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Abstract

Derivation of an unambiguous incompressible form of the lattice Boltzmann equation

is pursued in this dissertation. Further, parallelized implementation in developing ap-

plication areas is researched. In order to achieve a unique incompressible form which

clarifies the algorithm implementation, appropriate ansatzes are utilized. Through

the Chapman-Enskog expansion, the exact incompressible Navier-Stokes equations

are recovered. In initial studies, fundamental 2D and 3D canonical simulations are

used to evaluate the validity and application, and test the required boundary condition

modifications. Several unique advantages over the standard equation and alternative

forms found in literature are found, including faster convergence, greater stability,

and higher fidelity for relevant flows.

Direct numerical simulation and large eddy simulation of transitional and chaotic

flows are one application area explored with the derived incompressible form. A mul-

tiple relaxation time derivation is performed and implemented in a 2D cavity (direct

simulation) and a 3D cavity (large eddy simulation). The Kolmogorov length scale, a

function of Reynolds number, determines grid resolution in the 2D case. Comparison

is made to the extensive literature on laminar flows and the Hopf bifurcation, and

final transition to chaos is predicted. Steady and statistical properties in all cases are

in good agreement with literature. In the 3D case the relatively new Vreman subgrid

xxxv



model provides eddy viscosity modeling. By comparing the center plane to the direct

numerical simulation case, both steady and unsteady flows are found to be in good

agreement, with a coarse grid, including prediction of the Hopf bifurcation.

Multiphysics pore scale flow is the other main application researched here. In order

to provide the substrate geometry, a straightforward algorithm is developed to gen-

erate random blockages producing realistic porosities and passages. Combined with

advection-diffusion equations for conjugate heat transfer and soot particle transport,

critical diesel particulate filtration phenomena are simulated. To introduce additional

fidelity, a model is added which accounts for deposition caused by a variety of molec-

ular and atomic forces.

Detailed conclusions are presented to lay the groundwork for future extensions and

improvements. Predominantly, higher lattice velocity large eddy simulation, improved

parallelization, and filter regeneration.

Keywords: incompressible flow; turbulent-transition; lattice Boltzmann method;

porous media filtration; conjugate heat transfer; multiphase flow
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Chapter 1

Introduction

Mathematical models of fluid motion can be categorized based on the length and time

scales considered, namely molecular, mesoscopic, and macroscopic models. Histori-

cally, the most popular choice for simulation is the macroscopic scale, approximating

fluid as a continuum through the Navier-Stokes (N-S) equations. In flows of interest

the Knudsen number (Kn) is often low, yielding an accurate approximation to contin-

uum [5]. However, flows which appear continuous are actually the result of molecular

action. Microscopic models thus present a more fundamental picture, but also present

unknowns on the order of 1023, the scale of Avogadro’s number relating the number of

molecules to macroscopic levels. Between these extremes is the mesoscale described

by kinetic theory. By approximating the flow as the collective statistical action of

many molecules, scales smaller than the N-S equations can simulate are attainable
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without the cost of individual molecule motion computation. Even for larger scale

continuum flows the mesoscopic approach provides several unique benefits which will

be expounded in chapter 3, which covers base methodology.

Kinetic theory is described by the Boltzmann equation, a first-order partial differ-

ential equation (PDE) [6]. While the N-S equations describe a branch of continuum

mechanics which transports familiar macorscopic variables, the Boltzmann equation

describes a branch of statistical mechanics and transports a probability distribution

function (PDF). The Boltzmann equation can be discretized into the numerically solv-

able lattice Boltzmann equation (LBE), shown in chapter 3. The lattice Boltzmann

method (LBM) is the mesoscopic method researched and applied in this work.

Turbulent transition simulation and diesel particulate filtration (DPF) modeling

within the incompressible limit are the ultimate goals of this dissertation, for which

the LBE will be modified, refined, and applied through novel research. Both fields are

highly active due to the relative youth of the LBM, world-wide interest in carbonous

particulate matter (PM) capture [7], and ubiquitous interest in turbulence [8].
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1.1 Transition

Modeling approaches to turbulent transition must make large assumptions, resulting

in limited capability [9]. Consequently, methodology which better facilitates a direct

numerical simulation (DNS) or in high node counts a large eddy simulation (LES) of

the process is worthy of study. Historically, the N-S equations have provided DNS and

LES of incompressible flows based on Kolmogorov’s theory of length scales and their

relative importance. The expense of resolving all, or even the just the largest scales

with a fine mesh is exacerbated by non-linearities and non-local computation. The

LBM can reduce the computational cost by its linear nature and local computation.

However, the standard LBE simulates compressible continuum flow. With modifica-

tions and clarifications to the LBE, the LBM is shown to be capable of incompressible

continuum DNS and LES in contrast to previous literature.

With LES, in laminar flows, there must be a vanishing viscosity modifying sub-grid

scale (SGS) model contribution, with the contribution increasing in transition and

through to turbulence. Additionally, since flow near walls is in a low-Re regime, it

is important the SGS contribution be limited near these boundaries automatically.

Since LES in its most basic form, using the Smagorinsky-Lilly SGS model, requires

a non-vanishing global model constant it is not suitable for transition. More recent

SGS developments make LES a good candidate for transitional flows, and these will
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be utilized.

1.2 Filtration

Accurate aftertreatment numerical simulations are essential to the rapid development

of the most efficient and effective filtration. With increasing pressure placed on gov-

ernments, industry, and research institutions to reduce dangerous emissions [7], it is

difficult to overstate the importance of achieving efficient capture of carbonous PM,

while also reducing engine fuel consumption. Literature on this type of numerical

analysis has been increasing in response, but still leaves desirable improvements in

the accuracy of transport phenomenon simulation. To advance the state of PM filter

modeling, this work will produce a comprehensive code which can leverage parallel

computing to integrate improvements to the LBE with existing models.

A PM filter, such as a cordierite DPF, has three fundamental scales. The largest

scale is the honeycomb cordierite block placed inside of a flow control system. Next is

the channel, which produces the honeycomb appearance. Flow may enter alternating

channels, and exit the adjacent channel. Linking these channels is the smallest scale,

the porous walls, where disordered passage distributions allow flow, but trap particles.

A simplified schematic is presented in figure 1.1.
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Inflow

Outflow

Computational 
Domain

Figure 1.1: Schematic of DPF flow.

In a real device, there are hundreds of these alternating channels. The porous walls

contain passages on the scale of tens of microns to tens of nanometers. Some pressure

loss inevitably occurs, but the goal is to minimize this while maximizing PM seques-

tration. The computational domain of interest in this work is the wall detail. This

representative sample can feed into solutions at the larger scale, all the way to the

total device level.

0D and 1D aftertreatment models have long been the standard approach to DPF

study. Bisset and Shadman, and researchers at MTU pioneered such models and
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their development in the 1980’s [10, 11]. This approach has been frequently refined

over the past several decades to arrive at a relatively ubiquitous and standardized

approach [12]. However, models that reduce the spatial and/or temporal dimensions

involved in a problem have many limitations as well as benefits.

At the time of the original DPF model development, mathematical solutions to prob-

lems in fluid mechanics were limited to four basic approaches: 1) analytical solutions

to the N-S equations, available for fewer than 40 simple cases [13]; solutions based on

similarity principles capable of approximating a larger set of cases, but still limited

to basic flows [13]; the nascent field of Computational Fluid Dynamics (CFD) [14],

not yet capable of efficient broad application to arbitrary cases; and 0D/1D models

based on assumptions of what occurs in the microscopic pore structure, and popu-

lated with parameters discoverable and tunable by experiment. By approaching the

problem as a reduced dimension model, efficient solutions can be achieved without

destructive testing, which would ultimately interfere with the validity of the filtra-

tion mechanisms. Parameters required for the model allow for very specific results.

Alternate simulation or modeling possibilities were either untenable or inferior. The

fundamental assumption, the unit cell/collector model, has a strong basis and long

history of evaluation, being introduced in the 1940’s and 50’s [15–17].

However, future development of PM capture modeling remains due to severe limi-

tations, especially in light of recent mathematical constructs [18]. Principally, the
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requirement to introduce a large number of empirically tunable parameters leaves the

reduced dimension modeling approach largely an echo of the test data on a particu-

lar filter and run condition. Broad application of these calibrated parameters is not

dependable as they are not based on fundamental physical laws, in contrast to most

aspects of modern CFD [14]. Several of these parameters pertain to the geometric

description of the substrate within the unit collector paradigm. Perhaps the most

sophisticated is the heterogeneous multiscale filtration model which employs a PDF

of the size distribution [19]. While LBM cannot handle a more accurate and detailed

simulation over an entire filter device for computational cost reasons, a representa-

tive sample with greater fidelity and fundamental physics has the potential to capture

more extensive characteristics.

Reporting only averaged macroscopic boundary condition results is perhaps the great-

est disadvantage of the reduced dimension model. Even with well tuned and calibrated

empirical parameters, it reports results such as net PM capture, pressure drop and

assumed average porosity change. None of this helps evaluate the complex situation

in the substrate detail itself. The required tests themselves do not create an inves-

tigatable image either. If evaluation of different filter material bases is of interest,

a whole new calibration process needs to come from test. As such, the use of re-

duced dimension models as a research tool is severely limited, and lacks extensibility.

Macroscopic variables are certainly of interest, but if deep physical understanding is

sought for: 1) new discoveries across substrate types; 2) the best possible decisions on
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substrate choice; 3) statements on the relative importance and order of magnitude of

any effect; and 4) modifications with high confidence, a true detailed physical basis

is required. This is largely analogous to the use of empirical correlations and simple

analytic expressions versus CFD in the exploration of complex machinery.

1.3 Research Objectives and Structure

1.3.1 Objectives

For an LBM model to successfully simulate incompressible turbulence and turbu-

lent transition, as well as an investigatable picture of mass transfer processes in a

representative slice of the substrate, the following objectives are established:

1. An unambiguous LBM scheme that definitively captures the incompressible

behavior of low Ma flows in the hydrodynamic limit. This includes derivation

of a corresponding optimal multiple relaxation time (MRT) collision operator

form.

2. A canonical flow code to simulate transition and turbulent regimes with the

results of research objective 1.

3. A PM transport model which accounts for interception and Brownian diffusion,
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less reliant on tuned or lumped parameters.

4. A conjugate heat transfer model for the temperature field in the fluid and solid

domains.

5. An algorithm that can flag lattice cells as solid or fluid and produce an appro-

priate substrate representation, verified by empirical formulas.

6. Parallelize all work for general purpose graphics processing units (GPGPU) and

computer processing units (CPU); compare and contrast.

7. A multiphysics code for filter modeling combining objectives 1, 3, 4, 5, and 6.

1.3.2 Document Structure

Chapter 2 reviews the current state of research literature relevant to the stated objec-

tives, and continues to build motivation for the objectives. Chapter 3 describes the

base methodology that this work builds upon, providing background on the LBM,

turbulence simulation, and computational methods.

Subsequent chapters focus on one or more of the research objectives, expanding the

state of literature and methodology as necessary. Primarily, these chapters present

the derivation and numerical results which are the objectives of this work.

A concluding chapter summarizes the completed objectives and results as well as
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suggesting future work. Appendices providing further detail on derivations follow.
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Chapter 2

Literature Review

The published work on principles that comprise a mesoscale approach will be the

focus of the review. Collectively referred to as transport phenomena; the fluid, solid

particulate, and heat transportation relevant to the research objectives of this work

comprise the fundamentals for review.

2.1 Incompressible Lattice Boltzmann Method

While the LBE is frequently applied to incompressible flows, the standard form actu-

ally recovers the compressible N-S equations in the low Mach number limit [20]. He

et al. suggest that the standard LBE can be viewed as an artificial compressibility
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method, with the resultant numerical error [20]. To eliminate this error, several at-

tempts at an incompressible single-relaxation time (SRT) lattice Boltzmann equation

exist in literature [21–25]. By limiting the density variation contribution, schemes

[21–24] do not fully recover the desired incompressible conservation equations:

∇ · u = 0, (2.1)

∂u

∂t
+∇ · (uu) = − 1

ρ0

∇P + ν∇2u. (2.2)

Additionally, with the exception of [24, 25], the proposed schemes cannot suitably

handle transient flows.

Guo et al. provide the exception, and produced an incompressible scheme without

artificial compressibility error which is also valid for transience [25]. Due to a general

definition of the equilibrium distribution function (EDF), the scheme requires the

introduction of three free parameters, governed by two equations, said to satisfy

incompressible flow physics. Thus, there exists an infinite number of choices for the

EDFs, a fact Banda et al. also noticed [26]. While the paper does choose 5/12, 1/3

and 1/12 as the coefficients in the numerical results section, there is no indication as

to why, or if these are the best choice. This fact is also noted by Banda et al. [26]
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leading to a question we ask here: what of the other possible parameter choices?

Shi et al. display a single set of parameters for the Guo model [27]. However, there is

no clear reason for the choice, exploration of alternative choices, nor clear derivation.

Additionally, a speed of sound is still present in their model, a physical impossibility

for a truly incompressible flow.

Questions still remain about the uniqueness of an incompressible form, derivation

techniques, and the merits of alternative coefficients and parameters in the Bhatnagar-

Gross-Krook (BGK) form of the LBE. Additionally, the MRT form is presented by

Du et al. [28], but because of the issues in the Guo derivation, it is not definitive. A

3D form also requires definitive definition.

2.2 Turbulence Simulation

Numerous studies explore LBE-DNS, from the earliest years of LBM to present, [29–

32], among others. Of those studies, [29, 31] simulate the canonical decaying homo-

geneous isotropic turbulences (DHIT) in 2D and 3D, but of particular interest is the

study by Lammers et al., which directly simulates moderate-Re flow in a 3D, but

periodic, flat plate channel [30]. Unlike many other studies, the lattice resolution is

the Kolmogorov scale, resulting in fully resolved DNS without the need for entropic
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stabilization. Turbulence statistics are in good agreement with pseudo-spectral meth-

ods, however, the authors point out some pressure coefficient discrepancies. They go

further in stating that this is a result of the slight compressibility error of the standard

LBE. Martinez et al. make a similar observation in their work [29].

Specific to transition, LBE-LES has been used to overcome the inherent difficulty with

a Reynolds Averaged Navier-Stokes (RANS) approach [33]. While certainly superior

to RANS, and tractable in 3D and complex flows, certain scales remain uncaptured,

and their influence only assumed through a Smagorinsky model. Additionally, the

onset and evolution of transition does not occur, simply a study at an Re exhibiting

the properties. These same descriptions apply to [34], another representative source

on transitional flow regime studies through LBM. Most recently, LBE-DNS is applied

to aneurysms where transition is suspected, and found [35]. At great cost, transition

Re is approximately determined by a simple search. Due to the complex nature

of the geometry the bounceback scheme is used with several levels of resolution to

find grid independence. A standard SRT-LBE is used for the flow, with all of the

associated errors previously expounded in this work. A particular consequence of a

non-incompressible SRT model, aside from errors, is the lower stability and longer

convergence rate when compared to even the SRT incompressible model [28].
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2.3 Particulate Matter Transport

Four major approaches exist when considering solid particle transport simulation in

the lattice framework. The most physically accurate considers the particle as a finite

size and arbitrary shape [36]. This approach is costly and complex when simulating

flows with a large number of particles and particles substantially smaller than the

characteristic dimension. In such flows a point particle approach is more tractable

and accurate. A grid that realistically covers the domain would not provide sufficient

links to describe the shape well. The method is not free of errors, as the particle is

merely a shell filled with a fictitious fluid. A method-of-moments LBE approach is

presented by Gschaider et al. [37] to consider size distribution. This aspect can be

important for flows with particles of substantially disparate scales, but is unnecessarily

complex, costly, and prone to uncertainty in determining model constants when not

essential. The authors report the seven additional scalars (moments) of this model

increase memory consumption and significantly increase computational time. Thus,

the point particle and particle concentration approaches, Lagrange/LGA and LBM,

respectively, will be the focus here. In all cases, the phases are decoupled, the particles

are spherical in shape, and particle-particle interaction away from the walls is assumed

to be insignificant [38].
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2.3.1 LBE-Lagrange

Lagrangian or particle Monte Carlo motion descriptions are a direct way to consider

particle transport while the LBE dictates the flow. The same basic Langevin equation

and components of motion used for arbitrary shape particle transport are solved [38].

Rotation is neglected. Lantermann, Hanel, and Filippova include a large number of

forces and capture mechanisms in their work including: electrical charge, buoyancy,

van der Waals, and Brownian motion [38, 39]. As particles are deposited, evolution

of the solid domain is also accounted for.

Particles will effectively never rest on a lattice node since motion is not tied to discrete

positions, adding complexity. The computational cost to simulate a very large number

of particles individually is prohibitive because each has its own continuous pathline,

and these studies inspect relatively small regions, compared to the obstacle scales.

Over time periods of interest it is important to evaluate the aggregate statistical

behavior, not arbitrary positions of single, or small numbers of particles.

2.3.2 LBE-LGA

The LGA method, original introduced for fluid flows [40], is a statistical approach

to motion which has been applied to particle motion [41, 42]. The applications of
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these studies, snow formations and under-pipe scour, respectively, have several gross

transport mechanisms in common with filtration. Dupuis and Chopard find that

many particle details are effectively irrelevant in flows of interest [42], verifying the

capability of LBE-LGA. The continuous nature of the Lagrangian description is no

longer a problem; particles always reside on a lattice node after each time step and

large numbers of particles are considered. The lattice for the fluid flow dictated by

the LBE is the same lattice for the LGA simulated particles.

Brownian motion is implicitly considered. Some random motion does occur from

mapping particles to discrete nodes. Similar to PM deposition on a filter, the snow

model allows alterations to the surface geometry. The surface builds up as the particle

distribution comes to occupy a lattice node linked to a solid node. More than one of

these interceptions must occur, so repeated motion to this node eventually provides

enough material to relegate the node to a solid flag and provide a new flow obstacle.

Qualitatively, these studies are successful.

Computation requires numerous steps achieving partial calculation of the new position

and random number generation, an expensive prospect for the CPU. The particle time

step must be chosen carefully to keep the particle motion to less than one lattice unit

at a given flow time step. This makes it difficult to find a satisfactory value for flows

with disparate velocities throughout.
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2.3.3 LBE-Euler for Particle Concentration

Yamamoto et al. applied an additional LBE for particle transport, similar to the

double-distribution function (DDF) approach for heat transfer [43, 44]. The small PM

in large quantities is treated as a concentration of a separate species and a velocity field

shared with the flow. For sufficiently fine particles this Eulerian approach has been

utilized substantially in the past in flows that bear resemblance to the PM transport

study here [45–47]. With certain probability, the concentration at a node along the

wall will “stick”, allowing a gradual buildup. When the concentration reaches 1, the

node becomes part of the wall. This is similar to the LGA approach.

The lattice for the species (particle) concentration is the same as the flow, the species/-

particle presence is assumed to not affect the flow away from the wall, and in place of

ρ in the LBE, Y represents the concentration. It is recovered from the zeroth-order

moment Y , and the flux can be recovered from the first-order moment of the vari-

able. The collision relaxation time is the same as the flow LBE, but no explanation

or reasoning is supplied. As in the flow and thermal LBE, the value of the colli-

sion operator should be tied directly the diffusivity of the conserved property. Thus,

Brownian diffusion, or Fick’s law, is not explicitly included in their work.
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2.4 Dominant Mechanisms

Multiple PM capture mechanisms exist, but not all are relevant to DPFs specifically.

Additionally, inclusion of irrelevant or minor aspects can degrade solution accuracy,

rather than enhance it. For completeness, the potential mechanisms from the liter-

ature include: inertial impaction, interception, thermophoresis, electrical potential,

Brownian motion (diffusion), straining, gravitational and buoyancy forces, and van

der Waals force [10, 11, 38, 48].

Some of these mechanisms are not relevant to passive filtration or DPF specifically.

Of those that are, Konstandopoulos and Johnson found that Brownian diffusion and

interception dominate [11]. This work will follow their finding and focus on these

mechanisms specifically.

2.5 Heat Transfer

Within the LBM framework, conductive heat transfer is solved with a simplified LBE,

and convective heat transfer is usually considered with either a multi-speed LBE (MS-

LBE) or a double distribution function LBE (DDF-LBE). Chapter 5 of [49] provides

an overview of the MS-LBE approach, which is summarized here for completeness and
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as an introduction to the more relevant DDF-LBE. Consideration is also required for

conduction heat transfer, and joining the models for these heat transfer mechanisms

into an appropriate conjugate heat transfer (CHT) capability.

Briefly, Guo and Shu [49] point out the following difficulties with the MS-LBE: initially

fixed Pr, potential for incorrect ν in the energy equation, poor numerical stability,

limited temperature simulation range, and large computational cost. There are ben-

efits to using such a model, however, they are not universally valuable. MS-LBE can

handle coupled flow and the full energy equation, allowing consideration of additional

work and dissipation terms, but for Boussinesq flows this is not a useful advantage.

2.5.1 DDF-LBE

Bartoloni et al. utilized the fact that the flow and temperature fields can often be

decoupled, so each can be solved through a separate LBE [50]. Considering the

temperature as a separate transport species, Shan gave the temperature field an

equivalent full additional D2Q9 EDF [51]. The model has the advantage of using the

temperature driven density difference to directly influence flow velocity. However, the

use of a full EDF for temperature is more costly than using an EDF tailored to the

simpler temperature transport equation.
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To address the compressibility error with Boussinesq flow, as well as reduce the simu-

lation cost by using only the required EDF, Guo et al. adopted their SRT incompress-

ible model [52]. The temperature EDF does drop two of the four terms and becomes

linear without loss of correctness, reducing the computational cost. Additionally, it is

shown only 2D (where D is the number of dimensions) lattice velocities are required

for the temperature transport distribution, further substantially reducing computa-

tional cost. Per section 2.1, the incompressible model is not fully correct. While the

formulation does not allow direct influence of temperature on flow velocity, a forcing

term can account for the motion change due to the bulk modulus (β).

Jami et al. recently extended this basic approach to utilize MRT in both the flow and

temperature models [53]. A five velocity approach to the thermal field was selected

instead of the four velocity approach found to be sufficient by Guo [52]. Importantly,

the MRT approach allows for transitional flows, and results report the ability of

MRT-LBM to satisfactorily handle convective flows.

2.5.2 Conjugate Heat Transfer

Wang et al. implemented a LBM CHT model for microchannel flow with good results

[54]. This particular work is interesting not only for the relevance of the application
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to pore scale filters, but also because they successfully utilized a halfway bounce-

back type scheme at the fluid-solid interface with both the flow and thermal lattices.

Tarokh et al. specifically used the same approach to the energy equation in the fluid

and solid domains [55]. As a result, continuity of flux terms is automatically handled,

unlike the special treatment required for N-S CFD. The study includes more complex

geometries, further generalizing the CHT LBM approach.

These studies utilize the standard SRT-LBE, not necessarily the most appropriate

for many applications. MRT in particular becomes important for small passage flows

[56]. Additionally, they utilize the Shan approach which introduces an unnecessary

number of lattice velocities and EDF terms.

2.6 Porous and Disordered Media

Many disordered media applications have three different fundamental scales, espe-

cially true in filters. The largest scale, the device as a whole, can be treated as a

black box in a system, but little understanding is gained. Because this work seeks

to provide investigative images and a physical basis, the other two scales, represen-

tative elementary volume (REV) and pore, are the focus of review. Both approaches

often take advantage of the halfway bounceback BC of LBM to handle the complex

boundaries inherent in disordered media. Important to the ability of this boundary
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to properly predict the location and size of solids in the domain is the use of MRT

[56]. In that work, SRT is shown to produce a viscosity dependent error in channel

width. MRT also has the additional benefit of superior numerical stability [31].

2.6.1 REV Scale

Representing only the general behavior of the filter medium, the REV scale at mini-

mum includes the effects of average porosity [57]. In this work by Chen, the Brinkman-

Darcy, Forchheimer-Darcy, and Klinkenberg effects and equations are considered.

That last effect being critical for large Kn where apparent permeability does not

sufficiently describe flow rate. Despite REV scale simulations generally being used

to avoid geometric details, the authors present a simulation which specifies hetero-

geneous randomly scattered porosity in 2D to a high resolution; substantially more

detailed than assuming homogeneous features. In the nanoscale permeable areas of

the domain the Klinkenberg effect becomes an important effective body force, allowing

some flow to pass instead of assuming flow only occurs in the unoccupied space.

Chen’s study is based on fundamentals from Guo and Zhao [52]. The form of the body

force they derive for porous media flows completely eliminates residual errors. They

considered the Ergun correlation to describe the physics. Their study did not map

any detailed flow features like that of Chen, but was verified with canonical flows.

23



Examples of other attempts to produce REV scale filter models are based on the LBE

Spaid and Phelan introduced [58], however, the forcing terms of this approach leave

undesirable errors in recovering the general N-S equations [59].

2.6.2 Pore Scale

Simulation at the pore scale strictly resolves the LBE only, as opposed to the LBE

with porosity and permeability laws in a body force term to model what cannot be

directly resolved. This level will either require a large node count, modest pore sizes,

and/or some under-resolution. Manz et al. [60] provides such a study, where the

resolved pore sizes need not be as small as PM cake, for example. Resolution for the

packed spheres in this single phase study is sufficient at ∼86 µm.

Succi et al. presented the first work on 3D LBM for pore scale disordered geome-

tries [61] almost immediately after LBM inception. The bounceback nature of the

randomized BCs was recognized as valuable in this application of LBM. The study is

particularly significant because it confirms LBM’s adherence to Darcy’s law.

A recent study looks at packed beds of spheres in a pore scale approach [62]. The

authors focus on proper BCs and collision forms related to the work of Pan et al.

[56]. They confirm SRT-LBE is inappropriate. All blockages are spherical, and they

use a pre-made program, WALBERLA. An interesting result of having such a regular
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blockage shape, and pores which can be completely resolved, is that a curved BC

treatment on the solids can be implemented. This is generally not appropriate in

truly disordered and particle capture media due to superior resolution requirements,

evolution of the surface shape, and irregularity/randomness. However, the study

shows excellent results from pore scale LBM.

2.7 Aftertreatment Synthesis

The field of LBM aftertreatment filtration is relatively new, and is the synthesis of

many of the aforementioned topics in this review. One of the first papers outlining

the benefits of LBM for this purpose comes, in part, from communications between

PNNL and MTU [63]. This work describes some of the simulation and modeling

approaches, and addresses common production filters. The study uses a standard

SRT-LBE. To model the geometry of a filter in use, assumptions are made about

already deposited PM and PM distribution. No temperature treatment exists, and

resolution is limited to 100 µm.

Since then, the majority of the work has been conducted by Yamamoto with re-

searchers at Nagoya University and Nissan Motor Co. Their standard approaches

are captured in [43]. Since this early work on cordierite filters, they have published

several updates exploring additional filter types with LBM, such as carbide fiber [44].
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While interesting results, there is no new fundamental methodology, and few details

are revisited or revised.

To form a computational domain they use a CT scan. In the case of [44], this results

in 1.44e8 nodes to represent a domain 4.1 mm × 8.6 mm × 9.4 mm (331.4 mm2),

a sufficient count to accurately capture REV scale. The resultant resolution is 13.3

µm, the same resolution of the scan.

Incompressibility is claimed, however, the EDF does not obey incompressible mass

conservation (equation 2.1). There is a small difference from their earlier work on

cordierite filters, [43], where a SRT-LBE with body force is used to account for de-

posited soot permeability. Similar to Chen’s REV scale models, it is somewhat of a

hybrid. The main substrate pores are directly simulated through detailed grid res-

olution, but nanoscale pores are accounted for with Darcy’s law alone. The quoted

permeability, κ = 2.0e-14 m2, is on a scale subject to the here neglected Klinken-

berg effect in addition to Darcy’s law [57]. Neglecting the Forchheimer effect is likely

appropriate due to the velocities involved.

Temperature and species concentration are also governed by the LBE, with the EDF

modified to replace ρ with the respective macroscopic values T and Yα. Each macro-

scopic value is recovered from the zeroth order velocity moment of the distribution

functions. The approach is that of Shan [51] as opposed to Guo [52].
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Even though not an aftertreatment specific application, Kang et al. performed a series

of filtration-like studies based on a survey of LBM methods [64]. Unlike the works of

Yamamoto, a fully incompressible LBE is utilized, that proposed by Guo et al. [25].

As reviewed in preceding sections and chapter 4, ambiguity remains. The authors do

not mention which set of parameters they utilize. LGA is avoided for the transport

of particles in favor of a LBE species transport equation. No rules are placed on

deposition growth, which can result in growth which is unphysical when sufficient

flow momentum would otherwise break the structures. This can be seen in figure

7 of their study. Not all runs exhibit this behavior because mineral reactions can

make up for the lack of rules when the Damköhler number is sufficiently low. Unlike

aftertreatment filtration, the application is essentially study of a fracture, dominated

by a small number of flow paths and low porosity; a relatively easier geometry.

Results in all aftertreatment studies demonstrate the superiority of LBM for porous

media with PM capture, compared to other continuum or reduced dimension ap-

proaches.

2.8 Summary

A new, comprehensive, LBM code has great potential in providing accurate and real-

izable aftertreatment models and turbulence insight based on the literature reviewed.
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When the work of previous authors is combined with fundamentally new methodology

and new study approaches, incremental improvements will be produced.
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Chapter 3

Methodology

In this chapter, focus is on the benefits and background of the methodologies later

researched and employed for the dissertation objectives. Modifications are explored

in subsequent relevant chapters. The basis presented here will be referenced and built

upon.

