector titration by flow cytometry (eGFP) 
 
1×105 HeLa cells were seeded per well on a 6-well plate and incubated at 37°C and 5% 

CO2 overnight to be titrated. The next day, 10-fold vector dilution was made in full 

DMEM. The dilution range was from 10-3 to 10-6. The medium was removed from wells 

and 1 mL of DMEM 16 μg/mL polybrene was added to each well. Then 1 mL of 
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adequate virus dilution was added to each well too, and 1 mL DMEM for mock. After 

72 hours transduction, cells were harvested by trypsin digestion. Cells were washed with 

1 mL (phosphate buffer saline) PBS and then 150 μL of trypsin- 

Ethylenediaminetetraacetic acid (EDTA) were added to each well and incubated at 37°C 

for a few minutes to detach cells. After detaching the cells, 850 μL DMEM was added 

to each well to transfer all cells into fluorescent activated cell sorting (FACS) tubes. The 

samples were spun at 350 X g for 5 minutes. The supernatant was aspirated very gently 

and then the pellet was re-suspended in 200 μL of PBS 1% formaldehyde. The samples 

were run through flow cytometer, using the mock to set negative population and highly 

positive sample to set compensation. The viable cell population was selected in the 

forward scatter (FCS) versus side scatter (SSC) plot, and used FL1 (eGFP) versus FL2 

(red autofluorescence) to identify positive population. 

Titer was calculated using dilution with 1-10% green cells. The formula for calculation 

is eGFP transducing units 

(TU)/mL=%green cells ×105 (cells/well on day 0) × 1/vector dilution. 

 

 

2.4.3 Lentivector titration by quantitative real time PCR 
 
1×105 HeLa cells were seeded per well in a 6-well plate and incubated at 37°C and 5% 

CO2 overnight to be titrated by quantitative real time PCR (qPCR). The following day, 

2 vector dilutions (5×104 and 5×105) were made to transduce HeLa cells. Next, 1 mL of 

virus dilution was added to each well and moreover, 1 mL of DMEM 16 μg/mL 

polybrene was added to wells and incubated at 37°C and 5% CO2 overnight. The next 

day, cells were harvested by trypsin digestion then 850 μL of full DMEM was added to 

samples, and cells were transferred into Eppendorf tubes. The sample was spun at 350 
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X g for 5 minutes then the supernatant was removed. In the next part, the pellet was re-

suspended with 500 μL of PBS. One more time, the samples were spun at 350 X g for 5 

minutes and the pellet was re-suspended into 200 μL of PBS. The samples were then 

subjected to DNA extraction with DNeasy tissue Qiagen kit (Qiagen, UK). Two qPCR 

reactions were set up using SYBR Green (Bioline, UK) but with different primers. DNA 

standard samples, which were used in these two qPCR reactions, were made in QIAGEN 

DNA elution buffer with dilution 102-107 and were prepared in triplicates. The first 

reaction was human β-actin qPCR, the reaction was carried out in final reaction volume 

of 20 μL. Every reaction contains 10 μL of SYBR green (Bioline, UK), 0.02 μL of 100 

μM forward primer (actin-f: 5′-TCACCCACACTGTCCCATCTACGA-3′), 0.02 μL of 

100 μM of reverse primer (actin-r: 5′-CAGCGGAACCGCTCATTGCCAATGG-3′), 5 

μL of DNA sample and a sufficient amount of dH2O to make up final volume of 20 μL. 

The second reaction was a late reverse transcript reaction, which followed the above 

concentration and volume but used different primer. The forward primer was LRT-f:5′- 

TGTGTGCCCGTCTGTTGTGT-3′ and reverse primer was LRT-r: 

5′GAGTCCTGCGTCGAGAGAGC-3′. PCR was carried out with initial denaturation 

step at 95°C for 10 minutes, followed by 40-50 cycles of denaturation at 95°C for 15 

second and 60°C for 45 seconds. 

Viral titre was calculated based on the formula below: 

Viral vector titre = viral DNA copies / number of total cells × 10e5 seeded cells × 1/ 

vector dilution.  
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2.5 In vitro experiment 
2.5.1 Study of the transduction efficiency of generated lentivectors 
2.5.1.1 Transduction of growth-arrested CHO cells  
 
1×105 CHO cells in full DMEM were seeded in 6-well plates. The following day, the 

cells were arrested (according the description in section 2.3.2.3) and transduced with 

produced lentivector at with q-PCR MOI 100 and 500. 72 hours after transduction, 

efficiency of transduction was examined using western blot method as described in 

section 2.5.3. 

 

 

2.5.1.2 Transduction of motor and cortical neurons in primary culture 
 
Transduction on motor neuron was carried out two hours post seeding while transduction 

procedure for cortical neuron was carried out three weeks after seeding the cells. The 

transduction procedure was followed by the collection of all the medium of primary cell 

culture into 50 mL Falcon tubes. The collected medium was mixed very well and 1 mL 

or 200 μL of collected medium was added into cortical neurons or motor neurons 

respectively. In the following step, the primary cortical neuron cells were transduced 

with 30 and 100 qPCR MOI of integrating and non-integrating lentivectors, which 

encoded the gene of interest. However, embryonic motor neuron primary cells were 

transduced with 30, 60 and 100 qPCR MOI of generated vectors. Analysis of vector’s 

transduction efficiency in motor neuron was performed three days post transduction 

using immunostaining. Transduction efficiency in the cortical neuron was analysed three 

days post transduction using western blot method.     
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2.5.2 Functional effect of produced SMN protein in fibroblast cell line 
2.5.2.1 Fibroblast transduction 
 
1×105 of fibroblast cells in full DMEM were seeded in 12-well plates. Three days post 

seeding, the cells were transduced with lentivector at q-PCR MOI 30, 60 and 100. The 

samples were subject to immunostaining to study the functionality of produced SMN 

protein using generated lentivectors three days post transduction.  

 

 

2.5.3 Western blotting 
2.5.3.1 Isolation of protein 
 
Cells were gently washed twice with ice-cold PBS and 200 μL of ice-cold RIPA buffer 

containing a cocktail to inhibit proteases (Roche, Germany) was added to cells. Samples 

were incubated at 4°C for 10 minutes. In the next step, cells were harvested using a cell 

scraper and collected into an Eppendorf tube. The samples were then centrifuged at 

14000 X g, 4°C for 15 minutes to remove large debris. After 15 minutes of centrifuge, 

the supernatant was transferred to a new Eppendorf tube and kept at -80°C. 

 

 

2.5.3.2 Protein assay 
 
Bio-Rad protein Assay Kit (Bio Rad, USA) was used to measure the concentration of 

protein in each sample. The experiment followed the instruction of the DC protein assay.  
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2.5.3.3 SDS-PAGE and western blotting 
 
Up to 5 μg of each protein sample were mixed with 5 μL of 5 × sample buffer (see 

appendix 2) and incubated at 95°C for 10 minutes. Then the samples were loaded onto 

a 12% SDS-polyacrylamid gel (see appendix 2). The gel was then run with 1× running 

buffer (see appendix 2) for 150 min at 150 V. After that, the proteins were transferred to 

membrane using a mini trans-Blot Cells at 150 mA for 2 hours using a fresh, cold 1× 

WB transfer buffer (see appendix 2). The efficiency of transference was assessed at 5 

minutes incubation with 10 mL Poneau red solution (see appendix 2). After a successful 

transfer, the membrane was incubated with WB blocking buffer for two hours on gentle 

agitation at room temperature and then overnight at 4°C with the primary antibody 

diluted in 10 mL of WB blocking buffer. The following day, the membrane was washed 

4 × with TBS_T (see appendix 2) and gentle agitation. In the next step, the membrane 

was incubated with secondary antibody diluted in 5 mL WB blocking buffer for 2 hours 

at room temperature. The membrane was washed four times with TBT-T and gentle 

agitation. Protein of interest was detected on membrane using infrared imaging (Odyssey 

system). The exposure time when scanning the membrane was the same for each 

individual experiment.    

 

 

2.5.3.4 Quantification of western blots 
 
Western blotting is a method used to confirm the presence or absence of a protein of 

interest in a mixture of proteins. It is based on electrophoretic separation: separated 

proteins are transferred to a membrane and then stained with specific antibodies. The 

primary antibody is directed against protein and recognizes a specific amino-acid 

sequence of a particular protein, while the secondary antibody recognizes the primary 
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antibody, and is conjugated with an enzyme or fluorescent dye. Detected proteins can be 

quantified by generated light or by fluorescent signal through the secondary antibody. 

In regard to protein quantification, the fluorescent detection method has advantages over 

other methods. Detection is more consistent and straightforward, and quantification is 

more accurate. Fluorescent conjugates avoid the enzyme kinetics and substrate 

availability which are the limitation of chemiluminescence.  

The intensity of generated fluorescence is indicative of the amounts of protein on the 

membrane, which has been detected using antibodies (LI-COR, 2012).   

The membrane was scanned and visualized in the 800 and 600 channel using Odyssey 

Infrared Imaging System (LI-COR Biosciences, UK). The saved image was then used 

to quantify the proteins by drawing a rectangular box around the band of interest to get 

the reading for each individual band. The software can automatically deduct the 

background from the signal for each band. For each individual sample in this experiment, 

a rectangular box was drawn around a loading control (α tubulin protein) and targeted 

protein (SMN). The signal values for the sample are divided per signal values of relevant 

loading control. The result is a normalised value, and stands for fluorescence intensity 

which is directly proportional to the amount of target protein on each shape drawn in 

arbitrary fluorescent units. The background will automatically be deducted from the 

signal. 
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2.5.4 Immunofluorescence 
2.5.4.1 Immunofluorescence staining 
 
Cultured cells in 12-well plate or 8-well chamber slide were washed in ice-cold 1 × PBS 

and then in the following step, the cells were fixed using 4% Paraformaldehyde for 15 

minutes and then washed twice with ice-cold 1×PBS. The cells were permeabilized 1× 

TBS-T (see appendix 2) for 10 minutes and incubated for 30 minutes in 1% BSA 

blocking buffer (see appendix 2). The cells were incubated with primary antibody diluted 

in 1% BSA blocking buffer for overnight at 4°C. The following day, the samples were 

washed in ice-cold 1× PBS for 3 times with gentle agitation. After washing, the samples 

were incubated for 2 hours at room temperature with the secondary antibody diluted in 

1% BSA blocking buffer. Then the samples were washed again in ice-cold 1× PBS 3 

times with gentle agitation. In the following stage, the samples were incubated 1 μg/mL 

4,6-diamidion-2-phenylindole (DAPI) for 15 minutes in the dark at the room 

temperature. For the last time, the cells were washed in ice-cold 1× PBS three times with 

gentle agitation, and then the images of the samples were captured and quantified. The 

same exposure time was used to capture the images for all replicates.  

It is important to note that the microscopy images were taken from cells seeded on cell 

culture plasticware in buffer. As most plasticware used for cell culture has high 

autofluorescence, and the cells were covered with buffer, this may help explain the 

blurry images obtained in some cases. 

 

 

2.5.4.2 Measurement of SMN intensity by immunofluorescence 
 
In fluorescence microscopy, the intensity value of a pixel is used to determine the local 

concentration of fluorophores present at the targeted area. Fluorescence from a 
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fluorophore tagged to an antigen of interest is often used to measure the quantity of the 

tagged protein. 

Samples were selected for analysis based on identification of single motor neuron cells 

per field. Analysis of the samples was performed blind to vector type and gene of 

interest, and using MOI. Regions of interest are created around the motor neuron cell 

body and fluorescence pixel intensities were measured within this region of interest. The 

area outside the regions of interest is considered a background, and is subtracted from 

the fluorescence intensity. The subtracted fluorescence pixel intensities were divided by 

the selected region of interest area and the value stand as intensity mean value and 

expressed as a.u./μm2. The analysis was performed using AxioVision software (Carl 

Zeiss, UK). 

  
 

 

 
2.6 In vivo studies  
 
All the animal procedures were performed according to United Kingdom Home Office 

regulations. 

 

 

2.6.1 Animal strain 
 
The wild type mice were CD1. The SMA mice used in this study were ‘Taiwanese’ 

mouse model of severe SMA (genotype Smn-/-; SMN2tg/0) and their breeding was 

according to the breeding strategy developed by Riessland et al., 2010.  
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2.6.2 Animal feeding 
 
A normal chow diet was used to feed animals. 

 

 

2.6.3 In utero surgery 
 
In this study, inhalational anaesthetic was chosen between many types of available 

anaesthesia for mouse surgery, as a vaporizer releasing isoflurane results in rapid 

sedation and recovery. The mouse was in an induction chamber with 400-500 mL of 4% 

isoflurane per minute vaporised into it, and the pregnant mouse was kept in the induction 

camper until she lost her righting reflex. Following the induction of anaesthesia, mice 

received an analgesic (Flunixin Meglumine, 2.5 mg/kg) via subcutaneous injection.  

Operation procedure was started when the unconscious E16 pregnant female mouse was 

maintained via face mask ~ 270 mL/ minute of 2.7% isoflurane and then an incision was 

made in the abdominal cavity using fine scissors. The uterus was exposed carefully by 

pinching gaps between foetuses. 

It is very tricky not to damage either placenta or the uterus blood vessels, and it is very 

important to keep the uterus wet during procedure by dropping pre-warm PBS.  

Hamilton needle was filled with viral vectors and all foetuses received either 2 μL of 

viral vector into their spinal cord or 10- 20 μL of viral vector into their intraperitoneal 

cavity.  

After completing the injection, the uterus was placed back into the abdominal cavity and 

the surgical incision was sutured using interrupted stitches. The injected pregnant 

females recovered in a warm cage. 
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2.6.4 Physical check and behaviour test 
2.6.4.1 Righting reflex  
 
The behaviour test carried out in this study was righting reflex. Righting reflex is a 

simple and rapid test to assess locomotor ability. The strategy of this assay is to score 

and measure a mouse’s ability to turn themselves on to their paws when they are placed 

in a supine position. The result of this physical activity is a performance of the general 

body strength, the straightness and weakness of muscles and improvement by 

therapeutic compounds. 

To assess the righting reflex, the mouse was normally placed on its back on a flat surface, 

then the time taken for them to right themselves was measured. This test was carried out 

every day after the pups were born. The SMA mice are not very good at doing this, so 

this assay is use as a readout of their motor performance. 

 

 

 
2.6.4.2 Checking weight 
 
The weight of the animal was recorded every day for any therapeutic improvement, and 

to find out the ending point of the running experiment. According to United Kingdom 

Home Office regulations the ending point of an experiment is when the animal loses 

20% of their weight. Therefore, in this study, the weight of pups was recorded when they 

were born and they were weighed daily.  
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2.6.5 Collection of tissues 
 
The experiment was terminated by intraperitoneal injection of sodium pentobarbital into 

injected mouse at 2 weeks post injection. Tissue collection was started after confirming 

the dam’s death using neck dislocation. 

Whole spinal column was removed, and a 23-gauge needle connected to a 5 mL filled 

syringe with PBS was inserted into the sacral end of the column. The PBS was gently 

flushed through the spinal column to remove the spinal cord from the cervical end of the 

column.  

Liver, brain and muscles tissues were harvested as well. 

The aim was to analyse collected tissue with western blot and immunofluorescence 

methods. Thus, the tissues were divided into two parts. One part was transferred into 

Eppendorf tubes and stored into -80 to be analysed with western blot (full description is 

available in section 2.6.8). The other part of the tissue was fixed with 4% 

paraformaldehyde at 4°C for 24 hours for more investigation using immunofluorescence 

method (full description is available in section 2.6.7). 

 

 

2.6.6 Immunofluorescence 
2.6.6.1 Sectioning 
 
The tissues of interest were fixed in 4% paraformaldehyde (PFA) in PBS overnight, and 

the following day the PFA was removed and the tissue was washed twice with PBS. In 

the next part, fixed tissue was incubated into 30% sucrose (Sigma, UK) in PBS overnight 

at 4 C° to cryoprotect the tissues. The tissues were dissected and embedded separately 

in optimal cutting temperature (OCT) compound (CellPath, UK) then frozen on dry ice. 

In the next stage, the tissues were sliced at 25 µm thickness using a cryostat (Leica 
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CM3050S, UK) and every 4th section collected onto poly-L-lysine coated slides (Thermo 

Scientific, UK). Excess OCT compound around section was removed using PBS and a 

narrow paintbrush. Slides were left to dry before processing for immunohistochemistry. 

 

     

2.6.6.2 Immunofluorescence staining  
 
Sectioned tissue was washed three times with 1×PBS for 5 minutes. In the next stage, 

the tissue was permeabilised with 1×PBS-T (see appendix 2) for 10 minutes. After the 

incubation time, the sample was blocked using 1% BSA blocking buffer (see appendix 

2) for half an hour to avoid non-specific staining between the primary antibodies and the 

tissue. The samples were incubated with diluted primary antibody in 1% BSA buffer 

overnight. After the incubation time, the slides were washed with 1×PBS for 5 minutes 

three times. Then the tissues were incubated with diluted secondary antibody in 1% BSA 

buffer for 2 hours. Following the incubation time, the sample was washed three times 

with 1×PBS for 5 min. Then the tissue was incubated in the dark for 15 minutes with 1 

μg/mL DAPI. After staining the tissue with DAPI, the samples were washed 3 times 

with 1×PBS. For the last time, the cells were washed in ice-cold 1× PBS for 3 times. The 

section was mounted with mounting solution (see Appendix 2) then covered with 

coverslips and stored at 4 °C in the dark. 

 

 

2.6.7 Western blotting  
2.6.7.1 Tissue lysis 
 
Stored tissues at -80οC were defrosted on ice. Then the tissue was cut into smaller pieces 

while it was kept on ice and a proper size of tissue was transferred into an Eppendorf 
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tube to undergo lysis. Then 100 µl of RIPA buffer (Thermo Fisher Scientific, UK) 

containing proteinase inhibitor solution (Thermo Fisher Scientific, UK) was added to 

samples. After that, the tissue was thoroughly homogenized using a plastic pestle. Then 

the sample was incubated on ice for 10 minutes. Following the incubation time, the 

sample was centrifuged at 14,000 X g at 4 °C for 10 minutes. After centrifuge time, the 

supernatant was transferred into new Eppendorf tube while the sample was kept on ice. 

The extracted protein was stored at -80°C for future usage.   

 

2.6.7.2 Protein assay  
 
The procedure was carried out according to the description in section 2.5.3.2. 
 
 
 
 
2.6.7.3 SDS-PAGE and western blotting 
 
The western blot method to analyse in vivo an experiment was followed as per the 

description in section 2.5.3.3.   

 

 

2.6.8 Statistical Analysis 
 
Prism 5 software (GraphPad, California, US) was used for all statistical analyses. All 

data is presented as mean ± standard error of the mean (SEM) and normalisation was not 

performed when presenting data. In in vitro studies “n” refers to the number of 

independent experiments performed to collect data and to analyse them statistically. 

However, in the case of in vivo experiments “n” refers to the number of animals per 

group. When analysing data collected from transduced primary motor neuron and SMA 

fibroblasts, a single number was generated (by averaging) for each independent 
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experiment and the means and SEMs are based on the numbers from individual 

experiments. Comparisons of statistical significance were assessed by one-way ANOVA 

followed by Bonferoni or Dunnett post-hoc tests. Dunnett post-hoc was employed to 

compare mock groups with each individual transduced group while Bonferoni post-hoc 

was employed to run a comparison between transduced groups. Differences were 

considered statistically significant if P<0.05 (*), P<0.01 (**) and P<0.001 (***). 
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Chapter 3 Cloning of lentiviral transfer plasmids and 
vector production 
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3.1 Introduction 
 
Lentiviral vectors have been extensively analysed and used as promising tools for the 

genetic modification of targeted cells in biomedical research and gene therapy 

applications. Lentiviral vectors have been used successfully in clinical trials and they 

are increasingly being used as gene therapy vectors for the treatment of acquired and 

inherited diseases. Their key attractive properties above other viral vectors are: a 

comparatively larger packaging capacity, the ability to transduce both dividing and 

non-dividing cells, broad tissue tropisms, no expression of viral proteins after vector 

transduction, sustained gene expression through stable vector integration into host 

genome, similar transduction efficiency to adeno-associated virus vectors, reduced 

immunogenicity during in vivo administration and lack of prior immunity (Blömer et 

al., 1997; Merten et al. 2016 and Sakuma et al.2012). Despite the integration features 

of lentiviral vectors, which provide stable gene expression through integration of their 

genome into the host DNA, the integration property can have unintended 

consequences, such as a risk of insertional mutagenesis (Shaw & Cornetta, 2014). 

Preventing the integration of viral transgenes into the host genome is the most 

straightforward way to overcome this problem. The integrating mechanisms of 

lentiviruses have been studied extensively and significant efforts have been made to 

develop non-integrating lentiviral vectors by mutating the integrase gene (Sarkis et 

al.2008). Several studies have reported efficient gene expression using both integrating 

and non-integrating lentiviral vectors in vitro and in vivo (Cornu & Cathomen, 2007; 

Peluffo et al., 2013; Wong, Goodhead, et al., 2006; Wong, Yip, et al., 2006 and 

Yáñez-Muñoz et al., 2006). Therefore, in this study both integration-proficient 

lentiviral vectors (IPLVs) and integration-deficient lentiviral vectors (IDLVs) were 
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employed as potent gene delivery vehicles to transfer the gene of interest into the 

targeted host.  
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3.2 Aims of the chapter  
 
This chapter describes the work undertaken to produce IPLVs and IDLVs expressing 

the gene of interest. My specific objectives are: 

(A) Cloning the different type of hSMN1 genes into different lentiviral plasmid 

backbones. 

(B) Producing paired IPLVs and IDLVs with identical structure but differing in 

integration proficiency.  

(C) Titrating the lentiviral vectors in HeLa cells by qPCR and, for eGFP vectors, 

by flow cytometry.  
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3.3 Summary of experiment and method  
 
Cloning of DNA molecules into plasmid vectors is one of the most commonly 

employed techniques in molecular biology. Most methods for cloning DNA fragments 

in the laboratory share certain general features. To clone the gene of interest into 

lentiviral vector’s backbone, both the insert and backbone plasmid are digested using 

restriction enzyme to cleave the DNA fragments at specific location.  

The restriction enzymes used in this chapter recognised specific six-base-pair-sequence 

of DNA and then cleaved the sugar-phosphate backbones in the two DNA strands in a 

staggered manner. The backbone and donor plasmid were cut with the same enzyme(s) 

and had complementary cohesive ends, which let the purified plasmid fragments ligate 

together using DNA ligase and created a new recombinant DNA. More details of the 

procedure are provided in sections 2.2. Cohesive-end ligation is over 100X more 

efficient than blunt-end ligation.  

Lentiviral vectors were generated by transfecting the transgene and packaging 

plasmids into HEK293T cells. Virus particles were collected twice, 48 and 72 hours 

post transduction. At this time, maximal vector production occurred. More details can 

be found in section 2.4.1. Lentiviral vectors were concentrated by ultracentrifugation. 

Produced vectors were subjected to titration by qPCR and flow cytometry to determine 

the amount of particles in viral vector stock, more details in sections 2.4.2 and 2.4.3.  
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3.4 Cloning of potentially therapeutic transgenes into 
lentiviral backbone  

 
In order to produce lentiviral vectors carrying the relevant transgenes, the first step was 

to clone the gene of interest into lentiviral plasmid backbones. The genes of interest 

were wild –type hSMN1, hSMN1 with a C-terminal flag-tag (hSMN1-CtF), hSMN1 

with an N-terminal flag-tag (hSMN1-NtF) and codon-optimised hSMN1 (Co-hSMN1). 

