
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2017 

A 3 D- FEM Study on the Stress Distributions in Pediatric Skull due A 3 D- FEM Study on the Stress Distributions in Pediatric Skull due 

to Impact from Free Fall to Impact from Free Fall 

Suryanshu Walvekar 
Michigan Technological University, swalveka@mtu.edu 

Copyright 2017 Suryanshu Walvekar 

Recommended Citation Recommended Citation 
Walvekar, Suryanshu, "A 3 D- FEM Study on the Stress Distributions in Pediatric Skull due to Impact from 
Free Fall", Open Access Master's Report, Michigan Technological University, 2017. 
https://digitalcommons.mtu.edu/etdr/548 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Mechanical Engineering Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.mtu.edu%2Fetdr%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

A 3 D- FEM STUDY ON THE STRESS DISTRIBUTIONS 

IN PEDIATRIC SKULL DUE TO IMPACT FROM FREE 

FALL 

By 

Suryanshu Walvekar 

 

 

A REPORT 

Submitted in partial fulfillment of the requirements for the 

degree of 

MASTER OF SCIENCE 

In Mechanical Engineering 

 

MICHIGAN TECHNOLOGICAL UNIVERSITY 

2017 

          © 2017 Suryanshu Walvekar 

 



 

 

This report has been approved in partial fulfillment of the requirements for the Degree of 

MASTER OF SCIENCE in Mechanical Engineering. 

 

 

Department of Mechanical Engineering – Engineering Mechanics 

  

 Report Advisor: Dr. Gopal Jayaraman  

 Committee Member: Dr. K. V. C. Rao 

 Committee Member: Dr. Gregory Odegard 

 Department Chair: Dr. William Predebon  

  



 

 

 

 

To my mother, father, brother, 

Lord Krishna 

 

     and in loving memory of my younger brother Prakhar



 

 

Table of Contents 
            Abstract  

1. Introduction ............................................................................................................... 1 

1.1 Motivation ..................................................................................................................... 1 

1.2 Objectives ..................................................................................................................... 2 

2. Survey of Literature .................................................................................................. 3 

3. Procedure .................................................................................................................. 4 

3.1 Software Used ............................................................................................................... 4 

3.2 Development of 3 D FEM Model of Pediatric Head .................................................... 4 

3.3 Validation of the Model ................................................................................................ 6 

3.4 Methodology and Test Run ........................................................................................... 7 

4. Results and Discussion ........................................................................................... 10 

4.1 Maximum Principle Stress Distribution Patterns ........................................................ 10 

4.1.1 Frontal Impact Stress Patterns ................................................................................ 10 

4.2 Von Mises Stress and Strain Pattern ........................................................................... 12 

4.2.1 Frontal Impact ......................................................................................................... 12 

4.3 Tensile and Compressive Stress and Strain Patterns .................................................. 13 

4.4 Point of Impact and Maximum von Mises Stress ....................................................... 14 

4.5 Point of Impact and Region of Potential Fracture ...................................................... 15 

4.6 Graphs ......................................................................................................................... 17 

4.7 Tables .......................................................................................................................... 25 

4.7.1 Von mises Stresses for Various Impacts ................................................................. 25 

4.7.2 Principle Stresses for Various Impacts .................................................................... 25 

4.7.3 Compressive Stresses for Various Impacts ............................................................. 26 

5 Findings and Conclusions .............................................................................................. 27 

5.1 Frontal Impact Stress Distribution .............................................................................. 27 

5.2 Posterior Impact Stress Distribution ........................................................................... 27 

5.3 Superior Impact Stress Distribution ............................................................................ 28 

5.4 Lateral Impact Stress Distribution .............................................................................. 28 

5.5 Principle Stress Graph................................................................................................. 28 

5.6 Von Mises and Compressive Stress Graph ................................................................. 29 



 

5.7 Critical Drop Height Calculations .............................................................................. 29 

5.8 Point of Potential Fracture .......................................................................................... 30 

6 Mesh Convergence Study .............................................................................................. 31 

7 Appendix A – Stress Patterns ........................................................................................ 35 

4.1 Maximum Principle Stress and Strain Distributions ................................................... 35 

4.1.1 Frontal Impacts for Various Drop Heights .............................................................. 35 

4.1.2 Superior Impact ....................................................................................................... 39 

4.1.3 Lateral Impact .......................................................................................................... 44 

4.1.4 Posterior Impact ...................................................................................................... 49 

4.2 Von Mises Stress and Strain Distributions ................................................................. 55 

4.2.1 Frontal Impact ......................................................................................................... 55 

4.2.2 Superior Impact ....................................................................................................... 57 

4.2.3 Lateral Impact .......................................................................................................... 58 

4.2.4 Posterior Impact ...................................................................................................... 60 

4.3 Tensile and Compressive Stress Distributions ............................................................ 62 

4.3.1 Frontal Impact ......................................................................................................... 62 

4.3.2 Superior Impact ....................................................................................................... 64 

4.3.3 Lateral Impact .......................................................................................................... 66 

4.3.4 Posterior Impact ...................................................................................................... 68 

4.4 Point of Impact from Point of Maximum von Mises Stress ....................................... 70 

4.4.1 Frontal Impact ......................................................................................................... 70 

4.4.2 Superior Impact ....................................................................................................... 72 

4.4.3 Lateral Impact .......................................................................................................... 74 

4.4.4 Posterior Impact ...................................................................................................... 76 

8 References ...................................................................................................................... 78 

 

 



 

Abstract 

Brain is vulnerable to injuries even from low heights of fall. There are many infant casualties who get 

severe brain injury each year. This research is a simulated study of the stress patterns and values when 

human infant skull is subjected to free fall. 

The input velocity was calculated using simple free fall velocity formulas and was fed into the 

simulation. Model was meshed and refined using Hypermesh software. RADIOSS solver of the 

Hyperworks package was used to analyze and draw results for the simulation process. Various types 

of stresses and strains were extracted and plotted against respective drop heights.  
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1. Introduction 

Brain is one of the most sensitive organs of our body and its injuries can cause coma, 

permanent disabilities or even death. Brain injuries can be fatal to people belonging to 

every age group but infants are particularly more vulnerable. General injuries can be due 

to fall from small heights or head being smashed against some hard material. Human skull 

is the layer just beneath the scalp and is the hardest part of the head assembly. Thus, it 

would be beneficial to study the stress patterns and critical value of stresses and strains in 

the skull bone for a better understanding of the injuries. Also, thereby helping us design 

safer equipment to avoid any such injuries from happening. 