3.1 The Lattice Boltzmann Method

Macroscopic N-S based CFD functions well for many flows, and has long been the

standard. However, certain flows are either unsuitable for the continuum assumption,

or can utilize unique benefits of a mesoscopic approach and the results of the LBE.
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Flows both suitable and unsuitable to continuum analysis benefit from the more

fundamental physical basis of the LBM, namely, the motion of a large number of

molecules on a smaller scale than macroscopic variables.

Benefits to the LBM both related to this dissertation and additional flows are sum-

marized in the following list:

• Simple boundary condition implementation yielding second-order accuracy.

Namely, the heuristic half-way bounce-back scheme and related revisions.

• Generally superior computational performance due to local computation and

linearity in the Boltzmann equation with BGK and MRT collision operators.

• Conjugate heat transfer without special interfacial treatment.

• Straightforward addition of multiphase and multispecies systems.

• Microscale flows are possible due to the mesoscopic basis.

• Generally minimal pre-processing and meshing time.

3.1.1 Origins

Through the work of many thermodynamics pioneers the models of kinetic theory

have been defined and applied. Bernoulli developed the concept of a kinetic theory in
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1738. Helmholtz recognized the transformation and conservation of all types of energy

in 1847. Clausius showed that molecules move with velocities different than the bulk

fluid and that they travel a mean free path. In 1860 Maxwell introduced probability

to kinetic theory. Shortly after, Maxwell developed the idea of intermolecular collision

forces. Boltzmann introduced what would become the central theme of the LBM in

1872. Proof that statistical mechanics leads to macroscopic properties of interest was

displayed in 1917 by Enskog and Chapman. [65]

The Boltzmann equation can be expressed as

∂f

∂t
+ ξ · ∇f = Ω(f), (3.1)

where f is the velocity distribution function of particles and is a function of position x,

particle velocity ξ, and time t [6]. The collision operator was approximated as a simple

linear equation of intermolecular collisions to conserve the necessary macroscopic

quantities:

Ω(f) = −1

τ
[f − f eq] . (3.2)

31



This Bhatnagar, Gross, and Krook (BGK) model [66] is appropriate for a wide vari-

ety of applications. The term f eq is the Maxwell-Boltzmann equilibrium distribution

function, and τ is the rate at which equilibrium is reached in collisions. The PDF of

particle velocities, with Helium-4 at different temperatures as the example fluid, is vi-

sualized in figure 3.1. The relatively large velocities are those of individual molecules,

not of the bulk fluid, which is generally significantly smaller.

Figure 3.1: PDF of He-4 particle velocities at different temperatures.

3.1.2 The Lattice Boltzmann Equation

To discretize equation 3.1, f eq is expanded into a Taylor series in terms of fluid velocity

u, and truncated for low Ma flows as
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f eq =
ρ

(2πRT )D/2
e

(
− ξ2

2RT

) [
1 +

ξ · u
RT

+
(ξ · u)2

2RT
− u · u

2RT

]
, (3.3)

where D is the number of spatial dimensions. With the restriction that the N-S equa-

tions must be recovered in the hydrodynamic limit, the quadrature for discretization

yields

fi = wif(x, ci, t) and f eqi = wif
eq(x, ci, t), (3.4)

where wi are the weights related to each discrete velocity vector ci of the continuous

velocity ξ. Important macroscopic variables arise, now from the summation instead

of the integral of f . The conservation of mass and momentum are expressed as

ρ =
∑
i

fi and u =
1

ρ

∑
i

cifi. (3.5)

Returning discretizations 3.4 to equation 3.1 with associated variables, and integrating

over the interval t to t+δt, the LBE arises. Combining with the BGK collision operator

yields

fi(x+ ciδt, t+ δt)− fi(x, t) = −1

τ
[fi(x, t)− f eqi (x, t)] . (3.6)
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The EDF of equation 3.3 now has the discrete form

f eqi = wiρ

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− u · u
2c2
s

]
(3.7)

where cs is the speed of sound. Three additional macroscopic variables of interest are

available; pressure, momentum flux tensor, and viscosity,

P = ρc2
s, PI + ρuu =

∑
i

cicifi, and ν = c2
s

(
τ − 1

2

)
δt. (3.8)

Viscosity is directly tied to the collision relaxation time τ . This is a physically sen-

sible model Chapman presented in his work on the theory of diffusion parameters

in 1917 [67]. In fact, in that same work the macroscopic mathematical models, the

N-S equations, are recovered in the hydrodynamic limit by the Chapman-Enskog

expansion

∂ρ

∂t
+∇ · (ρu) = 0, (3.9)

∂(ρu)

∂t
+∇ · (ρuu) = −∇P +∇ ·

[
ρν
(
∇u+∇uT

)]
. (3.10)
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The expansion is not presented here, however for the iLBE derived as a research

objective of this work, the same procedure is presented in appendix A.

3.1.3 Lattices

The index i is determined by the velocity value q in the standard model label DdQq,

where d is the number of spatial dimensions. This network of i indices connects a

node to all of its local neighbors by the discrete velocity vectors. The resultant lattice

transports probability mass functions (PMF) 3.4 in accordance with the LBE. The

number of velocities q in a lattice must meet symmetry and invariance requirements.

Several of the most popular sufficient lattices are displayed in figure 3.2. The lattices

in the left column are actually suitable only for advection-diffusion of scalars (which

utilizes the same LBE derived above), and those in the right column are suitable for

fluid flow.

Weights for each lattice, as well as velocity vector components and speed of sound,

are required for equation 3.7. For the lattices of figure 3.2, table 3.1 provides the

details.
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Figure 3.2: Some valid lattices of the LBM.

3.1.4 Boundary Conditions

Simple boundary conditions (BC) implementation is a unique benefit of the LBM.

Three categories exist; heuristic, hydrodynamic, and extrapolation schemes. The

hydrodynamic schemes are the most precise, but also; the most complex to implement,
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Table 3.1
Lattice parameters.

Lattice ci wi cs
D1Q2 ± 1 1/2 1

D1Q3 0 2/3, 1/
√

3
± 1 1/6

D2Q4 (± 1, 0), (0, ± 1) 1/4 1/
√

2

D2Q9 (0, 0) 4/9, 1/
√

3
(± 1, 0), (0, ± 1) 1/9,

(± 1, ± 1) 1/36

D3Q6 (± 1, 0, 0), (0, ± 1, 0), (0, 0, ± 1) 1/6 1/
√

3

D3Q19 (0, 0) 1/3 1/
√

3
(± 1, 0, 0), (0, ± 1, 0), (0, 0, ± 1) 1/18

(± 1, ± 1, 0), (± 1, 0, ± 1), (0, ± 1, ± 1) 1/36

inappropriate for disordered geometry, of no greater convergence accuracy than the

heuristic and extrapolations schemes [68], in corners can present more unknowns than

available equations, and when using a truly incompressible LBE, as later chapters

will, pressure boundary conditions present a problem. As a result, the heuristic and

extrapolation methodology will be the focus.

The heuristic schemes are based on the reflection of momentum when a particle

impacts a solid surface. Implementation is simple, even for complex boundaries, free-

slip/symmetry surfaces, and inlets. Second-order accuracy exists for the half-way

bounce-back implementation [24]. However, when a discrete stair step approximates
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curved BCs the order or accuracy drops to first-order. However, when utilizing high

resolution grids, as in a porous media simulation, the convergence order of accuracy is

of lesser importance since other factors dictate the need for a high spatial discretiza-

tion (node counts). In actuality, the half-way and standard bounce-back schemes

both follow the same algorithm,

fī(xf , t+ δt) = f ′i(xf , t), (3.11)

where ī is the reversed velocity vector of i for a no-slip wall, f ′ is the post-collision

value, and xf is the position of the last fluid node before a wall in the half-way

bounce-back scheme (and is the wall node in the standard bounce-back scheme) (see

figure 3.3). Effectively, the only real difference then between the schemes is where

one imagines the wall, on the last node of the domain, or half of a lattice velocity

beyond the last node of the domain. It is the nature of the time it takes the particle

distribution to travel to the wall and back that places the wall half-way between

with more accuracy. The node at the edge of the domain then has an integer value

(standard bounceback) or a half-integer value (half-way bounceback). In the specular

reflection form, the value ī would be the velocity vector 90◦ from the incoming velocity

vector.

A further heuristic scheme employed here is Ladd’s revised half-way bounce-back
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Figure 3.3: Bounce-back schematics over a single time step.

scheme [36]. By amending the momentum of both income and outgoing vectors,

moving walls and velocity inlets (Dirichlet) can be applied as

fī(xf , t+ δt) = f ′i(xf , t)− 2wiρ(xf )
ci · uin
c2
s

. (3.12)

Finite difference methods (FDM) often use a “ghost node” extrapolation approach

where a node is placed outside the domain for computation purposes, but is not a part

of the physical solution of the domain. Since the LBE is a type of finite differencing

for the Boltzmann equation, Chen et al. applied the FDM to the LBM for gradient

based BCs (Neumann), such as pressure [69]. In a general form the scheme is
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fi(xg, t) = χfi(x0, t)− (χ− 1)fi(x1, t), (3.13)

where g is the ghost node and 0 is the node on the boundary. The version Chen et

al. published actually utilizes 2 instead of χ. However, this is not the only value

which can be used for second-order accuracy, evident by simple rearrangement of

various differencing forms. The scheme introduces non-local computation, however,

it is stable and easy to implement.

3.1.5 Multiple Relaxation Time Collision Operator

Simplification of the inter-molecular collisions by the BGK model neglects the dif-

ference in relaxation times of the physical modes. d’Humières introduced the MRT

model early in the development of the LBM [70] to offer a more accurate alternative.

The MRT collision model increases computation time by an estimated 17% [71], but

offers greater stability with increasing Re, and elimination of viscosity dependent ge-

ometry errors, especially in small passages [31, 56]. Both advantages are important

to the work here; turbulent transition occurs at relatively high Re, and filtration in-

cludes a variety of passages, some only minimally spatially resolved. In place of the

single relaxation time (SRT)-LBE of equation 3.6, the evolution equation with the

MRT operator is

40



fi(x+ ciδt, t+ δt)− fi(x, t) = −
∑
j

Λij

[
fj(x, t)− f eqj (x, t)

]
(3.14)

where Λij is a collision matrix of multiple relaxation times. A derivation of the

incompressible MRT, with some reference to the standard MRT-LBE, based on the

work of [72] is available in appendix A.

3.1.6 Heat Transfer

With relatively small adjustment, the LBE of section 3.1 solves the energy equation

when temperature can be treated as a transported scalar:

∂T

∂t
+ u · ∇T = α∇2T + Q̇. (3.15)

A double distribution function is most appropriate for the flows considered here (see

section 2.5). The flow velocity is resolved with equation 3.6 and distribution 3.7, and

the temperature field with

gi(x+ ciδt, t+ δt)− gi(x, t) = − 1

τT
[gi(x, t)− geqi (x, t)] , (3.16)
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and

geqi = wiT

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− u · u
2c2
s

]
or geqi = wiT

[
1 +

ci · u
c2
s

]
, (3.17)

where gi is now the temperature distribution function, τT is the thermal collision

relaxation time based on τT = 3α + 1
2

or τT = 2α + 1
2
, and geqi is the temperature

equilibrium distribution for the collision operator [51, 52]. u is supplied by the flow

LBE and utilized in the thermal LBE at each time step. Conduction simulation is

simply a special case where u = 0.

The existence of two equations for geqi comes from a refinement of the methodology in

literature, dependent on the desired physics. Evaluation of both forms is conducted

in this work to select the most appropriate method considering accuracy, and compu-

tational cost, with the second geqi being more efficient due to fewer terms (2, 4, or 6

speed lattice for 1D, 2D, and 3D simulations, respectively). In the case of the longer

geqi form, the lattices on the right in figure 3.2 are required, as in the flow solution

[51], but for the more compact geqi the lattices on the left in the figure are appropriate

[52]. For this more compact D2Q4 form, appendix B shows that equation 3.16 is

recovered, thus obeying the macroscopic principle.
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In either case, the macroscopic variables of interest are readily available:

T =
∑
i

gi, Q =
∑
i

cigi, (3.18)

and, as with viscosity in the flow LBE, diffusivity α = c2
s

(
τT − 1

2

)
δt.

BCs for the thermal model are nearly identical to those for the flow LBE. Bounce-back

can create a fixed temperature, and extrapolation allows for prescribed gradients, such

as zero-gradient (adiabatic).

Conjugate heat transfer is a complex BC in traditional N-S CFD, however, in the

LBM it is a relatively simple. By appropriately assigning the thermal diffusivity on

nodes residing in the solid area, but solving on a continuous regular lattice common

to both flow and solid domains, continuity is enforced at the boundary [54]. Actually,

like the half-way bounceback scheme, the thermal boundary lies half-way between

nodes.

An MRT collision operator can also be applied to equation 3.16 for improved stability.

A form for the D2Q4 is derived in appendix B.
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3.1.7 Particle Concentration Transport

As in the simplified energy equation (3.15), particle and species concentration can

be treated as an advection-diffusion equation when certain effects such as reactions

are absent, and simplifications such as one-way interaction and the particle diameter

much less than characteristic length, are acceptable. The simplified form, Fick’s

second law [73], is stated here as

∂Y

∂t
+ u · ∇Y = D∇2Y, (3.19)

where u is the velocity field of the flow, Y is the volume concentration of the species,

and D is the mass diffusivity. D is analagous to thermal diffusivity α and viscosity

ν. Together, the three diffusion measures (all with units length2/time) describe the

diffusion of the three conserved properites, mass, momentum, and energy(thermal).

Just as the temperature transport equation can be modeled by the LBE, so can the

species transport equation,

hi(x+ ciδt, t+ δt)− hi(x, t) = − 1

τY
[hi(x, t)− heqi (x, t)] , (3.20)
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with equilibrium distribution function

heqi = wiY

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− u · u
2c2
s

]
. (3.21)

The collision relaxation time is tied to the mass diffusivity/Brownian motion by

τY = 3D + 1
2
. Individual particle motion is not tracked in this way, but for large

numbers of small particles this is intractable and unnecessary. This collision re-

laxation time provides the statistically correct diffusive motion of large numbers of

particles. Individually each particle would have a chaotic path based on temperature

and Boltzmann’s constant, but the ensemble average of motion will be zero, as well

as the fluctuating term based on D.

Boundary condition treatment revolves around the half-way bounce-back scheme and

modifications for inlet concentration (in place of velocity) as well as extrapolation

outlet as a gradient. Sticking of the particle species to solid surfaces requires ad-

ditional rules, and will be part of the novelty of this work in chapter 7. Modeling

erosion is also possible with revised rules, but is not considered in this work.
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3.2 Turbulence and Transition Simulation

3.2.1 Modeling and Simulation of Turbulence

Like the traditional N-S approach to CFD, turbulence can be modeled with ap-

proaches like the RANS equations. While efficient, only time averaged quantities

are available, even in transience. More importantly, the computation of the values

required for closure (Reynold’s stresses) depend on several tuned parameters, five

just for the k− ε model [74]. These parameters are based on experimental correlation

and are more valid for certain flows and not others. Some work has been done to

combine the best from multiple models, such as SST [74], but without resolution of

turbulent structures, no model is broadly satisfactory. Turbulent transition models

present the same pros and cons, focusing on time averaged intermittency in the onset

of turbulence in the flow, and are overall broadly unsatisfactory [75].

Scale resolving simulation (SRS) addresses many of these issues, only resorting to

modeling techniques for the lowest energy small turbulent scales. Kolmogorov de-

termined these scales to be, in general, relatively unimportant to the greater effects

of turbulence on flow [76]. The lack of resolution at certain scales still leaves some
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uncertainty, and when computationally possible, resolution of every scale is the ulti-

mate in accuracy. With the case of transition, this detail is desired as CFD progresses

[8, 75].

3.2.2 Direct Numerical Simulation and Large Eddy Simula-

tion

DNS refers to flow simulations without modeling of any type, or reliance on implicit

diffusion of the numerical scheme [77]. No tunable parameters, experimental approx-

imations, or overarching assumptions are required. Time and space are explicitly

resolved, and detailed results available for inspection. The computational cost is high

because now the space and time steps must be smaller than the smallest turbulent

structure, estimated by Kolmogorov to be

Ni ≈ Re3/4 (3.22)

where Ni is the number of nodes in each direction. In transition, the role of the

smallest scales in the process no longer presents uncertainty. The great cost of such

detail can be reduced by the LBM. Inherent parallelism allows faster computation

for a given domain size compared to the traditional N-S equations [49], isotropy
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is superior [49], and the dissipative and dispersive effects are lower for improved

small scale turbulent capture [31]. Turbulent continuum flows are possible with the

mesoscopic LBE because of the collision operator, which recovers the macroscopic

principles. There is an established history of the LBE for this purpose, as discussed

in chapter 2.

Some past literature has attempted to reduce computation cost by intentionally

under-resolving the simulation, and relying on higher order schemes, entropic cor-

rection, or other stabilizing tools like MRT [78]. All of which introduce additional

assumptions and thus uncertainty about the results.

Due to the large computational cost of DNS, only a 2D simulation will be pursued with

this full resolution. While turbulence is an anisotropic 3D phenomenon, analagous

physical transitions and processes are present in lower dimensions. 2D simulation of

transition and turbulent features is mathematically valid, and there is a long history

as a tool for proof-of-method [78–81]. Even with these reductions, the Superior

super-computing cluster is nearly overwhelmed with output data at times, and can

require weeks of runtime.

LES will take over for 3D simulations due to the potential increase in node counts.

The lattice is still well resolved; much more well resolved than a RANS approach, but

an SGS model is deemed acceptable for the smallest scales. The energy cascade of

Kolmogorov’s theory dictates this approach captures the major actions of turbulent
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flows. Since the SGS model of the original LES approach, Smagorinsky-Lilly, has a

constant which is always included in the viscosity correction, it is not valid for laminar

portions of the flow, and by extension, not appropriate for turbulent transition study.

In place, the Vremen SGS will be utilized [82]. In this model, the eddy viscosity can

drop as low as zero in laminar and near wall areas, and increase in response to high

shear in fully turbulent flows. As a result, transitional flows are possible with this

approach, without the immense node counts of a DNS approach. A finite difference

method (FDM) approach allows for the computation of the components required to

determine the magnitude of the eddy viscosity, the local velocity gradients.

3.2.3 Evaluation Methodology

In the DNS case, for the the study of transience and transition the Hopf bifurcation is

of primary interest. To find the initial bifurcation an extrapolation scheme of oscilla-

tion amplitude A(Re) in the vicinity of the critical Re will be employed. Thereafter,

the velocity space and Fourier spectrum results will be used to approximate further

Hopf bifurcations. While further frequencies will become superimposed with increas-

ing Re, the velocity space will continue to show repetition until turbulence arises, after

which the chaotic nature will form non-repetitive untraced behavior. The spectrum

analysis will also show a large number of non-repeating frequencies.
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Results in the fully turbulent regime will be computed and evaluated for fields of the

following statistical quantities:

• Mean velocity, 〈ui〉

• Turbulent kinetic energy, k = 1
2
〈u′iu′i〉

• Energy dissipation rate, ε = 2ν〈sijsij〉, sij = Sij − 〈Sij〉

• Local Kolmogorov scale, η =
(
ν3

ε

)(1/4)

• Pressure coefficient, Cp =
(
P−P0
1
2
ρ0u2w

)

LES results are evaluated with the same methodology. However, some finer details

do not emerge since their large scale effects are only accounted for by the subgrid

scale model.

3.3 Substrate Approximation

Realistic 2D substrate geometries are generated through modifications to the random

number function in C. Certain nodes in the domain lattice are marked as “solid”, and

others as “fluid” in a boolean matrix. The benefit to this approach is that no CT scan

or physical sample is required, and conversion from 3D to 2D without continuous pores

is not an issue. The generation process is sensible when considering natural material
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filters, like cordierite; a substrate is effectively a random arrangement of blockages

within a certain size limit, which often overlap.

Within the confines of the domain filter area random seeds are placed, around which

ellipses are built with random major and minor axes. Many of these structures will

overlap to some degree as porosity decreases, creating a complex substrate. The

number of seeds is the main determinant of porosity.

Lattice structure allows for simplistic substrate measurements. These measurements

are first-order accurate, however, the high grid count required for a complex substrate

limits the importance of higher-order schemes. Porosity is measured by dividing

the number of fluid nodes in the filter by the number of nodes in the filter area

(not counting inlet and outlet areas). Wetted perimeter is measured by counting

the number of nodes on the boundaries of the substrate (the number of solid nodes

bordering fluid nodes).

It is not enough to create a substrate with the above method which looks correct and

consistent. Multiple techniques are utilized to judge appropriateness of the method,

based on physical principles or numerical and experimental fits.

• Darcy’s law

• Ergun equation
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• Koponen model

• Gebart-Brinkmann model

• Gebart-Kubawara model

• Direct experimental data

3.4 Computational Language and Parallelization

C is the language for simulation in this work. There are many reasons to choose

C/C++ including standardization, portability, control, libraries, etc..., however, one

of the greatest reasons C is choosen is speed. Aruoba and Fernandez-Villaverde found

C/C++ and Fortran to be to be at least an order of magnitude faster than many

other possible languages, including Matlab, Python, Java, and Mathematica [86].

Commonality as a physics simulation language is a final critical consideration.

C also has the benefit of being parallelizable with the majority of the major paradigms,

including OpenMP, MPI, OpenACC, CUDA, OpenHMPP, and OpenCL. To accom-

plish research objective 6, a GPGPU and CPU comparison must be considered. Porta-

bility, readability, comparability, available hardware, and effectiveness lead to the

choice of OpenACC and OpenMP for comparison and final implementation.

The following observations are not entirely surprising when considering criticisms
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of the much touted GPGPU approach [87], where the multiple order-of-magnitude

increases over CPU’s are largely an illusion generated by comparison to single-core

CPU runs. Commercial codes such as STAR-CCM+ describe extensive testing in

which GPU’s offer no performance improvement for general CFD [88]. The load and

access times present a substantial overhead.

A brief study was performed utilizing a quad-core AMD APU (A10-6800K) and 192

CUDA core GPU (GeForce GTS 450) for OpenMP and OpenACC respectively, the

speed of each parallelism paradigm was compared. The 2D lid driven cavity and back-

ward facing step were simulated with nodes varying from 2,500 to 262,000. Similar

commands between the two paradigms allowed for direct comparison without vari-

ance related to coding style or available keywords and calls. The smaller simulations

resulted in superior OpenACC performance, but by at most 15%. As node count

increased, OpenMP gradually became the faster standard. It is theorized this is be-

cause of the need to pass data to traditional RAM (versus GPU memory) in larger

amounts and over a greater number of iterations (time steps), and to display results

to the screen.

The final decision between a CPU (OpenMP) and GPGPU (OpenACC) approach

was largely determined by the best hardware available, the supercomputing cluster

at MTU, Superior. It is difficult to determine if the APU and GPU comparison in the

previous paragraph was an optimal way to compare speed, but Superior is currently
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a CPU oriented cluster. GPGPU access is limited and the total CPU computing

power is approximately 2.5x greater than the GPGPU computing power (32 versus

13 TFLOPS).

Using OpenMP on Superior, and studying the scaling of speed with increased core

count shows the LBM algorithm and code benefit significantly from parallelism. In

figure 3.4, the results of running the 2D lid driven cavity with 251,001 total nodes for

100,000 time steps are presented. 1, 2, 4, 8, 12, and 16 core solutions were run, five

times each, and an average was computed. Speed is presented as million lattice site

updates per second (Msu/s). The trend line shows linear scaling up to 8 cores, and a

slow decline thereafter. 16 core runs still show value in run speed and efficiency.

Figure 3.4: Speedup of LDC OpenMP code on Superior.
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Chapter 4

The Incompressible LBE1

Abstract

A lattice Boltzmann equation for fully incompressible flows is derived through the

utilization of appropriate ansatzes. The result is a singular equilibrium distribution

function which clarifies the algorithm for general implementation, and ensures correct

steady and unsteady behavior. Through the Chapman-Enskog expansion, the exact

incompressible Navier-Stokes equations are recovered. With 2D and 3D canonical

numerical simulations, the application, accuracy, and workable boundary conditions

are shown. Several unique benefits over the standard equation and alternative forms

1The material contained in this chapter was previously published in the International Journal of
Computational Engineering Research [1].
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presented in literature are found, including faster convergence rate and greater sta-

bility.

4.1 Introduction

While the lattice Boltzmann equation (LBE) is frequently applied to incompressible

flows, the standard form actually recovers the compressible Navier-Stokes (N-S) equa-

tions in the low Mach number limit. He et al. [20] suggest that the standard LBE

can be viewed as an artificial compressibility method, with the resultant numerical

error. To eliminate this error several steps toward a truly incompressible LBE exist

in the literature [21–25]. Although limiting density variation most schemes [21–24]

do not recover the exactly incompressible conservation equations:

∇ · u = 0, (4.1)

∂u

∂t
+∇ · (uu) = − 1

ρ0

∇P + ν∇2u. (4.2)

Additionally, with the exception of He and Luo [24] and Guo et al. [25], the proposed

schemes are not designed for transient flows. The He and Luo [24] scheme recovers the
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artificial compressibility N-S equations, which further requires that the characteristic

time be large relative to the characteristic length. Guo et al. [25] design a fully

capable unsteady incompressible scheme with three free parameters present in the

definition of the D2Q9 equilibrium distribution function (EDF),

f eqa =



−4σP/c2 + Sa(u), a = 0

λP/c2 + Sa(u), a = 1, 2, 3, 4

γP/c2 + Sa(u), a = 5, 6, 7, 8

(4.3)

where

Sa(u) = wa

[
3

(ea · u)

c
+ 4.5

(ea · u)2

c2
− 1.5

(u · u)

c2

]
, (4.4)

These three parameters are governed by two equations,

λ+ γ = σ, 2λ+ 4γ = 1, (4.5)

which create an infinite number of choices. Banda et al. [26] noted that while σ =

5/12, λ = 1/3, and γ = 1/12 are the parameters for the numerical tests in Guo et al.s
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paper, questions exist about the properties of alternate possibilities. Shi et al. [27]

utilize the same set of parameters to produce good results, however the choice is not

explained or derived, nor is there an exploration of the alternative parameter choices

from Guo et al.s paper.

Questions from past literature, our research group, and those who implement code

still exist about the uniqueness of the incompressible form, derivation techniques, and

the merits of the alternate values for the parameters σ, λ, and γ. In this work we

seek to build off of the work by Guo et al. to:

• Describe a general derivation process;

• Clarify the literature and parameters for those impelementing the algorithm;

• Ensure consistent correct solutions;

• Evaluate the benefits to accuracy and stability with such a form.

This paper is organized as follows: Section 2 introduces the standard LBE and the

derivation of a fully incompressible form through an appropriate ansatz. Section 3

presents numerical results which validate the form derived in section 2, compares

results with other schemes, and explores the properties of alternate parameter values

to equation 3. After the summary of section 4, appendix A.1 shows the recovery of

the incompressible N-S equations through the Chapman-Enskog expansion.
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4.2 Derivation of the D2Q9 Incompressible LBE

4.2.1 Standard LBE Form

From the standard LBE,

fa (x+ δx, t+ δt) = fa (x, t)− 1

τ
(fa (x, t)− f eqa (x, t)) (4.6)

the Chapman-Enskog multiscale expansion, as detailed by Qian et al. [89], results in

the mass and momentum conservation equations:

∂ρ

∂t
+∇ · (ρu) = 0, (4.7)

∂ (ρu)

∂t
+∇ · (ρuu) = −∇P + ν

(
∇2 (ρu) +∇ [∇ · (ρu)]

)
. (4.8)

In the D2Q9 LBE
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ρ =
∑
a

fa, ρu =
∑
a

ceafa, cs =
c√
3
, P = c2

sρ, ν = c2
s

(
τ − 1

2

)
δt, (4.9)

where c = δx/δt is the lattice velocity, cs is the speed of sound, ea are the velocity

vectors, and τ is the single collision relaxation time of the BGK model.

Many of the terms in equations 4.7 and 4.8 involve a variation of density with time

or space, and thus suffer from compressibility error unlike the desired incompressible

equations, 4.1 and 4.2. Relationships of equations set 4.9 depend on a speed of sound,

and pressure and viscosity depend on that of sound.

4.2.2 An Incompressible LBE Derivation

An EDF must satisfy the necessary tensor symmetry and adhere to the incompressible

conservation principles. For a valid EDF the form is first established, the governing

principles are dictated, and an appropriate method is adopted to satisfy the form

and principles. The result can be mathematically verified with the Chapman-Enskog

expansion, shown in appendix A.1.

Based on the Maxwellian distribution and the nonlinearity of the momentum equa-

tion, an ansatz for the EDF form pertaining to the lattice discretization of figure 4.1
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is established as:

f eqa = Ai +Bi (ea · u) + Ci (ea · u)2 +Di (u · u) , (4.10)

i =



0 for a = 0

1 for a = 1, 2, 3, 4

2 for a = 5, 6, 7, 8

(4.11)

Figure 4.1: D2Q9 lattice velocities, a.

and as in [25] the mass and momentum governing principles are dictated as:

8∑
a=0

f eqa =
8∑

a=0

fa = Constant, (4.12)
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8∑
a=0

ceaf
eq
a =

8∑
a=0

ceafa = u, (4.13)

and the zeroth-order incompressible momentum flux tensor is stated here as

8∑
a=0

ceaceaf
eq
a =

8∑
a=0

ceaceafa =
P

ρ0

I + uu. (4.14)

For generality and intuitive understanding we set Constant = 1 in the derivation.

