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Abstract 

 A suitable tissue scaffold to support and assist in the repair of damaged tissues or 

cells is important for success in clinical trials and for injury recovery. Electrospinning can 

create a variety of polymer nanofibers and microfibers, and is being widely used to 

produce experimental tissue scaffolds for neural applications. This dissertation examines 

various approaches by which electrospinning is being used for neural tissue engineering 

applications for the repair of injuries to the central nervous system (CNS) and the 

peripheral nervous system (PNS). Due to the poor regeneration of neural tissues in the 

event of injury, tissue scaffolds are being used to promote the recovery and restoration of 

neural function. Next generation scaffolds using bioactive materials, conductive 

polymers, and coaxial fiber structures are now being developed to improve the recovery 

of motor functions in in vivo studies. This dissertation includes fabrication techniques, the 

results of neural cell cultures performed both in vivo and in vitro on electrospun fiber 

scaffolds, examines barriers to full functional recovery, and future directions for 

electrospinning and neural tissue engineering. 

 Aligned, free-standing fiber scaffolds using poly-L-lactic acid (PLLA) were 

developed as an in vitro model to study cell interaction on free-standing fiber scaffolds in 

vivo. Stages were designed to allow for the formation of free-standing fiber scaffolds that 

were not supported by an underlying surface. Fibers were spun across the columns of the 

stages to produce free-standing fiber scaffolds. The scaffolds were then used for in vitro 

cell culture using chick dorsal root ganglia (DRG). Fiber scaffolds were also spun on a 

flat substrate and used for in vitro cell studies for comparison. The axonal outgrowth 
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observed for DRG cells cultured on free-standing fiber scaffolds was comparable to those 

grown on fibers with an underlying surface, indicating that cells follow the alignment of 

fibers even without an underlying support.  

 Electrospinning coaxial fibers is a more complex application of electrospinning 

techniques that has been explored here as a method of creating a core-sheath fiber 

structure to act as a scaffold across glial scar tissue present in spinal cord injuries (SCIs). 

Here, we looked at altering the basic electrospinning set-up to spin core-sheath fibers. 

The core was spun with a conductive polymer, poly(3,4-ethyelenedixoythiophene): 

poly(styrene sulfonate) (PEDOT:PSS) and the sheath was spun PLLA to create coaxial 

fibers with a conductive core and an insulating sheath. A conductive polymer was used so 

that electrical stimulation could be applied along the fibers during cell culture to examine 

if the additional external stimulation would further assist in axonal outgrowth when 

combined with the topographical cues of the fiber scaffolds. This allows for the 

combination of electrical stimulation with the topographical guidance provided by 

aligned fiber scaffolds to improve axonal outgrowth and functional recovery in vivo. 
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1 Introduction 

1.1 Motivation and Organization of Dissertation 

 Spinal cord injuries (SCI) and other neural tissue injuries to the central nervous 

system (CNS) and peripheral nervous system (PNS) continue to plague hundreds of 

thousands of people in the United States. Patients who experience injury to the PNS often 

experience site numbness, neural tissue death, and lack of function or disability. Patients 

who experiences SCI and injury to the CNS often experience various forms of paralysis, 

loss of function, life-long disability and even death. These injuries cost patients millions 

of dollars each year. The complex nature of neural tissue makes self-regeneration 

extremely limited, so these injuries do not heal on their own and require some sort of 

clinical intervention. There is currently no treatment available that allows for full 

functional recovery after SCI. Recently, neural tissue scaffolds made from electrospun 

polymer fibers have shown promise in acting as a bridge over scar tissue present after 

SCI and allow for axonal reconnection. Aligned polymer scaffolds produced from 

electrospinning have shown to aid in axonal outgrowth in vitro and have shown in vivo to 

regenerate spinal cord tissue and aid in recovery to peripheral nerve tissue. However, 

there is still no clinically approved method for which to use the fiber scaffolds as 

treatment for these injuries. 
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 Electrospinning is a technique that has been extensively studied within the past 

decade and a half as a method to produce scaffolds for a variety of tissue engineering 

applications. The benefits of using electrospun fiber scaffolds for tissue engineering is 

that the scaffolds can be made to mimic the natural extracellular matrix (ECM) and allow 

for the transfer of proteins, water, and other nutrients into the tissue. The electrospun 

fiber mats can be used as a scaffold to support new tissue growth. Cardiovascular, bone, 

skin, and neural tissues have all been explored as possible applications for electrospun 

tissue scaffolds to repair damaged or diseased tissue. Each type of tissue has different 

requirements as far as mechanical properties, degradation rates of implants, healing time, 

and pharmaceuticals such as growth factors. The tunable nature of the electrospinning 

technique makes it a very attractive method for producing tissue scaffolds for repair of 

multiple types of tissues, as it allows for the use of different polymers and parameters to 

achieve the desired resulting scaffold with the required properties. Electrospinning has 

also been used to create drug delivery scaffolds and has been used in dialysis treatments 

as an alternative to machines to remove toxins from individuals experiencing kidney 

failure. 

 In this dissertation, we aim to further the understanding of the interactions of 

axons with the fiber scaffolds in vivo.  We also aim to develop more complex fiber 

structures that will improve the efficacy of the scaffolds and further aid axonal 

outgrowth, increasing the possibility of clinical use for repair of SCI and other neural 

injuries. Electrospinning presents many variables and challenges that need to be 

considered to successfully spin consistent fibers for scaffolds. Despite these challenges, 
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the technique offers a great deal of flexibility to spin fibers made of different polymers, 

fibers with different diameters, and fibers with complex structures, such as core-sheath 

structures, and is a way to create fiber scaffolds directly. The option to use a variety of 

polymers and techniques with electrospinning allows for the opportunity to use nerve 

growth factor (NGF), other biocompatible pharmaceutical agents, conductive polymers, 

proteins, etc. in the electrospinning process. Having fibers that contain some of these 

other agents can help improve the biocompatibility and restorative properties of the 

scaffolds. Spinning fibers with these agents can be done either by creating blends with 

the base polymer solution or in core-sheath fibers where the desired component, such as 

NGF, is imbedded in the core of a core-sheath fiber structure with a polymeric sheath. 

Imbedding NGF and other biochemical agents in the core helps limit the burst release 

often associated with in vivo delivery of pharmaceuticals and keeps it viable in the body 

for a longer period, making the growth factor more useful and available throughout the 

healing process.  

 Using conductive polymers in the formation of electrospun fiber scaffolds may 

assist in the repair of neural tissue. Neural tissue is electrical in nature due to the 

concentration of salt ions present in the tissue. It has been documented that axonal 

outgrowth is affected by electrical stimulation and in some studies a degree of function 

was restored to PNS injuries when the tissue was exposed to electrical stimulation during 

regeneration. However, electrical stimulation has not provided a method for full tissue 

and functional regeneration. It is our hypothesis that by using the external cues of 

electrical stimulation with the topographical cues provided by aligned polymer fiber 
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tissue scaffolds in a combined strategy approach, the regeneration of tissue and 

restoration of function can be increased and eventually used in a clinical approach. 

 This dissertation is split into four main chapters, each with their own aims and 

objectives, with a final conclusions and future works chapter. The aim of Chapter 2 is to 

explore the science behind electrospinning and the various parameters. This is key in 

moving forward for designing experiments in which to electrospin various fiber scaffolds. 

It also explores the biology behind the nervous system, and the obstacles that present 

when injury occurs. We also sought to explore the research that has been done in 

studying the use of electrospun scaffolds for tissue engineering applications, with an 

emphasis on neural tissue, through a literature review. This also allowed us to search for 

opportunities and gaps in the research. We could then design our approach based on what 

had been previously studied and what had yet to be explored. While other comprehensive 

electrospinning reviews have been written, ours is unique in that it explores the 

electrospinning technique itself in detail, focuses on the neural tissue application of 

electrospun fiber scaffolds, and explores complex fiber structures in one review.  

 Chapter 3 explores the spinning of poly-L-lactic acid (PLLA) fiber scaffolds 

across the columns of an elevated stage to create scaffolds with fibers suspended over the 

surface. This work was performed in response to criticism by reviewers of the previous 

research about the growth mechanism of axons in vitro on the fiber scaffolds. Suspending 

the fibers over a surface and then performing in vitro tissue cultures on the scaffolds 

removed the two-dimensional constraint of performing the cultures on a flat surface. The 

aim of the work was to determine whether the axonal outgrowth observed was due to the 
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topographical cues provided by the aligned fiber scaffold or was because of the constraint 

of the two-dimensional system. The previous work was performed on flat coverslips and 

it was the opinion of some reviewers that the extensive axonal outgrowth observed was 

caused by the axons following the channels between the fibers or along the surface of the 

coverslip rather than due to the aligned fiber scaffolds. It was our hypothesis that the 

fibers were providing the topographical cues for axonal outgrowth and suspending the 

fibers would show results similar to those seen previously.  

 To study this criticism, an elevated stage was designed that would allow fibers to 

be directly spun across the columns of the elevated stage and thus be suspended above 

the surface of the stage. Cell tissue cultures using chick dorsal root ganglia (DRG) similar 

to those performed previously were then performed to determine the growth mechanism. 

The design of an elevated stage was carefully considered and studied, and eventually 

produced using 3D-printing and classic machining methods. By producing elevated fiber 

scaffolds that would create a three-dimensional tissue environment, the interactions of the 

axons with free-standing fiber scaffolds in an in vivo environment when DRG cells were 

implanted on the scaffolds could also be studied and modeled. Analysis of the fiber 

diameter, alignment and density of different fiber scaffolds that were used in cell culture 

studies was also performed. This was done to compare the free-standing fiber scaffolds to 

the fibers spun on a flat surface. The results are summarized in Chapter 3 and show that 

our hypothesis was correct. This work was unique in that is the first time that suspended 

fibers were spun directly onto a free-standing support that was not connected directly to 
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ground. Partial completion of this work was published as conference proceedings for the 

Annual Spring 2015 Materials Research Society Meeting and can be seen in Appendix A. 

 Chapter 4 was performed to examine the potential of using electrospun coaxial 

fibers with a conductive core and insulating sheath as fiber scaffolds for repair of neural 

tissue. Much work was done to examine and finalize the parameters to spin consistent 

coaxial fibers. Different coaxial nozzles that had been previously designed were tested to 

determine the proper nozzle to use to spin consistent coaxial fibers. Fibers were spun 

with different spinneret combinations to determine the effect on fiber parameters and cell 

culture. Different core polymer solutions were also tested to determine the correct core 

polymer to use to produce coaxial fibers. A conductive polymer was then polymerized 

through oxidative polymerization and then imbedded in the core solution of the coaxial 

fibers so fibers could be spun with a conductive core and an insulating PLLA sheath. The 

idea was to create a type of artificial axon and then examine axonal interaction and 

outgrowth with the new fibers. The specific methods used are outlined in Chapter 4. 

Coaxial fibers with a conductive core were successfully spun as determined through 

various analytical techniques such as FTIR and optical imaging. Fiber properties such as 

diameter, alignment, density, modulus and stiffness were determined through analytical 

techniques using imaging software and nanoindentation. While coaxial fibers and 

conductive polymers have been studied for use in neural tissue scaffolds, this work 

distinguishes itself by the conductive polymer used as the conductive core, the imaging 

techniques and the creation of an “artificial axon”. 
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 Fibers spun both on flat coverslips and stages were used for examination. To 

study the axonal interactions, in vitro chick DRG cultures were performed. The effect of 

electrical stimulation on axonal outgrowth was also studied. A stimulation chamber was 

designed using the cover of a six-well culture plate and carbon electrodes that would 

supply voltage either through solution medium for fibers on a flat coverslip or across 

fibers when placed on either side of a three-dimensional stage. The results are 

summarized in Chapter 5.  

 The final chapter lists the overall conclusions of each chapter and the 

recommendations for future work to further the research. The suspended scaffold work 

showed that the axons follow the alignment of fibers during outgrowth and show that this 

is the behavior experienced in vivo when the scaffolds are implanted as a bridge. The 

coaxial work showed that conductive, coaxial fibers with a conductive core and 

insulating sheath were produced. The idea of using conductive coaxial fibers is to 

eventually communicate with individual axons during regeneration and effect the axonal 

outgrowth and reconnections to achieve successful regeneration of neural and spinal cord 

tissue and restore motor function of those who have suffered SCI.  

1.2 Objectives 

Electrospinning scaffolds for neural tissue applications has shown much promise. 

This project aims to build on previous work done by other researchers to increase the 

efficacy of neural tissue scaffolds. I hypothesize that by manipulating the electrospinning 

process, spinning fibers on a new platform, and spinning novel coaxial structures, a 

scaffold can be produced that will act as a growth permissive bridge across the glial scar 
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and can be used in spinal cord injury (SCI) repair. There are two specific aims that are 

addressed in this dissertation, each with various tasks that were performed in order to 

achieve the aims.  

Specific Aim 1: Spin free-standing fiber scaffolds without a supporting, underlying 

surface and to determine the effect of topographical cues provided by the fibers on axonal 

outgrowth.  

Task 1: Design and construct an elevated stage to spin free-standing fibers and 

perform electrospinning using stages.  

Task 2: Perform in vitro DRG axonal outgrowth studies on the elevated scaffolds. 

Specific Aim 2: Use a modified electrospinning nozzle to spin coaxial fiber scaffolds, 

both on flat coverslips and elevated stages, with a conductive core and insulating sheath. 

Task 1: Determine electrospinning parameters such as different flow rates, 

spinning wheel speeds, voltage value, etc. to spin consistent coaxial fibers. 

Task 2: Synthesize conductive polymer PEDOT:PSS through oxidative 

polymerization methods and use characterization methods to determine proper 

synthesis. Preform electrospinning using synthesized polymer in the core. 

Task 3: Use imaging techniques such as Fluorescence Optical Microscopy and 

Scanning Electron Microscopy to determine presence of coaxial fibers. 

Task 4: Preform in vitro cell cultures on coaxial fibers to determine efficacy of 

fiber scaffolds and effect on axonal outgrowth. 
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Task 5: Perform preliminary studies in vitro DRG studies with electrical 

stimulation along the fibers. 
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2 Electrospinning Techniques for Use in Neural Tissue 

Engineering1 

2.1 Abstract 

 A suitable tissue scaffold to support and assist in the repair of damaged tissues or 

cells is important for success in clinical trials and for injury recovery. Electrospinning can 

create a variety of polymer nanofibers and microfibers, and is being widely used to 

produce experimental tissue scaffolds for neural applications. This chapter examines 

various approaches by which electrospinning is being used for neural tissue engineering 

applications for the repair of injuries to the central nervous system (CNS) and the 

peripheral nervous system (PNS). Due to the poor regeneration of neural tissues in the 

event of injury, tissue scaffolds are being used to promote the recovery and restoration of 

neural function. Scaffolds produced from polymers such as poly-lactic acid (PLA), 

poly(caprolactone) (PCL), and poly(L-lactide-co-glycolide) acid (PLGA) have shown 

promise in facilitating nerve regrowth and axonal guidance over the past decade. Next 

generation scaffolds using bioactive materials, conductive polymers, and coaxial fiber 

structures are now being developed to improve the recovery of motor functions in in vivo 

studies. This chapter includes fabrication techniques, the results of neural cell cultures 

performed both in vivo and in vitro on electrospun fiber scaffolds, examines barriers to 

                                                 
1 The material within this chapter has been submitted for review to the journal “Tissue Engineering B 
Reviews.”  
Citation: 
Martin, Rachel, Wendling, Marie, Radke, Dan, Zhao, Feng and Mullins, Michael. “Electrospinning 
Techniques for use in Neural Tissue Engineering Applications.” 
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full functional recovery, and future directions for electrospinning and neural tissue 

engineering. 

