
Using Quicksand to Improve Debugging Practice in Post-Novice
Level Students

Joel Fenwick Peter Sutton

The University of Queensland, The University of Queensland,
Earth Systems Science School of ITEE
Computational Centre,

joelfenwick@uq.edu.au p.sutton@itee.uq.edu.au

Abstract

The ability to debug existing code is an important
skill to develop in student programmers. However,
debugging may not receive the same amount of ex-
plicit teaching attention as other material and the
main expression of debugging competence is students’
ability to undo problems which they themselves have
injected into their assignments. Further, as the liter-
ature points out, debugging skills do not necessarily
develop at the same rate as code writing skills.

This paper discusses an intervention in a second
year course designed to improve students’ applica-
tion of simple debugging techniques. We use a puzzle
based approach where students are graded based on
the number of attempts they take to locate misbehav-
ing code in a program which they did not write but
whose function they understand. An existing assign-
ment component addresses another aspect of debug-
ging practice.

1 Introduction

The context for this work is a second year course in
systems programming (networks and operating sys-
tems). Because of its place in the degree program,
it also does triple duty as a means to force students
to improve their programming skills and to learn the
language used in the course (C). All students enrolling
in the course have some exposure to C but much of
their basic training has been in Python or Java.

This setting is a little different from the typical set-
ting in the literature (McCauley et al. 2008, Fitzger-
ald et al. 2008), in that we are not (or should not
be) dealing with absolute novices any more. These
are students who have some level of programming
skill even if they do not have much initial famil-
iarity with C. However, “debugging is a skill which
does not immediately follow from the ability to write
code.” (Kessler & Anderson 1986)[p208]. Follow-
ing on from an earlier working group, an ITiCSE
2004 group (Lister et al. 2004) considered whether
deficiencies in programming ability after initial pro-
gramming courses were due to lack of problem solv-
ing skill or were in fact due to a fragile knowledge of
programming and code reading ability. However, “re-
ports on interventions designed to improve students’
debugging skills have not been common in recent lit-
erature.” (McCauley et al. 2008)[p83]

Copyright c©2012, Australian Computer Society, Inc. This
paper appeared at the 14th Australasian Computing Educa-
tion Conference (ACE 2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 123, Michael de Raadt and
Angela Carbone, Ed. Reproduction for academic, not-for-profit
purposes permitted provided this text is included.

The course has four assignments. The first, third
and fourth assignments are traditional programming
assignments where the students must write whole pro-
grams (possibly making use of a provided solution for
the previous assignment). The focus of the second
assignment is debugging. In 2011, it consisted of two
components: the binary bomb and quicksand (both
explained below). Both parts were conducted elec-
tronically and only required a network connection to
a school server.

The binary bomb is a modified version of an as-
signment run at Carnegie Mellon University (Bryant
& O’Hallaron 2001). This component tests students’
ability to use a debugger. Students are given a pre-
compiled program with some of the debug symbols
removed as well as a small part of the source code.
They must use the debugger to examine the work-
ings of the program to determine the passwords to
“defuse” the bomb. We have used the binary bomb
for a number of years and it seems popular with the
students with the puzzle solving aspect mentioned in
particular.

However, debuggers are only as useful as the ques-
tions they are asked and some students start to view
the debugger as the first port of call in solving any
problem even when they do not know what they are
looking for. Further, some students would reach the
end of the course and still start their requests for help
with “My program doesn’t work.” That is, they did
not seem to be able to locate or describe the prob-
lem more precisely. There is also a school of thought
[typified by Linus Torvalds’ refusal to incorporate ker-
nel debuggers into the Linux Kernel (Torvalds 2000)],
that over reliance on a debugger produces sloppy pro-
grammers. James et al. note that “the more tools
offered, the less students think for themselves. They
try to get the tool to do the thinking. . . ”. (James
et al. 2008)[p28]

Addressing these and other problems is the pur-
pose of the quicksand component, and the focus of
this paper. However, since this is not an introductory
course, some of the students do already have good de-
bugging technique and care must be taken not to bore
these students while trying to lift the others.

1.1 Debugging Challenges in C

Debugging programs written in C presents some chal-
lenges. These are by no means unique to C but when
they happen in C (and similar languages) they tend
to be more spectacular and less help is available. Pos-
sible problems include:

1. Compilers (more specifically optimisers) can
change things and sometimes they get it wrong.

2. Functions can have bugs or undocumented be-
haviour.

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

141

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15151244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


3. A badly written statement can create problems
which only appear much later in seemingly unre-
lated places (e.g. heap corruption).