The additional assignment of Constant = 0, as in [25], is verified numerically to

produce the identical result in section 3.

Remark 1 Equation 4.12 is critical in enforcing the zero-divergence law of equation

4.1. To validate that the statement made in equation 4.12 satisfies the requirement at

each time step and point, both the summation of fa and the finite difference method

are independently evaluated in section 3.2. Both show the adherence to zero velocity

divergence.

There are 12 unknowns in equation 4.10,

A0 A1 A2

B0 B1 B2

C0 C1 C2

D0 D1 D2

Several of these parameters can be determined through the conservation equations
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and discrete lattice velocities. Due to the rest particle (e0 = 0),

B0 = C0 = 0, (4.15)

and from the conservation principles 4.12 and 4.13,

8∑
a=0

f eqa = A0 + 4A1 + 4A2 + (2C1 + 4C2 +D0 + 4D1 + 4D2)(u · u) = 1, (4.16)

8∑
a=0

ceaf
eq
a = (2B1 + 4B2)cu = u. (4.17)

Subsequently,

(A0 + 4A1 + 4A2) = 1, (4.18)

(2C1 + 4C2 +D0 + 4D1 + 4D2) = 0, (4.19)

(2B1 + 4B2) =
1

c
. (4.20)
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Through the 0th order momentum flux tensor, and in the 2D case u = uî+ vĵ,

C1 =
1

2c2
, C2 =

1

8c2
, (4.21)

which further defines,

D0 + 4D1 + 4D2 = −2C1 − 4C2 = − 3

2c2
, c2(2A1 + 4A2) =

p

ρ0

,

2D1 + 4D2 = −4C2 = − 1

2c2
.

(4.22)

There are now 8 remining unknowns, and only 5 linear equations. To provide an

additional restriction an ansatz is introduced,

A1

A2

=
B1

B2

=
D0

D1

=
D1

D2

= r. (4.23)

Through a quadratic equation for r based on the relationships defined previously,

A0 = 1− 2r + 2

c2(r + 2)

p

ρ0

, A1 =
r

c2(2r + 4)

p

ρ0

, A2 =
1

c2(2r + 4)

p

ρ0

,

B1 =
r

c(2r + 4)
, B2 =

1

c(2r + 4)
,

D0 = − r

c2(r + 2)
, D1 = − 1

c2(r + 2)
, D2 = − r − 2

c2(8r + 16)
.

(4.24)
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Consequently, r = 4,−2. 4 is the sensible result, and all of the unknowns can be

resolved,

A0 = 1− 5

3c2

p

ρ0

, A1 =
1

3c2

p

ρ0

, A2 =
1

12c2

p

ρ0

,

B0 = 0, B1 =
1

3c
, B2 =

1

12c
,

C0 = 0, C1 =
1

2c2
, C2 =

1

8c2
,

D0 = − 2

3c2
, D1 = − 1

6c2
, D2 = − 1

24c2

(4.25)

Building the EDF, the final incompressible form arises,

f eqa =



1− 5P/3c2 + Sa(u), a = 0

P/3c2 + Sa(u), a = 1, 2, 3, 4

P/12c2 + Sa(u), a = 5, 6, 7, 8

(4.26)

where

Sa(u) = wa

[
3

(ea · u)

c
+

9

2

(ea · u)2

c2
− 3

2

(u · u)

c2

]
, (4.27)

and the weights are those of the standard LBE,
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wa =



4/9, a = 0

1/9, a = 1, 2, 3, 4

1/36, a = 5, 6, 7, 8

Based on the rest particle EDF of equation 4.26 the pressure is defined by

P = −c
2

5

[
2

c2
(u · u) + 3f eq0 − 3

]
, (4.28)

a function of velocity squared. The Chapman-Enskog expansion detailed in appendix

A.1 yields a viscosity ν = c2

3
(τ − 1

2
)δt as well as the incompressible mass and momen-

tum equations 4.1 and 4.2.

Remark 2 If we replace Constant = 1 with Constant = 0, the “1” is replaced by

“0” in the a = 0 term in equation 4.26. Subsequently the “3” is replaced by “0” in

equation 4.28. This pattern holds for other Constant assignments. As predicted, the

numerical result is the same, as verified in section 3.
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4.2.3 Discussion and Comparison

The above derivation, combined with the Chapman-Enskog expansion of the ap-

pendix, has resolved several objectives of this study:

• An unambiguous EDF results;

• There is no speed of sound equation in the model, hence no need to have an

equation of state for pressure and density;

• Clarity and rationale is established for the form of the EDF;

• The derivation is broadly applicable to other dimensions and lattice discretisa-

tions;

• Compressibility effects are eliminated and the model is valid for transient flows.

It is important to note that the form arrived at through this alternative approach

satisfies equations 4.5 from [25]. However, other parameter values valid in equations

4.5 do not result from the ansatz approach taken here. In the next section, we show

that these other parameter values are not favorable, and it is the form found in

equation 4.26 that produces consistently valid results.
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4.3 Numerical Results

Developing channel flow, the lid driven cavity (2D and 3D), Womersley flow, and the

backward facing step serve as validation and verification tools for the form derived

in the previous section. Wall boundary conditions are implemented with the halfway

bounceback scheme, evaluated in He et al. [90]. Velocity inlets and moving walls are

based on the revised halfway bounceback scheme of Ladd [36], where the momentum

product is replaced by the form of momentum conservation of equation 4.2. Pres-

sure boundaries are implemented with Chens extrapolation scheme [69]. Prescribed

velocities are 0.1 in LB units to stay within the low Ma limit.

Additionally, alternative parameters satisfying equation set 4.5 are implemented and

evaluated. The evaluated sets (σ,λ,γ) are:

G1 = {3/8, 1/4, 1/8};

G2 = {9/20, 2/5, 1/20};

G3 = {7/12, 2/3,−1/12}.

The work of Banda et al. [26] was also considered. In their D2Q8 stability analysis

they suggest a different parametric condition from Guo et al. [25], λ = 4γ. While ap-

propriate for the 8-velocity lattice, the condition lacks generality, and quickly becomes
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unstable in our numerical tests. The D2Q9 EDF is no longer valid when the incom-

pressible mass conservation principle is applied. However, the conditions presented

were not designed to resolve the exact objectives we resolve in this work.

Results are found which are in line with those found by Guo et al. [25]. This is to

be expected as the boundary condition impelementation is one of the few differences,

and the form derived here holds the same values as Guo et al. [25] chose to employ

in their numerical tests.

4.3.1 Developing Channel Flow

A uniform inlet velocity is applied on the left side of the domain, and exits three

channel heights to the right. No slip walls are applied to the top and bottom infinite

parallel plates. Since the length of the channel exceeds the estimated entrance length

for the simulated Re = 10, the simulation has a simply analytic solution from White

[13]: ux(x,H/2) = 1.5uin. The simplicity of the flow makes it a good test of the

alternate sets, G1-3, as well as the order of accuracy of the method. A root mean

square (RMS) residual of 5e-15 is achieved.

In table 4.1, the form derived in this work results in valid solutions while alternates

result in fatal instabilities. The maximum x-velocity is in good agreement with the

analytic solution, the maximum y-velocity at all grids is machine zero.
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A brief look at the results in figure 4.2 shows second order accuracy, in keeping with

the standard LBE evaluated by Meng and Zhang [91].

Figure 4.3 displays convergence history in the standard and incompressible LBE to

demonstrate improved simulation speed in the form of the present work. For develop-

ing channel flow on a 27x9 grid the incompressible scheme achieves the convergence

criterion with about 15% fewer steps. This behavior is somewhat analogous to the

preconditioned LBE of Guo et al. [92], but not limited to steady flows. Additionally,

for the given grid and boundary conditions the error of the standard LBE is 1.002%

where the incompressible form has an error two orders of magnitude smaller.

Table 4.1
Maximum velocity and analytic error in developing channel flow.

* Indicates fatal instability.

Grid
Present Work G1 G2 G3
umax % Err umax % Err umax % Err umax % Err

9 x 3 1.4841 1.057 1.4868 0.8784 1.4839 1.075 * *
15 x 5 1.5070 0.4670 1.5179 1.192 1.5033 0.2214 * *
21 x 7 1.5005 0.03580 1.5064 0.4247 1.4987 0.08547 * *
27 x 9 1.4998 0.01653 1.5055 0.3684 1.4982 0.1221 * *

4.3.2 Lid Driven Cavity

Incompressible flow in the lid driven cavity is well documented in literature. The

geometry is simple, with only the top wall moving and all boundaries no slip flat

walls. However, complex flow patterns form. Re = 100, 400, 1000 are compared
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Figure 4.2: Developing channel flow convergence of umax error with node
count.

against the work of Marchi et al. [93]. The alternate parameter values G1-3 are again

attempted. The grid is 257x257 and convergence is taken to RMS 1e-9.

Table 4.2 displays the reference values for comparison, table 4.3 and 4.4 display results

for the present work and the first alternative set G1, respectively. G2-3 results are

not presented because both proved fatally unstable at every Re. This indicates that

as parameters approach those presented in this work, the solution comes closer to a

proper incompressible form. The results of table 4.3 and figures 4.4 and 4.5 show

excellent agreement with higher grid results from literature. For this grid, stable

simulations exist to Re 5000 while the standard LBE quickly becomes fatally unstable

at the same Re.

An additional important point is made in this numerical test: the LBE derived in

this work satisfies the zero velocity divergence requirement (∇ · u = 0). The finite
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Figure 4.3: Developing channel flow residual history of standard and in-
compressible LBEs.

difference method is applied to each node at each time step. A second-order central

differencing is performed on the interior nodes, and a second-order backward differ-

encing scheme on the boundary nodes. To within numerical error, the zero-divergence

requirement is well satisfied.

In this simulation both Constant = 0 and 1 have been utilized. The results are

identical at every decimal place, as expected. It is only critical that a constant value

is used, and the derivation is consistent throughout.
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Table 4.2
Reference values from Marchi et al. lid driven cavity study.

Re ux uy ||u||
100 −2.0915e− 1 5.7537e− 2 2.1692e− 1
400 −1.1505e− 1 5.2058e− 2 1.2628e− 1
1000 −6.2056e− 2 2.5799e− 2 6.7205e− 2

Table 4.3
Center point values of lid driven cavity with velocity magnitude variance

from Marchi et al.. Present work.

Re
Present Work

ux uy ||u|| % Diff
100 −2.0907e− 1 5.7547e− 2 2.1685e− 1 3.2270e− 2
400 −1.1515e− 1 5.2057e− 2 1.2637e− 1 7.1511e− 2
1000 −6.2147e− 2 2.5778e− 2 6.7281e− 2 1.1333e− 1

Table 4.4
Center point values of lid driven cavity with velocity magnitude variance

from Marchi et al.. Set G1.

Re
G1

ux uy ||u|| % Err
100 −2.0910e− 1 5.7534e− 2 2.1687e− 1 2.3050e− 2
400 −1.1514e− 1 5.2061e− 2 1.2636e− 1 6.3351e− 2
1000 ∗ ∗ ∗ ∗

4.3.3 Womersley Flow

Pulsation of flow in a 2D channel is presented here to demonstrate the transient capa-

bility of the incompressible LBE derived here. Womersley [94] presented an analytical

solution for validation. On a 41x41 grid, a time-dependent pressure difference dP is

applied. The no slip walls and viscosity resist velocity field changes, but compress-

ibility effects should not. The pressure fluctuation is governed by
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Figure 4.4: Comparison of x and y-velocities along the centerlines in the
lid driven cavity flow for Re 1000 with Marchi et al..

∂P

∂x
= Re

(
Aeiωt

)
(4.29)

where A = dP/Lx.

The Womersley number describes the relationship of transient inertial forces to vis-

cous forces:

α = Ly

√
ω

ν
, (4.30)

and is necessary in determining the analytical solution:
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Figure 4.5: Lid driven cavity flow streamlines at Re 1000.

ux(y, t) = Re

(
iAeiωt

ω

(
1− cos(λ(2y/Ly − 1))

cosλ

))
(4.31)

where λ =
√
−iα2. α is varied in this study by altering ω to show good time-dependent

behavior, a major benefit of this approach. Additionally, to display incompressiblity,

multiple values for dP are used.

Figure 4.6 displays the time dependency of velocity along the y-coordinate of the

line at x = Lx/2 for dP =0.001 and α = 3.98. umax is determined from the Hagen-

Poiseuille equation. The analytical results of equation 4.31 are shown as a solid line,

and the numerical results as discrete shapes. Agreement is excellent at each 1/8
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fraction of the period past 100000 time steps, and at each point along the centerline.

To further validate the method and display its strengths, table 4.5 shows results as

a function of dP , ω (as shown by change in α) compared with He and Luo [24].

Maximum Ma is also shown as a potential source of compressibility error amongst

numerical errors. As in the transient test of Guo et al. [25], the present fully incom-

pressible scheme results are generally one-half to a full order of magnitude better than

[24]. The difference is likely due to the potential for some transient compressibility

in [24], since the domain is discretised identically.

Figure 4.6: Womersley flow centerline velocity as a function of time and y.
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Table 4.5
Womersley flow maximum velocity error at x = Lx/2 from each y point,

from each T/8.

dP α Mamax % Err Present % Err [24]
0.001 3.98 0.0449 0.00690 0.0182
0.01 3.98 0.449 0.116 0.753
0.001 6.29 0.0163 0.0258 0.247
0.01 6.29 0.163 0.134 1.02

4.3.4 Backward Facing Step

The backward facing step combines the inlet/outlet characteristics of the developing

channel flow with the vortex generation and shedding nature of the lid driven cavity.

Literature provides accurate values for the vortex reattachment point with a variety of

Re. Here, Re = 100, 300, and 800 are simulated with grids 492x50, 892x90, 4002x200,

respectively. Convergence is taken to RMS 1e-9. Agreement with the work of Erturk

[95] for an expansion ratio of 2.0 is excellent, as seen in table 4.6.

Table 4.6
Reattachment point for the backward facing step.

Re Present Work Reference % Err
100 2.920 2.922 0.06845
300 6.778 6.751 0.3999
800 11.87 11.83 0.3381

Figure 4.7: Backward facing step streamlines for Re 800.
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4.3.5 3D Lid Driven Cavity

For 3D verification the procedure laid out in section 2 must be utilized on the D3Q19

lattice (figure 4.8) with weights

Figure 4.8: D3Q19 Lattice.

wa =



1
3

for a = 0

1
18

for a = 1− 6

1
36

for a = 7− 18

The resultant EDF with
∑
f eqa = 0 is
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f eqa =



1− 2P/9c2 + Sa(u), a = 0

P/54c2 + Sa(u), a = 1− 6

P/108c2 + Sa(u), a = 7− 18

(4.32)

where Sa(u) is defined in equation 4.27. Pressure is derived in the same way, and is

now

P = −9c2

2

[
1

2c2
(u · u) + f eq0 − 1

]
. (4.33)

With these parameters definitively resolved, the 3D cubic lid driven is solvable. The

cavity is defined with no slip stationary walls except for the top, translating in the +x

direction, and 1013 nodes. For Re 100 and 400 the results compare excellently with

the incompressible work of Wong and Baker [96]. ux values along the z-direction on a

line at x = y = 0 are plotted in figures 4.9 and 4.10, where the center of the cavity is

the datum (0, 0, 0). Convergence is taken to RMS 1e-6. Additionally, velocity vectors

are plotted on the plane placed at y=0 in figures 4.11 and 4.12.
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Figure 4.9: 3D lid driven cavity Re 100 x-velocity along the line y=x=0

4.4 Conclusions

This paper presents an alternative approach to deriving an incompressible lattice

Boltzmann equation for steady and unsteady flow simulations by utilizing appropri-

ate ansatzes. The result is a single form of the equilibrium distribution function

which recovers the fully incompressible Navier-Stokes equations through the multi-

scale Chapman-Enskog expansion. The explicit procedure was extended to additional

dimensions and lattices. No speed of sound equation is needed in this model, hence

no equation of state is needed. Canonical flow simulations yield results in good

agreement with the incompressible analytical solutions and literature. The numerical
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Figure 4.10: 3D lid driven cavity Re 400 x-velocity along the line y=x=0.

results also show that alternate parameters and forms in previous literature are not as

favorable, and that there is an advantage over pseudo-incompressible and compress-

ible forms. The form presented here is thus clarified as necessary for incompressible

physics within the lattice Boltzmann method.

4.5 MRT-iLBE for the D2Q9 Form

For accurate representation of small passages in porous media (chapters 6 and 7)

and stability of high-Re (chapter 5) aspects of this work, an MRT version of the

iLBE derived above is required. Appendix A.2 combines the results of section 4.2.2
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Figure 4.11: 3D lid driven cavity Re 100 velocity at y=0.

with the procedure of Bouzidi et al. [72] to produce an MRT-iLBE without density

variation. Verification of the scheme is performed in the relevant chapters (5-6) by

utilizing porous medium experimental fits, and numerical values from literature on

Hopf bifurcation with increasing Re.
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Figure 4.12: 3D lid driven cavity Re 400 velocity at y=0.
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Chapter 5

2D DNS and 3D LES with the

iLBE1

Chapter 4 presented an unambiguous iLBE which can resolve the compressibility

error of previous turbulence studies within the LBM such as [29, 30]. To simulate

macroscopic incompressible chaotic and transition flows the initial study utilizes an

approach without modeling (DNS) by resolving the smallest length scales approxi-

mated by Kolmogorov [76]. The 2D lid driven cavity is utilized due to the plethora of

literature on transition and turbulence [78–81], and for computational efficiency due

to the high node count.

1Material contained in this chapter was previously published in Advances in Applied Mathematics
and Mechanics [3].
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It is acknowledged here that turbulence is a fundamentally 3D phenomenon. However,

solutions across a variety of regimes in fewer than three dimensions are mathematically

valid tests of method accuracy and stability. Analogous features of 3D turbulence

exist in 2D, such as bifurcations leading to increasing levels of instability, transition,

Re as a driving parameter for instability amplitude, and chaotic non-repeating time

histories. These characteristics are well established in the citations of the previous

paragraph.

In order to explore the 3D characteristics of transition the Vreman SGS LES approach

[82] is utilized in a cubic lid driven cavity. While every scale of transition and tur-

bulence is desired in a simulation (as in DNS), the smallest scales play little role in

meaningful results [76] while driving computational costs to intractable levels. The

SGS provides the increased viscous diffusion these small scales contribute when not

resolved. A Smagorinsky-Lilly SGS is inappropriate when transition is involved [82],

therefore the locally varying and potentially vanishing Vreman model is implemented

with the iLBE here. As a result, this study adds to the knowledge which was previ-

ously dominated by the original compressible LBE and standard Smagorinsky SGS

[97].
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5.1 Transition Flow with an Incompressible Lat-

tice Boltzmann Equation (2D DNS)2

Abstract

Direct numerical simulations of the transition process from steady laminar to chaotic

flow are considered in this study with the relatively new incompressible lattice Boltz-

mann equation. Numerically, a multiple relaxation time fully incompressible lattice

Boltzmann equation is implemented in a 2D driven cavity. Spatial discretization is

2nd-order accurate, and the Kolmogorov length scale estimation based on Reynolds

number (Re) dictates grid resolution. Initial simulations show the method to be

accurate for steady laminar flows, while higher Re simulations reveal periodic flow

behavior consistent with an initial Hopf bifurcation at Re 7,988. Non-repeating flow

behavior is observed in the phase space trajectories above Re 13,063, and is evidence

of the transition to a chaotic flow regime. Finally, flows at Reynolds numbers above

the chaotic transition point are simulated and found with statistical properties in

good agreement with literature.

2The material contained in this section was previously published in Advances in Applied Mathematics
and Mechanics [3].
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5.1.1 Introduction

Characteristics of flow transition from steady state to transience and from transience

to self-sustaining chaos and instability is an active area of research. While transition

to chaos (turbulence in 3D) and separation remain unsolved problems in engineering

flow analysis, direct numerical simulation (DNS) work continues to provide insight

to the physics in an effort to develop improved turbulence transition and separation

models. Past application of the lattice Boltzmann method to chaos and turbulence

simulation, such as channel flow by Lammers et al., suffered from the compressibility

error [29, 30] inherent in the standard lattice Boltzmann equation [20, 27]. This work

extends the study of transitional flow states using an incompressible lattice Boltz-

mann method (iLBM) and a Multiple Relaxation Time (MRT) collision operator.

Although physical turbulence is a three dimensional phenomenon, solutions to the

flow equations in two dimensions can exhibit similar randomness.

Bifurcations, chaos, and energy dissipation, among other characteristics, exist, while

vortex stretching is absent. With this in mind, this work provides a numerical solution

benchmark using MRT-iLBM for comparison with past 2D work.

The Lattice Boltzmann Method (LBM) is a relative newcomer in the field of Com-

putational Fluid Dynamics (CFD), having been first described in 1988 [18]. This
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class of analysis methodology can take many forms. For continuum flow analysis,

parameters are chosen such that numerical solutions to the Navier-Stokes equations

are recovered through solving the discrete Boltzmann equation. While the behavior

of Navier-Stokes is replicated by LBM, the underlying solver algorithms for LBM are

considerably simpler than an equivalent Navier-Stokes solver. Reduced computations-

per step reduce overall roundoff error and make the MRT-iLBM a less numerically

noisy solution method [31].

Lid-driven cavity flow (LDC) is a canonical flow case useful in evaluating methodology

[98]. Literature reporting results for steady and transient laminar, transitional, and

chaotic flows using a wide variety of methods is extensive. The complexity of the flow

despite simple boundaries, along with the plethora of results, makes it an excellent

verification tool. Steady state results were obtained by Ghia et al. [99] using a

vorticity-stream function approach up to moderate Reynolds numbers. More recently,

fine-grid results were reported by Marchi et al. [93] using finite volume Navier-Stokes.

LBM has been applied to the LDC flow in the past by Hou et al. [100], who point

out the compressibility error present in their results.

Past studies of 2D driven cavity flow have reported various values for the Reynolds

number at the onset of transient behavior, dependent on the balance of noisiness

and dissipation of the numerical method used. Cazemier et al. [80] analyzed this

flow using both DNS and a reduced-order model deduced from Proper Orthogonal
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Decomposition of a DNS simulation performed at Re 22,000. Peng et al. [78] reported

the Reynolds numbers of the first Hopf bifurcation and the turbulence transition, but

the sixth order numerical method applied in the domain center was contaminated by

larger error terms from the second order spatial scheme applied at the boundaries. It

is possible that numerical noise from the combination of low-order accurate numerics

and typical grid resolution at the walls - where the highest gradients occur - served as a

source of artificial excitation and contributed error to the determination of transitional

Re. Marie et al. [101] show the dispersion and diffusion error of LBM to be excellent

across all wavenumbers, suggesting it is well-suited for DNS analysis.

Several authors report steady solutions of the 2D lid driven cavity flow at Reynolds

numbers upwards of 30,000 by omitting time dependency terms in the modeled equa-

tions. Failure of these simulations to allow solution unsteadiness belies the fact that

the existence of steady flow depends upon Reynolds number-dependent stability cri-

teria. Solution unsteadiness below Re 10,000 has been well established since at least

the work of Cazemier et al. [80].

The objectives of this work are to establish the MRT-iLBM method as an accurate

approach for DNS and compute critical low- to moderate-Reynolds number results

using the method. These objectives will be accomplished by first verifying the MRT-

iLBM method by showing agreement with literature results for steady, laminar 2D

LDC flow. Subsequent objectives include identifying the Reynolds number of the first
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Hopf bifurcation (the onset of transience) and the Reynolds number of the transition

to self-sustaining chaos, respectively, and compare with literature results. Lastly,

MRT-iLBM results of DNS at two chaotic Reynolds numbers are reported. Statistical

results for these simulations are compared with literature; they are informative about

the flow structure but also demonstrate the ability of MRT-iLBM to be effective for

performing DNS.

5.1.2 Incompressible Multiple Relaxation Time Lattice

Boltzmann Equation

The standard and incompressible lattice Boltzmann equation (LBE) have the same

basic form:

fi(x+ δx, t+ δt) = fi(x, t)−
1

τ
(fi − f eqi ) (5.1)

where fi are the probability distributions of discrete velocity space, τ is the collision

relaxation time, and f eqi is the equilibrium distribution [20].

Whether one arrives at a compressible flow in the incompressible limit, or a truly

incompressible flow depends on the equilibrium distribution term [27]. In the standard
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LBE this term takes the form:

f eqi = ωiρ

(
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− (u · u)

2c2
s

)
(5.2)

where ci are the lattice velocities vector, u is the flow velocity vector, ρ is the density,

ωi are the distribution weights, and cs is the speed of sound for a given lattice. For

flows utilizing this formulation, the pressure is defined as P = c2
sρ, and the relaxation

time is related to the kinematic viscosity as ν = c2
s

(
τ − 1

2

)
δt [20].

The following mass and momentum conservation laws are then satisfied:

∑
i

fi = ρ ,
∑
i

cifi = ρu. (5.3)

For this study, 2D physics is simulated with nine discrete velocities abbreviated as

D2Q9. Figure 5.1 graphically demonstrates the D2Q9 lattice. The velocity vectors

are then:

cx = {0, 1, 0,−1, 0, 1,−1,−1, 1}, cy = {0, 0, 1, 0,−1, 1, 1,−1,−1}. (5.4)

Weights ωi correlate inversely with magnitude of each vector:
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ω0 =
4

9
, ω1,2,3,4 =

1

9
, ω5,6,7,8 =

1

36
. (5.5)

Figure 5.1: D2Q9 lattice structure

To resolve the issue of compressibility present in the standard LBE, the equilibrium

distribution can be modified by replacing the conservation equations of formulation

5.3 with [1, 25, 27]:

∑
i

fi = Constant,
∑
i

cifi = u, uu+
P

ρ0

I =
∑
i

cicifi (5.6)

and with Constant set to 1, the equilibrium distribution function becomes:

f eqi =



1− 5
3

1
c2
P + Si, for i = 0

1
3

1
c2
P + Si, for i = 1, 2, 3, 4

1
12

1
c2
P + Si, for i = 5, 6, 7, 8

(5.7)
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Si = ωi

[
3

(ci · u)

c
+

9

2

(ci · u)2

c2
− 3

2

(u · u)

c2

]
, (5.8)

which recovers the fully incompressible hydrodynamic equations for the D2Q9 case

and yields for the lattice speed and kinematic viscosity c = δx
δt

and ν = c2

3

(
τ − 1

2

)
δt,

respectively. Pressure is calculated from:

P =
3c2

5
[1− f eq0 + S0] (5.9)

LBM fundamentals presented thus far have utilized the single relaxation time (SRT)

Bhatnagar-Gross-Krook (BGK) collision model [66]. With increasing Re, stability

and boundary location become problematic in the SRT-LBE [72]. While instability

is reduced with the iLBE, a multiple relaxation time form further improves LBM for

transitional and chaotic flows, as in this study. The MRT-iLBE is expressed as:

fi (x+ δx, t+ δt) = fi(x, t)−
∑
j

Λij(fj − f eqj ), (5.10)

with Λij replacing the inverse SRT value, 1
τ
. Several values of the new collision

matrix are functions of τ . Computations actually occur in moment space, in which

each moment has a physical correlation, and are then transformed back to velocity
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space for macroscopic meaning. Appendix A.2 contains the derivation and complete

components of the MRT-iLBE used for this study.

5.1.3 Simulation Parameters

The lid driven cavity configuration as simulated in this work is shown in Figure

5.2. The four walls of the cavity were treated with second order accurate halfway

bounce back (HBB) boundary conditions [102]. Simulation similarity is governed by

Reynolds number Re shown in Eq. 5.11. Characteristic time tc is computed according

to Eq. 5.12. These relations contain symbols for wall velocity (uwall) and kinematic

viscosity (ν). The subscript lb signifies that the value used is in lattice Boltzmann

units. Numbers presented throughout this work are nondimensional unless otherwise

indicated.

Re =
uwall,lbLlb

νlb
(5.11)

tc =
Llb

uwall,lb
(5.12)

Since the numerics employed are second order both at the boundaries and domain
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interior, flow feature resolution for this DNS simulation is dependent upon high lattice

site counts. This contrasts with the use of larger grid spacing and a higher order

spatial differencing based on the flow solution following a given polynominal order

between the nodes. Kolmogorov’s theory of turbulent length scales is the basis for

discretizing each direction by Re0.75 lattice sites as the standard grid sizing used in

this work, including flow in the laminar regime.The accuracy of this approximation

is reported upon with the results of the chaotic flows at Re 15,000 and Re 20,000. A

grid dependence check at Re 1,000 is done to show that the MRT-iLBM method is

comparable to literature results at lower spatial resolution.

u
wall

x

y

L

L

Δx Δx/2

Lattice Sites

Figure 5.2: Lid driven cavity simulation setup and detail of HBB boundary
condition

All simulations were started from at-rest initial conditions. As such, there was a burn-

in period during which the mean flow values changed as the flow reached a steady
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state or quasi-steady oscillatory condition. All data presented in this work was taken

after the burn-in time was complete.

User specified Reynolds numbers and grid sizes were used to determine the requisite

kinematic viscosity according to Eq. 5.11 . Wall velocity was held at the constant

value of 0.1 throughout these simulations.

Low Reynolds numbers with steady results (Re 100, 400, 1,000) were simulated to

validate the MRT-iLBM code. Comparison of these steady results with literature are

given in the Results section. The first Hopf bifurcation was identified by interpolating

from transient result data from Reynolds numbers just above the bifurcation Re. To

determine the Reynolds number of the transition to chaos, one non-random transient

Reynolds number and one chaotic (random and transient) Reynolds number were

found, and then a binary search was performed successively until the desired accuracy

was achieved. Fully chaotic results were then generated at two higher Reynolds

numbers to provide DNS data for the statistical analysis.