2.2 Introduction and Motivation 

One of the most significant areas in which electrospun fiber scaffolds are being 

applied is in repairing neural tissue. Neural tissue is the main component of the both the 

central nervous system (CNS) and the peripheral nervous system (PNS). Neural tissue is 

made up of two different types of cells, neurons and neuroganglia1. Neurons connect the 

entire body to the brain and spinal cord, while the neuroganglia support and protect the 

neurons1. The neuron is made up of a cell body, dendrites and an axon. Dendrites are 

nerve fibers that extend from the cell body and receive or input information from 

different parts of the body. Axons relay nerve impulses until the impulses reach their 

destination1. Damage to the nervous system results in crushed or severed axons, causing a 

disruption in neural impulses. Due to a lack of regenerative capabilities of neural tissues, 

these injuries are debilitating and costly, resulting in decreased life expectancy and 

fatalities. As of 2016, the rate of spinal cord injury (SCI) in the United States was about 

17,000 new cases per year2. There are estimated to be around 282,000 people currently 

living with some degree of SCI in the United States2. In incidents of SCI, over 40% of 

cases are classified as being complete quadriplegia, and 0.4% experience complete 

recovery after any degree of SCI2. The cost of injury to someone who has experienced 

quadriplegia is over $1,000,000 in the first year and over $180,000 for each subsequent 

year. Even those who experience some recovery of motor function still experience a cost 

of almost $350,000 for the first year and over $40,000 for each subsequent year2. The life 
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expectancy of someone with a quadriplegic injury at the age of 20 is only 55, and the life 

expectancy drastically decreases as the age at the time of injury increases2. As a result of 

the high cost of these injuries, the frequency of occurrence and poor prognosis, new 

medical interventions are necessary to provide an opportunity for repair of neural 

injuries. 

2.3 Neural Tissue Structure and Injury 

The CNS and PNS are made up of different types of neuroganglia, with the CNS 

possessing 4 types and the PNS possessing 2 types1. The CNS contains three types of 

glial cells, consisting of two types of macroglial cells, astrocytes and oligodendrocytes, 

and one set of microglial cells3. The CNS also contains ependymal cells, which produce 

cerebrospinal fluid. Cerebrospinal fluid protects the brain and spinal cord in the CNS1. 

Microglial cells act as macrophages that are activated by injury, disease, infection and 

cell death. The two types of neuroganglia that reside in the PNS are Schwann cells and 

satellite cells. Satellite cells are flat cells that provide structural support by surrounding 

the cell bodies and regulate the transfer of materials within the PNS. Schwann cells, 

which myelinate the axons in the PNS, are surrounded by neurolemma, which aid in 

regeneration and are not present in the CNS1.  

Injuries to both the PNS and CNS are often traumatic, due to lack of regeneration 

and neurogenesis. When the spinal cord in the CNS is severed or crushed upon injury, the 

cell body can be damaged, which causes functional loss3. There are a variety of growth 

inhibitory cues the neural tissue experiences after injury which prevents regeneration: (1) 

myelin debris can accumulate and act as a barrier to regeneration, (2) astrocytes and 
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oligodendrocytes can also be overstimulated in response to injury, (3) the glial cells over 

time cause the formation of a glial scar, which acts as a barrier to regeneration and axonal 

extension, and (4) the expression of proteoglycans are also stimulated by the formation of 

the glial scar tissue, and halt the regeneration of CNS tissue3 (Figure 2-1). While both 

inhibiting and promoting molecules are up-regulated in the response to injury to the CNS 

tissue, the inhibitory cues experience a higher level of up-regulation4. Because there is 

some up-regulation of promoting molecules, the severed axons do experience some 

extension at their ends, but become deformed in the presence of inhibitory molecules and 

form misshapen, dystrophic growth cones within the scar tissue. This causes the axons to 

stop growing and regenerating, and they become entangled with other axons during 

regrowth4. Due to the combination of the inhibiting growth molecules and the lack of 

Schwann cells and neurolemma, the CNS does not experience any significant self-

regeneration. 

The PNS has some ability for self-repair, but only if the cell bodies remain intact 

and if Schwann cells are present and active1. However, neural regeneration can only 

occur over very small gaps. For a gap of 2cm or less, recovery is possible, but can be 

moderate and full functional recovery may not occur. With gaps of 2cm or larger, self-

recovery is not possible and requires surgical intervention5. In some injuries to the PNS, 

the severing of the nerve occurs, causing so much damage that regeneration cannot occur, 

and surgery is required6. Even in instances where surgery is required, there is a strict 

time-line after which surgery is no longer effective. Within 12-18 months of the injury 
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having occurred, permanent atrophy sets in due to the lack of movement caused by the 

nerve injury, thus rendering surgery ineffective6. 

 

Figure 2-1: Cellular response to injury to the CNS. 
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There are clinical methods currently used to surgically repair injuries to the PNS 

when the gap in the injured nerve is greater than 2cm. Nerve autografts produce the best 

results, but they also present risk of complications after implantation. They often leave 

patients with donor site morbidity and significant disability even under optimal 

circumstances7. Another method for repairing damaged nerves is coaptation, which draws 

together the two nerve ends to repair the nerve. This can be done with two nerves side by 

side, two nerves end to end, two nerves side to end, or with an autograft8. Coaptation can 

only be used for nerve injuries with small gaps, with anything more than 20mm requiring 

a different type of treatment. There is still a risk of site morbidity and residual nerve 

damage8. 

In the event of a spinal cord injury (SCI), it may be necessary to bridge a 

significant gap and the glial scar. In both cases, a scaffold may be used to facilitate and 

provide guidance for axonal outgrowth. Much work has been focused on the creation of a 

natural or polymeric scaffold with the current method being the use of autografts or 

allografts9-11. Autografts are nerve grafts in which neural tissue is taken from a different 

part of the body of the injured individual and grafted into the site of injury in injuries to 

the PNS. In an allograft nerve graft, neural tissue is taken from a donor individual and 

then grafted into the site of injury. Autografts are only used in the case of PNS injury and 

have numerous drawbacks. Allografts often result in rejection or infection, and in the 

case of both allografts and autografts, there is a shortage of available tissue7. More 

effective clinical solutions are needed to repair both PNS and CNS injuries. Synthetic 

alternatives to nerve grafts are being explored, which include hydrogels12, nerve growth 
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factors13, and implantable scaffolds as growth conduits. Current neural scaffolds focus 

primarily on providing physical guidance cues to developing axons through the use of 

channels or conduits fabricated from polymers or biologically derived materials, often 

placing emphasis on the surface morphology to promote alignment14-17. Conduits should 

be mechanically pliable and highly aligned to mimic the structure of natural neural tissue 

while having enough structural strength to support the regeneration SCs, neurons, and 

connective tissues, and would ideally be biodegradable and utilize biochemical growth 

signaling to replace the graft with native tissues over time without the loss of function. 

Hydrogels have been reported to support high cell viability and stem cell 

differentiation12, and support the formation of a functional neural cellular network18. 

Highly aligned fibrillary fibrin (AFG) hydrogel has been used to mimic the soft and 

aligned structure of natural nerve tissue. Yao et al. found the physical cues caused dorsal 

root ganglion (DRG) neurons to rapidly grow aligned to the AFG fibers without being 

supplemented by neurotropic factors19. This suggests physical guidance may dominate 

the regeneration process of peripheral neurons, and that scaffolds need only recreate the 

proper surface interactions and bulk mechanical properties of the natural connective 

tissue sheath for functional repair. In particular, the use of electrospinning techniques to 

form polymeric fiber scaffolds to bridge nerve gaps of 2mm or larger and promote 

growth across glial scars has shown promise20. Fiber scaffolds provide surface cures for 

the axons during outgrowth. Without such guidance cues, the axons extend out from the 

cell body and become entangled, creating a halo-like structure around the cell body called 

dystrophic growth cones. By providing an aligned fiber surface for axonal outgrowth, the 

outgrowth can be controlled and directed. Figure 2-4A shows a chick dorsal root ganglia 
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(DRG) cell that has been cultured without underlying growth cues. The axonal outgrowth 

is entangled around the cell body and dystrophic growth cones are present. 

2.4 Electrospinning 

Electrospinning is a technique used to create polymeric fibers that are of the 

nanoscale, as small as tens of nanometers, or of the microscale, as large as several 

microns21 (Figure 2-2). Electrospinning provides a direct way to spin polymeric fibers21. 

There are three basic pieces of equipment required for small scale electrospinning, 

including a spinneret, being either a nozzle or metallic needle, a high voltage power 

supply, and a grounded collector22. Electrospinning can be done under either a positive or 

negative electric field, and the collector can be grounded or of the opposite charge to the 

electric field. A viscous polymer solution is pumped to the tip of the spinneret that is 

connected to a high voltage power supply. If the potential at the tip of the spinneret is 

sufficient to overcome the surface tension of the solution droplet formed at the tip of the 

spinneret, the electrostatic forces will distort the droplet. When an equilibrium between 

the two forces is reached, it causes the formation of what is known as a Taylor’s cone21. 

Once the electrostatic forces become dominant, the cone is further distorted to the point 

that one or more polymeric strands are emitted from the tip of the cone. The charged 

strands are then attracted to a grounded collector to maintain electroneutrality (Figure 2-

2).  

Both the polymer solution properties and the electrospinning process parameters 

need to be considered for electrospinning fibers. Much work has been done to examine 

and mathematically model these parameters and their effects on electrospinning21,23,24. 
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However, due to the large number of electrospinning variables, electrospinning remains 

almost as much of an art as a science. There are several parameters that have a significant 

effect on the electrospinning process, and we will highlight a few. 

Relevant solution properties include surface tension of the droplet, density of the 

solution, viscosity of the solution and the charge density. A list of the important solution 

properties is listed in Table 2-1. The polymer should be of sufficient molecular weight to 

be electrospun, and this is determined by the degree of chain entanglements that occur 

when the polymer is in solution25. The typical molecular weight of polymers used in 

electrospinning is between 30kDa and 400kDa22. The polymer solution must contain 

charge carriers to interact with the electric field in order for the electrospinning process to 

occur22. The charge carriers can be provided by the solvent or by the solution itself. 

Charge carriers provide a charge density in the solution and allow the transfer of an 

electric charge from the power supply to the solution at the tip of the spinneret. Charges 

build up on the surface of the Taylor’s cone and travel to the grounded or oppositely 

charged collector. 

The concentration and viscosity of the polymer solution are important factors in 

electrospinning. The minimum viscosity that is required is a value at which the 

concentration of the solution is greater than the critical concentration. The critical 

concentration is determined by the average molecular weight of a polymer and the 

solvent, so it varies with each polymer solution25. Typical solvents used in 

electrospinning include acetone, chloroform, dichloromethane and toluene25. The nozzle 

feed rate also has an impact on the size and diameter of the fibers that are collected. It is 
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important to have a balanced flow, with the feed rate of the polymer solution matching 

the rate at which the polymer strand is being pulled from the tip of the spinneret25. 

Typical feed rates generally range from 0.5mL/hr to 4mL/hr.  

Table 2-2 shows a list of process parameters which apply to the electrospinning 

environment and equipment used that effect the formation and morphology of fibers. 

These include applied voltage, collector geometry, gap distance between the spinneret 

and collector, electric field strength, spinneret diameter and design, and the 

electrospinning environment. The grounded collector used can have a great impact on the 

geometry of the fiber mats collected. Using a stationary plate or foil is the most common 

and creates a random, disordered two-dimensional mat of fibers7,25-31 (Figure 3-3). If the 

collector is moving or rotating, the density of the mat formed can be controlled, allowing 

for some control of the geometry of the mat. The formation of aligned or ordered fiber 

mats is possible25(Figure 3-3). It is also possible to achieve aligned fibers by using two 

charged plates placed at a certain distance apart from each other. The plates are of the 

opposite charge as the charged fiber strand emitted from the Taylor’s cone, or are 

grounded. As the fiber strand whips, it becomes attracted to the closer plate and then is 

whipped to the adjacent plate. As the charged strand whips back and forth between the 

two plates, and aligned fiber mat is formed25. 

The applied voltage effects the morphology of the fibers. A higher voltage results 

in greater elongation of the jet and a greater instability, which results in a smaller 

diameter fiber25. The gap distance between the spinneret and the collector effects the 

applied electric field during electrospinning, as the applied electric field is directly related 
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to the ratio of the applied voltage to the gap distance. Shortening the gap distance without 

changing the applied voltage will increase the electric field. If the gap distance is not 

large enough, there will not be enough time for the solvent to evaporate and the fibers to 

solidify. If the gap distance is too large, the field strength will not be high enough to 

overcome the surface tension of the droplet. Although the ideal voltage field is dependent 

on the electrical and physical properties of the electrospinning solution, the range is 

typically between 1 and 2 kV/cm. The humidity and temperature of the environment 

effects the electric field and drying time of the fibers, and must be properly controlled 

and in balance in order to spin uniform fiber mats32. 

 

Figure 2-2: Electrospinning apparatus for collection on a flat, stationary collector and 

a rotating wheel collector 
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Table 2-1: Key polymer solution parameters that effect electrospinning 

Solution 
Parameter 

Symbol Parameter function variables 

Flow rate 
(mL/hr) 

Q viscosity, concentration 

Solution 
density 
(g/mL) 

ρ solvent, polymer, concentration 

Solution 
viscosity 
(cP) 

μ solvent, polymer, concentration 

Solution 
concentration 
(wt.%) 

c solvent, polymer 

Polymer type 
and length 
(kDa) 

Mw polymer, fiber application, dielectric constant 

Solvent type - polymer  

Vapor 
pressure 
(kPa) 

V.P. solvent 

Surface 
tension 
(N/m)  

σ polymer, viscosity, solvent, concentration 

Dielectric 
constant 

k polymer, solvent 
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Table 2-2: Key process parameters that effect electrospinning 

Process 
Parameter 

Symbol Parameter function variables 

Applied voltage 
(KV) 

V polymer type, concentration, viscosity, solution 
conductivity, solution surface tension 

Electric field 
strength(KV/cm)  

E applied voltage, electrode spacing 

Gap distance 
(cm) 

L solvent, solution conductivity 

Spinneret 
diameter and 
design (mm) 

d polymer, viscosity, fiber application 

Temperature 
(°C) 

T solvent, polymer, density 

Humidity (%) RH solvent, polymer, density 
Collector 
material and 
geometry 

- fiber application, electric field polarity, fiber 
conductivity 

 

 

Figure 2-3: Poly-L-lactic acid nanofibers (A) random fibers on a station collector (B) 

aligned fibers on a rotating collector 

Electrospinning techniques use many different polymers and a variety of both 

natural and synthetic polymers have been explored as neural tissue scaffolds. Polylacitc 

A 
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acid (PLA)26,27,33-37, silk fibroin (SF)38, poly(caprolactone) (PCL)15,28,39,40, poly(L-lactide-

co-glycolide) acid (PLGA)29,30,41, cellulose acetate butyrate40 as well as composite 

polymeric solutions7,31,42-45 have been used to produce fiber scaffolds for neural tissue. A 

grounded rotate collector can create aligned fiber mats. By changing the arrangement of 

the fibers within the mat it is possible to alter the interactions between the cells and the 

fiber scaffold. Aligned fiber scaffolds have shown more promise in guiding axonal 

outgrowth during in vitro cell cultures than randomly aligned fiber mats33-35. 

2.5 Applications of Electrospun Fibers 

The technique of electrospinning has attracted a great deal of attention within the 

last two decades as a useful and direct way to produce fibers that can be used as scaffolds 

in tissue engineering applications9,22. In tissue engineering, there are three main 

components that all play vital roles: (a) cells, (b)tissue scaffolds and (c) signaling 

molecules46. Different cell types, such as cardiac cells or neural cells, may require 

different materials or different approaches. For example, cardiac tissue, which 

experiences a great deal of mechanical stress, requires the use of materials that can 

withstand the amount of stress in the cardiac environment. Neural tissue, being highly 

ordered in structure, requires materials that can mimic the natural environment. Signaling 

molecules can be used to enhance the growth of implanted tissues and are usually cell-

specific. Tissue scaffolds are used to provide support for existing or implanted cells and 

tissue and are sometimes used to deliver signaling molecules. While all three elements 

are equally important, it is the scaffolds to which electrospinning methods are applicable. 