In this study, cytomegalovirus (CMV) or human synapsin (hSYN) promoters drove the 

transgene. The design and construction strategies of each lentiviral transgene plasmid 

are detailed in the relevant sections, and indicated elements on plasmid maps are listed 

in Table 3.1. 
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Table 3.1: List of abbreviation on plasmid maps 

Abbreviation Full name  
AmpR Ampicillin resistance 
CAG Short version of ubiquitous cytomegalovirus enhancer/ chicken beta actin 

promoter 
CMV Cytomegalovirus promoter 
Co-hSMN1 Codon-optimized human Survival Motor Neuron 1 
cPPT/cTS Central polypurine tract/central termination sequence  
dLTR LTR with partial deletion of U3 sequences removing lentiviral promoter 

and enhancer 
eGFP Enhanced green fluorescent protein  
eIeGFP Enhanced green fluorescent protein gene under the action of an internal 

ribosome entry site 
gag Group specific antigen 
hSMN1 Human survival motor neuron 1 
hSMN1_CtF Human Survival Motor Neuron 1 with C-terminal FLAG tag 
hSMN1 NtF Human Survival Motor Neuron 1 with N-terminal FLAG tag 
hSYN Human synapsin promoter 
ITR Inverted terminal repeat 
IRES Internal ribosome entry site  
LTR Long terminal repeat  
mSmn Mouse survival motor neuron  
mW Mutated woodchuck hepatitis virus post transcriptional regulatory element 
PBS Primer binding site  
Poly (A) Poly (A) tail 
PPT Polypurine track  
RRE Rev response element  
RSV Rous Sarcoma Virus promoter 
RU5 Repeat and U5 regions of lentiviral LTR 
SV40prom/enh Simian virus-40 promoter/enhancer; 
SFFV Spleen focus-forming virus 
WPRE Woodchuck hepatitis virus post-transcriptional regulatory element 
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3.4.1 Construction of pRRLsc_C_mSmn_mW 
 
The maps of the recipient transfer plasmid expressing mSmn under the control of CMV 

promoter (pRRLsc_C_mSmn_eIeGFP_W), donor plasmid containing mutated 

woodchuck hepatitis virus post transcriptional regulatory element (mWPRE) (pHR'SIN 

cPPT SE mW) and the new construct containing mSmn and mWPRE (pRRLsc_C 

_mSmn_mW) are provided in Figure 3.1. 

The construction of the lentiviral transfer plasmid expressing mSmn under the control 

of CMV promoter and containing mWPRE (pRRLsc_C_mSmn_mW) was performed 

as follows: mWPRE (~600bp) was amplified from donor plasmid (pHR'SIN cPPT SE 

mW) using PCR and then digested with XmaI and EcoRI, (restriction sites were 

introduced using PCR oligos). IRES, eIeGFP, and wild-type WPRE elements were 

digested using XmaI and EcoRI from starting plasmid (pRRLsc_C_mSmn_eGFP_W) 

and the rest of plasmid (pRRLsc_C _mSmn) was used as backbone. 

Digested and gel-purified mWPRE was ligated to pRRLsc_C_mSmn to generate the 

new plasmid (pRRLsc_C_mSmn_mW). The new construct pRRLsc_C_mSmn_mW 

was verified by digestion with SacII, EcoRI and SmaI. 
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Figure 3.1: Cloning strategy for pRRLsc_C_mSmn_mW.  

All plasmid maps are presented with relevant restriction sites. The main elements of 
the plasmids are listed in Table 3.1. 
(A) XmaI and EcoRI double digestion was used to remove the IRES, eGFP and wild-
type WPRE (1927 bp) from the recipient plasmid (pRRLsc_C_mSmn_eIeGFP_W).  
(B) mWPRE (~600bp) was amplified from original plasmid (pHR'SIN cPPT SE mW) 
using forward primer and reverse primers. The forward primer was designed to 
introduce an XmaI restriction site at the 5’ end of mWPRE 
(GCAATTAACCCGGGCCTGCAGGTAATCAACCTCTGGATTACA). The reverse 
primer was designed to introduce an EcoRI restriction site at the 3’ end of mWPRE 
(CTTAATTAGAATTCATCGATACCGTCGACCTCGA) and then the amplified 
fragment was digested using XmaI and EcoRI. Then the digested mWPRE was inserted 
into the digested recipient transfer plasmid (pRRLsc_C_mSmn).   
(C) Restriction endonuclease analysis of generated pRRLsc_C_mSmn_mW (7690 bp) 
construct confirmed the structure of the new plasmid. The enzymatic digestion with 
SacII produced 7168 bp and 522 bp fragments, and EcoRI and SmaI double digestion 
produced 7083 bp and 602 bp fragments from the generated plasmid.  
Sequencing was also performed to confirm mWPRE sequence (data not shown). 
UN: Undigested plasmid. 
Ladder was 1Kb plus ladder (Thermo Scientific, Germany). 
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3.4.2 Cloning of pRRLsc_hSYN_mSmn_mW  
 
The maps of recipient transfer plasmid expressing mSmn under the control of hSYN 

promoter (pRRLsc_hSYN_mSmn_eIeGFP_W), donor plasmid containing mWPRE 

(pHR'SIN cPPT SE mW) and the new construct containing mSmn and mWPRE 

(pRRLsc_hSYN_mSmn_mW) are provided in Figure 3.2. 

The construction of the lentiviral transfer plasmid expressing mSmn under the control 

of hSYN promoter and containing mWPRE (pRRLsc_hSYN_mSmn_mW) was 

performed as follows: mWPRE (~600bp) was amplified from the donor plasmid 

(pHR'SIN cPPT SE mW) using PCR and then digested with Acc65I (restriction sites 

were introduced in the PCR oligos). IRES, eIeGFP and Wild-type WPRE elements 

were digested using Acc65I from starting plasmid 

(pRRLsc_hSYN_mSmn_eIeGFP_W) and the rest of the plasmid 

(pRRLsc_hSYN_mSmn) was used as backbone. 

Digested and gel-purified mWPRE was ligated to pRRLsc_hSYN_mSmn to generate 

the new plasmid (pRRLsc_hSYN_mSmn_mW). The new construct 

pRRLsc_hSYN_mSmn_mW was verified by digestion with SacII, Acc65I, NcoI, 

HindIII and EcoRI.  
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Figure 3.2: Construction and characterisation of pRRLsc-hSYN-mSmn-mW 

All genetic plasmid maps are presented with relevant restriction sites. The 
abbreviations of indicated elements in the plasmid maps are explained in Table 3.1.  
(A) Acc65I digestion was used to remove the IRES, eGFP and wild-type WPRE (1487 
and 463 bp) from recipient plasmid (pRRLsc_hSYN_mSmn_eIeGFP_W).  
(B) mWPRE (~600bp) was amplified from the original plasmid (pHR'SIN cPPT SE 
mW) using forward primer and reverse primer. The forward primer was designed to 
introduce an Acc65I restriction site at the 5’ end of mWPRE 
(GCAATTAAGGTACCCCTGCAGGTAATCAACCTCTGGATTACA). The reverse 
primer was designed to introduce an Acc65I restriction site at 3’ end of mWPRE 
(CTTAATTAGGTACCGCGGGGAGGCGGCCCAAAGGGAGAT) and then the 
amplified fragment was digested using Acc65I. Then the digested mWPRE was 
inserted into digested recipient transfer plasmid (pRRLsc_hSYN_mSmn).  
(C) Restriction endonuclease analysis of generated pRRLsc_hSYN_mSmn_mW 
construct confirmed the structure of new plasmid. The enzymatic digestion with SacII 
produced 5680 bp, 1794 bp and 85 bp fragments, Acc65I produced 6955 bp and 604 bp 
fragments, NcoI produced 5449 bp and 2110 bp fragments. HindIII produced 3341 bp, 
1613 bp, 1155 bp, 584 bp, 553 bp and 313 bp fragments and EcoRI produced 7548 bp 
fragment from the generated plasmid.  
Sequencing was also carried out to ensure the correct sequence of mWPRE (data not 
shown).  
UN: undigested plasmid. 
Ladder was 1Kb plus ladder (Thermo Scientific, Germany). 
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3.4.3 Cloning of pRRLsc_C_hSMN1_mW 
 
In order to express hSMN1 under the control of CMV promoter in lentiviral plasmid 

backbone, the mSmn gene in pRRLsc_C_mSmn_mW was replaced by the hSMN1 

transgene. Thus, the resulting plasmid was pRRLsc_C_hSMN1_mW. This particular 

cloning was performed by retrieving the gene of interest (hSMN1 (896 bp)) from donor 

plasmid (pscAAV_CAG_hSMN1) using AgeI and SbfI. Double digestion (AgeI and 

SbfI) of the backbone plasmid yielded two fragments of different sizes. One fragment 

was mSmn gene (1002 bp) and the other was a recipient fragment (pRRLsc_C_mW 

(6688 bp)). The recipient backbone was de-phosphorylated with Antarctic phosphatase 

to avoid the re-circularisation of backbone plasmid during ligation and then was 

retrieved from a 1% agarose gel. The ligation reaction was set up to ligate 1002 bp 

fragment (hSMN1) into 6688 bp recipient transfer plasmid (pRRLsc_C_mW). 

Following transformation, random colonies were screened for the presence of the 

correct plasmid. The new construct pRRLsc_C_hSMN1_mW was verified by digestion 

with different restriction enzymes. 

A diagram showing the designing of cloning strategy for this particular construct is 

provide in Figure 3.3.  
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Figure 3.3: Construction and characterisation of pRRLsc_C_hSMN1_mW. 

Maps of backbone plasmid pRRLsc_C_mSmn_mW (7690 bp), donor 
pscAAV_CAG_hSMN1 (4841 bp) plasmid and the recombinant plasmid 
pRRLsc_C_hSMN1_mW (7584 bp) are presented with common elements and the 
restriction sites that are either used for cloning the new genes or to verify the resulting 
plasmid. The abbreviation of indicated elements in the plasmid maps are explained in 
to Table 3.1.  
(A) Digestion of pRRLsc_C_mSmn_mW with AgeI and SbfI produced two different 
fragments sizes: the 1002 bp fragment was mSmn gene and the 6688 bp fragment was 
pRRLsc_C_mW.  
(B) The donor plasmid was digested with the same restriction enzyme (AgeI and SbfI) 
to release the gene of interest, which was hSMN1 (896 bp). (C) The recombinant 
plasmid was digested with NcoI generating fragment sizes of 5230 bp, 1488 bp and 
866 bp and PstI generating fragment sizes of 6951 bp, and 633 bp fragments.  
Sequencing was also carried out to ensure the correct sequence of hSMN1 (data not 
shown). 
UN: Undigested plasmid. 
Ladder was 1Kb ladder (Bioline, UK).  
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3.4.4 Construction of pRRLsc_hSYN_ hSMN1_mW 
 
Here the aim was to construct a plasmid encoding hSMN1 under the control of hSYN 

promoter. The maps of backbone transfer plasmid (pRRLsc_hSYN_mSmn_mW), 

donor plasmid expressing hSMN1 (pscAAV_CAG_hSMN1), and the resulting plasmid 

(pRRLsc_hSYN_hSMN1_mW) are shown in Figure 3.4. The construction of lentiviral 

transfer plasmid expressing hSMN1 under the control of hSYN promoter 

(pRRLsc_hSYN_hSMN1_mW) was performed as follows: mSmn gene (1015 bp) was 

removed from recipient transfer plasmid using EcoRI and SbfI and the rest of plasmid, 

pRRLsc_ hSYN _ mW, (6544 bp) was de-phosphorylated with Antarctic phosphatase 

before separation by electrophoresis and extraction from 1% gel and used as backbone 

to generate new construction. pscAAV_CAG_hSMN1 (4841 bp) was digested with 

EcoRI and SbfI and 902 bp fragment (hSMN1) was retrieved from a 1% agarose gel, 

and ligated to backbone plasmid. The new construct pRRLsc_hSYN_hSMN1_mW 

(7446 bp) was verified using different restriction enzymes: EcoRI expected pattern 

(7446 bp), PstI expected pattern 6077 bp, 736 bp and 633 bp fragments, NcoI expected 

pattern 5970 bp, 1476 bp fragments and NdeI expected pattern 6827 bp and 619 bp 

fragments. 
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Figure 3.4: Cloning strategy of pRRLsc_hSYN_hSMN1_mW 

Maps of the starting plasmid pRRLsc_hSYN_mSmn_mW, donor plasmid 
pscAAV_CAG_hSMN1 and recombinant plasmid pRRLsc_hSYN_hSMN1_mW are 
presented with common elements and the restriction sites that were used either for 
cloning the new genes or for verifying the resulting plasmid. The main elements of the 
plasmids are listed in Table 3.1.  
(A) Double digestion (EcoRI and SbfI) was employed to remove mSmn (1015 bp) from 
pRRLsc_hSYN_mSmn_mW and then replaced with hSMN1 (902 bp) which isolated 
using the same cloning enzymes (EcoRI and SbfI) from pscAAV_CAG_hSMN1. (B). 
(B)The band at 5kb is due to partial digestion (only cut with a single restriction 
enzyme), 4kb is the donor plasmid without insert and 0.8kb is the insert. (D) In order 
to verify the resulting plasmid, pRRLsc_hSYN_hSMN1_mW (7446 bp) was digested 
with EcoRI, NdeI, PstI, NcoI.  
The sequence of hSMN1 gene, which was under the control of hSYN, was confirmed 
by DNA sequencing (data not presented). 
Ladder was 1Kb ladder (Bioline, UK). 
UN: undigested plasmid. 
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3.4.5 Cloning of pRRLsc_C_hSMN1_NtF_mW 
 
In order to express hSMN1_NtF under the control of CMV promoter in lentiviral 

plasmid backbone, the mSmn gene in pRRLsc_C_mSmn_mW was replaced by 

hSMN1_NtF. The resulting plasmid was pRRLsc_C_hSMN1_NtF_mW. This particular 

cloning was performed by retrieving the gene of interest, hSMN1_NtF (923 bp), from 

donor plasmid (pscAAV_CAG_hSMN1_NtF) using AgeI and SbfI. Double digestion 

(AgeI and SbfI) of backbone plasmid yielded two fragments in different sizes. One 

fragment was mSmn gene (1002 bp) and the other fragment was pRRLsc_C_mW 

(6688 bp). Backbone fragment was de-phosphorylated with Antarctic phosphatase to 

avoid the re-circularisation of backbone plasmid during ligation and then was retrieved 

from a 1% agarose gel. The ligation reaction was set up to ligate 923 bp fragment 

(hSMN1) into a 6688 bp recipient transfer plasmid (pRRLsc_C_mW). Following 

transformation, random colonies were screened for the presence of the correct plasmid. 

The new construct pRRLsc_C_hSMN1_NtF_mW (7611 bp) was verified using 

different restriction enzymes. A diagram showing the designing of cloning strategy for 

this particular construct is provide in Figure 3.5.  
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Figure 3.5: Cloning of hSMN1_NtF in to Lentiviral backbone 

Maps of backbone plasmid pRRLsc_C_mSmn_mW (7690 bp), donor 
pscAAV_CAG_hSMN1_NtF (4868 bp) plasmid and the recombinant plasmid 
pRRLsc_C_hSMN1_NtF_mW (7611 bp) are presented with common elements and the 
restriction sites that were used either for cloning the new genes or for verifying the 
resulting plasmid. The abbreviation of indicated elements in the plasmid maps are 
explained in to Table 3.1.  
(A) Digestion of pRRLsc_C_ mSmn_mW with AgeI and SbfI resulted in two different 
fragment sizes. The 1002 bp fragment was mSmn gene and the 6688 bp fragment was 
backbone plasmid (pRRLsc_C_ mW).  
(B) The donor plasmid was digested with same restrictions enzyme (AgeI and SbfI) to 
release the gene of interest which is hSMN1_NtF (923 bp).  
(C) The recombinant plasmid (pRRLsc_C_hSMN1_NtF_mW) was digested with NcoI, 
generating fragment sizes of 5230 bp, 1488 bp and 893 bp and PstI, generating 
fragment sizes of 6978 bp, and 633 bp fragments.  
The sequence of hSMN1_NtF under the control of CMV was confirmed by DNA 
sequencing (data not presented). 
Ladder was 1Kb ladder (Bioline, UK). 
UN: Undigested plasmid. 
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3.4.6 Construction of pRRLsc_hSYN_hSMN1_NtF_mW 
 
Lentiviral transfer plasmid containing hSMN1_NtF under the control of hSYN 

promoter (pRRLsc_hSYN_hSMN1_NtF_mW) was constructed as follows: 1015 bp 

mSmn was digested using EcoRI and SbfI from starting plasmid (pRRLsc_hSYN 

_mSmn_mW) and the rest of plasmid (pRRLsc_hSYN_mW (6544 bp)) was used as 

backbone to generate the new recombinant plasmid.  

 hSMN1_NtF (929 bp) was released from donor plasmid 

(pscAAV_CAG_hSMN1_NtF) using EcoRI and SbfI. Isolated hSMN1_NtF was ligated 

into de-phosphorylated recipient transfer plasmid (pRRLsc_hSYN_mW) to generate 

the new plasmid. The new construct pRRLsc_hSYN_hSMN1_NtF_mW (7473 bp) was 

verified by digestion with PstI, NcoI and NdeI. 

The maps of recipient transfer plasmid expressing mSmn under the control of hSYN 

promoter (pRRLsc__hSY_mSmn_mW), donor plasmid expressing hSMN1_NtF 

(pscAAV_CAG_hSMN1_NtF) and the new construct expressing hSMN1_NtF under 

the control of hSYN promoter (pRRLsc_hSYN_hSMN1_NtF_mW) are provided in 

Figure 3.6. 
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Figure 3.6: Construction and characterization of pRRLsc-hSYN-hSMN1_NtF-
mW. 

The above figure presents the maps of pRRLsc_hSYN_mSmn_mW (backbone 
plasmid), pscAAV_CAG_hSMN1_NtF (donor plasmid) and pRRLsc_hSYN_ 
hSMN1_NtF_mW (resulting plasmid). Relevant restriction sites are indicated on the 
plasmids map and a list of the plasmids’ main elements are provided in Table 3.1. 
(A) EcoRI and SbfI double digestion was used to remove the mSmn (1015 bp) from 
recipient plasmid (pRRLsc_hSYN_mSmn_mW). 
(B) EcoRI and SbfI double digestion was used to isolate the hSMN1_NtF (929 bp) from 
donor plasmid (pscAAV_CAG_hSMN1_NtF).  
(C) Restriction digestion analysis was used to confirm the structure of generated 
plasmid. Digestion with PstI produced 6077bp, 763 bp and 633 bp fragments, NcoI 
produced 5997 bp and 1476 bp fragments and NdeI produced 6854 bp and 619 bp 
fragments.  
The sequence of hSMN1_NtF under the control of hSYN promoter was confirmed by 
DNA sequencing (data not presented).  
Ladder was 1Kb ladder (Bioline, UK).  
UN: undigested plasmid. 
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3.4.7 Cloning of pRRLsc_C_hSMN1_CtF_mW 
 
Here the aim was to construct a plasmid encoding hSMN1_CtF under the control of 

CMV promoter. The maps of backbone transfer plasmid (pRRLsc_CMV_mSmn_mW), 

donor plasmid (pscAAV_CAG_hSMN1_CtF), and the resulting plasmid expressing 

(pRRLsc_C_hSMN1_CtF_mW) are shown in Figure 3.7. The construction of lentiviral 

transfer plasmid expressing hSMN1_CtF under the control of CMV promoter 

(pRRLsc_C_hSMN1_CtF_mW) was performed as follows:  

mSmn gene (1002 bp) was removed from recipient transfer plasmid using AgeI and 

SbfI and the rest of plasmid, pRRLsc_CMV_mW, (6688 bp) was de-phosphorylated 

with Antarctic phosphatase and then used as backbone to generate new construction. 

pscAAV_CAG_hSMN1_CtF (4865 bp) was digested with AgeI and SbfI, and 920 bp 

fragments (hSMN1_CtF) were retrieved from a 1% agarose gel, and ligated to 

backbone plasmid. The new construct pRRLsc_CMV_hSMN1_CtF_mW (7608 bp) 

was verified by digestion using EcoRI expected pattern (7608 bp), PstI expected 

pattern 6951 bp, 657 bp fragments, NcoI expected pattern 5230 bp, 1512 bp and 866 bp 

fragment and NdeI expected pattern 6436 bp, 619 bp and 553 bp fragments. 
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Figure 3.7: Cloning strategy for pRRLsc_CMV_hSMN1_CtF_mW.  

Maps of the starting plasmid (pRRLsc_C_mSmn_mW), donor plasmid 
(pscAAV_CAG_hSMN1_CtF) and recombinant plasmid (pRRLsc_C_hSMN1_CtF 
_mW) are presented with common elements and the restriction sites that were used 
either for cloning the new genes or for verifying the resulting plasmid. The main 
elements of the plasmids are listed in Table 3.1. 
(A) Double digestion (AgeI and SbfI) was employed to remove mSmn (1002 bp) from 
pRRLsc_mSmn_mW and then replaced with hSMN1_CtF (920 bp), which isolated 
from 4865 bp donor plasmid (pscAAV_CAG_hSMN1_CtF) using the same cloning 
enzymes (AgeI and SbfI).  
(B) AgeI and SbfI double digestion was used to isolate the hSMN1_CtF (920 bp) from 
donor plasmid (pscAAV_CAG_hSMN1_CtF). 
(C) In order to verify the resulting plasmid, pRRLsc_C_hSMN1_CtF_mW (7608 bp) 
was digested with EcoRI, PstI, NcoI and NdeI.  
Sequencing was also performed to confirm hSMN1_CtF sequence (data not shown). 
Ladder was 1Kb ladder (Bioline, UK).  
UN: Undigested plasmid. 
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3.4.8 Construction of pRRLsc_ hSYN_ hSMN1_CtF_mW 
 
In order to express hSMN1_CtF under the control of hSYN promoter in lentiviral 

plasmid backbone, the mSmn gene in pRRLsc_hSYN_mSmn_mW was replaced by the 

hSMN1_CtF. Thus, the resulting plasmid was pRRLsc_hSYN_hSMN1_CtF_mW. This 

particular cloning was performed by retrieving the gene of interest hSMN1_CtF (926 

bp) from the digested donor plasmid (pscAAV_CAG_hSMN1_CtF), using EcoRI and 

SbfI. Double digestion (EcoRI and SbfI) of backbone plasmid yielded two fragments of 

different sizes. One fragment was mSmn gene (1015 bp) and the other fragment was 

backbone plasmid (pRRLsc_C_mW (6544 bp)). The backbone fragment was de-

phosphorylated with Antarctic phosphatase to avoid the re-circularisation of backbone 

plasmid during ligation and then was retrieved from a 1% agarose gel. The ligation 

reaction was set up to ligate a 926 bp fragment (hSMN1_CtF) into 6544 bp recipient 

transfer plasmid (pRRLsc_hSYN_ mW). Following transformation, random colonies 

were screened for the presence of the correct plasmid. The new construct 

pRRLsc_hSYN_hSMN1_CtF_mW was verified by digestion with different restriction 

enzymes. A diagram showing the designing of cloning strategy for this particular 

construct is provide in Figure 3.8.  
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Figure 3.8: Construction and characterization of pRRLsc-hSYN-hSMN1_CtF-
mW. 