5.1.3.1 Post Processing

Statistical properties of the chaotic flows are generated by a series of post-processing

codes which made computations from sets of both macroscopic (u,v) and mesoscopic

(fi) data which were output periodically as the MRT-iLBM code ran. Data included
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in the statistics met two conditions. First, the mean values of the code were required

to be in a steady state which only existed beyond a minimum burn-in time. Second,

the frequency of data output was required to be adequate to capture the highest

frequency components of the system response and not produce aliasing.

Mean velocities are computed by averaging each of the i velocity components, whose

instantaneous value is written Ui, at each time step k (N total) for all flow snapshots

available. Eq. 5.13 describes the average for Ui and the pressure P , which has

an analogous computation. The square of the fluctuating ith velocity component of

velocity u2
i is computed from the mean and the available snapshot data.

〈Ui〉 =
1

N

N∑
k

Uk
i 〈Pi〉 =

1

N

N∑
k

P k (5.13)

〈u2
i 〉 =

1

N

N∑
k

(
Uk
i − 〈Ui〉

)2
(5.14)

AR =

√
〈u2

1〉
〈u2

2〉
(5.15)

To assess the anisotropy in the chaotic flows, the ratio of RMS components of fluc-

tuating velocity was computed per Eq. 5.15. This quantity is referred to as the
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anisotropy ratio, AR. According to the definition, AR is the multiplier between RMS

fluctuating velocity in the x direction and RMS fluctuating velocity in the y direc-

tion; and shows how various regions of the flow field are dominated by one fluctuating

velocity component or the other.

Local strain rate tensor components Sij were computed based on the work of Li and

Wang [103]. Namely, the mesoscopic properties of the flow were incorporated into the

components of the 2D strain rate tensor as shown in Eq. 5.16. Data files periodically

output by the code contained instantaneous snapshots of the strain rate tensor field

at each lattice site in the domain. A code was run post-process to compute the

mean and the mean fluctuating components of the strain rate tensor, 〈Sij〉 and sij,

respectively. What we will call the turbulence kinetic energy dissipation ε for 2D

flows, was computed according to Equation 5.17.

Sij ≈
−3

2ρc2τ∆t

∑
α

ci,αcj,α (fpost,α − f eqα ) (5.16)

ε = 2ν〈sijsij〉 (5.17)

Kolmogorov length scale was computed for each lattice site in the domain according

to the relation given in Equation 5.18. ηk quantifies the spatial resolution of the
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simulation; values less than one indicate that the smallest and shortest-lived flow

features are not fully captured.

ηk =

(
ν3

ε

) 1
4

(5.18)

Phase space diagrams provide one tool for assessing the flow state. Namely, traces

which converge to a single point are steady state, those which repeat the same values

periodically are simply transient, and those which display non-repeating behavior are

chaotic. Put another way, the random aspect of post-transition flows are identified

when an arbitrarily large number of terms can be included in a predictive model

without achieving arbitrarily accurate solutions for any later time.

5.1.4 Results

5.1.4.1 Verifying MRT-iLBM with steady LDC Flow

Steady-state results from the MRT-iLBM method at three Reynolds numbers are

compared with literature results in order to check the correctness of the MRT-iLBM

code. Table 5.1 shows the x and y velocity components of the MRT-iLBM com-

putations and the same from recent literature. Additionally the resultant velocity
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components are listed, and the percent difference between literature and MRT-iLBM

resultant velocities are shown to be small, less than 0.15% for the three Reynolds

numbers considered.

Figure 5.3 provides a more complete picture of the velocity profile comparison for

Re 1,000. Both x and y velocity components are plotted for both MRT-iLBM and

literature results. The good agreement between the two demonstrates both accuracy

of the MRT-iLBM and adequacy of the lattice discretization to capture near-wall

gradients.
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Figure 5.3: Re 1,000 velocity profiles: u velocity at x = 0.5, v velocity at
y = 0.5, iLBM and Marchi et al.

Table 5.1
Steady-State Predictions of iLBM Match Literature to within 0.2%

Re
iLBM [93] ||u||%diff

ux uy ||u|| ux uy ||u||
100 -2.091e-1 5.754e-2 2.169e-1 -2.091e-1 5.754e-2 2.169e-1 -0.003
400 -1.152e-1 5.206e-2 1.263e-1 -1.151e-1 5.206e-2 1.262e-1 0.081

1,000 -6.219e-2 2.578e-2 6.732e-2 -6.206e-2 2.580e-2 6.720e-2 0.176
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The final point on steady laminar flow analysis is to compare the LBM-iMRT results

to literature results on a comparable grid. Using the Marchi[93] result as the baseline

for comparison, Table 5.2 shows that the current method produces comparable results

(within 1.2%) on the coarser 100x100 grid. Thus, equivalence between this method

and Navier-Stokes based codes for non-DNS simulations is demonstrated. Secondly,

the minor difference in results between the coarser and finer grids using the present

method show that the spacing criteria used produces grid independent results to

within one percent.

Table 5.2
Comparison between literature and the current method on a coarse grid at

Re 1,000

ux uy ||u|| ||u||%diff
Ghia[99] (129x129) -6.080e-2 2.526e-2 6.584e-2 -2.02

Marchi[93] (1024x1024) -6.205e-2 2.579e-2 6.720e-2 -
This work (coarse grid, 100x100) -6.292e-2 2.565e-2 6.795e-2 1.12

This work (nominal grid, 178x178) -6.219e-2 2.578e-2 6.732e-2 0.19

5.1.4.2 The First Hopf Bifurcation and Transition to Chaos

The first Hopf bifurcation point is the Reynolds number at which the flow changes

from a steady solution to one which shows oscillatory behavior. Following the method

of Cazemier et al. [80], the bifurcation point can be predicted by using the change in

the square of signal oscillation amplitude A2
amp with Reynolds number to determine

the point at which A2
amp goes to zero. In this case Aamp was taken to be equal to

the difference between maximum and minimum values of u velocity at point (0.6,0.6).
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Oscillation amplitudes were taken from MRT-iLBM simulations of flow at Re 8,100,

8,200, and 8,300 on grids of 854x854, 862x862, and 870x870 respectively. Figure 5.4a

shows the progression of the phase space plots in question. Potential sensitivity of

oscillation amplitude to changes in the spatial discretization was checked by perform-

ing two simulations at Re 9,000. The first simulation used the nominal grid sizing

of this work (Re0.75 lattice sites in each direction - a 925x925 grid), and the second

reduced the grid count by 25%. Oscillation frequency and amplitudes were identical

between the two, whereas the mean was reduced by 0.3% in the lower resolution case.

Through this, the Re0.75 estimate was deemed as acceptable for grid independence.

Figure 5.4b shows the linear interpolation based on the square of oscillation amplitude

data from the three Reynolds numbers named above. As has been observed previously

[80], the oscillation amplitude grows with the square of the Reynolds number beyond

the first Hopf bifurcation, so the use of a linear interpolation based on the square is

appropriate. The intersection of this curve fit equation with 0 oscillation amplitude

was then taken as the first Hopf Bifurcation point for this case, and it is predicted

to occur at Re 7,988 by the MRT-iLBM. This value is corroborated by the fact that

the flow at Re 8,000 showed a nonzero but very small oscillating amplitude. Error

was estimated by fitting a second order polynomial to data points at Re 8,100, 8,200,

and 8,300 and computing the difference between the zero amplitude Reynolds number

of that equation and the linear interpolation method. The ReHopf predicted by this

second order polynomial is 8,007. This difference being indicative of the leading error
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term for the linear interpolation, the uncertainty of ± 19 is associated with the linear

interpolation estimate of 7,988.
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Table 5.3
Summary of literature Hopf bifurcation predictions for 2D lid driven cavity

Reference Methodology ReHopf

[80] Oscillation amplitude interpolation to zero, N-S DNS 7,972
[80] POD model prediction by model constructed from Re 22k DNS

results
7,819

[78] Interpolation to zero amplitude, 200x200 grid, 6th order inner, 2nd

order bc’s
7,704

[79] Direct dynamical system stability analysis 7,763
[81] Lyapunov Stabilty Analysis 8,000 - 8,050

This Study Interpolation to zero amplitude, MRT-iLBM DNS 7,988 ± 19

Table 5.3 summarizes literature which predicted the first Hopf bifurcation of the 2D

lid driven cavity flow according to the method used and the reported Reynolds number

of the bifurcation. The ReHopf result of this work agrees well with the prior DNS

simulation of Cazemier et al. [80], and the Lyupanov stability analysis of Bruneau

and Saad [81]. While within 4% of the previous results, the results of Peng et al. [78],

Poliashenko and Aidun [79], and the POD-based prediction of Cazemier et al. [80]
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are somewhat lower than the value reported here. The POD method of Cazemier et

al. was a valuable and informative exercise in mathematics but not useful as a tool

for general flow analysis.

Peng et al. [78] embellishes upon the bifurcation behavior of the LDC flow solution

at Reynolds numbers between ReHopf and the Re 11,000. It is known that the flow

undergoes bifurcations to become two-periodic and then one-periodic as the Reynolds

number is increased beyond the first Hopf bifurcation. Eventually stability conditions

in the flow change such that perturbations are not damped out over time, but cause

further flow perturbations. Transition to chaos is assessed by checking how faithfully

the phase space traces repeat the same circuit. Figure 5.5 shows the difference in phase

space plots between two Reynolds numbers which lie on either side of transition. Both

plots capture 1 million time steps and a few tens of characteristics times of the flow;

the flow at Re 13,000 has perfect repeatability of the solution. Alternatively, Re

13,125 is identifiable as post-transitional because of the lack of any repetition in the

phase space trace.

5.1.4.3 Post-Transition Statistics

This section reports results of DNS simulations at two high, post-transition, Reynolds

numbers: Re 15,000 and Re 20,000. Per the Kolmogorov length estimate, the Re

15,000 case was run on a 1356 x 1356 grid and the Re 20,000 case on a 1,682 x
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Figure 5.5: Results from point (0.6,0.6) before transition (Re 13,000) and
after (Re 13,125)

1,682 grids with uniform lattice spacing and the halfway bounce back (HBB) bound-

ary condition as shown in Figure 5.2. Statistical results for mean flow, turbulence

kinetic energy (2D version) (tke), turbulent energy dissipation ε (2D version), the

Kolmogorov length scale ηk, and the anisotropy of the instabilities are presented.

Figure 5.6 shows the statistical results from Re 15,000. Mean streamlines show good

agreement with published results, including capture of the very small self- contained

mean flow circulation zones in the bottom corners of the domain. ε shows high values

near the top right corner of the domain where flow from the driven wall impinges

upon the neighboring non-moving wall. Following mean streamlines, the tke does

not show appreciable variation until the bottom wall is reached. This fact suggests

that the very high dissipation rates in the upper right corner were keeping the tke

magnitude low, and it is not until the bottom wall that tke production overcomes

dissipation to produce notable tke values.
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Kolmogorov lengthscale is another result in Figure 5.6. The results tell that, relative

to the grid length, the Kolmogorov length scale ranges from one-tenth of the grid

spacing in busy areas to 271 times the grid spacing near the inactive domain center.

A significant aspect of this result is the fact that, near the top and right side walls

of the domain, the smallest scales of the flow are less than the scales which are

being resolved by this analysis. Although somewhat displeasing, this result is in

line with other DNS simulations which report grid spacing which is greater than the

Kolmogorov length in very limited parts of the domain.

Figure 5.7 shows time averaged coefficient of pressure in the domain, and the

anisotropy ratio AR described in Section 3.1. Pressure coefficient shows typical

trends; higher pressure arises to turn the flow away from walls and corners, whereas

low pressures exist in the center of flow features which involve circulation. This pres-

sure field is noteworthy in that it comes from equation 5.9 which does not rely on a

speed of sound.

Anisotropy Ratio, shown in Figure 5.7, shows some trends not seen in simple flat

plate turbulence. Anisotropy ratios greater than 1 indicate that the fluctuation in

the x component of velocity is greater than than the fluctuation of the y compo-

nent. As expected, near-wall anisotropy ratios show that the dominant component of

fluctuating velocity is from the component parallel to the wall, since the other com-

ponent is dampened by the impermeability of the wall. Anisotropy ratio profiles on
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all non-driven walls show a reversal of the prevailing fluctuating velocity component

in between the near-wall flow and the more calm flow in the domain center.
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Figure 5.6: Re 15,000 statistical property field contour plots

Statistical results for Re 20,000 are shown in Figure 5.8. Streamlines of the mean

flow show various self-contained circulation zones in the domain corners consistent

with other literature results. A configuration of mean flow circulation zones similar to

that of Re 15,000 results develops. Conceptually, increased diffusion of flow quantities

due to turbulence-like mixing is clear when considering the mean flow streamlines of
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these cases. For example, the mean flow streamlines show tangential, shearing flow

at the boundaries between circulation zones. This description leaves out the fact that

the real flow has transient eddy features which convect flow across the mean flow

streamline boundaries and enhance mixing. Mean flow energy loss is another side

effect of the turbulence-like chaos which is not indicated by Figures 5.6a and 5.8a.

Because the chaos, like turbulence, has no net time-averaged effect it constitutes a

lower or “less useful” form of energy in the flow.

Energy dissipation rate results of Figure 5.8c are similar to the Re 15,000 results,

with high values on the driven wall and right hand wall. Also similar to the Re

15,000 results, the high dissipation tends to suppress overall tke until later in the

flow, analogous to developing flow in a flat plate. The field of Kolmogorov length

scale for Re 20,000 is qualitatively similar to that of Re 15,000. With the uniform

grid spacing used, Kolmogorov length scales near the driven and right side wall are
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one tenth of the resolved length scales. Near the center of the domain where the flow

is less active, the smallest flow features are approximated as 235 times larger than

the resolved scales. As noted previously, DNS simulations typically have a small part

of the domain which is under- resolved. It is noteworthy that the largest Kolmogorov

scale in this case is smaller than that of Re 15,000 - although Kolmogorov’s theory

says nothing of the largest scales. On the other hand, the fact that using Re0.75

nodes in each direction leads the smallest computed ηk values in the two simulations

to be the same agrees with Kolmogorov’s theory that the smallest length scales are

proportional to Re−0.75.

Figure 5.9 presents results for the pressure coefficient and anisotropy ratio. Both of

these fields have analogous behavior to their Re 15,000 counterparts, with variation

in magnitudes. Flow-turning high pressure zones are present in near corners and wall

centers, while low pressure zones exist at centers of mean flow circulation. With this

Re we have the ability to make some direct qualitative comparison with literature

[104]. In the work of Zhang et al.[104], the similarity of the pressure field features

is very similar, including how the pressure changes away for the corners, the main

contour band shapes radiating from the center of the domain, and even the appearance

of contour bands on the bottom at approximately x=0.6, on the left at approximately

y=0.3, and the top at approximately x=0.2. Variations do appear, but this is expected

as the work of Zhang et al.[104] uses the weakly compressible LBE and a coarser grid.

Interestingly, their work presents a ”viscosity counteracting” modification to the MRT
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form which has unique value in such high-Re simulation, and is considered for future

work.

An interesting feature of these flows is the anisotropy ratio on the non-driven walls

for both cases. Whereas flat plate turbulent flow anisotropy maintains the order of

highest- to-lowest as a function of distance from the wall, the LDC unstable results

presented here do not. Consider the bottom wall of Re 20,000. AR at the wall is

much greater than 1 because u2 is damped due to the presence of the wall, and this
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is consistent with flat plate statistics. For the LDC, however, away from the wall AR

reaches values as low as 0.6. In this location the RMS fluctuating velocity component

perpendicular to the wall is larger than the corresponding wall-parallel component.

This trend differs from flat plate flow results.

5.1.5 Conclusions

We have utilized the relatively new incompressible lattice Boltzmann equation with

a multiple relaxation time collision operator as a direct numerical simulation tool.

Steady laminar to chaotic flow transition has been documented with comparisons to

literature and attention drawn to interesting phenomena such as the anisotropy ratio

throughout the field. As a steady laminar solver, the method is well established,

but it is also clear the simulation of macroscopic flows experiencing instabilities and
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chaos is also well founded. The agreement of our method quantitatively at the first

Hopf bifurcation with the majority of literature, and the qualitative agreement post-

transition indicates that not only is the method valuable as a continuum flow solver,

but also good resolution with a 2nd-order method may be more appropriate than a

higher-order method with lower resolution. Future work interests include the viscosity

counteracting modification to the MRT form for further high-Re benefits in the LBM.
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5.2 3D LES of a Driven Cavity

Simulating a third dimension is a substantial challenge at higher Re due to the ex-

ponential cost of DNS. For example, performing the Re 20000 study of section 5.1

in 3D, with the same required resolution, would result in 4.75 billion nodes (66.5

billion degrees-of-freedom) with the lowest velocity 3D lattice. This is untenable with

current computational power. To provide a workable solution, without resorting to a

full modeling technique which would smear details, LES is implemented. To further

provide generality, the Vreman sub-grid scale model is employed, which is designed

to be valid through all regimes, steady laminar to fully turbulent [82].

Vreman’s LES subgrid model is well studied for turbulent flows [82], so focus here

is on validating this relatively new approach, in combination with the iLBE of this

dissertation, in non-turbulent and intermittent transitional regimes. Per the landmark

study by Vreman, the contribution of the SGS model should approach zero in non-

turbulent regimes and yield the same results as incompressible solutions without

models employed. The structure of Vreman’s SGS should be valid for LBM, even the

incompressible version, despite being originally applied to the N-S simulations.

To verify the iLBE with the Vreman SGS in transitory Re a series of simulations are

performed and compared against the steady and unsteady data of literature utilizing

114



non-iLBE solvers. It is expected the SGS will play an appropriate role across the flow

regimes, unlike the standard Smagorinsky-Lilly SGS, and predict a good match for

ReHopf .

Due to the simplicity of geometry, yet complex flow physics, the lid driven cavity is

again utilized. This also allows comparison to be made with the 2D DNS work of the

previous section. The Re at which instability is generated will be predicted with the

same methodology as section 5.1 and compared to the resources there.

5.2.1 Simulation Parameters

For direct comparison to the 2D configuration of the previous section (5.1), an open

cube approximating a domain with width >> height is employed. As in the 2D

cavity, the front, back, and bottom walls are all stationary no-slip, and the lid a

no-slip wall translating in the positive x-direction. The third dimension introduced

to this simulation is enforced with periodic bounds at z = 0 and Nz. The 2D study

is then effectively the center plane of the current 3D cavity.

As in the 2D case the Reynolds number is defined as

Re =
uwallL

ν
(5.19)
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where uwall is the speed of the top wall, L is the width, height, and depth of the cavity,

and ν is the viscosity. All properties and results are in LB and non-dimensionalized

units; Re and non-dimensionalized units would be the same in a physical system. The

second-order accurate half-way bounce-back scheme is utilized on all BCs, except

the periodic bounds, which simply copy the missing lattice information from one

z-coordinate extent to the other. A simulation characteristic time is defined as

tc =
L

uwall
. (5.20)

Since the motivation for an LES approach is to avoid extreme grid requirements,

practical computational concerns and past literature guide the choice of node count.

Further economy is achieved by utilizing the iLBE of chapter 4 with the D3Q15

approach, seen in figure 5.10. Similarly, the equilibrium distribution function, lattice

weights, and pressure computation follow in equations 5.21 - 5.23, respectively.

f eqa =



1− 7
3

1
c2
P + Sa for a = 0

1
3

1
c2
P + Sa for a = 1− 6

1
24

1
c2
P + Sa for a = 7− 14

(5.21)

where
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Figure 5.10: Lattice of D3Q15 LBE

Sa(u) = wa

[
3

(ea · u)

c
+

9

2

(ea · u)2

c2
− 3

2

(u · u)

c2

]
, (5.22)

wa =



2
9

for a = 0

1
9

for a = 1− 6

1
72

for a = 7− 14

Based on the rest particle EDF of equation 5.21 the pressure is defined by
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P = −c
2

7

[
1

c2
(u · u) + 3f eq0 − 3

]
, (5.23)

Additionally, because of the MRT approach, greater stability and reduced numerical

dissipation are achieved than SRT [31, 71]. [105] does find that a D3Q18 version

(D3Q19 without a rest particle) can provide some increased stability over the D3Q15

model, but with the expected cost increase of computing additional velocities per

lattice node (and their contributions to macroscopic properties). Thus, for practical

purposes, the 15 velocity model was selected of these two. However, motivation

for higher velocity models (as high as D3Q27) exists based on comments found in

[105, 106].

Simulations proceed from a zero-velocity initial condition and require a substantial

burn-in time to reach the unchanging mean flow variables characteristic of turbu-

lence. The burn-in time was surpassed before results were taken to ensure proper

data collection, as measured by the achievement of time-independence of mean flow

variables.

To ensure the low-Ma limit is obeyed, uwall is held at a constant, which is always

below 0.17. ν is altered to produce the correct Re. Due to the direct relationship

between spatial resolution and Re in the LBM, ν can become very low without DNS

level grid resolution. Even with the iMRT methodology, something additional must
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enter the computation of ν locally to ensure stability. The next section describes the

need for closure modeling, and the role of LES in physical modeling. In addition to a

more accurate physical picture, a major benefit is stabilizing solutions which would

otherwise diverge.

5.2.2 Vreman Sub-grid Scale Model

Noting the inability of the standard LES SGS model to handle laminar and transi-

tional flows, and the complexity of existing models which resolve this issue (i.e. the

dynamic Smagorinksy SGS model), Vreman derived a simpler approach [82]. The

closure model is based on the Boussinesq assumption in which viscosity is modified

by analysis of local conditions. The result is an effective viscosity (νe = ν+νturb) em-

ployed in place of the molecular viscosity of the governing equations. In the context

of the LBE, where the viscosity is represented by the collision relaxation time, this

νe modifies the collision relaxation time operator.

In the Vreman model the effective viscosity is defined by

νe = ν + c

√
Bβ

αijαij
, (5.24)

where c is related to the Smagorinsky SGS constant (Cs) by c ≈ 2.5C2
s . The remaining
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variables are computed through

αij = ∂iūj and Bβ = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23, (5.25)

where βij = ∆2
mαmiαmj and ∆m is the grid filter size in dimension m. Here, and in

meshless LBM, this is going to be 1. The standard LBM relationship between the

collision relaxation time (τ) and ν still holds, and provides the necessary modified

momentum diffusion in the collision step.

Effective viscosity then requires only the determination of the first-order spatial

derivative of velocity, similar to the standard SGS model. Importantly, turbulent

viscosity is expected to approach zero in laminar and low-Re regions both in the far

field and near walls, unlike the standard SGS model. Here the components of α are

computed using second-order finite differencing: central differencing in the majority

of the domain, and backward differencing at the boundary nodes.

As in the case of the standard SGS for LES, the value used for Cs is experimental

and solver dependent. In the standard SGS this falls between 0.1-0.2, often 0.13-0.18.

However, previous literature on the LES applied to the LBM indicates the value of Cs

may be different than when applied to the N-S equations for similar simulations [32].

Here, 0.2 is used as this causes the largest reasonable eddy viscosity contribution to
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effective viscosity. As a result, if the iLBE and Vreman SGS combination is not valid

in non-turbulent regimes the solutions will highlight the issue.

5.2.3 Statistical Processing and Post Processing

Like RANS, where the statistical properties are computed as the run progresses and

the numerics are modified, the SGS routine must be executed continuously. Unlike

RANS, most scales are explicitly resolved and thus the full solution must be post-

processed as in DNS. As such, special post-processing codes were required which took

in mesoscopic and macroscopic data at the appropriate time steps. Instantaneous data

must be produced at sufficient frequency to avoid aliasing to insure proper averaged

properties after the burn in time.

Statistical values of velocity and pressure are computed as

〈ui〉 =
1

N

N∑
k

uki and 〈P 〉 = 1
N

∑N
k P

k. (5.26)

ui are the instantaneous velocity components, P is the pressure, N is the number of

time steps, k is the time step, and the brackets 〈〉 indicate the average operator to

compute the mean components.
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5.2.4 Numerical Results

In all simulations the terms of the diagonal relaxation matrix found to be most stable,

and thus utilized, are: s0 = s3 = s5 = s7 = 1.0, s1 = s2 = 1.1, s4 = s6 = s8 = 1.2,

s9 = s10 = s11 = s12 = s13 = 1
τe

, s14 = 0.98. Additional details of parameters

necessary for, and utilized in this simulation can be found in appendix section A.2.2.

5.2.4.1 Verifying D3Q15 MRT-iLBE with Steady Flow

Laminar results of the MRT-iLBE with Vreman SGS applied to the LDC are com-

pared with section 5.1 at Re 1000, which provides verification of the method to move

to more complex simulation. Velocity along the center line on the z center plane is

compared with the same values in the 2D DNS study (itself verified against consider-

able literature) for verification (see section 5.1). Comparison of velocity components

and magnitude at the center point of the domain at Re 100, 400, and 1000 are also

presented for verification. 3D plots are of interest to show that the flow structures

extend in the “infinite” z-direction homogeneously, as well.

The analyses were run on a 1013 grid, resulting in a node count of 1,030,301, and

lattice degrees-of-freedom of 14,424,214. In addition, for each node a three-point

second order finite difference equation in each coordinate direction is solved at every
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time step. A total of 43,272,642 equations solved per time step.

For more direct comparison to the resolution of the 2D study: The grid on the plane

for which data is collected is 1012 (10,201), about six and a half times smaller than

the 2572 (66,049) grid of the 2D study. Yet when in direct comparison, table 5.4 and

figure 5.11 show excellent agreement with the SGS model engaged. The resolution

not only displays grid independence, when comparing against an 812 solution, but

the Vreman SGS model behaves in accordance with its intent: Approaching zero in

laminar flows. This is in contrast to the oversimplified Smagorinsky SGS model which

would continue to modify the viscosity inappropriately at low-Re.

Table 5.4
MRT-iLBE for D3Q15 and D2Q9 Re 100, 400, and 1000 LDC.

Re
D3Q15 MRT-iLBE D2Q9 MRT-iLBE

ux uy u ux uy u
100 −2.091e− 1 5.744e− 2 2.169e− 1 −2.091e− 2 5.754e− 2 2.169e− 2
400 −1.157e− 1 5.206e− 2 1.267e− 1 −1.152e− 2 5.206e− 2 1.263e− 2
1000 −6.255e− 2 2.569e− 2 6.762e− 2 −6.215e− 2 2.578e− 2 6.728e− 2

Figure 5.11: MRT-iLBE results between D2Q9 and D3Q15 at Re 1000.
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Also important is the modification to the kinematic viscosity due to the SGS model in

non-turbulent regimes. The traditional Smagorinsky SGS has been shown in literature

to perform poorly in low-Re flows and in the near wall regions. In figure 5.12 it is

clear that the viscosity contribution from the Vreman SGS here has almost no effect

on the molecular viscosity of the simulated fluid, and what little effect there is, is

minimized near walls, except for the high shear of the corners. The major vorticies

are outlined in the τe map, however it is important to note again that the actual τSGS

contribution is 0.16% at the extreme.

Figure 5.12: Variation of effective collision relaxation time τe (∝ νe), from
the Vreman SGS model at Re 1000.
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5.2.4.2 The Hopf Bifurcation

To predict the onset of instability as a function of Re, the method of Cazemier et

al. employed in section 5.1 is utilized again. This entails obtaining and plotting the

square of the signal oscillation amplitude (A2
amp) (the difference between velocity max

and min values) as a function of Re. Regression analysis and extrapolation reveals

the point at which A2
amp = 0, indicating the regime change. For comparison to the

2D results, these values are gathered at the point (0.6, 0.6, 0.5).

The grid for each Re is 1313, selected to benefit from the cost reduction of LES.

Following the same calculations from the steady flow verification study, the total

degrees-of-freedom per time step is 94,419,822. Combined with the time resolution

requirement, this is an expensive approach. However, if the DNS approach of the 2D

study were utilized, this number would jump to approximately 2.91e10. Over 300

times more expensive.

Figure 5.13 displays the oscillation present at the measurement point after the burn-

in time. Sufficient sampling resolution was required to avoid aliasing the data and

missing the peaks which determine amplitude. The differences are subtle as the input

parameters are intentionally similar, but the upper and lower bounds of ux change.

This data was collected for Re 8200, 8300, and 8500. The decision to utilize these

values was informed by the 2D study (for which the Hopf bifurcation occurred at Re
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= 7988), and an initial run at Re 8000 which indicated the critical Re may be slightly

higher here than in the DNS case. As in the DNS study, the Re values from which the

final result is extracted must be both above and proximate to the instability onset.

In figure 5.14a the oscillations in both x- and y-velocities are represented in a phase

space plot. The z-velocity for all simulations is machine zero, but would become of

critical interest in a fully turbulent regime. As Re drops, both major and minor axes

approach zero. It is also important to point out that each oval represents at least 10

characteristic times to display regularity in oscillation as opposed to an insufficient

and unrepresentative sample size.

The square of the amplitude of x-velocity at each Re is then plotted to develop the

line fit displayed in figure 5.14b. Basic extrapolation finds that instability sets in

at Re 8081. Comparing to the 2D plane and DNS approach, this 3D LES approach

runs 1.164 % higher. This is a good match, and within the bounds of the existing

literature, compared in table 5.5. The match is all the more impressive considering

the substantially lower node count versus the “gold standard” of DNS.