4. The lack of structured error handling.

5. Corruption from non-thread safe actions.1

Regarding the first point, (some) students seemed
to believe quite strongly that the compiler was trans-
parent. The idea that what was executing could be
different to what they saw when they looked at the
source was problematic. One of the authors’ first ex-
periences with this as a student was realising that an
optimiser had decided to run a loop in reverse.

This is not to say that trusting the compiler or doc-
umentation is a bad starting heuristic, but it seemed
to be a weakness in the students’ understanding that
translation failure was unthinkable. It may be that
even just allowing for that possibility might enable
students to perform the necessary testing to discover
the real problem.

2 Quicksand

The quicksand component (created by us) is intended
to develop and test a complementary set of skills to
that of the binary bomb. Instead of using the de-
bugger to step through and examine variables, the
students can make small modifications to a piece of
source code (typically printing the values of vari-
ables), then request that the code be recompiled and
run against a set of tests. The students can use out-
put from this run to locate bugs in the program.

The students were told quite explicitly that they
were looking for the original cause of the bug not just
the location where symptoms became apparent. For
example an uninitialised variable might not cause any
obvious effect until much later.

As in the work by Fitzgerald et al. (Fitzgerald
et al. 2008), we only require students to identify the
line on which problems occur and not to actually fix
the problem. Firstly, as they note (citing Kessler
and Anderson), “the skills required to understand the
system are not necessarily connected to the skills re-
quired to locate the error.”[p95] Secondly, it may not
be possible to theorise about the cause of a prob-
lem until its location has been constrained. Much
time has been wasted looking for a problem in the
wrong place because programmers jump to conclu-
sions. Finally, since the students are supplied with
code to debug rather than writing it themselves, we
need to address the issues of understanding and con-
text (Fitzgerald et al. 2008). To this end, the supplied
code is a (suitably buggy) sample solution to Assign-
ment 1. This means that the students will be familiar
with the purpose of the program and what it should
be doing. It is also sufficiently large that the entire
program cannot be held in mind at one time and some
investigation is required to locate bugs precisely.

Lines which may contain bugs have a “tag” at
the end in the form of a right-justified comment (e.g.
/* QS:f8y5d */). We use tags rather than line num-
bers because line numbers will vary when students
add new lines to the source. Also tags are harder to
mistype. Lines which are not possible bug locations
do not receive a tag but are marked /* QS: */. This
makes it easy to distinguish lines which are in the sup-
plied source as opposed to lines added by students.

When editing the source, students may insert ad-
ditional lines but may not modify any existing lines.

1This is another thing which can cause seemingly inexplicable
behaviour — we do not address thread safety issues in this exercise.

This is to discourage students from trying to reimple-
ment sections they are suspicious of. In practice such
an approach would only work in a limited number of
instances.

We also limit the number of extra lines which the
students can have in the source at any one time. This
is to discourage the creation of massive quantities of
debug information which is then impossible to follow.
Instead, we want students to focus their attention and
refine their theories as to the location of the problem.
If they exceed this limit, they must remove some lines
or get a clean copy of the source before they will be
able to recompile.

2.1 The quicksand tool

The quicksand tool itself has four commands:

• get — puts a “clean” copy of the source to be
debugged in the current directory.

• test — processes and compiles the student’s
modified source and runs the set of tests. The
outputs from the tests are placed in the student’s
directory. At no time does the student have ac-
cess to the compiled binary itself.

• guess tag — Records the student’s “guess” that
the tagged line contains a bug. It will tell the
student if their guess is correct.

• status — Reports how many attempts the stu-
dent required to locate each bug as well as their
current and maximum possible marks.

To encourage students to use online documenta-
tion, the assignment specification and tool instruc-
tions were only available as a man page.

2.2 Marking

The marks gained for correctly determining the loca-
tion of a bug were

T

B
· 0.9g−1

where T is the total marks for this part, B is the
number of bugs in the system and g is the number
of guesses since the previous correct guess. This fol-
lows a similar “exponential decay” scheme used in
the bomb and ensures that more wrong answers will
decrease the mark but eventually answering correctly
still gives more marks than giving up. Since the num-
ber of tags in the program is limited though, we did
impose a limit of 40 on the total number of guesses for
all bugs. Only eleven of approximately 140 students
used all 40 guesses.

Note that editing and testing are free actions, the
students can do as much testing as they wish without
it influencing their marks.

