
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2017

MINIMUM TIME CONTROL OF PARALLELED BOOST MINIMUM TIME CONTROL OF PARALLELED BOOST

CONVERTERS CONVERTERS

Shishir Patel
Michigan Technological University, sjpatel2@mtu.edu

Copyright 2017 Shishir Patel

Recommended Citation Recommended Citation
Patel, Shishir, "MINIMUM TIME CONTROL OF PARALLELED BOOST CONVERTERS", Open Access Master's
Thesis, Michigan Technological University, 2017.
https://digitalcommons.mtu.edu/etdr/530

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Controls and Control Theory Commons, Electrical and Electronics Commons, and the Power and
Energy Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=digitalcommons.mtu.edu%2Fetdr%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.mtu.edu%2Fetdr%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.mtu.edu%2Fetdr%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.mtu.edu%2Fetdr%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages

MINIMUM TIME CONTROL OF PARALLELED BOOST CONVERTERS

By

Shishir J. Patel

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2017

© 2017 Shishir J. Patel

This thesis has been approved in partial fulfillment of the requirements for the

Degree of MASTER OF SCIENCE in Electrical Engineering.

Department of Electrical and Computer Engineering

Thesis Advisor : Dr. Wayne W. Weaver

Committee Member : Dr. Gordon G. Parker

Committee Member : Prof. John T. Lukowski

Department Chair : Dr. Daniel R. Fuhrmann

Contents

Abstract xvi

1 Introduction 1

1.1 Thesis objective . 1

1.2 Previous art . 2

1.3 Thesis organization . 4

2 Overview of Boost converters in and as DC Microgrid 6

2.1 Mathematical model of a Boost converter 6

2.1.1 Discrete modeling of Boost converter in CCM 8

2.1.2 Discrete modeling of Boost converter in DCM 10

2.1.3 Simulation of Boost converter using discrete model 12

2.2 Mathematical model of multiple/paralleled Boost converters con-

nected to a resistive load . 14

3 Sliding Mode Control (SMC) andMinimum Time Control(MTC)

of paralleled boost converters 20

3.1 Sliding Mode Control(SMC) of Multiple Boost Converters 21

3.1.1 Sliding Mode Controller design 21

3.1.2 Simulation of Multiple Boost Converters with SMC 23

3.2 Minimum Time Control (MTC) of Paralleled Boost Converters . . 28

3.2.1 MTC concept and objectives 28

3.2.2 Minimum Time Control (MTC) algorithm 33

v

3.2.3 DCM based iteration of paralleled boost converters for MTC 35

3.2.4 CCM based iteration of paralleled boost converters for MTC 40

3.2.5 Comparison between CCM and DCM based implementation

of MTC . 44

3.2.6 Simulation of paralleled boost converter with MTC 45

4 Real-time control system implementation and validation of MTC 59

4.1 Minimum time control (MTC) system architecture for emulation . 59

4.1.1 Hardware implementation for real time MTC 60

4.1.2 Software implementation for real-time MTC 62

4.2 HIL simulation results and analysis 65

4.3 Comparison of performance between SMC and MTC 73

4.3.1 SMC vs MTC time domain comparison 73

4.3.2 SMC vs MTC phase plane comparison 75

4.4 Parameter sensitivity analysis . 78

5 Conclusion and Future Work 80

5.1 Thesis summary . 80

5.2 Future Work . 81

5.2.1 Concurrent execution for Real time MTC 81

5.2.2 Non-linear modeling of system parameters 82

5.2.3 GPU based implementation of MTC as an alternative . . . 83

References 86

A Appendices 91

vi

A.1 Simulink Model for SMC of Multiple boost converters 91

A.2 Simulink Model for MTC of Multiple boost converters 93

A.3 Simulink Real-time Model for MTC of Multiple Boost Converters 97

A.4 HIL simulation results for experimental cases 103

A.5 MATLAB code for implementation of SMC and MTC for paralleled

Boost converters . 126

A.6 GPU based implementation for MTC 163

vii

List of Figures

2.1 Voltage source boost converter with constant resistance 6

2.2 Boost converter when A = 1,B = 1 8

2.3 Boost converter when A = 0,B = 1 8

2.4 Boost converter during DCM when A = 0, B = 0 10

2.5 Functional representation for simulation of discrete boost converter 12

2.6 Discrete model based simulation of boost converter 13

2.7 Phase plane trajectory VC → iL from simulation shown in Figure 2.6 14

2.8 n- paralleled boost converters connected to a non-variable resistive

load . 16

2.9 3- paralleled boost converters connected to a non-variable resistive

load . 18

3.1 System states under sliding mode control (SMC); step change in

Vref at t = 30ms . 25

3.2 Instantaneous Energy (in Joules) stored in passive elements during

SMC; (a) EL1 ,(b) EL2 , (c) EL3 , (d) ECbank 26

3.3 Phase plane trajectories ILn → Vbus for all boost converter stages

over time t = [0, 80]ms . 27

3.4 Vbus over β ∈ [0.1, 0.8] for DCM based implementation of MTC . . 38

3.5 System states during DCM based implementation of MTC 39

3.6 Vbus over β ∈ [0.1, 0.8] for CCM based implementation of MTC . . 41

3.7 System states during CCM based implementation of MTC 43

3.8 System states operating under SMC+MTC operation during sim-

ulation; MTC triggered at t = 30 ms 53

viii

3.9 System states during simulation of MTC with 3-boost converter

stages, plotted with trigger point at time t = 0 ms 54

3.10 Duty cycle (D) for all boost converter stages during SMC and MTC

operation, (a) D1, (b) D2, (c) D3 55

3.11 Instantaneous Energy (in Joules) stored in passive elements during

SMC+MTC operation; (a) EL1 ,(b) EL2 , (c) EL3 , (d) ECbank 56

3.12 Phase plane trajectories ILn → Vbus for all boost converter stages

over time t = [0, 80]ms . 57

4.1 Experimental setup for HIL Simulation 61

4.2 Trigger signals during concurrent execution of MTC; (a) Simula-

tion for MTC algorithm triggered, (b) Simulation enable signal, (c)

sequential strobe signals indicating execution of MTC algorithm for

two β values, (d) MTC trigger for Real-time execution 66

4.3 Timeline of trigger signals for execution of MTC algorithm in real-

time . 66

4.4 System states during execution of MTC algorithm 68

4.5 Switching signals applied at gates of power switches 69

4.6 System states during real-time execution of MTC projected as phase

plane trajectories . 71

4.7 Oscilloscope capture of MTC operation on time scale of 1 s 72

4.8 Horizontally stretched oscilloscope capture of MTC operation on

time scale of 10ms . 72

4.9 System states during real time execution of SMC 74

4.10 System states during real time execution of SMC 75

ix

4.11 System states during real-time execution of SMC projected as phase

plane trajectories . 76

4.12 System states during real-time execution of MTC projected as phase

plane trajectories . 77

4.13 Sensitivity of Vbus with respect to inductance Li of individual boost

converter stage δ . 79

4.14 Sensitivity of Vbus with respect to ESR Rc of the Capacitor bank

Cbank . 79

5.1 Execution of tasks in CPU(few high-speed heterogeneous threads)

vs GPU(large number of homogeneous threads at moderate speed) 84

A.1 HIL emulation with L1 = 0.07L1 (−30% change) 103

A.2 HIL emulation with L1 = 0.08L1 (−20% change) 104

A.3 HIL emulation with L1 = 0.09L1 (−10% change) 105

A.4 HIL emulation with L1 = 1.1L1 (+10% change) 106

A.5 HIL emulation with L1 = 1.2L1 (+20% change) 107

A.6 HIL emulation with L1 = 1.3L1 (+30% change) 108

A.7 HIL emulation with L2 = 0.07L2 (−30% change) 109

A.8 HIL emulation with L2 = 0.08L2 (−20% change) 110

A.9 HIL emulation with L2 = 0.09L2 (−10% change) 111

A.10 HIL emulation with L2 = 1.1L2 (+10% change) 112

A.11 HIL emulation with L2 = 1.2L2 (+20% change) 113

A.12 HIL emulation with L2 = 1.3L2 (+30% change) 114

A.13 HIL emulation with L3 = 0.07L3 (−30% change) 115

A.14 HIL emulation with L3 = 0.08L3 (−20% change) 116

x

A.15 HIL emulation with L3 = 0.09L3 (−10% change) 117

A.16 HIL emulation with L3 = 1.1L3 (+10% change) 118

A.17 HIL emulation with L3 = 1.2L3 (+20% change) 119

A.18 HIL emulation with L3 = 1.3L3 (+30% change) 120

A.19 HIL emulation with RC = 0.001Ω 121

A.20 HIL emulation with RC = 0.05Ω 122

A.21 HIL emulation with RC = 0.1Ω 123

A.22 HIL emulation with RC = 0.15Ω 124

A.23 HIL emulation with RC = 0.20Ω 125

xi

List of Tables

1 Paralleled Boost Converter system parameters 23

2 Paralleled boost converter system parameters 46

3 Initial and final system states for 3-paralleled boost converters dur-

ing MTC . 47

4 Maximum ON time for boost converter switches during MTC . . 47

5 Equivalent contribution of each boost converter stage for MTC . 48

6 Absolute and relative contribution factor for each boost converter

during MTC . 48

xii

To my grandfather, Mohan Patel.

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor Dr. Wayne

Weaver for the continuous support, for his immense patience, motivation, and

knowledge. His guidance helped me in all the time of research and writing of this

thesis. I could not have imagined having a better advisor and mentor for Masters

study. It was truely a previledge for me to have an access to the laboratory and

research facilities. It not only helped me to conduct the research but also provided

an excellent opportunity to learn and experiment even beyond the scope of this

thesis.

Besides my advisor, I would like to thank the rest of my thesis committee, Dr.

Gordon Parker and Prof. John Lukowski for their insightful comments and en-

couragement.

Last but not the least, I would like to thank my family, especially my parents

for encouragment and unconditional support that always inspired me pursue this

path. I will alway be debtful for their sacrifices throuout my life.

xiv

Nomenclature

MTC Minimum Time Control

SMC Sliding Mode Control

IGBT Insulated Gate Bipolar Transistor

MOSFET Metal Oxide Surface Field Effect Transistor

MBC Multiple Boost Converter

VCS Voltage Controlled Source

CCS Current Controlled Sources

CCM Continuous Conduction Mode

DCM Discontinuous Conduction Mode

SBC Single Board Computer

ESR Equivalent Series Resistance

PWM Pulse Width Modulation

CPU Central Processing Unit

GPU Graphical Processing Unit

xv

Abstract

Demand for electrification is booming in both, traditional and upcoming gen-

erations of technological advancements. One of the constituent blocks of these

electrified systems is Power conversion. Power conversion systems are often con-

structed by paralleling multiple power converter blocks for high performance and

reliability of overall system. An advanced control technique is developed with

an aim to optimize system states of heterogeneous power converters within min-

imum time while maintaining feasible stress level on individual power converter

blocks. Practical implementation of real-time controller and performance improve-

ment strategies are addressed. Experimental results validating high performance

control scheme, and sensitivity analysis of system states as measure of system

robustness are also presented.

xvi

1 Introduction

1.1 Thesis objective

Switching mode power supplies are a fundamental component of modern power

system, providing most efficient and controllable energy conversion solution. Over

many decades of improvements made this technology even superior for all range

of power applications. Along with the advancements in computational resources

and wide range of control system, power electronics converters have dominated

almost every aspect of power systems whether it be a power supply for a low-

power microprocessor[1] or high-power wind-turbines[2][3] to electric vehicles[4][5].

Sophisticated control systems are replacing the role of conventional energy sources

by incorporating electrical energy sources along with the power converters.

Significant interest in the range of medium to high power applications are, pulsed

power systems where energy is supplied in form of pulses to the load, and quick

response systems such as transient stabilization[3]. Often times, high power appli-

cations are implemented through combination of several medium power modules

to share the overall load[6] [7]. Increasing interest in electrification of naval ves-

sels, amphibious vehicles and motor vehicles demand high speed performance in

their operations. A pulsed radar system that conventionally operates through

high-frequency oscillators and resonators is also in need for more efficient and less

bulky solution for low to mid range detection applications.

To implement above mentioned applications through power converters, a sophisti-

cated control approach is needed. High power applications consist large number of

1

medium power converters that share power load depending on their capabilities.

It is also important to note that these modules may or may not be identical in

nature. So, the control system should also consider non-symmetric nature of the

system. What makes a pulsed power application most challenging is the power

level and time duration of pulse. So, it makes overall system very vulnerable to

withstand pulses of power that force system to operate at its extreme level. While

pulse power applications take minimum time for state transitions, it is also im-

portant to facilitate that performance in least amount of time possible so that the

overall speed of operation can be increased.

To fulfill the demands for high-power high-speed application, prime objective of

this thesis is to develop a control method/architecture that can implement mini-

mum time control for multiple paralleled boost converters in real-time.

1.2 Previous art

Numerous research endeavors have been made in providing a feasible solution for

the minimum time control problem. Varying from low to high power applications,

those solutions fit into a well defined criteria for which the control system/ap-

proach was designed. Some of those previous works are briefly discussed in this

section.

One of the implementations [8] focusing on minimum time control of single stage

boost converter is through finding a solution for a trajectory with boundary con-

ditions and storing the calculated trajectory in a static memory. This kind of

approach using pre-calculated trajectories take less time for computation while

2

running the system but the limitation of the approach is that it can not be ex-

tended to n-number of parallel boost converter based system. As the number of

stages grow, the complexity to find an analytical solution for an optimal control

trajectory grows rapidly and hence it can not be a viable option for quick real-

time transition. Another important factor to be considered for an off-line solution

method is that the accuracy of real-time transition depend on the available mem-

ory storage. So, the available on-board memory becomes an important factor in

hardware selection.

Another research [9][10][11] focused on multiple power converter stages provide

minimum time control solution through mixed-signal compensatory design. One

prominent advantage of this method is that the complete control system is imple-

mented through hardware and does not require an on-line computational burden.

The control method primarily designed for low-power applications does not con-

sider non-homogeneity of the system. So, all of the power converter stages are

assumed identical. Due to the homogeneity in system, a control can be designed

merely by considering only one stage and expanding to whole system of n number

of stages. It assumes equal sharing of current among the stages and hence makes

it very simplified for low power applications. Although, this method provides

least computationally expensive solution, it do not fit to most of practical power

system application.

Other relevant works [12][13][14][15] that address the minimum time control or

similar approach for a specific application and assumption. But most of the

methods either consider a simplified topology or non real time solution. There

are no solutions available for multiple converters/interleaved converters to have

3

lightweight, scalable and real-time approach that consider non-ideal system pa-

rameters. Hence, it is prime focus of this thesis to develop a control method that

address all of the short-comings of the methods discussed here.

1.3 Thesis organization

A detailed mathematical modeling of a boost converter is derived for different

modes of operation, Continuous Conduction Mode (CCM) and Discontinuous

Conduction Mode (DCM). The discrete modeling approach is extended for multi-

ple/paralleled Boost converters interfaced to a resistive load. The mathematical

implementation derived in the chapter 2 is used for iteration of paralleled boost

converter in Minimum Time Control (MTC) operation.

Chapter 3 illustrates the implementation of Sliding Mode Control (SMC) as one of

the robust control technique for paralleled boost converter. A concept of contribu-

tion and non-identical sharing of inductor currents is introduced as key aspect of

MTC. The core content of the thesis, MTC algorithm, is elaborated in this chap-

ter and the simulation results are also illustrated to compare the performance of

MTC with SMC.

A real-time implementation of the control system is described in chapter 4. The

architecture of the discrete control system for Hardware-in-loop (HIL) emulation

of paralleled boost converters under MTC is described. Real-time experimental

results for SMC and MTC are also juxtaposed for time domain and phase tra-

jectory point of view. Sensitivity analysis and the experimental results are also

demonstrated to highlight robustness of the MTC operation.

4

Final chapter 5 summarize the reported work with conclusive remarks and focuses

on several key aspects of the proposed method that can significantly improve the

performance (speed of response) of the overall system.

5

2 Overview of Boost converters in and as DC

Microgrid

2.1 Mathematical model of a Boost converter

Boost converter/regulator is one of the constituent blocks of a DC microgrid that

translate input voltage to a higher level output voltage [16]. The voltage source

boost converter shown in Figure 2.1, has voltage source Vs, ideal controlled elec-

tronic switch (IGBT/MOSFET) S, and ideal diode D as an uncontrolled switch.

Duty cycle(d) of the PWM signal applied at the gate terminal determine ON time

dT , and OFF time (1 − d)T of the switch. Where, T represents the time period

of applied PWM signal. Energy storing passive elements, inductance L and ca-

pacitance C, have their equivalent series resistances (ESR) represented as RL and

Rc respectively. Similarly, electronic switch and diode have their ON resistance

modeled as RSW and RD accordingly.

Vs

RLL

S

D

Ro

C +

-

vo

iL

RC

+

-
vc

RD

RSW

Figure 2.1: Voltage source boost converter with constant resistance

Resistances of electronic devices depends on hardware specifications and include

losses in the system model. However, one of the fundamental parameters at-

6

tributed to electronic devices, cut-off voltage, is omitted from the model Boost

converter. For high power applications the effect of any voltage drop of scale

of several hundreds of millivolts tend to alter overall system performance at no

significant level. One another reason, elaborated in detail in section (3.2.1), to

eliminate the terms with non-significant impact on accuracy of system model is

to reduce simulation time while running in real-time.

Assuming strictly non-linear and ideal switching of a transistor S and diodeD, the

boost converter circuit operates in a different manner according to the discrete

state of the switch and diode. In general, boost converter has two modes of

operations [17] [18], namely,

1. Continuous conduction mode (CCM)

2. Discontinuous conduction mode (DCM)

CCM is the mode of operation in which, inductor current iL remains always non-

zero and positive for any switch period; whereas, during DCM inductor iL can

reduce to zero during OFF period of switch. Depending upon switch state and in-

ductor current there exist multiple combinations of the boost converter circuit. In

order to simplify discrete modeling of the boost converter circuit, these combina-

tions are lumped with the linear model of individual circuit combination through

binary variables designated as A and B. Where,

A =


1, Switch S is ON

0, Switch S is OFF

(2.1)

7

B =


1, inductor current iL ∈ (0,∞)

0, inductor current iL = 0
(2.2)

2.1.1 Discrete modeling of Boost converter in CCM

According to equations (2.1) and (2.2), binary variable B = 1 and A = 1/0

represents the state of switch S. Two different circuit typologies resulting from

this combination are illustrated in Figure 2.2-2.3.

S-ON
q=1

Vs

RLL D

Ro

C +

-

vo

iL

RC

+

-
vc

RD

RSW

Figure 2.2: Boost converter when A = 1,B = 1

S-OFF
q=0

Vs

RLL D

Ro

C +

-

vo

iL

RC

+

-
vc

RD

RSW

Figure 2.3: Boost converter when A = 0,B = 1

Using KVL and KCL for the circuit shown in Figure 2.2, differential equations of

8

system states, current through inductor iL and voltage across capacitor vC , and

output voltage across load resistor vO are:

diL
dt

= (RL +RSW)
L

iL + 0vC + 1
L
VS (2.3)

dvC
dt

= 0iL −
1

(Ro +RC)CvC + 0VS (2.4)

vO = 0iL + Ro

Ro +RC

vC + 0VS (2.5)

Similarly, the differential system of equations for circuit shown in Figure 2.3 can

be represented as:

diL
dt

= −Ro(RL +RD) +Rc(Ro +RL +RD)
L(Ro +Rc)

iL −
Ro

L(Ro +Rc)
vC + 1

L
VS (2.6)

dvC
dt

= Ro

(Ro +Rc)C
iL −

1
(Ro +RC)CvC + 0VS (2.7)

vO = RoRc

Ro +RC

iL + Ro

Ro +RC

vC + 0VS (2.8)

Combining both aforementioned discrete systems, using Boolean arithmetic for

variables A and B, yields into following set of equations:

diL
dt

= (RL +RSW)
L

iLA−
Ro(RL +RD) +Rc(Ro +RL +RD)

L(Ro +Rc)
iLA (2.9)

− Ro

L(Ro +Rc)
vCA+ 1

L
VS

dvC
dt

= Ro

(Ro +Rc)C
iLA−

1
(Ro +RC)CvC + 0VS (2.10)

9

vo = RoRc

Ro +RC

iLA+ Ro

Ro +RC

vC + 0VS (2.11)

Since the boost converter is operating in CCM mode and hence B = 1, as per

the Boolean redundancy law, none of the equations (2.9)-(2.11) contain Boolean

variable B. These set of equations represents all combinations of system. There

exist few oms states for CCM mode based on state of electronic switch.