To give a more complete picture of the LES results, figures 5.15a-d present information

of interest on the center plane. Data is of the mean properties, computed after

the burn-in time and over several hundred characteristic times. As a sample, Re

8300 is presented. The streamlines display the familiar LDC patterns: a centralized

circulation region, secondary and tertiary eddies in the two bottom corners, and top

126



Figure 5.13: Oscillation of x-velocity at (0.6, 0.6, 0.5) after burn-in, at Re
8200, 8300, and 8500; top-to-bottom

left corner. Flow is generally well aligned on the top and right sides where there

is a roughly singular, compelling, momentum direction. Pressure coefficients also

follow the same pattern, with the center field close to the datum pressure due to the

relatively low local velocity. Flow is accelerated in the top left corner, where the

pressure is lowest. The top right and bottom left are where flow nearly comes to an

abrupt halt.

Effective viscosity and shear strain rate fields are related, in that it is a close relative of

shear (velocity gradient) which dictates the turbulent viscosity contribution. Thus it
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Figure 5.14: Hopf bifurcation determination

Table 5.5
Summary of literature Hopf bifurcation predictions for the lid driven cavity

(2D except for current study)

Reference Methodology ReHopf

[80] Oscillation amplitude interpolation to zero, N-S DNS 7972
[80] POD model prediction by model constructed from Re 22k DNS re-

sults
7819

[78] Interpolation to zero amplitude, 200x200 grid, 6th order inner, 2nd

order bc’s
7704

[79] Direct dynamical system stability analysis 7763
[81] Lyapunov Stabilty Analysis 8000 - 8,050
[3] Interpolation to zero amplitude, MRT-iLBM DNS 7988 ± 19

This Study Interpolation to zero amplitude, MRT-iLBM LES 8081 ± 19

isn’t surprising that the peak shear of 40 occurring at the top right corner is where the

peak viscosity occurs. Viscosity in the center represents the molecular viscosity fluid

property; the baseline to which the modeled viscosity is added. In comparison, the top

left corner with high shear is substantially higher. The Vreman model contributes

a turbulent viscosity almost equal to the constant molecular viscosity. Combined

with the high shear, this indicates that a potentially intermittent turbulence may be

beginning.
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a) Mean flow streamlines b) Pressure coefficient

c) νeff field d) Shear strain rate field

Figure 5.15: Re 8300 field properties

5.2.5 Conclusions

Utilizing the incompressible LBE of this dissertation, the Vreman SGS model has

proven to be a compatible and good pairing with the lattice Boltzmann method. In

steady laminar flows of low Re, the contribution of turbulent viscosity approached

zero, yielding solutions in good agreement with high resolution simulations free of
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models. Comparing to the “gold standard” of the 2D DNS simulation previously

conducted, the prediction of ReHopf was found to be in excellent agreement. For

3D flows, practically limited by computational power, the MRT-iLBE and Vreman

SGS are thus recommended for flows of all Reynolds numbers. The combination

realizes the low cost of the Vreman approach, relative to other transition-predictive

SGS approaches, providing an attractive alternative to the Dynamic Smagorinsky and

WALE SGS models for lattice Boltzmann, and CFD in general. Despite the low cost

of a 15 velocity model, future work should focus on higher lattice velocity models.
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Chapter 6

Substrate Generation and

Verification1

Abstract

To provide porous media substrates that are quick to generate and characterize for

lattice Boltzmann analysis, we propose a straightforward algorithm. The method

leverages the benefits of the lattice Boltzmann method, and is extensible to mul-

tiphysics flows. Several parameters allow for simple customization. The generation

algorithm and lattice Boltzmann method are reviewed, and suggested implementation

1The material contained in this chapter has been submitted to the ASME Journal of Fluids Engi-
neering [4].
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covered. Additionally, results are discussed and interpreted to evaluate the approach.

Several verification tools are employed such as Darcys law, the Ergun equation, the

Koponen correlation, a newly proposed correlation, and experimental data. Agree-

ment and repeatability are found to be excellent, suggesting this relatively simple

method is a good option for engineering studies.

6.1 Introduction

Disordered media flow analysis can provide significant design direction and research

findings across a variety of fields such as oil and gas, chemical, automotive, and

environmental engineering and sciences. However, the multiscale nature of porous

flow presents challenges not present in many areas of computational fluid dynamics

(CFD). Three length scales broadly describe most media: domain scale, representative

elementary volume (REV), and pore scale. Domain scale provides the least detail and

effectively acts as a black box. Behavior may be governed by simple pressure drop

vs. flow rate assignments. The REV scale provides more details governed by semi-

empirical correlations such as Darcy’s law, the Kozeny-Carman relation, and the

Klinkenberg, Forchheimer, and Brinkman considerations [107, 108].

It is at the pore scale where more fundamental governing equations can describe and

display the flow for deeper understanding. Unlike the previous two descriptions, the
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pore structures must be characterized, and put in a form for a discretized solution

method. There are two main approaches: Acquisition of the solid matrix by an

imaging device, such as X-ray computed tomography (CT scan), as used in [109]

and construction of the solid matrix by an algorithm that follows certain properties

[54, 110–113]. The focus here is on a simpler, but still effective algorithm construction

to provide greater flexibility, speed, and variety than a scanning process can.

Not all mathematical techniques for resolving flow fields are ideal for pore scale flows.

The choice of technique depends on important considerations like handling of complex

boundary conditions and the ease with which the scheme can be parallelized [49]. The

lattice Boltzmann method (LBM) utilizes the relatively simple bounce-back scheme

on arbitrarily complex solid surfaces and momentum inlets [24, 36], is relatively easy

to implement [49], and due to its linear nature, scales well when parallelized [114].

The lattice Boltzmann equation (LBE), however, introduces a compressibility error

for incompressible flows [20], such as most filter flows [64]. In order to reduce this

error, an incompressible method (marked with an i) is utilized here [1].

In this study, a simpler algorithm for filter substrate generation for lattice Boltzmann

analysis is proposed. A filter substrate refers to the underlying material which pro-

vides the pore structure, commonly cordierite for diesel particulate filtration. The

generated substrates are compared against semi-empirical models with an incom-

pressible lattice Boltzmann equation to verify the algorithm. Flows and conditions
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are representative of common filter conditions, such as Re < 100. Capability of the

generated substrate to handle thermal and multiphase flows and sweeps of various

porosities is discussed. Modifications for various types of porous media and three

dimensional flows are also considered for future work.

6.2 Substrate Generation and Measurement Algo-

rithm and Pseudocode

Defining the simulation domain is fundamentally a task of marking nodes of a lattice

as solid or fluid on an Nx x Ny state matrix. This state matrix must provide the

ability to control porosity, and ideally the ability to control a characteristic size. It

must also be possible to make the necessary measurements such as porosity, wetted

perimeter, and flow area to obtain characteristics like hydraulic radius and Reynolds

number (Re).

To comply with the variety of languages for LBM code implementation, a pseudocode

is presented in appendix D with broad applicability. The code provides functions not

only for the substrate generation, but also for measurement, and to flag boundary

nodes. By flagging boundary nodes during preprocessing, LBE streaming and bounce

back occurs only on the necessary nodes, introducing an efficiency improvement.
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Generation is based on the random placement of ellipses that can overlap to form more

complex shapes. Each ellipse has a major and minor axis of random radii within a

designated range of values. Nodes that fall within the ellipse are flagged as “solid” in

the state matrix. Only certain portions of the lattice are allowed to contain solids to

provide inlet and outlet areas, both of which can be dictated. To ensure these areas

are obeyed, the portions of ellipses that were assigned to the inlet and outlet areas

are reset to “fluid”. The size of the domain, number of ellipses, and radii ranges are

important choices, and will be discussed further in the verification and results section.

This compact method produces substrates with porosity within 1% of that assigned,

once calibrated. Shape of the solid substrate is more complex than if circles or squares

formed the fundamental substrate. Since an ellipse can easily be described by an

equation with a third dimension, the generation method can be readily extended. An

extension to 3D would provide a percolation threshold below 0.4, as opposed to this

initial study on two-dimension, which limits the porosity to values greater than 0.4

to avoid the zero permeability limit.

Boundaries are marked with a search algorithm, and the link(s) of the lattice between

fluid and solid nodes are recorded. As a result, operations in the LBM are performed

only where necessary. Since the perimeter computation is done in the initialization

stage, it is not repeated during simulation.

Finally, measurement is conducted based on inputs from the previous functions. The
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discrete nature of the lattice makes characterization fundamentally a counting task.

By providing porosity and wetted perimeter, the non-dimensional values that verify

and characterize the filter can be computed. These equations and implementations

are discussed in the sections on methodology and results.

Fig. 6.1 and Fig. 6.2 demonstrate samples of the generated substrates.

Figure 6.1: Sample generated substrate geometry: 50% porosity.
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Figure 6.2: Sample generated substrate geometry: 80% porosity.

6.3 The Lattice Boltzmann Method

By solving the Boltzmann equation for streaming and colliding particles, fluid flow

can be resolved in a more fundamental manner than the Navier-Stokes equations. Dis-

cretization results in the lattice Boltzmann equation, and allows for a computational

approach to fluid dynamics.

6.3.1 The Incompressible Lattice Boltzmann Equation

The LBE is stated as [115]

fi (x+ ci, t+ δt) = fi (x, t)−
1

τ
[fi (x, t)− f eqi (x, t)] , (6.1)
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where δt is the time step, f is the velocity distribution function, c = δx/δt is the lattice

speed, δx is the spatial discretization, i is the index of the lattice velocity, τ is the

collision relaxation time related to viscosity, and f eq is the equilibrium distribution

function based on the Maxwell-Boltzmann distribution.

The form of the equilibrium distribution function largely dictates the characteristics

of the flow solution. The standard form is [115]

f eqi = wiρ

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− u2

2c2
s

]
, (6.2)

where wi is the velocity weight, ρ is density, and cs is the speed of sound. Macroscopic

density and momentum are computed by

ρ =
∑
i

fi, ρu =
∑
i

cifi. (6.3)

At small Mach numbers and density variations, the error in simulating incompressible

flows is limited. For porous flows, this can pose a problem due to large pressure and

density gradients [64].

Past filtration studies have utilized an LBE which limits the compressibility error

[43] with a pseudo-compressibility approach. However, improvement in achieving an
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incompressible behavior for steady and transient flows can still be made [1]. The

incompressible singular equilibrium form is

f eqi =



1− 5P/3c2 + Si(u), i = 0

P/3c2 + Si(u), i = 1, 2, 3, 4

P/12c2 + Si(u), i = 5, 6, 7, 8

(6.4)

with

Si(u) = wi

[
3

(ci · u)

c
+

9

2

(ci · u)2

c2
− 3

2

(u · u)

c2

]
, (6.5)

where P is pressure. Density is no longer a variable, and a speed of sound is no longer

present. The macroscopic variables are computed as

u =
∑
i

cifi, P =
3c2

5
[1− f eq0 + S0(u)] (6.6)

Through the Chapman-Enskog expansion the incompressible Navier-Stokes equations

are recovered as
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∇ · u = 0, (6.7)

∂u

∂t
+∇ · (uu) = − 1

ρ0

∇P + ν∇2u. (6.8)

where viscosity and the collision relaxation time are related by

ν =
δ2
x

3δt

(
τ − 1

2

)
(6.9)

When the LBM has been applied to pore scale simulations, convergence and accuracy

were found to be compromised due to artifacts in the boundary conditions. Pan et

al. recognized this issue and found that a multiple relaxation time (MRT) form of

the LBE avoided the problem [56]. More specifically, viscosity in the single relaxation

time (SRT) form has an effect on where the boundaries are located [24]. While the

permeability should scale linearly with viscosity (all other quantities being equal),

Pan et al. finds unwanted deviations using SRT, in particular at low viscosities.

Implementing the SRT form in our own models results in the same trend.

The MRT-LBE replaces the single value τ with a collision matrix which allows each

mode to relax at a different rate. Due to these benefits, the flow solver for this study
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is the MRT-iLBE. d’Humieres introduces the MRT-LBE, and Murdock et al. provide

derivations, forms, and results of using the MRT-iLBE, which is second-order accurate

in time and space [3, 70, 106].

6.3.2 The Lattice

As previous sections have discussed, the substrate matrix is formed on, and the solu-

tion takes place on a lattice of nodes. For this study, that lattice is D2Q9, where D

labels the number of spatial dimensions, and Q labels the number of discrete veloci-

ties. Fig. 6.3 shows the lattice structure used here.

Values discussed in the section on the LBE, such as w, c, and the subscript i all

made reference to properties of this lattice. For D2Q9, wi = 4/9, 1/9, 1/9, 1/9,

1/9, 1/36, 1/36, 1/36, 1/36 for i =0-8. Since this is a square lattice, c=1 and

ci =(0,0),(1,0),(0,1),(-1,0),(0,-1),(1,1),(-1,1),(-1,-1),(1,-1) for i=0-8. In the standard

LBE case, c2
s = 1/3.

Figure 6.3: D2Q9 lattice structure.
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6.3.3 Boundary Conditions

For porous media flows, the major benefit of the LBM is boundary condition imple-

mentation. The bounce-back method is commonly implemented in LBM for complex

geometries. The algorithm is simple. As shown in Fig. 6.3, if a value for f8 streams

into a wall, it is simply returned along the lattice vector 6. Even without the perime-

ter and link search of the algorithm presented in the previous section, the boundary

conditions is easy to implement and efficient just by knowing which lattice nodes are

solid and which are fluid.

Boundaries conform to the Cartesian grid, and form a stair-step approximation to the

pore structures. While this is an approximation to potentially more complex surfaces,

it allows for implementation ease and computational efficiency, and is frequently ap-

plied to LBM filter simulations with success [43, 64]. Implementing this approach for

common filter flow conditions, we find good agreement with verification techniques

in the latter sections of this work. Accuracy of these complex boundaries is improved

with increasing global grid refinement. This can be expensive; however, the need to

refine the entire domain to capture the random distribution of small pore passages

partially negates the benefits of a local refinement approach. This simple method is

applied on all substrate surfaces in the domain.
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The same boundary method can be modified for symmetry and inlet boundary con-

ditions. To provide the free-slip behavior of symmetry bounds, the value of f8 is

specularly reflected along the lattice vector 5. For the top and bottom boundaries of

the substrate domain, this method is implemented to simulate the length of an entire

filter wall. At the inlet, the value of fi bounced back into the domain is modified with

a momentum source term to generate the desired velocity [36]. The boundary (wall,

symmetry, or inlet) is actually placed at the point halfway between solid and fluid

node, and this is accounted for in our algorithm. With this halfway interpolation, the

boundaries are second-order accurate [24, 106].

Outlets are the only boundary which cannot utilize a bounce-back scheme. Instead

an extrapolation scheme [69], similar to the finite difference method, is implemented,

which is second-order accurate.

6.3.4 Multiphysics Capability

Since transport phenomena are described by equations fundamentally similar to the

Navier-Stokes equations, the lattice Boltzmann equation described in the previous sec-

tions can be readily extended to additional physics [116]. Further, since the substrate

is generated to be complaint with the LBM, these additional transport LBEs can

be employed. Non-isothermal incompressible flow is straightforward to implement,
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and since velocity can simply be turned to zero at solids, conjugate heat transfer on

the substrate is not difficult to implement [117]. While viscosity is replaced by ther-

mal diffusivity for energy transport, the same equation can be employed with mass

diffusivity to transport the species to be filtered [118].

6.4 Verification Methodology

The following empirical and derived equations and correlations provide the basis for

utilizing the algorithm presented in a previous section for filter studies.

6.4.1 Darcy’s Law

Darcy’s law is a widely employed model relating the porosity (φ) and the ease with

which flow passes through disordered media, measured by permeability (κ). For a

fluid of viscosity ν, density ρ, and velocity u, the pressure drop should result in a

permeability given by [108]. Pressure drop in eqn. 6.10 is calculated using the average

value of pressure at the inlet and outlet, respectively.

κ =
uνρ

∇P
(6.10)
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Since the pore scale flow is being resolved, permeability is a direct result of the

simulation algorithm, as opposed to an input or tuned result. Further, with the

use of the MRT form, permeability behaved linearly with viscosity changes in our

models. The relationship between porosity and permeability is linear on a semi-log

plot. Simple calculation and expectations make this a good initial methodology for

verification of pore scale simulations.

6.4.2 Ergun Equation

The Ergun equation relates pressure losses in the form of the friction factor (f) to the

Reynolds number of a packed column and fluidized beds. The equation is a correlation

without the foundation of the Navier-Stokes equations like Darcy’s law. However, it

is a useful tool in determining the validity of methods for analyzing fluid flows in

porous media. The equation is stated here as [85]

f =
150

Re
+ 1.75 (6.11)

where Re is defined as
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Re =
uDp

ν (1− φ)
(6.12)

For three dimensions, the hydraulic diameter is defined as

Dp = 6Rh
(1− φ)

φ
(6.13)

where the hydraulic radius Rh is the ratio of flow volume to wetted surface area.

Since two dimensions are of interest in this initial study, the definition of Dp must

be modified. Since the radius is determined by the ratio of volume to surface area in

three dimensions, it is possible to “remove” one dimension from each measure in two

dimensions, yielding the ratio of flow area to wetted perimeter. This ratio reduces to

Dsphere/6 in three dimensions and Dcircle/4 in two dimensions. As a result, the two

dimensional hydraulic diameter is defined as

Dp = 4Rh
(1− φ)

φ
(6.14)

Friction factor from the simulation is computed as
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f = ∇P Dpφ
3

u (1− φ)
(6.15)

and compared with equation 6.11. On a log-log plot the Ergun equation forms a more

complex non-linear shape, providing a more challenging verification test.

6.4.3 Koponen Model

A simple exponential model is fitted to the porosity-permeability data as proposed by

Koponen et al. for creeping flow through large three dimensional random fiber webs

[119]. However, there is no theoretical basis for this model in literature as also stated

in [119]. This model is valid for values of porosity between 0.42 and 0.85. The model

has an essential shortcoming. The zero permeability limit is not reached at a finite

porosity value, called the percolation threshold, φc. Despite these shortcomings, the

model provides a good verification test for our random substrate generator, the model

being valid over a wide range of porosities and also having shown good agreement

with experimental data [120]. The relation for the model expressed in non-dimensional

form is,

κ

D2
p

=
α

exp (β (1− φ))− 1
(6.16)
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The following values are found for constants α and β in equation 6.16,

α = 2.44, β = 13.94 (6.17)

6.4.4 A New Semi-Empirical Model

A number of correlations have been proposed since the late 1940s trying to relate

porosity and permeability in porous media. Broadly, these correlations can be classi-

fied into three types:

1. Relations based on the flow through conduits model.

2. Relations based on the flow past a submerged body model.

3. Relations based on the Cell Model theory.

At low and intermediate porosities, the porous flow is modeled better by the flow

through conduits approach while at higher values of porosity the flow past a sub-

merged body model or the cell model theory gives better results [121]. The model

usually used for flow through filters, called the Kubawara model [17], is based on the

cell model theory. Hence, it slightly over-estimates the permeability values at low

porosities, as it does not take into account the effect due to surrounding fibers in the
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porous structure. A model based on the conduit-flow approach would give a better

approximation at low and intermediate porosity values. Though at higher values of

porosity, the Kubawara model gives very good results [122]. Apart from this, the

Kubawara model does not take into account the percolation threshold (the minimum

porosity of the medium above which it becomes permeable). The idea to improve

the permeability model is based on using a weighted combination of two models, a

conduit-based model for low porosity values and a submerged body model or a cell

model for higher porosities.

6.4.4.1 The Conduit-Model: Gebart Model

Gebart’s formulation is based on modeling the porous structure as a parallel array of

cylinders perpendicular to the flow direction and modeling the flow through the voids

as flow through conduits of very small cross-section or diameter [123]. If Gebart’s

derivation is followed for cylinders with elliptical cross-sections (the shape of the

solid substrate used in the substrate generator being an ellipse) instead of circles in

hexagonal arrangement, the following result is reached,

κ =
4

9π
√

6

[
1− φc
1− φ

− 1

] 5
2

(
a

3
2 b3

(a+ b)
5
2

)
(6.18)
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where a and b are the semi-major and the semi-minor axis of the ellipses respectively.

The second term on the right hand side in the above equation in brackets () is simply a

length scale squared. This can be replaced by a characteristic length scale, D2
p (chosen

to be the hydraulic diameter as defined in equation 6.14) and the above equation can

be written in non-dimensional form as follows,

κ =
4

9π
√

6

[
1− φc
1− φ

− 1

] 5
2

(6.19)

6.4.4.2 Flow Past a Submerged Body Model and the Cell Model

The model chosen for modeling permeability at higher porosities is the Brinkmann

model [124]. This model is based on flow past a swarm of spherical particles. The

resulting equation for permeability based on this model in non-dimensional form is,

κ

D2
p

=
1

72

[
3 +

4

1− φ
− 3

√
8

1− φ
− 3

]
(6.20)

The Kubawara model, based on the cell model theory [122], can also be used in place

of the Brinkmann model for intermediate and higher porosities and gives exactly

the same results. The Kubawara model also improves the range of validity, as the

Brinkmann model is not valid for porosities lower than 0.33 [121]. The relation for
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the Kubawara model in non-dimensional form is given by,

κ

D2
p

=
2

9

(
2− 9

5
(1− φ)

1
3 − φ− (1− φ)2

1− φ

)
(6.21)

6.4.4.3 Tortuosity Factor

The models mentioned above, like most permeability models suffer from the draw-

back of not including the effects of the twisted flow path through the porous structure,

quantified by the tortuosity of the porous structure, T . In the present model, an em-

pirical relation for tortuosity is used to incorporate its effect. The following correlation

is used to model tortuosity as used by Carman [121],

T =

(
Le
L

)2

(6.22)

where L is the length of the porous structure in the macroscopic flow direction and

the value of Le depends on the type of porous media under consideration. The value

of L for the present simulation is 200 units.
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6.4.4.4 Blending functions/Basis-functions

The two models are finally blended together using the idea of blending functions or

basis-functions. The particular choice of the basis set allows the Gebart form to be

the major contributor to the relation at low porosities and the Brinkmann model or

the Kubawara model to take over at high porosities > 0.75. The basis set chosen is

as follows,

w1(φ) = a1 + a2e
a3(1−φ) (6.23)

w2(φ) = b1 + b2e
b3φ (6.24)

The blending function constants a1, a2, a3, b1, b2, and b3 are found using the values

of the blending functions, w1(φ) and w2(φ) at the three nodal values that include the

end nodes φ = φc (the percolation threshold) and φ = 0.9 (the last value of φ in

our numerical simulation results) and a mid-node chosen to be φ = 0.75. The values

of the blending functions at the nodes are, w1(φc) = 1, w1(0.9) = 0, w2(φc) = 0,

w2(0.9) = 1 and w1(0.75) = w2(0.75) = 0.4. The blending functions, w1(φ) and w2(φ)

with φc = 0.135 are plotted against porosity in Fig. 6.4.
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Figure 6.4: Blending functions w1 and w2 vs. porosity.

6.4.4.5 The Model Equations

The new model is based on the idea of modeling the permeability at low porosities

using the conduit flow approach and the permeability at high porosities using the

flow past a submerged body or the cell-model approach. The combined model is

based on a more flexible form of the Gebart relation given by Nabovati et al. [84],

and the Brikmann relation or the Kubawara relation. The following non-dimensional

model equations are arrived at based on above discussions for the Brinkmann and

Kubawara models respectively. Both equations are divided by the tortuosity factor,

T . The relation for the combined Gebart-Brinkmann (GB) model is,

κ

D2
p

=
1

(α/L)2
w1(φ)

4

9π
√

6

[
1− φc
1− φ

− 1

]γ
+

1

(β/L)2
w2(φ)

1

72

[
3 +

4

1− φ
− 3

√
8

1− φ
− 3

] (6.25)
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and for the combined Gebart-Kubawara (GK) model is,

κ

D2
p

=
1

(α/L)2
w1(φ)

4

9π
√

6

[
1− φc
1− φ

− 1

]γ
+

1

(β/L)2
w2(φ)

2

9

(
2− 9

5
(1− φ)

1
3 − φ− (1− φ)2

1− φ

) (6.26)

where w1(φ) and w2(φ) are given above. Gebart derives the value of the percola-

tion threshold in the above equations for a hexagonal arrangement of circles [123].

A more exact value of φc = 0.135 is chosen from a numerical simulation of random

arrangement of ellipses as shown in [125]. The values of the blending function con-

stants for the GK model with φc = 0.135 and specific nodal conditions are a1 = 1.12,

a2 = −1.49, a3 = −2.91, b1 = −0.01, b2 = 0.005 and b3 = 5.93 respectively. As for the

Gebart-Brinkmann model, the value of φc = 0.33 is used, this being the lower limit

in the range of validity of the Brinkmann model. The values of the blending function

constants for the GB model with φc = 0.33 are found to be a1 = 1.38, a2 = −1.72,

a3 = −2.25, b1 = −0.04, b2 = 0.0064 and b3 = 5.65 respectively. A curve of the

form is then fit to the data generated from the iLBM simulation using the non-linear

least-squares method. The following values are found for constants α, β, and γ.

α = 140.90, β = 106.18, γ = 2.17 (6.27)
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α = 133.71, β = 171.51, γ = 3.84 (6.28)

The values found for γ are around the same range as found by Nabovati [84] and

Gebart [123].

6.5 Results

For each study point, a new filter is generated to demonstrate repeatability. Unless

otherwise marked, units are non-dimensional lattice Boltzmann units. Inlet velocities

are varied between 0.001 and 0.1 depending on porosity, for low Mach numbers, and

outlet pressures are 1.0. All values are initialized to 0 and the solution proceeds until

convergence is achieved at an RMS velocity change of 10−9. In all cases, τ = 1.0, so

Re is computed and reported.

A number of grid sensitivity tests indicate that porosities greater than about 0.8 can

utilize a grid of only 300 x 401 nodes, while lower porosities require a grid of 300 x

601 to ensure effective flow passages. 50 nodes upstream and downstream of the filter

section bring the boundary conditions sufficiently far from the high gradients of the

complex filter flow, leaving a 200 node-wide effective filter wall. The domain can be

visualized as shown in figure 6.5. While both the number and radii of ellipses can
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be used to control porosity, the number of ellipses is modified and radii ranges are

assigned as 5-10 nodes here. This forms substrates more in line with cordierite, but

other disordered media may be better matched by adjusting the allowed radii.

Figure 6.5: Computational fitler domain and boundaries.

Velocity fields of the sample filter substrates in figure 6.1 and figure 6.2 are visualized

in figure 6.6 and figure 6.7, respectively. Velocities are normalized by the inlet value.

The apparent rivulets are the flow paths through the substrate, with darker colors

representing higher velocities, and the lighter colors signifying low velocity (the zero

velocity of the substrate solids is the lightest). Visually, the flow paths are sensible,

and the greatest mass flow occurs where resistance is lowest.
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Figure 6.6: Velocity field at 50% porosity (Re 2.6).

6.5.1 Verification by Darcy’s Law

In figure 6.8 permeability is plotted as a function of porosity for five filters at different

porosities, at three different velocities. The goal is to evaluate if permeability of the

generated filter is intrinsic, and if the relationship is linear on a semi-log plot.

In all cases, it is shown that permeability is independent of the specific filter and

velocity. Permeability is only a function of porosity, within numerical error.
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Figure 6.7: Velocity field at 80% porosity (Re 49).

Figure 6.8: Porosity vs. permeability at multiple velocities.

6.5.2 Verification by Ergun Equation

For five filters of porosities 0.5, 0.6, 0.7, 0.8, and 0.9 a variety of inlet velocities were

applied to vary Re. Friction factor at each Re was computed and plotted on a log-log
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scale in figure 6.9. The Ergun equation is plotted with the data as a solid line.

Figure 6.9: Re vs. friction factor at multiple velocities and porosities,
compared to Ergun equation.

The results provide a good match to the correlation. Since visual comparison to

the empirical correlation is important in this case, it is worth considering the results

of other studies. When set beside figure 6.4-2 of Bird’s Transport Phenomena [85],

the filter substrate generated by the algorithm of this study, and analyzed by the

MRT-iLBE, is at least as good a match as experimental results from previous works.

6.5.3 Verification by Porosity-Permeability Correlations

Permeability is evaluated at different values of porosity generated using the random

substrate generator. The values of permeability are non-dimensionalized using the

hydraulic diameter, Dp. The non-dimensional permeability, κ/D2
p is then plotted
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against porosity, and compared against existing Koponen correlation [119] and the

new porosity-permeability models developed in section 4.

6.5.3.1 Verification by Koponen Model

An equation of the form 6.26 is fitted to the iLBM simulation data and the values

of non-dimensional permeability, κ/D2
p from the numerical simulation produce an

excellent fit with the Koponen correlation within its valid range (0.42 < φ < 0.85)

[119], as seen in figure 6.10 and figure 6.11, cementing the effectiveness of the presented

random substrate generator.

Figure 6.10: Non-dimensional permeability vs. porosity, fit to the Koponen
model.
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Figure 6.11: Semilog plot: Non-dimensional permeability vs. porosity, fit
to the Koponen model.

6.5.3.2 Verification by Gebart-Brinkmann (GB) Model

As explained in the previous section, the GB model better approximates the un-

derlying physics of flow through porous media capturing the essential concept of

percolation threshold at low porosities and at the same time providing sound results

at high porosities in agreement with previous models. The model strongly verifies

our substrate generator showing that it is in compliance with the physics of porous

flows at low as well as high porosities as can be seen in figures 6.12 and 6.13.