2.3 Bugs

All students were given the same piece of code as a
starting point but different combinations of bugs were
introduced for each student. The bugs were chosen so
that any one of the bugs would cause at least one of
the tests to fail. That is, the students could use test
failures as the starting point to trace the bug.

Bugs introduced by quicksand fall into two broad
categories:

CRPIT Volume 123 - Computing Education 2012

142



• Visible in source — the source given to the stu-
dent has a logic error in it. The student could
find it by inspection. Examples include:

– Uninitialised or incorrectly initialised vari-
ables.

– incorrect loop limits or steps

– inverted if conditionals

– invalid memory access.

• Hidden — These can not be found by inspec-
tion since they do not appear in the source which
the students are given. When the student runs
quicksand’s test command, their source is trans-
formed. Some lines are replaced or modified be-
fore the program is finally compiled. For exam-
ple:

– Statements can be skipped (removed from
the source).

– Assignments and initialisations changed to
assign different values.

– Loops can finish early or skip iterations
(modified limits or step)

– Variables can be modified unexpectedly.

It is important to understand that while the pre-
cise details and causes of these “hidden bugs” are ar-
tificial, the symptoms are not unreal. Although some
types (e.g. statements being skipped) are thankfully
rare2 “in the wild”.

The “hidden” bugs are representative of instances
where either the mental model of the programmer
(expressed in code) does not match what is actually
there; or where the documentation is incorrect or (in
rare cases) where the compiler or standard libraries
have bugs.

The possibility of bugs in code not written by the
students represents a point of difference between be-
ginner and later programmers. Courses for beginners
will focus on a relatively small, well tested and well
understood subset of the standard libraries for their
language. Later on however, programmers need to be
able to make a distinction between source and run-
ning code; between what documentation or their un-
derstanding suggests and what is actually there.

Some work (Lee & Wu 1999, Ahmadzadeh et al.
2007) used debugging exercises as a means to im-
prove general programming skill. There is nothing
wrong with this approach and training programmers
to write less bugs is a good goal. However, debug-
ging is not solely a means to rectify one’s own coding
faults, which could be avoided by writing more care-
fully. Even a perfect programmer needs to be able to
debug. Debugging is also an independent skill which
may be required whenever code is brought together
or when some part of the environment changes.

So how do the students find bugs that they can’t
see? Actually, whether the bugs are immediately vis-
ible is not immediately relevant to finding them. At
this stage in their development, students are writ-
ing programs which are too large to be completely
comprehended at one time. Eisenstadt’s “war sto-
ries” article (Eisenstadt 1997) contains a number of
memorable terms for difficulties in finding bugs: the
“Cause/Effect Chasm” where the cause and effect
were too far apart to be easily found; and WYSIPIG
— “what you see is probably illusory guv’nor” where

2One of the authors has encountered such errors a number of
times including, in an unrelated piece of code while developing
quicksand.

the programmer misreads or misunderstands what
they are looking at. In a large system without knowl-
edge of the (general) location of the problem, finding
problems by inspection is not feasible. So initially,
visibility is not critical. Instead, all the bugs intro-
duced by quicksand can be located using two gener-
ally applicable techniques.

• Strategically placed output statements to trace
execution flow. Once the symptom has been
identified (e.g. a crash or incorrect output).

• “binary search” — output the values of critical
expressions at and before the symptom location,
choose a point between them and repeat until the
cause of the symptom is found.

These are pretty rudimentary methods but they are
useful and (some) students do not seem to be apply-
ing them. But why not use more advanced tools for
this exercise? After all Lieberman wrote that “It is
a sad commentry on the state of the art that many
programmers identify ‘inserting print statements’ as
their debugging technique of choice.” (Lieberman
1997)[p27] Firstly, we want to encourage students
to use hypothesis testing rather than trial and er-
ror (Ahmadzadeh et al. 2007). This constrained en-
vironment prevents them from relying on other tools
too much. Secondly, James et al. (James et al. 2008)
suggest that more advanced tools may actually hin-
der students from learning good technique. Thirdly,
there are a number of common environments (such as
web programming) where more advanced tools may
not be available but simple techniques work every-
where (James et al. 2008).

In part, this is an application (although not a rig-
orous one) of the malicious adversary concept from
theoretical computer science. That is, if you can find
bugs using these techniques when you are being de-
liberately sabotaged, then they will be useful under
normal conditions as well.

3 Security and Integrity

This exercise combines two factors which make the
security of the system a concern. Firstly, quicksand
needs sufficient privileges to access the database and
record attempts. Secondly, students will be able to
inject “arbitrary” code into the test program.