Maps of backbone plasmid pRRLsc_hSYN_mSmn_mW (7559 bp), donor 
pscAAV_CAG_hSMN1_CtF (4865 bp) plasmid and the recombinant plasmid 
pRRLsc_hSYN_hSMN1_CtF_mW (7470 bp) are presented with common elements 
and the restriction sites that were used either for cloning the new genes or for verifying 
the resulting plasmid. A list of plasmid elements is provided in Table 3.1.  
(A) Digestion of pRRLsc_hSYN_mSmn_mW with EcoRI and SbfI resulted in two 
different fragment sizes. The 1015 bp fragment was mSmn gene and the 6544 bp 
fragment was recipient plasmid (pRRLsc_hSYN_mW).  
(B) 4865 bp donor plasmid was digested with same restrictions enzyme (EcoRI and 
SbfI) to release the gene of interest, which was hSMN1_CtF (926 bp).  
(C) Restriction endonuclease analysis of generated pRRLsc_hSYN_hSMN1_CtF_mW 
construct confirmed structure of new plasmid. The enzymatic digestion with PstI 
produced 6077 bp, 736 bp and 657 bp fragments, NcoI produced 5970 bp and 1500 bp 
fragments and NdeI produced 6851 bp and 619 bp fragments.  
The sequence of hSMN1_CtF under the control of hSYN was confirmed by DNA 
sequencing (data not presented). 
Ladder was 1Kb ladder (Bioline, UK).  
UN: Undigested plasmid. 
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3.4.9 Construction of pRRLsc_C_Co-hSMN1_mW 
 
Here the aim was to construct a plasmid encoding codon optimised version of hSMN1 

under the control of CMV promoter. The maps of backbone transfer plasmid 

(pRRLsc_CMV_mSmn_mW), donor plasmid expressing Co-hSMN1 (pMA-RQ Co-

hSMN1), and the resulting plasmid expressing (pRRLsc_C_Co-hSMN1_mW) are 

shown in Figure 3.9. The construction of lentiviral transfer plasmid expressing Co-

hSMN1 under the control of CMV promoter (pRRLsc_C_Co-hSMN1_mW) was 

performed as follows: mSmn gene (1002) was removed from recipient transfer plasmid 

using AgeI and SbfI and the rest of plasmid, pRRLsc_hSYN_mW, (6688 bp) was de-

phosphorylated with Antarctic phosphatase before extraction from 1% gel 

electrophoresis and used as backbone to generate new construction. 3252 bp donor 

plasmid (pMA-RQ Co-hSMN1) was digested with AgeI and SbfI and 908 bp fragment 

(Co-hSMN1) was retrieved from a 1% agarose gel, and ligated to de-phosphorylated 

lentiviral backbone plasmid. The new construct pRRLsc_C_Co-hSMN1_mW (7596 

bp) was verified by digestion with different restriction enzymes.  
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Figure 3.9: Cloning strategy for pRRLsc_C_Co-hSMN1_mW 

Maps of backbone plasmid pRRLsc_C_mSmn_mW (7690 bp), donor pMA-RQ Co-
hSMN1 (3252 bp) plasmid and the recombinant plasmid pRRLsc_C_Co-hSMN1_mW 
(7596 bp) are presented along with their common elements and the restriction sites that 
were used either for cloning the new genes or for verifying the resulting plasmid. The 
abbreviation of indicated elements in the plasmid maps are explained in Table 3.1.  
(A) Digestion of pRRLsc_C_mSmn_mW with AgeI and SbfI resulted in two different 
fragment sizes. The 1002 bp fragment was mSmn gene and the 6688 bp fragment was 
backbone plasmid (pRRLsc_C_mW).  
(B) The donor plasmid was digested with the same restrictions enzyme (AgeI and SbfI) 
to release gene of interest which is Co-hSMN1 (908 bp).  
(C) The recombinant plasmid (pRRLsc_C_Co-hSMN1_mW) was digested using 
BsrGI, which generated fragment sizes of 7596 bp, using ApaI, which generated 
fragment sizes of 7596 bp and using AvaI, which generated fragment sizes of 6703 and 
893 bp.  
The sequence of Co-hSMN1 under control CMV confirmed by DNA sequencing (data 
not presented).  
Ladder was 1Kb ladder (Bioline, UK). 
UN: Undigested plasmid. 
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3.4.10  Cloning of pRRLsc_hSYN_Co_hSMN1_mW  
 
In order to express a codon-optimised version of hSMN1 under the control of hSYN 

promoter in lentiviral plasmid backbone, the mSmn gene in 

pRRLsc_hSYN_mSmn_mW was replaced by the Co-hSMN1. The resulting plasmid 

was pRRLsc_hSYN_Co-hSMN1_mW. This particular cloning was performed by 

retrieving the gene of interest, Co-hSMN1 (902 bp), from 3252 bp donor plasmid 

(pMA-RQ Co-hSMN1) using EcoRI and SbfI. Double digestion (EcoRI and SbfI) of 

backbone plasmid yielded two fragments of different sizes. One fragment was mSmn 

gene (1015 bp) and the other fragment was pRRLsc_hSYN_mW (6544 bp). Backbone 

fragment was de-phosphorylated with Antarctic phosphatase to avoid the re-

circularisation of backbone plasmid during ligation and then was retrieved from a 1% 

agarose gel. The ligation reaction was set up to ligate 902 bp fragment (Co-hSMN1) 

into 6544 bp recipient transfer plasmid (pRRLsc_C_mW). Following transformation, 

random colonies were screened for the presence of the correct plasmid. The new 

construct pRRLsc_hSYN_Co-hSMN1_mW was verified using different restriction 

enzymes. A diagram showing the designing of cloning strategy for this particular 

construct is provide in Figure 3.10.  
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Figure 3.10: Construction and characterization of pRRLsc-hSYN_Co-hSMN1-
mW. 

Maps of backbone plasmid pRRLsc_hSYN_mSmn_mW (7559 bp), donor pMA-RQ 
Co-hSMN1 (3252 bp) plasmid and the recombinant plasmid pRRLsc_hSYN_Co-
hSMN1_mW (7446 bp) are presented with common elements and the restriction sites 
that were used either for cloning the new genes or for verifying the resulting plasmid. 
The abbreviation of indicated elements in the plasmid maps are explained in the Table 
3.1.    
(A) Digestion of pRRLsc_hSYN_mSmn_mW with EcoRI and SbfI resulted in two 
different fragments sizes. The1015 bp fragment was mSmn gene and the 6544 bp 
fragment was recipient plasmid (pRRLsc_hSYN_mW).  
(B) The donor plasmid was digested with same restrictions enzyme (EcoRI and SbfI) to 
release gene of interest, which was Co-hSMN1 (902 bp).  
(C) The 7446 bp recombinant plasmid (pRRLsc_hSYN_Co-hSMN1_mW) was 
digested with BsrGI, generating fragment sizes of 7446 bp, with ApaI, generating 
fragment sizes of 6356 bp and 1090 bp, and with AvaI, generating fragment sizes of 
6691 bp, 525 bp and 230 bp.  
The sequence of Co-hSMN1 under the control of hSYN was confirmed by DNA 
sequencing (data not presented).  
Ladder was 1Kb ladder (Bioline, UK). 
UN: Undigested plasmid. 
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3.5 Lentiviral vector production 
 
After successfully cloning potentially therapeutic transgenes into lentiviral vector 

backbone plasmids, vectors were produced via the calcium phosphate plasmid 

transfection method. In addition, integrating and integration-deficient lentiviral vectors 

expressing eGFP were developed for use as positive control for vector production 

procedure. This reporter gene made it possible to check the transfection efficiency 

using fluorescence microscopy. Finally, all produced lentiviral vectors were titrated 

through transduction into HeLa cells followed by qPCR. In addition, stock titers of 

lentiviral vectors that carry a marker transgene (eGFP) were quantified by flow 

cytometry as well. 

A summary of all lentiviral vectors with their gene of interest, relevant promoter, 

integration configuration and titre value is provided in Table 3.2 and 3.3. 
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Table 3.2: Main features of the lentiviral vectors prepared in the current study. 

 
Vector Transgene Promoter Integration 

configuration 
qPCR titer 

Day 1 harvest Day 2 harvest 
CMV_mSmn_mW 

 
mSmn 

CMV 
IPLV 2.35E+10 7.54E+09 

CMV_mSmn_mW IDLV 1.58E+09 5.01E+08 
hSYN_mSmn_mW 

hSYN 
IPLV 3.65E+10 1.20E+09 

hSYN_mSmn_mW IDLV 1.06E+09 1.15E+08 
CMV_hSMN1_mW 

 
hSMN1 

CMV 
IPLV 1.13E+10 9.9E+09 

CMV_hSMN1_mW IDLV 1.96E+09 1.01E+08 
hSYN_hSMN1_mW 

hSYN 
IPLV 3.22E+10 2.71E+09 

hSYN_hSMN1_mW IDLV 1.98E+09 1.01E+08 
CMV_hSMN1_NtF_mW 

 
hSMN1_NtF 

CMV 
IPLV 6.17E+10 4.14E+09 

CMV_hSMN1_NtF_mW IDLV 1.88E+09 2.12E+08 
hSYN_hSMN1_NtF_mW 

hSYN 
IPLV 5.14E+09 4.40E+08 

hSYN_hSMN1_NtF_mW IDLV 2.25E+09 1.19E+08 
CMV_hSMN1_CtF_mW 

 
hSMN1_CtF 

CMV 
IPLV 1.65E+11 7.12E+10 

CMV_hSMN1_CtF_mW IDLV 9.87E+10 4.18E+08 
hSYN_hSMN1_CtF__mW 

hSYN 
IPLV 5.76E+09 2.84E+08 

hSYN_hSMN1_CtF_mW IDLV 3.74E+10 2.04E+09 
CMV_Co-hSMN1_mW 

 
Co-hSMN1 

CMV 
IPLV 3.20E+09 5.82E+08 

CMV_Co-hSMN1_mW IDLV 1.0E+09 2.19E+08 
hSYN_Co-hSMN1_mW 

hSYN 
IPLV 2.89E+11 7.15E+10 

hSYN_Co-hSMN1_mW IDLV 1.09E+10 2.23E+09 
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Table 3.3: Summary of eGFP lentiviral vectors 

Vector Transgene Promoter 
Integration 

Configuration 

qPCR titre Flow cytometry titre 

Day 1 harvest Day 2 harvest Day 1 harvest Day 2 harvest 

CMV_eGFP-W 
eGFPcassette CMV 

IPLV 2.11E+09 1.10E+09 7.00E+08 6.00E+08 

CMV_eGFP-W  IDLV 1.80E+09 1.05E+09 5.00E+08 4.00E+08 
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3.6 Discussion 
 
The standard lentiviral vector production method relies on the transient transfection of 

HEK293T cells with a packaging plasmid, an envelope glycoprotein-encoding 

plasmid, a Rev plasmid and a lentiviral transfer vector plasmid using the calcium 

phosphate co-precipitation method (Pham et al., 2001 and Tang et al., 2015). This 

method is fast, reliable and inexpensive for lentiviral vector production, and was used 

to produce all lentiviral vectors during this project.  

Successfully generated lentiviral transfer plasmids containing wild-type hSMN1, 

hSMN1_CtF, hSMN1_NtF, and Co-hSMN1 driven by CMV and hSYN promoters were 

used as transfer plasmids in vector production. Two types of lentiviral vectors were 

employed in this study. The first type was integration-proficient lentiviral vector, 

which encode an active integrase and integrate into the host genome. The second type 

were integration-deficient and encoded a catalytically inactive viral integrase. Lack of 

integration in the latter is due to a single point mutation in the catalytic active site of 

IN introduced in the parental packaging plasmid (Wanisch & Yáñez-Muñoz, 2009).  

Determining the amount of vector in viral vector preparation is an essential step for 

any further experiments. There are different titration methods to determine the quantity 

and quality of lentiviral vector production. These methods can be categorised into two 

group: physical or functional titration methods (Geraerts et al., 2006). Measuring the 

amount of concentration of p24 protein (pg p24/mL) in vector stock by ELISA assay is 

a physical titration method. p24 ELISA is a very straightforward and rapid method, 

and can be completed in few hours. A major drawback of this method is that the p24 

ELISA measures all p24-containing vector particles, regardless of whether these 

particles carry a viral genome or not, or whether they are biologically viable. 

Therefore, the viral titre achieved via this method can be overestimated, as 
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quantification can include defective viral particles as well (Geraerts et al., 2006) . 

Another method belonging to the physical titration category is the reverse 

transcription-polymerase chain reaction (RT-PCR) method. In this assay, primers are 

designed to target for amplification a viral element of interest following in vitro 

reverse transcription of genomic RNA from vector stocks. The measurements achieved 

by RT-PCR may include defective particles unable to enter cells or complete 

transduction and express the transgene, which may result in overestimating the number 

of active vector particles in a sample. This is a key disadvantage of using this method. 

Functional methods are more accurate than the physical method as they measure 

infectious viral particles. The principle of these methods is to transduce live cells with 

the generated vectors. Flow cytometry and qPCR are two functional titration methods, 

which were predominantly used to determine the titration of lentiviral vector 

production in my study (Geraerts et al., 2006).  

Flow cytometry is a simple method to titrate vectors including a fluorescent reporter 

gene or gene products that can be detected with a fluorescent probe, in which cells are 

transduced with different serial dilutions of a vector stock, as described in the 

Materials and Methods section (2.4.2). The percentage of fluorescent target cells that 

express the transgene can be used to estimate the viral vector titre. To avoid 

underestimation of viral titres, the dilution chosen to calculate vector titre should have 

1-10% of positive cells, to minimise the risk of multiple transduction events in a single 

cell. A disadvantage of flow cytometry is that it is restricted to titration of vectors 

encoding fluorescent reporter proteins, or others that can be detected through 

fluorescent probes. However, in principle it is an excellent method because it uses the 

final product of transduction, the transgenic protein, to estimate the titre, hence only 
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detecting the viral vector particles able to complete the full transduction process 

(Nightingale et al., 2006). 

An alternative method of measuring viral vector titres is qPCR for detection of a vector 

sequence after reverse transcription is completed in transduced cells. As explained in 

2.4.3 section, the qPCR method combines two different reactions. In one reaction, 

qPCR primers targeting an element specific to vector backbones, such as LTRs, gag, 

WPRE, antibiotic resistance-genes, or the gene of interest are used to estimate the 

number of vector molecules that have completed reverse transcription. As transduced 

cells contain a mixture of reverse transcription products, it is critical to use a vector 

sequence target guaranteeing that reverse transcription has been completed, and we use 

a region called the late-reverse transcript (LRT) for this purpose (Butler et al., 2001). 

In another reaction, the number of cells in the reaction is quantified using qPCR 

primers targeting a housekeeping gene, such as β-actin. This method does not rely on 

transgene expression and hence is ideal to compare (i) vectors encoding different 

transgenes; and (ii) IPLV and IDLV vectors, as the latter generally mediate lower 

transgene expression levels in proliferating cells like those used for titration. It is 

critical that cells are harvested 24 h after transduction, before the non-replicating 

vector episomes start diluting in proliferating cells, for an accurate estimation of IDLV 

titre. It should be noted that the qPCR method is quite labor intensive (Geraerts et 

al.2006 and Yoder & Fishel, 2008).  

As stated previously, titre values of lentiviral vectors generated during this study were 

determined using qPCR. In addition to the qPCR method, flow cytometry was utilised 

to titre lentiviral eGFP expression vectors. As a rule of thumb, for eGFP vectors qPCR 

titres were around 3-fold higher than eGFP titres, indicating that not all particles that 

complete reverse transcription are able to express the transgenic reporter protein. 
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Charrier et al. (2011) quantified the copy numbers of lentiviral vectors in individual 

cell clones. The number of vector insertion sites were confirmed by Southern-blot and 

the results of this study clearly demonstrated that cells containing a single copy of the 

integrated lentiviral vector encoding eGFP can produce detectable levels of 

fluorescence. Moreover, their results demonstrated that there is a direct correlation 

between vector copy number and mean fluorescence intensity. 
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Chapter 4 SMN expression in growth-arrested CHO cells, 
cortical neurons and motor neurons 

 
 
 
 
  



177 
 

4.1 Introduction 
 
The lentiviral vectors generated in this project have been tested in three different in vitro 

models –growth-arrested Chinese Hamster Ovary (CHO) cells, primary cortical neurons 

and primary motor neurons, from mouse and rat respectively– to investigate SMN 

expression and the effect of different parameters on efficient protein production. The 

following section provides an introduction on why these models were selected to 

investigate SMN expression in this project.  

CHO cells were originally derived from Chinese hamster ovary. For the first time in 

1957, Dr. Theodore T. Puck, of the Department of Medicine at the University of 

Colorado, isolated an ovary from a female Chinese hamster and established the cells in 

culture plates (Jayapal et al., 2007). CHO cell lines are very well characterized and have 

become a standard expression system in different areas of research, such as biology, and 

medical and pharmaceutical sciences. Their small size, rapid growth rate, high 

productivity, and low chromosome number (2n = 22) of CHO cells, in addition to their 

flexibility and adaptability to various culture conditions, make them a great system for 

tissue culture and use as an in vitro model. Moreover, CHO cells are efficient at post-

translational modification, which is often essential for full biological activity and to 

produce human-compatible recombinant proteins. CHO cells are frequently used in 

biomedical fields to produce recombinant products for therapeutic applications. Jayapal 

et al., 2007 reported almost 70% of all recombinant therapeutic protein is produced in 

CHO. Altogether, the CHO cell line is ideal for use as an in vitro model for examining 

the transduction efficiency of viral vectors and investigating the protein production from 

them. However, an important point that needs to be considered regarding the use of CHO 

cells here is that this project uses non-integrating lentiviral vectors, which will be 

progressively diluted out due to cell division of CHO cells, which have a doubling time 
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of about 16 hours. Growth-arrested CHO cell models, which have been halted in their 

cycling, have been well-established in Prof. Yáñez’s laboratory by Dr. Hanna 

Kymäläinen, a previous PhD student in our group (Kymäläinen et al., 2014), and would 

be an ideal model to employ for testing the non-integrating lentiviral vectors produced. 

As previously stated, it was initially believed that SMA is only a motor neuron disease, 

but recent and increasing evidence suggests that other cells and tissues are affected in a 

case of SMA disease. Depleted levels of SMN protein alter the development of multiple 

neuronal subpopulations. Cortical neuronal, hippocampus and neuronal loss is not 

strictly selective for spinal motor neurons (d’Errico et al., 2013). Cortical neurons are 

another neuronal cellular population involved in SMA, which contribute to the complex 

SMA pathology and are affected by the deficiency of SMN protein. The death of cortical 

neurons was reported in an SMA mouse model by Liu et al., 2010 . In addition, d’Errico 

et al., 2013 observed a decrease in the number of cortical neurons in an SMA model, 

which is indicative of cortical neurons degenerating as a consequence of low SMN 

protein. Continued investigation of the effect that insufficient levels of SMN protein has 

on neurons in various brain areas is required (Taylor et al.2013). In order to develop an 

effective therapeutic strategy for SMA, other cells such as cortical neurons need to be 

targeted in addition to spinal motor neurons. Thus, primary mouse cortical neurons have 

been chosen to be used as in vitro model to investigate the transduction efficiency of 

generated vectors and subsequent SMN expression.  

Motor neurons are the most profoundly affected cells in SMA disease and loss of motor 

neurons is the main pathological feature of SMA. Degeneration of motor neuron cells 

due to low levels of SMN protein has been observed in human SMA patients, but why 

motor neurons are particularly vulnerable to low SMN levels is not clear yet (Burghes 

& Beattie, 2009; Hamilton & Gillingwater, 2013 and Szunyogova et al., 2016). In 
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addition to the loss of motor neurons due to low levels of SMN protein, insufficient 

levels of SMN protein arrests the post-natal development of the neuromuscular junction 

(NMJ). NMJ defects were confirmed in human patients affected by SMA, so NMJ 

defects are another key component of SMA pathology (Kariya et al., 2008). As the 

specific loss of motor neurons is the main pathological feature of SMA, a large body of 

research has been focussed on investigating the reason behind selective death of lower 

motor neurons due to low levels of SMN protein and targeting them to develop an 

effective therapy to treat SMA patients (Gogliotti et al., 2012).  

To achieve the main goal of this study, which is optimising and producing potential 

therapeutic lentiviral vectors for SMA, it is essential to transduce primary motor neuron 

cultures in vitro before attempting any in vivo experiment.  
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4.2 Aims of the chapter 
 
The main goal of this chapter was to test the vectors produced in chapter 3 in different 

in vitro models and investigate the effect of different parameters on the level of full-

length SMN protein production. To achieve this goal, the experiments in this chapter 

were performed to investigate the following specific aims: 

(A) To determine the efficiency of transgenic SMN production from the lentiviral 

vectors produced. 

(B) To compare IPLVs and IDLVs in terms of transgene expression.  

(C) To investigate the effect of codon-optimisation on hSMN1 over-expression. 

(D) To compare the ubiquitous CMV, with the relatively neuron-specific hSYN 

promoter for expression of hSMN1 variants. 

(E) To study the vector dose-dependence of transgenic hSMN1 expression. 

(F) To study the robustness of transgenic hSMN1 expression across three 

growth-arrested or quiescent cell culture systems. 
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4.3 Summary of experiments and methods  
 
To address the above aims, a range of integrating and non-integrating lentiviral vectors 

have been produced (please refer to section 3.5). The vectors were designed to carry 

different types of transgenes to investigate the advantages of using codon-optimised 

transgenes rather than wild-type versions for efficient protein expression. These 

transgenes were placed downstream of either CMV or hSYN promoter.  

Following vector production and titration in chapter 3, the first experiment undertaken 

was to test generated vectors in growth-arrested CHO cells, to investigate the aims of 

this chapter. The CHO cell lines were maintained and cultured in a standard growth 

medium (as described in section 2.3.2.2). When the cell reached 70% confluency the cell 

cycle was arrested using methionine-free DMEM (as described in section 2.3.2.3). The 

transduction using the generated vectors was followed by a short period of induced cell 

cycle arrest in the presence of polybrene (8 μg/mL). In a bid to maximise transgene 

expression from generated lentiviral vectors, the multiplicity of infection (MOI) was 

increased to transduce the growth-arrested CHO cells.  

To better achieve the aims of this chapter, a further investigation of lentiviral vector 

transduction efficiency, transgene expression, usage of the CMV versus the hSYN 

promoters, vector dose-dependent increases and the effect of different types of hSMN1 

transgenes for an effective SMN production was carried out in E18 primary mouse 

cortical neuron culture. Cortical neurons were isolated from brains of E18 mouse 

embryos. The procedure protocol was obtained from Boulos et al., 2006 and explained 

in section 2.3.3.1. In brief, the procedure can be divided into two parts: dissection and 

plating, carried out under sterile conditions. During dissection, the brains of the embryos 

were removed and cortical tissue was separated from other parts of the brain to reduce 

the number of unwanted non-neuronal cells. Neurons were dissociated by incubation 
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with trypsin, and following that, the neurons were triturated to form a single cell 

suspension. Cells were cultured in neurobasal medium that was supplemented with 2% 

B27, 0.25% GlutaMax, 1% FBS, 100 μM ascorbic acid (added prior to use) and 

maintained at 37oC in a 5% CO2. Cultures were transduced with produced vectors at 

qPCR MOI 30 or 100 three weeks after cell seeding.  

Protein extractions were performed three days after transduction in growth-arrested 

CHO cells and primary cortical neurons. Harvested protein was evaluated using western 

blotting methods through separating the protein based on their molecular weight and 

then probing the protein of interest with the relevant antibody. The results of the western 

blot method were analysed based on the quantification of fluorescence intensity of 

detected protein (section 2.3.1). 