6.5.3.3 Verification by Gebart-Kubawara (GK) Model

The GK model fit to the data in figures 6.14 and 6.15 essentially shows the same

trend as the results in the previous section for the GB model in figures 6.12 and 6.13.
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Figure 6.12: Non-dimensional permeability vs. porosity, fit to the GB
model.

Figure 6.13: Semilog plot: Non-dimensional permeability vs. porosity, fit
to the GB model.

This result is expected as explained in previous sections. The flow at high porosities

in porous media can be modeled using the Cell Model theory as in the GK model or

the flow past a submerged body theory as in the GB model. Both models are known

to show similar results as stated in [122]. An additional benefit of the GK model is

its wider range of validity at low porosities in comparison to the GB model.
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Figure 6.14: Non-dimensional permeability vs. porosity, fit to the GK
model.

Figure 6.15: Semilog plot: Non-dimensional permeability vs. porosity, fit
to the GK model.

6.5.4 Experimental Verification

Finally the data for non-dimensional permeability found using the iLBM simulation

and the random substrate generator is compared against data from experiments in

[119, 120]. The experiments in [119, 120] were performed with fiber mats and fibrous
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filters and the permeability was non-dimensionalized using a characteristic diameter,

Dc = 5. Therefore, the experimental results were scaled by a factor of D2
c/D

2
p,avg and

then compared with our simulation results. The value of Dp,avg is taken to be the

average of all values of Dp in the plotted range of φ. For the present simulation, the

value of Dp,avg is 12.43. The experimental results show very good agreement with our

simulation data as shown in figure 6.16. This confirms the idea that our substrate

generator can simulate different types of porous media effectively.

Figure 6.16: Semilog plot: Non-dimensional permeability vs. porosity.

6.6 Conclusions

Filtration and flows through disordered porous media play a substantial role in many

physical and engineering processes. However, methods for obtaining or generating

substrate geometry for the well-suited lattice Boltzmann method can be cumbersome

or physically prohibitive. This work provides a pseudocode and description of a
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method fundamentally built on randomly sized and placed ellipses which is flexible,

quick, and easy to implement for engineering studies. The subsequent results section

utilized well established semi-empirical tools to test the methods validity, such as

the Ergun equation and the Koponen correlation. The data collected from such runs

produced intricate well-visualized images for pore scale understanding, something not

possible with model equations or representative volume analyses. More importantly,

the results showed excellent agreement ranging from the fundamental Darcys law

to the most complex correlations and multi-substrate experimental data. Due to

the methods ability to produce very complex shapes and patterns from what is a

fundamentally simple shape, the ellipse, the performance matches physical scan and

more complex generation methods without over complicating a key step in many

studies. Thus, it is recommended as a porous media study tool.

Not only is the method shown to repeatedly produce valid substrates, the study re-

veals important CFD methodology in pore-scale analysis. A singular form incompress-

ible multiple relaxation time lattice Boltzmann equation was important in limiting

compressibility effects and small geometry feature artifacts. The bounceback scheme,

and its variants, handle the inherently random geometry in a tractable manner. Rea-

sonable lattice Boltzmann unit boundary condition values for primitive variables such

as velocity and pressure are also a result of the successful analyses. This study adds

merit to the growing interest in the lattice Boltzmann method in complex geometry

flows.
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Of additional interest is that the study of this method resulted in a secondary devel-

opment in the form of a blending-function based correlation describing permeability

variations in different types of porous media over a wider porosity range. Each of the

contributing model equations describes the phenomena in different porosity regimes,

but together increases the breadth of validity. The blending-function correlations are

valid at porosities as high as 0.9. The model also successfully incorporates the phe-

nomenon of zero permeability at a low finite value of porosity, (percolation threshold).

This essentially helps to differentiate between porosity and effective porosity which

is of utmost significance in all real porous media.

Since porous media is commonly a filtration mechanism, multiphysics capabilities

are an interest in future studies. Conjugate heat transfer in non-isothermal filter

flows should be straightforward based on the recent lattice Boltzmann literature. A

multitude of methods are available for multiphase transport, deposition, and ero-

sion, including layered advection-diffusion lattice Boltzmann equations and lattice

gas cellular automata, both compatible with the substrates generated by the studied

algorithm. Also of future interest is the extension to three dimensions, which is pos-

sible due to the fundamental use of basic mathematical equations valid in two and

three dimensions to turn simple shapes into complex patterns.
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Chapter 7

Multiphysics and PM Filtration

Research objectives 1, 5, and 6 have been achieved and validated in the preceding

chapters. Thus the initial focus in this chapter is objectives 3 and 4, the last con-

stituents to objective 7. This particle transport and capture, and conjugate heat

transfer methodology is incorporated to realize the ultimate goal of an after treat-

ment model which offers advances beyond previous literature. Several approaches

are employed to quantitatively validate and verify the approaches, but ultimately,

parametric studies must be employed to qualitatively verify the model, as in previous

literature. Fortunately, there are several correct trends and order-of-magnitude mea-

sures of filtration activity available in modeling and experimentally focused literature.

Relationships between physical and lattice Boltzmann units which have been applied

to obtain physically meaningful results are presented and derived in appendix C.
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7.1 Heat Transfer

It is well established that the D2Q9 lattice with the standard EDF 3.4 is sufficient

for recovery of the non-linear NS equations as well as the uncoupled linear advection-

diffusion equation 3.15 [51]. However, if fewer lattice velocities can be utilized for the

simplified energy equation, then greater computational efficiency can be achieved on

large and complex grids. This section shows that the simpler D2Q4 lattice is sufficient

and accurate for the thermal physics of interest to the dissertation.

7.1.1 Recovery of the Advection-Diffusion Equation

The first way in which the D2Q4 lattice is found to be sufficient is through the

Chapman-Enskog expansion. In appendix B.2 the procedure is utilized with a four

velocity lattice, and simplified EDF (second equation of set 3.17). The result is

recovery of the desired equation, 3.15.

7.1.2 Numerical Results

To test the findings of appendix B, two complex flows are resolved and compared with

both the D2Q9 and D2Q4 lattices, the lid driven cavity, and microchannel parallel
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plate flow. The results of section 4.2.2 (SRT-iLBE) serve as the flow solver.

7.1.2.1 Thermal Lid Driven Cavity

In the LDC simulation, the top plate is both translating in the +x-direction and

maintaining a constant Tlb = 1.0 which advects and diffuses into the flow. All walls

are no-slip. The side walls are adiabatic, and the bottom is maintained at a constant

Tlb = 0.1 to remove energy from the system. Thermal boundaries are implemented

with a half-way bounce-back condition similar to the flow BC. Re 100, 400, and 1000

are evaluated, both forming a complex flow and thermal simulation to reliably check

the D2Q4 capability. The Pr in both cases is 0.71. A 257x257 grid is utilized in all

cases and convergence is achieved when both RMS velocity and temperature residuals

are below 1.0e− 6.

Table 7.1
Temperature at points along the vertical x centerline of the LDC with

D2Q4 and D2Q9.

y/Ny
Re 100 Re 400 Re 1000

Q4 Q9 Q4 Q9 Q4 Q9
0.2 0.5094 0.5097 0.8656 0.8653 0.8902 0.8892
0.4 0.8037 0.8039 0.8969 0.8949 0.8691 0.8669
0.5 0.8634 0.8631 0.8881 0.8857 0.8699 0.8673
0.6 0.8797 0.8787 0.8877 0.8851 0.8698 0.8672
0.8 0.8509 0.8498 0.8713 0.8695 0.8715 0.8697

Across all Re, the D2Q4 version was 26% faster, on average, than the D2Q9. The

agreement between the two methods, shown in table 7.1 is excellent, being as close as
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Figure 7.1: Re 1000 LDC temperature contours, D2Q4 left and D2Q9
right.

any two different numerical methods are likely to be. Temperature contours in figure

7.1 are virtually identical.

7.1.2.2 Conjugate Heat Transfer-Channel Flow

To inspect the D2Q4 and D2Q9 solutions with conjugate heat transfer a channel flow

with wall thickness similar to the channel height is considered. Figure 7.2 displays the

domain and table 7.2 summarizes the parameters. A four velocity and nine velocity

lattice is applied to both the solid and fluid domains. The benefits of LBM for

conjugate heat transfer (CHT) are realized here, and no special treatment besides a

change in thermal diffusivity is required for the relevant domain. Half-way bounce-

back is utilized at the interface for the no-slip boundary between fluid and solid

domains. A constant body force drives the flow to represent a pressure gradient, and
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periodic boundary conditions are enforced at inlet and outlet. A constant temperature

inlet is applied, and the flow convects heat out of the system as it passes by the plates.

The plates generate a constant heat and the non-interface walls are adiabatic. The

Buick-Greated scheme [126] is used for the flow driving body force and to treat the

heat generation as a body force in the thermal LBE. A 200x120 grid is utilized in all

cases and convergence is achieved when both RMS velocity and temperature residuals

are below 1.0e− 6.

Contour lines are compared in figure 7.3 and the flow centerline temperatures are

compared at several points along the channel axis in table 7.3. Again, agreement is

excellent with centerline variation at the studied points of less than 0.4%, and the

contour lines being nearly identical, showing that for the physics of interest here, a

D2Q4 lattice is sufficient.

Figure 7.2: Conjugate heat transfer channel flow schematic.

Based on these results, it is strongly suggested that the D3Q6 lattice is proper for a
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Table 7.2
Heated channel flow parameters (LB units).

Parameter Value Parameter Value

Q̇s 3.0e− 8 h 40
bf 3.0e− 6 Tin 1.0

αf : αs 4.0 ν 0.167

Figure 7.3: Conjugate heat transfer developing temperature profiles, D2Q4
top and D2Q9 bottom.

3D form of the advection-diffusion equation as well.
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Table 7.3
Temperate at points along the centerline in the heated channel flow, D2Q4

and D2Q9.

x/Nx Q4 Q9
0.2 1.044 1.043
0.4 1.081 1.078
0.5 1.097 1.094
0.6 1.112 1.108
0.8 1.138 1.134

7.2 Particle Transport and Deposition

7.2.1 Diffusion, Advection, and Deposition Bases

An Eulerian-LBE approach is utilized as described in the methodology section 3.1.7.

Mass fraction (Y ) replaces the transported variable, ρ in the standard LBE. Diffusion

of the particles is controlled by the collision relaxation time τY , governed by the mass

diffusivity of particles estimated to be 100 nm in air, a Sc value of 95.1, from [127].

This is a departure from the methodology of Yamamoto’s papers [43, 44] where τY is

set equal to τ with no justification or explanation. This is an inappropriate assignment

since particle diffusion is two orders-of-magnitude lower than momentum diffusion.

Therefore, based on our circumstances and Sc, τy : τ = 0.0866, not 1 as in the

Yamamoto works. Drag on the particles, and the relative momentum of each phase,

means the particles share the same velocity field as the fluid flow.
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Through the drag and diffusion forces, particles come close to, or in contact with the

substrate and will deposit and be removed from the flow. A certain percentage of

the particles will be close enough, and the molecular adhesion forces in the proper

state, for deposition to occur. The mechanisms of deposition are extremely complex

and local-condition-dependent, so the full simulation of the deposition and sticking

activity is not conducted here. To the authors knowledge, no such simulation is

successful on scales in the µm order-of-magnitude regime. LBE-Lagrange literature

discussed in section 2.3.1 simulates some of these molecule, atomic, and subatomic

forces, but on scales much smaller than evaluated here, required for application.

7.2.2 Implementation on a Lattice

In this discrete model, close is defined as a lattice node adjacent to the solid. If

the lattice node is thought of as the center of a lattice cell, occupied throughout

by the concentration of particles, some will actually be closer to the substrate than

others and/or be in a better location for the attractive forces to act. Therefore, a

probabilistic approach is taken. Particles on a lattice node adjacent to the substrate

deposit with probability Ps, and continue to advect and diffuse with probability 1−Ps.

As a result, two values for Y are tracked. Y1 is available for transport and is utilized

in the LBE evolution equation, and Y2 which is the amount deposited and unavailable
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for transport. Particles are thus being removed from the flow, creating the filtration

effect. Eventually a node/cell becomes loaded when Y2 = 1, and that cell can no longer

transport particles or fluid. The thermal characteristics are also altered. Figure

7.4 displays the progress of deposition in time. Filtration does not end there, as

the nodes adjacent to the now solidified particle-loaded node are available to collect

more particles per the defined rules. An erosion model could be introduced here if

another probability were to define conversion of Y2 back to Y1. To provide additional

sophistication to the model, sticking on a particular boundary node can only proceed

if a search algorithm concludes there are at least three other nearby boundary nodes.

This prevents formation of unrealistic long growths which would be unstable due to

fluid flow momentum.

Figure 7.4: Deposition progression.
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7.2.3 Numerical Results

The purpose is to assess validity quantitatively with the conservation principles, and

qualitatively with what we would expect from the rules implemented. For example, we

know that particle mass must be conserved, in addition to fluid mass. In a filtration

system where the domain is effectively a control volume, the statement which must

be satisfied is

∂m

∂t

∣∣∣∣
CV

−
(
∂m

∂t

∣∣∣∣
in

− ∂m

∂t

∣∣∣∣
out

)
= 0. (7.1)

Qualitatively, the flow should be dominated by advection over diffusion due to em-

ployed Sc, with some diffusion still visible. As a result, the unsteady nature of the

particle concentration should follow that of the the velocity field. The creeping Stokes

flow present in most filtration means that collection should occur relatively evenly,

but with some greater front loading.

7.2.3.1 Backward Facing Step

Only transport mechanisms are first studied with the backward facing step. From

initial conditions of zero velocity and zero particle concentration flow begins to enter

176



the domain with a parabolic profile and constant species concentration. The vortex

formation after the step distributes the particles, and the shorter time scale of diffusion

transport limits distribution across the flow streamlines.

The definitive D2Q9 incompressible solver is used. The simulation has a velocity inlet

and pressure outlet. The walls are no-slip. A constant mass fraction of 1.6e − 4 is

applied at the inlet and the domain is unpopulated with particles initially. However,

all data are presented as nondimensionalized values, so a mass fraction of one here

represents a value equal to the inlet. A step height Re of 300 is utilized to demonstrate

transport in a complex flow. Development is pictured in figure 7.5 at regular time

steps. Viscosity dominates mass diffusion.

At a relatively coarse grid of 721x79 the mass balances to less than 0.5% at the steady

state. At a more refined grid of 901x99 the mass balances to 0.125%, and at 1081x119

it is under 0.03%. Mass is conserved and the rate of convergence is higher order.

In examining figure 7.5, it is clear that qualitative metrics are met. Advection dom-

inates and the development of vortices in the flow is immediately followed by the

particle concentration Y . Only in more advanced stages is diffusion evident from the

lack of sharp edges in the concentration and smearing perpendicular to the local flow

direction. In comparison, the same simulation with Sc = 1 is shown at ts = 20000 in

figure 7.6. While advection still clearly dominates, the particles have thoroughly dif-

fused to occupy parts of the domain which do not receive as much direct flow through
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ts             = 1000

ts             = 4000

ts             = 7000

ts             = 10000

ts             = 15000

ts             = 20000

Figure 7.5: Advection and (weak) diffusion of particles in backward facing
step.

advection. No sharp distinction remains between particle laden and particle-free flow.

The scale of Y is the same to present a clear trend.

This result draws attention to why it is critical to correct the assumption related to
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Sc and collision relaxation time in Yamamoto’s works [43, 44].

Figure 7.6: Advection and stronger diffusion of particles than figure 7.5 at
ts = 20000.

7.2.3.2 Cylinder in Flow

To test deposition, a no-slip cylinder in a cross flow is made available for particle

sequestration per the capture algorithm. A single cylinder in a flow offers several ad-

vantages for validation purposes such as the similarity between a grouping of cylinders

and a filter substrate, and focused visualization of the process. In order to accelerate

the simulation without altering the bases or validity of the assumption, the inlet mass

flow rate of particles in is set high by combining a particle concentration of 1.6e− 4

with a relatively high ulb = 0.1. Additionally, Ps is set to 80%, D is equal to ν, and

a coarse grid of 201x100 is utilized.

Quantitatively, mass balance is measured with equation 7.1 by summation of: the

known inlet mass, resultant outlet mass, and the sum of mass sequestered in the de-

posited soot “nodes/cells” around the cylinder. All computation is based on constant

PM density and lattice cell “volume”. Qualitatively, the pattern of formation around

the cylinder and the change in streamlines diverting around the blocked nodes are
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tracked in time.

Figures 7.7, 7.8, and 7.9 show the progress of deposition in time. Figure 7.10 shows

the change in streamlines in time as deposition diverts flow. As one layer is laid down

the next begins collecting on top. As is expected for creeping flow, the collection

occurs predominantly at the front where there is a limited stagnation zone. Once

this process starts, further deposition favors the front. Flow diverts around any mass

collection at each step. This more complex task of balancing mass, analyzed by

discretizing the Reynolds transport theorem:

∂

∂t

∫
V

Y dV =

∫
S

Y (u · n)dA (7.2)

is satisfied to within 3%, which for such a coarse grid, a simulation which can never

reach a true steady state, first-order geometry representation, and a tractable process,

is considered good.

To test parameter sensitivity and change in qualitative patterns, an additional simu-

lation is run on the same grid, but with a quarter the first sticking probability. Not

only is the collected PM at ts = 300000 notably lower, but the distribution is more

even. This is expected since particles which usually stick to the front half of the

cylinder are now available for downstream flow and deposition. Figure 7.11 displays
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the PM deposition concentration at ts = 300000. Where 80% sticking probability

resulted in 7 layers of soot deposition on the front and 5 at the rear, 20% results in

only 5 layers at the front, and 4 at the rear.

ts             = 0

ts             = 10000

Figure 7.7: PM deposition on cylinder in flow: initial condition and depo-
sition to ts = 10000.
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ts             = 50000

ts             = 100000

Figure 7.8: PM deposition on cylinder in flow: ts = 50000− 100000.
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ts             = 200000

ts             = 300000

Figure 7.9: PM deposition on cylinder in flow: ts = 200000− 300000.
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ts             = 10000

ts             = 100000

ts             = 300000

Figure 7.10: Streamline changes due to PM deposition ts = 100000 −
300000.
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Figure 7.11: PM deposition at ts = 300000 with low sticking probability.
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7.3 Full Coupling in a Filtration Model

A comprehensive parallelized multiphysics code has been the largest and most central

objective of this dissertation. In this section, all prevoius research except the turbu-

lence study has been synthesized and implemented. Several porosities and sticking

probabilities will be tested to show the proper patterns of filtration and thermal de-

velopment. In addition to studying patterns in the filter as a whole through a series

of images, all cases track species and temperature development along a line running

from inlet to outlet halfway along the substrate, as well as the pressure increase at the

inlet. Simulations end when the collection of particulate matter causes a substantial

restriction of flow, representative of a loading filter.

Velocities and temperatures are normalized by the inlet value, and pressure by the

outlet. Position is normalized by filter wall thickness (Lfilter). These values are then

shifted so that the actual filter wall begins at 0, negative values are the inlet area,

and values greater than 1 are the outlet area. Species concentration is reported on a

scale of 0 to 1 since these are absolute values and represent no concentration and full

deposition, respectively. A characteristic time is defined as

tc =
2Lfilter
uin

. (7.3)
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Additionally, a filter loading percentage is defined as

%loaded =
#fully loaded cells

#cells in filter
x100, (7.4)

which compares the volume of deposited PM to the volume of the filter as a whole

(solid and fluid space).

Even though graphical results are presented in normalized or non-dimensional values

to achieve the most generalized and useful results, the proposed conversion system

of appendix C is applied to the dependent variables in some graphs, and marked in

bold within the text.

Before presenting specific results, it is important to point out basic trends that pro-

vide credibility to subsequent model results. Increases in sticking probability reduce

the amount of soot species leaving the domain at any given time step, and over the

entire run. Pressure at the inlet increases with the increase in soot buildup. Max-

imum velocity in the domain also increases with soot buildup, as the effective flow

area reduces. The components of velocity at every point are constantly adjusting in

response. A reduction in porosity leads to a reduction in species mass flow out of the

domain. This is observed both when the filter starting porosity is altered, and when

porosity becomes altered by the collection of soot on the filter surfaces. Deposition
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occurs on the leading substrate nodes first before proceeding to deep bed filtration.

Higher sticking probability leads to predominantly front loading the filter, while more

moderate probabilities and porosities experience deep bed filtration.

7.3.1 Low Porosity and High Sticking Probability

Table 7.4 summarizes the parameters utilized for the study in LBM units. Reported

results for temperature and velocity are normalized by the inlet value.

Table 7.4
Low porosity & high stick filter test parameters.

Parameter Value Parameter Value

Re 3.26 uin 0.001̂i+ 0ĵ
P r 0.68 Tin 0.01
Sc 95.1 Yin 1.6e− 4
Ps 0.99 T0 0.005

φ 0.603 Q̇substrate −1.0e− 6

Back pressure at the inlet due to the substrate and deposited materials is of great

interest to filter simulation. With a fixed atmospheric outlet pressure, the inlet pres-

sure should increase with time (deposition), tending non-linearly toward infinity at

a fully loaded filter. In figure 7.12, pressure builds with increasing iterations. The

trend accelerates as time passes and the filter experiences greater loading. While the

trend is exponential, the actual increases come in uneven intervals. This is due to the

nature of soot deposition frequently changing the preferred pathways, and deposition
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on secondary, tertiary, etc... layers causing different further deposition patterns and

rates (deposits can build upon substrate and old deposits). Over this initial portion of

the loading process, pressure has already increased about 900 Pa, in physical units.

Figure 7.12: Pressure increase with time (soot deposition) (low porosity
and high sticking probability).

Specifically along the centerline, the time-dependent pressure trend vs. filter wall

depth is presented in figure 7.13. Apparent discontinuities are the result of solid

substrate. Not surprisingly, there is a complex downward trend at all times. As the

soot levels build the pressures are largely simply scaled upward, always returning to

the same outlet value.

Capture of PM is the primary goal of a filter, and in figure 7.14 the center line species

concentration is tracked through the filter depth. As a note, a zero concentration is

converted to 1.0e−8 to allow a logarithmic ordinate in order to more clearly represent
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Figure 7.13: Pressure history along the centerline (low porosity and high
sticking probability).

the large orders-of-magnitude differences present in species concentration.

The center line of this particular filter is a fairly active site of deposition due to the

passage locations of the randomly generated substrate. The high sticking probability

and low porosity lead to concentration peaking early on at the start of the susbtrate

(x/L = 0). This doesn’t exclude deeper deposition, around 10% and 20% into the

filter, even though the initial pore blockage restricts flow along the line.

With passing iterations, the initiation sites are the ones that show the most growth.

Other sites appear, but remain relatively small. The front loading nature of these

parameters is particularly apparent in the final graph where substantial deposition is

not only reached, but about a dozen layers ahead become fully loaded.

A better overall picture of the deposition process is seen in figures 7.15 and 7.16.
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Figure 7.14: PM concentration at the y-center line at tc = 0.025, 2.5, and
25 (low porosity and high sticking probability).

Layers are being built near the entrance initially, and progress deeper with time.

It can also been seen that the center line represented in the graphs above is fairly

representative of an average section through the substrate normal to the inlet and

outlet. At several locations near the the front of the substrate the layered deposition

is close to bridging and completely closing passageways. “Horns” are also visible, an

expected phenomenon based on the continuously rerouted flow paths and consistent

with other deposition processes such as ice accretion on airfoils.

The image and patterns are further verified by comparison to Kang et al. [64], which

show very similar patterns and progression in their smaller scale deposition analysis
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of a fracture.

Figure 7.15: PM concentration at tc = 0.625, 12.5, and 25 (low porosity
and high sticking probability).

Filter loading levels and trends are important in filration analysis. In figure 7.17, the

expected history of substrate loading is met. There is an initial delay, followed by a

slow non-linear growth, leading into a roughly linear growth rate as seen in [43].

These deposits alter the flow paths by providing uneven and ever changing constric-

tions. The initial substrate provides the dominant velocity patterns. Initial deposition

largely determines the velocity field change since it is then easier for deposition to

occur in successive layers (increased flow contact area). In figure 7.18, the basic ve-

locity field is visible at the initial time steps, but bulk and peak velocities increase as
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Figure 7.16: PM concentration closeup at tc = 25 (low porosity and high
sticking probability).

iterations proceed. There are effectively four or five main flow paths representing the

paths of least resistance. No flow takes place in the central region.

The change from image 1 to 2 is relatively minor, although the path nearest the center

does appear alterted noticably. Changes between image 2 and 3 are more profound

due to the accelerating nature of layered deposition. The most central path is closing

down. Paths toward the top of the substrate, and to a certain extent the bottom,

are becoming preferred. The white patches, where velocity is zero, but also roughly

representing substrate and deposits, are growing towards the inlet.

Temperature is also of concern in filer applications, and in figure 7.19 the progression

of temperature is displayed along the same centerline used for the concentration study.
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Figure 7.17: PM volumetric loading with time (low porosity and high
sticking probability).

Because the substrate was given a fairly large negative energy source term (to remove

heat from the incoming “hot” fluid and PM), and the substrate makes up about 60%

of the domain, the temperatures drop substantially and quickly.

In a regeneration extension to the model, energy would be added to the domain

as a source. The apparent unevenness in the model is as expected since the fluid

predominantly convects temperatures, while the substrate the line passes through

provides not only conduction, but the aforementioned heat removal. Thus, areas

where substantial “jumpiness” is observed are areas of substrate.

An overall view of the domain temperature progression is displayed in figure 7.20.

Heat is removed by the substrate as iterations progress. The apparent “blotchiness”
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Figure 7.18: x-velocity at tc = 0.025, 12.5, and 25 (low porosity and high
sticking probability).

is due to substrate portions removing heat as warmer fluid is convected past. Higher

temperatures are sustained deeper into the substrate where blockages aren’t as near

the inlet.

Figure 7.19: Temperature at the y-center line with time (low porosity and
high sticking probability).
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Figure 7.20: Temperature at tc = 0.025, 0.625, and 1.25 (low porosity and
high sticking probability).

7.3.2 High Porosity and Moderate Sticking Probability

Table 7.5 summarizes the parameters utilized for the study in LBM units. Reported

results for temperature is normalized by the initial value, and velocity by the inlet.

Table 7.5
High porosity & moderate stick filter test parameters.

Parameter Value Parameter Value

Re 49.4 uin 0.01̂i+ 0ĵ
P r 0.68 Tin 0.01
Sc 95.1 Yin 1.6e− 4
Ps 0.8 T0 0.005

φ 0.810 Q̇substrate −1.0e− 6
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In figure 7.21, pressure builds with increasing iterations. The trend accelerates as time

passes and the filter experiences greater and deeper loading. However, compared to

the last section, the loading does not accelerate as rapidly, and produces a smoother

time history due to the lower sticking probability. The pressure increase along the

center line follows the same basic high-to-low steps and drops, as seen in figure 7.22.

However, the pattern is less complex due to the simpler substrate pattern.

Figure 7.21: Pressure increase with time (soot deposition) (high porosity
and moderate sticking probability).

The center line of this particular filter, compared to the previous study, is an active

site for deposition due to a larger percentage of the PM being convected to preferred

passages. However, since the inlet concentration is fixed and some portion of the

concentration both convects and diffuses toward the substrate and deposits, some

deposits near the entrance approach fuller loading by the final iterations. These

concentrations are visibly growing towards the concentration value of 1 required to
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Figure 7.22: Pressure history along the centerline (high porosity and mod-
erate sticking probability).

fill the lattice cell.

A view of the deposition process in the entire substrate is seen in figures 7.24 and

7.25. Concentration leaving the domain initially rises, but as more PM is deposited,

the effective filtration area increases, and concentration leaving drops. This is due to

collection of PM on top of additional PM. As a result it is as if the porosity of the

filter decreases, with the corresponding increase in filtration effectiveness.

Loading percentage follows the same basic pattern with time. A higher percentage is

achieved in figure 7.26, partially due to a smaller area to begin with.

New constrictions of various sizes and shapes arise continuously. The initial substrate

provides the dominant velocity patterns. Initial deposition largely determines the

velocity field change since it is then easier for deposition to occur in successive layers
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Figure 7.23: PM concentration at the y-center line at tc = 0.25, 12.5, and
140 (high porosity and moderate sticking probability).

(increased flow contact area). In figure 7.27 the basic velocity field is visible at the

initial time steps. Velocity increases as iterations proceed due to the reduced effective

flow area.

In figure 7.28 the progression of temperature is displayed. Since the substrate occupies

less area, despite the same negative source term, the drop in temperature is not as

significant as the lower porosity studies.

A domain view of the temperature progression is displayed in figure 7.29. Heat

is removed by the substrate as iterations progress. The apparent “blotchiness” is
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Figure 7.24: PM concentration at tc = 5, 50, and 140 (high porosity and
moderate sticking probability).

Figure 7.25: PM concentration closeup at tc = 140 (high porosity and
moderate sticking probability).

due to substrate portions removing heat as warmer fluid is convected past. Due to

the relative low substrate volume, the temperature of the solid actually increases as

opposed to low porosity studies.
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Figure 7.26: PM volumetric loading with time (high porosity and moderate
sticking probability).

7.3.3 Low Porosity and Low Sticking Probability

Table 7.6 summarizes the parameters utilized for the study in LBM units. Reported

results for temperature is normalized by the initial value, and velocity by the inlet.

Table 7.6
Low porosity & low stick filter test parameters.

Parameter Value Parameter Value

Re 3.70 uin 0.001̂i+ 0ĵ
P r 0.68 Tin 0.01
Sc 95.1 Yin 1.6e− 4
Ps 0.2 T0 0.005

φ 0.593 Q̇substrate −1.0e− 6

A noted increase in initial back pressure is expected over the high porosity case.
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Figure 7.27: x-velocity at tc = 0.25, 72.5, and 140 (high porosity and
moderate sticking probability).