2.1.2 Discrete modeling of Boost converter in DCM

Discontinuous mode of boost converter attributes to the zero inductor current

iL = 0. In contrast to CCM, where inductor current remains always non-zero due

to closed electric path either through switch S or diode D; in DCM there exist

an additional circuit configuration. When A = 0 and B = 0, electronic switch S

and diode D remain in OFF mode, and, hence leave no electric path for inductor

current iL to flow. The circuit configuration of this mode is illustrated in Figure

(2.4).

S-OFF
q=0

Vs

RLL D

Ro

C +

-

vo

iL=0

RC

+

-
vc

RD

RSW

Figure 2.4: Boost converter during DCM when A = 0, B = 0

Differential system of equations for the circuit configuration (A = 0 and B = 0)

10

shown in Figure (2.4) is represented as:

diL
dt

= 0iL + 0vC + 0VS (2.12)

dvC
dt

= 0iL −
1

(Ro +RC)CvC + 0VS (2.13)

vO = 0iL + Ro

Ro +RC

vC + 0VS (2.14)

Apart from this DCM specific circuit configuration, rest of the circuit combinations

from CCM, Equations (2.9)-(2.11), remain unchanged for iL > 0. Hence, complete

discrete model with CCM and DCM modes can be represented in combined from

as follows:

diL
dt

= (RL +RSW)
L

iLAB −
Ro(RL +RD) +Rc(Ro +RL +RD)

L(Ro +Rc)
iLAB (2.15)

− Ro

L(Ro +Rc)
vCAB + 1

L
VSB

dvC
dt

= Ro

(Ro +Rc)C
iLAB −

1
(Ro +RC)CvC + 0VS (2.16)

vO = RoRc

Ro +RC

iLAB + Ro

Ro +RC

vC + 0VS (2.17)

The aforementioned discrete model of boost converter will provide strong founda-

tion in extension of single stage boost converter to multiple boost converter system

with minimal changes. In addition, the extended multiple/paralleled boost con-

verter model based on discrete modeling approach will be incorporated crucially

in implementation of MTC algorithm elaborated in section (3.2).

11

2.1.3 Simulation of Boost converter using discrete model

In general, average modeling of boost converter [19] is a very versatile method

for simulation and implementation of controls. The average modeling approach

emphasis on average of ON- and OFF- state of system and connects duty cy-

cle d of PWM signal, applied at the gate of switch S , with the system states

iL and vC . With identical system parameters, there is no functional difference

in operation boost converter, but discrete modeling approach provides full ac-

cess to system model at each switch transitions, from 1(ON) → 0(OFF) and

0(OFF)→ 1(ON), hence implementation of discrete controls becomes much eas-

ier. In order to exemplify how to simulate discrete model, a functional block

diagram of simulation process is illustrated in Figure 2.5. It is important to note

that the step-time (model update time) for simulation is significantly lower than

time period of PWM signal.

d

f(t,x,A,B)
Discrete Boost

Converter ModelA

B
iL

Vc

Vo

Check for DCM
if iL ≤ 0 → B = 0

else B = 1

x0 (iL0,Vc0)

Controlled PWM
signal applied to

switch

Initial conditions

Figure 2.5: Functional representation for simulation of discrete boost converter

12

0 0.05 0.1 0.15 0.2

Time (sec)

0

10

20

30

40

50

60

70

80

90

100

110

S
ys

te
m

 s
ta

te
s

(i
L
,
V

c)

Discrete model based simulation of Boost converter

Inductor current i
L
 (A)

Capacitor voltage V
c
 (V)

X: 0.07544
Y: 101.1

X: 0.07544
Y: 19.85

Figure 2.6: Discrete model based simulation of boost converter

To validate system response with discrete model, a sample boost converter simula-

tion starting from steady state and operating under duty cycle d based open-loop

control is illustrated in Figure 2.6. Note that the system states iL and VC be-

gins with initial conditions close to the steady state values. The deviations at

the beginning, due to switching of system states, settle down very quickly and

continue with steady state response. Besides from time based depiction of system

states, phase-plane representation of system states provide more insight into the

state transitions per switching event instead of time. This method of representing

system states, phase plane trajectories, will be used extensively in later sections

to evaluate and analyze performance of SMC (in (3.1)) and MTC (in (3.2)) based

controls algorithms. A phase plane trajectory for a time-domain simulation result

shown in Figure 2.6 is given in Figure 2.7.

13

19 19.5 20 20.5 21 21.5 22

Inductor current i
L
 (A)

100.2

100.4

100.6

100.8

101

101.2

101.4

101.6

101.8

C
ap

ac
it

or
 v

ol
ta

ge
 V

c (
V

)

Phase plane trajectory V
c
 vs i

L

State trajectory

Figure 2.7: Phase plane trajectory VC → iL from simulation shown in Figure
2.6

From the phase trajectory, it is evident that the system states converge circularly

to the steady state within finite time. Additionally, each switch transition pro-

vide more insight to variance and steady state error of the inductor current and

capacitor voltage.

2.2 Mathematical model of multiple/paralleled Boost con-

verters connected to a resistive load

The discrete modeling approach developed in section (2.1.2) for a single boost

converter can be easily extended for multiple boost converters connected to a

load. A simplified electrical network of multiple boost converter is illustrated in

Figure 2.8, where n number of boost converter low-side stages are connected a

14

bus. All of the individual boost converters are assumed to be connected to an

independent energy source and hence form a parallel network of boost converters.

In the literature, similar typologies developed for low-power applications emphasis

on identical system parameters, i.e. L1 = L2 = . . . = Ln = L. The assumption of

identical system parameters simplifies the control system architecture by a large

extent and reduces the computational complexity for optimal control of system

states. This is accomplished by reducing system complexity to one of the stages

and then sharing/dividing control law among the stages equally.

While this approach of sharing system states, i.e inductor current iL, among all

stages simplifies the computational burden of optimization problem, but do not

provide similar performance to the system that has heterogeneous system param-

eters. Practical systems, specifically for high-power applications, are not suitable

to be considered as identical. Hence, the prime focus of this study is to include

non-identical system parameters into the system modeling. An added advantage

of this approach is that it covers the system with identical parameters as one of

its subset cases.

By extending the approach of discrete modeling of a boost converter in CCM and

DCM modes for multiple/paralleled boost converters network, each stage has has

binary variable Bn = {0, 1} and An = {0, 1} to represents state of switch Sn. The

combination resulting from these Boolean variables convert each converter stage

into one of the configurations as illustrated in Figure 2.2,2.3 and 2.4. Irrespective

of mode of operation (CCM/DCM) for an individual boost converter, the flow of

energy (inductor current IL) remains unidirectional, from source VSn to load.

15

Ro

+

-

vo

Cbank

RCVs1

RL1L1

S1

D1iL1 RD1

RSW1

Vs2

RL2L2

S2

D2iL2 RD2

RSW2

Vsn

RLnLn

Sn

DniLn RDn

RSWn

+

-

vc

Figure 2.8: n- paralleled boost converters connected to a non-variable resistive
load

Mathematical model of n−paralleled boost converters is :

diL1

dt
= (RL1 +RSW1)

L1
iL1A1B1 −

Ro

L1(Ro +Rc)
vCA1B1 (2.18)

− Ro(RL1 +RD1) +Rc(Ro +RL1 +RD1)
L1(Ro +Rc)

iL1A1B1 + 1
L1
VS1B1

diL2

dt
= (RL2 +RSW2)

L2
iL2A2B2 −

Ro

L2(Ro +Rc)
vCA2B2

16

− Ro(RL2 +RD2) +Rc(Ro +RL2 +RD2)
L2(Ro +Rc)

iL2A2B2 + 1
L2
VS2B2 (2.19)

...

diLn
dt

= (RLn +RSWn)
Ln

iLnAnBn −
Ro

Ln(Ro +Rc)
vCAnBn

− Ro(RLn +RDn) +Rc(Ro +RLn +RDn)
Ln(Ro +Rc)

iLnAnBn + 1
Ln
VSnBn (2.20)

dvC
dt

=

 Ro

(Ro +Rc)C
iL1A1B1 + Ro

(Ro +Rc)C
iL2A2B2 + · · ·

+ Ro

(Ro +Rc)C
iLnAnBn

− 1
(Ro +RC)CvC (2.21)

vO =

 RoRc

Ro +RC

iL1A1B1 + RoRc

Ro +RC

iL2A2B2 + · · ·

+ RoRc

Ro +RC

iLnAnBn

+ Ro

Ro +RC

vC (2.22)

Hereafter, a simplified version of 3-paralled boost converters shown in Figure 2.9

will be used to design control methods for the multiple/paralleled boost converter

network. The simplified network will also be considered as reference to demon-

strate simulation and experimental results in following sections of this thesis.

Reduced order mathematical model for the microgrid network shown in Figure

2.9 can be described by Equations (2.23)-(2.27). As noted earlier, parasitic com-

ponents of inductor, capacitors and electronic switches are taken into account to

replicate identical system behavior as much as feasible. Here, it is important to

17

note that all inductor currents iL1, iL2, iL3, and capacitor voltage vC are dependent

states and linked together. However, inductor currents of individual stages are

separate; indicates that there is no direct electrical connection between two boost

converter stages and they transfer energy individually from sources to load.

Ro

+

-

vo

Cbank

RCVs1

RL1L1

S1

D1iL1 RD1

RSW1

Vs2

RL2L2

S2

D2iL2 RD2

RSW2

Vs3

RL3L3

S3

D3iL3 RD3

RSW3

+

-

vc

Figure 2.9: 3- paralleled boost converters connected to a non-variable resistive
load

diL1

dt
= (RL1 +RSW1)

L1
iL1A1B1 −

Ro

L1(Ro +Rc)
vCA1B1

− Ro(RL1 +RD1) +Rc(Ro +RL1 +RD1)
L1(Ro +Rc)

iL1A1B1 + 1
L1
VS1B1 (2.23)

18

diL2

dt
= (RL2 +RSW2)

L2
iL2A2B2 −

Ro

L2(Ro +Rc)
vCA2B2

− Ro(RL2 +RD2) +Rc(Ro +RL2 +RD2)
L2(Ro +Rc)

iL2A2B2 + 1
L2
VS2B2 (2.24)

diL3

dt
= (RL3 +RSW3)

Ln
iL3A3B3 −

Ro

L3(Ro +Rc)
vCA3B3

− Ro(RL3 +RD3) +Rc(Ro +RL3 +RD3)
L3(Ro +Rc)

iL3A3B3 + 1
L3
VS3B3 (2.25)

dvC
dt

=

 Ro

(Ro +Rc)C
iL1A1B1 + Ro

(Ro +Rc)C
iL2A2B2+

+ Ro

(Ro +Rc)C
iL3A3B3

− 1
(Ro +RC)CvC (2.26)

vO =

 RoRc

Ro +RC

iL1A1B1 + RoRc

Ro +RC

iL2A2B2+

+ RoRc

Ro +RC

iL3A3B3

+ Ro

Ro +RC

vC (2.27)

Equation (2.27) represents actual voltage across load Ro which is almost equivalent

to bus/capacitor voltage vC , given Rc ≪ Ro.

19

3 Sliding Mode Control (SMC) and Minimum

Time Control(MTC) of paralleled boost con-

verters

Designing the control system for the DC-DC boost converter is a complex process

due the non-linear characteristic of converter. The non-linearity of a boost or any

other type of power converter is studied under specific category of systems, known

as, Variable Structure System(VSS) [20]. The variable structure of system, here

boost converter, attributes to the different system configuration due to condition of

switches. Depending on the state of power electronic switch, an overall system will

reduce to a subsystem and will have specific characteristic according to the mode

of operation. Mathematical model and equivalent electrical circuit for a boost

converter is elaborated in section (2.1) during possible switch configurations.

In this chapter, a robust control system, Sliding Mode Control, for paralleled

boost converters is developed. Simulation results for this implementation is also

demonstrated to validate the controller operation. In following sections, a novel

control method for same system is developed in order to achieve minimum state

transition time. It is important to note that the control method developed un-

der the name, Minimum Time Control (MTC), may not be a primary control

method for regular application of paralleled boost converter. It can be invoked as

a secondary control system to achieve desired performance. However, it does not

restrict the usage of the MTC as in role of primary control system.

20

3.1 Sliding Mode Control(SMC) of Multiple Boost Con-

verters

Sliding Mode Control is very a suitable control technique for intrinsically non-

linear, and system with non-modeled external perturbation [21]. Boost converters

fit very closely within the definition of variable structure system, and SMC is a

most viable method to implement robust control system. There exists various

types of SMC based solutions for VSS and one of the most commonly used with

boost converters is current-mode SMC where Inductor current is considered as

reference surface and control law is implemented to follow the trajectory. In ad-

dition, voltage based control can also be implemented by translating voltage to

current[20][22]. In the literature, there are numerous techniques developed for

single stage or interleaved boost converter [23]. In this section, a SMC scheme

is developed for paralleled boost converter topology. Simulation results are illus-

trated to exemplify the operation of SMC for paralleled boost converters.

3.1.1 Sliding Mode Controller design

From the fundamental theory of SMC, the sliding function/surface (S) is repre-

sented by linear difference between actual system state and its reference value.

For current-mode control, the sliding surface S can be represented as is,

S = iLnactual − iLnref (3.1)

21

where, iLnactualand iLnref are actual and reference values of inductor current for

a boost converter stage. iLnactual represents a feedback signal measured from the

circuit, whereas iLnref is command signal translated from Vbusref and can be rep-

resented as,

Power from source = Power to system

= {Power consumed by load} + {losses in system} (3.2)

VsiiLnref =

CFiV
2
busref

Rload

+ {i2Lnactual(RLi +Rswi) + iLnactualVdi}

(3.3)

iLnref = CFi
V 2
busref

RloadVsi
+
i2Lnactual(RLi +Rswi)

Vsi
+ iLnactualVdi

Vsi
(3.4)

Hence, any desired bus voltage can be achieved by setting equivalent current

reference for particular stage. Factor CFi represents a contribution of a boost

converter stage, since overall current flowing towards the load is total of the indi-

vidual stage currents. Normally, CFi = 1
n
, where n is number of boost converter

stages in paralleled topology. It can also be set in different proportion where

it properly shares the contribution among the stages depending on their curren-

t/power carrying capabilities. Last two terms in equation (3.4) account for the

current that contribute to the losses through the resistance of system components

22

and voltage drop across the diodes. To maintain sliding mode in manifold S = 0,

u =


0, S ≥ 0

1, S < 0

⇒ u = 1
2(1− sign(S)) (3.5)

In order to maintain the manifold S = 0, the reaching condition can be achieved

with a constraint Vbus > Vsi . In the following section, simulation results for an

example topology are illustrated.

3.1.2 Simulation of Multiple Boost Converters with SMC

Simulation results for a specific case, voltage transition from Vbusinit = 90 V to

final voltage Vbusfinal = 150V , is represented in this section to exemplify operation

of SMC.
Table 1: Paralleled Boost Converter system parameters

Parameter Stage 1 Stage 2 Stage 3

Source Voltage VS(V) 72.00 65.00 58.00

Inductance L(mH) 3.000 3.200 2.000

ESR of Inductor RL(Ω) 0.200 0.200 0.200

Maximum Inductor current ILmax(A) 60.00 60.00 60.00

Switch ON resistance RSW (Ω) 0.020 0.020 0.020

Diode cut-off voltage VDON (V) 0.100 0.15 0.20

Forward resistance of Diode RDON (Ω) 0.020 0.020 0.020

23

System parameters for 3 paralleled boost converter stages selected for the simula-

tion are tabulated in Table 1. Capacitance of the bank Cbank and load resistance

Rload is considered as 1.5mF and 10 Ω respectively. The ESR for the capacitor

bank is considered 0 Ω for this simulation. According to the equation (3.4), the

reference current for each stage can be given as,

iL1ref = 0.33
V 2
busref

720 +
i2Lnactual0.220

72 + iLnactual0.10
72

iL2ref = 0.33
V 2
busref

650 +
i2Lnactual0.220

65 + iLnactual0.15
65

iL3ref = 0.33
V 2
busref

580 +
i2Lnactual0.220

58 + iLnactual0.20
58

and in simplified form,

iL1ref = 0.000458V 2
busref

+ 0.00305i2L1actual + 0.00138iL1actual (3.6)

iL2ref = 0.000507V 2
busref

+ 0.00338i2L2actual + 0.00230iL2actual (3.7)

iL3ref = 0.000568V 2
busref

+ 0.00379i2L3actual + 0.00344iL3actual (3.8)

Current for each boost converter stage is controlled through the switching law

derived in equation (3.5) and substituting results from sliding surface S(3.1) and

corresponding equations (3.6)-(3.8). Relation between inductor currents and load

voltage is equated as,

iloadactual = iL1actual + iL1actual + iL1actual (∵ inpendant stages)

Vbusactual =
i2Loadactual
Rload

(∵ CESR = 0 Ω)

24

Figure 3.1 represents system states during SMC operation. Throughout the sim-

ulation, system is performing under SMC. Overall time span of the simulation is

set to t = 80ms and a step change in Vbusref is triggered at time t = 30ms. When

step change in Vbusref is triggered, inductor currents swiftly moves toward next

steady state point. Whereas, Vbus takes relatively slow transition and reaches to

steady state around t = 65 ms. Even though, inductor currents set very quickly

compared to Vbus, slower response of Vbus keeps overall system under transition

for longer time.

Figure 3.1: System states under sliding mode control (SMC); step change in
Vref at t = 30ms

Instantaneous energy stored in all of the passive elements, EL1 ,EL2 ,EL3 and ECbank
shown in equations (3.9)-(3.10), are shown in Figure 3.2. With step change in

25

Vbus, energy in inductors ELnalso steps up following sliding surface S. Whereas,

the capacitor bank energy EC remains unchanged at the moment but gradually

increases and reaches to the steady level.

ELn(t) = 1
2Lii

2
Lnactual

(t) (3.9)

EC(t) = 1
2Cbankv

2
C(t) = 1

2CbankV
2
busactual

(t) (3.10)

Figure 3.2: Instantaneous Energy (in Joules) stored in passive elements during
SMC; (a) EL1 ,(b) EL2 , (c) EL3 , (d) ECbank

Phase plane representation for the system states iLn → Vbus over complete dura-

tion of the simulation(from t = 0msec to t = 80msec) is illustrated in Figure

3.3. As noted earlier, quick propagation of inductor currents is seen as a single

transition while bus voltage remains at 90V . From this point, current in inductors

26

maintain a steady level while bus voltage moves to the next steady state. Bus

voltage prorogation can be seen as horizontal line in all of three trajectories.

Sliding mode control (SMC) developed and illustrated for 3-paralleled boost con-

verters in this section can be extended for n-level configuration of paralleled boost

converters. The SMC method will be used in following sections as primary control

system along with the Minimum Time Control (MTC).

Figure 3.3: Phase plane trajectories ILn → Vbus for all boost converter stages
over time t = [0, 80]ms

27

3.2 Minimum Time Control (MTC) of Paralleled Boost

Converters

In previous section (3.1), the robust control system (SMC) for paralleled boost

converter was developed. Since SMC is one of the most robust control systems for

VSS and can sustain uncertainty in the system and/or external disturbances, it is

often considered one of the reliable control system architecture. The system states

gradually approach to the steady state while maintaining switching law to follow

sliding surface. For many time critical applications, where speed of response is

very important factor; SMC fails to perform in robust manner as it does for regular

operation. With the goal to achieve steady state as quick as possible, a novel con-

trol method is proposed, minimum time control (MTC). In the following sections,

the concept of MTC and its implementation is thoroughly explained. Simulation

results are shown to illustrate the step-by-step implementation of MTC, as well

as for performance comparison with SMC results.

3.2.1 MTC concept and objectives

Minimum time control is about the control of systems states in the minimum

time. As previously noted with a sliding mode control where system states slide

over the sliding surface and gradually reach to the steady state. In contrast, in

a minimum time control, system states are forced to reach steady state within

a minimum time. A similar concept of achieving steady state in minimum time

is also known as bang-bang control in control systems literature, where system

28

states are forced to drive in a specific manner such that desire performance is

achieved in list amount of time.