Scaffolds act as a platform to support cells during the regeneration process and if stem 
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cells are used, allow cells to spread and differentiate into the desired tissue46. Scaffolds 

also allow for the entry of various nutrients, proteins, water, growth factors and other 

vital biomaterials to enter the cell system during regeneration, helping to result in the 

formation of healthy tissues. 

2.5.1 Fiber scaffolds in tissue engineering 

Fibers obtained using electrospinning methods have been used in bone, neural, 

cardiovascular, and cartilage tissue engineering using various polymers and 

electrospinning techniques. Injury and degenerative diseases dictate the need for bone 

repair methods such as implants, transplants, and other techniques47. The current repair 

methods have various restrictions such as infection, nerve injury, and the risk for disease 

transfer47. These limitations necessitate the development of new technology to repair 

various chondral defects and injuries. Nanofibers produced by electrospinning, given 

their high surface area to volume ratio, flexibility for a wide range of polymers, and 

continuous structure give these scaffolds the mechanical properties necessary in order to 

mimic natural bone tissue47. The fibrous nature of the scaffolds mimic the fibrous nature 

of bone tissue48. Xu et al. showed that electrospun nanofibers can be altered in such a 

way as to promote a higher potency chrondogenic differentiation in mouse bone marrow 

mesenchymal stem cells, showing the vast applications of this technique and its potentials 

in tissue engineering49. 

Cardiovascular disease continues to be the leading cause of death worldwide50. 

Heart attacks are among the leading causes of deaths related to cardiovascular diseases. 

Cardiac tissue has a very limited capacity for regeneration after an instance of a heart 
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attack, leading to a lack of ability to restore normal function to the heart51. Heart 

transplants continue to be the best way to regenerate cardiac function, but are extremely 

limited due to the lack of donors and possibility for rejection or other serious and life-

threatening side-effects51. Electrospinning as a tissue engineering application is emerging 

as a promising alternative approach to regenerate existing cardiac tissue using an 

implanted scaffold. 

2.5.2 Aligned fiber scaffolds for neural tissue repair 

Given the highly-structured nature of neural tissue, researchers have found that 

spinning aligned fiber scaffolds have improved the function of the scaffolds for neural 

tissue repair34,35. Aligned scaffolds have shown an increase in axonal extension during 

both in vitro and in vivo cell cultures (Figure 2-4). One of the most studied polymers is 

poly-L-lactic acid(PLLA). PLLA has proven to be an effective polymer in numerous 

cases in in vitro studies for neural applications. PLLA seems to allow just enough 

adhesion to prevent the neural cells from falling off the scaffolds but does not have such 

high adhesion that it hinders axonal outgrowth. It is also biocompatible and 

biodegradable. By electrospinning aligned PLLA nanofibers, Corey et al. were able to 

show that highly aligned fiber mats increased the neurite outgrowth of the dorsal root 

ganglia (DRG) of Sprague-Dawley rat embryos cultured in vitro 20% over random fiber 

mats33 (Figure 2-5). It was shown that the neurites extended parallel to the direction of 

the fibers, and on aligned fibers extended 760 ± 71µm. In a similar study, Wang et al. 

demonstrated that highly aligned fiber mats produced from specialized electrospinning 

parameters showed extensive neurite outgrowth of stage E9 chick DRG cultured in vitro, 



43 
 

and also demonstrated that the occurrence of crossing fibers in the scaffold that fall out of 

alignment inhibit neurite outgrowth, in some instances stopping outgrowth altogether 

when the neurite comes into contact with the junction of crossed fibers34 (Figure 2-6). 

The highly aligned mats produced by Wang showed that 84% of fibers deviated by only 

± 2° from a parallel lined as measured using Fast Fourier Transform analysis, and 99% of 

fibers deviated by ± 10°34. Neurite extension on the studies performed by Wang was 

measured at 1306 ± 204µm on aligned fiber mats as opposed to 854 ± 204µm when cells 

were cultured on a flat PLLA film, indicating an increase of neurite outgrowth of 53%3. 

They also showed that an increase in fiber density within the mat resulted in an increased 

number of extended neurites. In a later study, the same group demonstrated that altering 

the diameter of the fiber can have a positive impact on the outgrowth of neurites and on 

the migration of Schwann cells (SCs), an important factor in PNS repair. Schwann cells 

are cells that are present in the PNS and assist in the regeneration process. Wang 

demonstrated that fibers with a larger dimeter of 1325 ± 383nm exhibited longer neurite 

outgrowth than those with the smallest diameter of 293 ± 65nm, indicating that fibers in 

the micrometer range are better suited to aid in neural tissue repair. The fibers with the 

largest diameters exhibited the greatest packing density, resulting in the greatest SC 

migration35.  
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Figure 2-4: Chick DRG cell cultures. (A)Cell cultured without topographical cues 

(B)Cell cultured on aligned fiber scaffold 



45 
 

 

Figure 2-5: A-C: SEM images of various alignment of electrospun PLLA fibers. D-F: 

FFT images from the SEM images in A-C. G-I: Neurite outgrowth from DRG cells. J-

L: FFT images from the images in G-I. Reused with permission from Wiley (Appendix 

8.3) 
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Figure 2-6:(A) Highly aligned electrospun PLLA nanofibrous mat. (B) Stage E9 chick 

dorsal root ganglia (DRG) showing axonal extension along fiber alignment. The 

aligned fibers aided in highly extensive axonal outgrowth. Reused with permission 

from IOP Science (Appendix 8.3) 

 

While a rotating drum or wheel is the most common technique used for creating 

aligned scaffolds3,20,34,52-55, some researchers have found other methods to achieve 

aligned fiber mats. Jing et al. used parallel, conductive copper plates to achieve parallel 

aligned poly(propylene carbonate) fibers56. The electrostatic interactions between the 
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positively charged polymer strand and the conductive copper plates allowed for the fibers 

to stretch across the gap between the plates in an aligned fashion. They achieved aligned 

fiber mats using this set-up, with 95% of fibers being ± 20° of the direction of 

alignment56. Zhao et al. used a parallel electrode method to create aligned fiber scaffolds 

made of polyacrylonitrile57. The method the group used was meant to overcome the 

disadvantage of a rotating drum that limits the ability to collect a wide area due to 

geometric limits imposed by the size of the wheels and drums that are used. They 

modified their parallel electrode set-up by placing a positively charged ring in the space 

between the spinneret and the collecting electrodes to limit the area of whipping of the jet 

during electrospinning, thus allowing for more control during the electrospinning 

process57. By using the ring to modify the parallel electrode set-up, the group increased 

the alignment of the fibers while also decreasing the diameter. The fiber diameter 

decreased from a majority of the fibers being around 250nm in diameter to being around 

150nm in diameter, and the alignment increased by more than 20%57. The improved 

topography makes the scaffolds more suitable for application57. Dippold et al. employed a 

similar technique to spin aligned fibers using parallel alumina rods58. The rods were 

grounded, and used to collect aligned PCL-collagen fibers. Bhutto et al. employed 

parallel magnets at either end of a very slowly rotating collector to collect highly aligned 

poly(L-lactide-co-caprolactone)(P(LLA-CL)) fibers59. They used two strong magnets, a 

south pole magnet at one end of the collecting rod and a north pole magnet at the other 

end, to create the aligned fiber scaffolds. 
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2.5.3 Aligned scaffolds in other tissue engineering applications 

Aligned fiber scaffolds have also been employed in other tissue engineering 

applications to improve the compatibility of the fibers. The use of fiber mats in 

cardiovascular engineering to increase their mechanical properties and their interactions 

with the target cells has been explored. Xu et al. demonstrated that by using an aligned 

structure of nanofibers they were able to observe more favorable interactions between 

smooth muscle cells (SMCs) and the scaffold, and the alignment of the fibers provided 

growth of cells in a specific direction and increased adhesion60. Xu et al. demonstrated 

that aligned fiber scaffolds, when used with the chemical signals provided by a 

proprietary bioglass material providing ionic products, on the fibers, could increase the 

signaling between bone marrow cells and endothelial cells61. They spun scaffolds that 

were a mixture of poly(D,L-lactide) (PDLLA) and polycaprolactone (PCL), and achieved 

aligned scaffolds by collecting the fibers on a roller that was rotating at a speed of 

2000rpm61. The expression of vascular endothelial growth factor (VEGF) in a co-culture 

of human bone marrow stromal cells (HBMSCs) when cultured on aligned fiber mats 

with bioglass with human umbilical vein endothelial cells (HUVECs) was increase four 

times61. The combined structural and chemical signaling also increased the junctional 

communication between the HBMSCs and HUVECs. 

2.5.4 Alternative polymers and blends for electrospun neural scaffolds 

Using mixed polymeric solutions may have some benefits in tissue engineering 

scaffolds, such as increased biocompatibility. For example, a composite solution may be 
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made with a biodegradable, synthetic polymer and a natural biopolymer such as a protein. 

By combining the two types of polymers one can achieve increased biocompatibility of 

the scaffold while also capitalizing on the mechanical properties of a biodegradable 

synthetic polymer. Kijenska et al. showed that by spinning poly(L-lactic acid)-co-poly(ε-

caprolactone) (P(LLA-CL)) with collagen I and collagen III protein they could make the 

fibers more hydrophilic when compared to spinning just P(LLA-CL), and thus more 

biocompatible7. They also showed that cell proliferation was higher during in vitro 

cultures on the composite scaffolds. While adding collagen to the fibers did slightly 

decrease the tensile strength, that was offset by spinning aligned fiber mats using a 

rotating steel disc at 1500rpm7. Aligning the fibers also increased the cell proliferation 

during in vitro cell cultures using neonatal mouse cerebellum stem cells7. A nerve 

guidance scaffold made from poly(serinol hexamethylene urea)/polycaprolactone blend 

(PSHU/PCL) solution electrospun as nanofibers was studied by Jenkins et al.62. The 

scaffold was modified with microchannels to mimic nerve topography and conjugated 

with a short peptide specific to cell binding to mimic biochemical cues. The scaffolds 

were seeded with human neural stem cells (hNSCs), and were found to increase hNSC 

survival and differentiation compared to a pure PCL control conduit62. Cells migrated and 

extended axons into the PSHU/PCL modified scaffolds, but did not show this behavior on 

the PCL conduits. Cells proliferated along the full length of the PSHU/PCL conduit by 14 

days62.  

While electrospun fibers have shown the ability to aid axonal extension of in vitro 

DRG cells and proliferate stem cell lines, it has been difficult to duplicate that success in 
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the complex environment of the neural system in vivo. Kakinoki et al. demonstrated non-

aligned fiber scaffolds formed into hollow conduits on rabbits in vivo. They tested the 

action potential of the injured nerves repaired with nerve guide conduits (NGCs) made 

from electrospun PLLA-laminin nanofibers against those of a healthy nerve. None of the 

injuries repaired with NGCs reached near the active potential of healthy nerve tissue26.  

Jiang et al. investigated the use of PCL NGCs in a peripheral nerve injury in rats28. 

Aligned PCL fiber mats were electrospun using a rotating target at a speed of 2,200rpm 

and then rolled into conduits. For comparison purposes, PCL films were fabricated by 

compressing PCL solution into a flat film. The films were then rolled into a conduit28. 

The in vivo tests were performed by placing a conduit, either consisting of PCL fibers or 

PCL film, into a transected sciatic nerve of a rat. The results showed that the rats who 

received fibrous PCL grafts experienced a higher degree of recovery than the rats who 

received a graft made from the PCL film. However, no rat experienced full recovery and 

the recovery was still lower than the recovery observed when using autografts28. 

Most in vitro tissue cultures are performed in a two-dimensional environment, with 

fibers spun on a flat coverslip or glass surface, and then the cells are placed on the flat 

fiber surface. However, the spinal cord and in vivo environment are three-dimensional. 

Very few researchers have performed in vitro cell studies on fiber mats that are free-

standing, not lying on a flat surface, and thus in a three-dimensional environment. The 

substrate in the two-dimensional environment of in vitro studies may also support neurite 

outgrowth. Spinning the fibers to create unsupported mats may remove the 2-D restraint 

of the axonal outgrowth of supported fibers. If axons grow between the small gaps that 
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occur between fibers in the mats, the axon would extend along the flat surface, and be 

forced to grow outward along the channel between the aligned fibers. This phenomenon 

traps the axons in the channel even if they are not truly adhered to the fiber surface. If 

cells are cultured on fibers that are spun elevated from the surface, the environment 

becomes three dimensional, and the axons are not constrained to the channels between 

the fibers. Xie et al. performed cell studies on free-standing, suspended, aligned fiber 

mats using PCL39. The in vitro DRG cell culture results performed by their group did 

indicate that neurites followed the alignment of the free-standing nanofibers well with 

some minor deviations from fiber alignment.  

The surface properties of the fibers, such as smoothness and porosity, have also 

been shown to impact cell growth during culture. Schaub et al. showed that the surface of 

electrospun PLLA nanofibers can be altered from smooth to rough by changing the 

solvent mixture of the electrospinning solution36. Regular, smooth fibers were 

electrospun from a solution of PLLA in a chloroform and dichloromethane solvent 

mixture. To determine whether the topography of the fibers affected cell cultures, a base 

solution of PLLA in chloroform was prepared. Then, various solvents were added to 

different amounts of the base solution. Water, ethanol and dimethyl sulfoxide (DMSO) 

solutions in chloroform base were all made and used for electrospinning36. Changing the 

solvent mixture affects the drying time of the fibers and the viscosity of the solution, 

which in turn can alter the surface of the fibers. In some cases, rapid evaporation of the 

solvent can cause the surface of the polymer to break down into solvent rich regions, 

which when dried cause roughness in the surface of the fiber36. In the study by Schaub, 
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different solvents created different surface textures on the fibers. Water produced small, 

round depressions. Ethanol produced small but elongated depressions. Adding DMSO to 

the electrospinning solution caused large, more distinct depressions to form. The fibers 

with large depressions were tested for cell interaction. The group found that when cells 

were cultured on fibers containing large depressions, they do not elongate and spread the 

way a cell does when cultured on a smooth fiber surface, thus indicating that fiber 

topography can alter cell interactions with the fibers36 

2.6 Complex Electrospinning Techniques 

2.6.1 Coaxial fibers for polymer scaffolds in tissue engineering 

The spinning of coaxial fiber scaffolds is a more complex extension of 

electrospinning techniques. By using a dual-spinneret, coaxial nanofibers can be 

electrospun using different core and sheath materials. Coaxial fibers have many 

advantages in tissue engineering applications. This geometry may allow incorporation of 

different pharmaceuticals, growth factors or polymers into the core component of the 

fibers to further enhance their effect on neural tissue regeneration63-65. The incorporation 

of proteins to promote growth or the biocompatibility of the scaffold into the core of a 

coaxial fiber protects the proteins from denaturation in the harsh solvent environment 

during electrospinning66. By placing drugs or growth factors into the core of the fibers, 

the polymer sheath guards against burst release and keeps the drugs active in vivo longer, 

as they are released based on the slower degradation rate of the polymer sheath66. Coaxial 

fibers can also be spun in aligned mats similar to single-stranded fibers, further enhancing 

the abilities of the fibers to direct axonal outgrowth. 
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Kuihua et al. demonstrated that by encapsulating nerve growth factor (NGF) into 

the core of aligned coaxial fibers, they improved the in vivo results, showing increased 

nerve regeneration in the sciatic nerve of rats. Encapsulating NGF into the core of 

polymeric coaxial nanofibers decreased the degradation rate of the NGF and caused a 

slower, more consistent release to occur. However, the results did not show complete 

regrowth, and did not include tests to show functional recovery of the injured leg44. Su et 

al. showed that drug release in vitro experienced a much more stable, steady release 

profile rather than the initial burst release and then drop-off profile of drugs spun in 

mixed solution as a single layer fiber67. A steadier drug release profile from coaxial fibers 

makes them more suited for in vivo applications, since the scaffold must remain viable in 

vivo long enough to assist complete tissue regrowth, which can take weeks. If the drugs 

encapsulated in the fiber scaffolds are released and degrade too quickly, they are not able 

to support sustained tissue growth. 