1.1 Motivation 

Brain injuries are dangerous and occur widely each year. Falls account for about 300,000 

disabling injuries in North America and is the cause of nearly 20,000 deaths which is 55 

per day [1]. As per the American College of Surgeons, falls account for around 3 million 

emergency visits and out of them, around 40% of the sufferers are infants and toddlers [2]. 

Falls and trauma on head account for 5.9% deaths in case of children. In general, for 

children of age below five, fall from a height less than 2 meters is not fatal, but may be a 

cause of severe mental trauma [2][3]. 

All the above numbers show that head injuries are dangerous and can cause deaths or severe 

trauma. Thus, it was important to study the effect of falls on the skull. I hope that the results 

from this report would offer a help for further research concerning the safety of infants 

from head injuries. 
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1.2 Objectives 

The pediatric head assembly is subjected to impacts from 5 different heights- 15, 25, 35, 

45 and 55 cm. These account for common heights of fall. The major objectives of the test 

runs are as follows- 

1) Obtain von mises and principle stress and strain distributions in the skull. 

2) Obtain results that show how far is the point of impact from the point of maximum          

principle stress and point of maximum von mises stress. 

3) Obtain the tensile stress and strain distribution of the skull just after the impact. 

The point of maximum principle stress is a critical point and it is potentially very much 

possible that if a crack develops, it will start from the same point. The distribution of stress 

would give a better idea of terrains through which cracks may develop.  

The results would give doctors an idea of a range of distances at which such critical points 

can be located from the point of impact. These points depend not only on the material 

properties but also the geometry of the skull. 

The above information will help doctors and experts design some protection equipment 

that could save new born children from tragic brain injuries due to falls. 

Hence the study was important as it has a further scope of development of life saving 

equipment for children. 
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2. Survey of Literature 

There were attempts in the past to develop and simulate 3 D finite element infant head 

model. One of the early attempts was done by Thibault, Runge and Kurtz [4] to study the 

response of skull and brain and variation in the strains when subjected to variation in impact 

directions. The impacts on the head regions showed the dependence of the skull fracture 

on direction of impact and severe brain injury risk. The experiments were conducted on 

actual infant head and material properties were fed into FEM model which was later tested 

on posterior and lateral regions under trauma causing loading conditions for checking its 

response.  

Another study was conducted by Margulies and Thibault with an attempt to correlate 

behavior of infant human head to that of infant pig skull case and extend the results of 

infant human case study to porcine data. Then two finite element models were designed, 

one with adult human properties and other with infant suture properties from the data. Both 

the models were subjected to identical loading conditions and intracranial strains were 

compared. Both data combined provided a bedrock for infant skull fracture response to 

traumatic loads [5].  

Fracture patterns are important tools in the analysis of skull and have been studied in detail 

to distinguish between accident and abuse. A study on pediatric fracture samples was 

conducted by C. J. Hoggs in which 89 infant skull samples were analyzed and type of 

fracture was studied to make a demarcation between abuse and accident. [6] 

An independent study was conducted by Britney Coats along with Susan Margulies on 

FEM infant head, which was obtained from radiological images. The study was confined 

to fractures caused by occipital impacts. The model was used to determine importance of 

brain material properties and structure of sutures and relative effect on principle stress 

value. The study helped determine the sensitivity of suture size to fracture. Stiffness of 

brain material was varied and results on the stress values were recorded. [7] 

These were some of the previous studies done in the field pertaining to fracture in infant 

skull. 
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3. Procedure 

In this section I would like to walk through the procedure used to create the model and 

what all steps were followed to generate results. 

3.1 Software Used 

To carry on the simulations on a complex structure such as a skull, it was to be meshed 

first and later simulated as per the given conditions. To do so, a powerful analysis tool was 

needed. Thus, Hypermesh was used as it being a versatile software capable of efficiently 

carrying out the tasks. Hypermesh version 14.0 was used and results were viewed in 

HyperView software, which is a part of the package of Hyperworks family specifically 

used to view and extract results from a Hypermesh file. 

3.2 Development of 3 D FEM Model of Pediatric Head 

The model used for the simulations consist of 5 separate entities placed inside one another. 

These are – 

1) Scalp 

2) Skull 

3) Duramater 

4) Cerebrospinal Fluid (CSF) 

5) Brain 

These sit in the same order as mentioned, in one another. Hence the scalp forms the 

outermost part and brain is protected by all the layers above and hence forms the inner 

most layer of the assembly. 
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Figure 1: Sectional Cut of the Head Assembly 

A CT scan of a 3-year-old girl child was obtained. Further, all the images were put together 

using a software MIMICS. Then the images were converted to CAD files using CATIA 

and assembly was made with the help of it. Once the CAD file was ready, it was imported 

in the Hypermesh environment to mesh it and carry out further simulations. 

The mesh elements are Tetrahedral in shape and have element size of 10 mm. In total, there 

are 12011 nodes and 65958 elements in the assembly. In detail bifurcation is shown below: 

 

 

 

 

Scalp 

Skull 

Duramater 

CSF 

Brain 
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                                          Table 1: Element Data Table 

Component No of Elements 

Scalp 33735 

Skull 11799 

Dura mater 6199 

CSF 6204 

Brain 8021 

The material properties of the components of the assembly are listed below –  

Table 2: Component Material Property Table 

Component Young’s        

Modulus(MPa) 

Density(kg/m3) Poisson’s Ratio 

Scalp 16.7 1200 0.42 [8] 

Skull 2500 2150 0.22 [9] 

Duramater 31.5 1140 0.45 [8] 

CSF 0.012 1040 0.49 [10] 

Brain G0 = 49kPa; G∞ = 16.2kPa; β = 145/s; K = 1125Mpa [11] 

 

3.3 Validation of the Model 

The model used in this work was validated by Prajwal Mahesh [12]. The experiment setup 

by Prange [13] was used to validate the model. In the setup, the whole new born head was 

subjected to compression, against the walls moving with a constant velocity of 1mm/s. The 

force and deformation tests were carried out by Mr. Prajwal and matched against the 

experimental results. 

Also, linear accelerations were taken out for various parts of the skull at various times for 

a 30-cm drop. Impact velocity was calculated by the formula 

           V = √2𝑔ℎ 

Some of the nodes and elements in the posterior part of the head were fixed and a metal 

plate was made to hit the head with a velocity of 1mm/s. The metal plate was given a 

young’s modulus of 200 GPa. The whole experiment was imitated in Hypermesh software 

and solved using Radioss solver.  
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Figure 2 :Compression and 30 cm height free fall results comparison between FEA 

model and Prang’s experiment 

The above results show a near match of the results and ensures that the model is validated. 