E15 rat motor neuron culture was another primary in vitro model used to investigate the 

aims of this chapter. Spinal motor neuron cultures were extracted from E14–15 rat 

embryos, according to the description in section 2.3.3.2. The procedure includes 

extracting the spinal cords from E15 rat embryos, dissociating spinal cord tissue, 

separating cells by density gradient centrifugation, collecting motor neurons by 

immunopanning using monoclonal antibody IgG192 (in-house made monoclonal 

antibody supernatant, see appendix 2) and plating and culturing lower motor neurons. 

The IgG 192 antibody can be used to detect all cells expressing p75NTR on their surface, 

such as motor neurons in the spinal cord. Camu & Henderson, 1992 demonstrated that 

the IgG 192-immunopanning purification procedure can enrich embryonic motor 

neurons cultures. 

Cells were cultured in neurobasal medium supplemented with 25 mM 2-

mercaptoethanol, 0.5 mM L-glutamine, B27, 25 mM L-glutamate, 2% horse serum and 

1 ng/mL BDNF. The primary motor neuron cultures were incubated at 37oC in 5% CO2 
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for 3 days. Cultured embryonic rat motor neurons were transduced 2 hours after seeding 

using generated vectors following the descriptions in 2.5.1.2 section with a range of 

multiplicity of infection (qPCR MOI 30, 60 and 100). The immunostaining method 

described in 2.5.4.1 was applied to stain SMN protein in motor neuron cultures using 

anti-SMN antibody. Finally, the Axio Observer D1 microscope connected to an 

AxioCam captured random images. AxioVision software (Carl Zeiss, UK) was used to 

analyse the captured images, more details provided in section 2.5.4.2. 

It should be noted that all the cells in a single well for each condition were counted in 

each individual experiment and each experiment was repeated three times.  
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4.4 Results  
4.4.1 SMN expression in growth-arrested CHO cells  
 
Growth-arrested CHO cells were transduced with either IPLV or IDLV vectors which 

were designed to carry different types of hSMN1 transgene– wild-type hSMN1, Co-

hSMN1, and hSMN1-NtF – under the control of either the CMV or hSYN promoter. 

Cells were transduced at a range of multiplicity of infections (qPCR MOIs 100 and 500). 

The cells were harvested and analysed by western blot three days post-transduction 

(Figure 4.1A, 4.2A and 4.3A). The transduction efficiency and expression of SMN 

protein was assessed through analysing the results of western blot experiment. The data 

revealed that all generated vectors were expressing the transgene of interest and the 

fluorescence intensity of SMN increased in a MOI-dependent manner and was highest 

at MOI 500. When comparing transduced samples using IPLVs and IDLVs, higher 

transgene expression was observed in transduction using IPLVs. Between promoters, 

the CMV promoter demonstrated stronger expression of the gene of interest than the 

hSYN promoter. Conversely, Co-hSMN1 revealed a higher level of SMN fluorescence 

than the wild-type hSMN1 transgene (Figure 4.1B, 4.2B, 4.3B and Table 4.1).     
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Figure 4.1: Lentivector-mediated wild-type hSMN1 expression in growth-arrested 
CHO cell model. 

(A) Arrested CHO cells were transduced at the indicated qPCR MOIs with either IPLVs 
/IDLVs containing CMV/hSYN and wild-type hSMN1. 72 hours post-transduction, 
transduced and non-transduced cells were lysed, and extracted proteins were subjected 
to protein assay for measuring total protein concentration of collected sample. 5 μg of 
total extracted protein was subject to western blot method to detect and analyse proteins 
of interest. SMN protein (~ 35 kDa) and α tubulin protein (~ 55 kDa) are our target 
protein here to detect using purified mouse anti-SMN and mouse α-tubulin antibody 
respectively. (B) Quantification of SMN fluorescence from analysed protein of 
transduced or un-transduced growth-arrested CHO cells was scored and plotted. Each 
transduced set of data was compared to un-transduced using one-way ANOVA and 
Dunnett’s post-hoc test. Significant differences were observed in all samples, except 
those that were transduced using MOI 100 of IDLV-CMV-hSMN1. Values represent 
mean ± SEM, *p<0.05, **p<0.01, ***p<0.001, stars represent level of significance, n=3.  

A 

B 
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Figure 4.2: Lentivector-mediated FLAG-tagged hSMN1 expression in growth-
arrested CHO cell model . 

(A) Representative western blot showed an overexpression of SMN protein in 
transduced cells. Arrested CHO cell cultures were transduced with IPLV/IDLV 
_hSMN1-NtF under control of CMV/hSYN promoter. qPCR MOIs 100 and 500 were 
used to transduce the cells. The mock culture was treated following the same manner of 
transduced culture, but it did not receive any vector. Protein extraction was performed 
at 72 hours after transduction. 5 μg of extracted protein was subjected to western blot 
and loaded onto a 12% SDS-PAGE gel. Loaded protein was separated based on 
molecular weight and then the protein of interest (SMN (~ 35 kDa) and alpha tubulin 
(~55 kDa)) were detected using relevant antibodies. Alpha-tubulin was used as a loading 
control. (B) Quantification of SMN fluorescence from analysed protein of transduced or 
un-transduced growth-arrested CHO cells was scored and plotted. Statistical analysis 
was performed between individual transduced and un-transduced growth-arrested CHO 
cells to determine significant differences between them. Significant differences were 
observed in all transduction samples except the sample that was transduced using MOI 
100 of IDLV-hSYN-hSMN1N-tFLAG. Data presented in this graph was statistically 
analysed by one-way ANOVA and Dunnett’s post-hoc test. Values represent mean ± 
SEM, *p<0.05, **p<0.01, ***p<0.001, stars represent level of significance, n=3.  

A 

B 
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Arrested CHO cells were transduced with qPCR MOI 100/500 of IPLVs or IDLVs 
encoding wild-type hSMN1/Co-hSMN1 under the control of CMV / hSYN. MOI, type 
of vector and transgene of interest is indicated on each relevant lane on the above image. 
The transduced and non- transduced cells were lysed at 72 hours post-transduction. 5 μg 
of total protein extraction was loaded onto a 12% SDS-PAGE gel for western blot 
analysis with an antibody against the SMN protein and another antibody to detect alpha 
tubulin protein, which was used as a loading control. (B) Intensity of SMN fluorescence 
was evaluated 3 days post transduction. All transduced growth-arrested CHO cells 
showed significant differences to un-transduced cells. Data presented in this graph was 
statistically analysed by one-way ANOVA and Dunnett’s post-hoc test. Values represent 
mean ± SEM, *p<0.05, **p<0.01, ***p<0.001, stars represent level of significance, n=3. 
The multiple bands for SMN protein in panel A are likely related to the very high level 
of over expression in growth arrested CHO cells transduced with lentiviral vector 
encoding Co-hSMN1.  

Figure 4.3: Lentivector-mediated expression of Co-hSMN1 in growth-
arrested CHO cell model . 

A 

B 



188 
 

 
Table 4.1: Comparison of SMN protein production from all vectors in transduced growth-arrested CHO cells.  

Collected data from transduced growth-arrested CHO cells was subject to analysis using one-way ANOVA and Bonferroni’s post-hoc test 
to determine whether there was a dose-dependent increase among each group. Moreover, the below table presents significant differences 
between various types of promoters, vectors, and transgenes and their effects on SMN protein production. Values represent mean ± SEM, 
*p<0.05, **p<0.01, ***p<0.001, stars represent level of significance, n=3.  

 
 
    hSMN1 VS Co-hSMN1   Dose-dependent increase   CMV VS hSYN   IPLV VS IDLV

Tansgene
Promoter

Vector
MOI 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500
100 * *** *** *** * *** ** * **
500 *** *** ** *** * ***
100 *** *** *** *** ** **
500 *** *** ***
100 * * *** ** * *
500 ** *** *
100 * *** *
500
100 *** ***
500 *** ***
100 *** **
500 *** ***
100 *** ***
500 *** **
100 *** *
500 *** ***

IDLV

hSMN1

hSYN
IPLV

IDLV

hSYN
IPLV

CVM
IPLV

CMV
hSMN1_NtF Co-hSMN1

hSYN CMV hSYN CMV
hSMN1

Transgene

IDLV
Co-hSMN1

IPLV IDLV

CVM
IPLV

IDLV

IDLV IPLV IDLV IPLV IDLVIPLV IDLV IPLV IDLV IPLV
Promoter Vector hSYN
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4.5 SMN expression in primary cortical neuronal cultures 
4.5.1 Characterisation of cortical neuron cell cultures 
 
Mouse primary cortical neuron cultures were employed as another in vitro model to 

explore the aims of this chapter. Cortical neuron cultures were produced from brains of 

E18 mouse embryos as described in 2.3.3.1. The procedure of extraction cortical cells 

has been well established in Prof. Yáñez’s laboratory by Dr. Ngoc Lu-Nguyen, a 

previous PhD student. Dr. Ngoc Lu-Nguyen carried out extensive study to characterise 

the cortical neuron cultures. Neuronal cultures were originally characterised by 

immunocytochemistry at day 4 in vitro using mouse anti-NeuN antibody (for total 

neurons), or anti-GFAP (for total astrocytes). The result revealed that on average 60% 

of cells were neurons (NeuN+) and 13%  astrocytes (GFAP+). Further characterisation 

of neuronal subpopulations demonstrated that 39% were GABAergic  (GAD67+), 15% 

glutamatergic  (VGLUT1+), and 4% dopaminergic neurons (TH+) (Lu-Nguyen et al., 

2015). Therefore, in this study, prior to transduction cortical neuron, a pilot experiment 

was performed to demonstrate the presence of cortical neuron cells in in vitro culture 

(Figure 4.4). Characterisation of cell cultures was performed on day 4 post-seeding using 

a Neuronal nuclear (NeuN) antibody to identify the presence of cortical neuron cells in 

the culture. NeuN is a soluble nuclear protein, which is localized in the nuclei and 

perinuclear cytoplasm of most of the neurons in the central nervous system 

(Gusel’nikova & Korzhevskiy, 2015). This protein is not produced in any tissue other 

than nervous tissue, and has not been detected in glial cells (Gusel’nikova & 

Korzhevskiy, 2015 and Mullen et al.,1992). Therefore, NeuN is highly specific as a 

marker of neuronal culture and can detect neuron cell in primary cerebellar cultures.  
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Figure 4.4: Cell cultures were characterised by immunocytochemistry method. 

6 day old cortical neuron culture in vitro was fixed and stained with neuron marker 
(NeuN). Nuclei were stained blue with DAPI. Scale bars = 100 μm. 
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4.5.2 Lentiviral vectors transduce cultured purified primary cortical 
neuronal cultures 

 
Integrating and non-integrating viral vectors used to transduce cortical neuronal cultures 

containing either a novel Co- hSMN1, a wild-type hSMN1 or a hSMN1_NtF transgene. 

These transgenes were encoded under the control of the either the CMV or hSYN 

promoter. A direct correlation between increasing vector MOIs and expression of the 

gene of interest was investigated by transducing the three week old cortical neuron 

culture at different doses of vectors (qPCR MOI 30 and 100). Protein was extracted in a 

RIPA buffer with protease inhibitor cocktail three days after adding the vectors. Western 

blotting was performed following the standard procedures and as previously described 

in section 2.5.3.3. The primary antibodies used were anti-SMN and anti-α-tubulin. 

Odyssey secondary antibodies were added according to the manufacturers’ instructions 

and then the blots were imaged using an Odyssey Infrared Imaging System (Li-COR; 

Biosciences) ( Figure 4.5A, 4.6A and 4.7A). The western blot images were quantified 

according to the description stated previously (section 2.3.1). The transduction result 

demonstrated that the produced lentiviral vectors were expressing transgene of interest 

(Figure 4.5B, Figure 4.6B and Figure 4.7B). A direct correlation was observed between 

increasing vector MOIs and enhancing the fluorescence intensity of SMN. When 

considering IPLVs compared with IDLVs, IDLVs showed less transgenic expression. 

Between CMV and hSYN, CMV led to higher expression of the transgene of interest. 

Between hSMN1 and Co-hSMN1, Co-hSMN1 increased the transgene expression 

compared to the wild type protein (Table 4.2).  
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Figure 4.5: Transduction with hSMN1-expressing LVs in mouse primary cortical 
neuronal cultures. 

(A) 3 week old mouse primary cortical culture was transduced with IPLV/ IDLV CMV-
hSMN1 or IPLV/ IDLV hSYN-hSMN1 with qPCR MOI 30 and 100. Cells were lysed at 
72 hours post transduction and 25 µg of extracted protein was run onto 12% SDS-Page 
gel. SMN protein with almost 35kDa molecular weight was detected using purified mouse 
anti-SMN antibody. Alpha tubulin protein (55 kDa) was used as loading control and 
detected by mouse α-tubulin antibody. Western blotting was performed by the Odyssey 
infrared imaging system. (B) Quantification of SMN fluorescent intensity from western 
blot was scored and plotted. Significant differences between transduced set of data 
versus un-transduced were determined using one-way ANOVA and Dunnett’s post-hoc 
test. Significant differences were observed in all samples except those that were 
transduced using MOI 30 of IDLV-CMV-hSMN1. Values represent mean ± SEM, 
*p<0.05, **p<0.01, ***p<0.001, stars represent level of significance, n=3.  
  

A 

B 
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Figure 4.6: Transduction of cortical neuron cultures using lentiviral vectors 
expressing FLAG-tagged hSMN1. 

(A) Primary cortical neurons cells were transduced with IPLV or IDLV encoding the 
hSMN1_NtF under the control of CMV and hSYN promoter at three weeks post seeding. 
Cells were harvested and lysed three days after transduction and then 25 µg of harvested 
protein was run on SDS-Page gel to separate proteins based on their molecular weight. 
Two proteins of interest in this western blot are full length SMN protein (~ 35 kDa) and 
Alpha tubulin protein (55 kDa) (used as loading control). These two proteins were 
detected using purified mouse anti-SMN and mouse α-tubulin antibody respectively. (B) 
Quantification of SMN fluorescent intensity from western blot was scored and plotted. 
Statistical analysis was performed between individual transduced and un-transduced 
primary cortical neurons to determine significant differences between them. Significant 
differences were observed in all transduction samples except the sample that was 
transduced using MOI 30 of IDLV-hSYN-hSMN1_NtF. Data presented in this graph 
was statistically analysed by one-way ANOVA and Dunnett’s post-hoc test. Values 
represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001, stars represent level of 
significance, n=3.  

A 

B 
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Figure 4.7: LV-mediated Co-hSMN1 expression in primary cortical neuronal 
cultures. 

(A) Mouse primary cortical cultures were transduced with IPLV/ IDLV CMV-Co-
hSMN1 or IPLV/IDLV hSYN-Co-hSMN1 vectors at two different MOIs (infection dose 
and type of vector used is indicated in each relevant lane on above figure). SMN 
expression was evaluated by western blotting 3 days post-transduction. Extracted 
proteins from transduced and non-transduced cells were stained with purified mouse 
anti-SMN antibody to detect SMN protein (∼35 kDa) and mouse α-tubulin antibody to 
detect loading control (Alpha tubulin, 55 kDa). Western blotting was completed by the 
Odyssey infrared imaging system. (B) Intensity of SMN fluorescence was evaluated 3 
days post-transduction. All transduced rat primary cortical neurons showed significant 
differences to un-transduced. Data presented in this graph was statistically analysed by 
one-way ANOVA and Dunnett’s post-hoc test. Values represent mean ± SEM, *p<0.05, 
**p<0.01, ***p<0.001, stars represent level of significance, n=3.

A 

B 
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Table 4.2: Comparison of SMN protein production from all vectors in cultured mouse cortical neurons. 

One-way ANOVA and Bonferroni’s post-hoc test were used to determine significant differences between obtained statistics from 
transducing mouse cortical neurons. The analysed data presents the effect of different parameters such as types of vectors, transgenes and 
promoters on protein production. Additionally, the data was analysed to determine whether there was a dose-dependent increases among 
each group. Values represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001, stars represent level of significance, NS stand for significant 
different, n=3.  
 

Tansgene
Promoter

Vector
MOI 30 100 30 100 30 100 30 100 30 100 30 100 30 100 30 100 30 100 30 100 30 100 30 100

30 *** ** * *** *** ** ** *** **
100 ** ** *** *** *** ***
30 *** * *** * ** *
100 * ** **
30 * ** *** ** * **
100 * *** **
30 *** ** *

100
30 *** ***
100 *** ***
30 *** ***
100 *** ***
30 *** ***
100 *** ***
30 * **

100 ** ***

IPLV

Co-hSMN1

CVM
IPLV

IDLV

hSYN
IPLV

IDLV

IDLV

IPLV

hSMN1

CVM
IPLV

IDLV

hSYN
IPLV

Transgene Promoter Vector CMV
IPLV IDLV IDLVIDLV IPLV IDLV IPLV IDLV IPLV IDLV

CMV hSYN CMV hSYN
hSMN1 hSMN1_NtF Co-hSMN1

hSYN

  hSMN1 VS Co-hSMN1   Dose-dependent increase   CMV VS hSYN   IPLV VS IDLV
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4.6 SMN expression in primary motor neuron 
4.6.1 Characterisation of rat primary motor neurons cell cultures  
 
Cultured embryonic rat motor neurons are one of the quiescent cell culture models that 

have been employed in this project to test produced vectors. Culturing of motor neuron 

cells was well-established and characterised in Prof. Yáñez’s laboratory by Dr. Sherif 

Ahmed (Peluffo et al., 2013). Following the established protocol, motor neurons were 

produced from E14–15 rat embryos as described in 2.3.3.2. A pilot experiment was 

performed to confirm the presence of embryonic motor neuron cells in in vitro culture 

(Figure 4.8). The seeded cells were stained with Anti-Choline Acetyltransferase 

antibody to identify motor neurons after 3 days in culture. Choline acetyltransferase 

(ChAT) is one of the enzymes involved in the synthesis of the neurotransmitter 

acetylcholine. This enzyme is expressed by mature motor neurons, so ChAT antibody 

was used to positively identify the motor neurons. The average purity of the motor 

neuron population was approximately 70%, as expected (Cassina et al., 2002). 

Cultured motor neurons express neuronal marker ChAT. Three days post-seeding, the 
cells were fixed and immunostained for a common motor neuronal marker (ChAT) to 
confirm motor neuron identity. Scale bars = 100 μm. 
  

Figure 4.8: Identification of motor neuron cells in culture. 
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4.6.2 Lentiviral vectors transduce cultured purified primary motor 
neurons cultures 

 
The experiment was designed to transduce primary motor neuron culture with produced 

HIV-1 based integrating and non- integrating lentiviral vectors, encoding either wild-

type hSMN1 or the novel Co-hSMN1 downstream of either CMV or hSYN promoter. 

E15 primary motor neuronal cultures were transduced with vectors of interest 2 hours 

after seeding and incubated for 3 days. Q-PCR MOI 30, 60 and 100 were used to 

transduce the cells. Transduced cells were fixed and underwent immunostaining to 

quantify the SMN over expression, and to investigate the effect of different parameters 

on the expression of SMN protein in transduced cells (Figure 4.9, 4.11, 4.13 and 4. 15). 

The quantified SMN intensity was performed at day 3, post-vector transduction. The 

analysis of collected data showed that all generated vectors were transduced primary 

motor neuron cells and overexpression of SMN protein was detected in all transduced 

cells (Figure 4.10, 4.12, 4.14 and 4.16). Higher transgene expression was observed when 

cells were transduced using an IPLV and transgenes were inserted downstream from 

CMV promoter and the Co-hSMN1 increased protein production relative to wild-type 

hSMN1 (Table 4.3). 
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E15 rat primary motor neuron cultures were transduced with lentiviral vectors encoding 
either hSMN1or Co-hSMN1 two hours after seeding the cells. Sample analysis by 
immunohistochemistry was performed three days post- vector transduction. (A) Images 
show a non-transduced motor neuron, which was treated according to the same protocol 
of transducing cells, however, it did not receive any vectors. (B) The representative 
images in panel B demonstrate overexpression of SMN protein in transduced primary 
motor neuron with IPLV-CMV-hSMN1 at q-PCR MOI 30, 60 and 100. (C) The images 
in panel C are examples of SMN protein overexpression in transduced cell with 
integrating lentiviral vector expressing Co-hSMN1 driven by CMV promoter. Anti SMN 
antibody was used to detect in SMN protein in transduced or non-transduced neuronal 
culture. Scale bars = 20 μm.  

Figure 4.9: Overproduction of SMN protein in rat primary motor neurons cells 
transduced using IPLV driven by CMV promoter. 
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Figure 4.10: Quantification of SMN protein levels in transduced motor neurons in 
vitro. 

Primary rat motor neuron cells were transduced at different doses of IPLVs expressing 
either hSMN1 or Co-hSMN1 under the control of CMV promoter. The above graph plots 
the intensity of SMN fluorescence in neuronal cell bodies. Statistical analysis was 
performed between transduced and un-transduced samples to determine significant 
differences between them. The significant differences were observed in all transduced 
samples except those samples which were transduced using MOI 30 of IPLV-CMV-
hSMN1. Data presented in this graph was statistically analysed by one-way ANOVA and 
Dunnett’s post-hoc test. Values represent mean ± SEM, *p<0.05, **p<0.01, 
***p<0.001, stars represent level of significance, n=3. 
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The above plates show SMN protein expression in three day old embryonic motor 
neuronal culture. Vectors were added to the cultures two hours after cell seeding, at q-
PCR MOI 30, 60 and 100. (A) Motor neuron cells did not receive any lentiviral vectors 
and are representative of the SMN protein expression in non-transduced cell.  
(B) and (C) demonstrate SMN overexpression in transduced cell. (B) Motor neuron 
primary culture received different dose of IDLV-CMV-hSMN1 while (C) demonstrates 
overexpression of SMN protein in transduced cells with non-integrating lentiviral 
vectors expressing Co-hSMN1 under the control of CMV promoter. Cells were fixed and 
stained with anti-SMN antibody. Scale bars = 20 μm. 
  

Figure 4.11: SMN protein production in E15 rat motor neurons transduced in vitro 
with IDLVs encoding hSMN1 or Co-hSMN1. 
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Figure 4.12: Quantification of SMN intensity in motor neurons transduced in vitro 
with IDLVs expressing hSMN1 or Co-hSMN1 under control of the CMV promoter. 

Quantification of SMN fluorescent in cell bodies of transduced or un-transduced E14 rat 
primary motor neuron was scored and plotted. Each transduced set of data was compared 
to un- transduced motor neuron using one-way ANOVA and Dunnett’s post-hoc test. 
Significant differences were observed in all samples except the samples that were 
transduced using MOI 30 of IDLV-CMV-hSMN1. Values represent mean ± SEM, 
*p<0.05, **p<0.01, ***p<0.001, stars represent level of significance, n=3. 
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Figure 4.13: Primary motor neurons transduced with IPLV driven by hSYN 
promoter express hSMN1 or Co-hSMN1 transgenes. 

In order to investigate transduction efficiency of generated lentiviral vectors, isolated 
motor neurons from E15 rat embryo were transduced with IPLVs encoding either wild-
type -hSMN1 or Co-hSMN1 under the control of hSYN promoter. (A) Demonstrates 
SMN protein in non-transduced motor neuron. (B) Images are representative of 
overexpression of SMN protein in transduced motor neuron cells by IPLV-hSYN- 
hSMN1 at different q-PCR MOI 30, 60 and 100. (C) Images are examples of transduce 
cells using IPLV-hSYN- Co-hSMN1 at different q-PCR MOI 30, 60 and 100. 
Transduced and non-transduced motor neurons were in culture for three days and then 
were subjected to immunohistochemistry to stain the SMN protein, using primary anti-
SMN antibody. Scale bars = 20 μm. 
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Figure 4.14: Analysis of SMN intensity following in vitro transduction of motor 
neurons with IPLVs expressing hSMN1 or Co-hSMN1 under control of hSYN 
promoter. 