Nguyen et al. used coaxial electrospinning techniques to spin fibers with a salicylic 

acid and poly(ethylene glycol) core and a porous PLLA sheath68. The study compared the 

drug release profile of salicylic acid released from the core at different core feed rates of 

0.1mL/h, 0.2mL/h, and 0.4mL/h, and compared the release of the drug from porous and 

non-porous sheath fibers68. The study found that as the feed rate of the core increased, so 

did the initial burst release of the drug due to an increase in drug being present. Non-

porous fibers had a lower burst release due to a decrease in membrane transfer of the 

drugs68. Jalaja et al. spun coaxial fibers of a chitosan shell and a gelatin core to examine 

the possible uses for the fibers in biomedical applications65. The group spun randomly 
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oriented fibers with an average diameter of 150 ± 60nm. Samples were cross-linked with 

dextran aldehyde, sucrose aldehyde or glutaraldehyde. Cell proliferation of human 

osteoblast-like cells on the fiber samples was comparable to the proliferation of the 

control on a TPS plate during in vitro culture65. 

Zhang et al. explored the use of coaxial fibrous structures with a silk-fibroin sheath 

and using brain-derived neurotrophic factor (BDNF) combined with vascular endothelial 

growth factor (VEGF) for peripheral nerve repair55. They explored putting BDNF in the 

sheath with the silk fibroin and VEGF in the core, as well as reversing the placement of 

the two different growth factors. They used a rotating drum covered with aluminum foil 

rotating at 2000rpm to achieve aligned fiber mats55. The average diameter achieved for 

the fibers was 2.5 ± 0.7µm, and most of the fibers were from 0 to 30° from the axis of 

alignment55. At three days of in vitro cell culture of Schwann cells, both types of mats 

had increased proliferation as compared with controls, and at seven days the scaffolds 

that contained VEGF in the core and BDNF in the sheath achieved a higher rate of 

proliferation than the scaffolds with BDNF in the core and VEGF in the sheath55. It was 

thought that the increased release of BDNF in the sheath aided proliferation. Studies for 

in vivo results were also performed. Rats received a nerve injury in the pelvic nerve. Rats 

that received the two different types of scaffolds with growth factor both had a higher 

percentage of nerve fiber content and vascularization as compared with rats that received 

a scaffold containing only silk fibroin fibers. The scaffolds that contained VEGF in the 

sheath and BDNF in the core had a higher rate of vascularization and innervation than the 

other growth factor-containing scaffolds55. The VEGF in the sheath of the fiber meant a 
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rapid release of vascular growth factor, thus vascularization occurred more quickly. The 

faster rate of vascularization aided in a higher degree of innervation. The coaxial 

structure did prove more beneficial than the single-stranded, aligned silk-fibroin fibers. 

Wang et al. spun aligned core-shell fibers with an NGF/PEG core and a poly(DL-

lactide-co-glycolide) (PLGA) shell69. Aligned fibers were achieved by collecting on a 

rotating drum rotating at 4000rpm. The average diameter of the fibers was 513 ± 174nm, 

larger than that of plain PLGA fibers with a diameter of 299 ± 67nm69. Studies were 

performed in vivo to examine the effect of the scaffolds on a sciatic nerve injury in rates. 

The PLGA and the PLGA/NGF scaffolds were compared to autografts. After 12 weeks of 

implantation, the PLGA/NGF scaffolds achieved nerve conduction velocities (NCV) 

similar to those observed with the autograft, the current standard of peripheral injury 

repair. The NCV of the PLGA/NGF scaffolds was 46.8 ± 2.9m/s, while for the autograft 

it was 49.05 ± 1.3m/s and for the PLGA scaffold it was 26.9 ± 2.9m/s69. The scaffolds 

containing coaxial fibers with an NGF core were much more effecting in functional 

recovery after injury. The same phenomenon was observed during the muscle weight test 

in the rats. The weight ratio was 0.61 for the PLGA/NGF scaffold, 0.64 for the autograft 

and 0.48 for the PLGA scaffolds69. The coaxial structure allowed for a steadier release of 

NGF from the core and aided in recovery. 

Gluck et al. demonstrated that by spinning a sheath of composite PCL/gelatin and a 

core of polyurethane in a random mat that they increased the mechanical properties of the 

coaxial fibers as compared to single layer, traditional fibers. The Young’s modulus of the 

coaxial fiber scaffolds was found to be 93.36 ± 9.11MPa as opposed to 76.80 ± 
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14.66Mpa for single stranded fibers. The tensile strength was also improved in the 

coaxial mat, being 1.67 ± 0.47MPa for the coaxial mats versus 0.83 ± 0.25MPa for mats 

with single-stranded fibers. These improved mechanical properties make them more 

suitable for the biological, in vivo environment70. 

2.6.2 Application of conducting polymer fibers in scaffolds for neural tissue 

engineering 

The axons in neural tissue transmit information via an electrical signal. The electric 

potential of the nervous system is provided by high salinity within the tissue. Sodium, 

chloride, and potassium ions are all found in high concentrations, sodium and chloride 

being on one side of the cell and potassium being on the other side. The distribution of 

the opposite ions causes a positive potential on one side of the cell and a negative 

potential on the other side71. Given the electrical nature of neural tissue, one possible way 

to increase the affinity of neural tissue to electrospun fiber scaffolds is to make them 

conductive using conductive polymers. It has been demonstrated that electrical 

stimulation has the ability to enhance neuronal extension when applied across the growth 

media72-77, and it has been demonstrated that even when repair of the injury is delayed, 

electrical stimulation can still positively affect neural tissue regrowth78,79.  

Electrical stimulation of the culture well imitating spontaneous bursts during 

neuronal maturation of retinal progenitor cells (rPCs) resulted in decreased expression of 

N-cadherin and increased βIII-tubulin expression on both a protein and gene level, 

indicating differentiation into retinal neurons, as well as calcium ion signaling correlating 

to functional action potential firing80. Human neural progenitor cells (nHPCs) 
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preferentially differentiate into neurons on electrospun piezoelectric polyvinylidene 

fluoride-trifluoroethylene (PVDF-TrFE) scaffolds, identifying the benefits of electrical in 

addition to physical cues by demonstrating higher neuronal preference on scaffolds with 

higher piezoelectricity81. Adams et al. demonstrated that by supplying electrical 

stimulation across a collagen gel they could improve neurite extension73. By subjecting 

E11 chick DRG cells cultured on a collagen gel to an electrical field of 24V/m combined 

with NGF, neurite lengths were measured as being significantly longer than cells cultured 

only in the presence of NGF. Lengths of neurites on cells subjected to stimulation were 

159.6 ± 11.0µm, while the neurite length of cells with only NGF present were 120.1 ± 

11.4µm73. Chang et al. also demonstrated that providing electrical stimulation in addition 

to NGF improved neurite outgrowth75. Rat pheochromocytoma stem cell line (PC12) 

cells were seeded on collagen and subjected to a field of either 50mV/mm, 100mV/mm 

or 200mV/mm and were also treated with NGF, then compared to cells that were only 

treated with NGF. They found that the average length of neurites of cells treated with 

NGF for 46 hours was 76µm, while cells treated with NGF and electrical stimulation for 

46 hours had an average neurite length of 110µm75.  

A major obstacle to using conductive polymers in neural tissue scaffolds is the lack 

of biocompatible and biodegradable conductive polymers. Some research has focused on 

the use of two: poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPY), often 

doped with poly(styrene sulfonate) (PSS). The dopant improves the electrical properties 

of the chemical and often aids in solubility. PPY has been used in many biological 

electrical applications82-87. It has high conductivity82,83, is easy to prepare from the 
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pyrrole monomer83-88, is biocompatible when tested83,85-88, and is easily modified through 

surface modification techniques83,87. These characteristics make PPY attractive to use in 

electrically conducting tissue scaffolds. However, PPY has an extremely slow 

biodegradable rate, in some cases taking months to degrade, and tends to make brittle 

fibers when produced via electrospinning techniques87. It also loses its conductive 

properties too quickly over time89,90. Yamato et al. found that after only sixteen hours of 

experiencing a constant applied voltage of 400mV that PPY:PSS films lost all of their 

electrical activity89. PPY has defects in the structure of the polymer that limit the 

electrical response and ultimately lead to a breakdown in the conductive properties90. 

PEDOT, on the other hand, is highly conductive91-94 and maintains its conductive 

properties over a much longer period than PPY89,90. Yamato tested the electrochemical 

stability of PEDOT:PSS films at the same conditions as the PPY:PSS films, and found 

that even after eighty hours of exposure to a voltage field of 400mV, 76% of the 

conductive activity of the film was still present89. It is also found to be 

biocompatible92,93,95. 

Sebaa et al. tested the effects of PEDOT coatings on magnesium degradation in 

vivo for medical applications, as well as the biocompatibility of the PEDOT with stem 

cells cultured in vitro. Magnesium is being explored for biological implants because of its 

biocompatibility and conductivity, but it has a very high degradation rate in vivo. The 

group found that coating magnesium particles with PEDOT increased the stem cell 

viability as compared to uncoated magnesium nanoparticles92. Luo et al. cultured 

fibroblast cells on PEDOT-coated indium-tin-oxide (ITO) substrates in vitro and found 
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through assay studies that cell viability was greater than 90% and much higher than the 

viability of cells cultured on plain ITO films93. In addition, in vivo implantation of 

PEDOT-coated glass substrate showed no immune reaction or immune cell infiltration93. 

Asplund et al. found that human neuroblastoma cells cultured in vitro on PEDOT 

materials showed no signs of abnormal cell death95. The group also demonstrated that 

increasing the amount of PEDOT did not lead to a negative correlation in cell viability95. 

Researchers have used other methods to combine the benefits of conductive 

polymers with the more complex structure of core-sheath fibers to produce more complex 

fiber structures as tissue scaffolds. Xie et al. demonstrated that by electrospinning 

polymeric nanofibers made from PCL or PLLA solutions and then coating with PPY, that 

they could combine the mechanical properties of polymeric, single-strand nanofibers with 

the electrical properties of PPY. The in vitro results showed that the neurites of DRGs 

extended further on the conductive fibers96 (Figure 2-7). Neurites from DRG cells had a 

maximum length of 1723 ± 339µm on aligned fiber structures as opposed to 946 ± 

164µm o random fiber scaffolds96. However, when applying a current to conductive core-

sheath random fibers, the maximum axonal length was actually longer than that observed 

with aligned fibers without axonal stimulation (1733 ± 141µm)96.  

Zhang et al. used coaxial spinning techniques to spin both aligned and random 

P(LLA-CL)/SF composite fibers with conductive polyaniline (PANI) polymer as the 

sheath and P(LLA-CL)/SF with NGF as the core. In vitro cell cultures performed with rat 

PC12 cells demonstrated a longer neurite growth along the fibers when electrical 

stimulation was applied97. Xu et al. utilized emulsion electrospinning techniques to spin 
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PVA/EDOT solution with a special solvent concentration such that when the solution is 

spun and the fibers dry a core-shell structure results with EDOT monomer in the core98. 

Emulsion electrospinning is a method which can be used to spin core-sheath fiber 

structures. It involves using a mixture of two solvents which are not miscible in each 

other. One solvent is present in a continuous phase and the other solvent is present as 

droplets22. When the solution is electrospun, the resulting fibers have a core-sheath 

structure with the continuous phase encapsulating the droplet phase99. In the case of the 

study by Xu et al., PVA was the continuous phase and thus the sheath of the fiber, and 

the EDOT monomer was the drop phase forming the core. Once the fibers were spun, the 

monomer was then polymerized using chlorine gas to achieve a PEDOT core98. In the Xu 

et al. study their core-shell fibrous structures were examined for polymerization of the 

PEDOT core using FTIR and UV-Vis spectroscopy techniques. The FTIR showed bands 

associated with carbon double bonds and sulfoxy-groups, indicating the presence of 

PEDOT as opposed to the monomer. The coaxial fibers also exhibited good conductive 

properties when measured with cyclic voltammetry98. However, the study did not include 

cell culture research. 
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Figure 2-7: (A) Micrograph of DRG neurite outgrowth field on random polymer fiber 

mat with PCL-PPY coaxial fibers. (B) Aligned PCL-PPY coaxial fibers. (C) 

Micrograph of DRG neurite outgrowth field on aligned PCL-PPY coaxial fibers. 

Reused with permission from Wiley (Appendix 8.3). 

2.7 Future Outlook for Electrospun Neural Scaffolds 

Electrospinning techniques for neural applications have been extensively studied to 

produce nano-and microfiber scaffolds for neural tissue engineering applications. In vitro 

studies using embryonic DRGs have shown impressive results in terms of axonal growth 

and guidance; however, corresponding success using in vivo models has not been 

achieved. Hurtado et al. demonstrated impressive neural tissue regeneration in an in vivo 

model of a transected rat spinal cord, but the results did not indicate significant functional 

recovery20,100. Their work showed that extensive axonal regeneration occurred at the 
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rostral end, but not to the same extent at the distal end. Although phenomenologically 

extensive axonal growth and regeneration is observed, the mechanisms for this process 

are not adequately understood. To achieve success in vivo, the growth and guidance cues 

provided by aligned fiber scaffolds need to be systematically examined. These cues could 

include textural/morphological effects, surface chemistry and cell adhesion, biochemical 

signals, environmental factors including associated support cells, or electrical/ionic 

stimulation. The surface texture and mechanical properties of the fibers may inhibit or 

enhance axonal outgrowth, but it is unclear how this works with the fiber surface 

chemistry to achieve the optimal cell growth. Biochemical signals can be controlled in 

vitro by dosage, but in vivo, careful control is difficult to achieve. Coaxial fibers used for 

neural engineering allow for the direct incorporation of biochemical factors and by 

tailoring the sheath properties, can provide a method for controlled, extended release. 

This is an exciting research opportunity in the area of neural tissue engineering. 

Similarly, electrical stimulation has been shown to promote axonal growth, and fibers 

with either a conducting core or sheath may provide an in situ method for applying the 

stimulus directly to the scaffold. The use of such conducting fibers has shown promise in 

further improving axonal outgrowth in vivo, as demonstrated by Xie et al. By encasing 

these conductive fiber cores within an insulating sheath, one can effectively create an 

artificial axon which can be implanted directly in vivo. 