The differences in the experiment and FEA results is due to the fact that it may be well 

assumed that since the model behaves correctly in quasi static loading conditions, it is 

expected to behave correctly in dynamic loading as well. 

 

3.4 Methodology and Test Run 

The test set was divided into 4 types of impacts on the skull namely- 

1) Frontal Impact 

2) Posterior Impact 

3) Lateral Impact 

4) Superior Impact 

Each of the above mentioned was then sub divided into 5 heights of drops. In all there were 

20 simulation runs in the test set. 
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           Various regions are shown below- 

 

Figure 3: Side View of the Assembly 

 

Figure 4: Front View of the Assembly 

A rigid wall of very hard material was chosen to imitate the ground. The skull was then 

made to hit the wall normally, with speed under free fall keeping the wall stationary. The 

speed was calculated as per the following formula – 
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V = √2𝑔ℎ 

Where, h = height in meters 

             g = acceleration due to gravity (9.81 m/s2) 

Table 3: Impact Velocity Vs Drop Heights 

Drop Height Impact Velocity 

55 cm 328.44 cm/s 

45 cm 297.04 cm/s 

35 cm 262.01 cm/s 

25 cm 221.43 cm/s 

15 cm 171.52 cm/s 

 

            After the test was run, postprocessing was carried out using HyperView.  
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4. Results and Discussion 

Following section contains pictorial and graphical representations of stress and strain 

distributions of the skull after impact. 

4.1 Maximum Principle Stress Distribution Patterns 

Following are the distribution patterns of Maximum Principle Stress and strain just after 

the impact has happened. Principle stress pattern is a major tool that highly determines the 

point of fracture initiation in the skull. The cranial bone is very strong in compression but 

weak in handling tensile loads. Hence the tensile stresses are the one causing the fractures. 

4.1.1 Frontal Impact Stress Patterns 

 

Figure 5 :55-cm Drop Frontal Impact Principle Stresses (Major) 

The above is a depiction of principle stress along the principle major axis, the maximum 

value of which is 6.359 MPa (Tensile). The dark blue region is the point of impact and is 

the site of maximum compressive stresses. The region surrounding it gradually transforms 

to tensile stress sites and as shown, the two sites in the lower frontal region, shown in 

orange and red color have maximum tensile stress concentration. Hence this region is most 

vulnerable to fractures in case of frontal impact and as visible, it is far away from the site 

of impact. 



 

11 

 

 

Figure 6 :55-cm Drop Frontal Impact Principle Stresses (Mid) 

The above figure shows principle stresses along mid-principle axis, maximum value of 

which is 12.98 MPa (compressive). The region shown in dark blue is the site of impact and 

stresses in that region are compressive in nature. As the figure depicts, most of the regions 

of the skull are having tensile stresses. The transition from compressive to tensile happens 

in the region shown in orange color. The region shown in red are the sites of maximum 

tensile stresses with magnitude ranging from 0.1166 to 1.753 MPa. This is the region most 

prone to fracture in the above case. As visible, this region is far away from site of impact. 

 

Figure 7: 55-cm Drop Frontal Impact Principle Stresses (Minor) 

Above is the stress distribution measured along minor principle axis. The maximum value 

of which is 16.15 MPa (compressive). The region shown in red is most vulnerable to 

fracture and has most of the tensile stresses in it. The tensile stresses are distributed over a 

large region hence smaller in intensity (magnitude). The region shown in dark blue is the 
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site of impact and has maximum compressive stresses, which range between 16.15 to 14.33 

MPa.  

4.2 Von Mises Stress and Strain Pattern 

The following are the von mises stress and strain distribution patterns in the skull. It does 

not possess any direction and is just a value. It critically determines the failure and is an 

indicator of deformation for a given material. 

4.2.1 Frontal Impact 

 

Figure 8: 55-cm Drop Frontal Impact von Mises Stresses 

The above is a depiction of von Mises stresses pattern after the impact. The maximum 

value of the stress is 15.96 MPa and is indicated by red color. As visible, the max von 

Mises and hence the maximum deformation is in the same region as the site of impact. The 

deformation and stress reduce to negligible values as we move away from site of impact.  

 

Figure 9: 55-cm Drop Frontal Impact von Mises Strain 
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Above is the von Mises strain distribution in the skull. The maximum von mises strain 

value in the skull is 0.00318, in the area near point of impact.  

4.3 Tensile and Compressive Stress and Strain Patterns 

The following figures depict the tensile stresses and strains in the skull after the impact. 

The stresses near the point of impact are compressive in nature and those away are 

generally tensile ones. 

 

Figure 10: 55 cm Frontal Impact Tensile & Compressive Stress Distribution 

The maximum tensile stress in the above figure is 7.75 MPa and maximum compressive 

stress is 15.96 MPa. A gradual transformation from compressive to tensile can be seen as 

we move away from the impact site which is depicted in dark blue color. The maximum 

compressive stresses range in between 12.77 to 15.96 MPa, depicted in dark blue color. 

The maximum tensile stresses are in the same region as maximum principle stress and 

range in between 6.2 to 7.75MPa and are depicted in red color. This would give us an 

estimate of point of fracture initiation. 
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Figure 11: 55-cm Drop Frontal Impact Tensile & Compressive Strains 

As the above figure shows, the tensile and compressive strain values are 0.0015 and 

0.00318. 

4.4 Point of Impact and Maximum von Mises Stress 

Below is a depiction of how far is the point of impact from point of maximum von Mises 

stress. The white mesh shown in the below figure is wire mesh of scalp and stress pattern 

visible is in a layer beneath (skull). The black tetrahedral element shown is the point of 

impact on the scalp, and the black node (square) is the point of maximum von Mises stress. 

 

 

Figure 12: Point of Impact and Maximum von Mises Stress 

            The node with max stress value is numbered 2602, that with min stress value is numbered 

1693. Element of impact is numbered 435612. The max stress in the region is 15.96 MPa. 
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         4.5 Point of Impact and Region of Potential Fracture 
            The stresses that are tensile in nature are the cause of fractures in the bone, as the skull is 

weaker in tension than in compression.  

 

Figure 13: Frontal Impact & Potential Fracture Site 

 

Figure 14: Lateral Impact & Potential Fracture Site 
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Figure 15: Superior Impact & Potential Fracture Site 

 

Figure 16:Posterior Impact & Potential Fracture Site 

The red regions are the regions of max principle stresses in the skull and potentially the 

fracture sites. The dark blue regions in the first three pictures show the site of impact. It is 

visible that the potential site of fracture may not be always the site of impact. For frontal 

impact, the region lies near the eye ball slot. For lateral impact, it lies in radially opposite 

direction to that of site of impact. For superior impact, it lies in lateral region of the skull 

near the point of impact. 