In the case of paralleled boost converters, controlling time of ON/OFF state of

power electronic switch will determine the states of system (iL, vC). While switch

S is ON, the inductor L will accumulate the energy from voltage source and current

through the inductor iL will continue to rise and the capacitor bank C voltage

vC will release stored energy through the load resistor Rload. In contrast, when

switch S is OFF, the inductor L will release the energy to the capacitor bank C

and hence, iLwill decline, while voltage vC will increase due to energy transferred

from inductor. During this single ON-OFF cycle energy coming from voltage

sources passes through the inductor and discharged into load via capacitor bank.

A single ON-OFF cycle, also named as single switch operation, can transit system

state from one steady-state operating point (iL1, iL2, iL3, · · · , iLn, vC)t1 to another

steady-state operating point (iL1, iL2, iL3, · · · , iLn, vC)t2 , provided proper(optimal)

time instance of switching is known. There exist no operating condition, other

than single switch operation, to achieve system states transition for paralleled

boost converter in minimum time. In order to implement the single switch opera-

tion, a unique set of switching instances of individual boost converter stage must

be known. Mathematical modeling of this optimization problem to find out the

switching instances can be described as follows:

29

Optimization problem definition :

Cost of the optimization function is the time of transition,

transition time J(t) =tf − t0 (3.11)

Several constraints are imposed on this cost function are,

v̇C(tf)→ 0 (3.12)

iLn(t) ≥ 0 (3.13)

iLn(t) ≤ iLn(max) (3.14)

where, t0 ≤ t ≤ tf .

The aforementioned fundamental representation of optimization problem is also

referred as maximum effort control, or minimum time control or much familiar

name bang-bang control. The goal of this control method is to do a state transition

in minimum time with maximum effort. A mathematical representation of a

cost/objective function J(t) combined with system constraints/co-states for 3-

boost converters system is,

J(t) ={minimum transition time}+ . . . (3.15)

{minimum steady state inductor error in currents}+ . . .

{minimum steady state error in bus voltage}

30

J(t) =(tf − t0)2 + . . . (3.16)

(iL1f − iL10)2 + (iL2f − iL20)2 + (iL3f − iL30)2 + . . .

(Vf − V0)2

In addition to the the overall cost function in Equation 3.16, there are three more

constrains on optimization problem through the discrete nature of switches. While

system states are continuous in nature, the switching signals are digital and have

only states, ON and OFF.

Switch Qn =


0(OFF), inductor Ln discharge energy into capcitor

1(ON), inductor Ln accumulate energy through current

here n = 1, 2, 3.

The developed mathematical model of the optimization problem is about mini-

mizing time that is the independent variable and poses several challenges to solve

this problem with guaranteed optimal solution. In addition, the discrete behavior

of the electronic switches make whole optimization problem into a hybrid domain

optimization. In this case, not just several continuous and time-dependent sys-

tem states but discrete variables like state of Switch S and instance of switching

also become more important. For higher number of converter stages complex-

ity of solving the hybrid problem increases enormously. It is important to point

out that the objective of this hybrid optimization problem is to obtain optimal

switching instances such that overall transition time for all states remain mini-

31

mum/optimal. To solve this problem with traditional optimization techniques is

nearly impossible/impractical for reasons listed below,

1. One of the most challenging aspect of this optimization problem is to min-

imize the independent variable, time(t), itself. Conventional optimization

methods are suitable to optimize dependent quantities, i.e. K(t) or P(t),

with/without time dependent constraints.

2. Hybrid optimization problems do not guarantee convergence or let alone

unique solution.[24] There exist several hybrid optimization techniques, how-

ever they address very restricted domain of linear problems [25].

3. Implementation of traditional optimization solution is computationally very

demanding and will grow drastically with every single increased order of

optimization problem. Addition of a one more boost converter stage will

impose two added constraints and additional time dimension (through the

switch time of the corresponding boost converter) on the overall problem.

Hence, expand-ability of the optimization problem comes with the cost of a

time-intensive optimization process.

4. It is very unlikely to have conventional optimization routine that can be

fit into real-time system workflow where the optimization routine has to

be extremely lightweight in order to respond effectively in real-time control

system.

Considering these limitations of the traditional optimization approach; a novel

optimal-like algorithm is proposed, minimum time control(MTC). The aim of

32

this algorithm is to overcome all the shortcomings of the traditional optimization

approach, and yet to be so light-weight that it can be expandable and integrated

in real-time workflow without adding significant overhead in operation of real-time

control system. A detailed MTC algorithm is elaborated and illustrated in the

following section.

3.2.2 Minimum Time Control (MTC) algorithm

In this section, a MTC algorithm is explained and individual steps to calculate

switching time tswitch for all boost converter stages are listed as below:

Step 1 Derive initial and final values of inductor currents iLn through VCinit

and VCfinal .

Step 2 Calculate maximum ON-time for individual boost converter:

tONmax = Qi → ON | {IL < min(IQmax , Ibusmax)

Assuming Qi → ON , tONmax can be derived from a known bound-

ary conditions. IQmax represent maximum allowed continuous current

through power electronic switch and Ibusmax denote current threshold

for bus depending upon the gauge of the wire.

Step 3 Find equivalent contribution time(τ) for each stage:

τi = ILmax−Iinit
α

, where α =
n∑
i=1

Vsi
Li

33

Step 4 Calculate absolute and relative contribution factor(CF):

CFi = τi
n∑
i=1

τi

CFrel = CFi
min(CFi)

Absolute contribution factor for each boost converter stage is a unit-

less quantity that loosely translates to the amount of energy from

source to inductors with respect to time. Relative contribution factor

is a normalized representation of CFi.

Step 5 Derive set of switch time(tswitch) over full range of β:

tswitch = β × CFrel × tONmax , β ∈ (0, 1)

Here, tswitch denote set of values of switching instances for all boost

converters. Every β value corresponds to a unique set of switching

instances.

Step 6 Iterate discrete model of paralleled Boost converter system for any two

distinct values of β ∈ (0, 1), generally mid points of the range, β1 and

β2, to find slope and y-intercept of characteristic line.

slope m =
VCβ2 − VCβ1

β2 − β1

y − intercept C = VCβ2 −mβ2 OR

34

= VCβ1 −mβ1

There are two distinct methods implemented for system iteration de-

pending upon the mode of operation of boost converters. One is

through the Discontinuous Conductance Mode(DCM) (in (3.2.3)) and

another is with Continuous Conduction Mode(CCM) (in (3.2.4)). Each

of these modes and their implementation is further discussed in the fol-

lowing sections. Moreover, characteristic line for both methods, DCM

and CCM, are illustrated in Figure 3.4 and Figure 3.6 respectively.

Step 7 Calculate tswitch = tMTC using βMTC for the desired end point vCfinal :

βMTC =
vCfinal − C

m

tMTC = βMTC × CFrel × tONmax

here, tMTC denote switching instances corresponding to minimum time

transition for all boost converter. tMTC has dimension equivalent of

number of boost converter.

3.2.3 DCM based iteration of paralleled boost converters for MTC

Discontinuous conduction mode(DCM) of the boost converter represents a specific

state of the system in which the current flowing through the inductor reduces

to the lowest possible level, 0 A, and the capacitor voltage continue to discharge

through the load. Generally, DCM is not a preferred mode of operation for most of

35

power supply applications and not employed unless it serves a specific requirement.

No steady operation of real time power supply require sources side inductor to

be completely emptied of energy. However, in implementation of the MTC for

paralleled boost converters the DCM can be very crucial. A DCM for each one of

the stage is used as reference point to synchronize single switch operation between

multiple stages. A simple algorithm to iterate the paralleled boost converters for

Step 6 of MTC can be described as follows:

Step 1 Time for iLn = 0A to iLn = iLnfinal , tswitchback, is calculated by solving

n−single order boundary value problems.

Step 2 Simulation of paralleled boost converters begin with the initial values

of iLninit and vCinit and all switches being ON .

Step 3 Switch states are flipped from ON to OFF at the time instances tswitch

found for a particular value of β ∈ (0, 1), i.e. switching instances are

tswitch = {0.00223, 0.00205, 0.0015} for an MTC operation shown in

Figure 3.5

Step 4 Every boost converter stage reach to the DCM and iLn = 0A and waits

for a specific amount of time until a unique point, called as Point of

action (POA), beginning of last phase in Figure 3.5.

Step 5 Switch states are flipped again from OFF to ON at offset time such

that each stage stays ON for a time duration of tswitchback. The addi-

tional procedure required to offset the switchback time for each stage

is to synchronize the end point. Offset time, time between beginning

36

of DCM and POA, can be calculated by substantiating max(tswitchback)

from (tswitchback) of all stages. Time duration (tswitchback) denote the

time duration for which a boost converter stage has to persist DCM

until POA.

Step 6 All boost converter stages reach to the final state vCfinal and iLnfinal

for a particular value of β ∈ (0, 1), i.e. β1

A detailed state representation for 3 paralleled boost converters is presented in

Figure 3.5 for a unique value of β ∈ (0, 1). The change in operation of individual

stage achieved through the discrete modeling of paralleled boost converters. Note

the minor overshoot in Vbus due to the DCM mode. It is due to the transfer of all

of the energy stored into inductor and then forcing switches to stay ON until a

final state is not achieved, resulting capacitor bank to discharge.

When Vbus is plotted for almost full range β ∈ [0.1, 0.8], the resulting set of

transitions look as per shown in Figure 3.4. Here, it is important to differentiate

the theoretical and practical range of β. The reason why the boundaries of β

are shrunken is to avoid infeasible transition cases. From the range [0.1, 0.8] the

characteristic line (dotted line in Figure 3.4) covers almost all feasible cases. It

is recommended to select two mid points, β1 and β2, of the specified range to get

accurate line parameters and hence closest Vbusfinal point.

37

Characteristic line for DCM based implementation over the full range of

Figure 3.4: Vbus over β ∈ [0.1, 0.8] for DCM based implementation of MTC

38

Switch Q2turn off

Switch Q3turn off

Switch Q1turn off

Switch Q2enter DCM

Switch Q3enter DCM

Switch Q1enter DCM

POA, all stages are in DCM

Figure 3.5: System states during DCM based implementation of MTC

39

3.2.4 CCM based iteration of paralleled boost converters for MTC

Continuous conduction mode (CCM) of the boost converter represents a specific

state of the system in which the current flowing through the inductor always

remains above the lowest possible level, 0 A. Generally, CCM is a preferred mode

of operation for most of power supply applications. During switch mode power

supply operation, energy is transferred from inductor to capacitor in consecutive

switching cycles and maintains CCM. In contrast with the DCM based MTC,

CCM based MTC approach do not require the inductor currents reduced to 0 A.

A simple algorithm to iterate the paralleled boost converters for Step 6 of MTC

can be described as follows:

Step 1 Simulation of paralleled boost converters begin with the initial values

of iLninit and VCinit and all switches being ON .

Step 2 Switch states are flipped from ON to OFF at the time instances tswitch

found for a particular value of β ∈ (0, 1), i.e. tswitch = {0.00223, 0.00205,

0.0015} for a MTC operation shown in Figure 3.7

Step 3 MTC control is released after tswitch, and each stage is now under

auxiliary control, i.e. current-controlled SMC as described in (3.1.2).

Step 4 All boost converter stages reach to the final state vCfinal and iLnfinal

for a particular value of β ∈ (0, 1), i.e. β1

A detailed state representation for 3 paralleled boost converters is presented in

Figure 3.7 for a unique value of β ∈ (0, 1). The change in operation of individual

40

stage achieved through the discrete modeling of paralleled boost converters. Note

the elimination of overshoot in Vbus due to the CCM mode. Once the switch states

are flipped from ON to OFF , each stage is controlled by its separate current-

mode control. The only possible transition from here is to the steady states

current iLnfinal . Hence, in CCM based MTC switches are only forced until the

time instance tswitch. Then after, control is switched back to the auxiliary/routine

control system that drives system states to the desired levels.

Characteristic line for CCM based implementation over the full range of

Figure 3.6: Vbus over β ∈ [0.1, 0.8] for CCM based implementation of MTC

When Vbus is plotted for almost full range β ∈ [0.1, 0.8], the resulting set of

transitions look as per shown in Figure 3.6. Here, it is important to differentiate

the theoretical and practical range of β. The reason why the boundaries of β

41

are shrunken is to avoid infeasible transition cases. From the range [0.1, 0.8] the

characteristic line (dotted line in Figure 3.4) covers almost all feasible cases. It

is recommended to select two mid points, β1 and β2, of the specified range to get

accurate line parameters and hence closest Vbusfinal point. Except forcing inductor

currents to DCM(0 A), for synchronization, there is no functional difference in

both approaches to implement MTC. However, one of the methods has several

crucial aspects that can be very beneficial in implementation of MTC in real-

time framework. Some of these differences between these two approaches are

highlighted in following section.

42

Switch Q3turn off

Switch Q1turn off

Switch Q1 enter steady state

MTC completed, all stages are in steady state

Switch Q2turn off

Switch Q2 enter steady state

Switch Q3 enter steady state

Figure 3.7: System states during CCM based implementation of MTC

43

3.2.5 Comparison between CCM and DCM based implementation of

MTC

In previous sections 3.2.3-3.2.4, both DCM and CCM based MTC algorithm were

thoroughly discussed and the simulation of each method was presented. Although,

the approaches attain the same results, there is a very significant difference in both

methods. Some of the very important differences are highlighted as below:

• CCM based MTC approach is computationally less expensive that of DCM

based approach. The amount of calculation during each MTC operation

is considerable higher for the DCM based approach due to the calculation

for synchronization time between boost converter stages. In case of CCM

based method this computational overhead is completely eliminated since

each stage will be released from MTC routine once the inductor current

reaches the cut-off level and the switch turns off. From real-time MTC

implementation point of view this is an important aspect that keeps the

computer less occupied for computation purposes and hence can complete

time sensitive tasks, i.e. updating IO ports, supervisory control.

• Apart from the occupation of a computer for on-line computations of MTC,

CCM based approach complete the transition process in less time than of

DCM based approach. The time overall time to complete the transition differ

between both approaches due the complete elimination of synchronization of

individual stages. Uncoupled control of each staged during CCM enables the

faster state transition and hence the steady state can be achieved relatively

faster than DCM mode. Refer Figure 3.5 and 3.7 for overall transition time

44

of DCM (∼ 5.5ms) and CCM(∼ 4.5ms) based approach respectively. CCM

based state transition takes almost 20% less time than that of DCM.

• Another notable difference between both of these methods is the overshoot

in bus voltage Vbusinit . Since the inductor current of each stage has to reach

0 A in DCM based method, all the energy is transferred to capacitor bank

resulting in an overshoot in bus voltage. In case of CCM based method,

inductor current of each stage will never go below its final steady states

value. Hence, the overall transition do not have an overshoot in bus voltage

during CCM based method.

3.2.6 Simulation of paralleled boost converter with MTC

As explained in previous section, CCM based approach is more appropriate com-

pared to DCM from computational overhead and complexity of overall MTC oper-

ation point of views. Hence, CCM based MTC is the prime focus for the upcoming

content of the thesis. Simulation results for a specific case, in which bus voltage

transition from Vbusinit = 90 V to final voltage Vbusfinal = 150 V , is represented in

this section to exemplify the CCM based MTC algorithm, the underlying steps

for its implementation in detail. System parameters for 3 boost converter stages

selected for the simulation purpose are tabulated in Table 2. Capacitance of the

bank Cbank and load resistance Rload is considered as 1.5mF and 10Ω respectively.

The ESR for the Capacitor bank is considered as 0Ω to simplify the illustration of

algorithm and simulation. However, ESR is an important parameter for an over-

all impedance of the capacitor, it can also be considered non-zero. Mathematical

45

model developed in section (2.2) accounts for ESR of capacitor for state space

representation of paralleled boost converters.

Table 2: Paralleled boost converter system parameters

Parameter Stage 1 Stage 2 Stage 3

Source Voltage VS(V) 72.00 65.00 58.00

Inductance L(mH) 3.000 3.200 2.000

ESR of Inductor RL(Ω) 0.200 0.200 0.200

Maximum Inductor current ILmax(A) 60.00 60.00 60.00

Switch ON resistance RSW (Ω) 0.020 0.020 0.020

Diode cut-off voltage VDON (V) 0.100 0.15 0.20

Forward resistance of Diode RDON (Ω) 0.020 0.020 0.020

Three paralleled boost converter system are assumed to be operating in steady

state condition under a primary control system, i.e. Sliding mode control il-

lustrated in section (3.1). MTC operation is triggered at time t = 30 ms. For

simulation purpose only, MTC results can either be directly loaded from switching

instance values tswitch or by halting simulation and executing MTC. It is impor-

tant to note that real-time implementation requires the MTC algorithm to be

executed concurrently with the primary control. Step-by-step implementation of

MTC algorithm for assumed system is as follows.

Step 1: Initial and Final values of state variables

Initial and final values of inductor currents iLn calculated from steady state con-

ditions of primary control VCinit and VCfinal as explained in section (3.1) are:

46

Table 3: Initial and final system states for 3-paralleled boost converters during
MTC

Initial Value Final value

Vbusinti 90 V Vbusfinal 150 V

iL1init 3.7125 A iL1final 10.313 A

iL2init 4.1123 A iL2final 11.423 A

iL3init 4.6086 A iL3final 12.802 A

Step 2: Calculate maximum ON-time for individual boost converter

Assuming Qi → ON , tONmax can be calculated using known boundary conditions.

For assumed parameters of system, tONmaxfor all stages are:
Table 4: Maximum ON time for boost converter switches during MTC

Maximum ON time tONmax
(sec)

tONmax for Stage 1 0.0025775

tONmax for Stage 2 0.0030578

tONmax for Stage 3 0.0021525

Step 3: Equivalent contribution time(τ) for each stage:

τi = ILmax − Iinit
α

, where α =
3∑
i=1

Vsi
Li

α =
3∑
i=1

 72
0.003 + 65

0.0032 + 58
0.002



47

⇒ α = 73312.5
Table 5: Equivalent contribution of each boost converter stage for MTC

Equivalent contribution time τ

τ1 0.0007696

τ2 0.0007641

τ3 0.0007574

Step 4: Absolute and relative contribution factor(CF):

Contribution factor CF translates the contribution time τi into a meaningful

quantity that represents proportional share of each stage in the transfer of energy.

CFi = τi
3∑
i=1

τi

CFreli = CFi
min(CFi)

Table 6: Absolute and relative contribution factor for each boost converter during
MTC

Absolute contribution factor Relative contribution factor

CF1 0.33591 CFrel1 1.0162

CF2 0.33353 CFrel2 1.0090

CF3 0.33056 CFrel3 1.0000

48

Step 5: Switch time(tswitch) over full range of β:

{tswitch} = β × CFrel × tONmax , β ∈ (0, 1)

{tswitch} denote set of values of switching instances for all boost converters. Both,

CFrel and tONmax are of same dimension and the multiplication is performed

element-wise. Every β value(scalar) corresponds to a unique set of switching

instances. For the assumed system, {tswitch} can be defined as,

{tswitch} = β


1.0162

1.0090

1.0000




0.0025775

0.0030578

0.0021525



⇒ {tswitch} = β


0.0026192

0.0030852

0.0021525

 (3.17)

Now,{tswitch} is only dependent on the scalar parameter β, irrespective of number

of paralleled boost converter stages.

Step 6: Parameters of characteristic line

Iterate discrete model of paralleled boost converter system for two distinct values

of β ∈ (0, 1), β1 = 0.35 and β2 = 0.65, to find slope and y-intercept of character-

istic line.

slope m =
VCβ2 − VCβ1

β2 − β1

49

slope m = 144.33− 111.58
0.65− 0.35

⇒ slope m = 109.18

y − intercept C = VCβ2 −mβ2

=⇒ y − intercept C = 144.33− (109.18 ∗ 0.65) = 73.336

Step 7: Switch time for MTC tMTC

Calculation of tswitch = tMTC using βMTC for the desired end point VCfinal is as

follows,

βMTC =
VCfinal − C

m

βMTC = 150− 73.336
109.18

⇒ βMTC = 0.70189

From equation (3.17),

tMTC = βMTCCFreltONmax

tMTC = 0.70189


0.0026192

0.0030852

0.0021525



50

⇒ tMTC =


0.0018384

0.0021655

0.0015108



here, tMTC denotes switching instances corresponding to minimum time transition

from Vbus = 90 V to Vbus = 150 V . Switching time tMTC is always referenced to

the time when MTC operation execution begins. Simulation results demonstrating

SMC+MTC operation are illustrated in Figure 3.8-3.12.