As with most tissue engineering approaches, a combined strategy for in vivo neural 

tissue regeneration will probably be required to achieve clinical success. For example, 

Martin et al. are examining combining the structural cues of aligned PLLA microfibers 
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with direct electrical stimulation via a core/shell structure with an insulating sheath and a 

conductive polymer core. A similar approach can be taken for controlled release of 

biochemical agents by using a porous sheath material tailored to the desired release rates 

with a core material impregnated with the desired active ingredient. The sophistication of 

nano-engineered fibrous scaffolds is rapidly evolving, and the application of these new 

structures in vivo one of the most promising approaches for resolving PNS and CNS 

injuries. 
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3 Electrospinning Aligned, Free-Standing PLLA Microfiber 

Scaffolds on Elevated Stages for 3D In Vitro Cell Culture2 

   

3.1 Abstract 

 Electrospinning is a technique that has been studied as a method to produce fiber 

scaffolds as a repair strategy for spinal cord injuries (SCIs). In this chapter, aligned, free-

standing fiber scaffolds using poly-L-lactic acid (PLLA) were developed as an in vitro 

model to study cell interaction on free-standing fiber scaffolds in vivo. Stages were 

designed to allow for the formation of free-standing fiber scaffolds that were not 

supported by an underlying surface. The elevated stages had column heights of 3mm and 

the columns were 1cm apart. Fibers were spun across the columns of the stages to 

produce free-standing fiber scaffolds. Fiber analysis of the free-standing scaffolds 

showed the fibers were fairly aligned with a 2σ of 16.8° and 22.2°. Average diameters 

were 4.4 ± 2.7µm and 4.6 ± 2.1µm. Fiber densities were 162.5 ± 17.1 and 85.0 ± 25.2 

fibers/mm. The scaffolds were then used for in vitro cell culture using chick dorsal root 

ganglia (DRG). Fiber scaffolds were also spun on a flat substrate and used for in vitro 

cell studies for comparison. The average axonal outgrowth of the cell grown on fibers 

with an underlying support was 833 ± 204µm. The axonal outgrowth for the cells grown 

                                                 
2 The material within this chapter will be submitted for review for publication. The journal has not yet been 
chosen. 
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Aligned, Free-Standing PLLA Microfiber Scaffolds on Elevated Stages for 3D In Vitro Cell Culture.” 
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on free-standing fiber scaffolds was 522 ± 113µm, 649 ± 320µm and 1100 ± 221µm. The 

axonal outgrowth observed for DRG cells cultured on free-standing fiber scaffolds was 

comparable to those grown on fibers with an underlying surface, indicating that cells 

follow the alignment of fibers even without an underlying support. This serves as an in 

vitro model for in vivo cell behavior with free-standing fiber scaffolds and shows the 

ability of aligned fiber scaffolds to aid in axonal outgrowth. 

3.2 Introduction 

 Injuries to the central nervous system (CNS) are among the most debilitating, 

since the complex nature of neural tissues results in poor regeneration, leading to life-

long disabilities1. Injuries to the CNS include spinal cord injuries (SCI), with over 17,000 

new SCIs occurring in the United States each year2. This significant problem has led to 

the exploration of alternative methods for enhancing nerve tissue regrowth. When axons 

are severed, glial scar tissue forms at the site of the injury. Since new axons cannot grow 

through the scar tissue, this prevents axonal outgrowth and reconnection of the severed 

nerves. One strategy to overcome this is a growth-permissive scaffold across the scar to 

guide axons during extension, allowing them to reconnect over the scar along the 

scaffold.  

 One promising method for tissue scaffold construction is electrospinning polymer 

micro- and nanofiber structures that provide guidance for tissue growth. Tissue 

applications that have been explored include bone48,49,101, cardiac60,102, cartilage47,103 and 

neural tissues3,7,15,28,33,35,42,43,104, using a variety of polymers. Polymers used include 

synthetic polymers like polycaprolactone (PCL), poly-lactide-co-glycolic acid (PLGA), 
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polylactic acid (PLA), as well as natural polymers such as collagen and silk fibroin and 

various blends of polymers. Electrospun fiber scaffolds can provide guidance cues for 

cell growth in tissues, particularly for axonal outgrowth of neurons, where the scaffolds 

act as a bridge across glial scar tissue in SCIs. Aligned poly-L-lactic acid (PLLA) fiber 

scaffolds have proven successful in facilitating aligned, structured outgrowth of axons in 

chick dorsal root ganglia (DRG) during in vitro cell studies34,35. Aligned fiber scaffold 

conduits implanted in rat in vivo injury models showed significant regrowth of the injured 

spinal cord section; however, significant improvements in hind limb motor function were 

not observed, hindering the clinical use of fiber scaffolds for SCI repair20,100.  

 One explanation for insufficient recovery in vivo is that in previous in vitro 

studies, the fibers were electrospun on a flat substrate, and the subsequent in vitro 

cultures thus performed on this flat surface34,35. This substrate restricted axonal outgrowth 

to a two-dimensional plane, which is different from the three-dimensional in vivo 

environment. For the flat substrate, the axons could be growing in the spaces or channels 

between the fibers, and not truly attaching to the fibers themselves. To investigate this 

explanation, a free-standing fiber scaffold was created on an elevated culture stage to 

examine the axonal outgrowth in vitro but without the restriction of the substrate surface. 

Thus, if the extending axons are not truly attaching to the fibers themselves, they can 

detach and grow out of the plane of the scaffold, or simply fall off. This is more similar to 

the environment of implanted scaffolds in vivo. Our approach is to create a method for 

collecting free-standing electrospun fibers unsupported by a surface, thus providing a 

three-dimensional in vitro tissue culture environment. This would help to determine if the 
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aligned fibers are providing the growth cues for axonal outgrowth that was observed in 

vitro rather than a constricted two-dimensional surface. It is our hypothesis that the axons 

adhere directly to the fiber surface and take directional growth cues from the fiber 

alignment. Therefore, removing a supporting surface for the fibers will not affect axonal 

outgrowth, and that the axons will continue to align and extend along the free-standing 

fibers. An experimental model to test this hypothesis was accomplished by creating a 

fiber collection stage with columns at a predetermined height and electrospinning fibers 

that collected across the top of the columns. The collected fibers are suspended in the 

culture media above the surface of the stage, and by using chick DRG cells, comparative 

in vitro studies between the free-standing and the surface supported fiber scaffolds were 

performed. 

3.3 Materials and Methods 

3.3.1 Materials 

 All materials were used as purchased. Poly-L-lactic acid (PLLA) was obtained 

from NatureWorks LLC. Chloroform was used as the polymer solvent in all cases (Sigma 

Aldrich). The elevated stages were obtained through two methods. Some of the stages 

were manufactured using 3D-printing and made from poly-lactic acid (PLA). Some of the 

stages were manufactured using conventional machining methods and were made from 

acrylic tubing. 

3.3.2 Spinning Stage Design 

 Some of the elevated stages were manufactured using 3D-printing and were made 

from poly-lactic acid (Figure 3-1). The rest of the stages were machined from acrylic 
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square tubing (10mm I.D., 12.5mm O.D.). The tubing was cut into 10mm long pieces and 

then sliced in half lengthwise to have the same footprint as the 3D-printed stages, 

allowing both to fit in a 6-well culture plate. In mock-ups to determine the appropriate 

column height and distance between the columns, prototypes were made using plastic 

coverslips as the base for the stage and attaching various widths of plastic perpendicular 

to the base using superglue. Column heights tested were 2mm, 3mm and 4mm. During 

electrospinning tests, it was determined that the 4mm tall columns created too much air 

movement when attached to the rotating wheel. This caused the fiber strand to whip 

around erratically and impeded the formation of highly aligned scaffolds. The 2mm tall 

columns were not high enough to keep the fibers elevated over the surface. Three-

millimeter columns prevented sagging of the fibers with an acceptable degree of air 

movement. In the final design, a distance between the columns of 10mm was used. This 

minimized the sagging of the fibers to the surface while allowing enough surface area for 

implanting cells during tissue culture. 
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Figure 3-1: 3D-printed electrospinning stages 

 

3.3.3 Electrospinning 

 The electrospinning and fiber collection methods used are detailed in a previous 

paper by the authors105. For this study, an 8wt% PLLA solution in chloroform was used 

as the electrospinning media. To prepare the solution, 10mL of chloroform was added to 

1.29g PLLA in a sample vial with a stir bar. The vial was sealed with Parafilm® and 

placed on a warm stir/heat plate for approximately one hour or until the PLLA was 

completely dissolved. The solution was drawn into a syringe fitted with a 16-gauge 

needle and placed on a syringe pump set to 0.9mL/hr. Tygon® tubing connected the 

syringe to a 22-gauge blunt spinning needle. A short piece of tubing was placed over the 

end of the needle to insulate it and prevent stray currents. The 22-gauge blunt spinning 

needle was placed 10cm above a spinning aluminum wheel that acted as the grounded 

collection surface. This distance was determined by the drying time for the fibers 

generated at the tip of the needle. The further the distance, the more likely the solvent 
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will evaporate and a dry sample will be produced. The wheel was rotated by a motor set 

to 1250rpm. The wheel had a diameter of 12cm and a width of 1.2cm. The entire 

apparatus is inside a Plexiglas chamber allowing for control of the spinning environment. 

It is necessary to control the humidity and temperature during electrospinning to ensure 

the desired fiber diameter and quality are consistently achieved. The chamber also 

restricts harmful vapors and allows for increased safety during the procedure. A 

Glassman high-voltage power supply was connected to the spinning needle and set to 

positive 17KV. High-powered halogen lamps were used to illuminate the box, and a 

microscopic video camera allowed for clear visual imaging of the fiber being spun. The 

images were sent to a small TV monitor and collected digitally for later analysis. 

Formation of a Taylor’s cone can be observed to ensure proper spinning is occurring 

(Figure 3-2).  

 During electrospinning, the solution is pumped to the spinning needle. The 

droplet formed at the tip of the needle is pulled into a micron-sized fiber by the voltage 

difference between the needle and the grounded aluminum wheel. The fibers are 

collected on the stages or flat 10mm by 10mm coverslips attached to the wheel. The 

coverslips are attached to the wheel using double-sided Scotch tape (3M) and the stages 

are attached to the wheel using a heavier double-sided mounting tape. Spinning times 

varied, but usually lasted between 10 and 30 minutes. Once spinning was complete, the 

samples were removed from the wheel and imaged, then air-dried prior to cell cultures. 
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Figure 3-2: Taylor's cone observed. right-hand image: captured during 

electrospinning. left-hand image: drawing 

3.3.4 Fiber Analysis 

 Fibers were analyzed using optical microscopy and ImageJ software to determine 

the alignment and diameter of the fibers. Images were taken of the fibers using an 

Olympus BX-15 optical microscope with a camera attachment and X-Cite 120 

Fluorescence Illumination System. The images were digitally analyzed using ImageJ 

software (NIH). The DiameterJ® plug-in available for ImageJ was used to determine 

fiber diameter and degree of alignment. Alignment of fibers was determined using the 

OrientationJ® function via Fast Fourier Transform (FFT) analysis. The results are 

reported as the angle deviation from perfect alignment.  
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3.3.5 Dorsal Root Ganglia (DRG) Isolation and Culture 

 Cell cultures were performed in accordance with the Michigan Technological 

University Institutional Animal Care and Use Committee (IACUC). Stages and 

coverslips prepared with fiber samples were sterilized using an ethylene oxide 

sterilization chamber. Samples were placed in a sterilization bag with a vial of ethylene 

oxide. The bag was purged of air, the vial broken, and the samples placed in the chamber 

for 12 hours. 

 Chick dorsal root ganglia (DRG) cells were isolated from stage E9 chick 

embryos. The eggs were incubated at 37°C for nine days prior to isolation. The incubator 

was filled with distilled water supplemented with water bath cleaner. The water level was 

checked regularly and more distilled water added when necessary. Once the DRGs were 

isolated, they were placed via Pasteur pipette on top of the sterile fiber samples in 6-well 

plates. The wells were filled with neurobasal medium supplemented with 10ng/mL 

mouse 2.5S native nerve growth factor (Thermo Fisher Scientific, Waltham, MA). 

Samples were incubated for 3-5 days, with the medium being changed every 48 hours. 

3.3.6 Immunochemistry Staining 

 After culturing was complete, the cells were treated and stained for imaging. First, 

the culture media was removed from the wells and the samples were fixed in a formalin 

solution of 3.7% formaldehyde in PBS buffer for 30 minutes. The fixing solution was 
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removed, and cells rinsed twice with PBS buffer. Cells were then blocked with 1% BSA 

in 50mL of fixing buffer. The cells were blocked for one hour to prevent protein binding 

for the immunochemistry staining. After the blocking was complete, the buffer was 

removed and 50µL solution of primary antibody TUG 1 in a ratio of 1:200 in blocking 

buffer was added to the cells. The samples were placed in the refrigerator with the 

antibody overnight. The culture plates were wrapped with Parafilm® to prevent the cells 

from drying out. The next day the samples were removed from the refrigerator and the 

antibody solution drained. The cells were rinsed three more times for 5 minutes each with 

1mL of blocking buffer. The secondary antibody, goat anti-mouse IgG antibody, was 

then added to cells. The antibody was kept out of direct light. A 1:200 dilution of 

antibody in blocking buffer was made, and 100µL of solution as added to the samples. 

They were covered with aluminum foil and left to incubate at room temperature for 40 

minutes. The samples were rinsed three times with 0.2% Triton in PBS to remove excess 

unbound antibodies. About 1mL of solution was added to each well and each rinse was 

done for five minutes. The cells were then stained with DAPI to stain for cell nuclei. A 

1:1000 dilution of DAPI in PBS was made and 1mL was added to each well. The samples 

sat at room temperature for 10 minutes and then rinsed one time with PBS. The samples 

were mounted onto cover slides with Mountant and sealed with nail polish. They were 

left to dry for 30 minutes and then imaged using fluorescence optical microscopy. 

3.3.7 Statistical Analysis 

                 Statistical testing was performed on the axonal outgrowth of the in vitro cell 

cultures. Minitab® was used to calculate a Tukey’s test to determine if there was any 
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statistical differences between the samples. The Tukey’s test compared the average 

outgrowth of the different samples with each other and grouped them based on statistical 

similarity. 

3.4 Results 

3.4.1 Fiber analysis 

 Images of the fiber samples, both on the stages and on flat coverslips, were 

obtained using the optical microscope with a digital camera attachment. Every sample 

was imaged after collection to characterize the fibers. Characteristics such as dryness, 

alignment, diameter and density of fiber scaffolds were determined using the microscope. 

Figure 3-3 shows fiber scaffolds collected both on flat coverslips and on elevated stage 

collectors. 

 All the fiber scaffolds were aligned to some degree. To quantify this, Fast Fourier 

Transform (FFT) analysis using ImageJ® was performed on the fibers to determine their 

degree of alignment. Samples spun on flat coverslips had a σ = 5.1° (2σ=10.2°), 

indicating 95% of the fibers were within about 10° of the axis of alignment. The fibers in 

Figures 3-3A and 3-3B for the elevated stages had a σ=8.4° (2σ=16.8°), indicating that 

95% of the fibers were within about 17° of the axis of alignment. Some other 

unsupported fiber scaffolds used for DRG cell culture were not as highly aligned (e.g. 

Figure 3-7) with a σ=11.1° (2σ=22.2°), indicating that 95% of the fibers were within 

about 22° of the axis of alignment. The approximate average fiber density of the scaffold 

in Figure 3-3A and 3-3B was 162.5 ± 17.1 fibers/mm. The approximate average fiber 

density of the other unsupported scaffolds used for DRG cell cultures was 85.0 ± 25.1 



75 
 

fibers/mm. The approximate average fiber density of the scaffold spun on the flat 

substrate was 397.5 ± 40.3 fibers/mm. These results are summarized in Table 3-1. 

Analysis was also performed to determine the  number of fibers that were within 1°, 2°, 

and so on of alignment. The data was plotted and can be observed in Figure 3-4. The 

frequency plots for the alignment analysis were also generated and are shown in Figure 3-

5. 

 

Figure 3-3: Optical microscope images of electrospun PLLA fibers. Spinning time for 

samples A and B was 32min with a voltage of 17KV and a flow rate of 0.9mL/hr. The 

fibers were spun on 3D stages with 3mm columns. C and D show fibers spun on flat 

coverslips at a spinning time of 23min with a voltage of 17KV at a flow rate of 

1.05mL/hr. 