For posterior region only, the site of impact and the site of max principle stress (tensile) 

happens to be the same. The point of potential fracture for this case happens to be beneath 
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the point of impact, near the lower layer of the skull. Hence for better understanding of this 

case, the wire meshed view of skull is shown.  

4.6 Graphs 

This section shows graphical presentation of various stresses against respective drop 

heights for all impact situations (Lateral, Frontal, Posterior, Superior impacts). The scatter 

plots were then used to estimate a straight line through them, using least square regression 

method. 

 

              Graph 1: Von Mises Stress Vs Drop Height for Superior Impact 
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                Graph 2: Von Mises Stress Vs Drop Height for Frontal Impact 

 

        Graph 3: Von Mises Vs Drop Height for Lateral Impact 
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           Graph 4: Von Mises Vs Drop Height for Posterior Impact 

All the above graphs portray a linearly increasing trend in the stress values. The slope of 

the graphs for posterior and superior impact is less steep and gradual as compared to the 

graphs for lateral and frontal impact cases. The value of slope for a given curve indicates 

how rapidly the stresses induced are increasing with an increase on drop height.  

Von Mises stress is a direct indicative of how much deformation is the impact causing on 

the skull. 

The maximum value of stress is in superior impact case, which is 19.15 MPa, followed by 

lateral impact, with 16.19 MPa, frontal impact with stress magnitude of 15.96 MPa and 

posterior region with the least stress of 14.8 MPa. All these values are for 55 cm drop.  
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            Graph 5: Principle Stress Vs Drop Height (Posterior Impact) 

In the above graph, the stresses shown in blue line are tensile in nature and the others are 

compressive. The maximum value of tensile stress in the region is 8.376 MPa for 35 cm 

drop, but as we know that stresses should increase with increase in drop height, the max 

stress is considered for 55 cm drop. The anomaly should be treated as computational error. 

Maximum principle compressive stress in the skull for the case is 17.06 MPa (55 cm drop).  

The stresses responsible for fracture are always the tensile ones. For this case, the slope of 

the tensile stress curve is small. The slope of the graph indicates that rate of growth of 

tensile stress is small. This factor will highly affect the vulnerability of the region and its 

proneness to fracture. 
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       Graph 6: Principle Stress Vs Drop Height (Superior Impact) 

In the above graph, the maximum value of compressive stress reached is 19.9 MPa for 55 

cm drop. As the graph depicts, the tensile curve (blue line) has a very small slope in 

comparison to graphs of other regions. Hence tensile stress does not increase over the drop 

heights much. The maximum tensile stress value is 4.95 MPa (55 cm drop).  

 

          Graph 7: Principle Stress Vs Drop Height (Frontal Impact) 

In the above graphical depiction, the maximum value of compressive stress is 16.15 MPa 

and maximum tensile stress is noted to be 6.35 MPa. Both correspond to 55 cm drop case. 

As one can see, the slope of the tensile stress curve is more as compared to superior and 

4.9534.764.8734.5934.17

16.49
15.1

14.19

12.28
10.24

19.9
18.417.71

16.2
14.35

0

5

10

15

20

25

0 10 20 30 40 50 60

P
R

IN
C

IP
LE

 S
TR

ES
S 

(M
P

A
)

DROP HEIGHT (CM)

Principle Stress Vs Drop Height (Superior Impact)

P1 (Tensile)

P2 (Compressive)

P3 (Compressive)

Linear (P1
(Tensile))
Linear (P2
(Compressive))
Linear (P3
(Compressive))

6.35
5.67

4.6823.531.8

12.98
11.71

9.975
7.46

2.83

16.15
14.85

12.98

10.29

4.98

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60

P
R

IN
C

IP
LE

 S
TR

ES
S 

(M
P

A
)

DROP HEIGHT (CM)

Principle Stress Vs Drop Height (Frontal Impact)

P1 (Tensile)

P2 (Compressive)

P3 (Compressive)

Linear (P1
(Tensile))

Linear (P2
(Compressive))

Linear (P3
(Compressive))



 

22 

 

posterior impact cases. Thus, the tensile stresses are likely to increase at a higher rate as 

compared to other cases. This makes the region more vulnerable to fractures. 

 

       Graph 8: Principle Stress Vs Drop Height (Lateral Impact) 

The above graph indicates the stress trends for lateral impact case. The maximum tensile         

stress corresponds to 55 cm drop height and is 5.32 MPa. The maximum value of stress in 

compression also corresponds to 55 cm drop and is 17.02 MPa. It can be noted that the 

slope of the tensile curve is higher as compared to posterior and superior impact cases. The 

stress would increase at a higher rate hence. 

  

      Graph 9: Compressive Stresses Vs Drop Height (Superior Impact) 
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The above is the compressive stress graph for superior impact. The maximum and 

minimum values correspond to 55 and 15 cm drop heights and are 19.15 and 13.64 MPa 

respectively. The graph clearly indicates the positive slope of the stress trend and hence the 

compressive stresses would increase with increase in drop height. 

 

           Graph 10: Compressive Stresses Vs Drop Height (Lateral Impact) 

The maximum and minimum stress correspond to 55 and 25 cm drop and are 14.57 and 

5.82 MPa respectively. The stresses show increasing trend as the drop height is increased. 

The graph shows that the slope of the graph is much higher than the other curves, thus 

deformation would rapidly increase with further increase in drop height. 

 

      Graph 11: Compressive Stresses Vs Drop Height (Posterior Impact) 
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The above graph depicts the stress trend in posterior region due to the impact. The 

maximum and minimum values are 14.84 and 11.16 MPa for 55 and 15 cm drop heights 

respectively. The slope indicates that deformation is to less rapidly increase with further 

increase in drop heights.  

 

     Graph 12: Compressive Stresses Vs Drop Height (Frontal Impact) 

The maximum and minimum stress value for the above trend is 15.96 and 4.94 MPa 

corresponding to 55 and 15 cm drop cases. The slope is on a higher side and thus the 

deformation stresses are more likely to reach a high value rapidly on increasing the drop 

height. 
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4.7 Tables 

Following section has the tabulated data for all the impact cases which are shown in the    

graphs above. 