System states during the SMC+MTC operation are shown in Figure 3.8 for time

span of 80 ms. Minimum time transition is scheduled to be triggered at time

t = 30 ms through step change in Vref , and all the necessary calculations for the

MTC operation described previously are completed in advance. Hence, control of

all the boost converter switches are transferred from SMC to MTC at t = 30 ms

and continues until time t = tswitch. The time to revert controls back to SMC

depends on the tswitch for each boost converter stage. As explained in section

(3.2.4), after t = tswitch, the only possible case for inductor currents iLn is to return

towards the next steady state condition since switch remains OFF until the current

reaches to the iLfinal . Rise time of inductor currents depends on inductance(Li)

and ESR(RLi).

To closely examine the transition results, a time close-up of the MTC operation

is shown in Figure 3.9. In order to simplify the representation of switch time and

corresponding system states, the time axis of actual simulation is shifted such that

MTC begins at time t = 0s. From this moment all of the boost converter switches

are turned ON and the Inductor starts accumulating energy in form of magnetic

51

field . While the capacitor is detached from all of the stages, discharges through

the load resistor and bus voltage starts dropping from the previous steady state

level. At time t = tMTC , switches are turned OFF and corresponding inductor

starts discharging and transfer energy to the capacitor bank. Note the change

in slope of the capacitor/bus voltage Vbus when switch status are flipped. Since,

the assumed topology of paralleled boost converter is non-homogeneous, tswitch is

different for all stages. Once, the switches are turned OFF, the SMC operation

is completed for the corresponding stage and now it is under primary control

scheme, here SMC. Once MTC is completed, the only possible state transition is

to converge to the steady state current that is iLfinal . Average Duty cycle Di is

derived from the switch signal and shown in Figure 3.10.

52

Figure 3.8: System states operating under SMC+MTC operation during simu-
lation; MTC triggered at t = 30 ms

53

Figure 3.9: System states during simulation of MTC with 3-boost converter
stages, plotted with trigger point at time t = 0 ms

Since minimum time transition operation transfer optimum amount of energy from

source to load, the transaction of energy into the passive elements provides clear

insight about the operation. The instantaneous energy into the passive elements

during the complete operation is illustrated in Figure 3.11. During steady state

execution under SMC, all passive elements maintains a steady level of energy,

since average ripple in system states remains zero during steady state. During

MTC operation, switches are forced to turn ON for specific duration and a large

54

portion of energy is transferred to inductors from voltage sources. When these

switches turn OFF, the stored energy is released and deposited into load side

passive element, capacitor bank. During MTC operation, switches are operated

at enormously high currents for a very small amount of time while capacitor

voltage remains almost steady and then undergoes through the quick transition

of bus voltage.

Figure 3.10: Duty cycle (D) for all boost converter stages during SMC and
MTC operation, (a) D1, (b) D2, (c) D3

55

Figure 3.11: Instantaneous Energy (in Joules) stored in passive elements during
SMC+MTC operation; (a) EL1 ,(b) EL2 , (c) EL3 , (d) ECbank

An alternative way to represent the minimum time transition operation is through

the Phase plane trajectories. Figure 3.12 represents the phase plane trajectories

for individual boost converter iL → Vbus. From the phase plane representation,

it is clearly evident that all boost converters operate under complete electrical

isolation. Stage 3 inductor current happens to be achieving the steady state

well before the remaining stages, but it has no impact on the operation of other

converter stages. Stages 1 and 2 still follow their expected trajectory to attain

steady state. Due to this functionality, CCM based approach is far superior in

terms of implementation complexity. There is no need for scheduling of states to

56

drive them back to steady state at a same time. Comparing the MTC simulation

results demonstrated in this section with the SMC simulation results in section

(3.1.2) shows improvement in the transition time(speed of response) by a large

extent.

Figure 3.12: Phase plane trajectories ILn → Vbus for all boost converter stages
over time t = [0, 80]ms

There are many fundamental differences when it comes to implementing the trans-

late same control architecture from simulation to real-Time (emulation) environ-

ment and it poses several challenges pertaining to hardware (computational re-

sources) limitations. In the following chapter, CCM based algorithm is proposed

and implemented for real-time framework. Several design related challenges are

57

also highlighted in the following chapters.

58

4 Real-time control system implementation and

validation of MTC

The CCM based MTC algorithm was thoroughly represented in chapter 3 where

the complete focus was to illustrate the MTC algorithm and analyze the perfor-

mance of the control system through the simulation results. This chapter focus on

the real-time implementation of the CCM based MTC algorithm. Compared to

the simulation, the real-time implementation/emulation is very different. While

there is no limitation on the amount of computational time during a simulation

process, a real-time implementation has very hard bound on the amount of time

allotted to execute an update of the system. The restricted time frame to execute

the control while updating system IO ports in real-time is a major concern for

an high-speed control system. A detailed real-time implementation of MTC from

hardware and software perspective is illustrated in this chapter. Emulation results

for CCM based MTC are represented and compared with the SMC to highlight

the improvement in speed of response of the system. Finally, parameter sensitiv-

ity for the MTC is highlighted through the analytical and experimental results to

analyze the robustness of MTC algorithm.

4.1 Minimum time control (MTC) system architecture for

emulation

In contrast to the simulation, the real-time emulation has two separate compo-

nents, hardware side and software side, that have to work in combination while

59

maintaining synchronization. Real time update of time for both components is

also a major difference with the simulation only approach. During emulation, the

complete system is updated at a constant duration to maintain synchronization

and hence create real-time execution of system. Both of these components are

discussed in this section.

4.1.1 Hardware implementation for real time MTC

The hardware side of the implementation is comprised of the three components

as follows,

1. Real-time emulator to emulate power electronics circuits

2. Target computer

3. Host computer

The real-time emulator is the fundamental component of the system that emulates

3-boost converter based network as shown in Figure 2.9. The emulator used for

the real-time experiments is the Typhoon HIL(Hardware-in-loop) 400 that has

integrated analog and digital IO ports. The analog signals generated from the

HIL system carry system states such as bus voltage and inductor currents that

are interfaced with the Target computer. The analog signals primarily serve as

the feedback signals fro the MTC or SMC based control. It is also possible to have

additional channels carrying intermediate states for supervisory control purposes.

60

The target computer is the most important component of the real-time system

and is responsible for all the computational tasks related to the MTC, primary

control routine and supervisory control. The real-time control is executed on

target computer with constant model update rate, i.e. 0.1msec. Within this

time frame, the whole control system is updated once and the feedback signals

are revised accordingly. Apart from computation, the target computer is also

responsible for collecting the system states/feedback signals and storing into the

static on-board memory. The time required to acquire all the feedback signals

through continuous scanning of IO ports add tremendous amount of workload on

target computer. Hence, there is a trade-off between the bandwidth of control

system and resolution of the data acquired during real-time emulation.

Figure 4.1: Experimental setup for HIL Simulation

The host computer is also a development platform where all components of related

to control system and filtering of IO signals are developed which then transferred

onto the target computer via Ethernet link. In addition to the development,

61

the host computer provides a low bandwidth feedback for debugging purposes.

Refer to Appendix A.3 for detailed model of the control system developed on

host computer for real-time emulation. The MATLAB model is later translated

and compiled into the equivalent C code using code-generation tool-chain to be

executed on target computer.

Figure 4.1 represents the experimental setup created for the real-time simulation

of MTC with SMC as primary control. As mentioned earlier, all the three ma-

jor components of the setup: the host computer, the target computer and the

Typhoon HIL system, are illustrated from left to right. A high-speed digital

oscilloscope is used to monitor the major feedback signals during the real-time

execution.

4.1.2 Software implementation for real-time MTC

The simulation of MTC illustrated in chapter 3 was implemented through a MAT-

LAB code that executes in serial fashion line-by-line. Whereas the real-time imple-

mentation of same MTC algorithm is drastically different because each component

of the system has to execute within the model update time duration. So, when the

target computer is updating control loop, the IO ports are also collecting feedback

signals. During this routine execution of high-priority tasks, inclusion of MTC al-

gorithm requires adequate control of a scheduler. The computational routine for

MTC takes longer than a usual model update duration. So, the proper scheduling

of the computational overhead is required to divide the low-priority computation

over a few cycles of high-priority execution. The multi-threaded/multi-tasking

62

capability of the target computer can reduce this complexity to a great extent

and can improve the bandwidth for high-priority control.

During the real-time execution, the primary control (SMC) is considered as high-

priority task and all of the boost converter stages are operating under SMC. The

moment MTC is triggered, the sequence of execution is as follows:

1. Approve for MTC algorithm by validating systems states current values

• The validation of MTC is done through the current bus voltage and

desired bus voltage at the end of the transition. All requests for final

bus voltage of higher than 110% of, and less than 220% of initial bus

voltage are considered as feasible transitions and approved for further

calculations

• The system states captured at this moment are considered as the initial

conditions for the rest of the calculation

2. Begin the execution of MTC algorithm for CCM based approach

• Set the “Simulation enable” signal to indicate the status of MTC exe-

cution

3. Begin simulation of multiple boost converter system for β1 and β2 consecu-

tively

• An internal strobe signal is used to handle consecutive execution so

that the computation process do not exceed the model update time

4. Calculate final beta value βMTC and switch timings

63

5. Trigger the MTC operation and validate the current system states

• If there is more than 5% of deviation from initial system states, the

MTC trigger is disabled and the calculations for MTC algorithm will

be repeated with updated system states

6. The switching signals (PWM signals to the power switches) are transferred

from SMC to MTC based scheduler that keeps each switch ON for duration

tswn

• As soon as a boost converter stage crosses the MTC switching duration

tswn , the scheduler will handover the stage to primary control

7. After all of the boost converter stages are moved to primary control, the

real-time execution of the MTC is considered as completed

• All the internal strobe and flag signals are reset and new MTC execu-

tion cycle is enabled

The primary control is active throughout the execution of these steps. During the

execution of these steps, the target computer has to take maximum burden and if

the model update rate is not sufficiently high enough to take computational bur-

den then the target computer might get overloaded and terminate the complete

execution. This situation can be avoided by multi-tasking/multi-threading capa-

bility of the target computer by spiting time sensitive operations and low-priority

calculations. The multi-threading can also improve the overall execution time by

reducing the calculations per thread. So, with single core dual threaded target

64

computer, the execution of two β cases can be split between threads and hence

improve the overall calculation time.

4.2 HIL simulation results and analysis

In this section, a real-time MTC execution of 3-paralled boost converter stages is

illustrated for a specific case, in which bus voltage transition from Vbusinit = 90 V

to final voltage Vbusfinal = 150 V . System parameters for 3 boost converter stages

selected for the simulation purpose are tabulated in Table 2. Capacitance of the

bank Cbank and load resistance Rload is considered as 1.5mF and 10Ω respectively.

The ESR for the Capacitor bank is considered as 0 Ω. For comparison purpose

the circuit and its components are assumed as identical to those of used during

simulation.

Figure 4.2 represents the set of internal signals used for scheduling purpose during

MTC execution. As shown in Figure 4.2(a), the MTC algorithm is triggered at

time 0ms.Along with the trigger, a “simulation enable” signal (in Figure 4.2(b))

is also set to indicate that the MTC execution is active. The use of these signals

ensure that only one instance of algorithm can be active at a time and the execu-

tion remains active until its over, so that any MTC trigger in between the process

can not interrupt. Figure 4.2(c) depicts a digital signal that handles sequential

execution of two separate β cases., by issuing new trigger at the of calculation for

one of the β. The first simulation case for β1 begin at 0 ms and the remaining

case for β2 begin at 4 ms .The computation part after that takes very cycles to

determine the switch timings tMTC . After a slight delay of around 1ms, real-time

65

execution of MTC is triggered and the scheduler changes from primary control

(here SMC) to MTC. As shown in Figure 4.2(d), the MTC execution begin at

10 ms. A simulation enable signal is reset at the same moment that clear all of

the internal signals so that next computation can begin immediately.

Figure 4.2: Trigger signals during concurrent execution of MTC; (a) Simulation
for MTC algorithm triggered, (b) Simulation enable signal, (c) sequential strobe
signals indicating execution of MTC algorithm for two β values, (d) MTC trigger
for Real-time execution

Figure 4.3: Timeline of trigger signals for execution of MTC algorithm in real-
time

Timeline of events during execution of MTC is illustrated in Figure 4.3, where

66

the execution is triggered at time t = 0 ms. Next immediate action is to start

simulation for one of the two β cases. Note that the arrow (red pointed) right

after the trigger signal indicates consecutive execution. At time, second β case

simulation begins and terminates around t ∼ 6.1 ms. From this point onward,

remaining calculations are carried out to find switching instances and the real-time

MTC execution is triggered at time t = 10 ms. The series of events will repeat

every time MTC execution is trigger. Here importance of sequential switching of

tasks is to distribute the computation load uniformly over a time span so that the

simulation process, which can be accomplished in non-real-time priority, while

high-bandwidth control loop executed primary control. Once ready, the MTC

trigger will force the switches to operate in MTC mode and will return back to

primary control after steady state is achieved from minimum-time transition.

Figure 4.4 depicts the system states for both β cases. The final values of sys-

tem states derived from these simulations are used to calculate the switch time

tMTC . To finish the calculation, the target computer takes around 7 ms while

executing primary control simultaneously. Here, it is important to note that the

time required for the simulation process depends on the final value(desired steady

state value) of bus voltage. Higher the final value of bus voltage, higher the final

value of inductor currents and hence higher the value of τ . So, higher bus voltage

transitions take more time compared to the one with lower transition voltage.

67

Figure 4.4: System states during execution of MTC algorithm

Figure 4.5 show the switching signals applied to each power converter stage. Un-

til time t = 10 ms, the switching signal of low duty cycle belong to the primary

SMC control routine. Then after timing control is moved to the MTC based

scheduler. Each boost converter stage is kept is ON for its respective tSMC dur-

ing. Note switching instances for each stage according to calculated value of

tMTC =
[
0.00183 0.00216 0.00151

]
ms. Switches are turned OFF after this

duration and the scheduler control is moved back to the primary control. Since,

the inductor current values are reducing during OFF period from its peak, the

primary controller will continue operating in steady state.

68

Figure 4.5: Switching signals applied at gates of power switches

Figure 4.4 and Figure 4.6 represent system states in time domain and in form of

phase plane trajectories respectively. Till 10msc, the system states are operating

in steady state under primary control (SMC). Then the SMC transition begin

and new steady state is achieved by all of the boost converter stages in minimum

possible amount of time. Then after the primary control takes charge of the

emulation and continue to operate in new steady state. Note smooth transition of

bus voltage without an overshoot. Another important observation can be drawn

from the experimental results is that not all of the stages return to steady state

at a specific instance, rather they return to the steady state with respect to the

69

contribution of each stage. Since the parameters of boost converters are non-

identical, it takes different time duration to return to steady state. If all of boost

converter stages are identical then contribution factor for all of them will also be

identical and the system response would like almost identical for all stages. In

that case, all of the boost converter stages return to steady state at the same

instance.

From phase plane trajectories, it can be concluded that the MTC transition

achieve steady state with just a single switch cycle (from ON→OFF), result-

ing in minimum possible time. Initially, the bus voltage starts plummeting due

to capacitor discharging through load. Note the switching instances represented

by sudden change in phase trajectory.

The experimental results for MTC emulation results are recorded on to the target

computer with time resolution of 10µs. Following are the results captured through

digital oscilloscope. Figure 4.7 illustrates result for time division of 1s. It is almost

infeasible to identify the gradual decrease and then rapid rise in bus voltage (in

green). The inductor current (lower three graphs in sequence with boost converter

stages) spikes are just noticeable. Figure 4.8 represent horizontally expanded

version of same results with time division t = 10 ms, where transition in system

states can be identified as close as of emulation.

70

Figure 4.6: System states during real-time execution of MTC projected as phase
plane trajectories

71

Figure 4.7: Oscilloscope capture of MTC operation on time scale of 1 s

Figure 4.8: Horizontally stretched oscilloscope capture of MTC operation on
time scale of 10ms

72

4.3 Comparison of performance between SMC and MTC

In previous section, experimental results for an MTC execution accompanied by

SMC as a primary control were illustrated. In order to compare the effectiveness

of the MTC over any other robust control method, the same system was emulated

solely on SMC based control method. Experimental results for both real-time em-

ulation cases are illustrated in the following sections to highlight the effectiveness

in response time/speed of response.

4.3.1 SMC vs MTC time domain comparison

Time domain representation for system states during only SMC emulation are

shown in Figure 4.9, where a bus voltage makes the transition from initial value

95.12 V to final value 149.6 V within ∼ 40ms. A notable difference in only SMC

emulation is that the bus voltage transition is very smooth while inductor currents

switch from initial steady state to final steady state almost instantly, without any

overshoot. The final inductor current levels will gradually transfer energy to the

capacitor, ultimately increasing bus voltage.

In contrast, the MTC+SMC based emulation result shown in Figure 4.10 illustrate

that the bus voltage make almost instantaneous transition from initial bus voltage

95.55 V to final bus voltage 150.3 V within merely ∼ 4ms. The difference in the

speed of response for both methods, only-SMC and SMC+MTC, is substantially

high. MTC based emulation is nearly 10 times faster than Only-SMC based robust

control. While the MTC based transition has only one switch cycle, very small

73

duration like 4 ms makes MTC one of the best feasible methods to implement

minimum time control for multiple boost converters.

Figure 4.9: System states during real time execution of SMC

74

Figure 4.10: System states during real time execution of SMC

4.3.2 SMC vs MTC phase plane comparison

Phase plane trajectories provide detailed perspective for the analysis of both em-

ulation cases. For only-SMC based emulation, inductor currents make instanta-

neous transition between initial and final steady states while gradually moving the

bus voltage to its final steady state condition. The gradual transition of bus volt-

age forces inductor currents to be corrected at every control update and switches

have to turn ON and OFF during this period to maintain the desired level.

75

Figure 4.11: System states during real-time execution of SMC projected as phase
plane trajectories

Phase plane trajectory for MTC based emulation is shown in Figure 4.12. The

major difference here is the amplitude of the inductor currents and switching rate.

Due to a single switching cycle MTC based approach forces inductor currents to

rise to an extremely high level. It indicates the sudden transfer of energy from

inductors to the capacitor bank. Note the variation in system states that origi-

nates from lower sampling rate for analog-to-digital conversion. Due to hardware

limitations, there is a trade-off between choosing higher update rate for control

loop and recording system states in real-time. For the experimental results shown

hereafter are recorded with 0.1 ms. With faster processing capabilities, higher

76

sample can significantly increase bandwidth of recorded signals.

From the phase plane representation, it can be deduced that the MTC based

approach facilitate high-speed transition of bus voltage compared to any other

robust control methods. It is also noteworthy that quick speed of response is

achieved by forcing system states, inductor currents, to operate to their extreme

levels. In order to safeguard the hardware during MTC, it is recommended to

have a high-priority real-time supervisory control over the MTC implementation.

Figure 4.12: System states during real-time execution of MTC projected as
phase plane trajectories

77

4.4 Parameter sensitivity analysis

One of the performance measures for a control system is the robustness. Ability

to[26][27] withstand any unaccounted deviation in system parameters is a de-

sired characteristic for a robust control implementation. In this section, system

parameters like inductance and ESR of the capacitor bank are considered for

measuring deviations in overall response during MTC. The measurement of pa-

rameter sensitivity is done by fining deviation in the final value of bus voltage.

For comparison, emulation results presented before are considered as reference.

The sensitivity analysis for MTC consider variation in: inductance of all boost

converter stages within −30% to 30% of their nominal values, and ESR from 0Ω to

0.2 Ω. Emulation results for all of these combinations are illustrated in Appendix

A.4.

Figure 4.13 depicts the final bus voltage achieved through MTC with respect to

the variation in inductance value. The expected final value of bus voltage is 150V .

It can be observed that the total deviation of bus voltage is around ±8V for ±30%

of deviation in inductance. In addition to that, a linear behavior can be observed

in variation of bus voltage and it can be justified with the fact that higher the

inductance than expected, longer the switch time.