A B 

C D 



76 
 

Table 3-1 FFT Analysis of fiber alignment, fiber diameter and fiber density 

Sample 
Conditions 

2σ (degrees) Average Fiber 
Diameter(µm±) 

Average Fiber 
Density(fibers/mm±) 

fibers directly on 
flat substrate 

10.2° 2.8 ± 1.3 400 ± 40 

fibers across 
columns, 32min 
spinning time 

16.8° 4.4 ± 2.7 162.5 ± 17 

fibers across 
columns, 23min 
spinning time 

22.2° 4.6 ± 2.1 85 ± 25 

 

 

Figure 3-4: Plotted number of fibers at certain degrees from alignment. Top: 23min 

Middle: 32min Bottom: coverslip 
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Figure 3-5: Frequency plots from alignment data. Top: 23min Middle: 32min Bottom: 

coverslip 
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3.4.2 DRG Cell Results 

 Chick DRG cell cultures were performed on three different substrates: a flat 

coverslip without fibers, fibers spun directly onto a coverslip, and on fibers spun across 

the columns on the elevated stage. Figure 3-6A shows a DRG cultured on a flat coverslip 

without fibers. Without the topographical cues provided by the fibers, the axonal 

outgrowth becomes disordered and entangled, forming a wreath-like structure of 

dystrophic growth cones around the DRG. Figure 3-6B shows a cell culture performed on 

an aligned PLLA fiber scaffold spun directly onto a flat coverslip. With the guidance 

cues provided by the fibers, axonal outgrowth is aligned with the alignment of the fibers, 

indicating that the topology of the scaffold directs axonal outgrowth. Figure 3-7 shows 3-

day DRG cultures performed on scaffolds that were spun across the columns of the 

elevated stages. Even without the support of an underlying surface, the axonal outgrowth 

still follows the alignment of the fibers, and does not extend into or out of the plane of the 

elevated scaffold. Blue DAPI staining for cell nuclei shown in Figures 3-7B, 3-7D and 3-

7F indicates that the axons are supported by glial cell proliferation. The axons in Figures 

3-7A and 3-7B showed an average outgrowth of 649 ± 320µm. The axons of the cell in 

Figures 3-7C and 3-7D showed an average outgrowth of 1100 ± 221µm. The axons of the 

cell in Figures 3-7E and 3-7F showed an average outgrowth of 522 ± 113µm. The 

average axonal outgrowth of the cell in Figure 3-6B had an average outgrowth of 833 ± 

204µm. The fiber samples in Figures 3-7A and 3-7E were spun for 32 minutes. The fiber 

sample in Figure 3-7C was spun for 23 minutes. These results are summarized in Table 3-

2. As determined by the Tukey’s test, the outgrowth of the sample in Figure 3-7A and 3-
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7C were statistically the same, and the average outgrowth between the sample in Figure 

3-7E and 3-6B were statistically the same. The sample in Figure 3-7B was statistically 

different from all of the samples. 

 

Figure 3-6 Immunochemical staining of 5-day chick DRG cultures on (A) coverslip (B) 

fibers. Without the topographical cues provided by the aligned fiber scaffolds, the 

axons become entangled in a wreath-like structure around the center of the cell and 

form dystrophic growth cones. The alignment of the fibers allows the axons to grow 

outward along the alignment of the fibers. 
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Figure 3-7 Immunochemistry staining of 3-day DRG cultures on free-standing fiber 

scaffolds. The aligned, free-standing fiber scaffolds aided in axonal extension despite 

lack of underlying, supporting surface. 

 

A B 

C 

E 

D 

F 
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Table 3-2 Average axonal outgrowth for DRG culture study. 

 

 

 

 

 

 

 

3.5 Discussion 

 Previously fibers were spun directly onto a grounded, metal electrode, in some 

cases free-standing but then transferred to a free-standing ring for cell culture39. To the 

best of the authors’ knowledge, this paper outlines for the first time fibers directly spun 

on a free-standing, 3D support without being in direct contact with the grounded 

electrode. During electrospinning, critical factors including reduction of stray currents, 

minimizing air flow, achieving a strong enough attachment to the wheel, and the rotation 

rate of the wheel were considered through the control of different parameters. Using 

mounting tape, altering the height of the columns of the stages, controlling the humidity 

and achieving a wheel rotation speed that prevents detachment of the stages and 

minimizes airflow were all methods used to control electrospinning parameters. Fibers 

were successfully spun on the elevated stages. The fiber scaffolds produced in this 

fashion were of sufficient density, alignment and mechanical strength to provide a good 

support for cell culture. Figure 3-3A and 3-3B show fibers spun on elevated stages, while 

Sample Average Axonal Outgrowth 

32-minute sample, 5A 650 ± 320𝜇𝜇m 

32-minute sample, 5E 520 ± 110𝜇𝜇m 

23-minute sample, 5C 1100 ± 220𝜇𝜇m 

coverslip sample, 4B 830 ± 210𝜇𝜇m 
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Figure 3-3C and 3-3D show fibers spun on elevated stages. In comparing the two 

different sets of electrospun fibers, the characteristics are extremely similar. The dryness 

and size of the fibers spun on the elevated stages as the fibers spun on a flat surface. The 

fibers spun on coverslips are more aligned than those spun on an elevated stage (Table 3-

1). During electrospinning, due to the columns of the stages, a fan-like effect is caused 

when the wheel is spinning, which causes the fiber thread ejected from the end of the 

Taylor’s cone to blow about more erratically than normal. This causes the fiber scaffolds 

to be less aligned, but the fibers are still sufficiently aligned for cell culture and do not 

exhibit crossing that inhibits axonal outgrowth. 

 Figure 3-6B shows the differences of culturing a DRG cell on a fiber scaffold to 

provide guidance cues versus a flat surface without such cues, as shown in Figure 3-6A. 

When a nerve cell is cultured on an untextured, flat surface, the axons extend a certain 

distance from the DRG before encountering each other, becoming entangled and 

eventually forming a wreath-like structure around the DRG. The entanglement of the 

axons indicates in the absence of external cues, useful extension of the axons may not 

occur. When the DRG cells are placed on an aligned fibrous mat, the axonal outgrowth is 

parallel to the fibers and in the direction of fiber alignment. Thus, aligned fiber scaffolds 

which provide guided axonal outgrowth may be beneficial in vivo in repairing SCIs. 

 A questions raised by the previous research34 related to the guidance mechanism 

for axonal outgrowth on the aligned fiber scaffolds. It was suggested that the guidance 

mechanism was due to axons growing in the channels between the fibers or between the 

fibers and the surface as opposed to the textural cues provided by the fiber surface. 
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Because the mats were spun on a flat coverslip, the culture environment was constricted 

to the 2D plane. It is possible that during axonal outgrowth, an axon could grow in the 

interstitial space between fibers in the scaffold, or in the channel formed between two 

fibers on the surface. If the fibers are spun on free-standing scaffolds above the surface, 

this is similar to a 3D culture environment found in vivo. This would provide axons the 

opportunity to grow into and out of the plane of the fibers, and growth would be 

unrestricted by a supporting surface. To test this theory and determine the guidance 

mechanism of axonal outgrowth, a stage was designed that allows fibers to be spun 

across two columns of the stage, creating a scaffold suspended above the surface (Figure 

3-1). This effectively creates a 3D growth environment for cell cultures. 

 As shown in Figure 3-7, DRG cells cultured for three days on the elevated fiber 

scaffolds continued to follow the axis of alignment of the fibers and did not grow in or 

out of the scaffold plane. Figures 3-7B, 3-7D and 3-7F show blue DAPI staining for cell 

nuclei. The blue stain shows the proliferation of glial cells, indicating that the axons are 

supported by glial cells, so applicable axonal outgrowth was achieved on the elevated 

stages. After three days of cell cultures, the samples in Figures 3-7A and 3-7C showed 

axonal extension that was greater than the width of the cell body. The cell in Figure 3-7A 

had a cell body with a length of 629µm and an average axonal length of 649 ± 320µm. 

The cell in Figure 3-7C had a cell body with a length of 437µm and an average axonal 

extension of 1100 ± 221µm. These two DRG samples showed extensive axonal 

outgrowth in only three days. While the DRG of Figure 3-7E had axonal extension less 

than the width of the cell body, the difference was within the standard deviation of the 
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average axonal outgrowth. The DRG of that sample had a width of 558µm and an 

average axonal extension of 522 ± 113µm. The axonal outgrowth of the cell in Figure 3-

6B was 833 ± 204µm. The length of axonal outgrowth of the DRG grown on fibers spun 

on a coverslip fell within the standard deviation of the axonal outgrowth of the cells 

grown on free-standing fiber scaffolds. The outgrowth of the samples in Figure 3-7A and 

Figure 3-7E was statistically the same, as was the outgrowth between Figure 3-7A and 

Figure 3-6B. Overall, the DRG samples grown on the free-standing fiber scaffolds 

showed impressive growth with limited hindrance due to the lack of underlying surface. 

 The average axonal outgrowth of the samples did not very greatly. The DRG in 

Figure 3-7C showed the greatest outgrowth, but the standard deviations of all three 

samples overlap, indicating the outgrowth was similar. The differences in axonal 

outgrowth can be explained by the differences in the fiber samples that were used in the 

culture process. Fibers that have more alignment, smaller diameter fibers or are more 

densely packed will allow for larger axonal extension. The DRGs in Figure 3-7A and 3-

7E were seeded on fiber samples that were collected under the same conditions and were 

spun for the same length of time. The average diameter of those samples was 4.4 ± 

2.7µm. The DRG in Figure 3-7C was implanted on a fiber sample with an average 

diameter of 4.6 ± 2.1µm. The fibers from the cells in Figures 3-7A and 3-7E had a 

smaller average diameter, but a larger standard deviation and there were a higher number 

of larger diameter fibers than the sample from Figure 3-7C. Larger diameter fibers can be 

an impedance in axonal outgrowth35. While the samples in Figure 3-7A and 3-7E are 

more densely packed, before the fibers were completely dry some of them merged 



85 
 

together to form larger fibers which may account for the lower axonal outgrowth length. 

The deviation may also be explained by the difference in fiber alignment. While the 

sample spun for 32 minutes had a higher overall degree of alignment with a 2σ of 16° as 

opposed to the 2σ of 22° for the sample spun for 23 minutes, the sample spun for 23 

minutes had a higher number of fibers that were at a lower angle difference from the 

angle of alignment. Most of the fibers from the sample spun for 23 minutes were within 

2° of alignment, while the fibers from the sample spun for 32 minutes were much more 

distributed as far as their difference from the angle of alignment (Figure 3-4). The 

frequency plots in Figure 3-5 show that all the fibers centered around a reference point of 

0 degrees from alignment. 

 The results from in vitro cell cultures on the free-standing fiber scaffolds indicates 

that the fibers are providing surface cues for axonal outgrowth, and axons prefer to 

adhere and follow the alignment of the fibers rather than grow unrestricted in and out of 

the scaffold plane. The surface of the aligned fiber scaffolds is the cause for the in vitro 

success seen previously, and provide a guidance mechanism for axonal outgrowth. These 

results also give clues as to how axonal outgrowth may occur along a bridge made of 

fiber scaffolds in vivo. The in vivo environment is not restricted to two dimensions, so 

cell cultures on the free-standing scaffolds may provide a better model of how axonal 

extension occurs in vivo. 

3.6 Conclusions 

 The design of the elevated stages that can be used to produce free-standing fiber 

scaffolds was studied. Stages made from PLA with columns of 3mm height and 1cm 
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distance apart were produced using a 3D printer, while other stages made from acrylic 

square tubing that produced scaffolds of the same dimensions were also used. The stages 

were attached to a rotating aluminum wheel of an electrospinning apparatus. Fibers made 

from PLLA were electrospun and collected across the top of the columns of the stages. 

Fibers were also spun onto a flat substrate for comparison purposes. The scaffolds were 

analyzed for average fiber diameter, degree of alignment and fiber density. The results of 

the fiber analysis performed are summarized in Table 3-1. 

 Chick DRG cell cultures were performed on both the free-standing scaffolds and 

the scaffolds on the flat substrate. Cell cultures were performed on free-standing 

scaffolds with different fiber densities and degrees of alignment to compare the axonal 

outgrowth between the two sets of scaffolds. Here it was shown that aligned fiber 

scaffolds can be spun on an elevated stage, providing a 3D environment for in vitro tissue 

culture. It was also demonstrated that in vitro DRG cell cultures performed on these 

elevated surfaces produce results similar to those seen previously. The average axonal 

outgrowth of the DRG cells is summarized in Table 3-2. The axonal outgrowth of the 

cells seeded on the free-standing scaffolds is comparable to the axonal outgrowth of the 

cells seeded on scaffolds spun on a flat substrate. It can be concluded from the results 

here that the fiber scaffolds can help axonal outgrowth in vitro, and axons will follow the 

aligned fibers that make up a growth-permissive bridge across the glial scar tissue. 

Aligned fiber scaffolds have been shown to be successful in aiding axonal outgrowth. 

This raises the question as to the role of adhesion of the cells to the fibers in the success 

of the scaffolds in aiding axonal outgrowth. The PLLA appears to allow enough adhesion 
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to keep the cells attached to the scaffolds but not such strong adhesion that the axonal 

outgrowth is impeded. These results also help model the behavior of cells and the 

interactions with free-standing fiber scaffolds in vitro. The next step is to improve upon 

the previous results and move closer to clinical use of these fiber scaffolds for SCI and 

neural tissue repair. It is thought that using a more complex, coaxial structure may 

provide more options for aiding axonal outgrowth, such as nerve growth factor (NGF) 

release and fibers with a conductive core. These structures are being explored and 

examined. 
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4 Formation of Aligned Core/Sheath Microfiber Scaffolds 

with a poly-L-lactic acid (PLLA) Sheath and a Conductive 

poly(3,4-ethylenedioxythiophene) (PEDOT) Core3 

 

4.1 Abstract 

 Electrospinning of coaxial fibers to create core-sheath fiber structures to serve as 

multi-functional neural tissue scaffolds has been explored. A biocompatible polymer 

sheath combined with a core to provide additional growth cues and/or stimuli is the goal 

of this study. Here, the core material was the conductive polymer poly(3,4-

ethyelenedixoythiophene): poly(styrene sulfonate) (PEDOT:PSS) in oleic acid with a 

sheath of poly-L-lactic acid (PLLA). This created coaxial fibers with a conductive core 

and an insulating sheath to simulate an artificial axon. Several coaxial nozzle geometries 

were tested and the effect of operating and spinning solution parameters on fiber 

morphology examined. The most successful tests were with a nozzle using two different 

sized spinning needles. Coaxial fibers were spun using different spinning needle 

combinations, e.g. 22G/16G and 22G/17G (inner/outer). Key parameters in successfully 

spinning coaxial fibers included outer solution viscosity, inner/outer flow rate, field 

strength, and core solvent. The resulting fibers were characterized using fluorescence 

                                                 
3 The material within this chapter will be submitted for review to the journal “Materials Science and 
Engineering C.” 
Citation: 
Martin, Rachel, Wendling, Marie, Radke, Qian, Zichen, Dan, Zhao, Feng and Mullins, Michael. 
“Formation of Aligned Core/Sheath Microfiber Scaffolds with a poly-L-lactic acid (PLLA) Sheath and a 
Conductive poly(3,4-ethylenedioxythiophene) (PEDOT) Core.” 
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optical microscopy and FE-SEM to confirm the coaxial structure and the conductive 

nature of the core. Fiber scaffolds were then characterized for fiber diameter, alignment 

and density. FTIR confirmed minimal mixing between the core and the sheath materials. 

Mechanical characterization was performed on two different diameter fibers (6.1 ± 2.4µm 

and 3.3 ± 0.9µm) using nanoindentation and the results compared to a solid PLLA 

microfiber.  