Isolated primary motor neurons were transduced at different doses of IPLVs expressing 
either hSMN1 or Co-hSMN1 under the control of hSYN promoter. The above graph plots 
the intensity of SMN fluorescence within the cell body. Statistical analysis was 
performed between individual transduced and un-transduced motor neurons to 
determine significant differences between them. Significant differences were observed 
in all transductions except the sample that was transduced using MOI 30 of IPLV-hSYN-
hSMN1. Data presented in this graph was statistically analysed by one-way ANOVA and 
Dunnett’s post-hoc test. Values represent mean ± SEM,*p<0.05, **p<0.01, ***p<0.001, 
stars represent level of significance, n=3. 
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Figure 4.15: Overproduction of SMN protein in E15 rat motor neurons transduced 
with IDLVs driven by hSYN promoter and encoding hSMN1 or Co-hSMN1. 

E15 rat primary motor neuron cultures were transduced at 2 hours in vitro. (A) Motor 
neuron cells did not receive any lentiviral vectors and are representative of the SMN 
protein expression in non-transduced cell. (B) and (C) Photomicrographs are examples 
of overexpression of SMN protein in transduced cell by viral vectors. (B) Different dose 
(qPCR MOI 30, 60 and 100) of non-integrating lentiviral vectors encode wild-type 
hSMN1 gene under control hSYN promoter were used to transduce motor neuron 
primary cells. (C) Here, cells were transduced with the same multiple dose of non-
integrating lentiviral vectors, but the vectors expressed a codon optimised version of the 
hSMN1 transgene. 3 day old primary motor neuron cells in culture were fixed using 4% 
PFA and then exposed to primary antibodies directed against SMN protein. Scale bars = 
20 μm. 
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Figure 4.16: Quantification of SMN intensity in motor neurons transduced in vitro 
with IDLVs expressing hSMN1 or Co-hSMN1 under the control of the hSYN 
promoter. 

Intensity of SMN fluorescence was evaluated 3 days post-transduction. Between all 
transduced samples, only the sample transduced with IDLV-hSYN-hSMN1 at MOI 30 
did not show any significant differences compared to un-transduced. Data presented in 
this graph was statistically analysed by one-way ANOVA and Dunnett’s post-hoc test. 
Values represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001, stars represent level of 
significance, n=3.
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Table 4.3: Comparison of SMN protein production from all vectors using rat motor neurons in vitro. 

One-way ANOVA and Bonferroni’s post-hoc test were used to determine significant differences between obtained statistics from 
transducing rat motor neurons. The analysed data presented the effect of different parameters, such as type vectors, transgenes and promoters, 
on protein production. Additionally, the data was analysed to determine whether there were dose-dependent increases among each group. 
Values represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001, stars represent level of significance, NS stand for significant different, n=3.  
 
 

  hSMN1 VS Co-hSMN1   Dose-dependent increase   CMV VS hSYN   IPLV VS IDLV

Tansgene
Promoter
Vector

MOI 30 60 100 30 60 100 30 60 100 30 60 100 30 60 100 30 60 100 30 60 100 30 60 100
30 *** *** ns ns ***
60 ** *** * **

100 *** *** ***
30 * *** ns **
60 * * **

100 ** **
30 *** *** ns *
60 ** ** **
100 ** **
30 * *** **
60 ** ***
100 **
30 ** *** ns *
60 ** ** **
100 *** ***
30 ** *** ns
60 ** *
100 ***
30 ** *** ns
60 * *
100 ***
30 * ***
60 *

100

IDLV

hSYN

CVM

IDLV

IPLV

IDLV

hSYN

IPLV

IDLV

IPLV

IPLV

IPLV

IDLV
hSMN1

CVM

Co-hSMN1

CMV hSYN
hSMN1 Co-hSMN1

hSYN CMVTransgene Pomoter Vector
IDLVIDLVIPLV IDLVIPLV IPLV
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4.7 Discussion 
 
Fast onset and high-level expression from transgenes in vivo is critical for designing a 

therapeutic vector to target a disease, and many factors can have an effect on transgene 

expression pattern, such as delivery system, promoter and transgene sequence. The level 

of SMN protein is a key factor in rescuing SMA disease, and the aim of this project is to 

optimise and develop a possible therapeutic vector for gene therapy of spinal muscular 

atrophy. Therefore, this project set out to investigate the effects of several parameters on 

SMN protein expression. 

Vectors can vary in many different aspects, such as packaging capacity, transduction 

efficiency, the ability to transduce dividing or non-dividing cells and integration into 

genetic material of the targeted host. Lentiviral vectors are promising tools for gene-

delivery vehicles. They possess several attractive properties, such as sustained gene 

expression through stable vector integration into the host genome, they have a broad 

tissue tropism and are able to deliver DNA into a broad range of cell types, they can 

transduce both dividing and non-dividing cells, have a higher transduction efficiency to 

adeno-associated virus vectors (at same MOI), do not express viral proteins after vector 

transduction and a fairly easy production process (Sakuma et al.,2012; Wanisch and 

Yáñez-Muñoz, 2009). Integration is an important feature of lentiviral vectors, but 

integration from the vectors may raise the insertional mutagenesis risk. Non-integrating 

vectors typically have mutations in the IN gene that prevent integration of the virus 

genome into the host genome, so they do not disrupt any of the cell's own genes (Yáñez-

Muñoz et al., 2006). IDLV’s have a reduced rate of integration (up to 104 –fold), and 

thereby avoid the problems associated with integration but still preserve some benefits 

of integrating lentiviral vectors (Nightingale et al., 2006). All non- integrating vectors 
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used in this project were produced by class I mutation via replacing aspartic acid at 

position 64 with valine (Yáñez-Muñoz et al., 2006).  

An aim of this chapter was to compare transgene expression from IPLVs and IDLVs. In 

order to achieve this aim, a range of IPLVs and IDLVs had to be made and titrated 

(chapter 3). The titred vectors were tested in a variety of in vitro models - growth-

arrested CHO, primary cortical neurons and embryonic motor neurons. Transgene 

expression of integrating and non-integrating lentiviral vectors was quantified by 

measuring the mean fluorescent intensity of SMN expression. Transduction results 

revealed that both IPLV and IDLV efficiently transduce employed quiescent cell culture 

models at different multiplicities of infection and expression of gene of interest.  

Cells were transduced at multiple different MOI to maximize transgene expression and 

also to investigate a MOI-dependent manner. The level of transgene expression 

increased for both vector forms in a dose-dependent manner. The results demonstrate 

that transgene expression from both IPLV and IDLV is enhanced with increasing MOI 

(Table 4.1, 4.2 and 4.3).  

Comparing mean fluorescence intensity of SMN-expressing demonstrated that the level 

of transgene expression in cells transduced using integrating vectors is higher than the 

cells that were transduced using non-integrating vectors ( Table 4.1, 4.2 and 4.3). The 

result was the same in all tested in vitro models. The outcome of this experiment 

demonstrated that integrating vectors result in more transgene protein production per 

vector copy than non-integrating. When comparing transgene expression in both type of 

vectors, there is a 1.22-fold difference between integrating and non-integrating vectors 

in transduced motor neuron at MOI 100. Transduction in growth-arrested CHO and 

primary cortical neuron demonstrated that the lowest transgene expression from IPLV 

is at least 1 fold more than the highest transgene expression achieving using IDLV. 
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Considering transduction of various target cells, the results of this chapter reveal that, 

regardless of whether the promoter used was CMV or hSYN, non-integrating vectors 

express less transgene than the integrating vector. This finding is in line with other 

studies by Apolonia, 2009. Apolonia, 2009 suggested that the non-integrated vectors 

were less transcriptionally active than their integrating counterparts, so the non-

integrating express less transgene that their corresponded IPLV. Schröder et al., 2002 

and Aranyi et al., 2016 might offer two possible explanations as to why IDLVs have a 

lower transcription activity than IPLVs, however this subject needs further investigation. 

Schröder et al., 2002 reported lentiviral vectors do not integrate into the host genome 

based of a random site. The vectors integrate anywhere along transcriptional units, 

particularly in highly active genes and regional hotspots. Therefore, the integration of 

vectors into active genes might have evolved to facilitate efficient transgene expression 

from IPLVs. Another possible explanation for lower transcription activity in non-

integrating vectors could be explained by a new finding by Aranyi et al., 2016. This 

study suggested that the presence of episomal genomes in cells transduced by non-

integrating lentiviral vectors may trigger DNA methylation. This change might prevent 

high promoter activity over time, however, the authors mentioned this finding needs 

further investigation. 

It is important to emphasise that it was observed that the IPLVs transduced more cells 

than IDLV, even when the transduction was carried out in non-dividing cultures. Taken 

together, higher transcription activity and transduction efficiency of IPLVs results in 

IPLVs expressing more transgene protein than IDLVs. 

Another aim of this chapter was to have a comparison between CMV and hSYN to 

evaluate the efficiency of these promoters for producing high levels of transgene protein 

expression using lentiviral vector.  
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CMV immediate early region enhancer-promoter is one of the strongest promoters used 

in gene therapy, and has been used to achieve high levels of constitutive expression of 

transgenes in a wide variety of mammalian cell lines. Previous studies have shown that 

the CMV promoter led to a faster rate of onset of detectable transgene expression and 

higher level of transgene expression (Montesinos, Chen, & Young, 2011 and Williams 

et al., 2005). While the hSYN promoter is a strong and relatively neuron-specific 

promoter, this promoter has been extensively used for neuron specific transgene 

expression (Kügler et al., 2001; Kügler, Kilic et al.2003 and Kügler, Lingor et al., 2003). 

It should be mentioned that there are a number of studies claiming that hSYN is a highly 

neuronal-specific promoter, and that the expression of this promoter occurs exclusively 

in neuronal cells (Dittgen et al., 2004 and Kügler, Kilic, et al., 2003). According to the 

results obtained in this study, the transgene of interest can be expressed using the hSYN 

promoter in non-neuronal cells as well as in neuronal cells. This finding aligns with other 

studies which used hSYN promoter to drive transgene expression in non-neuronal cells 

(Holzmann et al., 1998 and Yaguchi et al., 2013). Holzmann et al., 1998 compared the 

level of transgene expression controlled by hSYN in neurons and non-neuronal cells. 

The result of this comparison showed low transgene expression in non-neuronal cells, 

while hSYN promoter drove strong transgene expression in neurons, confirming the 

relative neuron specificity of hSYN.  

Moreover, cell lines in culture are more permissive to transgenic expression than cells 

in their natural environment. It is not unusual that tissue specific promoter show a degree 

of transgenic expression in common cell lines. As previously stated, the comparison 

between hSYN and CMV was carried out in this study to evaluate which of these two 

promoters drives the strongest transgene expression in a variety of cell culture systems. 
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To assess the promoter efficiency, the expression of transgenes controlled by either 

CMV or hSYN promoters carried by lentiviral vectors in growth-arrested CHO cells and 

primary cortical and motor neurons were compared. Different MOIs of each vector were 

used to transduce the cell to maximise the protein production. The results revealed that 

the two promoters under investigation express the transgene in transduced cell cultures. 

Using the growth-arrested CHO cells clearly demonstrates that CMV is a much stronger 

promoter than hSYN (Table 4.1), and using CMV promoter led to high-level transgene 

expression. This finding was not surprising, as CMV is a generic promoter, and resulted 

in stronger expression in CHO cells compared to hSYN, which is a relatively neuron-

specific promoter.  

Transducing primary cortical and motor neurons revealed that both these promoters can 

efficiently express targeted transgenes in transduced primary cortical and motor neurons. 

When comparing hSYN with CMV, it was revealed that utilising CMV promoter led to 

the most robust transgene expression using primary neuronal cultures (Table 4.2 and 

4.3).  

Significant differences were observed between both promoters in terms of transgene 

expression at each transduction of the primary cortical neuron and growth-arrested CHO. 

This significant difference was not observed in three out of 12 transductions (Table 4.3). 

These occasions were when the primary motor neurons were transduced with MOI 30. 

This could be because qPCR MOI 30 is not high enough to distinguish the significant 

difference between these two promoters, as the significant difference was clearly 

observed in all other cases that used MOI for transduction. 

Taken together, the results of a comparison between of CMV and hSYN promoters in 

this study demonstrate the following: transduction of target cells with lentiviral vectors 

carrying CMV promoter resulted in more robust transgene expression compared to 
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corresponding lentiviral vectors carry hSYN promoters. Therefore, CMV promoters are 

stronger, and this finding is in agreement with other studies (Gascón, et al., 2008; Kuroda 

et al. 2008 and Scott & Lois, 2005).  

However, it need to be mentioned, there are studies that report that hSYN led to stronger 

reporter gene expression and CMV is a weaker promoter in cells of the CNS. Moreover, 

hSYN promoter expresses exclusively in neuronal cells, (Dittgen et al., 2004 and Kügler, 

Kilic, et al., 2003). There are many factors that can affect expression, and two key factors 

here are the type of transgene, and vector stock titration. Many methods can be used to 

titre the vector stock and it is not clear how the vectors have been titred in these studies. 

In general, these studies use the eGFP as reporter gene and they titre the vector stock 

using FACS. The cell line used during the titration process is very important, as 

efficiency of chosen promoters may react differently among cell line and effect the 

titration result (Kuroda et al., 2008). Moreover, different genes are transcribed in cells 

differently because of the needs of the cells. Thus, these results are difficult to interpret 

and will be explained in more details. Additionally, the method of transgene delivery 

can be another effective parameter that effects the expression of transgene. 

Codon optimization is a novel technique that improves the expression of a transgene to 

maximise the protein production in the host by increasing the translational efficiency of 

interested gene. This is achieved by replacing rarely used codons (at the point of protein 

translation) in the genome of the host with the ones that are frequently used (Condon & 

Thachuk, 2012). Codon optimized on human protein expression has been widely used 

by many scientists and they reported higher protein expression. The increase could be 

up to 15 fold more (Fath et al., 2011 and Graf et al., 2004).  

Therefore, this technique was used to optimise hSMN1 transgene in this project in order 

to increase the level of SMN protein, which is in a critical factor for SMA therapy. The 
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codon optimisation was carried out using GENEART’s GeneOptimizer software. 

GENEART optimised hSMN1 transgene using a specific algorithm. This algorithm 

considers optimising a variety of critical relevant factors involved in the different stages 

of protein expression, such as codon adaptation, mRNA stability, and various cis-

elements in transcription and translation to achieve the most efficient expression of gene 

of interest. 

Wild-type and codon optimised hSMN1 transgenes were inserted into the integrating and 

non-integrating lentiviral vectors. The efficacy of these transgenes for SMN expression 

was evaluated using a variety of quiescent cell culture models: growth-arrested CHO, 

E18 primary cortical neuron and E15 primary motor neuron.   

In a bid to maximize the transgene expression, the cells were transduced at three different 

MOIs. Transgene expression was evaluated in transduced cell culture three days after 

transduction, and the result of transduction revealed Co-hSMN1 transgene and its 

corresponding wild-type transgene (hSMN1) are encoding SMN protein. Quantified 

transduction results demonstrated that Co-hSMN dramatically increases SMN 

expression, compared with hSMN1.  

Significant differences were observed between Co-hSMN1 and hSMN1, in terms of SMN 

expression at each transduction of growth-arrested CHO (Table 4.1) and primary cortical 

and motor neuron (Table 4.2 and 4.3). This finding is in agreement with other studies 

(Dominguez et al., 2011; Fath et al., 2011 and Valori et al., 2010). 

In summary, the results in this chapter demonstrate vector dose-dependent increases in 

level of SMN protein for both vector formers. Highest level of SMN protein 

production by using: CMV promoter, Co- hSMN1 and integrating lentiviral vectors.   
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Chapter 5 Functional effect of SMN over-       
expression in SMA fibroblasts   
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5.1 Introduction:  
 
Thus far, it has been demonstrated that the lentiviral vectors generated can successfully 

express the gene of interest and produce SMN protein, as demonstrated in the three 

different models of arrested CHO cells, cortical neurons and motor neuron primary 

cells. Now it is time to take the project further, and to investigate whether SMN protein 

produced using lentiviral vectors is functional or not.  

SMN protein is found in the cytoplasm and nucleus (Coovert et al., 1997). Full length 

SMN protein is bound with a set of diverse proteins collectively known as gemins to 

form a macromolecular complex (Borg & Cauchi, 2014). These nuclear SMN 

complexes are local to specific structures called nuclear gems. Gems were introduced 

by Liu & Dreyfuss for the first time in 1996. Using immunostaining of Hela cells, they 

detected several intense dots in cell nuclei, and named them ‘gems,’ for ‘Gemini of the 

coiled bodies’. 

As previously stated, SMN oligomerises form a stable large multiple-protein complex 

with five additional proteins (gemins2-6). In addition to SMN protein, this large multi-

protein complex also requires gemin2, which is a core protein, although the mechanism 

by which it drives formation is unknown yet. Binding between SMN and gemin2 forms 

a sub complex, which is essential for interaction between SMN and other gemins 

(gemin3-7), and for forming SMN complex (Ogawa et al., 2007).  

SMN protein is required to form a large multi-protein complex, in order for it to be 

stable and functional. In addition, this multi-protein complex plays an essential role in 

the assembly of the spliceosomal snRNPs, which are essential components of the 

splicing machinery (Cauchi, 2014; Gubitz et al., 2004 and Ogawa et al., 2007).  

In SMA patients, the number of gems is greatly reduced as a consequence of 

dramatically reduced levels of endogenous SMN. Reduced gem formation correlates 
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with SMN protein expression and disease severity in human SMA fibroblasts (Coovert 

et al., 1997). Coovert et al., 1997 reported that fibroblast cell lines derived from SMA 

type I patients, which is the most severe type of SMA disease, have few or no gems. A 

feature of fibroblasts and motor neurons in SMA animal models is the low number of 

gems. In fibroblast cells, the number of gems per cell can be used as a prognostic 

indicator of SMA type and disease severity (DiDonato et al., 2003).  
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5.2 Aims of the chapter 
 
The aim of this chapter is to investigate the functional effect of SMN protein produced 

in human type I SMA fibroblasts by determining whether nuclear gems can be restored 

in transduced cells as an indicator of SMN functionality.  

For cells to assemble gems efficiently, it is first necessary for them to produce 

sufficient amounts of the correct SMN isoform. Gemins bind the full-length isoform of 

SMN protein. The SMN isoform lacking exon 7 is unable to be efficiently transported 

across the nuclear member to form gems. Linked to this, the previous chapter 

demonstrated that different parameters (integration proficiency, promoter and 

transgene) can affect the production of SMN protein from lentiviral vectors. In this 

chapter, the effect of those parameters on the restoration of nuclear gems in transduced 

type I SMA fibroblasts is explored. 

The aim of this chapter can be broken down into five specific goals, studied using type 

I SMA fibroblasts: 

(A) to determine the efficiency of various lentiviral vectors producing SMN to 

restore gems in SMA patient–derived fibroblasts. 

(B) to study whether restoration of gems by lentiviral vectors is MOI-

dependent.  

(C) to analyse the effect of hSMN1 transgene codon-optimisation on the 

restoration of gems in transduced cells. 

(D) to study the effect of using different promoters on the restoration of gems 

in transduced cells.  

(E) to analyse the impact of lentiviral integration efficiency on the production 

of gems in transduced cultures. 
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5.3  Summary of experiments and methods 
 
Low-passage human fibroblast cell lines were grown in DMEM with high glucose that 

had been supplemented with 21% M-199, 10% FBS, 10 ng/mL Fibroblast growth 

factor 2 (FGF2), 25 ng/mL Epidermal growth factor (EGF) (Miltenyi, Germany), 

1μg/mL gentamicine. All cultured cells were maintained at 37°C and 5% CO2 in a 

humidified atmosphere. 

Control, type I, II and III fibroblast cells were harvested in Santa Creu i Sant Pau 

Hospital (Barcelona) from skin biopsies of either a healthy adult or patients with SMA 

type I, II and III, respectively. Cells were obtained with informed consent by our 

collaborator Dr. Eduardo Tizzano. SMA type I, II and III patients are dependent on 

SMN protein produced from the SMN2 gene. The variability in the level of SMN 

protein among different types of SMA fibroblast is due to differences in SMN2 copy 

number. An individual affected by SMA type III normally has higher level of SMN 

protein and hence a less-severe disease phenotype than a patient affected by SMA type 

II, (and I), as they have more copies of SMN2.  

Prior to transduction of the human fibroblasts, I tried to provide a baseline for my 

study by counting gems in different types of SMA fibroblast cells. All types of SMA 

human fibroblast (type I, II, III SMA) and control human fibroblast were seeded at a 

density of 1.0 × 105 cells/well in a 12 well plate. Seeded cells were subject to 

immunostaining seven days after seeding. 

For the transduction stage, among different type of SMA patient fibroblast cells, type I 

SMA fibroblast were chosen for transduction as these cells produced very few or no 

gems. The type I human fibroblast were seeded as per the stated density and 

conditions. The seeded cells were transduced at varying MOI (qPCR MOI 30, 60 and 
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100) of either IPLVs-CMV / hSYN or IDLVs-CMV / hSYN vectors encoding either 

hSMN1 or Co-hSMN1 transgene twenty-four hours after seeding.      

To detect gems in the nuclei of the cells, immunofluorescence labelling was 

performed, and cells were visualized under fluorescence microscope at 72 hours post-

transduction. The process involved washing, fixing, and blocking the cells, and then 

human fibroblast cells were incubated with diluted fluorescein isothiocyanate-

conjugated gemin2 antibody overnight in a cool, dark place. The cells were visible 

under a fluorescent microscope, following the addition of a secondary antibody and 

DAPI. To avoid unintentional bias, the investigator was blinded to the type of vector, 

transgene, promoter and MOI that were used to transduced cells. 100 randomly 

selected nuclei were scored for counting the number of gems, and then the number of 

gems per 100 nuclei was calculated. 
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5.4  Result  
5.4.1 Gems in different types of SMA fibroblasts  
 
Before transducing the cells, the experiment was set up to demonstrate the changes in 

the number of gems among various SMA types and control fibroblasts. This 

experiment forms the basis of this chapter. It has been reported that there is a 

noticeable difference between the amount of endogenous SMN and the number of 

gems in various types of SMA (Coovert et al., 1997 and DiDonato et al., 2003). The 

results of this chapter demonstrated that the number of gems per cell inversely 

correlates with disease severity. Very few or no gems were detected in SMA type I, 

and while the number of gems increased in type II and III SMA, it was still fewer than 

the number of gems detected in control fibroblasts (Figure 5.1). 
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Cultures were immunostained at day seven post seeding. The goat anti gemin2 
polyclonal antibody was used to detect gems in the nuclei of seeded fibroblast cells and 
DAPI was used to stain the nucleus of the cell.  
(A) Representative number of gems in SMA I, II, III and control human fibroblasts. 
Scale bars = 5 μm. (B) Presenting the analysis of the result of counting gems in 100 
cells in each type of fibroblast cell line. One-way ANOVA and Bonferroni’s post-hoc 
test was used to determine significant differences between all different types of 
fibroblast. Values represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001, stars 
represent level of significance, n=3. 
  