Figure 7.28: Temperature at the y-center line with time (high porosity
and moderate sticking probability).

However, with lower sticking probability, it is not as simple as expecting equivalent

or greater pressure rise rate. Rise in inlet pressure for this particular set of variables

is seen in figure 7.30, where pressure builds with increasing iterations. The trend also

accelerates with time and deposition, as well as loading proceeding to deeper portions
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Figure 7.29: Temperature at tc = 0.25, 2.5, and 37.5 (high porosity and
moderate sticking probability).

of the filter later.

Figure 7.30: Pressure increase with time (soot deposition) (low porosity
and low sticking probability).

Figure 7.31 presents a noticeably different trend to previous studies. After an initial

rise in pressure there is little change. Partially this could be due to the slower depo-

sition rate, however in this case the flow and thus deposition simple convects toward
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other portions of the substrate.

Figure 7.31: Pressure history along the centerline (low porosity and low
sticking probability).

Centerline PM capture is displayed in figure 7.32. The centerline is arguably the least

active of the tests, not surprisingly. While it is likely that the low sticking probability

is responsible, it is also possible that flow diverts around this line. Later plots indicate

this is partially the cause.

In figure 7.33 the process is even over the actual substrate entrance. This is a conse-

quence of the low sticking probability, and the more even distribution of sequestration

sites in a low porosity filter. In areas where there is a substantial break in the line of

substrate nearest the inlet, the collection of PM proceeds deeper as expected. All of

these features are clear in figure 7.34. As opposed to the previous tests, the develop-

ment of “horns” is less visible as the process does not occur swiftly enough to form

uneveness.
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Figure 7.32: PM concentration at the y-center line at tc = 5, 37.5, and 95
(low porosity and low sticking probability).

Filter loading percentage history in figure 7.35 shows some expected variation from

previous studies. The initial delay in any loading is substantially extended, as ex-

pected from a lower deposition probability. When loading does initialize the growth

is still roughly linear, but of course reaches a lower point. With further run time,

the loading percentage would not only increase, but be more evenly distributed than

higher sticking runs.

As a result of the slower deposition process, the flow paths change less frequently than

past tests, and the velocity increases are more mild. It becomes substantially more

challenging to find the variation between x-velocity fields in figure 7.36. However,
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Figure 7.33: PM concentration at tc = 30, 60, and 95 (low porosity and
low sticking probability).

they exist in subtle ways, perhaps most evident near the top of the domain. In this

particular scenario, the substrate still has a susbtantial capacity remaining and flow

would not need to substantially divert to other areas of similar porosity.

Temperature at the centerline (see figure 7.37) follows a similar general pattern as the

low porosity, high sticking probability simulation. Temperature quickly drops very

low and stays low. Again, this is due to the large negative energy source term in the

advection-diffusion equation combined with the low porosity providing substantial

mass.

Temperature progression in the domain is displayed in figure 7.38. Heat is removed by
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Figure 7.34: PM concentration closeup at tc = 95 (low porosity and low
sticking probability).

Figure 7.35: PM volumetric loading with time (low porosity and low stick-
ing probability).

the substrate as iterations progress. The apparent “blotchiness” is due to substrate

portions removing heat as warmer fluid is convected past. Higher temperatures are

sustained deeper into the substrate where blockages aren’t as near the inlet.
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Figure 7.36: x-velocity at tc = 0.025, 50, and 95 (low porosity and low
sticking probability).

Figure 7.37: Temperature at the y-center line with time (low porosity and
low sticking probability).
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Figure 7.38: Temperature at tc = 2.5, 25, and 95 (low porosity and low
sticking probability).
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Chapter 8

Conclusions

8.1 Contributions to the Incompressible Lattice

Boltzmann Method and its Applications

Within the set of studies presented here, a definitive incompressible lattice Boltz-

mann equation was derived, and with it, several engineering and physics applications

enhanced. Validation was achieved, and unique benefits were found through the

simulation of basic laminar flows, complex turbulent flows, and multiphysics partic-

ulate matter filtration modeling. A better understanding of the mesoscale approach

to mathematical modeling of these physical phenomena was also attained, departing

from and adding to previous related literature. Specifically, the primary contributions
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to the body of knowledge are:

• An ansatz procedure which defines the values in the equilibrium distribution

function for an incompressible lattice Boltzmann equation with any valid veloc-

ity space discretization;

• Verification of direct numerical simulation and Vreman large eddy simulation

for constant density flows with the incompressible lattice Boltzmann equation,

compared with more traditional methods;

• A multiphysics code for particle transport and deposition, and conjugate heat

transfer for low speed flows in porous media reliant on only one tuned parameter

(for surface adhesion forces);

• A simple algorithm that generates verified 2D filter substrates to a dictated

porosity, and measures their characteristics.

8.2 Summary of Findings

8.2.1 Incompressible Lattice Boltzmann Equation

While previous researchers have partially resolved the need for an incompress-

ible lattice Boltzmann equation, the first major finding of this work was that
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these answers were incomplete. Due to the rigor introduced in chapter 4, and

subsequent comparative simulation tests, the D2Q9 and D3Q19 lattices require

specific leading equilibrium distribution terms of {C − 5P/3c2, P/3c2, P/12c2} and

{C − 2P/9c2, P/54c2, P/108c2}, respectively, where C is a constant. The results are

actually more generally applicable than these two cases, and the ansatz method which

provides the previously stated rigor can be employed for any valid lattice discretiza-

tion. Validation was mathematically provided by the Chapman-Enskog multiscale

expansion, which recovers the incompressible Navier-Stokes equations instead of the

compressible form in the low Mach limit. Several unique benefits were found in ad-

dition to the limit on density variation, such as greater convergence stability and

speed.

In canonical flow cases featuring steady complex flow patterns, such as the lid driven

cavity, and others featuring transient pressure bounds, such as Womersley flow, per-

formance was found to be excellent. Specifically, data matched solutions from the

incompressible Navier-Stokes equations. Additionally, results in several cases bet-

ter met the expectations of an incompressible flow solver than previously researched

methods, such as a pseudo-compressible lattice Boltzmann equation. Study of the

previously published fully incompressible lattice Boltzmann equation showed that

those leading equilibrium distribution terms often produce unstable and inaccurate

results, and that the leading terms found here are essential. Derivation of a multiple

relaxation time collision operator form extends these benefits.

213



8.2.2 Turbulent Transition

Simulation of incompressible flows by the standard, somewhat compressible, lattice

Boltzmann equation inevitably introduced some error. One of the most prominent ar-

eas where this occurred was turbulent and transitional flow. To demonstrate the value

of the multiple relaxation time incompressible lattice Boltzmann equation derived in

this work, a thorough study on direct numerical simulation on a 2D canonical flow

was conducted on a highly refined lattice. Comparison was made to existing litera-

ture utilizing the traditional Navier-Stokes equations, the standard lattice Boltzmann

equation, and unique data analysis techniques such as proper orthogonal decomposi-

tion. In the laminar regime, center line velocity values were consistently within frac-

tions of a percent to higher resolution simulations. At turbulent Reynolds numbers,

the eddy structures found in other works were well replicated here. Most prominently,

these methods predicted a first Hopf bifrucation to transience at a Reynolds number

of 7,988, and transition at Reynolds number 13,063, both in excellent agreement with

high resolution data and mathematical theory. These results showed that the defini-

tive incompressible lattice Boltzmann equation is recommended when approaching

turbulent transitional flow simulation with a mesoscopic methodology.

To provide further benefit demonstration in 3D, albeit without all turbulent scales

resolved, a large eddy simulation case was performed, and compared to 2D results at
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the center plane, as well as closed domain literature. A relatively new subgrid scale

model was employed, authored by A.W. Vreman, to also test and recommend its

capabilities when paired with the mesoscopic incompressible approach. This method

provides transitional capabilities (unlike the standard Smagorinksy model) at rela-

tively low cost (unlike the Dynamic Smagorinsky model). The pairing of the Vreman

subgrid scale model with the incompressible lattice Boltzmann equation is recom-

mended for constant density large eddy simulations.

8.2.3 Multiphysics Filtration

An application area which is often fundamentally incompressible is flow through

porous media. The lattice Boltzmann method is a particularly promising tool for

pore scale simulation due to simple bounce back boundary conditions, a regular and

easy to manipulate meshless grid, ability to enter the mesoscale regime, and good

scaling when parallelized. It also has the benefit of replacing 0D and 1D simluation

techniques, which are reliant on large numbers of tuned parameters not universally

valid, and do not provide an inspectable detailed report. Previous pore scale studies

utilized the standard lattice Boltzmann equation or a pseudo-compressible form, as

well as limiting assumptions on the Schmidt number and number of discrete velocities

required for a conjugate heat transfer solver. These studies also utilized a physically

scanned filter substrate geometry, which while accurate, can be a cumbersome task
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when simplifications are acceptable, or design sweeps are of interest.

Since the first step in simulation is usually definition of the domain/geometry, a sub-

strate generation algorithm was created in the C language. The code generates a

random field of blockages of complex shapes with complex torturous flow paths based

on a desired porosity. Verification that such an approach is valid was provided by

studying Darcy’s law, the Ergun equation, and the Nabovati correlation with the in-

compressible lattice Boltzmann equation as a flow solver. Under a variety of porosity

and Reynolds number assignments, Darcy’s law was repeatedly obeyed with an ex-

ponential and intrinsic relation between porosity and permeability. The relationship

between friction factor and Reynolds number provided a tight fit across a broad range

of filter characteristics to the experimental Ergun equation. The generated substrate

also laid the groundwork for more complex simulation and modeling by being ready

for conjugate heat transfer and interaction with multispecies flows.

Several lattice discretizations have historically been applied to non-isothermal incom-

pressible heat transfer solutions. In the case of 2D, 9- and 4-velocity models. If

a reduction in discrete velocities is valid, computational cost can be reduced. The

case for a reduced number of discrete velocities is based on the linear nature of the

advection-diffusion equation of the temperature transport form of the incompressible

energy equation. As a result, recovery of the advection-diffusion equation through the
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Chapman-Enskog expansion was performed in this work. Subsequent tests of com-

plex convective flow and convective-conductive conjugate heat transfer demonstrated

the equivalency of both numerical approximations. The 4-velocity model was then

incorporated into the multiphysics filtration model.

Particulate matter transport and deposition methods present in literature were eval-

uated, and an Euler-Euler approach was chosen. Due to the utilization of a standard

lattice Boltzmann equation, the diffusivity term could be directly assigned based on

material properties. Previous studies, which utilized a similar approach, assigned the

same value to momentum and mass diffusivities. The implementation of a Schmidt

number basis for the calculation of the collision relaxation times provides additional

fidelity to transport. With the Euler-Euler approach, individual particles are assumed

to be small relative to the geometric dimensions and volume of flow. Thus, a concen-

tration was tracked as opposed to individual or representative particle groupings. To

account for the many atomic and molecular level mechanisms, a sticking probability

was introduced, and rules for controlling growth of soot to replicate likely behavior

applied.

A variety of sticking probabilities and porosities were studied to show expected results

and patterns. These expected results included:

• Conservation of mass and momentum of all species and phases for the domain
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as a whole;

• Conservation of energy for the domain;

• Increased speed of soot deposition with increased sticking probability and poros-

ity;

• Decreased concentration at domain outlet with increasing porosity and sticking

probability;

• Initial deposition occurring at substrate inlet and only later proceeding to deep

bed filtration;

• Pressure at the inlet increases with increasing soot buildup;

• Maximum velocity in the domain increases with soot building (due to reduction

in passage sizes).

All of these expectations were met, as well as more qualitative patterns such as

collection zones as a function of Reynolds number and shape.

For a lattice Boltzmann filtration simulation involving heat transfer the results then

support the following model choices:

• An incompressible flow solver;

• A 4-velocity energy solver;
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• An Euler-Euler multispecies solver;

• A standard bounceback boundary condition for interaction with the substrate;

• A sticking probability parameter for deposition with local search rule to provide

physical growths;

• A Schmidt number basis for determining collision relaxation time in the species

transport solver.

8.3 Future Work

With the base capabilities for physics and engineering applications developed here,

additional complexity can be added for relevant phenomena. Studies on sensitivity

to model choices can provide further recommendations for use of the incompressible

lattice Boltzmann equation.

Specific to the application of turbulence it would be valuable to clarify the role of

higher discrete velocity lattices. While previous literature, and the findings of this

study, indicate that only 15 velocity lattices are sufficient for 3D at the studied Re,

there is an indication that stability and accuracy could benefit. Traditionally, 3D

simulations utilize D3Q15, D3Q19, and D3Q27 models. Studies indicate that, while

all are valid, the higher velocity models may improve the stability sufficiently to be
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justifiable in certain cases [106]. In the case of LES turbulence modeling, this could

mean a coarser mesh. This is of limited value since the accuracy degenerates with

larger filter (mesh) sizes. However, it could be valuable to find the magnitude of the

improved stability, reduced accuracy, and difference in computational cost.

To extend the capabilities of the filtration model, four main routes can be explored:

extension to 3D, deposited soot erosion, regeneration within soot deposits, and val-

idation exercises. The model of this study allows direct extension for all of these.

Suggestions on implementation direction for each extension follow.

Substrates are not only fundamentally 3D, but flow in a third dimension changes the

range of possible porosities. Below ∼50% porosity there are few, if any, connected

flow passages in 2D. With a third dimension there is an additional direction flow may

take, and with the potential for a “spherical” general shape, for these flow passages to

open substantially. The substrate generation algorithm presented here is an excellent

basis for extension to 3D. An additional spatial location for the z-direction can be

easily dictated (with a nested for loop to assign placement), and the randomness of

overlap and larger shapes will be retained. In place of the equation for an ellipse

dictating size and shape through two random axes (minor and major), an ellipsoid

equation can be used with a third random axis size. Since the shapes will mark a

node in a discrete fashion as either solid or fluid, the result will be similarly ready to

accept soot deposition and conjugate heat transfer.

220



Given physical filter scan images of a given porosity, it would be interesting to de-

termine the fractal dimension for comparison to the algorithm presented here. As an

example, using the Minkowski-Bouligand dimensional analysis for fractal geometry,

the fractal dimension of a generated 80% porosity filter is calculated here at 1.55,

and for a 50% porosity filter it is 1.72. In addition to the extensive analytical and

empirical comparisons presented in this work, the additional comparison could be

useful in moving to 3D confidently.

Due to a complex set of forces, both external and internal to the soot deposits,

particulate matter may reenter the flow to deposit again later, or leave the domain.

By introducing an “ejection probability” soot deposited to the variable “Y2” in the

filtration code can be re-injected to the free flowing species concentration “Y1”. All

other rules on transport and deposition can be retained.

A further level of particulate deposition and erosion fidelity which should be incorpo-

rated in future work is dependency on local velocity and shear. In the present work a

constant is utilized. In a faster moving flow, momentum can accelerate erosion of the

deposited material. For particle capture, it would be expected that sticking would

reduce with increased flow velocity due to increased inertia largely orthogonal to the

substrate surfaces.

Catalytic filtration is frequently utilized to remove pollutants and particulate matter.

It is another valuable addition the filter model developed here. Since particulate
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matter is already transported and deposited, and conjugate heat transfer is present,

the critical components to regeneration are available. Rules governing the alterations

in temperature, and change in soot deposition layers are required. Additionally, more

sophisticated treatment of the closed boundaries of the domain, currently simply

adiabatic, would enhance overall thermal simulation and thus regeneration modeling.

Since the focus of this work was method development and exploration, work re-

mains on conversion to real parameters and experimental tuning (probability stick-

ing). Some recommended parameters are listed in appendix C based on best practices,

previous studies, and the goals of diesel particulate filtration simulation.

All code development for this work has been performed in C with OpenMP as the

parallelization paradigm. One limitation is that only the computational cores present

on one compute node can be utilized for any given run. An alternative is MPI, which

allows inter-node computation, and therefore potentially more cores per simulation

run. The downside is that MPI is more complex to implement, and if there are a

substantial number of simultaneous simulation runs to be conducted, utilizing more

cores per run can cause a bottleneck. This is in fact the main reason OpenMP was

utilized; when studying turbulence and soot deposition many different simulations

with different parameters were running in parallel on different compute nodes, uti-

lizing a large number of overall cores towards quicker completion of the project as a

whole. Additionally, while lattice Boltzmann algorithms provide greater scalability
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than traditional Navier-Stokes methods, there is still an asymptotic limit to increased

parallelization of any given run (see chapter 3.4. However, MPI is listed here as fu-

ture work for cases in which a specific set of simulation parameters in a single are of

interest. Additional speedup can be gained by improving the C code developed and

implemented here. Particularly in the filtration model, once a substantial amount

of soot has stuck the time per iteration rises substantially. With the algorithm well

defined and explored here, future refinement can be made in the direction of the

solid/boundary search and assignment operations which follow particulate matter

sequestration and solidification.

223





Bibliography

[1] Murdock, J.; Yang, S. International Journal of Computational Engineering Re-

search 2016, 6(12), 47–59.

[2] Murdock, J.; Yang, S. The Thirteenth International Conference for Mesoscopic

Methods in Engineering and Science, Hamburg, Germany, 2016.

[3] Murdock, J.; Ickes, J.; Yang, S. Advances in Applied Mathematics and Mechan-

ics 2017, 9, 1271–1288.

[4] Murdock, J.; Ibrahim, A.; Yang, S. Accepted: ASME Journal of Fluids Engi-

neering 2017.

[5] Laurendeau, N. M. Statistical Thermodynamics: Fundamentals and Applica-

tions; Cambridge University Press, 1 ed., 2005.

[6] Boltzmann, L. Wiener Berichte 1872, 66, 275–370.

[7] President Obama’s statement on climate change. Obama, B. White House Brief-

ing Room, https://www.whitehouse.gov/climate-change, 2015.

225

https://www.whitehouse.gov/climate-change


[8] Slotnick, J.; Khodadoust, A.; Alonso, J.; Darmofal, D.; Gropp, W.; Lurie, E.;

Mavriplis, D. NASA/CR-2014-218178 2014.

[9] Suluksna, K.; Juntasaro, E. International Journal of Heat and Fluid Flow 2008,

29, 48–61.

[10] Bissett, E. J.; Shadman, F. AIChE Journal 1985, 31, 753–758.

[11] Konstandopoulos, A. G.; Johnson, J. H. SAE Technical Paper 1989, 890405.

[12] Premchand, K. Development of a 1-D Catalyzed diesel particulate filter model

for simulation of the performance and the oxidation of particulate matter and

nitrogen oxides using passive oxidation and active regeneration engine experi-

mental data PhD thesis, Michigan Technological University, 2013.

[13] White, F. M. Viscous Fluid Flow; McGraw-Hill Education: Columbus, OH, 3

ed., 2005.

[14] Anderson, J. D. Computational Fluid Dynamics: The Basics with Applications;

McGraw-Hill Education: Columbus, OH, 1 ed., 1995.

[15] Langmuir, I. Office of Scientific Research and Development 1942, 865.

[16] Happel, J. AIChe Journal 1959, 5, 174–177.

[17] Kuwabara, S. Journal of the Physical Society of Japan 1959.

[18] McNamara, G. R.; Zanetti, G. Physical Review Letters 1988, 61, 2332–2335.

226



[19] Gong, J.; Rutland, C. J. Environmental Science & Technology 2015, 49, 4963–

70.

[20] He, X.; Doolen, G. D.; Clark, T. Journal of Computational Physics 2002, 179,

439–451.

[21] Zou, Q.; Hou, S.; Chen, S.; Doolen, G. D. Journal of Statistical Physics 1995,

81, 35–48.

[22] Lin, Z.; Fang, H. P.; Tao, R. B. Physical Review E 1996, 54, 6323–6330.

[23] Chen, Y.; Ohashi, H. International Journal of Modern Physics C 1997, 8, 793–

803.

[24] He, X.; Luo, L. S. Journal of Statistical Physics 1997, 88, 927–944.

[25] Guo, Z.; Shi, B.; Wang, N. Journal of Computational Physics 2000, 165, 288–

306.

[26] Banda, M. K.; Yong, W. A.; Klar, A. Journal of Scientific Computing 2006,

27, 2098–2111.

[27] Shi, B.; He, N.; Wang, N. Progress in Computational Fluid Dynamics 2005, 5,

50–64.

[28] Du, R.; Shi, B.; Chen, X. Physics Letters A 2006, 359, 564–572.

[29] Martinez, D. O.; Matthaeus, W. H.; Chen, S.; Montgomery, D. C. Physics of

Fluids 1994, 6, 1285.

227



[30] Lammers, P.; Beronov, K.; Volkert, R.; Brenner, G.; Durst, F. Computers &

Fluids 2006, 35, 1137–1153.

[31] Lallemand, P.; Luo, L. S. Physical Review E 2000, 61, 6546–6562.

[32] Yu, H.; Girimaji, S. S.; Luo, L.-S. Journal of Computational Physics 2005, 209,

599–616.

[33] Premnath, K. N.; Pattison, M. J.; Banerjee, S. Fluid Dynamics Results 2013,

45, 055510.

[34] Stiebler, M.; Freudiger, S.; Krafczyk, M.; Geier, M. In Notes on Numerical

Fluid Mechanics and Multidisciplinary Design; Springer Science + Business

Media, 2011; pages 283–295.

[35] Jain, K.; Roller, S.; Mardal, K. A. Computers & Fluids 2016, 127, 36–46.

[36] Ladd, A. J. C. Journal of Fluid Mechanics 1994, 271, 285.

[37] Gschaider, B. F.; Honeger, C. C.; Redl, C. E.; Leixnering, J. International

Journal of Multiscale Computational Engineering 2006, 4, 221–232.

[38] Lantermann, U.; Hänel, D. Computers & Fluids 2006, 36, 407–422.

[39] Filippova, O.; Hanel, D. Computers & Fluids 1997, 26, 697–712.

[40] Hardy, J.; Pomeau, Y.; de Pazzis, O. Physical Review Letters 1973, 31, 276–279.

[41] Masselot, A.; Chopard, B. Europhysics Letters 1998, 42, 259–264.

228



[42] Dupuis, A.; Chopard, B. Journal of Computational Physics 2002, 178, 161–174.

[43] Yamamoto, K.; Ohori, S. International Journal of Engine Research 2012, 14,

333–340.

[44] Yamamoto, K.; Matsui, K. Fibers 2014, 2, 128–141.

[45] Murakami, S.; Kato, S.; Nagano, S.; Tanaka, S. ASHRAE Transactions 1992,

98, 82–97.

[46] Holmberg, S.; Chen, Q. Indoor Air 2003, 13, 200–204.

[47] Zhao, B.; Zhang, Z.; Li, X.; Huang, D. ASHRAE Transactions 2004, 110,

88–95.

[48] Gong, J. Passive Ammonia SCR and Filtration Modeling for Fuel-Neutral En-

gine Aftertreatment Systems PhD thesis, University of Wisconsin-Madison,

2014.

[49] Guo, Z.; Shu, C. Lattice Boltzmann Method and its Applications in Engineering;

World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, 3 ed., 2013.

[50] Bartoloni, A.; Battista, C.; Cabasino, S.; Paolucci, P. S.; Pech, J.; Sarno, R.;

Todesco, G. M.; Torelli, M.; Tross, W.; Vicini, P.; Benzi, R.; Cabibbo, N.;

Massaioli, F.; Tripiccione, R. International Journal of Modern Physics C 1993,

4, 993–1006.

[51] Shan, X. Physical Review E 1997, 55, 2780–2788.

229



[52] Guo, Z.; Shi, B.; Zheng, C. International Journal for Numerical Methods in

Fluids 2002, 39, 325–342.

[53] Jami, M.; Mezrhab, F.; Fontaine, J. P.; Bouzidi, M. International Journal of

Thermal Science 2016, 100, 98–107.

[54] Wang, J.; Wang, M.; Li, Z. International Journal of Thermal Science 2007, 46,

228–234.

[55] Tarokh, A.; Mohamad, A. A.; Jiang, L. Numerical Heat Transfer, Part A:

Applications 2013, 63, 159–178.

[56] Pan, C.; Luo, L. S.; Miller, C. T. Computers & Fluids 2006, 35, 898–909.

[57] Chen, L.; Fang, W.; Kang, Q.; Hyman, J. D.; Viswanathan, H. S.; Tao, W. Q.

Physical Review E 2015, 91, 033004.

[58] Spaid, M. A.; Phelan, F. R. Physics of Fluids 1997, 9, 2468–2474.

[59] Martys, N. S. Physics of Fluids 2001, 6, 1807–1810.

[60] Manz, B.; Gladden, L. F.; Warren, P. B. AIChE Journal 1999, 45, 1845–1854.

[61] Succi, S.; Foti, E.; Higuera, F. Europhysics Letters 1989, 10, 433–438.

[62] Fattahi, E.; Waluga, C.; Wohlmuth, B.; Rude, U.; Manhart, M.; Helmig, R.

arXiv:1508.02960 [cs.CE] 2015.

230



[63] Muntean, G. G.; Rector, D.; Herling, D.; Lessor, D.; Khaleel, M. SAE Technical

Paper 2003, 2003-fl-46.

[64] Kang, Q.; Lichtner, P.; Janecky, D. Advances in Applied Mathematics and Me-

chanics 2010, 2, 545–563.

[65] History of kinetic theory. Levermore, D. University of Maryland Mathematics

Department, https://www2.math.umd.edu/~lvrmr/History/, 2001.

[66] Bhatnagar, P. L.; Gross, M.; Krook, M. Physical Review 1954, 94, 511–525.

[67] Chapman, S.; Cowling, T. The Mathematical Theory of Non-Uniform Gases;

Cambridge University Press: New York, NY, 3 ed., 1990.

[68] Zou, Q.; He, X. Physics of Fluids 1997, 9, 1591–1598.

[69] Chen, S.; Martinez, D.; Mei, R. Physics of Fluids 1996, 8, 2527–2531.

[70] d’Humieres, D. Progress in Aeronautics and Astronautics 1992, 159, 450–458.

[71] d’Humieres, D.; Ginzburg, I.; Krafczyk, M. Philosophical Transactions of the

Royal Society of London A 2002, 360, 437–451.

[72] Bouzidi, M.; d’Humieres, D.; Lallemand, P.; Luo, L. S. Journal of Computa-

tional Physics 2001, 172, 704–717.

[73] Brogioli, D.; Vailati, A. Physical Review E 2001, 63, 012105.

231

https://www2.math.umd.edu/~lvrmr/History/


[74] Wilcox, D. C. Turbulence Modeling for CFD; Anaheim: DCW Industries, 2 ed.,

1998.

[75] Pasquale, D. D.; Rona, A.; Garrett, S. J. 39th AIAA Fluid Dynamics Conference

2009, 3812, 1–10.

[76] Kolmogorov, A. N. Proceedings of the USSR Academy of Sciences 1941, 32,

16–18.

[77] Pope, S. B. Turbulent Flows; Cambridge University Press, 1 ed., 2000.

[78] Peng, Y.; Shiau, Y.; Hwang, R. R. Computers & Fluids 2003, 32, 337–352.

[79] Poliashenko, M.; Aidun, C. K. Journal of Computational Physics 1995, 121,

246–260.

[80] Cazemier, W.; Verstappen, R. W.; Veldman, A. E. Physics of Fluids 1998, 10,

1685–1699.

[81] Bruneau, C.; Saad, M. Computers & Fluids 2006, 35, 704–717.

[82] Vreman, A. W. Physics of Fluids 2004, 16, 3670–3681.

[83] Darcy, H. Les Fontaines Publiques de la Ville de Dijon; 1856.

[84] Nabovati, A.; Llewellin, E.; Sousa, A. Composites: Part A 2009, 40, 860–869.

[85] Bird, R.; Stewart, W.; Lightfoot, E. Transport Phenomena; John Wiley & Sons,

Inc.: New York, NY, 2 ed., 2002.

232



[86] Aruoba, S. B.; Fernandez-Villaverde, J. Journal of Economic Dynamics and

Control 2015, 58, 265–273.

[87] On Fair Comparison between CPU and GPU. S. Han.; EECS Dept., Berkeley,

2013.

[88] Can STAR-CCM+ take advantage of GPU computing? S. Feldman.; Siemens

PLM (CD-adapco), 2015.

[89] Qian, Y. H.; d’Humieres, D.; Lallemand, P. Europhysics Letters 1992, 17, 479–

484.

[90] He, X.; Zou, Q.; Luo, L.; Dembo, M. Journal of Statistical Physics 1997, 87,

115–123.

[91] Meng, J.; Zhang, Y. Journal of Computational Physics 2011, 230, 835–849.

[92] Guo, Z.; Zhao, T.; Shi, Y. Physical Review E 2004, 70, 066706.

[93] Marchi, C.; Suero, R.; Araki, L. Journal of the Brazilian Society of Mechanical

Science & Engineering 2009, 31, 186–198.

[94] Womersley, J. Journal of Physiology 1955, 127, 553–563.

[95] Erturk, E. Computers & Fluids 2008, 37, 633–655.

[96] Wong, K. L.; Baker, A. J. International Journal for Numerical Methods in

Fluids 2002, 38, 99–123.

233



[97] Anupindi, K.; Lai, W.; Frankel, S. Computers & Fluids 2015, 92, 7–21.

[98] Burggraf, O. Journal of Fluid Mechanics 1966, 24, 113–151.

[99] Ghia, U.; Ghia, K.; Shin, C. Journal of Computational Physics 1982, 48, 387–

411.