4.2 Introduction 

 Spinal cord injuries (SCIs) continue to be among the most debilitating injuries due 

to the lack of regeneration capabilities of damaged neural tissue1. The development of a 

glial scar at the site of injury provides a hindrance to the repair, regrowth and 

reconnection of severed axons. Research to overcome this barrier has focused on the 

creation of an implantable scaffold that would act as a bridge across the glial scar and 

provide guidance for axonal regrowth22.  

 The technique of electrospinning to produce fiber scaffolds for axonal 

regeneration has been explored 9,20,33,34. Polymer fiber scaffolds developed using poly-L-

lactic acid (PLLA)20,27,33,34,52,77, poly-caprolactone (PCL)31,39,40,49,54,62, poly(lactide-co-

glycolide) (PLG)106,107, poly(L-lactic acid) -co-caprolactone (PLL-CL)7,59, and silk 

fibroin55 have been studied and show promise in aiding axonal outgrowth in vitro. Studies 

that have been performed in in vivo models have not shown the same success as in vitro 

models. An injury model performed in vivo in rats with severed spinal cords using 

implanted conduits made of aligned PLLA fibers showed extensive regrowth of the 
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transected spinal cord but did not show significant restoration of hind limb motor 

function20,100. 

 Alternative approaches to electrospun fiber scaffolds are needed to improve their 

efficacy in vivo and improve the restoration of motor function. Approaches include 

spinning composite scaffolds with biopolymers such as collagen7, laminin27, or 

hyaluronic acid54 to improve biocompatibility and cell adhesion. Fiber scaffolds have also 

been developed with nerve growth factor (NGF) incorporated into the fibers to improve 

axonal outgrowth37,44. In addition to the use of biochemical agents to provide external 

stimuli during axonal regeneration during cell studies, electrical stimulation can be used 

to provide an additional source of stimulation for axonal outgrowth. Electrical stimulation 

has also been shown to enhance axonal outgrowth both in vitro and in vivo 72,76,77,79.  

 Coaxial electrospinning is a way to create microfiber scaffolds with a core-sheath 

structure. This can be advantageous in repairing neural tissue, since more than one axonal 

growth stimuli can be incorporated, creating a multifunctional tissue scaffold. 

Encapsulating NGF or other drugs in the core of a coaxial fiber can help limit burst 

release and keep drugs active in vivo longer66,68,69. One potential application for coaxial 

fiber scaffolds is the use of conductive polymers. Electrical stimulation has been proven 

to aid in axonal outgrowth when the stimulation is applied along non-conductive fibers77. 

By using conductive polymers within the fiber scaffolds, it should be possible to create 

stronger local electrical fields near the surface of the fiber scaffold where the cells are in 

contact. When conductive polymers form the core of a coaxial fiber, pores or defects in 

the insulating sheath could allow for direct interaction between the axons and the 
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conductive fibers when electrical activity occurs. One conductive polymer that has been 

studied is poly(3,4-ethylenedioxythiophene) (PEDOT)108-110. PEDOT is highly 

conductive89 and has been studied for biological toxicity95. Poly(styrene sulfonate) (PSS) 

is often used as a counter-ion with PEDOT and improves solubility. In this present study, 

coaxial fiber scaffolds with an insulating, PLLA sheath and a conductive, PEDOT:PSS 

core were produced using coaxial electrospinning methods. The PLLA sheath provides a 

surface which has been proven to be attractive for axonal growth and adhesion; however, 

this study is the first to demonstrate the formation of a conductive core using a 

PEDOT:PSS suspension in aligned core-sheath scaffolds. 

4.3 Materials and Methods 

4.3.1 Materials 

 Poly-L-lactic acid (PLLA) was obtained from NatureWorks LLC and used as 

received. Chloroform was ordered from Sigma Aldrich and was used as the solvent for 

the PLLA sheath of the fibers. Oleic acid was ordered from Sigma Aldrich and used as 

the medium for the PEDOT suspension. Two different sources of PEDOT were used. 

PEDOT nanoparticles with DBSA as the counter-ion were ordered from Sigma Aldrich. 

3,4-ethylenedioxythiophene (EDOT) was ordered from Alfa Aesar and used as received. 

Styrene sulfonic acid and sodium sulfate were ordered from Sigma Aldrich and used as 

received. 

4.3.2 PEDOT Synthesis 

 Poly(3,4-ethylenedioxythiophene) with poly(styrene sulfonate) was synthesized 

from 3,4-ethylenedioxthyiophene (EDOT) (Alfa Aesar) monomer and poly(styrene 
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sulfonic acid) (Sigma Aldrich)(n=10,000). The procedure used was an oxidative 

polymerization reaction with sodium sulfate as the oxidizing agent. A 1:1:2 molar ratio of 

EDOT: styrene sulfonic acid: sodium sulfate was used (1.4252g of EDOT, 1.8371g of 

poly(styrene sulfonic acid) and 2.3848g of sodium sulfate). The EDOT monomer was 

mixed with 25mL of distilled water prior to being added to the reaction solution. The 

poly(styrene sulfonic acid) was also mixed with 25mL of distilled water before being 

added to the reaction solution. The sodium sulfate was mixed with 25mL of distilled 

water before being added to the reaction solution. All three components were added to 

25mL of distilled water that was in a large beaker for a total volume of 100mL of 

reaction solution. The concentration of each reactant in solution was 0.1M. The solution 

as placed on a temperature-controlled heat plate at a constant temperature of 25°C. The 

beaker covered with Parafilm® and left to complete the reaction overnight.  

 A color change was observed in the reaction solution overtime. The solution 

started as a pale-yellow color, which is the color of the EDOT monomer solution. At 30 

minutes the solution turned a murky green color. At one hour, the solution turned a 

cloudy blue, and at 90 minutes it turned a very dark blue, almost black. After this, no 

color change was observed. A dark solid precipitate collected at the bottom of the beaker. 

After the reaction was complete, the product particles were collected using a fine filter 

and rinsed thoroughly with distilled water to remove any remaining ions. After drying, 

the product was a dark blue solid (Figure 4-1) with a total mass of 1.264g. The 

PEDOT:PSS product was analyzed using ATR-FTIR spectroscopy using a Perkin Elmer 

Spectrum One spectrometer to confirm the composition.  
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Figure 4-1: Synthesized PEDOT:PSS polymer after 24 hours of polymerization, double 

filtration and overnight drying. 

 

4.3.3 Coaxial Electrospinning Apparatus Design 

 Coaxial electrospinning uses a conventional set-up as described previously with 

some modifications105. Previously, various nozzles were designed that would allow for 

electrospinning fibers with a core-sheath structure 111. In the modified apparatus, two 

separate solutions (one for core solution, one for sheath solution) on separate syringe 

pumps are delivered to the coaxial nozzle via separate ports. The solutions are kept 

separate until they meet the nozzle, where they come together as the solutions are spun to 
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create fibers with a core-sheath structure. Both inner and outer solutions must be 

connected to ground and the power supply as both solutions must be charged (Figure 4-

2). The nozzle has a side port for the outer solution and an inner port for the core 

solution. In all of the nozzle designs, a 22G needle (0.413mm i.d.) serves as the spinneret 

for the core solution. Two different nozzle designs were examined for delivery of the 

outer sheath solution. One design had a side port connected to an aperture on the outside 

of the 22G needle with a diameter sufficient to encapsulate the core (Figure 4-3) with a 

diameter of 0.2065 inches. This nozzle aperture design was made in both Teflon® and 

stainless steel, with the charge applied only to the inner needle. Both nozzles were tested, 

but the stainless steel nozzle tended to produce stray currents and static charges, which 

increased fiber variability and decreased alignment. While the Teflon® nozzle did not 

produce stray currents, alignment of the needle and aperture was difficult and higher 

variability in fiber diameters was observed.   
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Figure 4-2: Schematic of coaxial electrospinning. The inner and outer solutions are 

kept separate until they reach the nozzle. The two different nozzle designs that were 

tested are shown. A coaxial strand is emitted from the Taylor’s cone at the tip of the 

nozzle and collected on a rotating, grounded collector to achieve aligned, coaxial fiber 

scaffolds. 

 The second nozzle simply employed two concentric, blunt-tipped spinneret 

needles with sufficient space between the walls of the needles to allow free solution flow 

(Figure 4-3). The needles were mounted in a Teflon® housing with a side port to connect 

to the larger gauge needle and the inner 22G needle was directly connected to the syringe 

pump. This allowed for the power supply to be easily connected to both the inner and 

outer needles. A small piece of Tygon® tubing was placed over the outer needle to 

reduce stray currents. This design allows for the ability to spin fibers with different 
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sheath diameters simply by using different needle diameters for the sheath solution. This 

design produced the most consistent spinning of coaxial fibers with uniform core and 

sheath diameters. Fibers spun using a 22G/16G spinning needle pair (16G =1.194mm 

i.d.) had a large diameter, whereas those spun with a 22G/17G spinning needle pair 

(17G= 1.067mm i.d.) produced a smaller diameter sheath with a similar sized core. All 

nozzle designs are shown in Figure 4-3.  

 

Figure 4-3: Different nozzle designs. (A) Stainless Steel nozzle (B) Teflon® nozzle (C) 

Dual needle nozzle 
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4.3.4 Testing of the Sheath Solution 

 The outer solution was always PLLA for testing purposes since the goal was to 

spin fibers with a PLLA sheath. The inner solution was oleic acid after being determined 

as the best core material to use. Viscosity testing was done on the PLLA polymer solution 

to determine the optimum viscosity range for spinning consistent fiber scaffolds. For 

coaxial spinning, the viscosity of the inner solution is not as important because it is 

encapsulated in the sheath. However, the viscosity of the sheath solution, or the solution 

in single-stranded fiber electrospinning, is a vital parameter for achieving bead-free, 

consistent fibers and can also affect the diameter of the fibers. To determine the ideal 

range of viscosity for the PLLA solutions used in this study, a viscosity test was 

performed with various concentrations of PLLA solution in chloroform, and a viscosity 

profile plotted. The various solutions were also electrospun and imaged, and the images 

examined for fiber morphology and formation. A 10wt% stock solution of PLLA was 

made to be diluted to use for the viscosity profile. 4.1427g of PLLA were dissolved in 

25mL of chloroform to make a 10wt% solution. The solution was placed on a 

combination stir/heat plate for approximately one hour until all of the PLLA was 

dissolved. Solutions of concentration 2wt%, 4wt% and 8wt% were made from the 10wt% 

solution, 10mL each. The viscosity of 6wt% solution was tested after making solution for 

one of the various spinning runs that were performed with that concentration. An AND 

SV-10 Vibro Viscometer was used to perform the viscosity testing. To measure the 

viscosity, 10mL of each solution were placed in the supplied sample cups for the 
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viscometer. The paddle-probes for the viscometer were then dropped into the solutions 

and the viscosity recorded from the read-out. After the viscosities were measured, the 

solutions were electrospun to examine the ability to spin the solutions and the 

morphology of the fibers formed. 

4.3.5 Preparation of the Core Solution/Suspension 

 The PLLA polymer was always used as the sheath material to be consistent with 

our previous studies34,105. A variety of polymers were tested as suitable core materials. 

The first core system tested was poly-vinyl alcohol (PVA) in an 80/20 mixture of distilled 

water/ethanol. Multiple spinning tests were performed at different flow rate combinations 

and different voltages, but the solution was highly conductive and consistent coaxial 

fibers were not achieved. The next system tested was polypyrrole (PPY) suspended in 

distilled water. The polymer PPY is known be conductive and has been studied for use in 

creating conductive electrospun fibers88. However, the PPY disperses poorly in water 

even with surfactants, causing clumping and clogging of the nozzle. A similar approach 

was used with PEDOT:DBSA nanoparticles dispersed in water from Sigma Aldrich. 

These particles dispersed well and did not clog the needle, but the conductivity of the 

water was higher than desired. The final system tested was oleic acid as the medium in 

the core. The conductivity of the solution was not an issue, the viscosity is higher than 

water, and after adjusting the parameters, consistent coaxial fibers were obtained. 

 Once the best flow rate ratio was determined, a PEDOT suspension was added to 

the oleic acid in the core solution. Two different sources of PEDOT were used for testing, 

with each source utilizing a different counter-ion. One source of PEDOT was PEDOT 
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nanoparticles from Sigma Aldrich that used dodecylbenzene sulfonic acid (DBSA) as a 

counter-ion. The other PEDOT that was used was polymerized in the lab from 3,4-

ethylenedioxythiophene (EDOT) with polystyrene sulfonate (PSS) as the counter-ion. 

Both were used to determine the effect of the different counter-ions on the conductivity 

and the biocompatibility of the fibers. For the PEDOT:PSS polymer, first a suspension of 

2wt% polymer in 10mL of distilled water was made, since PEDOT:PSS is not soluble in 

oleic acid, and tends to form clumps that then clog the needle during electrospinning. By 

making a suspension of the polymer in water first, the particles form a finer suspension 

that clog the needle less frequently and the solution is easier to spin. The 2wt% 

PEDOT:PSS suspension was then added to 10mL of oleic acid to make a 15wt% 

PEDOT:PSS:H2O in oleic acid suspension. The PEDOT:DBSA nanoparticles were 

already dispersed water, so the nanoparticle solution was added to 10mL of oleic acid to 

also make a 15wt% suspension.  

4.3.6 Coaxial Electrospinning Procedure 

Systematic testing of the electrospinning parameters was performed to determine 

the best parameters to use for consistent coaxial fiber formation. Key parameters included 

the sheath solution viscosity, core medium for inner suspension, inner/outer flow rate 

ratios, and electric field strength. One of the most important parameters was found to be 

the ratio of the flow rates between the inner and outer solutions. To determine how the 

inner and outer flow rates affect the quality of the fibers, inner and outer flow rates were 

changed, fibers spun, and the samples imaged. The flow rates tested were 0.5/1.0mL/hr, 

1.0/1.0mL/hr, 0.8/1.2mL/hr, and 0.5/1.5mL/hr (inner/outer). It was determined that the 
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best ratio between the inner and outer flow rates for producing consistently coaxial fibers 

was 1:3; therefore, the flow rates chosen were 1.5mL/hr for the outer solution and 

0.5mL/hr for the inner solution. 

Process parameters such as field strength and wheel rotation rate were determined 

to spin aligned fiber mats of high quality. The voltage was set to 20kV and the needles 

were placed 10cm above the wheel, giving an electric field strength of 2kV/cm. The 

wheel rotation rate used was 3000rpm. These parameters were higher than those used for 

spinning pure PLLA fibers (17kV, 1.7KV/cm, 1250rpm). 

Samples were spun at the previously determined flow rates for 10 minutes. 

During coaxial electrospinning, a larger, more elongated Taylor’s cone was observed 

with the inner solution appearing inside the outer solution, and the cone encompassing 

both needles (Figure 4-4). The fiber samples were dried in a vacuum oven at 50°C for 30 

minutes to remove residual solvent. The fiber samples were then imaged using 

fluorescence optical microscopy. 
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Figure 4-4: Coaxial Taylor's cone Left: During electrospinning, Right: Drawing. The 

inner solution can be seen as being fully encased in the outer solution. 

 

4.3.7 Fluorescence Optical Imaging and FTIR Fiber Analysis and 

Characterization 

 To analyze the fiber scaffolds and determine if coaxial fibers were achieved 

through electrospinning, fluorescence optical microscopy was done on the fibers. Images 

were taken of the fibers using an Olympus BX-15 optical microscope with a camera 

attachment and X-Cite 120 Fluorescence Illumination System. First a red image was 

taken of the fibers, then a green image. An overlay was created of the two images, and 

anywhere that yellow fibers appeared was determined to indicate that coaxial fibers were 

successfully electrospun.  
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 FTIR analysis was performed using a Perkin Elmer Spectrum One spectrometer. 

50 scans were performed to obtain the spectra. Pure PLLA microfibers and coaxial 

PEDOT:PSS/PLLA (inner/outer) fibers were analyzed to determine the surface chemistry 

of the sheath.  