Similarly, Figure 4.14 illustrate the deviation in bus voltage over the variation in

ESR of capacitor bank. For range of 0− 0.2 Ω, the bus voltage varies in between

140V to 149V . As noted previously for inductance, unaccounted higher ESR value

will draw energy from capacitor bank during MTC operation and hence overall

energy transfer is slightly lower than expected resulting in lower bus voltage.

78

Figure 4.13: Sensitivity of Vbus with respect to inductance Li of individual boost
converter stage δ

Figure 4.14: Sensitivity of Vbus with respect to ESR Rc of the Capacitor bank
Cbank

79

5 Conclusion and Future Work

In this conclusive chapter, an overview of the work reported in this thesis is

provided. In addition to that several key aspects that can significantly improve

the performance of the the proposed work is also discussed briefly. Some notable

challenges in implementation of those approaches are also highlighted.

5.1 Thesis summary

An optimal control method to to minimizing transition time for paralleled boost

converter is introduced in this thesis. The proposed topology of the non-homogeneous

paralleled boost converter includes a large subset of several known configurations,

i.e. multiple boost converters, multi-phase boost converters or interleaved boost

converters. The minimum time control method proposed and implemented in

this thesis cover all of the previously mentioned configurations in a form of a

special case of paralleled boost converter. One fundamental difference of the pro-

posed method with previously studied methods is that it does not assume ideal

or identical system components to simplify the overall system complexity from

computation point of view. While the proposed method assumes all necessary

parameters of the system, and, the complexity of system is not limited, it reflects

more resembling implementation of practical system and results derived from it.

The effectiveness of the minimum time control is not just the reduction in real

time transition of system states but also the time required to make necessary

computation to implement the method successfully in real-time workflow. There

80

exist several techniques based on conventional optimization approach that can take

extensive amount of computation power and hence required to be implemented

offline for whole operational range, the real-time implementation of minimum time

control provide light-weight alternative to time critical/high-speed operations.

One of the most important feature of the proposed MTC is that it can be scaled

to n-level without adding substantial cost for computation. The concept of con-

tribution developed for each stage makes this method easily expandable to create

an aggregated configuration for very high power applications.

5.2 Future Work

A brief overview of future work proposed in this section entails improved execution

of MTC for real time controller and detailed system modeling to accommodate

non-linear behavior of system components.

5.2.1 Concurrent execution for Real time MTC

As described thoroughly in the chapter 4, the implemented real time control sys-

tem for this thesis incorporated a single core processor with multi-threading ca-

pability that executed simulation of two β cases for finding optimal switching

instances through the characteristic line. So, the controller was busy updating

all I/O ports and their associated calculations were running along side with the

MTC algorithm. The calculation overhead added to the routine process of pri-

mary control reduces the effective update rate for the controller and hence the

81

resolution/bandwidth of the overall control system. Figure 4.8 and 4.9 illustrate

the impact on resolution of analog-to-digital conversion.

In order to overcome this problem and to utilize full potential of the main con-

troller for the primary operation, it is recommended to transfer the load of MTC

simulation to another dedicated processor/controller so that both- primary control

system and MTC algorithm can execute at their maximum speed improving over-

all time to trigger Real-time execution. One added advantage of having a separate

processor is that calculation for each β case can be done through multi-threading

and even faster performance can be achieved. Hence, the separate computational

hardware can significantly reduce the overall execution time of MTC.

5.2.2 Non-linear modeling of system parameters

It is assumed that the system components remain unchanged during the MTC

operation and that is reflected through the static system parameters. Since the

MTC operation tends to drive all of the system states to close to their maximum

possible operating range, it is highly possible that the impedance of the passive

elements might change significantly and deviate the final operating state.

Some of the known parametric deviations occur through variation in inductive

impedance. Inductance of a coil is very sensitive parameter as it can be easily

affected by the passive inductance of a nearby magnetic parts. The operating

frequency of an inductor also plays crucial role in deciding overall inductance of

a coil. As noted in several references, the effective inductance of coil reduces at

high frequency. Another critical factor for inductance value is the current flowing

82

through the coil. The MTC operation forces inductor to charge at higher energy

levels by pushing a large amount of current in very short duration. Due to this

quick rise in current, magnetization in the core approaches towards saturation,

non-linear portion of a B-H curve, and, resulting into different impedance value

at different current levels.

Similar phenomenon of parametric deviation is also known for capacitive impedance,

in which, the equivalent series resistance (ESR) changes according to the oper-

ating frequency and temperature. Variation in ESR represents the losses in load

side capacitor bank that can affect the resolution of bus voltage. As shown in the

sensitivity analysis results for ESR, it is clearly evident that a nominal parame-

ter variation can sway the steady-state performance and settling time of overall

system.

5.2.3 GPU based implementation of MTC as an alternative

The emulation results illustrated throughout this thesis were recorded from the

Intel Atom process based SBC (single board computer) and all the computation

that took place during any of implementation of MTC were sequential in nature.

The primary motive of this thesis was to develop a method that can provide bus

voltage transition in minimum possible time and it should be feasible to implement

during real-time workflow. MTC can achieve this goal by minimizing the need for

hybrid optimization down to only two simulation cases and then fining operating

point from the linear characteristics as observed before. So, the advantage of

having MTC implemented along side the primary control is that the computation

83

burden is reduced significantly to any of the known methods.

CPU GPU

Figure 5.1: Execution of tasks in CPU(few high-speed heterogeneous threads)
vs GPU(large number of homogeneous threads at moderate speed)

As an alternative to the CPU based implementation, another approach based on

GPU (graphical processing unit) to find optimal switching instance was briefly

explored during this research. Figure 5.1 shows inner working of two different

computational architectures. CPU can handle very few non-homogeneous threads

sequentially at much higher clock frequency, whereas GPU are capable of executing

a large number of identical threads in parallel at a same time with lower clock

frequency. GPUs are highly efficient at executing same task for multiple instances

due to abundance of cores compared to CPUs. Of course, the frequency of CPU

core is much higher than of a single GPU core, but the amount of processing a GPU

can handle is significantly higher. A simple case of 2048 simulations, very similar

to one that was used for one of the β case during MTC, were launched on a 256

core Nvidia Maxwell architecture GPU to measure the overall time of execution.

While a CPU running took around 10msec to execute 2 simulation cases (refer

Figure 4.2 and Figure ??, GPU finished 2048 simulation cases in ∼ 60msec(in

more than 10 observations). CPU takes exact same time as of GPU to finish just

12 simulations. That is a very stark difference in efficiency of computation.

84

While GPU can expedite the computational process there are several trade-offs

that also need to be considered. Some of the downsides can be listed as :

1. GPU is not a real-time (hard-timed) computer as CPU. Unlike CPU, execu-

tion time of same code GPU can take different amount of time on different

run. Although there is not much difference in execution time but it cannot

be strictly predicted or optimized like CPU.

2. GPU is a hardware dedicated to computation that has multiple instances of

same task, so it benefits from pipeline instruction structure. Lower number

of instances would add more delay to overall operation due to lower memory

bandwidth.

3. GPU can not be used as standalone computer. It require an additional

host computer to launch computation tasks (kernel) onto GPU. Launching

kernel onto GPU and collecting results back to the host computer takes a

significant amount of overall time duration. Memory bandwidth is one of

the bottleneck for efficiency of GPU. This is the reason why GPU always

work most efficiently for large number of threads, so that it can minimize

memory latency and kernel overload.

4. GPU is expensive and power hungry device. For any cost effective solution

both of these factor play big role for selection of GPU.

Although GPU based implementation is not proven to be faster than the MTC

implementation running on CPU, for a large system with higher number of boost

converter, overall execution time could be very close or even lesser than of CPU.

85

References

[1] C. Shi, B. Miller, K. Mayaram, and T. Fiez, “A multiple-input boost con-

verter for low-power energy harvesting,” IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 58, pp. 827–831, Dec 2011.

[2] K. Sano and M. Takasaki, “A boost conversion system consisting of multiple

dc-dc converter modules for interfacing wind farms and hvdc transmission,”

in IEEE Energy Conversion Congress and Exposition, pp. 2613–2618, Sept

2013.

[3] X. Yu and M. Zhihong, “Fast terminal sliding-mode control design for non-

linear dynamical systems,” IEEE Transactions on Circuits and Systems I:

Fundamental Theory and Applications, vol. 49, pp. 261–264, Feb 2002.

[4] R. de Castro, J. P. Trovao, P. Pacheco, P. Melo, P. G. Pereirinha, and R. E.

Araujo, “Dc link control for multiple energy sources in electric vehicles,” in

IEEE Vehicle Power and Propulsion Conference, pp. 1–6, Sept 2011.

[5] O. Hegazy, J. V. Mierlo, and P. Lataire, “Modeling and control of interleaved

multiple-input power converter for fuel cell hybrid electric vehicles,” in In-

ternational Aegean Conference on Electrical Machines and Power Electronics

and Electromotion,, pp. 408–414, Sept 2011.

[6] S. H. Choung and A. Kwasinski, “Multiple-input dc-dc converter topologies

comparison,” in Conference of IEEE Industrial Electronics, pp. 2359–2364,

Nov 2008.

86

[7] A. Kwasinski, “Identification of feasible topologies for multiple-input dc-dc

converters,” IEEE Transactions on Power Electronics, vol. 24, pp. 856–861,

March 2009.

[8] G. E. Pitel and P. T. Krein, “Minimum-time digital control with raster sur-

faces,” in Workshop on Control and Modeling for Power Electronics, pp. 1–8,

Aug 2008.

[9] J. Cheng, J. Shi, and X. He, “A novel input-parallel output-parallel connected

dc-dc converter modules with automatic sharing of currents,” in Proceedings

of The 7th International Power Electronics and Motion Control Conference,

vol. 3, pp. 1871–1876, June 2012.

[10] V. J. Thottuvelil and G. C. Verghese, “Analysis and control design of paral-

leled dc/dc converters with current sharing,” IEEE Transactions on Power

Electronics, vol. 13, pp. 635–644, Jul 1998.

[11] R. F. Foley, R. C. Kavanagh, W. P. Marnane, and M. G. Egan, “Sensor-

less current-sharing in multiphase power converters,” in IEEE Workshops on

Computers in Power Electronics, pp. 117–122, July 2006.

[12] . Yazici and E. K. Yaylaci, “Fast and robust voltage control of dc-dc boost

converter by using fast terminal sliding mode controller,” IET Power Elec-

tronics, vol. 9, no. 1, pp. 120–125, 2016.

[13] G. Pitel, “Fast power converters and rapid digital design,” 2008. Copyright

- Database copyright ProQuest LLC; ProQuest does not claim copyright in

the individual underlying works; Last updated - 2016-05-28.

87

[14] D. J. Perreault, K. Sato, R. L. Selders, and J. G. Kassakian, “Switching-

ripple-based current sharing for paralleled power converters,” IEEE Trans-

actions on Circuits and Systems I: Fundamental Theory and Applications,

vol. 46, pp. 1264–1274, Oct 1999.

[15] G. Feng, E. Meyer, and Y. F. Liu, “A new digital control algorithm to achieve

optimal dynamic performance in dc-to-dc converters,” IEEE Transactions on

Power Electronics, vol. 22, pp. 1489–1498, July 2007.

[16] R. D. Middlebrook and S. Cuk, “A general unified approach to modelling

switching-converter power stages,” in IEEE Power Electronics Specialists

Conference, pp. 18–34, June 1976.

[17] W. Jiang, Y. f. Zhou, and J. n. Chen, “Modeling and simulation of boost

converter in ccm and dcm,” in IEEE Power Electronics and Intelligent Trans-

portation System, vol. 3, pp. 288–291, Dec 2009.

[18] D. Maksimovic, A. M. Stankovic, V. J. Thottuvelil, and G. C. Verghese,

“Modeling and simulation of power electronic converters,” Proceedings of the

IEEE, vol. 89, pp. 898–912, Jun 2001.

[19] J. Sun, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, “Averaged

modeling of pwm converters operating in discontinuous conduction mode,”

IEEE Transactions on Power Electronics, vol. 16, pp. 482–492, Jul 2001.

[20] V. Utkin, “Variable structure systems with sliding modes,” IEEE Transac-

tions on Automatic Control, vol. 22, pp. 212–222, Apr 1977.

88

[21] S. R. Sanders and G. C. Verghese, “Lyapunov-based control for switched

power converters,” in IEEE Power Electronics Specialists Conference, pp. 51–

58, 1990.

[22] M. Lopez, L. G. de Vicuna, M. Castilla, J. Matas, and O. Lopez, “Control

loop design of parallel connected converters using sliding mode and linear

control techniques,” in IEEE Power Electronics Specialists Conference. Con-

ference Proceedings, vol. 1, pp. 390–394 vol.1, 2000.

[23] S. C. Tan, Y. M. Lai, and C. K. Tse, “General design issues of sliding-mode

controllers in dc-dc converters,” IEEE Transactions on Industrial Electronics,

vol. 55, pp. 1160–1174, March 2008.

[24] X. Xu and P. J. Antsaklis, “Optimal control of switched autonomous sys-

tems,” in Proceedings of the IEEE Conference on Decision and Control, vol. 4,

pp. 4401–4406 vol.4, Dec 2002.

[25] J. Kinable, A. A. Cire, and W.-J. van Hoeve, “Hybrid optimization methods

for time-dependent sequencing problems,” European Journal of Operational

Research, vol. 259, no. 3, pp. 887 – 897, 2017.

[26] L. A. Kamas and S. R. Sanders, “Parameter and state estimation in power

electronic circuits,” IEEE Transactions on Circuits and Systems I: Funda-

mental Theory and Applications, vol. 40, pp. 920–928, Dec 1993.

[27] G. E. Pitel and P. T. Krein, “Real-time system identification for load moni-

toring and transient handling of dc-dc supplies,” in IEEE Power Electronics

Specialists Conference, pp. 3807–3813, June 2008.

89

90

A Appendices

A.1 Simulink Model for SMC of Multiple boost converters

R_LoadReferance Voltage Source Voltages

Sliding Mode Control of multiple Boost Converters (Current based control)

Results

V_load_ref

R_load

Vs1

Vs2

Vs3

SW1

SW2

SW3

Sliding Mode Controller

Switch1

Switch2

Switch3

Vs1

Vs2

Vs3

R_load

V_load

i_l1

i_l2

i_l3

i_load

Boost converters

SW2

V_load_ref
SW1

SW3

R_load

Vs1

Vs2

Vs3

SW1

SW2

SW3

Vs1

Vs2

Vs3

R_load

v_load

il1

il2

il3

i_load

50

V_ref_fixed

10

R_load_fixed

V_load_ref R_load

25

Vs1

25

Vs2

25

Vs3

Vs1

Vs2

Vs3

V_load_ref

v_load

SW1

SW2

SW3

il1

il2

il3

v_load XY Graph

v_load

il1

SW2

SW1

SW3

V_load

i_l1

i_l2

i_l3

i_load

V_load_ref R_load

91

1

V_load_ref

2

R_load

3

Vs1

4

Vs2

5

Vs3

1

SW1

2

SW2

3

SW3

Vo

Vs1

R_load

il1_ref

SMC1 il1

Vo

Vs3

R_load

il3_ref

SMC3 il3

Vo

Vs2

R_load

il2_ref

SMC2 il2

92

A.2 Simulink Model for MTC of Multiple boost convert-

ers

R_LoadReferance Voltage Source Voltages

SMC/MTC of multiple Boost Converters (Switchable control configuration)

Results

V_load_ref

R_load

SW1

SW2

SW3

Sliding Mode Controller/
Minimum time Controller

Switch1

Switch2

Switch3

Vs1

Vs2

Vs3

R_load

V_load

i_l1

i_l2

i_l3

i_load

Boost converters

SW2

V_load_ref
SW1

SW3
R_load

SW1

SW2

SW3

Vs1

Vs2

Vs3

R_load

v_load

il1

il2

il3

i_load

Vinit

V_ref_fixed Rload

R_load_fixed

V_load_ref
R_load

Vs(1)

Vs1

Vs(2)

Vs2

Vs(3)

Vs3

Vs1

Vs2

Vs3

SW1

SW2

SW3

il1

il2

il3

v_load

V_load_ref
[trigger]

D1

D2

D3

SW2

SW1

SW3

V_load

i_l1

i_l2

i_l3

i_load

V_load_ref
R_load

93

Boost Converter 1

Load (resistive)

Boost Converter 2

Boost Converter 3

1
Switch1

2
Switch2

3
Switch3

4
Vs1

5
Vs2

1
V_load

2
i_l1

3
i_l2

6
Vs3

7
R_load

4
i_l3

5
i_load

PS+
--

+ PS

+ --+

+
--

+

+ --+

v_
c

+
-

VS1

+ --+

SPS

i_l
+ -

CS1

S PS

f(x) = 0

i_l
+ -

CS2

S PS

i_l
+ -

CS3

S PS

i_l
+ -

CS4

+ --+

+ --+

+ --+ + --+

+ --++ --+

S PS

S PS

S PS

94

Logic for single switch operation

SMC --> Sliding Mode Control
MTC --> Minimum-time Control

SW1

SW2

SW3

Trigger Subsystem

1
V_load_ref

2
R_load

1
SW1

2
SW2

3
SW3

T

F

Switch

T

F

Switch1

T

F

Switch2

il1

il2

il3

trigger3

trigger2

trigger1

[csw1]

[csw2]

[csw3]

[SMC_SW1]

[SMC_SW2]

[SMC_SW3]

[MTC_SW1]

[MTC_SW2]

[MTC_SW3]

Vs

Vout

Vs

Vd

R_load

RL

Rsw

CF

il1

il2

il3

il_ref1

il_ref2

il_ref3

SMC

RL

Rsw

CF

il1

il2

il3

Vd

95

Trigger for MTC per stage

Duty cycle calculationSMC/MTC Selection

Clock1
<= step_time

Compare
To Constant

>= step_time+switch_time(1)

Compare
To Constant1

OR trigger1

Goto1

SMC(UP)/
MTC(DOWN)

[SMC_SW1]

[SMC_SW2]

[SMC_SW3]

[MTC_SW1]

[MTC_SW2]

[MTC_SW3]

1

Vs(1)

v_load

D1

1

Vs(2)

v_load

D2

1

Vs(3)

v_load

D3

Clock2
<= step_time

Compare
To Constant2

>= step_time+switch_time(2)

Compare
To Constant3

OR trigger2

Goto14

Clock3
<= step_time

Compare
To Constant4

>= step_time+switch_time(3)

Compare
To Constant5

OR trigger3

Goto15

Scope

[csw1]

Goto16

[csw2]

Goto17

[csw3]

Goto18

1
SW1

2
SW2

3
SW3

D1

D2

D3

96

A.3 Simulink Real-time Model for MTC of Multiple Boost

Converters

M
TC

_a
lg

or
ith

m

B
et

a

t_
m

ar
gi

n

to
u
_p

ro
p

V
_c

as
e

V
_f

in
al

cm
nd

_s
im

1

t_
sw

it
ch

ca
se

V
f_

ca
se

B
et

a_
fin

al

T_
sw

it
ch

_f
in

al

Si
m

ul
at

io
n_

sc
he

du
le

r

X
0

V
fin

al

V
s

C
F

Ilf
in

al

t_
m

ar
gi

n

to
u
_p

ro
p

C
al

cu
la

te
_t

ou

V
s

In
it
ia

l C
on

di
ti
on

Il_
fin

al

t_
sw

it
ch

V
fin

al

st
at

es

Si
m

ul
at

io
n

z1

V
_r

ef

V
_r

ea
l

Il_
re

al

cm
nd

_s
im

cm
nd

_c
al

c

X
0

V
_f

in
al

po
in

t_
of

_a
ct

V
_f

in
al

_r
ea

l

D
et

ec
t a

nd
 A

pp
ro

ve
 M

TC

il1
_r

ea
l

il2
_r

ea
l

il3
_r

ea
l

Vs C
F

X
0

X
0

Vf
in

al
V
fin

al
Ilf

in
al

t_
m

ar
gi

n

to
u_

pr
op

Vs

Vs

Ilf
in

al

X
0

-T
-

-T
-

[2
x1

]