4.7.1 Von mises Stresses for Various Impacts 
Table 4: Von Mises Stress Distribution Table 

Drop 

Height (cm) 

Posterior 

Impact 

(MPa) 

Lateral 

Impact 

(MPa) 

Frontal 

Impact 

(MPa) 

Superior 

Impact 

(MPa) 

15 11.16 7.88 5.32 13.87 

25 13.54 5.8 10.58 15.66 

35 14.21 10.21 12.93 17.3 

45 14.56 13.53 14.65 17.83 

55 14.8 16.19 15.96 19.15 

              

 4.7.2 Principle Stresses for Various Impacts 
Table 5: Frontal Impact Principle Stress Distribution 

Drop Height     

(cm) 

Major Principle 

Stress (MPa)  

Mid Principle 

Stress (MPa) 

Minor Principle 

Stress (MPa) 

55 6.35 12.98 16.15 

45 5.67 11.71 14.85 

35 4.682 9.975 12.98 

25 3.53 7.46 10.29 

15 1.8 2.83 4.98 

      

Table 6: Posterior Impact Principle Stress Distribution 

Drop Height 

(cm) 

Major Principle 

Stress (MPa)  

Mid Principle 

Stress (MPa) 

Minor Principle 

Stress (MPa) 

55 8.259 10.71 17.06 

45 8.335 10.57 16.87 

35 8.376 10.46 16.59 

25 8.109 9.982 15.91 

15 6.79 7.84 12.99 
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Table 7: Lateral Impact Principle Stress Distribution 

Drop Height 

(cm) 

Major Principle 

Stress (MPa)  

Mid Principle 

Stress (MPa) 

Minor Principle 

Stress (MPa) 

55 5.326 9.853 17.02 

45 4.768 7.79 13.9 

35 3.549 5.51 10.7 

25 2.009 2.716 6.06 

15 2.769 3.866 8.26 

 

Table 8: Superior Impact Principle Stress Distribution 

Drop Height 

(cm) 

Major Principle 

Stress (MPa)  

Mid Principle 

Stress (MPa) 

Minor Principle 

Stress (MPa) 

55 4.953 16.49 19.9 

45 4.76 15.1 18.4 

35 4.873 14.19 17.71 

25 4.593 12.28 16.2 

15 4.17 10.24 14.35 

                 

           4.7.3 Compressive Stresses for Various Impacts 
Table 9: Compressive Stresses Distribution  

Drop 

Height 

(cm) 

Superior 

Impact 

(MPa) 

Lateral 

Impact 

(MPa) 

Posterior 

Impact 

(MPa) 

Frontal 

Impact 

(MPa) 

55 19.15 14.57 14.84 15.96 

45 17.83 12.54 14.56 14.65 

35 17.3 9.98 14.21 12.91 

25 15.51 5.82 13.54 10.58 

15 13.64 7.887 11.16 4.945 
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5 Findings and Conclusions 
The following observations and conclusions can be drawn from the above presented graphs 

and pictorial depictions. 

         5.1 Frontal Impact Stress Distribution  
• The failure principle stress for the pediatric skull is 18.5 MPa [4]. 

• The maximum principle tensile stresses (6.35 MPa for 55cm drop) for all drop heights 

are well below the reference failure stresses.  

• There is no pediatric skull fracture for any of the fall cases in frontal region, up to drop 

heights of 55 cm. 

• However, for frontal impacts, for all drop heights, the maximum principle tensile stress 

appears to be away from site of impact, in the lower frontal region near the eye slot.  

• Thus, indicates that the potential fracture site is different from impact site. 

• But the maximum von Mises stress occur to be in the region of or very close to the site 

of impact (15.96 MPa for 55 cm drop height). This stress is direct indicative of the 

deformation in the region, thus maximum deformation appears in a region close to the site 

of impact. 

• For smaller drop heights, the magnitude of stresses decrease. Thus, we conclude that 

smaller heights cause smaller deformation and lesser is the vulnerability of skull to fracture. 

5.2 Posterior Impact Stress Distribution  
• The max principle tensile stress for posterior impacts corresponds to 55 cm drop height 

and has value of 8.259 MPa. 

• This value is well below the fracture stress, thus the skull is safe against posterior 

impacts of drop heights up to 55 cm. 

• The stress distribution figures show that max tensile principle stress happens to be in the 

region same as that of the site of impact. Thus, it indicates that potential site of fracture for 

posterior impacts would be the same. 

• But the maximum von Mises stress occur in the region of or very close to the site of 

impact. This stress is direct indicative of the deformation in the region, thus maximum 

deformation appears in a region close to the site of impact. 

• The max von Mises stress happens to be 14.8 MPa for 55 cm drop height and decreases 

with decreasing drop height. Thus, causing less deformation and fracture vulnerability as 

we go on reducing the drop height. 
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         5.3 Superior Impact Stress Distribution  
• The max principle tensile stress happens to be 4.95 MPa for 55 cm drop height. This 

value is well below the failure stress value.  

• Thus, for all drop heights below 55 cm, the skull is safe against fracture. 

• The stress distribution figures show that the max principle stress (tensile) occurs in a 

region far away from point of impact. Thus, could be concluded that potential site of 

fracture initiation is not same as the site of impact. 

• The max von Mises stress, or the deformation stress happens to be in the same region as 

the site of impact. The max value of it is 19.15 MPa and corresponds to 55 cm drop height. 

• There is a drop-in stress as we lower the height of drop. 

5.4 Lateral Impact Stress Distribution  
• The max principle tensile stress happens to be 5.32 MPa for 55 cm drop height. 

• This value is well below failure stress value thus the skull can be treated as safe against 

fractures.  

• The figures show that the site of max von Mises stress is same as site of impact. Thus, 

the region undergoes maximum deformation. 

• The max principle stress region is away from the site of impact; thus, site of crack 

initiation may not necessarily be the site of impact. 

5.5 Principle Stress Graph  
• The mid plane (P2) and minor principle stresses (P3) are compressive in nature and do 

not contribute to the fracture of the bone. Only tensile stresses cause fractures. 

• It can be noticed that the principle tensile stresses for all the cases discussed are well 

below the fracture stress value, thus, it is safe to assume that no fracture appears in the skull 

for free fall drop heights discussed above. 

• However, from the study, it can be concluded that the point of max principle stress 

(tensile) is not the same as point of maximum deformation for frontal, lateral and superior 

impact cases. 

• Hence, it is safe to conclude that surgeons should look for fracture sites even away from 

the impact site (wound), in case of a fracture. 

• The graphs show a linearly increasing trend as we increase the drop height. 

• The graphs show that stresses range in between 4.17 to 4.95 MPa for superior impact.  