[100] Hou, S.; Zou, Q.; chen, S.; Doolen, G.; Cogley, A. Journal of Computational

Physics 1995, 118, 329–347.

[101] Marie, S.; Ricot, D.; Sagaut, P. Journal of Computational Physics 2008, 228,

1056–1070.

[102] Wang, R.; Fang, H. Communications in Theoretical Physics 2000, 35, 593–596.

[103] Li, J.; Wang, Z. Mathematical Problems in Engineering 2010, 2010, 724578.

[104] Zhang, C.; Cheng, Y.; Huang, S.; Wu, J. Advances in Applied Mathematics and

Mechanics 2016, 8, 37–51.

[105] Zhang, W.; Shi, B.; Wang, Y. Computers & Mathematics with Applications

2015, 69.

[106] Kruger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E.

The Lattice Boltzmann Method: Principles and Practice; Springer International

Publishing: Switzerland, 1 ed., 2017.

[107] Bear, J. Dynamics of Fluids in Porous Media; Dover Publications: Dover, NY,

1972.

234



[108] Whitaker, S. Transport in Porous Media 1986, 1, 3–25.

[109] Elkatatny, S.; Mahmoud, M.; Nasr-El-Din, H. ASME Journal of Engery Re-

sources Technology 2013, 135, 042201–042201–9.

[110] Pilotti, M. Transport in Porous Media 1998, 33, 257–278.

[111] Maier, R.; Kroll, D.; Benard, R. Physics of Fluids 2000, 12, 2065–2079.

[112] Madadi, M.; Sahimi, M. Physical Review E 2003, 67, 026309.

[113] Zhang, H.; Ge, X.; Ye, H. Journal of Physics D 2006, 39, 220–226.

[114] Wellein, G.; Lammers, P. Proceedings of the 2005 International Conference on

Parallel Computational Fluid Dynamics 2006, pages 31–40.

[115] Hudong, C.; Chen, S.; Matthaeus, W. Physical Review A 1992, 45, R5339.

[116] Yuan, P.; Schaefer, L. ASME Journal of Fluids Engineering 2005, 128, 151–156.

[117] Karani, H.; Huber, C. Physical Review E 2015, 91, 023304.

[118] Inamuro, T.; Yoshino, M.; Inoue, H.; Mizuno, R.; Ogino, F. Journal of Com-

putational Physics 2002, 179, 201–215.

[119] Koponen, A. Physical Review Letters 1998, 80.

[120] Jackson, G.; James, D. Canadian Journal of Chemical Engineering 1986, 64,

364–374.

235



[121] Dulien, F. Porous Media: Fluid Transport and Pore Structure; Academic Press,

Inc.: New York, NY, 1979.

[122] Hutten, I. Handbook of Nonwoven Filter Media; Butterworth-Heinemann:

Burlington, MA, 2007.

[123] Gebart, B. Journal of Composite Materials 1992, 26, 1100–1133.

[124] Brinkmann, H. Flow, Turbulence and Combustion 1949, 1.

[125] Delaney, D.; Weaire, S.; Murphy, S. Philosophical Magazine Letters 2005, 85,

89–96.

[126] Buick, J.; Greated, C. Physical Review E 2000, 61, 5307–5320.

[127] Flagan, R. C.; Seinfeld, J. Fundamentals of air pollution engineering; Prentice-

Hall, Inc.: Englewood Cliffs, NJ, 1 ed., 1988.

236



Appendix A

iLBE Derivations

A.1 Chapman-Enskog Expansion for the iLBE

From [89] we have some important relationships based on the Knudsen number (Kn)

ε ≡ Kn (A.1)

Scaling x,

ε−1x1 ⇒
∂

∂x
= ε

∂

∂x1

, (A.2)
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and for the same order of magnitude of ε, scaling t through the equation

∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
. (A.3)

The slower diffusion time scale is t2 and the faster convection time scale is t1.

Performing the perterbation expansion of fa in terms of ε,

fa(x, t) = f (0)
a (x, t) + εf (1)

a (x, t) + ε2f (2)
a (x, t) +O(ε3), f (0)

a = f eqa . (A.4)

Combining the Taylor Series Expansion of fa with the LBE,

1

λ
(f (0)
a − fa) =

(
∂

∂t
+∇x · cea

)
fa

+
∆t

2

[
∂

∂t

(
∂

∂t

)
+ 2

∂

∂t
(∇x · cea) + (∇x∇x) : (ceacea)

]
fa

+O(∆t2),

(A.5)

with the aforementioned expansions utilized we obtain
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1

λ
(f (0)
a − fa) =

(
ε
∂fa
∂t1

+ ε2
∂fa
∂t2

)
+ ε(∇x1 · cea)fa

+
∆t

2
ε2
[
∂2fa
∂t21

+ 2
∂

∂t1
(∇x1 · cea)fa + (∇x∇x) : [(ceacea)fa]

]
+

∆t

2
ε3
[
2
∂

∂t1

∂fa
∂t2

+ 2
∂

∂t2
(∇x1 · cea)fa

]
+

∆t

2
ε4
(
∂2fa
∂t22

)
+O(∆t2).

(A.6)

We retain 1st and 2nd order terms of ε for the incompressible case.

Considering Terms of 1st order for mass,

−1

λ
f (1)
a =

∂f
(0)
a

∂t1
+ (∇x1 · cea)f (0)

a ⇒

−1

λ

∑
a

f (1)
a =

∂
(∑

a f
(0)
a

)
∂t1

+∇x1 ·

(∑
a

ceaf
(0)
a

)
,

(A.7)

and with one of the bases (4.12) for our incompressible scheme,

8∑
a=0

f eqa =
8∑

a=0

fa = 1 (A.8)

we arrive at
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∇x1 · u = 0. (A.9)

Looking at 1st order for momentum,

−1

λ
ceaf

(1)
a =

∂ceaf
(0)
a

∂t1
+∇x1 · ceaceaf (0)

a ⇒

−1

λ

∑
a

ceaf
(1)
a =

∂
(∑

a ceaf
(0)
a

)
∂t1

+∇x1 ·

(∑
a

ceaf
(0)
a

)
,

(A.10)

and with the additional basis (4.13) for our incompressible scheme

8∑
a=0

ceaf
eq
a =

8∑
a=0

ceafa = u, (A.11)

we arrive at

∂u

∂t1
+∇x1 · Π(0) = 0, (A.12)
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Π(0)(0th order momentum flux tensor), Π(0) =
∑
a

ceaceaf
(0)
a =

P

ρ0

I + uu (A.13)

Now looking at 2nd order terms of ε for the dissipative terms in the Navier-Stokes

equation, for mass conservation,

−1

λ

∑
a

f (2)
a =

[
∂

∂t1

(∑
a

f (1)
a

)
+∇x1 ·

(∑
a

ceaf
(1)
a

)]

+
∂

∂t2

(∑
a

f (0)
a

)

+
∆t

2

[
∂2

∂t21

(∑
a

f (0)
a

)
+ 2

∂

∂t1

(
∇x1 ·

(∑
a

ceaf
(0)
a

))]

+
∆t

2

[
(∇x1∇x1) :

[∑
a

(ceacea)f
(0)
a

]]
(A.14)

Noting that

∑
a

f (G)
a = 0 and

∑
a

eaf
(G)
a = 0, G > 0, (A.15)

we reduce the 2nd order terms of ε to

241



∆t

2

[
2
∂

∂t1

(
∇x1 ·

∑
a

ceaf
(0)
a

)]
= ∆t

∂

∂t1
[∇x1 · u] , (A.16)

∆t

2
(∇x1∇x1) :

[∑
a

(ceacea)f
(0)
a

]
=

∆t

2
∇x1 ·

(
−∂u
∂t1

)
. (A.17)

Knowing that ∇x1 · u = ∂(∇x1 · u) = 0 from above, and using (4.13) we obtain no

contribution to the mass equation.

For the contribution to the momentum equation we have

− 1

λ

∑
a

ceaf
(2)
a =

∂

∂t2

(∑
a

ceaf
(0)
a

)
+

(
1− ∆t

2λ

)[
∂

∂t1

(∑
a

ceaf
(1)
a

)
+∇x1 · Π(1)

]
(A.18)

And similarly to the 0th order momentum flux tensor, Π(1) is the 1st order momentum

flux tensor which, for small Ma, can be expanded as

Π(1) =
∑
a

c2eaeaf
(1)
a ≈ −λ

(
c2

3

)[
∇x1u+ (∇x1u)T

]
⇒

0 =
∂u

∂t2
− ν

[
∇x1 ·

[
∇x1u+ (∇x1u)T

]]
, ν =

(
c2

3

)(
τ − 1

2

)
δt

(A.19)
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Studying terms of O(ε), and reversing our scaling of x, we recover the incompressible

mass conservation equation

∇ · u = 0 (A.20)

Studying terms of O(ε) and O(ε2) , recalling our momentum flux tensors, and revers-

ing the scaling of t we recover the incompressible momentum equation

∂u

∂t
+∇ · Π(0) = ν∇ · Π(1) ⇒

∂u

∂t
+∇ · (uu) = − 1

ρ0

∇p+ ν∇2u

(A.21)

A.2 MRT-iLBE

A.2.1 D2Q9

Starting from the SRT-iLBE
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f(x+ ciδt, t+ δt)− f(x, t) = −1

τ
(f(x, t)− f eq(x, t)) (A.22)

and introducing the identity matrix I = M−1M , the collision step is modified as

f(x+ ciδt, t+ δt)− f(x, t) = −M−1M
1

τ
(f(x, t)− f eq(x, t))

= −M−1 1

τ
I(Mf(x, t)−Mf eq(x, t))

= −M−1S(m(x, t)−meq(x, t)),

(A.23)

where S = 1
τ
I, a diagonal matrix of inverse relaxation times. m and meq are the

moment and equilibrium moment vectors defined as m = Mf and meq = Mf eq,

respectively, and M is the transformation matrix for mapping velocity to moment

space. To provide a unique relaxation time for each moment, S is further defined as

diag( 1
τ0
, ..., 1

τq−1
).

Moment vectors refer to velocity moments of the iLBE distribution functions, some

being easy to identify from equations 4.12 and 4.13, such as the 0th and 1st-order

moments
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ρ0 =
∑
i

fi = 1

jx =
∑
i

cixfi = ux

jy =
∑
i

ciyfi = uy,

(A.24)

density, x-mass flux, and y-mass flux, respectively. In each case this produces a vector

of i elements, making up a row of the transformation matrix M . Expanded, they are

ρ0 = (1, 1, 1, 1, 1, 1, 1, 1, 1)

jx = (0, 1, 0,−1, 0, 1,−1,−1, 1)

jy = (0, 0, 1, 0,−1, 1, 1,−1,−1).

(A.25)

The remaining six are produced from the polynomials cmixc
n
iy, m,n ∈ {0, 1, 2}. These

moments are selected to be related to other macroscopic properties, and are summa-

rized as

m = (ρ0, e, e
2, jx, qx, jy, qy, Pxx, Pxy)

T , (A.26)

where e is related to energy, q is related to energy flux, and P is related to the

diagonal and non-diagonal elements of the stress tensor. For example, mPxy = m8 =
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(0, 0, 0, 0, 0, 1,−1, 1,−1) = uxuy.

These vectors (referred to as vi) are next orthogonalized (referred to as ui) via the

Gram-Schmidt procedure

u0 = v0

u1 = v1 − u0
u0 · v1

u0 · u0

u2 = v2 − u0
u0 · v2

u0 · u0

− u1
u1 · v2

u1 · u1

. . .

uq−1 = vq−1 −
q−2∑
i=0

ui
ui · vq−1

ui · ui

(A.27)

yielding the final form of the transformation matrix
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M =



1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1



, (A.28)

Recalling thatmeq =Mf eq, the resultant equilibrium moments of the transformation

are

meq
0 = 1 meq

3 = ux meq
6 = −uy

meq
1 = 6P + 3u2 meq

4 = −ux meq
7 = u2

meq
2 = −9P − 3u2 meq

5 = uy meq
8 = uxuy.

(A.29)

To obtain the matrix for mapping the moment space back to velocity space, M is

inverted,
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M−1 =



1
9

−1
9

1
9

0 0 0 0 0 0

1
9
− 1

36
− 1

18
1
6

−1
6

0 0 1
4

0

1
9
− 1

36
− 1

18
0 0 1

6
−1

6
−1

4
0

1
9
− 1

36
− 1

18
−1

6
1
6

0 0 1
4

0

1
9
− 1

36
− 1

18
0 0 −1

6
1
6
−1

4
0

1
9

1
18

1
36

1
6

1
12

1
6

1
12

0 1
4

1
9

1
18

1
36

−1
6
− 1

12
1
6

1
12

0 −1
4

1
9

1
18

1
36

−1
6
− 1

12
−1

6
− 1

12
0 1

4

1
9

1
18

1
36

1
6

1
12

−1
6
− 1

12
0 −1

4



, (A.30)

A symbolic mathematical package is very useful for these large calculations.

The relaxation time matrix is the remaining undefined component of the MRT op-

eration. Certain elements must have exact values (S7 and S8 for viscosity), some

are of no consequence (S0, S3, S5) since the moment space collision yields zero (i.e.

S3(m3−meq
3 )) = S3(ux− ux)) = 0), and others can be chosen to enhance stability as

long as they are in the range (0,2). Here the values are chosen to be

S =

[
1, 1.1, 1, 1, 1.2, 1, 1.2,

1

τ
,

1

τ

]
, ν =

1

3

(
τ − 1

2

)
. (A.31)
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A.2.2 D3Q15

Starting from the same point as the D2Q9 MRT derivation (equation A.22), followed

by the conversion to moment space of the collision term (equation A.23), the moments

are built from the polynomials cmixc
n
iyc

l
iz, m,n, l ∈ {0, 1, 2}. Several are the familiar

macroscopic moments such as ρ0, or related to recognizable properties such as diagonal

terms of the stress tensor. To accommodate the 15 distribution functions of the

D3Q15 lattice, additional relevant moments are required. They are

m = (ρ0, e, e
2, jx, qx, jy, qy, jz, qz, 3Pxx, Pww, Pxy, Pyz, Pxz, txyz)

T . (A.32)

The z-dimension is added to some elements of m, expounded in section A.2.1. A new

moment, txyz is related to the 3D stress tensor, and is defined as

txyz = cixciyciz = (0, 0, 0, 0, 0, 0, 0, 1,−1,−1, 1,−1, 1,−1, 1) = uxuyuz. (A.33)

Through the Gram-Schmidt procedure (A.27), these moments are orthogonalized and

result in the transformation matrix
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M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−2 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1

16 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 −1 1

0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 −1 1

0 0 0 1 −1 0 0 1 −1 1 −1 −1 1 1 −1

0 0 0 −4 4 0 0 1 −1 1 −1 −1 1 1 −1

0 0 0 0 0 1 −1 1 −1 −1 1 1 −1 1 −1

0 0 0 0 0 −4 4 1 −1 −1 1 1 −1 1 −1

0 2 2 −1 −1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1

0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1

0 0 0 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 0 0 1 −1 −1 1 −1 1 −1 1



, (A.34)

Applying meq = Mf eq, the equilibrium moments are

meq
0 = 1 meq

5 = uy meq
10 = u2

y − u2
z

meq
1 = −2 + 3P + u2 meq

6 = −7
3
uy meq

11 = uxuy

meq
2 = 16− 45P − 5u2 meq

7 = uz meq
12 = uyuz

meq
3 = ux meq

8 = −7
3
uz meq

13 = uxuz

meq
4 = −7

3
ux meq

9 = 2u2
x − u2

y − u2
z meq

14 = 0.

(A.35)

A symbolic mathematical package is even more useful here than in the D2Q9 deriva-

tion.

The inverse of M is required for transformation back to velocity space.
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

1
15

− 1
9

2
45

0 0 0 0 0 0 0 0 0 0 0 0

1
15

− 1
18

− 1
90

1
10

− 1
10

0 0 0 0 1
6

0 0 0 0 0

1
15

− 1
18

− 1
90

− 1
10

1
10

0 0 0 0 1
6

0 0 0 0 0

1
15

− 1
18

− 1
90

0 0 1
10

− 1
10

0 0 − 1
12

1
4

0 0 0 0

1
15

− 1
18

− 1
90

0 0 − 1
10

1
10

0 0 − 1
12

1
4

0 0 0 0

1
15

− 1
18

− 1
90

0 0 0 0 1
10

− 1
10

− 1
12

− 1
4

0 0 0 0

1
15

− 1
18

− 1
90

0 0 0 0 − 1
10

1
10

− 1
12

− 1
4

0 0 0 0

1
15

1
18

1
360

1
10

1
40

1
10

1
40

1
10

1
40

0 0 1
8

1
8

1
8

1
8

1
15

1
18

1
360

− 1
10

− 1
40

− 1
10

− 1
40

− 1
10

− 1
40

0 0 1
8

1
8

1
8

− 1
8

1
15

1
18

1
360

1
10

1
40

1
10

1
40

− 1
10

− 1
40

0 0 1
8

− 1
8

− 1
8

− 1
8

1
15

1
18

1
360

− 1
10

− 1
40

− 1
10

− 1
40

1
10

1
40

0 0 1
8

− 1
8

− 1
8

− 1
8

1
15

1
18

1
360

1
10

1
40

− 1
10

− 1
40

1
10

1
40
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8

− 1
8

1
8

− 1
8

1
15

1
18

1
360

− 1
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− 1
40

1
10

1
40

− 1
10

− 1
40

0 0 − 1
8

− 1
8

1
8

1
8

1
15

1
18

1
360

− 1
10

− 1
40

1
10

1
40

1
10

1
40

0 0 − 1
8

1
8

− 1
8

− 1
8

1
15

1
18

1
360

1
10

1
40

− 1
10

− 1
40

− 1
10

− 1
40

0 0 − 1
8

1
8

− 1
8

1
8


(A.36)

Again there are several conserved moments, m0, m3, m5, and m7, fixed density, x-, y-,

and z-momentum, respectively. Also, there are moments related to viscosity/shear,

m9−13. Thus, conserved moment relaxation rates are non-specific, shear moments are

fixed, and other moments can be tuned with freedom between 0 and 2 for stability.
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Appendix B

Thermal D2Q4 LBE Derivations

B.1 Equilibrium Distribution Form: Ansatz

Method

Assuming linearity based on the advection-diffusion equation, the form of geqi takes,

geqi = A+B(ci · u). (B.1)

Calling on the first definition of B.12 and performing the summation of B.1,
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A =
T

4
. (B.2)

Introducing the flux summation,

4∑
i=1

cig
eq
i = uT ⇒ geq1 − g

eq
3 = uxT, (B.3)

resolves,

B =
T

2
, (B.4)

yielding the final form:

geqi =
T

4
[1 + 2(ci · u)] . (B.5)
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B.2 Chapman-Enskog Expansion for the Thermal

D2Q4 LBE

As in Appendix A,

ε ≡ Kn, ε−1x1 ⇒
∂

∂x
= ε

∂

∂x1

,
∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
. (B.6)

Performing the perturbation expansion of gi in terms of ε,

gi(x, t) = g
(0)
i (x, t) + εg

(1)
i (x, t) + ε2g

(2)
i (x, t) +O(ε3), g

(0)
i = geqi , (B.7)

and the Taylor series expansion of the LBE with gi,

1

λ
(g

(0)
i − gi) =

(
∂

∂t
+∇x · ci

)
gi

+
∆t

2

[
∂

∂t

(
∂

∂t

)
+ 2

∂

∂t
(∇x · ci) + (∇x∇x) : (cici)

]
gi

+O(∆t2),

(B.8)
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and with expansions B.6,

1

λ
(g

(0)
i − gi) =

(
ε
∂gi
∂t1

+ ε2
∂gi
∂t2

)
+ ε(∇x1 · ci)gi

+
∆t

2
ε2
[
∂2gi
∂t21

+ 2
∂

∂t1
(∇x1 · ci)gi + (∇x∇x) : [(cici)gi]

]
+

∆t

2
ε3
[
2
∂

∂t1

∂gi
∂t2

+ 2
∂

∂t2
(∇x1 · ci)gi

]
+

∆t

2
ε4
(
∂2gi
∂t22

)
+O(∆t2) .

(B.9)

The first and second order terms of ε, respectively are:

− 1

λ
g

(1)
i =

∂g
(0)
i

∂t1
+ (∇x1 · ci)g

(0)
i , and (B.10)

−1

λ
g

(2)
i =

∂g
(1)
i

∂t1
+ (∇x1 · ci)g

(1)
i +

∂g
(0)
i

∂t2

+
∆t

2

[
∂2g

(0)
i

∂t21
+ 2

∂

∂t1
(∇x1 · ci) g

(0)
i + (∇x1∇x1) :

(
cicig

(0)
i

)]
.

(B.11)

Introducing,
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4∑
i=1

g
(0)
i = T, and

4∑
i=1

g
(G)
i = 0 for G 6= 0, (B.12)

applying summation over i, and utilizing B.10 in B.11 yields:

∂T

∂t1
+ u · ∇x1T = 0, and (B.13)

∂T

∂t2
+

(
1− ∆t

2λ

)
∇x1 · Π(1) = 0, (B.14)

where

Π(1) =
4∑
i=1

cig
(1)
i ≈ −λ

(
1

2

)
∇x1

(
4∑
i=1

gi

)

= α∇x1T, α =
1

2

(
τT −

1

2

)
.

(B.15)

Combining these last three results and reversing the scaling of B.6 forms the

advection-diffusion temperature transport equation,

257



∂T

∂t
+ u · ∇T = α∇2T. (B.16)
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Appendix C

Units

Table C.1 establishes a datum for conversion to physical units, and table C.2 provides

the conversion factors from solver units to physical meaning at any point in the domain

for any value of interest. Material properties are based on air at T = 573 K, 100 nm

PM, and cordierite substrate. Diffusivities are based on Pr (0.68) and Sc (≈95.1)

[127].

Below these tables are detailed derivations of the conversions to provide logic and

justification for their values.
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Table C.1
Possible simulation datum points for solver to physical unit conversion

Metric Physical Unit LB Unit
Lfilter 200 µm 200
ν 4.7559e− 5 m2 s−1 0.16667
ρ0 0.6172 kg m−3 1.0
Tin 573 K 0.01
α 6.9940e− 5 m2 s−1 0.24559
D 5.0e− 7 m2 s−1 0.0017522

Table C.2
Multipliers for solver to physical unit conversion

Physical Result Multiplier
L(δx) 1.0e− 6 m
ν 2.8535e− 4 m2/s

t(δt) 3.5044e− 9 s
u 285.35 m/s
ρ 0.6172 kg/m3

P 50256.7 Pa
T 57300 K
α 2.8535e− 4 m2/s
D 2.8535e− 4 m2/s
κ 1.0e− 12 m2

As an additional note, filter PM loading density can be computed through multiplying

the density of carbon black (380 kg/m3) by the ratio of PM filled lattice cells to total

filter lattice cells.
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Conversion Derivations

In this section, variables labeled Cq represent the conversion factor for physical quan-

tity q. Values with a tilde are lattice Boltzmann units.

In the filter simulations, viscosity, length, and τ all have established fixed values,

and thus fixed conversions. With these datums, the time value conversion can be

computed from

ν

ν̃
=
C2
L

Ct
, (C.1)

and utilizing the relationship between ν̃ and τ , Ct is found through

Ct =
(τ − 1

2
)C2

L

3ν
. (C.2)

With CL and Ct established, Cu can be defined as

Cu =
CL
Ct
. (C.3)
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Density is also fixed both in physical and lattice Boltzmann units, so the conversion

is

Cρ =
ρ0

ρ̃
. (C.4)

Pressure can be defined in terms of established conversion factors based on unit

consistency:

[P ] =
N

m2
=
kg

m3

m2

s2
=

[Cρ][C
2
L]

[C2
t ]

, (C.5)

yielding

CP =
CρC

2
L

C2
t

. (C.6)

Temperature is independent of previously established units and conversions, so

CT =
T

T̃
. (C.7)

Using the equivalency of the dimensionless values Pr and Sc
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α̃ =
ν̃

P r
(C.8)

D̃ =
ν̃

Sc
, (C.9)

yielding

Cα =
α

α̃
(C.10)

CD =
D

D̃
. (C.11)

Permability can be derived in a similar way as pressure,

[κ] = m2 = [C2
L], (C.12)

yielding
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Cκ = C2
L. (C.13)

PM loading measures the ratio of the mass of PM deposited to the total filter volume.

Assuming unit thickness, as is standard in 2D CFD, the volume of PM deposits is

computed as

(#filled cells) · C3
L (C.14)

and the volume of the filter is

(#cells) · C3
L. (C.15)

Since the ratio is of interest, the conversion C3
L drops. The physical unit most common

for filter loading is g/L, and no conversion is necessary from kg/m3. Finally, the

loading is computed by

%loading · ρPM . (C.16)
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Appendix D

Filter Pseudocode

function Flag

define Lfilter //length of filtration area

define Linlet //length of inlet area

define #seeds //number of seed sites

define rmin //minimum radius

define rmax //maximum radius

for a = 0 to #seeds
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generate random number (1) between Lfilter and Lfilter + Linlet

generate random number (2) between 0 and Ny

generate random number (3) between rmin and rmax

generate random number (4) between rmin and rmax

for i = 0 to Nx

for j = 0 to Ny

compute ellipse where:

(1) is the x-position of the center

(2) is the y-position of the center

(3) is the first radius

(4) is the second radius

if i and j are within ellipse

node(i,j)=“solid”

else

node(i,j)=“fluid”

//Reset inlet and outlet areas to only fluid

for i = 0 to Nx

for j = 0 to Ny
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if inlet or outlet area

node(i,j) = “fluid”

function Boundary

for i = 0 to Nx

for j = 0 to Ny

if it is a “fluid” node

“count” = 0

for k = 1 to number of lattice velocities

id = neighbor x-node along link

jd = neighbor y-node along link

if jd < 0

jd = 0

if jd > Ny

jd = Ny

if nodes(id, jd)=“solid”

add 1 to the “count”

record node position and lattice link as broken

else

record node position and lattice link as unbroken
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for i = 0 to Nx

for j = 0 to Ny

if it is a “solid” node

for k = 1 to number of lattice velocities

id = neighbor x-node along link

jd = neighbor y-node along link

if jd < 0

jd = 0

if jd > Ny

jd = Ny

if nodes(id, jd)=“fluid”

mark as perimeter

else

mark as not a perimeter

function Measure

define Afilter //area of filtration area

define Apore //pore space

define e //porosity

define Pf //filter perimeter
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//Initialize

Afilter = 0

Apore = 0

Pf = 0

for i = Linlet to Lfilter + Linlet

for j = 0 to Ny

add 1 to Afilter

if it is a “fluid” node

add 1 to Apore

if it is a “perimeter” node

add 1 to Pf

e = Apore/Afilter
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Appendix E

Copyright Agreements and

Permissions

Chapter 4 Reprint Permission

The International Journal of Computational Engineering Research requires agreement

that the research work is original in nature, but not agreement in signing over reprint

rights http://www.ijceronline.com/copyright.html. For clarity, the entirety of

the author signed document is:

“I/we agree with the publishing policy of the International Journal of Compu-

tational Engineering Research. I/we understand that my manuscript contains
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data, figures, photos, etc... in original and nothing has been plagiarized from the

research work undertaken by any other person/author. I take full responsibility that

this research work has not previously appeared elsewhere for publication and if found

to be plagiarized in any way IJCER has full authority to declare it so without any

intimation or prior notice and blacklist the authors.”

Additionally, the journal makes the following statement about academic reproduction

at http://www.ijceronline.com/Ethics.html:

“Journal does not view the following uses of work as prior publication: publication

in the form of an abstract; publication as an academic thesis; publication as an

electronic preprint.” (emphasis mine)

Chapter 5 Reprint Permission

Copyright terms for authors published in Advances in Applied Mathematics and Me-

chanics can be found at http://www.global-sci.org/aamm/ > “Instructions for

Authors” > “Copyright Transfer Statement”. Reprint policies allowing reproduction

in this dissertation are described in the following section of that document:

“4. The Work may be reproduced by any means for educational and scientific pur-

poses by the Author(s) or by others without fee or permission with the exception of
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reproduction by services that collect fees for delivery of documents. The Author(s)

may use part or all of this Work or its image in any further work of his/her (their)

own. In any reproduction, the original publication by the Publisher must be credited

in the following manner: ”First published in [Publication] in [volume and number, or

year], published by Global Science Press,“ and the copyright notice in proper form

must be placed on all copies. Any publication or other form of reproduction not

meeting these requirements will be deemed unauthorized.”

Chapter 6 Reprint Permission

Copyright terms for authors published in ASME Journal of Fluids Engineering

can be found at http://journaltool.asme.org/Help/AuthorHelp/WebHelp/

JournalsHelp.htm?_ga=2.63826031.1106457254.1503792097-1067151223.

1494105592#Guidelines/Copyright_Transfer.htm. Reprint policies allowing

reproduction in this dissertation are described in the following section of that site:

“RETAINED RIGHTS OF AUTHORS

Authors retain all proprietary rights in any idea, process, procedure, or articles of

manufacture described in the Paper, including the right to seek patent protection

for them. Authors may perform, lecture, teach, conduct related research, display

all or part of the Paper, and create derivative works in print or electronic format.
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Authors may reproduce and distribute the Paper for non-commercial purposes only.

Non-commercial applies only to the sale of the paper per se. For all copies of the

Paper made by Authors, Authors must acknowledge ASME as original publisher and

include the names of all author(s), the publication title, and an appropriate copyright

notice that identifies ASME as the copyright holder.”
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