B
et

a

t_
sw

itc
h

t_
sw

itc
h

Ta
rg

et
 S

co
pe

Id
: 1

Sc
op

e
5

B
et

a_
fin

al

-T
-

V_
ca

se

V
_c

as
e

Vf
in

al

re
fe

ra
nc

e

PO
A

vc
_r

ea
l

Sc
op

e1
T1 T2 T3

V_
fin

al
_r

ea
l

Fi
le

 S
co

pe
Id

: 1

sy
st

em
_s

ta
te

s

Fi
le

 S
co

pe
Id

: 1

co
m

m
an

d_
si

gn
al

s
PO

A

Fi
le

 S
co

pe
Id

: 1

co
m

m
an

d_
si

gn
al

s1

SM
C
/M

TC
_s

w
ita

ch
ab

le
_c

on
tr

ol
le

r

Ilr
ea

l

V
fin

al

Ilr
ef

SM
C

M
M

-3
2

D
ia

m
on

d
An

al
og

 In
pu

t

1 2 3 4

M
M

-3
2

6

il1
_r

ea
l

il2
_r

ea
l

il3
_r

ea
l

vc
_r

ea
l

il1
_r

ea
l

Fr
om

20

il2
_r

ea
l

Fr
om

21

il3
_r

ea
l

Fr
om

22

R
el

ay
4

R
el

ay
5

R
el

ay
6

M
M

-3
2

D
ia

m
on

d
D

ig
ita

l O
ut

pu
t

8 6 4

M
M

-3
2

7

20

C
ur

re
nt

_g
ai

n

20

C
ur

re
nt

_g
ai

n1

20

C
ur

re
nt

_g
ai

n2

50

Vo
lta

ge
_g

ai
n

-T
-

Fi
le

 S
co

pe
Id

: 1

Sc
op

e
3

st
ep

_t
im

e

T2
op

2

C
ha

rt
5

st
ep

_t
im

e

T3

op
3

C
ha

rt
4

st
ep

_t
im

e
st

ep
_t

im
e

T1
op

1

C
ha

rt
3

>
1

Sw
itc

h

>
1

Sw
itc

h1

>
1

Sw
itc

h2

5 5 5

T1 T2 T3

Tr
ig

1

Tr
ig

2

Tr
ig

3

Tr
ig

1

Tr
ig

2

Tr
ig

3

Fi
le

 S
co

pe
Id

: 1

Sw
itc

h_
si

gn
al

s

97

K Ts
z-1

xo

Discrete-Time
IntegratorR

1./L

1./L

-1/(Rload*C)

1/C

[il1]

[il2]

[il3]

[Vc][il1]

[il2]

[il3]

[Vc]

Add

2

Initial Condition

[A]

[B]

[A]

[B]

1

Vs

il1

t1

il1_final

op1

A1

B1

Chart1

il2

t2

il2_final

op2

B2

A2

Chart2

il3

t3

il3_final

op3

A3

B3

Chart3

[il1]

[il2]

[il3]

[A]

[B]

AND

Logical
Operator

4

t_switch

3

Il_final

Enable

>

Switch3

0

[Vc]

1

Vfinal

2

states

98

Ilreal

Vfinal

Vs

Vd

Rload

R

CF

Ilref

Calculate_Ilref

1

Ilref

1

Ilreal

2

Vfinal

Vs

CF

Vd

Rload

R

99

Beta_final
entry:
slope = (Vf2- Vf1)/(beta2 - beta1);
c = Vf1- slope*beta1;
Beta_final = (V_final - c) / slope;
T_switch_final = (Beta_final.*T);
%MTC_complete = 1;

A2
entry:
Vf2 = Vcase;
cmnd_sim = 0;

A1
entry:
t_switch = 1e6*beta2*T;
cmnd_sim = 1;

state2
entry:
Vf1 = Vcase;
cmnd_sim = 0;

Start
entry:
%MTC_complete = 0;
t_switch = 1e6*beta1*T;
cmnd_sim = 1;

[Vcase~= 0]
% very important for second simulation

[Vcase~=0]
% very important for first simulation

[after(10,usec)]

100

Enable
beta1

beta2

T

V_final

Vcase

cmnd_sim

Vf1

Vf2

t_switch

Beta_final

T_switch_final

Simulation_Scheduler

3

Vf_case

2

t_switchcase

4

V_case

1

cmnd_sim1

1

Beta

2

t_margin

3

tou_prop

4

Beta_final

5

T_switch_final

5

V_final

101

Sim_done
entry:
cmnd_sim = 0;
point_of_act = 1;
V_final_real = V_ref;

Calc_done
entry:
cmnd_calc = 0;
cmnd_sim = 1;

Reset
entry:
op_start = 0;
point_of_act = 0;

Detect_change
entry:

% Approving MTC operation based on step change in referance voltage
op_start = 1; % This flag indicates start of MTC operation
X0 = [Il_real;V_real]; % fetching current system states as inital condition
V_final = V_ref; % final bus voltage based on step change in referance
cmnd_calc = 1;

Check_val
entry:
Vdif = V_ref - V_real;

Enter
entry:
op_start = 0;
cmnd_calc = 0;
cmnd_sim = 0;
V_final_real = V_ref;

after(10,msec)

after(10,msec) % real operation

after(30,msec)

[Vdif >= 35 && V_real > 50]
1

[Vdif < 50]

2

%after(0.1,msec)

102

A.4 HIL simulation results for experimental cases

Figure A.1: HIL emulation results for L1(−30%change); (left-half) (a)simulation
trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and β = 0.4 and ,
(d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM signal for Q2,
(c) PWM signal for Q3

103

Figure A.2: HIL emulation results for L1(−20%change); (left-half) (a)simulation
trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and β = 0.4 and ,
(d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM signal for Q2,
(c) PWM signal for Q3

104

Figure A.3: HIL emulation results for L1(−10%change); (left-half) (a)simulation
trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and β = 0.4 and ,
(d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM signal for Q2,
(c) PWM signal for Q3

105

Figure A.4: HIL emulation results for L1(+10%change); (left-half) (a)simulation
trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and β = 0.4 and ,
(d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM signal for Q2,
(c) PWM signal for Q3

106

Figure A.5: HIL emulation results for L1(+20%change); (left-half) (a)simulation
trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and β = 0.4 and ,
(d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM signal for Q2,
(c) PWM signal for Q3

107

Figure A.6: HIL emulation results for L1(+30%change); (left-half) (a)simulation
trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and β = 0.4 and ,
(d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM signal for Q2,
(c) PWM signal for Q3

108

Figure A.7: HIL emulation results for L2(−30%change); (left-half) (a)simulation
trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and β = 0.4 and ,
(d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM signal for Q2,
(c) PWM signal for Q3

109

Figure A.8: HIL emulation results for L2(−20%change); (left-half) (a)simulation
trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and β = 0.4 and ,
(d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM signal for Q2,
(c) PWM signal for Q3

110

Figure A.9: HIL emulation results for L2(−10%change); (left-half) (a)simulation
trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and β = 0.4 and ,
(d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM signal for Q2,
(c) PWM signal for Q3

111

Figure A.10: HIL emulation results for L2(+10% change); (left-half)
(a)simulation trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and
β = 0.4 and , (d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM
signal for Q2, (c) PWM signal for Q3

112

Figure A.11: HIL emulation results for L2(+20% change); (left-half)
(a)simulation trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and
β = 0.4 and , (d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM
signal for Q2, (c) PWM signal for Q3

113

Figure A.12: HIL emulation results for L2(+30% change); (left-half)
(a)simulation trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and
β = 0.4 and , (d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM
signal for Q2, (c) PWM signal for Q3

114

Figure A.13: HIL emulation results for L3(−30% change); (left-half)
(a)simulation trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and
β = 0.4 and , (d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM
signal for Q2, (c) PWM signal for Q3

115

Figure A.14: HIL emulation results for L3(−20% change); (left-half)
(a)simulation trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and
β = 0.4 and , (d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM
signal for Q2, (c) PWM signal for Q3

116

Figure A.15: HIL emulation results for L3(−10% change); (left-half)
(a)simulation trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and
β = 0.4 and , (d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM
signal for Q2, (c) PWM signal for Q3

117

Figure A.16: HIL emulation results for L3(+10% change); (left-half)
(a)simulation trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and
β = 0.4 and , (d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM
signal for Q2, (c) PWM signal for Q3

118

Figure A.17: HIL emulation results for L3(+20% change); (left-half)
(a)simulation trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and
β = 0.4 and , (d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM
signal for Q2, (c) PWM signal for Q3

119

Figure A.18: HIL emulation results for L3(+30% change); (left-half)
(a)simulation trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and
β = 0.4 and , (d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM
signal for Q2, (c) PWM signal for Q3

120

Figure A.19: HIL emulation results for RC = 0.001Ω; (left-half) (a)simulation
trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and β = 0.4 and ,
(d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM signal for Q2,
(c) PWM signal for Q3

121

Figure A.20: HIL emulation results for RC = 0.05Ω; (left-half) (a)simulation
trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and β = 0.4 and ,
(d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM signal for Q2,
(c) PWM signal for Q3

122

Figure A.21: HIL emulation results for RC = 0.1Ω; (left-half) (a)simulation
trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and β = 0.4 and ,
(d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM signal for Q2,
(c) PWM signal for Q3

123

Figure A.22: HIL emulation results for RC = 0.15Ω; (left-half) (a)simulation
trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and β = 0.4 and ,
(d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM signal for Q2,
(c) PWM signal for Q3

124

Figure A.23: HIL emulation results for RC = 0.20Ω; (left-half) (a)simulation
trigger, (b)simulation strobe, (c)simulation strobe for β = 0.8 and β = 0.4 and ,
(d)emulation trigger; (right-half) (a) PWM signal for Q1, (b) PWM signal for Q2,
(c) PWM signal for Q3

125

A.5 MATLAB code for implementation of SMC and MTC
for paralleled Boost converters

%% ==> main.m <==
% This file contains main function that invokes dependent processes

%% −−−−−−−−−−−−−−−−−−−−−> START OF SCRIPT <−−−−−−−−−−−−−−−−−−−−−−−
clc
clear
warning off
format shortg
sys = function1_load_system();
figure

%% Setting up intial and final values of voltage
tic
v0 = 90;
vfinal = 150;
for i = 1:sys.no_of_stage
il0(1,i) = 0.33*((v0−sys.stage(i).Vd_on)^2)/(sys.load.Rload*...

sys.stage(i).Vs);
il_final(1,i) = 0.33*((vfinal−sys.stage(i).Vd_on)^2)/...

(sys.load.Rload*sys.stage(i
).Vs);

end
% il_final = [11.5 9.8 9.3];
X0 = [il0 v0];
ton_safe = function8_ton_maximum(sys,il0)'

% finding tou and tou_prop
[tou,CF] = function7_calculate_tou(sys,il0)
CF_norm = CF/min(CF)

% best value of beta to get vfinal
beta = function9_find_beta(vfinal,sys,X0,il_final,ton_safe,CF_norm)

%% first phase of simulation
print_result = 1;

prime_scheduler = function3_prime_scheduler((beta.*CF_norm.*
ton_safe),

126

6*1e−3,sys);
primesim_result = function4_prime_simulation(sys,prime_scheduler,X0

,
print_result);

% second phase of simulation to reach to the next operating point
% all stages are in dcm mode
last_state = primesim_result(end,:);
[vc_final,T_end,T_switchback] = function6_sub_simulation(sys,...

last_state,il_final,
print_result)

T_off = (beta.*CF_norm.*ton_safe)
toc;

%% simulation param
step_time = 0.06;
i_margin = 0.01;
vfinal = vfinal;
sample_time = 1e−5;

%% calculating energy shared by each stage
time = primesim_result(:,1);
A = 0.5.*primesim_result(:,2:end−1).^2;
L=[];
for i = 1:sys.no_of_stage

L = horzcat(L,sys.stage(i).L);
end
temp = bsxfun(@times,A,L);

cap_energy = 0.5*sys.load.C.*(primesim_result(:,end).^2);

%% Plotting result
figure
plot(time,temp,'LineWidth',2);
hold on
plot(time,cap_energy,'LineWidth',2);
grid on

energy_result = [time, temp, cap_energy];
%% −−−−−−−−−−−−−−−−−−−−−−> END OF SCRIPT <−−−−−−−−−−−−−−−−−−−−−−−−

127

%% ==> main.m(revised version) <==
% This source file contains improved main function that invokes
% dependent processes
% for plotting MTC results

%% −−−−−−−−−−−−−−−−−−−−−−−> START OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−

clc
clear

% fixed parameters
n = 3; % number of boost converters
Vs = [72 65 58]; % source voltages (V)
Vd = [0.10 0.15 0.20]; % voltage drop of IGBT/Diode
L = [3.00e−3 3.20e−3 2.00e−3]; % inductanc values (H)
il_th = [60 60 60]; % Maximum allowed currents
RL = [0.200 0.200 0.200]; % resistance of inductor (

Ohm)
Rsw = [0.020 0.020 0.020]; % resistnace of IGBT/Diode(

Ohm)
C = 1.5e−3; % capacitance of cap−bank(F)
Rload = 10; % load resistance (Ohm)
CF = [0.33 0.33 0.33];

step_time = 0.03;
sim_time = 3*step_time;

Vinit = 90;
Vfinal = 150;
[my_beta,switch_time] = mtc(Vinit,Vfinal)

mdl = 'SMC_3_identical_boost_converter';
print_result = false;
i_margin = 0.01;
sample_time = 1e−5;

% for overshoot adjustment take 95% of actual switch time
switch_time = 0.95*switch_time;
sim(mdl);
clc

128

%% −−−−−−−−−−−−−−−−−−−−−−−−> END OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−−

129

%% ==> MTC implementation <==

function [mybeta,switchtime] = mtc(Vinit,Vfinal)
%% Global configuration parameters used in this function
% Commonely used parameters and flags
tic
dt = 0.5e−5; % step−time/resolution for the differential

system
% op_complete = false; % flag indicating "non−complete" status of

the
% execution of this function

%% Define system parameters
% 1. Complete system parameters are defined here that are available
% for later use in the script. Source voltage or any parameter

that
% is coming from the real−time measurement can also be supplied
% here therough input to the function. In this script, all the
% system parameters are assumed to be pre−loaded.

% 2. Vout is the most important input to this script and it will be
% utilised later to find inductor currents at next opertaing

point
% based on CF_nuetral value. If any other value/pattern of

inductor
% currents are required at next operating point then they can

also
% be supplied as input to this script and the portaion of the
% script calculating il_final will be skipped.

% 3. Source voltage and IGBT/diode drop−off voltage are merged and
% given new name to represent effective Source voltage. It

reduces
% differetial system calculations. Same with the series

inductance
% resistance and IGBT/Diode forward resistance. For this, it is
% assumed that forward voltage and resistance for IGBT/Diode in
% both possible circuit combination(ON/OFF) are identical abd
% hence can be reduced to one variable to make cdalculations

easy.

130

%% −−−−−−−−−−−−−−−−−−−−−−−> START OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−

% fixed parameters
n = 3; % number of boost

converters
Vs = [72 65 58]; % source voltages (V)
Vd = [0.10 0.15 0.20]; % voltage drop of IGBT/

Diode
L = [3.00e−3 3.20e−3 2.00e−3]; % inductanc values (H)
il_th = [60 60 60]; % Maximum allowed currents
RL = [0.200 0.200 0.200]; % resistance of inductor (Ohm)
Rsw = [0.020 0.020 0.020]; % resistnace of IGBT/Diode (Ohm)
C = 1.5e−3; % capacitance of capacitor bank

(F)
Rload = 10; % load resistance (Ohm)
CF = [0.33 0.33 0.33];

% Modified parameters to simplify calculations
V = Vs − Vd; % effective source voltage
R = RL + Rsw; % effective resistance for both

path

% finding Ilinit based on CF and SMC
Ilinit(1,1) = (CF(1))*((Vinit)^2)/(Rload*Vs(1));
Ilinit(1,2) = (CF(2))*((Vinit)^2)/(Rload*Vs(2));
Ilinit(1,3) = (CF(3))*((Vinit)^2)/(Rload*Vs(3));
Ilinit

% fiinding Ilfinal based on CF and SMC requirements
Ilfinal(1,1) = (CF(1))*((Vfinal)^2)/(Rload*Vs(1));
Ilfinal(1,2) = (CF(2))*((Vfinal)^2)/(Rload*Vs(2));
Ilfinal(1,3) = (CF(3))*((Vfinal)^2)/(Rload*Vs(3));
Ilfinal

% Run−time
%% Find "t_margin" for each stage
% 1. "t_margin" is the maximum time allowed for a boost converter
% stage to stay ON. This duration of ON time is based on the
% maximum current allowed through the inductor/IGBT switch.

131

Based
% on maximum allowable current limit, it is not feasible/safe to
% push IGBT switchs to carry more currents than its thresholds.

So,
% t_margin is crucial factor for safe operation of system during
% ON time.

% 2. Since, all the boost converter stages are electrically
isolated

% during ON time, it is very convenient to find time when
current

% reaches certain value, based on RL circuit analysis.

t_margin = zeros(1,n);
for i = 1:n
t_margin(i) = −(L(i)/R(i))*(log(1−(((il_th(i)−Ilinit(i))*R(i))/...

(V(i)))));
end

%% Find "nuetral CF" for SMC current control
% this section will be removed from this function and implemented
% saperately to work with SMC controller

%% Find next operating point(SMC) current from "Vout" and "nuetral
CF"

% Since this function is directly accepting the final current
values,

% calculation of these currents will be done externally to this
% function based on CF

%% Find "tou_proportional" and "CF" for the current system states
% 1. tou and tou_proportional are very important parameters. tou is
% used tocalculate tou_proportion which indicates comparative
% contribution of each boost converter stage in terms of switching
% time. With a value of 1, the respective stage is considered as

base
% stage and rest of the stage will have switch time that is scaled
% based on tou_proportional.

% finding tou

132

tou = zeros(1,n);
alfa = sum(V(1:n)./L(1:n));
for i = 1:n

tou(i) = (il_th(i) − Ilinit(i)) / alfa;
end

% finding tou_proportional
a = min(tou);
tou_prop = tou./a;

%% Create two switching cases based on "beta"
% for characterization oflinear realtion between "beta" and "Vout"

% give beta input here
beta1 = 0.40:0.40:0.90;
a = length(beta1);
vresult = zeros(a,1);
iresult = zeros(a,n);
tswitchresult = zeros(a,n);

%% Switching case 1 for "beta" = 0.35
for m = 1:length(beta1)

T1 = sortrows([(1:n)' (beta1(m).*tou_prop.*t_margin)'],2);
t_start = 0; % start time for simulation
% maximum time for simulation 5*max(T1(:,2));
t_end = (1.5/beta1(m))*max(T1(:,2));
tstart1_temp = [t_start;T1(:,2)]; % start time matrix
tend1_temp = [T1(:,2);t_end]; % end time matrix
% logical operator for switch ON/OFF state
A1_temp = zeros(n+1,3);
for i = 2:n+1

A1_temp(i,:) = A1_temp(i−1,:);
A1_temp(i,T1(i−1,1)) = A1_temp(i−1,T1(i−1,1)) + 1;

end
% removing very small(<10e−5sec)/zero switching time states
ind1 = find(tend1_temp−tstart1_temp <= 5*dt);

% [tstart1_temp,tend1_temp,A1_temp] % debug point, uncomment to
see

133

% output
invind1 = setdiff(1:n+1,ind1);
A1 = A1_temp(invind1,:);
tstart1 = tstart1_temp(invind1);
tend1 = tend1_temp(invind1);
% adjusting time discontinuities
tstart1(2:end) = tend1(1:end−1);
% [tstart1,tend1,A1] % debug point, uncomment to see output

% Simulating system for switching time based on beta1
% setting inital conditions for simulation array

vend = 0;
iend = zeros(1,n);
B1 = [1 1 1];

for j = 1:length(tstart1)
% length of this segment for loop
l = round((tend1(j) − tstart1(j)) / dt);
isim = zeros(l,n);
vsim = zeros(l,1);

if j == 1
vsim(1) = Vinit;
isim(1,:) = Ilinit;

else
vsim(1) = vend;
isim(1,:) = iend;

end

for i = 2:l
isim(i,1) = isim(i−1,1) + dt*(((V(1)−isim(i−1,1)*R(1))/(L(1)))−
...

((vsim(i−1)/L(1))*
A1(j,1)))*B1(1);
isim(i,2) = isim(i−1,2) + dt*(((V(2)−isim(i−1,2)*R(2))/(L(2)))−
...