• For lateral impact, stresses range from 2.7 to 5.3 MPa. 

• For posterior impact, stresses range from 6.7 to 8.2 MPa. 

• For frontal impact, stresses range from 1.8 to 6.35 MPa. 

• All the above values also correspond for minimum and maximum drop heights 

respectively. 

• The anomalies in the trends should be ignored as computational errors. The highest value 

in the scatter plot is considered for 55 cm drop height. 
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5.6 Von Mises and Compressive Stress Graph  
• The graphs for both type of stresses show linearly increasing trend. 

• Both stresses indicate the deformation because of impact on the skull. 

• The maximum von Mises and hence the deformation appears in the superior impact. 

The maximum value of stress corresponds to 55 cm drop height and is 19.15 MPa. 

• The superior impact is followed by lateral, frontal and posterior impacts in decreasing 

order, with corresponding von Mises values as 16.19 MPa, 15.96 MPa and 14.8MPa. All 

these values correspond to 55 cm drop height. 

• The slopes of the graphs of von mises stress for front and lateral impact are much 

steeper as compared to that of posterior and superior impact cases. 

• Thus, it could be proposed that on increasing drop heights, the stress values of front and 

lateral will surpass those of superior and posterior impact cases. 

5.7 Critical Drop Height Calculations 
From the tensile principle stress graph above, the equation of the line is calculated as 

follows –  

Superior Impact Case:     Y = (0.0173) X + 4.0633 

Lateral Impact Case:       Y = (0.0787) X + 0.9287 

Frontal Impact Case:       Y = (0.1128) X + 0.4544 

Posterior Impact Case:    Y = (0.0316) X + 6.8664 

If we insert critical stress value as 18.5MPa, we shall get the respective critical drop 

heights. These are as follows -  

Table 10: Critical Height Calculation Table 

Impact Region Critical Height 

  Superior   835 cm (27.37 ft) 

  Posterior   368 cm (12.07 ft) 

Lateral 223 cm (7.32 ft) 

Frontal 160 cm (5.24 ft) 

From the above table, it could be concluded that superior region is the strongest and 

frontal region is the weakest against impacts.  
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         5.8 Point of Potential Fracture 
• The distance between point of impact and potential site of fracture is farthest in the 

lateral impact case and least for posterior impact case. It was nearly same for superior and 

frontal impact cases. 

• The potential site for posterior impact was beneath the point of impact itself. 

• For lateral impact, it happens to be radially opposite in direction, in lower skull region. 

• For frontal impact, it was in the region where eye ball slot meets fore skull. 

• For superior impact, it is in the region adjacent to point of impact in lateral region of 

the skull. 

Table 11: Displacement Between Point of Impact and Point of Potential Fracture 

Impact Type Displacement Value 

Lateral 121.6 mm 

Superior 53.58 mm 

Frontal 49.22 mm 

Posterior 16.1. mm 
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6 Mesh Convergence Study 

The results obtained after doing the analysis highly depend upon the size of mesh chosen 

to mesh the given model. The results vary a lot in values if the mesh chosen is wrong. To 

verify that the mesh chosen is right, we need to confirm that results from various mesh 

sizes converge. For this purpose, models with various mesh sizes were generated and 

subjected to similar loading conditions. The results of stresses in the skull were compared 

and checked for convergence. 

Mesh sizes selected were 6 mm, 5mm, 4.5 mm, 4 mm, 3.5 mm and 3 mm. All the models 

were impacted on the superior region from a drop height of 55 cm. Stresses in the skull 

with mesh sizes 3.5 mm and 3 mm showed convergence with a difference of 6.2 % in the 

result. 3.5 mm mesh was selected as it was less time consuming as compared to 3 mm 

mesh. 

Hence for further tests on the model, 3.5 mm mesh should be used to get reliable results. 

               

Figure 17: Von Mises Stress Comparison for 3.5 mm and 3 mm Mesh 

                   

Figure 18: Tensile and Compressive Stress Comparison for 3.5 mm and 3 mm Mesh 
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Figure 19: Major Principle Stress Comparison for 3.5 mm and 3 mm Mesh 

    

Figure 20: Principle Stress (Mid) Comparison for 3.5mm and 3 mm Mesh 
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Table 12: Mesh Convergence Table for Various Mesh Sizes 

        Mesh Size Von Mises 

Stresses 

(MPa) 

Signed von 

Mises Stresses 

(MPa) 

Principle Stresses (MPa) 

6.0 mm 19.15 5.12, -19.15 4.95 16.49 

5.0 mm 21.28 13.32, -21.28 9.78 16.11 

4.5 mm 23.37 13.93, -23.37 12.48  27.06 

4.0 mm 31.37 17.75, -31.37 16.83 36.43 

3.5 mm 26.35 16.93, -26.35 16.68 31.82 

3.0 mm 26.22  18.00, -26.22 16.42 30.18 

            Various mesh sizes were used and it is obvious that as we make the mesh finer, the results 

generally more towards true solution. The optimum mesh size is achieved when error % 

between the results of consecutive mesh size approach minimum value.  

            Most result values increase as we decrease the mesh size from 6 to 4 mm, and then show a 

decreasing trend. 4 mm and 3.5 mm analysis also show closeness in results but maximum 

error percentage between the results is 16% where as it is less between 3.5 & 3 mm mesh 

analysis. 

            In the above table, the maximum percentage difference in the values for 3.5 mm & 3 mm 

mesh is 6.2 %, also the values show a convergence, hence it is good assumption to take the 

value of mesh size 3.5 mm as ideal for impact analysis on this head model. The anomaly 

in the result below for signed von mises should be considered as computational error. 
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Graph 13: Mesh Convergence Graph 

            The results in this report are based on mesh size of 6 mm, hence the results need further 

improvement and discussion. I would suggest finding the strain energy values for various 

simulations as it would be a better tool for impact test analysis.  
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         7 Appendix A – Stress Patterns  
 

4.1 Maximum Principle Stress and Strain Distributions 

The following section has the additional principle stress patterns, as a continuation of 

those in the previous section.   