A 

B 

Figure 5.1: Immunostaining of gems in human SMA fibroblasts 
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5.4.2 Increase in number of gems in transduced SMA fibroblasts 
 
As previously stated, the focus of this study is to investigate and optimise the possible 

configuration of lentiviral vectors to target SMA disease. In order to achieve the goal 

of this study, a variety of IDLVs and IPLVs were produced during this project. These 

vectors expressed either wild type hSMN1 or novel Co-hSMN1 transgene under the 

control of either CMV or hSYN promoter. The type I SMA fibroblast cell line was 

transduced with produced vectors to investigate the effect of different type of vectors, 

promoter and transgenes on restoring gems. The results revealed that all produced 

vectors successfully restored gems in transduced cells, and that increasing the vector 

concentrations resulted in the detection of a higher number of gems (Figure 5.2,  5.4,  

5.6 and 5.8). It was observed that the highest number of gems was achieved when cells 

were transduced using MOI 100 of both vector, IPLVs or IDLVs (Figure 5.3,  5.5, 5.7 

and 5.9). As indicated by the graphs, in some cases, the number of detected gem 

structures in the transduced cells were higher than in healthy fibroblast cells. A 

statistical comparison was performed to investigate the effect of different parameters 

on restoring gems. The result of this comparison revealed that the number of gems in 

transduced cell cultures with integrating lentiviral vectors is higher than the transduced 

cells with non-integrating lentiviral vectors (Table 5.1). When comparing CMV with 

hSYN, the CMV restored more gems in transduced type I SMA fibroblasts (Table 5.1). 

Codon optimised versions of hSMN1 led to a noticeable increase in the number of 

gems in transduced cells, compared to cells that were transduced using wild-type 

hSMN1 (Figure 5.3,  5.5,  5.7,  5.9 and Table 5.1).   
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Figure 5.2: Restoration of gems in type I SMA fibroblasts transduced with IPLV 
driven by CMV promoter and encoding hSMN1 or Co-hSMN1. 

 
 
 
 
 
 
 
 

 

 
Cultured human SMA I fibroblasts were transduced with either IPLV-CMV-hSMN1 or 
IPLV-CMV-Co-hSMN1 at qPCR MOI 30, 60 and 100. The number of gems was 
quantified 3 days post- transduction. (A) Representative images of detecting gems in 
non-transduced SMA I and control human fibroblasts which have been treated 
following the same protocol of transducing cells, except they did not receive any 
lentiviral vectors. (B) Gems in transduced SMA I fibroblast cells using different doses 
of integrating lentiviral vector encoded with hSMN1 under the control of CMV 
promoter. (C)The images in this panel demonstrate the number of gems in transduced 
cells with integrating lentiviral vectors expressing Co-hSMN1. Scale bars = 5 μm. 
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The graph plots the number of gems per 100 nuclei and indicates statistical 
significance above each column obtained by comparing individual transduced samples 
with non-transduced type I SMA fibroblasts. Significant differences were detected 
between all transduced samples and the untransduced sample. Data presented in this 
graph was statistically analysed by one-way ANOVA and Dunnett’s post-hoc test. 
Values represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001, stars represent level 
of significance, n=3.  

Figure 5.3: Quantification of the number of nuclear gems in human type I 
SMA fibroblasts transduced with IPLV-CMV-hSMN1 or Co-hSMN1. 
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SMA I human fibroblast cultures were transduced with non-integrating lentiviral 
vectors encoded with either hSMN1or Co-hSMN1 one day after seeding the cells. 
Analysis of the samples was performed three days post- vector transduction by 
immunohistochemistry. (A) Representative images in this panel demonstrated an 
enhanced number of gems in transduced cells with IDLV-CMV-hSMN1 at qPCR MOI 
30, 60 and 100. (B) Images in this panel are examples of increasing the number of 
gems in transduced cell with non-integrating lentiviral vectors, expressing Co-hSMN1 
driven by CMV promoter. Anti gemin2 antibody was detected in gems in transduced or 
non-transduced cells. Scale bars = 5 μm. 
  

Figure 5.4: Increase in number of gems in transduced SMA type I fibroblasts 
using IDLV-CMV hSMN1 or Co-hSMN1.   
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Nuclear gems were counted and plotted as the number of gems in 100 cells. Each 
treated set of data was compared to untreated SMA I using one-way ANOVA and 
Dunnett’s post-hoc test. Significant differences were observed in all treated samples, 
except the samples that were treated with MOI 30 of IDLV-CMV-hSMN1. Values 
represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001, stars represent level of 
significance, n=3. 
  

Figure 5.5: Quantification of gems in SMA type I fibroblasts after 
transduction with IDLVs expressing hSMN1 or Co-hSMN1 under control of 
CMV promoter. 
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SMAI human fibroblast cultures were transduced one day after seeding the cells. (A) 
Different doses (qPCR MOI 30, 60 and 100) of integrating lentiviral vectors encoded 
with wild type hSMN1 gene under the control of hSYN promoter were used to 
transduce SMA I human fibroblast cells. (B) Here, cells were transduced with the same 
multiple dose of integrating lentiviral vectors, but the vectors expressed a codon 
optimised version of hSMN1 gene. 3 days after transducing, the SMAI human 
fibroblast cells were fixed using 4% PFA and then exposed to primary antibodies 
directed gems. Scale bars = 5 μm. 
  

Figure 5.6: Increased number of nuclear gems in transduced type I SMA 
fibroblasts using IPLV- hSYN hSMN1 or Co-hSMN1. 
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SMA patient fibroblasts were transduced at different doses of IPLVs expressing either 
hSMN1 or Co-hSMN1 under the control of hSYN promoter. The graph above plots the 
number of gems per 100 nuclei, and a statistical analysis was performed between each 
individual treated and untreated SMAI to determine significant differences between 
them. The significant differences were observed in all treatments except the sample, 
which was transduced using MOI 30 of IPLV-hSYN-hSMN1. Data presented in this 
graph was statistically analysed by one-way ANOVA and Dunnett’s post-hoc test. 
Values represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001, stars represent level 
of significance, n=3.  

Figure 5.7: Analysis of gems in SMA fibroblasts treated with IPLVs expressing 
hSMN1 or Co-hSMN1 under the control of hSYN promoter. 
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Figure 5.8: Immunofluorescence staining showing gem restoration in type I SMA 
fibroblasts transduced using IDLV-hSYN hSMN1 or Co-hSMN1. 

Lentiviral Vectors were added to the SMAI human fibroblast cultures twenty-four hours 
after cell seeding, at qPCR MOI 30, 60 or 100. (A) and (B) Representative 
photomicrographs are examples of increasing the number of gems in transduced cell by 
viral vectors. Images in panel (A) are representative of the cell culture that received 
different doses of IDLV-hSYN-hSMN1. Images in panel (B) show transduced cell 
cultures by IDLV-hSYN-Co-hSMN1. Scale bars = 5 μm. 
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Cultures of SMA patient fibroblasts were transduced with IDLV- hSYN expressing 
either hSMN1 or Co-hSMN1 at different MOIs (30, 60 and 100). Nuclear gems were 
counted and plotted as the number of gems in 100 cells. One-way ANOVA and 
Dunnett’s post-hoc test was run to determine whether there were any significant 
differences between transduced samples and untransduced SMAI. Significant 
differences were observed in each transduced sample, except transduced samples using 
MOI 30 IDLV-hSYN-hSMN1. Values represent mean ± SEM, *p<0.05, **p<0.01, 
***p<0.001, stars represent level of significance, n=3.

Figure 5.9: Quantification of the number of nuclear gems in human type I SMA 
fibroblasts transduced with IDLV-hSYN hSMN1 or Co-hSMN1. 
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Tansgene
Promoter

Vector
MOI 30 60 100 30 60 100 30 60 100 30 60 100 30 60 100 30 60 100 30 60 100 30 60 100
30 * *** * ns ***
60 *** ** ** ***

100 *** *** ***
30 ** *** ns ***
60 ** ns ***

100 * ***
30 * *** ns **
60 ** ns ***

100 * ***
30 * *** *
60 ** **

100 ***
30 * *** *** ***
60 *** *** ***

100 *** ***
30 * *** **
60 ** ***

100 ***
30 * *** ns
60 *** **

100 ***
30 *  ***
60 **

100

Co-hSMN1

CVM
IPLV

IDLV

hSYN
IPLV

IDLV

Transgene Pomoter Vector
hSMN1 Co-hSMN1N

CMV hSYN

hSMN1

CVM
IPLV

IDLV

hSYN
IPLV

IDLV

CMV hSYN
IPLV IDLV IPLV IDLV IPLV IDLV IPLV IDLV

One-way ANOVA and Bonferroni’s post-hoc test was used to determine significant differences between obtained statistics from 
transducing type I SMA patient fibroblasts. The analysed data presents the effect of different parameters such as lentiviral vector 
configurations, transgenes and promoters, on restoring gems. In addition, the data was analysed to determine whether there were dose-
dependent increases among each group. Values represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001, stars represent level of 
significance, ns stands for no significant difference, n=3. 
   

Table 5.1: Comparison of gem restoration by all vectors in type I SMA fibroblasts. 
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5.5 Discussion:  
 
Endogenous SMN proteins are present in both the nucleus and cytoplasm of normal 

cells. Full length SMN does not appear to exist in an isolated form within the cells, and 

it is always in interaction with its partner proteins (Kolb et al., 2007). SMN protein is a 

component of a large multiprotein complex called a Gem within the nucleus. The gems 

are found in a size range of  ~ 0.1–1μm and they reside in the nucleus of the cell, due 

to concentrating SMN complex. The SMN complex consists of the SMN protein and 

seven other proteins, designated as gemin2, gemin3, gemin4, gemin5 and gemin6, 

gemin7 and gemin8 (Carissimi et al., 2006). Forming SMN complex is essential for the 

biological activity of SMN protein and its interaction with other proteins (Liu & 

Dreyfuss, 1996 and Ogawa et al., 2007). The forming of SMN complex is 

indispensible for the role of SMN protein in the assembly of snRNPs, which constitute 

the building blocks of spliceosomes (Cauchi, 2014). There is still a lack of clear 

evidence about the exact function of gems, however, Coovert et al., 1997 have 

suggested that gems have a role in RNA metabolism. Great progress has been made 

toward determining the correlation between gems and SMA phenotypes. In addition, it 

is very well established that the number of gems in a cell nucleus are a faithful 

indicator of full length SMN protein and the severity of SMA disease (Coovert et al., 

1997 and DiDonato et al., 2003).  

Determining whether lentiviral vector transduced cells with encoding SMN protein can 

lead to the restoration of gems is an essential step in optimising and developing 

potential therapeutic vectors for SMA. Employing SMA human fibroblast to assess the 

functionality of SMN protein in response to restoring SMN protein is a very common 

and well established practice (Azzouz et al., 2004; Coovert et al., 1997; DiDonato et 

al., 2003; Nizzardo et al., 2015 and Valori et al., 2010). Immunofluorescence method 
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was utilised to label the gems in the nuclei of cells, as this method makes it possible to 

score the number of gems on a cell by cell basis, and focuses on the more stable gem 

associated pools of SMN protein. Other methods, such as western blot, are used to 

determine the total level of gems in a protein mixture (Cherry et al., 2013).  

Prior to testing the functional efficiency of produced protein encoding by lentiviral 

vectors, the number of gems in all different types of fibroblast were examined. The 

results revealed that the lowest number of gems were detected in the most severe type 

of SMA (type I SMA). A higher number of gems was detected in SMA type II and III 

(Figure 5.1). In addition, the results demonstrated the level of SMN expression in each 

type of cell line correlates positively with the number of gems, while there is an 

inverse correlation between the number of gems and clinical severity of SMA disease. 

This result is supported by other studies (Coovert et al., 1997; DiDonato et al., 2003 

and Patrizi et al., 1999).  

It has been established that transgenic production of SMN protein in patient fibroblasts 

leads to the restoration of nuclear gems and phenotypic rescue of this aspect of the 

SMA model. Moreover, ectopic expression of SMN also causes relocalisation of 

gemin2, an SMN-interacting protein, to gems (DiDonato et al., 2003). Therefore, in 

this study, antibody against SMN-reacting protein (gemin2) was used to detect the 

gems. The immunofluorescence results of the transduction of type I SMA fibroblasts 

using produced lentiviral vectors revealed that the delivery of hSMN1 transgene into 

patient cells led to a restoration of the number of gems in all cases (Figure 5.2, 5.4, 5.6 

and 5.8). Thus, the produced SMN protein is functional and is able to interact with its 

normal cellular binding patterns.  

In a bid to maximize the restoration efficiency of nuclear gems and to investigate a 

MOI-dependent manner, the patient fibroblast cells were transduced with different 
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MOIs. This ascertained that more vectors could be transduced into cell cultures to 

produce more SMN protein, which led to restoring gems in the nucleus of transduced 

cells. Therefore, the results demonstrate that the number of gems was enhanced by 

increasing the MOI of transduction. A high number of gems was detected when cells 

were transduced at MOI 100 (Figure 5.3, 5.5, 5.7, 5.9 and Table 5.1), and this was 

achieved without causing any toxicity or changes in cell morphology due to overdose 

of the vectors.  

It should be noted that, as previously stated, SMA I type fibroblast were chosen for 

transduction. In figures 5.3, 5.5, 5.7, 5.9 there are nuclei showing absence of gems, 

which most likely indicate these cells have not been transduced; the number of non-

transduced cells was reduced by increasing MOI of transduction. Treating SMA 

fibroblast cells with MOI 30, 60 and 100 results in the transduction of approximately 

20%, 40% and 80% of cells, respectively. 

In addition to testing the functional effects of encoding SMN from produced lentiviral 

vectors on SMA fibroblasts, the effect of different parameters (type of vector, 

transgene and promoter) on gem restoration was also tested.   

Both types of vectors (IPLVs (Figure 5.2 and 5.6) and IDLVs (Figure 5.4 and 5.8)) 

successfully restored gems in transduced cell nucleus. However, when comparing the 

number of detected gems, it was revealed that more gems were restored in cells when 

they were transduced using integration vectors (Table 5.1). The number of gems in 

IDLV transduced cell culture was not as high as the cell culture transduced with IPLV. 

Comparing the quantified number of gems in transduced cells using both type of 

vectors revealed that the number of gems in transduced cells using IPLV is 1.6 times 

greater than the number of gems detected in transduced cells using IDLV, regardless 

type of promoters and transgene. 
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There are two explanations for the lower number of gems in cells transduced using 

IDLV. The first is that circular vector episomes generated in transduced cells by non- 

integrated vectors do not have any origin of replication, so they are progressively 

diluted out through cell division in proliferating cells (Wanisch & Yáñez-Muñoz, 

2009). Therefore, these lentiviral episomes are gradually reduced in number by every 

cell division (Nordin et al., 2014). The second reason is non-integrating vectors may 

have lower transcription activity than IPLV (Apolonia, 2009 and Sakuma et al., 2012).   

Following transduction of lentiviral vectors expressing either wild-type hSMN1 or 

novel Co-hSMN1 into type I SMA human fibroblasts, the results demonstrated that  

both types of transgene are efficient to restore gems and rescue this aspect of the SMA 

phenotype (Figure 5.2, 5.4, 5.6 and 5.8). DiDonato et al., 2003 believed the very high 

level of SMN protein leads to an increase in the number of gems. Comparison between 

wild-type hSMN1 and Co-hSMN1, demonstrated that using novel Co-hSMN1 led to the 

restoration of a significantly higher number of gems than wild-type hSMN1 (Table 

5.1). The quantification of detected gems demonstrated that using a codon optimised 

version of the hSMN1 transgene resulted in the detection of 1.7 times more gems than 

wild type hSMN1. 

This finding indicates that the level of produced full length SMN protein using Co-

hSMN1 is higher than wild-type. It is further confirmation of the results of the previous 

chapter, and is an expression pattern consistent with that previously found by (Valori et 

al., 2010). It is unsurprising that the high level of SMN protein production restored 

more gems in the nuclei of cells, as there is direct link between the expression of SMN 

protein and the formation of gems. The high level of endogenous SMN protein did not 

interfere with normal cell function, and had no effect on growth, morphology or death 

of cells. 
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Regarding the effect of different promoters on restoring gems through their control of 

expression of transgene in SMA human fibroblast, the transduction results 

demonstrated that CMV (Figure 5.2 and 5.6) and hSYN (Figure 5.4 and 5.8) are 

efficient promoters, and are able to restore gems in transduced fibroblast cells. The 

number of detected gems in transduced fibroblasts using CMV were significantly 

higher than hSYN (Table 5.1). Regardless of lentiviral vector configurations and type 

of hSMN1 transgene, CMV promoter formed 1.8 times more gems, versus hSYN 

promoter. 

This finding correlates with the results of the previous chapter. Chapter 4 demonstrated 

that CMV showed stronger expression and resulted in higher protein production, so 

this rationalises the use of CMV to detect more gems in transduced cells. In addition, 

this finding further supports evidence that CMV is a stronger promoter than hSYN 

promoter, as it restores more gems in transduced cells than hSYN.   

Considered together, the results of this chapter demonstrate that lentiviral vector-

mediated expression of hSMN1/ Co-hSMN1 can lead to the formation of gem-like 

structures in the nucleus of type I SMA fibroblast. It can likely rescue the SMA 

phenotype, as there is a relationship between the number of gems and the severity of 

SMA disease. Therefore, produced endogenous SMN protein is functional, and can 

interact with its normal cellular binding partners. Moreover, the results demonstrated 

an increase in the number of detected gems following a dose-dependent manner in all 

cases. Another finding of this chapter was the direct correleration between the 

expression of  SMN protein and the number of gems. A high level of SMN protein is 

required to restore gems. Therefore, any relevant factors for efficient SMN protein 

expression will also effect restoration of gems and the clinical severity of SMA 

disease. 
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Chapter 6 In vivo 
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6.1 Introduction 
 
The SMN1 gene produces the fully functional, full-length SMN protein that is essential 

for the survival of nearly all cell types. Genetic defects in the SMN1 gene and resulting 

depletion of SMN protein cause SMA. Increasing the levels of the full-length SMN 

protein through the replacement of the SMN1 gene or through the regulation of SMN2 

expression are two possible strategies for treating SMA disease. Recent evidence has 

demonstrated that SMA is a multi-system disorder. Liver, brain, blood vessels, heart, 

lung, bone, muscle, pancreas, motor neurons, and Schwann cells are organs and cells 

currently known to be affected by SMA (Hamilton & Gillingwater, 2013 and Hunter et 

al., 2016). Motor neurons are predominantly affected by SMA, however, the reason for 

motor neurons’ specific vulnerability to low levels of full length SMN protein is still 

unknown (Mulcahy et al., 2014). Thus, motor neurons are the main target in the 

majority of therapeutic studies. 

Lentiviral vectors are highly successful and efficient candidates for the delivery of the 

gene of interest for clinical application. Different studies have reported amelioration of 

several genetic diseases when lentiviral vectors were used to deliver the therapeutic 

genes (Philippe et al., 2006 and Yáñez-Muñoz et al., 2006). Transducing the spinal 

cord is a key factor to rescue the SMA phenotype, as motor neurons are most 

profoundly affected by SMA. To this end, one published study (Peluffo et al., 2013) 

and one unpublished study from the Prof. Yáñez’s lab have reported transduction of 

the spinal cord using lentiviral vectors. The unpublished study was carried out by Dr. 

Sherif Ahmed in Prof. Rafael J. Yáñez-Muñoz’s lab, and is currently being prepared 

for publication. It reported the complete transduction of the spinal cord for the first 

time. In this study, E16 mouse embryos had an intraspinal injection of IDLV 

expressing a marker gene (eGFP). Bio-distribution of delivered eGFP was assessed by 
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immunostaining of either whole spinal cord, or different sections of the spinal cord, 

and the results demonstrated strong eGFP expression up to 7 months after in utero 

administration. Expression of eGFP was sufficiently strong for fluorescence to be 

visible to the naked eye in whole harvested cords.  

Animal models of human disease can significantly clarify confusing issues of 

pathology and are useful tools for testing any potential treatments before applying 

them to human subjects. Mice have anatomical and physiological similarities to the 

human neuromuscular system, and it is fairly easy to manipulate the mouse genome, so 

these features make the mouse a great candidate to design an animal model for SMA 

(Sleigh et al., 2011). Mice have a single Smn gene, which is 82% identical to SMN1 at 

the amino-acid level. In addition, mouse and human SMN genes show a similar 

expression pattern (DiDonato et al., 1997). One of the most commonly used SMA 

animal models are so-called Taiwanese SMA mice. This model is very well established 

and is used by other researchers for preclinical studies (Glascock et al., 2012; Hunter et 

al., 2016; Lin et al., 2016; Passini et al., 2010; Powis et al., 2016; Tsai et al., 2008 and 

Valori et al., 2010). The Taiwanese-SMA mouse model was introduced in 2000 by 

Hsieh-Li et al. Each Taiwanese-SMA mouse carries two SMN2 copies per allele 

on Smn null background (Smn−/−SMNtg/tg) and pure FVB/N background. 

In the previous chapters, it was demonstrated that generated vectors are infectious and 

the transgene is efficiently expressed in the transduced, targeted cells. Moreover, the 

SMN protein produced from lentiviral vectors is fully functional and can restore gems 

in SMA type I fibroblasts. Thus, testing the developed lentiviral vectors in vivo was the 

natural extension to this work. 
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6.2 Aims of the chapter 
 
The experiments in this chapter were performed: 

(A) To establish the in utero delivery technology in the host laboratory 

(B) To study the transduction efficiency of generated vectors in vivo after 

intrauterine injection. 

(C) To perform a very preliminary investigation testing whether in vivo 

administration of viral vectors expressing either hSMN1 or Co-hSMN1 into 

the foetuses of an SMA mouse model could prevent or delay the disease 

onset. 

 

In utero SMN1 gene therapy work was carried out in Professor Thomas Gillingwater’s 

lab at the University of Edinburgh, in a collaboration with in utero expert Dr. Simon 

Waddington (University College London). This was the initial experiment of a long-

term collaboration, undertaken to: (i) provide initial training in in utero technology and 

behavioural studies for me and several Edinburgh colleagues; (b) perform an initial 

comparison of previously produced AAV vectors and the lentiviral vectors I 

manufactured; (c) compare the new transduction results with those previously obtained 

by former PhD student, now Dr. Sherif Ahmed, using eGFP lentivectors. The results 

that I present in this chapter are therefore the results of a pilot study, which did not 

allow for complete optimisation of the procedure. I would like to stress that this pilot 

experiment was carried out in close collaboration with several members of Prof. 

Thomas Gillingwater group, namely Dr. Ewout Groen, Dr. Rachael Powis and Miss 

Hannah Shorrock, who carried out a significant part of and taught me animal handling, 

behavioural studies and immunostaining of in vivo samples.   
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6.3 Summary of experiment and method 
 
Following the testing of produced lentiviral vectors in different in vitro models, a very 

brief pilot study was performed to assess the efficiency of delivery systems and 

delivered transgenes to rescue SMA pups or improve the SMA phenotype.  

The breeding strategy utilised in this study was developed by (Riessland et al., 2010). 

In this strategy, Taiwanese-SMA mouse model (Li et al., 2000), a homozygous SMN2 

transgenic Smn knockout mouse (Smn−/−; SMN2tg/tg) was crossbred with a 

heterozygous Smn knockout mouse (Smn+/−). 50% of the offspring were homozygous 

knockout for endogenous Smn (Smn–/–; SMN2tg/-) and the other 50% were heterozygous 

for Smn knockout (Smn+/–; SMN2tg/-). The Smn–/–; SMN2tg/- littermates were used as the 

SMA model in this study. These animals carry two copies of SMN2 gene on one allele 

on a null murine Smn background. Mice with a Smn+/–; SMN2tg/- phenotype were used 

as a control group: they have a copy of mSmn and two copies of SMN2. All animal 

procedures were performed under appropriate licences from the UK Home Office and 

were approved by an internal ethical review committee at the University of Edinburgh.  