With this in mind we tried to impose limits to
make the code they could inject less arbitrary. Lines
added by students could not contain #3, any of a
number of system functions nor any raw assembly or
system calls.

Privilege issues were dealt with by dropping to
student privileges whenever interacting with student
code and by preventing students from attaching a de-
bugger to any of the programs involved. Further tech-
nical details are beyond the scope of this paper.

There are other issues related to the integrity of
the system that don’t relate to security. It is not
enough that the students work out the answers, we
want them to use the correct technique in doing so.
An example of an incorrect technique is removing
“suspicious” lines and by means of comments, loop
bodies which never execute and so on. Our intent is
that the students insert small “probes” to determine
what is going on, not switch out chunks of code. For
this reason the real source (as opposed to the version
the students edit) contains extra calls to check that
statements are not being executed out of order. Fur-
ther, some bugs add additional calls to enact their

3or any of its equivalents

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

143



bad behaviour. If the student inserts an incomplete
line immediately before such a call, then the com-
piler may “helpfully” tell the student that the next
line contains garbleData(). To avoid this, only the
line number of compile errors are reported back to
students.

While a number of students noticed the forbid-
den words and symbols list, only one student (that
we know of) accidentally ran into the anti-reordering
checks.

A non-technical aspect of assessment integrity is
the possibility of collusion. What if the students dis-
cuss their bugs? Does this disadvantage students who
start work early? While sharing answers is possible4,
it presents a number of difficulties for students. First,
students would need to know that they had been as-
signed the same bug. Even if they establish that they
have some bugs in common, this does not allow them
to infer that any of their other bugs are the same. Es-
tablishing with certainty that you share a bug with
someone else (without using an attempt) requires the
same skills as finding the bug “the proper way.” Now,
other types of collusion are possible, such as one stu-
dent doing much of the work for another student but
this risk is (we believe) no higher than a traditional
assignment.

Secondly, sharing answers with students who have
not put the work in acts against the students’ self-
interest. Suppose Student A took 3 attempts to iden-
tify the location of a bug, and they establish that
Student B also has this bug (not withstanding the
difficulties in doing so). Now suppose that Student A
gives the answer to Student B who has made less than
3 attempts, Student A has given Student B an advan-
tage, B will now get more marks for that bug than
A.

Thirdly, students who start work early are perhaps
less likely to cheat.

4 Results and Reflection

The biggest teaching challenge here is to get the stu-
dents to not blindly trust their intuition but rather
to test the safety of their ground before relying on
it too heavily5. At the same time, we need to show
them that reason and logic still apply in debugging
situations.

Fitzgerald et al. describe students in their study
as having a “stubborn desire to understand and debug
code through reading alone.” (Fitzgerald et al. 2008)
This was borne out in this work where students took
the source, worked on it and tested it entirely outside
of quicksand. This created confusion when the code
ran differently under the normal compiler as opposed
to the malicious quicksand. In future this would need
to be prevented. The easiest approach would be to
ensure that the students are not given the source for
all routines and hence would not be able to compile
independently.

We have a number of sources of information to use
in evaluating quicksand.

1. Anonymous surveys taken immediately after the
assignment.

2. Logs of the types of questions asked in tutorials.

3. Questions asked on the course online discussion
group.

4. Teacher impressions.

4We have no evidence that this occurred.
5Hence “quicksand”.

We also have university end-of-course surveys but
the responses did not reveal anything about this as-
signment.

Since the survey was voluntary and students were
not required to attend tutorials or post to the discus-
sion group, we need to be careful about what con-
clusions we draw. A student who has no problems
that they can not fix for themselves will not show up.
Also, considering only those students who ask for help
in tutorials tends to give a worst case approximation
of how things are going. A lack of more sophisticated
questions could either mean that people are better
able to fix their own problems and do not need to
ask or that they are getting stuck at a basic level.
Taken together, this means that we may only be able
to consider a lower bound on improvements.

We will now discuss each information source in
more detail.

4.1 Assignment surveys

This survey asked the students a number of questions
about quicksand and the binary bomb. Some were to
be answered on a five point scale while others were
free text. Of the 77 respondents, 49% said that they
had learned a lot from quicksand, while 57% said that
quicksand had improved their confidence in their de-
bugging abilities.

Interestingly 12% of students said that they al-
ready knew and used such techniques (and as such are
unlikely to report learning a lot) and some of them
still reported improved confidence.