4.1.1 Frontal Impacts for Various Drop Heights 

 

Figure 21: 45-cm Drop Major Principle Stress Distribution (Frontal Impact) 

 

Figure 22: 45-cm Drop Mid Principle Stress Distribution (Frontal Impact) 
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Figure 23: 45-cm Drop Minor Principle Stress Distribution (Frontal Impact) 

 

Figure 24: 35-cm Drop Major Principle Stress Distribution (Frontal Impact) 

 

Figure 25: 35-cm Drop Mid Principle Stress Distribution (Frontal Impact) 
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Figure 26: 35-cm Drop Minor Principle Stress Distribution (Frontal Impact) 

 

Figure 27: 25-cm Drop Major Principle Stress Distribution (Frontal Impact) 

 

Figure 28: 25-cm Drop Mid Principle Stress Distribution (Frontal Impact) 



 

38 

 

 

Figure 29: 25-cm Drop Minor Principle Stress Distribution (Frontal Impact) 

 

Figure 30: 15-cm Drop Major Principle Stress Distribution (Frontal Impact) 

 

Figure 31: 15-cm Drop Mid Principle Stress Distribution (Frontal Impact) 
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Figure 32: 15-cm Drop Minor Principle Stress Distribution (Frontal Impact) 

4.1.2 Superior Impact 

 

Figure 33: 55-cm Drop Major Principle Stress Distribution (Superior Impact) 

 

Figure 34: 55-cm Drop Mid Principle Stress Distribution (Superior Impact) 
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Figure 35: 55-cm Drop Minor Principle Stress Distribution (Superior Impact) 

 

Figure 36: 45-cm Drop Major Principle Stress Distribution (Superior Impact) 

 

Figure 37: 45-cm Drop Mid Principle Stress Distribution (Superior Impact) 
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Figure 38: 45-cm Drop Minor Principle Stress Distribution (Superior Impact) 

 

Figure 39: 35-cm Drop Major Principle Stress Distribution (Superior Impact) 

 

Figure 40: 35-cm Drop Mid Principle Stress Distribution (Superior Impact) 
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Figure 41: 35-cm Drop Minor Principle Stress Distribution (Superior Impact) 

 

Figure 42: 25-cm Drop Major Principle Stress Distribution (Superior Impact) 

 

Figure 43: 25-cm Drop Mid Principle Stress Distribution (Superior Impact) 
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Figure 44: 25-cm Drop Minor Principle Stress Distribution (Superior Impact) 

 

Figure 45: 15-cm Drop Major Principle Stress Distribution (Superior Impact) 

 

Figure 46: 15-cm Drop Mid Principle Stress Distribution (Superior Impact) 
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Figure 47: 15-cm Drop Minor Principle Stress Distribution (Superior Impact) 

4.1.3 Lateral Impact 

 

Figure 48: 55-cm Drop Major Principle Stress Distribution (Lateral Impact) 

 

Figure 49: 55-cm Drop Mid Principle Stress Distribution (Lateral Impact) 
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Figure 50: 55-cm Drop Minor Principle Stress Distribution (Lateral Impact) 

 

Figure 51: 45-cm Drop Major Principle Stress Distribution (Lateral Impact) 

 

Figure 52: 45-cm Drop Mid Principle Stress Distribution (Lateral Impact) 
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Figure 53: 45-cm Drop Minor Principle Stress Distribution (Lateral Impact) 

 

Figure 54: 35-cm Drop Major Principle Stress Distribution (Lateral Impact) 

 

Figure 55: 35-cm Drop Mid Principle Stress Distribution (Lateral Impact) 
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Figure 56: 35-cm Drop Minor Principle Stress Distribution (Lateral Impact) 

 

Figure 57: 25-cm Drop Major Principle Stress Distribution (Lateral Impact) 

 

Figure 58: 25-cm Drop Mid Principle Stress Distribution (Lateral Impact) 
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Figure 59: 25-cm Drop Minor Principle Stress Distribution (Lateral Impact) 

 

Figure 60: 15-cm Drop Major Principle Stress Distribution (Lateral Impact) 

 

Figure 61: 15-cm Drop Mid Principle Stress Distribution (Lateral Impact) 
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Figure 62: 15-cm Drop Minor Principle Stress Distribution (Lateral Impact) 

4.1.4 Posterior Impact  

 

Figure 63: 55-cm Drop Major Principle Stress Distribution (Posterior Impact) 

 

Figure 64: 55-cm Drop Mid Principle Stress Distribution (Posterior Impact) 
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Figure 65: 55-cm Drop Minor Principle Stress Distribution (Posterior Impact) 

 

Figure 66: 45-cm Drop Major Principle Stress Distribution (Posterior Impact) 

 

Figure 67: 45-cm Drop Mid Principle Stress Distribution (Posterior Impact) 
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Figure 68: 45-cm Drop Minor Principle Stress Distribution (Posterior Impact) 

 

Figure 69: 35-cm Drop Major Principle Stress Distribution (Posterior Impact) 

 

Figure 70: 35-cm Drop Mid Principle Stress Distribution (Posterior Impact) 
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Figure 71: 35-cm Drop Minor Principle Stress Distribution (Posterior Impact) 

 

Figure 72: 25-cm Drop Major Principle Stress Distribution (Posterior Impact) 

 

Figure 73: 25-cm Drop Mid Principle Stress Distribution (Posterior Impact) 
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Figure 74: 25-cm Drop Minor Principle Stress Distribution (Posterior Impact) 

 

Figure 75: 15-cm Drop Major Principle Stress Distribution (Posterior Impact) 

 

Figure 76: 15-cm Drop Mid Principle Stress Distribution (Posterior Impact) 
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Figure 77: 15-cm Drop Minor Principle Stress Distribution (Posterior Impact) 
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4.2 Von Mises Stress and Strain Distributions  

4.2.1 Frontal Impact 

 

 

 

 

Figure 78: 45-cm Drop Frontal Impact von Mises Stress and Strain Distribution 

Figure 79: 35-cm Drop Frontal Impact von Mises Stress and Strain Distribution 
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Figure 80: 25-cm Drop Frontal Impact von Mises Stress and Strain Distribution 

Figure 81: 15-cm Drop Frontal Impact von Mises Stress and Strain Distribution 
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4.2.2 Superior Impact 

   

Figure 82: 55-cm Drop Superior Impact von Mises Stress and Strain Distribution 

     

Figure 83: 45-cm Drop Superior Impact von Mises Stress and Strain Distribution 

     

Figure 84: 35-cm Drop Superior Impact von Mises Stress and Strain Distribution 
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Figure 85: 25-cm Drop Superior Impact von Mises Stress and Strain Distribution 

   

Figure 86: 15-cm Drop Superior Impact von Mises Stress and Strain Distribution 

4.2.3 Lateral Impact 

                                                                                    

Figure 87: 55-cm Drop Lateral Impact von Mises Stress and Strain Distribution 
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Figure 88: 45-cm Drop Lateral Impact von Mises Stress and Strain Distribution 

 

Figure 89: 35-cm Drop Lateral Impact von Mises Stress and Strain Distribution                                                                    

                