Either 2 μL of lentiviral vectors (intraspinally) or 10-20 μL of adeno associated virus 

(intraperitoneally) were injected into E14-16 mouse embryos using a 33G needle and 

Hamilton syringe (for more details please refer to 2.6.4). A list of candidate vectors for 

the in vivo experiment is provided on the table below.  

 



242 
 

Table 6.1: The list of used viral vectors for in vivo experiment. 

Viral vectors qPCR titre  
 TU/mL 

Source 

IPLV-CMV- Co-hSMN1 3.20E+09  
 

These vectors were developed during this 
study. 

IDLV-CMV- Co-hSMN1 1.0E+09 
 

IDLV-CMV- eGFP 3.0E+09 
 

AAV9-CAG-hSMN1 7.61E+9 These two vectors were produced by Dr. 
María Gabriela Boza, former PhD student 
in Prof. Rafael J. Yáñez-Muñoz’s 
laboratory. 

AAV9-CAG- eGFP 6.42E+10 

AAV9-CMV- eGFP 1.0E+13 
 

This vector was provided by Prof. Tom 
Gillingwater’s group. 

 

To investigate the therapeutic effect of the delivered transgene on injected SMA pups, 

a set of measurements was performed daily to closely monitor therapeutic 

improvement. Pups were weighed daily and Kaplan-Meier survival analyses carried 

out as previously described (2.6.5.2). Righting reflex tests were performed to assess 

changes in neuromuscular function (for more details please refer to 2.6.5.1). 

Two weeks following vector transduction, the whole spinal cord, and the liver, heart 

and muscle (Gastrocnemius) were collected from mice killed by an intraperitoneal 

injection of sodium pentobarbital. Sequentially, one half of each tissue was fixed in 4% 

PFA and underwent immunohistochemical staining (for more details please refer to 

2.6.6 and 2.6.7) and the other half was stored in a -80oC freezer for future testing. 

Proteins from frozen tissues were extracted in RIPA buffer with 10% protease inhibitor 

cocktail for quantitative western blotting (for more details please refer to 2.6.6 and 

2.6.8). 
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6.4 Results  
6.4.1 Assessment of SMA rescue mice  
 
In this part of the study, a group of E14-16 mouse embryos was injected with either 

IPLV-CMV-Co-hSMN1, IDLV-CMV-Co-hSMN1 or IDLV-CMV-eGFP vectors via 

the intraspinal route. Another group of mouse embryos received intraperitoneal 

injections of AVV9-CAG-eGFP or AVV9-CAG-hSMN1.   

To examine potential physiological changes in SMA mice, each mouse pup was 

inspected daily and a record of animal weight and survival was made from the day of 

birth (P1) until the ending point of the experiment (two weeks) for further analysis.   

A common behaviour test to investigate therapeutic effects on neuromuscular function 

is the righting reflex test. This test was carried out from the day after birth (P2) and 

was performed every day by placing each pup in a supine position and measuring the 

time it took them to turn over and stably place all four paws on a flat surface (cut off 

time of 60s). The tester was blinded to the genotype of each mouse pup and type of 

injection. All analyses were conducted during the light period between 09:00 and 

11:00.  

The body weight in SMN- or GFP-treated animals was compared to control animals 

(Figure 6.1A,  6.2A and 6.3A). The result of this comparison did not show an increase 

in body weight or an improvement in weight gain patterns of animals treated with 

SMN, versus those animals treated with GFP. The survival rate of SMN-treated SMA 

animals was compared with GFP- treated SMA animals and the control group (Figure 

6.1B,  6.2B and 6.3B)). The result of this comparison demonstrated that survival in 

SMN–treated animals was not greater than survival in the untreated animals. 

Furthermore, analysis of the righting ability of animals revealed that SMN/ GFP-

treated SMA animals cannot right themselves as quickly as control group animals 
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(Figure 6.1C,  6.2C and 6.3C)). Moreover, righting ability in SMN-treated SMA 

animals did not improve over GFP-treated SMA animals.  
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Figure 6.1: Effect of a single intraperitoneal injection of AAV expressing either 
hSMN1/eGFP on life span, body weight and righting reflex in SMA mice model. 

E14-16 SMA mice embryos were injected with AAV9-CAG-hSMN1/eGFP via 
intraperitoneal route. Analysis of body mass, survival and righting reflex assay was 
performed to assess the therapeutic effect of injection.  
(A) Growth curve demonstrated control pups have a continuous growth curve while 
treated SMA mice do not continue to gain body mass.  
(B) Kaplan Meier analysis reveals that lifespan did not improve in treated-SMA 
animals.  
(C) Righting ability shows that injected SMA-pups cannot right themselves similarly 
to wild type animals (control). SMA-treated animals did not show any therapeutic 
effects. 
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Figure 6.2: Effect of a single intraspinal injection of IPLV-Co-hSMN1 on life 
span, body weight and righting reflex in SMA mouse model. 

In order to assess the therapeutic effect of novel codon-optimised hSMN1 transgene, 
mice were injected in utero with IPLVs carrying Co-hSMN1 via intraspinal route. To 
determine a potential change in phenotype of these mice, different analyses were 
performed on wild type animal (control) and SMA animal.  
(A) No increase in body weight was observed in SMA-mice treated with therapeutic 
integrating vectors.  
(B) IPLV-Co-hSMN1 delivery in SMA animals does not increase life span for these 
animals.  
(C) In agreement with two other tests, SMN-treatment did not improve the 
performance of mice on the righting test. The survival, pattern of weight gain and 
righting ability in the SMA- animal group that received therapeutic transgene was 
similar to the SMA pups with no therapeutic injection (SMA-AAV9-CAG-eGFP).  
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Figure 6.3: Effect of a single intraspinal injection of IDLV-Co-hSMN1 on life 
span, body weight and righting reflex in SMA mice model. 

Daily inspection of the weight, survival and righting ability of animals that had an in 
utero injection of IDLV-CMV-Co-hSMN1 determined the existence and extent of any 
therapeutic benefits. The collected data was plotted for analysis, and the results were 
compared between the different groups.  
(A) Weight curves of the four groups of mice highlight the weight gain pattern of 
SMA-AAV9-CAG-hSMN1, which follows the same pattern as the SMA group that 
was not injected with therapeutic vector.  
(B) A comparison of lifespans determined that in utero injections of therapeutic vector 
(AAV9-CAG-hSMN1) did not extend the lifespan of SMA animals.  
(C) Righting time was assessed by measuring the required time for a pup to turn over 
after being placed on its back. Therapeutic injection did not show any improvement in 
the righting ability of SMA- animals.   
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6.4.2 Gene expression pattern  
 
Unfortunately, there was no sign of therapeutic effect on treated mice, or even a trend 

to improvement in SMA phenotype. Therefore, the mice were killed at the clinical end 

point when they reached 20% weight loss or they showed a clear downward trend. 

Heart, liver, muscle (Gastrocnemius) and spinal cord of the animals were harvested to 

investigate whether there was any transgenic expression from delivered vectors. The 

bio-distribution of the transgene product was studied using immunostaining or western 

blotting. A full description of tissue harvesting, immunostaining or western blotting 

procedure was provided in section 2.6.6, 2.6.7 and 2.6.8 respectively.  

Figure 6.4 and  6.5 show the detection of SMN protein in the spinal cord and muscle of 

both SMA and control group animals that had been injected with IPLV/ IDLV-Co-

hSMN1 or AAV9-eGFP, respectively. The corresponding Western blot results (Figure 

6.6 and  6.7) detected SMN protein in animals that had been treated with AAV9- SMN/ 

eGFP. SMN protein was detected in all samples, however, quantification of western 

blot results demonstrated that there was no noticeable difference of SMN levels 

between SMA animals regardless of the vector received; the same was true for control 

animals. Figure 6.8 presents eGFP expression in the spinal cord and muscles of the 

control group and SMA animals that had been injected with AAV9-eGFP. eGFP 

expression was detected only in muscle tissue.  

Immunostaining (Figure 6.9) was performed to study the presence of eGFP and SMN 

in the spinal cord, heart and liver of SMA animals. To test eGFP expression, the 

animals were injected with either AAV9-CAG-eGFP or AAV9-CMV-eGFP. The 

expression of eGFP was only detected in the heart and liver of SMA animals that had 

been treated with AAV9-CMV-eGFP. SMN expression was observed in the spinal 

cord, heart and liver of SMA animals that had been treated with AAV9-CMV-hSMN1. 
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eGFP expression was also observed in the transduced spinal cord of SMA animals that 

had been injected with IDLV-CMV-eGFP (Figure 6.10). SMN expression was detected 

in the spinal cord of animals that had been injected with IPLV/IDLV-CMV-Co-hSMN1 

(Figure 6.10).  
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Figure 6.4: Transgene expression in the spinal cord following in vivo viral vector 
administration. 

Western blot analysis showing the presence and quantification of SMN protein levels 
in spinal cord of injected wildtype control and SMA mice killed two weeks after birth. 
These animals had an in utero injection of IPLV/ IDLV- CMV-Co-hSMN1 (intraspinal 
injection) or of AAV9-CAG-eGFP (intraperitoneal injection). Spinal cord tissue 
proteins were solubilised and run on a 12% polyacrylamide gel and blotted. The blots 
were then washed and probed with anti SMN antibody to detect SMN protein (~ 35 
kDa) and α-tubulin antibody to detect α tubulin protein (~ 55 kDa). The α tubulin 
protein was used as loading control. The animals injected with AAV-CAG-eGFP were 
used as a control and displayed the expected level of SMN protein in wild type and 
SMA mice.  
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Figure 6.5: SMN expression in muscle following in vivo viral vector 
administration. 

SMN expression in the muscle of two week-old CD1 mice. These animals received an 
in utero injection of either IPLV/ IDLV- CMV-Co-hSMN1 (intraspinal injection) or of 
AAV9-CAG-eGFP (intraperitoneal injection). Muscle tissue proteins were solubilised 
and run on a 12% polyacrylamide gel and blotted. The nitrocellulose-membrane was 
incubated with anti SMN antibody to detect SMN protein (~ 35 kDa) and α-tubulin 
antibody to detect α tubulin protein (~ 55 kDa). Animals injected with nontherapeutic 
vectors (AAV9-CAG-eGFP) were used as control and displayed the expected SMN 
expression pattern for wild type and SMA mice.  
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Figure 6.6: Identification of SMN expressing in spinal cord tissue by western 
blotting. 

This figure shows representative western blotting from the spinal cord tissues of two-
week-old mice. Control and SMA mice received an in utero injection of AAV9-CAG 
expressing either wild type hSNM1 transgene or eGFP via intraperitoneal route. 
Protein lysates of harvested spinal cord tissues were resolved by 12% SDS-PAGE. The 
nitrocellulose-membrane was incubated sequentially with anti SMN antibody to detect 
SMN protein (~ 35 kDa) and α-tubulin antibody to detect α tubulin protein (~ 55 kDa). 
The animals injected with AAV-CAG-eGFP acted as a control and displayed the 
expected level of SMN protein in wild type and SMA mice.  
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Western blot analysis demonstrating the presence and quantification of SMN protein 
levels in muscles of injected wildtype (control) and SMA mice killed two weeks after 
birth. These animals had an in utero intraperitoneal injection of AAV9-CAG-eGFP/ 
hSMN1. Muscle tissue proteins were solubilised and run on a 12% polyacrylamide gel 
and blotted. The blots were then washed and probed with anti SMN antibody to detect 
SMN protein (~ 35 kDa) and α-tubulin antibody to detect α tubulin protein (~ 55 kDa). 
The α tubulin protein was used as a loading control. The animals injected with AAV-
CAG-eGFP were used as a control and displayed the expected level of SMN protein in 
wild type and SMA mice. 
 
 

Figure 6.7: Western blot quantifying SMN expression from mice muscle. 
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Bio-distribution of eGFP expression in mice following an intraperitoneal injection of 
AAV9-CAG-eGFP at embryonic stages (E14-16). Western blot analysis showing the 
presence of eGFP protein in muscle and spinal cord of mice culled two weeks after 
birth. Proteins extracted from the harvested tissues were used to verify eGFP 
expression. 30 μg of extracted protein was loaded into each well. The membrane was 
incubated sequentially with the appropriate primary and secondary antibodies. 

Figure 6.8: Western blot quantifying eGFP production from muscle and spinal 
cord.  
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Figure 6.9: Detection of eGFP and SMN in lumbar spinal cord, heart and liver 
tissue in SMA mice following in vivo AAV9 administration. 

Tissues from vector-recipient foetuses were harvested when animals were 14 days old. 
These animals received the viral vectors using in utero intraperitoneal injection. This 
figure shows the schematic representation of eGFP or SMN expression in the lumbar 
spinal cord, heart and liver of SMA mice. Tissue sections were stained by 
immunohistochemistry with antibodies against eGFP or SMN. Scale bars = 50 μm.  
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Figure 6.10: Lentiviral vector mediated eGFP/Co-hSMN1 expression in mice 
lumbar spinal cord. 

Harvested lumbar spinal cord from two-week old SMA mice were treated for eGFP or 
SMN immunofluorescence. These animals received the viral vector at embryonic stage 
via in utero intraspinal injection. Scale bars = 50 μm 
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6.5 Discussion 
 
The majority of gene addition approaches published in the SMA therapy field rely on 

the use of AAV vectors to deliver SMN1 gene to SMA animal models (Dominguez et 

al., 2011; Foust et al., 2010; Meyer et al., 2015 and Valori et al., 2010). The AAVs 

demonstrate a high potential in the gene therapy field, and they have been used 

intensively for pre-clinical research. One challenge of using AAV is pre-existing 

immunity against this viral vector. Manno et al., 2006 and Mingozzi et al., 2007 are 

two studies that reported an immune response against the AAV in humans. The only 

experiment that used lentiviral vectors to deliver the SMN1 gene to an SMA mouse 

model was carried out by Azzouz and his collegues in 2004. Azzouz’s study was a 

postnatal study, and the animals received the vectors using intramuscular injections.  

The time of injection is a crucial factor, and is one of the limitations of current SMA 

strategies in achieving an effective treatment for SMA. Foust et al., 2010 demonstrated 

that intravenous administration of 5 × 1011 genomes of scAAV9-SMN on the first 

postnatal day led to partial amelioration of SMA symptoms. Therefore, there could be 

advantages to using prenatal gene therapy strategies to overcome limitations of 

ameliorated disease-related phenotypes in postnatal and current SMA therapies. 

Moreover, prenatal gene therapy has many benefits over postnatal delivery, such as the 

prevention of persistent and adequate transgene expression, pre-emption of the 

immune response, avoidance of the onset of disease and immune tolerance to the 

transgenic product (Waddington et al., 2005). Phenotypic correction of a number of 

genetic diseases using in utero gene delivery strategy has been reported (Dejneka et 

al., 2004b; Rucker et al., 2004; Seppen et al., 2003 and Waddington et al., 2004). 

Therefore, this brief in vivo experiment was designed to use in utero injection as an 

attractive technique to deliver the vectors at early stage of life.  
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Dr. Sherif Ahmed carried out a previous, related experiment in Dr. Yáñez’s laboratory. 

In this study, Dr. Sherif Ahmed aimed to optimise the route of injection for prenatal 

delivery and he compared scAAV9 and IDLVs in terms of transduction efficiency of 

motor neurons. His result showed that out of the three different investigated routes, 

which were intraspinal, intracranial, and intravascular, intraspinal injection 

demonstrated robust eGFP expression along the entire spinal cord. In addition, IDLVs 

vectors were documented to be more efficient viral vectors over scAAV9 for 

transducing spinal cord motor neurons.  

Further discussion with Dr. Simon Waddington, suggests that intraperitoneal injection 

of lentiviral vectors does not lead to transduction of motor neuron cells, which are the 

cells most profoundly affected by SMA disease. However, intravenous administration 

of lentiviral vector pseudotyped with rabies envelope enables transgene delivery to 

neurons. Intraperitoneal administration of AAV9 can efficiently deliver the gene of 

interest into the central nervous system, and the peripheral nervous system, possibly by 

transcytosis across the endothelium and astrocytic end-foot processes (personal 

communication from Dr Simon Waddington). Other studies demonstrate that 

intravenous delivery of AAV9 vectors mediates effective gene expression in the brain 

and spinal cord (Duque et al., 2009 and Foust et al., 2009).  

The lentiviral vectors that were used in the previous prenatal experiment expressed 

eGFP as a transgene. Therefore, in order to produce a potential therapeutic vector for 

SMA (the main aim of this study), it was indispensable to change reporter transgenes 

(eGFP) into the clinically relevant hSMN1 transgene. A large variety of lentiviral 

vectors were developed and tested in different in vitro models during this study. The 

outcomes of in vitro experiments revealed that produced vectors are able to transduce 

growth arrested CHO cells, primary cortical and motor neurons and transduced cells 
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produced full length SMN protein. Moreover, the SMN protein produced was fully 

functional and, as it could restore gems in SMA fibroblasts, was able to bind with its 

binding partners. Thus, this research was then extended by testing the produced vectors 

in a very brief pilot study of gene therapy in SMA mouse model.   

The most efficient lentiviral vectors based on the result of in vitro experiment 

(IPLV/IDLV-CMV-Co-hSMN1) were tested in this pilot in vivo experiment. The 

AAV-CAG-hSMN1 was included in this experiment in order to compare the efficiency 

of AAV and lentiviral vectors in the rescue of SMA. In addition, two different vectors 

(IDLV/AAV-eGFP) carrying eGFP were used in this experiment as control vectors. 

The vector of interest was injected into mouse embryos (E14-16), and the injected 

animals were monitored over time and a record of survival and weight progression of 

each animal was made in order to investigate the improvement in SMA phenotype. 

Righting reflex was also performed to assess improvement of neuromuscular function. 

There was no improvement in survival time, body weight or motor movements of 

injected Taiwanese SMA mice, regardless of the vector used. The results of assessment 

of treated SMA mice indicated that the vectors delivered failed to ameliorate the 

phenotype in the SMA mice model, although based on other publications, it was 

expected that the delivered transgene would improve the SMA phenotype in injected 

animals (Dominguez et al., 2011; Foust et al., 2010; Meyer et al., 2015 and Valori et 

al., 2010). Therefore, additional tests were carried out to investigate the expression 

pattern of the delivered transgenes. A very limited amount of harvested tissue was 

analysed using immunostaining and western blotting.  

The expression pattern was investigated in animals injected with AAV-CMV-eGFP 

and the result demonstrated the detection of eGFP expression only in muscle, heart and 

liver. No eGFP was observed in spinal cord, although other studies reported the 
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intensive expression of eGFP in different organs such as the spinal cord, eye, liver, 

kidney and heart of animals that had an intravenous injection of AAV9 carrying the 

reporter gene (eGFP) (Mattar et al., 2015 and Rahim et al., 2011). 

Immunostaining of the spinal cord apparently showed some over-expression of SMN, 

however it is unclear in these images whether the signal is due to a high level of blood 

vessel autofluorescence. Detection of SMN was investigated by western blotting and 

the result demonstrated a very small increase in the level of SMN protein production in 

some samples over control samples. However, based on the results of in vitro 

experiments performed during this study and other publications, it would have been 

expected to achieve a significant increase in the level of SMN protein production in the 

injected animal.  

Despite the efforts taken to investigate the reason for experimental failure, it is not 

clear what caused the failure of this pilot, in vivo experiment. Of note, the outcomes of 

this pilot study do not reflect the results of previous experiments conducted in our 

laboratory by Dr. Sherif Ahmed, as the procedure was not fully optimised in the 

current experiments. However, the experiment was successful in terms of establishing 

the technology, lack of treatment-related adverse events in the injected animals and 

determining further optimisation and training requirement to carry out a fully 

optimised experiment, to investigate the therapeutic effect of the viral vectors on SMA 

mice. 

A number of suggestions were made as to how this in vivo work could be used for 

further work, in order to optimise the experiment. The volume of viral vectors that can 

be injected into the spinal cord of the foetuses using intraspinal injection is small (2 

μL), so having high titre vector stock should be beneficial, as more viral vector 
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particles carrying the gene of interest can be transferred to the host. Moreover, a 

conclusion on how forthcoming in utero experiments need to be carried out has been 

made with our collaborators, Prof. Gillingwater and Dr. Waddington. The agreement is 

to develop a standard vector, which is designed to express Co-hSMN1 under the 

control of a hybrid CMV enhancer/chicken-β-actin promoter (CBA). This vector 

would be comparable to the AAV vectors that are used in the latest gene transfer 

clinical trial for SMA (Clinicaltrials.gov identifier NCT02122952). The production of 

a standard vector (AAV9-CBA-Co-hSMN1) and a control vector (AAV9-CBA-eGFP) 

has been carried out by Atlantic Gene Therapies and the vectors will be used in the 

near future.  
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Chapter 7 Final discussion and Conclusions  
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7.1 Discussion 
 
Gene therapy is a technology that allows the modification of gene expression patterns 

for therapeutic purposes. One possible strategy is so-called gene addition, which 

involves the introduction of transgenes for therapeutic purposes. Gene therapy has 

considerable potential when treating diseases that are traceable to a single defective 

gene. The theoretical basis for gene addition therapy is that a normal, healthy copy of 

the defective gene transferred into the appropriate cells of the host should be therapeutic 

in the case of recessive disorders. Therefore, the efficient delivery of therapeutic genes 

and appropriate gene expression are critical requirements for the development of an 

effective treatment base of gene therapy (Campbell et al., 2008 and Walther & Stein, 

2000). The study of different types of viruses has led scientists to use engineered 

versions of these viruses as gene delivery vehicles, because of their capacity to 

successfully transfer the gene of interest into recipient cells.   

Over the last few decades, intense efforts have been made to understand how different 

viruses and viral vectors interact with the infected host on a molecular level, in order to 

develop efficient and safe vectors. The majority of clinical gene therapy trials worldwide 

are designed to deliver their transgene of interest using viral vectors derived from 

adenovirus, adeno-associated virus, poxvirus, retroviruses and herpesvirus (Mancheño-

Corvo & Martín-Duque 2006 and Thomas et al., 2003).  

Each vector system has its own properties, strengths and weaknesses. Thus, depending 

on the nature of different diseases, different therapies need to be developed. For instance, 

in some cases long or short-term gene transfer is required, and in others, regulated gene 

delivery might be necessary. In some cases, widespread or localised gene transfer is 

required to develop a particular treatment for a given disease. Therefore, different viral 

vectors have to be developed in order to design individual therapies according to the 
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nature of the disease (Stone, 2010). Among different viral vectors systems, lentiviruses, 

a genus of retroviruses that includes HIV, have been widely used as delivery system. 

Lentiviral vectors have interesting properties, such as the ability to transduce different 

types of cells, including quiescent cells, reduced immunogenicity upon in vivo 

administration, stable gene expression, a lack of prior immunity, and an ability to be 

pseudotyped with various envelope proteins, which means that alternative envelopes can 

alter vector tropism. Another feature of lentiviral vectors is that they can integrate into 

the genome of the host cell and can be duplicated along with the host DNA during the 

synthesis phase of the cell cycle. Unfortunately, integration carries a risk of insertional 

mutagenesis at the integration site (Sakuma et al., 2012 and Wanisch & Yáñez-Muñoz, 

2009). The first reported insertional mutagenesis in humans, involving retroviral vectors, 

occurred in a SCID-X1 gene therapy trial (Hacein-Bey-Abina et al., 2003). Intensive 

study of the genome and analysis of integration strategies of lentiviral vectors led to the 

development of a number of strategies to minimise the risks posed by genomic 

integration. These included the use of viral vectors with a safer integration pattern, the 

use of self-inactivating vectors and finally the design of integration-deficient lentiviral 

vectors in an effort to combat the problems caused by integration of viral DNA into the 

host-cell genome. IDLVs, which were developed by using class I IN mutations, most 

commonly involving an amino acid change at position D64 within the catalytic core 

domain, are the most frequently used type of retroviral non-integrating vectors 

(Apolonia et al., 2007; Leavitt et al., 1996 and Yáñez-Muñoz et al., 2006). Lentiviral 

vectors were successfully employed for gene therapy purposes (Aiuti et al., 2013; Biffi 

et al., 2013; Cartier et al., 2009; Cavazzana-Calvo et al., 2010 and Palfi et al., 2014). 