((vsim(i−1)/L(2))*
A1(j,2)))*B1(2);

134

isim(i,3) = isim(i−1,3) + dt*(((V(3)−isim(i−1,3)*R(3))/(L(3)))−
...

((vsim(i−1)/L(3))*
A1(j,3)))*B1(3);

vsim(i) = vsim(i−1) + dt*(−(vsim(i−1)/(Rload*C))...
+ A1(j,1)*B1(1)*(isim(i−1,1)/C)

...
+ A1(j,2)*B1(2)*(isim(i−1,2)/C)

...
+ A1(j,3)*B1(3)*(isim(i−1,3)/C)

);
end

if all(A1(j,:)==0)

vend = vsim(l);
iend = isim(l,:);

% vresult = vertcat(vresult,vsim);
% iresult = vertcat(iresult,isim);

else

% check for SMC currents
index = zeros(n,1);

% for i = 1:n
% if isempty(find(abs(isim(:,i)−Ilfinal(i))<= 0.1,1,'last'))
% index(i,1) = l;
% else
% index(i,1) = find(abs(isim(:,i)−Ilfinal(i))<= 0.1,1,'last

');
% end
% end

for i = 1:n
if isempty(find(abs(isim(:,i)−Ilfinal(i))<= 0.1,1,'last

'))
index(i,1) = l;

else
for z = l:−1:1

if abs(isim(z,i)−Ilfinal(i))<= 0.1

135

index(i,1) = z;
end

end
end

end

% if SMC not detected,then set initial conditions and
store

% results
if all(index == l) == 1

% repeat = 0;
vend = vsim(l);
iend = isim(l,:);

% vresult = vertcat(vresult,vsim);
% iresult = vertcat(iresult,isim);

else
% if SMC detected single/multiple
% find stages and change B flag
temp_index = min(index);
SMC_stage = ~(abs(temp_index − index) <= 5);
B1 = B1.*SMC_stage';
% set SMC flag for repeatation loop
repeat = 1;
% set end values as initial conditions
vend = vsim(temp_index);
iend = isim(temp_index,:);
% store previous results
% vresult = vertcat(vresult,vsim(1:temp_index,:));
% iresult = vertcat(iresult,isim(1:temp_index,:));
% update start and end time for simulation
tstart = tstart1(j) + temp_index*dt;

while repeat == 1
% length of this segment for loop
l = round((tend1(j) − tstart) / dt);
isim = zeros(l,n);
vsim = zeros(l,1);
vsim(1) = vend;

136

isim(1,:) = iend;

for i = 2:l
isim(i,1) = isim(i−1,1) + dt*(((V(1)−isim(i−1,1)

...

*R(1))/(L(1)))−((vsim(i−1)/
L(1))*A1(j,1)))*B1(1);

isim(i,2) = isim(i−1,2) + dt*(((V(2)−isim(i−1,2)
...

*R(2))/(L(2)))−((vsim(i−1)/
L(2))*A1(j,2)))*B1(2);

isim(i,3) = isim(i−1,3) + dt*(((V(3)−isim(i−1,3)
...

*R(3))/(L(3)))−((vsim(i−1)/
L(3))*A1(j,3)))*B1(3);

vsim(i) = vsim(i−1) + dt*(−(vsim(i−1)/...
(Rload*C))+ A1(j,1)*B1(1)*(isim(i−1,1)/C)

...
+ A1(j,2)*B1(2)*(isim(i−1,2)/C)...
+ A1(j,3)*B1(3)*(isim(i−1,3)/C));

end

% check for SMC currents
index = zeros(n,1);

% for i = 1:n
% if isempty(find(abs(isim(:,i)−Ilfinal(i))

<=
% 0.1,1,'last'))index(i,1) = l;
% else
% index(i,1) = find(abs(isim(:,i)−...
% Ilfinal(i))<= 0.1,1,'last');
% end
% end

for i = 1:n
if isempty(find(abs(isim(:,i)−Ilfinal(i))<=

...
0.1,1,'last'))

index(i,1) = l;
else

137

for z = l:−1:1
if abs(isim(z,i)−Ilfinal(i))<= 0.1

index(i,1) = z;
end

end
end

end

if all(index == l) == 1
repeat = 0;
vend = vsim(l);
iend = isim(l,:);

% vresult = vertcat(vresult,vsim);
% iresult = vertcat(iresult,isim);

else
% if SMC detected single/multiple
% find stages and change B flag

temp_index = min(index(B1==1));
SMC_stage = ~(abs(temp_index − index) <= 3);
B1 = B1.*SMC_stage';
% set end values as initial conditions
vend = vsim(temp_index);
iend = isim(temp_index,:);
% set SMC flag for repeatation loop
if all(B1 == 0) == 1

repeat = 0;
% output values are below, required

for
% next phase of calculation
vresult(m) = vend;
iresult(m,:) = iend;
tswitchresult(m,:) = (beta1(m).*...
tou_prop.*t_margin);
% output to observe values on

command
% line finalresult = [beta1' vresult

138

iresult tswitchresult];
else

repeat = 1;
end

% store previous results
% vresult = vertcat(vresult,vsim(1:temp_index

,:));
% iresult = vertcat(iresult,isim(1:temp_index

,:));
% update start and end time for simulation

tstart = tstart + temp_index*dt;
end

end
end

end

end

% hold on
% plot(vresult,'Linewidth',2);
% plot(iresult,'Linewidth',2);
% grid on;
end
%% Find final "beta" value for desired Vout
slope = (vresult(2) − vresult(1))/(beta1(2) − beta1(1));
C = vresult(2) − slope*beta1(2);
mybeta = (Vfinal − C) / slope;
switchtime = (mybeta.*tou_prop.*t_margin);

%% Find final switching values "t_switch" as output of this
function

% Important Note : The SMC will take control of operation after
% t_switch for each stage. So, the only required output is the
% switching time. Once the boost stage is in ON mode until t_switch

,
% the only possibility for SMC controller is to TURN OFF the switch
% and continue when current reaches to the next operating point.

139

This
% mechanism reduces the effort to design a scheduler for whole

event.

% t_switch_final = 0;

%% End of Function
%op_complete = true;%flag indicating the completetion of the

execution
% of this function

toc
end

%% −−−−−−−−−−−−−−−−−−−−−−−> END OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−−

140

%% ==> Loading system parameters of multiple Boost converters <==
%
% This file consist the complete definition of the system (all

Boost
% convereter stages & load) parameters. All the variables defined
% hereby are available to all other .m files. It creates the system
% structure named "sys" in the workspace. Inital values of the

system
%(iL & Vc) are required inputs.
%
% Created by : Shishir Patel
% Created on : 11/27/2015 Friday
% Last Modified : 207/24/2016 Sunday

%% −−−−−−−−−−−−−−−−−−−−−−−> START OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−

function [sys] = function1_load_system()

%% System parameters (time−independent)

% stage 1 data
sys.stage(1).Rl = 0.005; % paracitic resistance of the inductor

coil
sys.stage(1).L = 5e−3; % inductnace value
sys.stage(1).Vs = 65; % source voltage for this stage
sys.stage(1).il_th = 65; % threshold current for the indctor
sys.stage(1).Rsw = 0.002; % ON resitnace of the switch for this

stage
sys.stage(1).Vd_on = 0.6; % Reverse recovery diode ON voltage
sys.stage(1).B_th = 0; % Maximum magnetic flux density in inductor
sys.stage(1).Rd = 0.002; % forward resitnace of the diode

% stage 2 data
sys.stage(2).Rl = 0.005; % paracitic resistance of the inductor

coil
sys.stage(2).L = 5.5e−3; % inductnace value
sys.stage(2).Vs = 72; % source voltage for this stage
sys.stage(2).il_th = 60; % threshold current for the indctor
sys.stage(2).Rsw = 0.002; % ON resitnace of the switch for this

141

stage
sys.stage(2).Vd_on = 0.6; % Reverse recovery diode ON voltage
sys.stage(2).B_th = 0; % Maximum magnetic flux density in inductor
sys.stage(2).Rd = 0.002; % forward resitnace of the diode

% stage 3 data
sys.stage(3).Rl = 0.004; % paracitic resistance of the inductor

coil
sys.stage(3).L = 4.6e−3; % inductnace value
sys.stage(3).Vs = 75; % source voltage for this stage
sys.stage(3).il_th = 56; % threshold current for the indctor
sys.stage(3).Rsw = 0.002; % ON resitnace of the switch for this

stage
sys.stage(3).Vd_on = 0.6; % Reverse recovery diode ON voltage
sys.stage(3).B_th = 0; % Maximum magnetic flux density in inductor
sys.stage(3).Rd = 0.002; % forward resitnace of the diode

% % stage 4 data
% sys.stage(4).Rl = 0.25; % paracitic resistance of the inductor

coil
% sys.stage(4).L = 1.89e−3; % inductnace value
% sys.stage(4).Vs = 22; % source voltage for this stage
% sys.stage(4).il_th = 38; % threshold current for the indctor
% sys.stage(4).Rsw = 0.02; % ON resitnace of the switch for this

stage
% sys.stage(4).Vd_on = 0.6; % Reverse recovery diode ON voltage
% sys.stage(4).B_th = 0; % Maximum magnetic flux density in

inductor
% sys.stage(4).Rd = 0.1; % forward resitnace of the diode
%
% % stage 5 data
% sys.stage(5).Rl = 0.2; % paracitic resistance of the inductor

coil
% sys.stage(5).L = 1e−3; % inductnace value
% sys.stage(5).Vs = 24; % source voltage for this stage
% sys.stage(5).il_th = 35; % threshold current for the indctor of

this
% sys.stage(5).Rsw = 0.02; % ON resitnace of the switch for this

stage
% sys.stage(5).Vd_on = 0.6; % Reverse recovery diode ON voltage

142

% sys.stage(5).B_th = 0; % Maximum magnetic flux density in
inductor

% sys.stage(5).Rd = 0.1; % forward resitnace of the diode

% Output stage
sys.load.C = 1.5e−3; % output capacitance value
sys.load.Rc = 0.00; % series resistance of the load side capacitor
sys.load.Rload = 10; % Load resistance
sys.load.Vc_th = 250; % output capacitor threshold voltage

% number of boost converter stages defined as "whole system".
sys.no_of_stage = size(sys.stage,2);

sys.phase = ones(1,sys.no_of_stage);
% It represents an array of length of total number of stages.

Primary
% use of this array is to denote that which stage is participating

in
% particular operation; by indicating '1' in corresponding position
% and '0' for absense of the stage

%% System parameters (time−independent)
% these parameters of the system depends on the operating point. So

it
% is run−time input variables. While running this script within

model,
% these parameters are system states (iL,Vc) just a moment before
% switching the operation.

% these parameters will be removed from this file in later updates
so

% that it do not require to load whole system for just 4 values
!!!!!

% shifting this portion to function2 input
% sys.stage(1).il0 = il1_init;%initial inductor current for this

stage
% sys.stage(2).il0 = il2_init;%initial inductor current for this

stage
% sys.stage(3).il0 = il3_init;%initial inductor current for this

143

stage
% sys.load.Vc0 = Vc_init; % initial voltage across the capacitor/

LOAD

end
%% −−−−−−−−−−−−−−−−−−−−−−−> END OF SCRIPT

<−−−−−−−−−−−−−−−−−−−−−−−−−−

144

%% ==> Simulating system <==
%
% This file contains the simulation of system for given duration

and
% initial conditions. Additional input for this function will be

state
% of each boost converter stage (ON/OFF/DCM)/(1/0/−1). Depending

upon
% the state of the system this function will create appropeiate

state
% model for whole system and simulate it. At the end it will find

the
% DCM point if any for any stage. This function returns all the

system
% states and the last valid time instance from where next phase of
% simukation will continue.
%
% Created by : Shishir Patel
% Created on : 11/2/2016 Friday
% Last Modified : 20/2/2016 Sunday

%% −−−−−−−−−−−−−−−−−−−−−−−> START OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−

function [A,B,U,Vout,T,X]=function2_simulate_system(sys,sys_phase,
...

t_start,t_end,X0)

%% state matrix A and input matrix B
a = length(sys_phase); % number of independent boost converter

stages
% or number of times we have to repeate the loop to configure

currents

% Initializing system matrices with zeros
A = zeros(a+1,a+1);
B1 = zeros(a+1,a); % input matrix for source voltage Vs
B2 = zeros(a+1,a); % input matrix for diode forward voltage Vd_on
% B = [B1,B2]; % Cummmulative input matrix of size − (a+1)x(2a)

145

C = zeros(1,a+1); % output voltage across load
D = zeros(1,2*a);

for i = 1:a
% normal configuration for all cases
% luckily it is also implementation for sys_phase(i) = −1 DCM
mode
A(end,end) = −1/(sys.load.C * (sys.load.Rload + sys.load.Rc));
C(1,end) = sys.load.Rload / (sys.load.Rload + sys.load.Rc);

% Piecewise configuration as per the mode of each boost
converter

% stage
if sys_phase(i) == 1

A(i,i) = −(sys.stage(i).Rl + sys.stage(i).Rsw) / ...
(sys.stage(i).L);

B1(i,i) = 1/sys.stage(i).L;
elseif sys_phase(i) == 0

% some commonly used constant terms in this section
x = 1/(sys.load.Rload + sys.load.Rc);
y = sys.load.Rload*x;
z = 1/sys.stage(i).L;

A(i,i) = −(1/sys.stage(i).L)*((sys.stage(i).Rl + ...
sys.stage(i).Rd + sys.load.Rc)−(x*

sys.load.Rc^2));
A(i,end) = −y*z;
A(end,i) = y/sys.load.C;

B1(i,i) = z;
B2(i,i) = −z;

C(1,i) = y*sys.load.Rc;
end

end
B = [B1,B2]; % very important step to consider changes

%% Simulating linear system

146

system = ss(A,B,C,D); % creating state space model of the system
t = linspace(t_start,t_end,1e6*(t_end−t_start));%factor 1000 is for

ms
%X0=[sys.stage(1).il0;sys.stage(2).il0;sys.stage(3).il0;sys.load.

Vc0];
%initial condition and simulation times are coming from function
%input

F = repmat(ones(1,length(t)),2*a,1); % time vector for input
% preallocating size for input matrices
inp1 = zeros(a,1);
inp2 = zeros(a,1);
for j = 1:a

inp1(j,1) = sys.stage(i).Vs; %matrix for voltage source as
input
inp2(j,1) = sys.stage(i).Vd_on; %matrix for diode voltage as
input

end
% merging both inputs in one matrix
Input = [inp1;inp2];
% final input matrix for lsim
U = bsxfun(@times,F,Input);

% simulating system
[Vout,T,X] = lsim(system,U,t,X0);

end
%% −−−−−−−−−−−−−−−−−−−−−−−> END OF SCRIPT

<−−−−−−−−−−−−−−−−−−−−−−−−−−

147

%% ==> Simulating system <==
%
% This file contains the simulation of system for given duration

and
% initial conditions. Additional input for this function will be

state
% of each boost converter stage (ON/OFF/DCM)/(1/0/−1). Depending

upon
% the state of the system this function will create appropeiate

state
% model for whole system and simulate it. At the end it will find

the
% DCM point if any for any stage. This function returns all the

system
% states and the last valid time instance from where next phase of
% simukation will continue.
%
% Created by : Shishir Patel
% Created on : 11/2/2016 Friday
% Last Modified : 20/2/2016 Sunday

%% −−−−−−−−−−−−−−−−−−−−−−−> START OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−

function [A,B,U,Vout,T,X] = function21_simulate_system(sys,...

sys_phase,t_start,t_end,X0)

%% state matrix A and input matrix B
a = length(sys_phase); % number of independent boost converter

stages
% or number of times we have to repeate the loop to configure

currents

% Initializing system matrices with zeros
A = zeros(a+1,a+1);
B1 = zeros(a+1,a); % input matrix for source voltage Vs
B2 = zeros(a+1,a); % input matrix for diode forward voltage Vd_on
% B = [B1,B2]; % Cummmulative input matrix of size − (a+1)x(2a)
C = zeros(1,a+1); % output voltage across load

148

D = zeros(1,2*a);

for i = 1:a
% normal configuration for all cases
% luckily it is also implementation for sys_phase(i) = −1 DCM
mode
A(end,end) = −1/(sys.load.C * (sys.load.Rload + sys.load.Rc));
C(1,end) = sys.load.Rload / (sys.load.Rload + sys.load.Rc);

% Piecewise configuration as per the mode of each boost
converter

% stage
if sys_phase(i) == 1

A(i,i) = −(sys.stage(i).Rl + sys.stage(i).Rsw) / ...
(sys.stage(i).L);

B1(i,i) = 1/sys.stage(i).L;
elseif sys_phase(i) == 0

% some commonly used constant terms in this section
x = 1/(sys.load.Rload + sys.load.Rc);
y = sys.load.Rload*x;
z = 1/sys.stage(i).L;

A(i,i) = −(1/sys.stage(i).L)*((sys.stage(i).Rl + ...
sys.stage(i).Rd + sys.load.

Rc)−(x*sys.load.Rc^2));
A(i,end) = −y*z;
A(end,i) = y/sys.load.C;

B1(i,i) = z;
B2(i,i) = −z;

C(1,i) = y*sys.load.Rc;
end

end
B = [B1,B2]; % very important step to consider changes

%% Simulating linear system

% preallocating size for input matrices

149

inp1 = zeros(a,1);
inp2 = zeros(a,1);
for j = 1:a

inp1(j,1) = sys.stage(i).Vs; % matrix for voltage source as
input
inp2(j,1) = sys.stage(i).Vd_on;% matrix for diode voltage as
input

end
% merging both inputs in one matrix
U = [inp1;inp2];

% f = @(t,x) A*[x(1);x(2);x(3);x(4)] + B*U;
% [T,X] = ode45(@odefun,timespan,X0,[],A,B,U);

step_size = 0.00001;
T = t_start:step_size:t_end;
t_sim = t_start;
X = zeros(length(T),a+1);
X(1,:) = X0;
i = 1;

while t_sim <= t_end
X(i+1,:) = X(i,:) + (step_size*(A*(X(i,:)') + B*U)');
t_sim = t_sim + step_size;
i = i+1;

end

Vout = 0; %redundant variable,neet to remove
end

%% −−−−−−−−−−−−−−−−−−−−−−−> END OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−−

150

%% ==> Prime scheduler <==
%
% This function contains complete logic for the primary simulation
% under different switching configurations. This function

implements
% core part of the thesis and will be linked to the auxilary

scheduler
% that cokputes the simulation after all the stages in the DCM mode

.
% The DCM mode will be implemented in saperate function and will be
% linked later with this script.
%
% Created by : Shishir Patel
% Created on : 7/29/2016 Friday

%% −−−−−−−−−−−−−−−−−−−−−−−> START OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−

function prime_schedule = function3_prime_scheduler(t_switch,...
t_simtime,

sys)

% time instances for major events during complete simulation
including

% starting time. t_switch is the input that represents "tou".
t_switch

% is column array
stage_num = (1:sys.no_of_stage)';

% Creating new array that contains stage number and switching
instance

% for that stage.it will make indexinh much easier.
switchtime_array = [stage_num, t_switch];

% sorting new array in terms of ascending switching time. Also
sorting

% no_of_stage array accordingly.
sorted_array = sortrows(switchtime_array,2);

% schedular 1 (without_DCM)

151

starting_time = [0;sorted_array(:,2)];
ending_time = [sorted_array(:,2);t_simtime];

sys_phase(1,:) = ones(1,sys.no_of_stage);
for i = 2:(sys.no_of_stage+1)

temp = sys_phase(i−1,:);
temp(1,sorted_array(i−1,1))=sys_phase(i−1,sorted_array(i−1,1))
−1;

% temp(sorted_array(i)) = temp(sorted_array(i)) − 1;
sys_phase(i,:) = temp;

end

% shedule for first simulation
schedule = [starting_time,ending_time,sys_phase];
schedule = schedule;
% enhaced scheduler for synchronous switching enabled operation
time_difference = diff(schedule(:,1:2),1,2);
ind = time_difference <= 1e−6;
schedule(ind == 1,:) = []; % this is the final output of this

script
state_change = [diff(schedule(:,3:end),1,1);zeros(1,sys.no_of_stage

)];
% state_change is very important param. It indicates upcoming

change.
% The value −1 is set for easy opeartion, so that the next phase of
% system can be changed by just adding value of state change to
% current system phase. It makes implementation easy.