The importance of retaining the binary bomb com-
ponent is shown by the fact that 51% of respondents
said that they did not know how to use the debugger
prior to this course6.

Taking both parts of the assignment (quicksand
and binary bomb) together, 60% said that they had
learned techniques that they could have used in the
previous programming assignment. 52% said that
they were more systematic when debugging now.

The free text responses indicate that some stu-
dents were not convinced that programs could go
wrong in the way that our exercises did. As such a
wider set of possible problems is probably indicated.
For example, a bigger focus on function calls mis-
behaving (where they can not see the source) would
probably be more acceptable to them. A number of
students seemed to believe that using printf wasn’t
real debugging. This seems to put even simple tech-
niques in the category of fragile knowledge for some
students. Students did not seem to be surprised or
confused when these techniques are pointed out, but
did not seem to have considered applying them to
solve their problems so we are dealing specifically with
“inert knowledge” (Perkins & Martin 1986).

4.2 Tutorial Logs

Each tutor logged the number of questions they an-
swered by category. Questions about debugging were
classified into the following categories. They are or-
dered by the sophistication of the question (roughly
how much work the student has put in before they
ask the question):

• debugA — Questions of the form “It doesn’t
work.” or “I’m failing test #5.”7. Here there

6It is not clear from these answers whether all of those students
are referring to all symbolic debuggers or just non-IDE ones.

7Students were given a set of automated tests which they could
use to test their assignments against some parts of the spec.

CRPIT Volume 123 - Computing Education 2012

144



Figure 1: Cn denotes tutorials conducted in
the first half of the week while Pn denotes tu-
torials from the second half.

is no description of the problem and no work ap-
parent towards identifying the location, cause or
triggers for the problem.

• debugB — Some basic effort has been made to
locate the problem. Some ability to describe the
specifics of the problem.

• debugC — The student demonstrated good tech-
nique.

• debugD — The student did all the right things
but were prevented from finding the problem due
to missing some knowledge or a misunderstand-
ing. Essentially, their technique was not the
problem.

• technique — the student was not asking for help
fixing a particular problem but wanted to know
about debugging techniques in general.

Tutorials in this course were run in two half-weeks
(Monday to Wednesday morning and Wednesday af-
ternoon to Friday afternoon). Students were required
to enrol in one session in each half-week. However,
tutorials were not compulsory and while some weeks
were set aside for the tutors to teach extra material,
the majority were general help sessions. As such, the
attendance varied significantly depending on the time
to deadline.

The breakdown can be seen in Figure 4.2. The as-
signments were due at the end of Weeks 4, 7, 10 & 13
respectively. Note that once the questions start to in-
crease again for Assignment 3, the more sophisticated
categories dominate the debugA questions.

4.3 Discussion Posts

The course had a very active online discussion group.
We separated out the threads which asked for help
or suggestions for fixing bugs in Assignments 1, 3, 4.
These were classified according to the initial question
using the same scheme used for tutorial questions.
The number of questions (and the number of different
students asking them) increased from Assignment 1
to Assignment 3 (the assignment the students seemed
to find most difficult) and then dropped below the
level of Assignment 1 for Assignment 4. The major-
ity of the questions fit into debugA — either little
description of the problem or a request for sugges-
tions about where to get started. In Assignment 4,

there was an increase in the proportion of questions
which described features of the system the students
were trying to fix rather than a particular test failure.

4.4 Teacher Impressions

As well as visiting tutorials from time to time one
of the authors conducted intensive help sessions just
before the deadline for Assignments 3 and 4. Unfor-
tunately the question types from these sessions were
not logged. The first session was not particularly well
attended. The second session saw at least 40 students
and from memory, the majority of questions were de-
bugB or above.

5 Implementation Considerations

What is required in order to run an assignment like
this? In terms of software infrastructure, A database
for storing marks and infrastructure (quicksand in
our case) for distributing source and compiling stu-
dent modified versions will be needed. The following
should also be considered.

• The security of the marks record.
Students must not be able to coerce the system
into modifying marks for themselves or other stu-
dents. They must not be able to view the marks
of other students.

• Backdoor solutions.
What mechanisms are available for bringing
other code into the test program? For example,
in Java, it would not be sufficient to block import
since classes could be pulled in via their full name
or using Java’s reflection API8. In Python there
is eval(), the pdb debugger and probably oth-
ers. This is not to suggest that these languages
can not be secured9 but the implications of these
features need to be considered.

Can your hidden modifications be exposed in
compile errors or exception traces?