Figure 90: 25-cm Drop Lateral Impact von Mises Stress and Strain Distribution 
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Figure 91: 15-cm Drop Lateral Impact von Mises Stress and Strain Distribution 
 

4.2.4 Posterior Impact 

 

Figure 92: 55-cm Drop Posterior Impact von Mises Stress and Strain Distribution 

 

Figure 93: 45-cm Drop Posterior Impact von Mises Stress and Strain Distribution 
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Figure 94: 35-cm Drop Posterior Impact von Mises Stress and Strain Distribution 

 

Figure 95: 25-cm Drop Posterior Impact von Mises Stress and Strain Distribution 

 

Figure 96: 15-cm Drop Posterior Impact von Mises Stress and Strain Distribution 
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         4.3 Tensile and Compressive Stress Distributions 

4.3.1 Frontal Impact 

 

Figure 97: 45-cm Frontal Drop Tensile and Compressive Stresses 

 

Figure 98: 35-cm Frontal Drop Tensile and Compressive Stresses 
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Figure 99: 25-cm Frontal Drop Tensile and Compressive Stresses 

 

Figure 100: 15-cm Frontal Drop Tensile and Compressive Stresses 
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4.3.2 Superior Impact 

 

Figure 101: 55-cm Superior Drop Tensile and Compressive Stresses 

 

Figure 102: 45-cm Superior Drop Tensile and Compressive Stresses 

 

Figure 103: 35-cm Superior Drop Tensile and Compressive Stresses 
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Figure 104: 25-cm Superior Drop Tensile and Compressive Stresses 

 

Figure 105: 15-cm Superior Drop Tensile and Compressive Stresses 
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4.3.3 Lateral Impact 

                                                               

Figure 106: 55-cm Lateral Drop Tensile and Compressive Stresses 

 

Figure 107: 45-cm Lateral Drop Tensile and Compressive Stresses 

 

Figure 108: 35-cm Lateral Drop Tensile and Compressive Stresses 
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Figure 109: 25-cm Lateral Drop Tensile and Compressive Stresses 

 

Figure 110: 15-cm Lateral Drop Tensile and Compressive Stresses 

 

 

 

 

 

 

 

 

 



 

68 

 

4.3.4 Posterior Impact 

   

Figure 111: 55-cm Posterior Drop Tensile and Compressive Stresses 

   

Figure 112: 45-cm Posterior Drop Tensile and Compressive Stresses 

   

Figure 113: 35-cm Posterior Drop Tensile and Compressive Stresses 
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Figure 114: 25-cm Posterior Drop Tensile and Compressive Stresses 

   

Figure 115: 15-cm Posterior Drop Tensile and Compressive Stresses 
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4.4 Point of Impact from Point of Maximum von Mises Stress 

4.4.1 Frontal Impact 

 

Figure 116: 45-cm Frontal Drop Case 

 

Figure 117: 35-cm Frontal Drop Case 
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Figure 118: 25-cm Frontal Drop Case 

 

Figure 119: 15-cm Frontal Drop Case 
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4.4.2 Superior Impact 

 

Figure 120: 55-cm Superior Drop Case 

 

Figure 121: 45-cm Superior Drop Case 

 

Figure 122: 35-cm Superior Drop Case 
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Figure 123: 25-cm Superior Drop Case 

 

Figure 124: 15-cm Superior Drop Case 
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 4.4.3 Lateral Impact 

 

Figure 125: 55-cm Lateral Drop Case 

 

Figure 126: 45-cm Lateral Drop Case 

 

Figure 127: 35-cm Lateral Drop Case 
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Figure 128: 25-cm Lateral Drop Case 

 

Figure 129: 15-cm Lateral Drop Case 
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4.4.4 Posterior Impact 

 

Figure 130: 55-cm Posterior Drop Case 

 

Figure 131: 45-cm Posterior Drop Case 

 

Figure 132: 35-cm Posterior Drop Case 
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Figure 133: 25-cm Posterior Drop Case 

 

Figure 134: 15-cm Posterior Drop Case 

 

 

 

 

 

 

 

 



 

78 

 

8 References 

[1] Slip-Fall Statistics, hspsupplyinc.com/stats.htm. 

[2] “Find a Surgeon.” American College of Surgeons, www.facs.org/search/find-a-surgeon.  

[3] “Important Facts about Falls.” Centers for Disease Control and Prevention, Centers for Disease 

Control and Prevention, 10 Feb. 2017, www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html. 

[4] K.L. Thibault, S.M. Kurtz, Material properties of the infant skull and application to 

numerical analysis of pediatric head injury, IRCOBI Conference - Sitges (Spain), 

September 1999. 

 [5] S. S. Margulies, K. L. Thibault, Infant Skull and Suture Properties: Measurements and 

Implications for Mechanisms of Pediatric Brain Injury, Journal of Biomechanical 

Engineering, AUGUST 2000, Vol. 122 (364-371). 

[6] C. J. HOBBS, Skull fracture and the diagnosis of abuse, Archives of Disease in 

Childhood, 1984, 59, (246-252). 

[7] S. Ji, B Coats, S. Margulies, Parametric Study of Head Impact in the Infant, Stapp car 

crash journal, Vol. 51 (October 2007) 1-15. 

[8] C. Zhou, T.B. Kahlil, L.J. Dragovic, Head injury assessment of a real-world crash by 

finite element modelling, in: Proceedings of the AGARD Conference, 1996. 

[9] S. Roth, et al, Child head injury criteria investigation through numerical simulation of 

real world trauma. (2008). 

[10] R. Willinger, L. Taleb, Model and temporal analysis of head mathematical models, J. 

Neurotrauma 12 (4) (1995) 743-754. 

[11] L.Z. Shuck, S.H. Advani, Rheological response of human brain tissue in shearing, J. Basic 

Eng. (1972) 905–911.  

 

[12] Project menu script submitted to Michigan Technological University under special 

topic named “3D-FEM Study on the Pediatric Head Response to Impact due to Free Fall 

to Predict TBI Risk” by Prajwal Mahesh (2016). 

[13] M.T. Prange, J. F. Luck, A. Dibb, C.A. Van Ee, R.W. Nightingale, B.S. Mayers, 

Mechanical properties and anthropometry of the human infant head, Stapp Car Crash J.48 

(2004) 279-299.  

 

 

 

http://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html

	A 3 D- FEM Study on the Stress Distributions in Pediatric Skull due to Impact from Free Fall
	Recommended Citation

	tmp.1512687080.pdf.f9GR8