% creating final table
t_start = schedule(:,1);
t_end = schedule(:,2);
switch_mode = schedule(:,3:end);
prime_schedule = table(t_start,t_end,switch_mode,state_change)

end
%% −−−−−−−−−−−−−−−−−−−−−−−> END OF SCRIPT

<−−−−−−−−−−−−−−−−−−−−−−−−−−

152

%% ==> Prime_simulation <==

%% −−−−−−−−−−−−−−−−−−−−−−−> START OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−

function simresult = function4_prime_simulation(sys,prime_schedule,
...

X0,print_result)

sim.switch_state = prime_schedule.state_change;
sim.phase = sys.phase;
sim.t = [];
sim.X = [];
sim.dcm_active = 0;
sim.dcm_index = 0;
sim.X0 = X0;
sim.n = size(sim.switch_state,1); % no of iteration for "for"
loop
sim.no_of_stage = sys.no_of_stage;

% simresult = [];
simresult = zeros(1e3*(prime_schedule.t_end(end)−...

prime_schedule.t_start(1)),sys.
no_of_stage + 2); ...

% size of simresult preallocated
% time || currents || capacitor voltage

for i = 1:sim.n

sim.tstart = prime_schedule.t_start(i);
sim.tend = prime_schedule.t_end(i);

% main timing simulation
[~,~,~,~,sim.t,sim.X] = function2_simulate_system(sys,...

sim
.phase,sim.tstart,sim.tend,sim.X0);

sim = function5_check_for_dcm(sim,print_result);
simresult = vertcat(simresult,[sim.t,sim.X]);

while sim.dcm_active == 1

153

[~,~,~,~,sim.t,sim.X] = function2_simulate_system(sys,
...

sim
.phase,sim.tstart,sim.tend,sim.X0);

sim = function5_check_for_dcm(sim,print_result);
simresult = vertcat(simresult,[sim.t,sim.X]);
if all(sim.phase <= −1) == 1

break;
end

end

% changing system state for next simulation cycle based on
% switching
sim.phase = sim.phase + sim.switch_state(i,:);
% plot(simresult,'DisplayName','sim_result')
% hold on

end

end
%% −−−−−−−−−−−−−−−−−−−−−−−> END OF SCRIPT

<−−−−−−−−−−−−−−−−−−−−−−−−−−

154

%% ==> Checking for DCM mode <==

%% −−−−−−−−−−−−−−−−−−−−−−−> START OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−

function sim = function5_check_for_dcm(sim,print_result)

% last index of simulation for comparison
sim.last_index = size(sim.t,1)*ones(1,sim.no_of_stage);

% check whether DCM occured or not
for i = 1:sim.no_of_stage

if isempty(find(sim.X(:,i) <= 0.025,1))
index(1,i) = length(sim.t);

else
index(1,i) = find(sim.X(:,i) <= 0.025,1);

% finding last non−negative index
end

end

%% changing system flags according to current state of system

% No DCM detected
if all(index == sim.last_index) == 1

% if all values of index matches last index
% changing system flgs and results for next simulation
sim.dcm_active = 0;
sim.row_index = sim.t(end);
sim.X0 = sim.X(end,:);

% DCM detected
else

% changing system flgs and results for next simulation

flag = (all(sim.phase) <= −1);
if flag == 1

sim.dcm_active = 0;

else
sim.dcm_active = 1;

155

% only considering index of those stages that are not
yet

% in dcm
eff_index = index(sim.phase ~= −1);
if ~isempty(eff_index)

sim.dcm_index = min(unique(eff_index));
else

sim.dcm_index = 1;
end
sim.t = sim.t(1:sim.dcm_index);
sim.X = sim.X(1:sim.dcm_index,:);
sim.X0 = sim.X(sim.dcm_index,:);
sim.tstart = sim.t(sim.dcm_index);

% finding which stages will enter into DCM phase
dcm_active_state = abs(index − sim.dcm_index) <= 5;
% changing system phase for next simulation
sim.phase = sim.phase − dcm_active_state;

end

end

% plotting results
if print_result
plot(sim.t,sim.X(),'DisplayName','sim_result','LineWidth',2);
hold on;xlabel('Time (second)');ylabel('System states');grid on
;
title(['System phase : ', num2str(sim.phase)]);
pause(0.1)
end

end
%% −−−−−−−−−−−−−−−−−−−−−−−> END OF SCRIPT

<−−−−−−−−−−−−−−−−−−−−−−−−−−

156

%% ==> Sub simulation cases <==

%% −−−−−−−−−−−−−−−−−−−−−−−> START OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−

function [vc_final,t_final,switchon_time] =function6_sub_simulation
...

(sys,last_state,il_final,
print_result)

% Sub−scheduler is not implemented yet. Only final capcitor
% voltage is calculated based on maximum time taken to reach to
% next operating point. This function will return sub−scheduler
as

% output when finished!

t_start = last_state(1,1);
t_end = t_start + 2e−3; % assuming that by 2ms all stages will

% reach to thrie next operating point
sys_phase = ones(1,sys.no_of_stage);
X0 = last_state(1,2:end);

% simulating system with approximated final time to find
currents
[~,~,~,~,T,X] = function2_simulate_system(sys,sys_phase,...

t_start,t_end,X0);

% finding time instances when final currents will match
for i = 1:sys.no_of_stage

index(1,i) = find((X(:,i)−il_final(1,i)) <= 0.025,1,'last');
switch_time(1,i) = T(index(1,i));

end

% finding maximum time period and corresponding voltage
[t_final,last_stage_no] = max(switch_time);
vc_final = X(index(1,last_stage_no),end);

% switchon time
switchon_time = (t_start + t_final − switch_time)';

157

% plotting result, not exact and final result;just for checking
vc
if print_result
plot(T(1:index(1,last_stage_no),:),X(1:index(1,last_stage_no),
...

:),'DisplayName','sim_result','LineWidth'
,2);
hold on;xlabel('Time (second)');ylabel('System states');grid on
;
title(['System phase : ', num2str(sys_phase)])
end

end
%% −−−−−−−−−−−−−−−−−−−−−−−> END OF SCRIPT

<−−−−−−−−−−−−−−−−−−−−−−−−−−

158

%% ==> calculating tau (contribution factor) <==

%% −−−−−−−−−−−−−−−−−−−−−−−> START OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−

function [tou,CF] = function7_calculate_tou(sys,il0)

% calculating alfa
alfa = 0;
for i = 1:sys.no_of_stage

alfa = alfa + (sys.stage(i).Vs/sys.stage(i).L);
end

for i = 1:sys.no_of_stage
tou(i,1) = (sys.stage(i).il_th−il0(i))/(alfa);

end

CF = tou./(sum(tou));

end
%% −−−−−−−−−−−−−−−−−−−−−−−> END OF SCRIPT

<−−−−−−−−−−−−−−−−−−−−−−−−−−

159

%% ==> Calculating maximum ON time <==

%% −−−−−−−−−−−−−−−−−−−−−−−> START OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−

function ton_safe = function8_ton_maximum(sys,il0)
% calculating maximum safe ON time for each stage
t_start = 0;
t_end = t_start + 6e−3; % assuming that by 2ms all stages will

% reach to thrie next operating point
sys_phase = ones(1,sys.no_of_stage);
X0 = [il0 0];

% simulating system with approximated final time to find
currents
[~,~,~,~,T,X] = function2_simulate_system(sys,sys_phase,...

t_start,t_end,X0);

% finding time instances when final currents will match
for i = 1:sys.no_of_stage

ton_safe(1,i) = T(find((X(:,i)−sys.stage(i).il_th)...
<= 0.025,1,'last'))

;
end

end
%% −−−−−−−−−−−−−−−−−−−−−−−> END OF SCRIPT

<−−−−−−−−−−−−−−−−−−−−−−−−−−

160

%% ==> Calculating beta <==

%% −−−−−−−−−−−−−−−−−−−−−−−> START OF SCRIPT
<−−−−−−−−−−−−−−−−−−−−−−−−−

function beta = function9_find_beta(vfinal,sys,X0,il_final,...
ton_safe,CF_norm)

print_result = 1;

%% full sweep beta plot segment
% for beta1 = 0.1:0.05:0.75;
% prime_scheduler = function3_prime_scheduler((beta1.*(CF_norm).*
% ton_safe),6*1e−3,sys);
% primesim_result = function4_prime_simulation(sys,prime_scheduler,

X0,
% print_result);
%
% % second phase of simulation to reach to the next operating point
% % all stages are in dcm mode
% last_state = primesim_result(end,:);
% [vc_final1,~,~] = function6_sub_simulation(sys,last_state,

il_final,
% print_result);
% end

%% First case with beta = 0.35
beta1 = 0.35;
prime_scheduler = function3_prime_scheduler((beta1.*(CF_norm).*...

ton_safe),6*1e−3,sys);
primesim_result =function4_prime_simulation(sys,prime_scheduler,X0,

...
print_result);

% second phase of simulation to reach to the next operating point
% all stages are in dcm mode
last_state = primesim_result(end,:);
[vc_final1,~,~] = function6_sub_simulation(sys,last_state,il_final,

...
print_result);

161

%% second case with beta = 0.65
beta2 = 0.65;
prime_scheduler = function3_prime_scheduler((beta2.*(CF_norm).*...

ton_safe),6*1e−3,sys);
primesim_result = function4_prime_simulation(sys,prime_scheduler,

...
X0,print_result);

% second phase of simulation to reach to the next operating point
% all stages are in dcm mode
last_state = primesim_result(end,:);
[vc_final2,~,~] = function6_sub_simulation(sys,last_state,...

il_final,print_result);

%% finding slope and y−intercept of line to find beta for given
vfinal

slope = (vc_final2 − vc_final1)/(beta2−beta1);
c = vc_final1 − slope*beta1;

%% finding beta for given vfinal
beta = (vfinal − c)/slope;
end
%% −−−−−−−−−−−−−−−−−−−−−−−> END OF SCRIPT

<−−−−−−−−−−−−−−−−−−−−−−−−−−

162

A.6 GPU based implementation for MTC

/**
% This CUDA program implements minimum time operation for full

range of beta.Range of beta should be bound by [0.1,0.9].Purpose
of the CUDA enabled program is to accerate simulation for full
range and compare the result with the single core execution.

**/
/**
% Created by : Shishir Patel (sjpatel2@mtu.edu)
% Created on : 02/06/2017

**/

#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>
#include <cuda.h>

/**
−−−−−−−−−−−−−−−−−−−>Constant definition BEGINS<−−−−−−−−−−−−−−−−−−−−
**/

// Constant definitions used for kernel
#define numblk 1 //number of blocks
#define numtpblk 64 //number of threads per block

// Constant definitions used for simulation parameters
#define beta1 0.1 //min value of beta
#define beta2 0.9 //max value of beta
#define numbeta 2048 //number of beta cases(within

specified range) to simulate
#define tstart 0.0 //start time for each

simulation case
#define tend 0.008 //end time for each simulation case
#define Ts 0.00001 //sample time/update time

for the simulation
#define n 800 //total number of

time steps in a simulation

163

/**
−−−−−−−−−−−−−−−−−−−>Constant definition ENDS<−−−−−−−−−−−−−−−−−−−−−
**/

/**
−−−−−−−−−−−−−−−−−−−−−−−−>GPU KERNEL1 BEGINS<−−−−−−−−−−−−−−−−−−−−−−
**/

__global__ void simulate(double *switchtime1, double *switchtime2,
double *switchtime3, double *Vcfinal)

{
int tid = blockIdx.x*blockDim.x + threadIdx.x; //

assigning thread index
//printf("%d",tid);
if (tid < numbeta)
{

//intial discrete states of system
double B[3] = {1.0,1.0,1.0};
double A[3] = {1.0,1.0,1.0};

//intial and final states of the system stored in
local registers

double Vs[3] =
{72.0000,65.0000,58.0000};

double il_temp[3] = {3.7125,4.1123,4.6086};
double vc_temp = 90.0000;
double ilf[3] = {10.3130, 11.4230,

12.8020};
double c1[3] = {73.3333, 68.7500,

110.0000};
double c2[3] = {333.3333, 312.5000,

500.0000};
double c3[3] = {73.3333, 68.75000,

110.0000};
double c4[3] = {333.3333, 312.5000,

500.0000};

164

//starting the simulation loop
double il[3], vc;
for (int i = 0; i<n; i++)
{

//calculating il based on A and B
for (int a = 0; a < 3; a++)
{

if (B[a] == 1.0)
{

if (A[a] == 1.0)
{

il[a] = il_temp[a]
+ Ts*c1[a]*il_temp[a] + Ts*c4[a]*Vs[a];

}
if (A[a] == 0.0)
{

il[a] = il_temp[a]
− Ts*c2[a]*vc_temp − Ts*c3[a]*il_temp[a] + Ts*c4[a]*Vs[a];

}
}
else
{

il[a] = il_temp[a];
}

}

//calculating Vc based on A and B
double C[3];
for (int k = 0; k<3; k++)
{

if(A[k] == 1)
{

C[k] = 0;
}
else
{

C[k] = 1;
}

}
vc = vc_temp + Ts*666.666*(il_temp[0]*C[0]*

165

B[0] + il_temp[1]*C[1]*B[1] + il_temp[2]*C[2]*B[2] − vc_temp);

//updating discrete states for next time
instance

if (Ts*i > switchtime1[tid])
{

A[0] = 0.0;
}
if (Ts*i > switchtime2[tid])
{

A[1] = 0.0;
}
if (Ts*i > switchtime3[tid])
{

A[2] = 0.0;
}

if (il[0] > ilf[0])
{

B[0] = 0.0;
}
if (il[1] > ilf[1])
{

B[1] = 0.0;
}
if (il[2] > ilf[2])
{

B[2] = 0.0;
}

//updating states for next time instance
il_temp[0] = il[0];
il_temp[1] = il[1];
il_temp[2] = il[2];
vc_temp = vc;

}

166

//copy last vc value into Vc_fina;
Vcfinal[tid] = vc_temp;

}

}

/**
−−−−−−−−−−−−−−−−−−−−−−−−−>GPU KERNEL1 ENDS<−−−−−−−−−−−−−−−−−−−−−−−−
**/

/**
−−−−−−−−−−−−−−−−−−−−−−−−−>HOST MAIN BEGINS<−−−−−−−−−−−−−−−−−−−−−−−−
**/

int main(int argc, char *argv [])
{

int count;

printf ("This program, \"%s\", was called with following
arguments.\n",argv[0]);

if (argc > 1)
{
for (count = 1; count < argc; count++)

{
printf("argv[%d] = %s\n", count, argv[count]);

}
}
else

{
printf("The command had no other arguments.\n");

}

int print_results;
if (strcmp(argv[1], "P") == 0) //print results if 1st

argument P is given
{

167

print_results = 1;
}
else
{

print_results = 0;
}
printf("print_results = %d\n",print_results);

//system intial conditions; need to transfer to constant
memory

double ton_max[3] = {0.0026192, 0.0030852,
0.0021525}; //maximum switchtime per stage

double beta[numbeta], switchtime1[numbeta], switchtime2[
numbeta], switchtime3[numbeta];

double Vcfinal[numbeta]; //results from GPU will be
transfered to this variable

//generate beta sqquence
double betatemp = beta1;
for (int i=0; i<numbeta; i++)
{

//generate beta sequence
beta[i] = betatemp + (beta2−beta1)/numbeta;
betatemp = beta[i];

//generate switchtime from beta and ton_max
switchtime1[i] = beta[i] * ton_max[0];
switchtime2[i] = beta[i] * ton_max[1];
switchtime3[i] = beta[i] * ton_max[2];

//Uncomment if you want to check values of beta and
switchtime

/*
if (print_results == 1)
{

printf("\nbeta[%d] : %f\n",numbeta,
beta[i]);

printf("Switchtime[%d] : %f\t %f\t %f\t \n
", numbeta, switchtime1[i], switchtime2[i], switchtime3[i]);

168

}

*/
}

//defining cuda variables
double *dev_switchtime1, *dev_switchtime2, *dev_switchtime3

;
double *dev_Vcfinal; //final voltage which is output of

this cuda program

// generate timer event
cudaEvent_t start,stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);

// allocate the memory on the GPU
cudaMalloc((void**)&dev_switchtime1, numbeta * sizeof(double)
) ;
cudaMalloc((void**)&dev_switchtime2, numbeta * sizeof(double)
) ;
cudaMalloc((void**)&dev_switchtime3, numbeta * sizeof(double)
) ;
cudaMalloc((void**)&dev_Vcfinal, numbeta * sizeof(double)) ;

// copy the beta and switchtime arrays to the GPU memory
cudaMemcpy(dev_switchtime1, switchtime1, numbeta * sizeof(
double), cudaMemcpyHostToDevice);

cudaMemcpy(dev_switchtime2, switchtime2, numbeta * sizeof(
double), cudaMemcpyHostToDevice);

cudaMemcpy(dev_switchtime3, switchtime3, numbeta * sizeof(
double), cudaMemcpyHostToDevice);

// Trigger event 'start'
cudaEventRecord(start, 0);

//launch the kernal
simulate<<<numbeta/numtpblk,numtpblk>>>(dev_switchtime1,
dev_switchtime2, dev_switchtime3, dev_Vcfinal);

169

// Trigger Stop event
cudaEventRecord(stop, 0);

// Sync events
cudaEventSynchronize(stop);

// Calculate runtime, write to elapsedTime
float elapsedTime; // Initialize elapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);
//−− cudaEventElapsedTime returns value in milliseconds.
Resolution ~0.5ms

// Destroy CUDA Event API Events
cudaEventDestroy(start);
cudaEventDestroy(stop);

// copy the array 'Vcfinal' back from the GPU to the CPU
cudaMemcpy(Vcfinal, dev_Vcfinal, numbeta * sizeof(double),
cudaMemcpyDeviceToHost);

for (int i=0; i<numbeta; i++)
{

printf("Vcfinal(@beta = %f) : %f\n",beta[i],
Vcfinal[i]);

}

// Print Elapsed time
printf("\n−−> Execution Time of Kernel: %f (ms) \n",
elapsedTime);

// free the memory allocated on the GPU
cudaFree(dev_switchtime1);
cudaFree(dev_switchtime2);
cudaFree(dev_switchtime3);
cudaFree(Vcfinal);

return 0;
}
/**
−−−−−−−−−−−−−−−−−−−−−−−−−>HOST MAIN ENDS<−−−−−−−−−−−−−−−−−−−−−−−−−−
**/

170

	MINIMUM TIME CONTROL OF PARALLELED BOOST CONVERTERS
	Recommended Citation

	Abstract
	Introduction
	Thesis objective
	Previous art
	Thesis organization

	Overview of Boost converters in and as DC Microgrid
	Mathematical model of a Boost converter
	Discrete modeling of Boost converter in CCM
	Discrete modeling of Boost converter in DCM
	Simulation of Boost converter using discrete model

	Mathematical model of multiple/paralleled Boost converters connected to a resistive load

	Sliding Mode Control (SMC) and Minimum Time Control(MTC) of paralleled boost converters
	Sliding Mode Control(SMC) of Multiple Boost Converters
	Sliding Mode Controller design
	Simulation of Multiple Boost Converters with SMC

	Minimum Time Control (MTC) of Paralleled Boost Converters
	MTC concept and objectives
	Minimum Time Control (MTC) algorithm
	DCM based iteration of paralleled boost converters for MTC
	CCM based iteration of paralleled boost converters for MTC
	Comparison between CCM and DCM based implementation of MTC
	Simulation of paralleled boost converter with MTC

	Real-time control system implementation and validation of MTC
	Minimum time control (MTC) system architecture for emulation
	Hardware implementation for real time MTC
	Software implementation for real-time MTC

	HIL simulation results and analysis
	Comparison of performance between SMC and MTC
	SMC vs MTC time domain comparison
	SMC vs MTC phase plane comparison

	Parameter sensitivity analysis

	Conclusion and Future Work
	Thesis summary
	Future Work
	Concurrent execution for Real time MTC
	Non-linear modeling of system parameters
	GPU based implementation of MTC as an alternative

	References
	Appendices
	Simulink Model for SMC of Multiple boost converters
	Simulink Model for MTC of Multiple boost converters
	Simulink Real-time Model for MTC of Multiple Boost Converters
	HIL simulation results for experimental cases
	MATLAB code for implementation of SMC and MTC for paralleled Boost converters
	GPU based implementation for MTC