• Types of Bugs to inject.
Firstly, the bugs must be plausible in your source
language10. For example a string changing for
no apparent reason in Python or Java (where
String objects are immutable) would be a bad
choice. Secondly, bugs that do not require modi-
fication of the student’s submitted source require
much less machinery and are less fragile than
things like skipping particular statements. Lim-
iting oneself to function calls which misbehave
under certain conditions would save a lot of work.

6 Conclusions

From the survey, more than half the students reported
increased confidence in their debugging abilities as
a result of quicksand. This and more than half re-
porting they were more systematic in their debug-
ging from the assignment as a whole, are encourag-
ing. Looking at the online discussion is less positive
but students may have been less willing to post de-
tailed questions. Either because they weren’t sure
how to express them in text or because of the warn-
ings they were given about posting code. Overall, for
non-pathological bugs this approach shows promise.

8API = Application Programming Interface
9A reviewer suggests SecurityManager in the case of Java.

10That is, the language of the program the students are editing

Proceedings of the Fourteenth Australasian Computing Education Conference (ACE2012), Melbourne, Australia

145



The possibility that the compiler or libraries mis-
behave should be part of the students’ thinking. It
appears though that more explanation needs to be
given, perhaps with real world examples, for students
to accept this.

Acknowledgements

This work was supported in part under AuScope sus-
tainability funding.

References

Ahmadzadeh, M., Elliman, D. & Higgins, C. (2007),
‘The impact of improving debugging skill on pro-
gramming ability’, ITALICS 6(4), 72–87.

Bryant, R. E. & O’Hallaron, D. R. (2001), ‘Introduc-
ing computer systems from a programmer’s per-
spective’, SIGCSE Bull. 33, 90–94.
URL: http://doi.acm.org/10.1145/366413.364549

Eisenstadt, M. (1997), ‘My hairiest bug war stories’,
Commun. ACM 40, 30–37.
URL: http://doi.acm.org/10.1145/248448.248456

Fitzgerald, S., Lewandowski, G., McCauley, R., Mur-
phyd, L., Simon, B., Thomas, L. & Zander, C.
(2008), ‘Debugging: finding, fixing and flailing,
a multi-institutional study of novice debuggers’,
Computer Science Education 2(18), 93–116.

James, S., Bidgoli, M. & Hansen, J. (2008), ‘Why
Sally and Joey can’t debug: next generation tools
and the perils they pose’, Journal of Computing
Sciences in Colleges 24, 27–35.
URL: http://portal.acm.org/citation.cfm?id=
1409763.1409770

Kessler, C. M. & Anderson, J. R. (1986), A model
of novice debugging in lisp, in ‘Papers presented at
the first workshop on empirical studies of program-
mers on Empirical studies of programmers’, Ablex
Publishing Corp., Norwood, NJ, USA, pp. 198–212.
URL: http://act-r.psy.cmu.edu/publications/
pubinfo.php?id=220

Lee, G. C. & Wu, J. C. (1999), ‘Debug it: A debug-
ging practicing system’, Computers & Education
32(2), 165 – 179.
URL: http://www.sciencedirect.com/science/
article/pii/S0360131598000633

Lieberman, H. (1997), ‘Introduction to the special
issue on the debugging scandal’, Commun. ACM
40, 26–29.
URL: http://doi.acm.org/10.1145/248448.248455

Lister, R., Adams, E. S., Fitzgerald, S., Fone,
W., Hamer, J., Lindholm, M., McCartney, R.,
Moström, J. E., Sanders, K., Seppälä, O., Simon,
B. & Thomas, L. (2004), ‘A multi-national study of
reading and tracing skills in novice programmers’,
SIGCSE Bull. 36, 119–150.
URL: http://doi.acm.org/10.1145/1041624.1041673

McCauley, R., Fitzgerald, S., Lewandowski, G., Mur-
phy, L., Simone, B., Thomas, L. & Zanderg, C.
(2008), ‘Debugging: a review of the literature from
an educational perspective’, Computer Science Ed-
ucation 2(18).

Perkins, D. & Martin, F. (1986), Fragile knowledge
and neglected strategies in novice programmers,
in S. E. & I. S., eds, ‘Empirical Studies of Pro-
grammers’, Norwood, NJ: Ablex Publishing Co.,
pp. 213–229.

Torvalds, L. (2000), ‘Re: Availability of kdb’, Linux
Kernel Mailing List.
URL: http://lkml.org/lkml/2000/9/6/65

CRPIT Volume 123 - Computing Education 2012

146