SMA is caused by mutation or deletion of the SMN1 gene. Low levels of the ubiquitous 

protein SMN are associated with a range of systemic pathologies reported in affected 
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individuals (Lefebvre et al., 1995 and Szunyogova et al., 2016). The principle of 

developing therapies for SMA is based on four different strategies: SMN1 gene 

replacement, modulation of SMN2 encoded full length SMN protein levels, 

neuroprotection, and targeted improvements of muscle strength and function (Farrar et 

al., 2016). More than 20 years have been dedicated to understanding the disease 

pathogenesis, and developing an appropriate and effective therapy, and until very 

recently, no approved treatment options were available. However, on December 23, 

2016, the U.S. Food &Drug Administration (FDA) approved Spinraza (nusinersen) as 

the first marketed drug for SMA. On June 1, 2017, the European Union granted Spinraza 

a marketing authorisation. This drug is an antisense oligonucleotide that increases the 

production of full-length SMN protein by modulating the splicing of SMN2 pre-mRNA 

transcripts to improve inclusion of exon 7. The results of clinical trials of this drug 

demonstrated impressive achievements in several treated cases, albeit not all, and 

showed significant improvements in motor function (Finkel et al., 2016). Additionally, 

it should be noted that an ongoing phase 2 clinical trial, is making promising progress 

towards developing a therapy for SMA (Clinicaltrials.gov identifier NCT02122952).  

As previously stated, one of strategies for developing an effective treatment for SMA is 

to provide a functional copy of the SMN1 gene to replace the defective gene and increase 

the level of full length SMN protein. This strategy has been used by other researchers, 

and while they demonstrated positive results toward achieving an effective treatment for 

SMA, none of them were able to successfully effect a complete rescue of the SMA 

animal model (Dominguez et al., 2011; Foust et al., 2010; Le et al., 2011; Mendell et 

al., 2016 and Valori et al., 2010).  

Having an optimised system can significantly reduce the amount of injected vectors 

required to maintain transgene expression and lead to sufficient levels of protein 
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production. Therefore, this study is aimed at optimising lentiviral vectors, which may be 

useful in developing a therapeutic viral vector for SMA.  

The level of SMN protein is a key factor in developing an effective treatment for SMA, 

thus in this study different factors were studied to optimise and develop a possible 

lentiviral vector. Different factors can play a role in optimising the expression system, 

such as type of vectors, promoter, transgene and other sequences affecting transcription 

or translation. The first chapter of this thesis was devoted to producing and titrating a 

wide variety of IPLVs and IDLVs. These viral vectors expressed the transgene of interest 

under the control of either CMV or hSYN promoters. Another relevant factor for 

efficient protein expression is the type of transgene, so a novel codon-optimised Co-

hSMN1 was developed in the context of this project to study the effect of a sequence-

optimised transgene on protein production. Finally, a mutated mWPRE sequence was 

added to promote mRNA stability and nuclear export. The generated vectors were tested 

in a variety of quiescent cell culture models. The outcome of the experiments 

demonstrated that the lentiviral vectors generated efficiently transduce different cells 

and express the gene of interest.   

The promoters chosen for this study were two strong viral promoters, CMV and hSYN, 

which additionally are effective in IDLVs (Yáñez-Muñoz et al., 2006 and Lu-Nguyen et 

al., 2014). CMV is one of the strongest promoters for recombinant protein expression in 

mammalian cells, and it has been widely used in the biomedical field (Andersen et al., 

2011). The other promoter, hSYN, is another strong promoter in its own right (Kügler 

et al., 2003). The expression of different hSMN1 transgenes was studied under control 

of these two promoters and the result of in vitro experiments revealed that the CMV 

promoter directed the most robust transgene expression from lentiviral vectors. This 

finding was in agreement with other studies (Gascón et al., 2008 and Palfi et al., 2014). 
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Another important subject that needed to be considered for developing a potential 

expression system to target SMA disease was that SMA is not only a motor neuron 

disease. Many other cells and organs are reported to be affected by low levels of SMN 

protein in SMA (Hamilton & Gillingwater, 2013 and Szunyogova et al., 2016). 

Therefore, it would make perfect sense to choose a promoter like CMV, which can 

mediate gene expression in a remarkably broad range of cells within its host, rather than 

a relatively specific promoter such as hSYN, whose strongest expression is limited to a 

particular lineage. hSYN would be a good candidate if the target of the disease is limited 

to the central nervous system, however, an effective treatment for SMA must transduce 

a broad range of organs and cells, as SMN protein is essential for nearly all cell types. 

For viral-vector based gene therapy to be clinically applicable, the biosafety of viral 

elements should be pre-determined. WPRE is a hepadnavirus sequence, which is widely 

used in retroviral gene transfer vectors. This element contains the promoter for the 

woodchuck hepatitis virus X protein (WHX) and an open-reading frame encoding a 

truncated peptide of the WHX. In most gene transfer vectors, the wild-type WPRE has 

the potential for transcriptional and translational activity, but it has also been associated 

with expressing unnecessary viral components in host cells which could result in toxicity 

or certain mechanisms of immune recognition (Zanta-Boussif et al., 2009). For this 

reason, a mutated mWPRE (mWPRE) region is more commonly used, as it prevents 

these possibilities without having any other effect in its capacity to improve cell 

transduction. mWPRE region contains six-point mutations, five of which are in the 

putative promoter region, while one lies at the start codon of X protein ORF. Zanta-

Boussif et al., 2009 established that mWPRE efficiently reduces undesirable possibility 

and translation of a WHX polypeptide while having an equivalent level of transgene 

expression in vitro and in vivo over longer periods of time, compared to the wild-type 
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WPRE. Moreover, the promoter activity is not compromised by the mutations (Zanta-

Boussif et al., 2009 and Zufferey et al., 1999). Since mWPRE improves vector biosafety, 

it can facilitate the use of lentiviral vectors for clinical applications. From the outset, this 

project replaced wild-type WPRE from lentiviral backbone with mWPRE. All lentiviral 

vectors in this project were therefore designed to carry mWPRE sequences. 

In order to improve expression from the developed lentiviral vectors, it is possible to 

optimise the transgene sequence. A so-called codon-optimised version of the hSMN1 

transgene that potentially increases expression has been reported (Valori et al., 2010). 

In the context of this thesis, a novel codon-optimised version of the hSMN1 transgene 

was developed. Codon-optimisation originally referred to the use of optimum codons for 

each amino acid, but sequences detrimental for gene expression are also eliminated. 

Comparing the protein production values obtained with the vectors expressing the 

codon-optimised and the wild-type hSMN1 transgene, demonstrated that regardless of 

vector and promoter type, the Co-hSMN1 transgene expresses more full-length SMN 

protein than any other type of hSMN1 transgene. Therefore, codon optimisation had a 

positive effect on the transgene expression system, and could be applied to improve 

expression from transduced cells. These results are in accordance with other studies 

(Fath et al., 2011; Graf et al., 2004 and Valori et al., 2010) 

During this study, lentiviral vectors were produced in two forms; integrating and 

integration-deficient, in order to compare levels of transgene expression from integration 

vectors with non-integrating counterparts. To complete this task, each in vitro model 

was transduced with the same MOI of an integrating vector and its IDLV counterpart. 

In short, all elements such as promoters, MOI of transduction and transgene were kept 

the same, and the only difference was the integration proficiency of the lentiviral vector. 

Therefore, the result of these experiments determined whether transgene expression was 
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different between IPLV or IDLV or not. The results of different transductions in a variety 

of in vitro models was taken into account, and it was possible to conclude that regardless 

of the promoter and transgene used, IDLVs generally expressed at lower levels than the 

IPLVs in the models used in the current work. The production of protein is expected to 

be linked to transcriptional activity, so the conclusion is that IDLVs have lower 

transcription activity compared to IPLVs. This result correlates with other studies 

(Apolonia, 2009 and Sakuma et al., 2012). 

Although IDLVs demonstrated lower transgene expression than IPLVs, they still 

displayed significant expression levels and could potentially be a safer option for 

therapeutic applications. IDLVs preserve the transduction efficiency of the wild-type 

lentiviral vectors (IPLVs), while providing expression of the gene of interest without 

viral integration into the host genome, thus reducing the potential risk of insertional 

mutagenesis. This project demonstrated that different relevant factors could be optimised 

to increase the level of SMN protein. IDLVs could benefit greatly from the optimisation 

approach and could reach the therapeutic threshold while also being safer vectors. 

Whether optimised IPLVs or IDLVs have reached or express above the therapeutic 

threshold, needs to be determined by testing in vivo models. 

The main aim of this project is to develop a potential therapeutic vector: therefore, 

demonstrating whether the virally expressed SMN protein interacts with established 

partners of SMN is vital. Thus, this project was designed to examine whether delivery 

of the gene encoding SMN protein to type I SMA fibroblasts derived from human 

patients can lead to restoration of gems, which are absent or nearly absent in patients 

with severe SMA (Coovert et al., 1997 and DiDonato et al., 2003). Transduced cells 

using IPLV/IDLV-mediated gene delivery revealed that full length SMN protein could 

be efficiently expressed in transduced fibroblasts, and could lead to restoration of gems 
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and thus rescue an aspect of the SMA phenotype. In some cases, the detected number of 

gems in a transduced cell was equal to or greater than that found in a control fibroblast 

cell. These results are in accordance with previous studies (Azzouz et al., 2004; 

DiDonato et al., 2003 and Valori et al., 2010). The number of detected gems indicated 

that lentiviral vectors express a high level of SMN protein, as there is a direct relation 

between the two. The highest number of gems was detected in the cells that received Co-

hSMN1. This finding further proves that using a codon-optimised version of hSMN1 

transgene can produce higher levels of SMN protein than wild type hSMN1. The results 

of chapter 5 demonstrated that the SMN protein produced is fully functional and 

lentiviral vectors encoding the SMN cDNA can rescue this SMA phenotype in an in vitro 

model. 

Moreover, the results of in vitro experiments have demonstrated that by increasing the 

vector dose, it is possible to produce more SMN protein, and to form more gems, as 

shown in Chapters 4 and 5 respectively. It is important to note that the enhanced 

transduction observed here, resulting from optimisations and increased MOIs, was 

achieved without any obvious toxicity or changes in cell morphology. 

The successful results from the initial in vitro experiments led us to further test the most 

efficient vectors in an in vivo model, in order to assess their efficiency in rescuing a 

severe mouse SMA phenotype. The reported therapeutic impact on SMA mouse models 

has demonstrated that the time of delivery of the SMN1 transgene is critical to develop 

an effective treatment. Early postnatal injection of viral vectors encoding SMN1 cDNA 

demonstrated a limited capacity to ameliorate disease symptoms (Foust et al., 2010 and 

Kariya et al., 2014). Moreover, it has been suggested that in utero injection may have 

advantages over postnatal delivery, as certain diseases with early onset, such as SMA, 

could benefit greatly from a foetal gene therapy strategy to overcome the current 
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limitations of conventional gene therapy approaches (Waddington et al., 2005). In the 

last stages of the current work, a very brief pilot study was designed to test the viral 

vectors encoding either hSMN1 or Co-hSMN1 in the Taiwanese SMA mouse model. 

This was our first attempt at performing in utero gene therapy with our colleagues in 

Edinburgh University. Unexpectedly, the outcome of the study did not reveal any 

improvement of the SMA phenotype in hSMN1/Co-hSMN1-treated mice, using AAV9 

with the former or IPLD /IDLV vectors with the latter. Analyses of tissue harvested post-

mortem, particularly from control injections performed using eGFP-encoding vectors, 

demonstrated that expression of the delivered genes was low or absent in some cases. 

The failure to improve the phenotype was therefore subsequent to poor transgene 

expression results. As the same vector stocks had been effective in tissue culture studies, 

we conclude that our initial set of in utero experiments has been unsuccessful for 

technical reasons. In utero intraspinal and intraperitoneal injections are a notoriously 

difficult technique, involving complex surgery and the delivery of the vectors by 

injection through the uterine wall. Relatively low levels of transgenic expression of 

eGFP were observed in some cases, indicative of successful transduction but of limited 

extent. What the experiments did confirm was our ability to perform the surgical 

procedures, inject and maintain viability of the injected dams and fetuses. Further 

experiments will be undertaken in the near future, including the use of an AAV9 vector 

encoding a CBA-driven Co-hSMN transgene, which we expect to set a standard for 

transgenic expression of SMN1 in our future work. 

In conclusion, the development of the aforementioned optimised lentiviral vectors has 

significantly improved expression of the transgene and could possibly become an 

excellent system for SMN-targeted therapy. A combination of optimised vectors and in 

utero injection may result in improvements to the therapeutic impact of lentiviral vector-
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mediated SMA gene therapy. However, more studies are required to determine the 

therapeutic effect of the generated vectors in an SMA animal model. 
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7.2 Conclusions 
 
 The results of this thesis support the following conclusions: 

• Novel lentiviral transfer plasmids were produced encoding the following 

transgenes: hSMN1, hSMN1-CtF, hSMN1-NtF and Co-hSMN1. 

• IPLVs and IDLVs were produced, with qPCR titres in the range of 1.01×108 to 

2.89×1011 vector genomes/mL. 

• Both IPLV and IDLV configurations encoding SMN1 variants are efficient at 

transducing various growth-arrested or quiescent cell types in vitro. 

• Generally, IPLVs demonstrated higher expression levels compared with their 

IDLV counterparts. 

• Codon (sequence)-optimisation had a clear positive effect on SMN1 transgene 

expression and led to increase levels of full-length SMN protein in transduced 

cells with both IPLVs and IDLVs. 

• The CMV promoter drove higher levels of transgene expression than the hSYN 

promoter for both SMN1 transgenes and IPLV/IDLV integration configurations. 

• Levels of full length SMN protein increase in a vector dose-dependent manner in 

quiescent cells in culture.  

• Transgenic production of SMN protein in type I SMA fibroblasts leads to 

significantly increased, dose-dependent levels of gems with both IPLVs and 

IDLVs. 

• A preliminary in vivo experiment showed that surgical in utero delivery of 

AAV9, IDLVs or IPLVs encoding either eGFP or SMN1 variants is well-

tolerated by Taiwanese SMA mice and wild-type littermates. 
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• Further experiments are required to determine the optimum viral vector for SMN1 

delivery in SMA.  
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List of appendix 
Appendix 1: list of biochemical reagents and kits 
 
1× Phusion HF Buffer (Thermo Fisher Scientific, Germany)  
30% Acrylamide/Bis-acrylamide (Sigma, UK) 
4’,6-diamino-2’-phenylindole dihydroclhoride (DAPI) (Sigma, UK) 
Acid hydrochloric (HCl) (Sigma, UK) 
Agarose (Sigma, UK) 
Ammonium persulfate (Sigma, UK) 
Ampicilin (Sigma, UK) 
Antarctic phosphatase and corresponding buffer (New England Biolabs, UK) 
β- mercaptoetanol (Sigma, UK) 
B27 supplement without vitamin A 50X (Invitrogen, UK) 
Bacteriological agar (Sigma, UK) 
Bromophenol blue (Sigma, UK) 
Bovine serum albumin (BSA) (Sigma, UK) 
Calcium chloride (CaCl2) (Sigma, UK) 
Dimethyl sulfoxide (DMSO) (Sigma, UK) 
DMEM high glucose with stable glutamine (PAA, UK) 
DMEM, high glucose, no glutamine, no methionine (Life Technologies, UK) 
DNA ladder (New England Biolabs, UK) 
DNAse I (Promega, UK) 
dNTPs (Thermo Fisher Scientific, Germany) 
Ethanol (Sigma, UK) 
Ethidium bromide (Sigma, UK) 
Ethylenediaminetetraacetic acid (EDTA) (Sigma, UK) 
EthyleneGlycol (Sigma, UK) 
FACs Flow solution (BD Biosciences, UK) 
FACs Rinse solution (BD Biosciences, UK) 
FACS shutdown solution (BD Biosciences, UK) 
Fetal Bovine serum (FBS) (Life Technologies, UK) 
Fibroblast growth factor 2 FGF2 (Miltenyi, UK) 
Gel loading dye (Bioline, UK)  
Gentamicine (Life Technologies, UK) 
Glutamax (Life Technologies, UK) 
Glycerol (Sigma, UK) 
Glycine (Sigma, UK) 
Hank’s balanced salt solution (HBSS) without Ca & Mg with Phenol Red (PAA, 
Austria) 
HEPES Buffer Solution (Life Technologies, UK) 
Isopropanol (Sigma, UK) 
L-Ascorbic acid (Sigma, UK) 
Luria Broth (Sigma, UK) 



 

Medium 199 with Earle's BSS, with L-glutamine, HEPES and 2.2 g/L NaHCO3 
(Lonza, Belgium) 
Methanol (Sigma, UK) 
Magnesium chloride (MgCl2) (Sigma, UK) 
Nitrocellulose membrane (Amersham Hybond – ECL) (GE Healthcare, UK) 
Sodium chloride (NaCl) (Sigma, UK) 
Sodium hydroxide (NaOH) (Sigma, UK) 
Paraformaldehyde (PFA) (Sigma, UK) 
Penicillin and streptomycin (Pen&Strep) (PAA, UK) 
Phenol Red solution (Sigma, UK) 
Phosphate buffered saline (PBS) (PAA, Austria) 
Pidermal growth factor EGF (Miltenyi, UK) 
Phusion Hot Start II DNA Polymerase (Thermo Fisher Scientific, Germany) 
RbC12 (Sigma, UK) 
Prestained protein ladders (Fermentas, UK)  
Proteinase K (Life Technologies, UK) 
Polybrene (Sigma, UK) 
Poly-D-lysine (Sigma, UK) 
QIAgen DNeasy Blood and Tissue kit (QIAgen, UK) 
QIAgen Endotoxin-free plasmid maxiprep/megaprep (QIAgen, UK) 
QIAprep spin miniprep kit (QIAgen, UK) 
QIAquick gel extraction kit (QIAgen, UK) 
RC DC Protein assay kit (Bio-Rad, UK) 
Restriction enzymes and corresponding buffers (New England Biolabs, UK) 
Skimmed milk powder (Tesco, UK) 
Sodium acetate (Sigma, UK) 
Sodium Dodecyl Sulfate (SDS) (Sigma, UK) 
SYBR Green qPCR master mix (Bioline, uk) 
T4 DNA ligase and corresponding buffer (New England Biolabs, UK) 
Tetramethylethylenediamine (TEMED) (Sigma, UK) 
Tissue culture grade water (PAA, Austria) 
Tris (Sigma, UK) 
Triton X-100 (Sigma, UK) 
Trypan blue (Sigma, UK) 
Trypsin/EDTA (PAA, UK) 
Tween-20 (Sigma, UK) 
  



 

Appendix 2: Buffers and Solution 
 
Buffer for western blot 
1X TBS-T buffer: 0.25% Trizma base, 0.8% NaCl and 0.05% Tween-20 in dH2O; 
adjusted to pH 7.6. 
5X Laemmli sample buffer: 10% SDS, 25% 2-mercaptoethanol, 50% glycerol, 0.1% 
bromophenol blue, 0.25 M Tris-HCl; adjusted to pH 6.8. 
Western blot blocking buffer: 5% skimmed in 1X TBS-T. 
5% stacking gel: 5% polyacrylamide, 125 mM Tris (pH 6.8), 0.1% ammonium 
persulfate, 0.1% SDS, 0.1% TEMED. 
10X TBS buffer: 0.5 M Tris-HCl, 1.5 M NaCl in dH2O; adjusted pH 7.5. 
10X WB Migration buffer: 0.25 M Tris-HCl, 1% SDS, 1.92 M glycine; adjusted to pH 
8.3.  
12% SDS-PAGE gel: 12% polyacrylamide, 375 mM Tris (pH 8.8), 0.1% ammonium 
persulfate, 0.1% SDS, 0.04% TEMED. 
Tris-HCl buffer: Trizma in ddH2O, and adjusted to appropriate pH by 1M HCl. 
Red Ponceau solution: 0.1% Ponceau S, 1% acetic acidz:  
Western blot transfer buffer: 0.25% Trizma base and 0.9% glycine in dH2O, 20% 
methanol just before use. 
 
 
Buffer and solution for bacterial work 
Tfb I: 100 mM KCL, 50 mM RbCL, 10 mM CaCL2, 30 mM KOAc, 15% glycerol; 
adjusted to pH 5.8.  
Tfb II: 10 mM MOPS, 10 mM RbCL, 75 mM CaCL2, 15% glycerol; adjusted to pH 7. 
Luria Broth (LB): 2% Luria broth. 
LB agar medium: 2% Luria broth, 1.5% bacteriological agar. 
 
 
Buffer and solution for immunofluorescences 
1% BSA blocking buffer: 1% BSA, 0.02% Na3N in 1X PBS-T. 
PFA solution: PFA, 1X PBS; adjusted to pH 7.4. 
1× TBS-T: 1 ×PBS, 0.25% Triton-×100. 
Mounting solution: 1 part of PPD solution, 9 parts of Mowiol solution. 
 
 
Buffer for lentivectors production 
2X HBS: 100 mM HEPES, 281 mM NaCl and 1.5 mM Na2HPO4 in cell culture grade 
water, adjusted to pH 7.12. Filtered through a 0.22 μM pore filter. 
 
 
 
 
 



 

Buffer for isolation primary cells 
1% BSA blocking buffer (for cultured cells and brain sections): 1% BSA, 0.02% Na3N 
in 1X PBS-T. 
Brain dissection buffer: 1X HBSS, 100 units/ml penicillin, 100 μg/ml streptomycin, 
100 μM ascorbic acid (added just before use). 
Complete growth medium: DMEM, 100 units/ml penicillin, 100 μg/ml streptomycin, 
10% FBS. 
Cortical neuronal differentiation medium: Neurobasal medium, 2% B27, 0.25% 
GlutaMax, 1% FBS, 100 μM ascorbic acid (added just before use). 
Human fibroblast medium: 64.8% DMEM high glucose with stable glutamine, 21% 
M-199, 10% FBS, 10 ng/ml FGF2, 25 ng/ml Epidermal growth factor (EGF), 1 μg/ml 
gentamicine. 
CHO growth medium: DMEM, 10% FBS, 0.02 g/l L-proline, 100 unites/ml penicillin, 
100 g/ml streptomycin.  
CHO cell-arrest medium: DMEM without methionine supplementes with 2% FBS, 
0.02 g/l- proline, 100 unites/ ml pencilin, 100 g/ml streptomycin. 
 
 
Buffer for Agarose gel electrophoresis 
1X Tris-acetate-EDTA (TAE): 40 mM Trizma base, 20 mM glacial acetic acid and 1 
mM Na2EDTA in ddH2O; adjusted to pH 7.6. 
 
 
IgG192 antibody production 
Hybridoma cells were seeded in a 75cm2 flask in 20 mL of RPMI supplemented with 
15%FBS and incubated at 5% CO2 and 37°C. 15 mL of medium was added to the cells 
every 48 hours for 10 days. After this, 3mM glutamine and 2,5mM glucose was added 
to flask and the cell were left in incubator for two weeks. The IgG192 antibody was 
harvested by filtering the medium through 0.22 μM filter and stored in 5 mL aliquot at 
-20°C. 
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