4.3.8 Field Emission Scanning Electron Microscopy Fiber Analysis and 

Characterization 

 To characterize the fiber scaffolds and determine if coaxial fibers were achieved 

through electrospinning, fluorescence optical microscopy was done on the fibers. Images 

were taken of the fibers using an Olympus BX-15 optical microscope with a camera 

attachment and X-Cite 120 Fluorescence Illumination System. For optical fluorescence 

analysis, the inner solution was dyed with a minute amount of the green fluorescent dye, 

coumarin 6. The outer solution was dyed with a minute amount of the red fluorescent 

dye, rhodamine B. For these conditions, the inner and outer solutions are completely 

immiscible. Using fluorescence microscopy, a green image is taken to show the coumarin 

dyed core and a red image is taken to show the rhodamine dyed sheath. When the images 

are overlaid in the computer, fibers that appear yellow indicate the formation of coaxial 

fibers. In some cases, the outer sheath shows an outline of red, but the core/sheath image 

is always yellow. 

 ATR-FTIR analysis was performed using a Perkin Elmer Spectrum One 

spectrometer. Pure PLLA microfibers and coaxial PEDOT:PSS/PLLA (inner/outer) fibers 

were analyzed to determine the surface chemistry of the fibers and determine if any 

mixing had occurred between the core and sheath.  
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4.3.9 Mechanical Testing of Coaxial Microfibers 

 Mechanical properties of the fibers were measured and collected using a 

nanoindenter instrument with a Berkovich tip to calculate the modulus and hardness of 

the coaxial fibers. The Berkovich tip makes indentations in the surface of the sample, 

collecting load and displacement measurements that are then used to calculate the 

Young’s modulus 112. Pure PLLA fibers, coaxial fibers spun with a 22G/16G inner/outer 

spinning needle combination and coaxial fibers spun with a 22G/17G inner/outer 

spinning needle combination were tested and the data collected. The indentation depth 

was 1500nm to maintain consistent with previous testing112. Twenty points were taken 

per sample. The sample area was 5x4, and 50µm by 75µm. 

4.4 Results 

4.4.1 PEDOT:PSS Synthesis 

 PEDOT:PSS polymer was successfully synthesized as determined by observation 

of the color and state change, FTIR analysis and electrical conductivity testing. The 

spectrum collected with ATR-FTIR is shown in Figure 4-5. The major characteristic 

peaks for PEDOT:PSS are seen in the spectrum109. Aromatic C=C bending occurs around 

1700cm-1. This also accounts for the aromatic-like nature of the thiophene group. Peaks 

also associated with the C-S bonds are in the 600-700cm-1 range. The peaks observed 

between 1200 and 1400cm-1 are indicative of alkyl groups, and ester groups are observed 

between 1100 and 1200cm-1. The change in color from the yellow monomer solution to 

the dark blue solid (Figure 1) was also a clear indication of successful polymerization of 

PEDOT:PSS. A conductivity cell with copper electrodes on either side of the cell was 
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used to measure the conductivity of the polymer. The polymer was placed in the cell, the 

copper electrodes were placed on either side and a multimeter used to measure the 

resistance across the cell. The corresponding conductivity was measured to be 16.3mS, or 

54mS/cm. This is a little lower than usual; PEDOT conductivity is typically between 1 

and 100S/cm89. 

 

Figure 4-5: FTIR spectrum of synthesized PEDOT:PSS. Major characteristic peaks 

are labeled. 
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4.4.2 Viscosity and Flow Rate Analysis 

 The viscosity testing that was performed found the ideal range of viscosity for the 

PLLA solution is 6-8wt%. Figure 4-6 shows the plotted viscosity data that was obtained, 

and Table 4-1 shows the corresponding data that was used to create the plot. Viscosity 

increases exponentially with increasing concentration until the viscosity is too high to 

allow for electrospinning to occur, providing a narrow range of ideal viscosity. The 

viscosity of the core solution of 15wt% PEDOT:PSS:H2O in oleic acid was 27.4cP. 

 

 

Figure 4-6: Viscosity profile of PLLA solutions from viscosity testing. 
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Table 4-1: Viscosity data of PLLA solutions for viscosity profile. 

Conc. PLLA 

(wt.%) 

Viscosity (cP) 

2 10.9 

4 63.3 

6 132 

8 417 

10 1580 

 

 Figure 4-7 shows the microscopy images obtained of the fibers spun from the 

solutions used in the viscosity testing. As can be observed, consistent, bead-free fibers 

were only obtained from the 6 and 8wt% solutions. Figure 4-7A shows the imaged 

obtained from spinning the 2wt% solution. The image indicates that electrospraying 

occurred rather than electrospinning, so droplets formed instead of fibers. Figure 4-7B 

shows the image obtained from spinning the 4wt% solution. While fibers did form, there 

was a lot of beading on the fibers. Figures 4-7C and 4-7D show the images obtained from 

spinning the 6 and 8wt% solutions, respectively. These concentrations formed consistent 

fibers. Figure 4-7E shows the image obtained from spinning the 10wt% solution. While 

fibers did form, they were very thick and did not dry properly. 

 To determine the effect of the flow rate ratios on the formation of consistently 

coaxial fibers, electrospinning was done with several inner and outer flow rate ratios. The 
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combinations used were 0.5/1.0mL/hr, 1.0/1.0mL/hr,0.8/1.2mL/hr, and 0.5/1.5mL/hr 

(inner/outer). Figure 4-8 shows the fibers created for each of these conditions. Figure 4-

8A shows the image obtained from the fibers spun with the 0.5/1mL/hr flow rate ratio. 

Some coaxial fibers are present, but not consistently. Figure 4-8B shows the image 

obtained from the fibers spun with the 1.0/1.0mL/hr flow rate ratio. No coaxial fibers 

were observed. Figure 4-8C shows the image obtained from the fibers spun with the 

0.8/1.2mL/hr flow rate ratio. No coaxial fibers were observed. Figure 4-8D shows the 

image obtained from 0.5/1.5mL flow rate ratio. Consistent coaxial fibers can be seen 

throughout the whole sample. 
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Figure 4-7: Images obtained from fibers spun during viscosity testing. (A) 2wt% 

solution (B) 4wt% solution (C) 6wt% solution (D) 8wt% solution (E) 10wt% solution 
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Figure 4-8: Flow rate analysis for coaxial fibers. (A) 0.5/1 (B) 1/1 (C) 0.8/1.2 (D) 

0.5/1.5 

 

4.4.3 Coaxial Fiber Characterization 

 Fluorescence optical microscopy was used to determine the successful formation 

of core-sheath fibers. Red fluorescent dye in the sheath solution and green fluorescent 

dye in the core solution allowed for a red image to be taken and a green image to be taken 

using a digital microscope. When an overlay of the two images is created, any fibers that 

appear yellow indicate the formation of core-sheath fibers. Figure 4-9 shows the red, 

green and yellow overlay of a fiber sample collected with the 22G/17G inner/outer needle 

set-up. 
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Figure 4-9: Fluorescent optical images of core-sheath electrospun fibers. The upper 

left photo shows the red image taken, the upper left photo the green image taken and 

the bottom photo the overlay of the two. The consistent yellow fibers across the sample 

indicate successful formation of core-sheath fibers. 
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 Field-Emission Scanning Electron Microscopy (FE-SEM) was performed on 

coaxial fiber samples obtained by freeze-fracturing of the aligned mats collected on flat 

coverslips. By examining the fracture surfaces of the fibers, the core-sheath morphology 

may be clearly seen (Figures 4-10 and 4-11). Under the high intensity electron beam, 

electrically insulating areas appear brighter than the surroundings due to the build-up of 

electrons. In this case, the PLLA sheath is insulating, causing the material to appear 

bright in the image. On the other hand, electrons can travel along conducting materials, 

and there is no brightening effect since the electrons do not collect on the surface. This 

can be seen in Figure 4-10, where the brightness of the PLLA sheath as compared to the 

PEDOT core indicates the formation of a fiber with a conductive core with an insulating 

sheath. In Figure 4-10, the sheath has a diameter of 6.7µm, and the core has a diameter of 

1.2µm. The fiber in the image was spun using the 22G/16G electrospinning needle set-

up, and using the PEDOT:DBSA nanoparticles.  
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Figure 4-10: SEM image of core-sheath fiber comparing the lower detector image to 

the higher detector image. The brighter appearance of the sheath while the core has no 

change in appearance indicates the formation of core-sheath fibers with a conductive 

core and insulating sheath. 

 

 SEM analysis of the fibers spun with the 22G/17G spinneret combination was 

also performed, and the core of those fibers also showed electrical properties. An 

example is shown in Figure 4-11. The core in this figure was spun with PEDOT:PSS. 

This image shows the sheath split down the center and the core in the middle. The sheath 

has a diameter of 4.8µm and the core has a diameter of 1.9µm. 
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Figure 4-11: SEM of smaller diameter core-sheath fibers. The sheath is split down the 

middle, revealing the conductive core inside. 

 The diameter of the fibers was measured using ImageJ® and the DiameterJ® 

plug-in for the program. The diameter of pure PLLA fibers, coaxial fibers spun with a 

22G/16G inner-outer spinning needle combination, and coaxial fibers spun with a 

22G/17G inner-outer spinning needle combination were measured and compared. The 

average diameter of the coaxial fibers spun with a 17G outer needle was 3.30 ± 0.96µm. 

The average diameter of the fibers spun with the 16G outer needle was 6.11 ± 2.43µm. 

The average diameter of PLLA single-walled fibers was 2.8 ± 1.3µm. Alignment analysis 

was also performed on the two different types of coaxial fibers. The smaller diameter 

coaxial fibers had a σ = 17.9° (2σ = 39.4°). The larger diameter coaxial fibers had a σ = 

10.8° (2σ = 21.6°). The pure PLLA fibers had an alignment of σ = 5.1° (2σ = 10.2°). 

These results are summarized in Table 4-2. Figure 4-12 shows optical images obtained 

comparing the smaller and larger fiber diameter coaxial fibers. While the 2σ value for the 

smaller diameter coaxial fibers was quite large, further analysis showed most of the 

fibers, 70%, were within 10° of the angle of alignment. For the larger diameter fibers, 



114 
 

70% were within 8° of the angle of alignment. This indicates that cross-fibers were 

present in both sets of samples, which greatly affected the alignment statistics of the 

fibers, and it may not reflect the general quality of alignment. 

Table 4-2: Diameter, alignment and density data for different fiber samples 

   

 

Figure 4-12: Fibers spun with different diameters. The left-hand figure spun with22-

17G system. Right hand spun with 22G-16G system. 

 

Sample 
Conditions 

2σ (degrees) Average Fiber 
Diameter(µm±) 

Average Fiber 
Density(fibers/mm±) 

single 
walled fibers 

10.2° 2.8 ± 1.3 390 ± 41 

coaxial 
fibers spun 
22G-17G 

39.4° 3.3 ± 0.9 53 ± 6.6 

coaxial 
fibers spun 

22-16G 

21.6° 6.1 ± 2.4 28 ± 4.3 
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4.4.4 Chemical and Mechanical Property Analysis 

ATR-FTIR analysis was performed on the surface of both pure PLLA fibers and 

coaxial core-sheath fibers to compare the surface chemistry between the two different 

types of fibers, and measure any mixing between the core and sheath materials. The 

spectra collected are shown in Figure 4-13. The structure along with the spectrum 

showing the peaks of PLLA is shown. The PLLA spectrum shows a peak between 1800 

and 1600cm-1, the characteristic ester peak of the PLLA structure. There are also methyl 

peaks around 1200cm-1 and a C-C peak between 1200 and 1000cm-1. The spectrum of the 

coaxial fiber surface only shows peaks identifying with PLLA and none of the 

characteristic PEDOT:PSS spectra. 
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Figure 4-13: IR spectrum for (upper) PLLA fibers and (lower) coaxial fibers. Key 

characteristic peaks are labeled. 

 Mechanical information about the Young’s modulus and the hardness of the fibers 

was collected using a nanoindenter with a Berkovich tip. The indentation depth was 

1500nm. Due to the large diameters of the coaxial fibers (>3µm), it was determined that 

1500nm would be on the order of the sheath thickness, but would not go through the 

entire fiber sample. PLLA fiber data collected previously was collected at a depth of 

1500nm, so this depth was consistent and can be directly compared. The results are 
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summarized in Table 3. The average modulus for the smaller core-sheath fibers was 0.7 ± 

0.4GPa and the average hardness was 0.03 ± 0.03GPa. The average modulus for larger 

core-sheath fibers was 0.16 ± 0.13GPa and the average hardness was 0.022 ± 0.01GPa. 

This data may be compared to the values previously collected of 1.22 ± 0.19GPa and 0.05 

± 0.006GPa of pure PLLA fibers112. 

Table 4-3: Mechanical testing data for coaxial fibers 

Sample Young’s Modulus(GPa) Hardness(GPa) 

small diameter fibers 0.7 ± 0.4 0.03 ± 0.03 

large diameter fibers 0.16 ± 0.13 0.02 ± 0.01 

PLLA112 1.22 ± 0.19112 0.05 ± 0.006112 
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4.5 Discussion 

 The results of the imaging and spectroscopic indicate the successful formation of 

aligned core-sheath microfiber scaffolds. The fluorescence optical imaging utilizing a red 

and green image overlay on samples spun with a PLLA sheath and PEDOT:PSS core 

indicate fibers that were coaxial in nature consistently showed a yellow overlay signature 

(Figure 9). The FE-SEM imaging confirms this by showing many instances where the 

core is separated from the sheath, either at the end or where the sheath had split down the 

middle. The surface charging observed in the FE-SEM images of the coaxial fibers 

indicates that the fibers have a conductive core with an insulating sheath (Figures 4-10 

and 4-11). However, the conductivity of the core has not been quantitatively measured. 

FTIR spectra shown in Figure 4-13 comparing the pure PLLA fiber and the 

coaxial fiber surface show no significant differences. The same peaks observed for PLLA 

fibers also appear in the spectrum for the coaxial fibers, with no additional peaks that 

might be expected for PEDOT:PSS. This leads us to conclude that only PLLA was 

present along the surface, with the core material fully encased in the sheath, indicating no 

splitting of the Taylor’s cone into two separate fiber strands. 

 Fiber image analysis was performed on coaxial fiber scaffolds with different 

sheath diameters (Figure 4-12). The two systems studied were coaxial fibers spun with a 

22G/17G spinning needle combination and fibers spun with a 22G/16G spinning needle 

combination. The larger coaxial fibers had an average fiber diameter of 6.1 ± 2.4µm, 

much larger than the diameter of pure PLLA fibers. The smaller coaxial fibers had an 

average fiber diameter of 3.3 ± 0.9µm. This diameter is much closer to the measured 
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diameter of pure PLLA fibers, which was 2.8 ± 1.3µm. The diameter of the smaller core-

sheath fibers falls within the standard deviation of the PLLA fibers. However, the 

diameter of the larger core-sheath fibers fell outside this standard deviation. The density 

of the fibers was also analyzed. The scaffolds spun with fibers that had a smaller sheath 

diameter had a higher density than the scaffolds spun with fibers that had a larger sheath 

diameter (53 vs. 28 fibers/mm). This makes sense because the smaller diameter fibers can 

be more densely packed into a smaller area. 

 Analysis of the alignment of the coaxial fibers showed that the overall 2σ value 

was quite large for the smaller diameter fibers, at 39.4°. However, when doing the 

analysis for the deviation of individual fibers from the axis of alignment, 70% of the 

fibers were within 10°. This indicates that cross-fibers developed on the sample during 

electrospinning, and these outlying fibers may be creating statistical artifacts. The same 

was true for the larger diameter coaxial fibers. The overall 2σ was around 21°, but 

analysis of the individual fibers from the axis of alignment showed 70% were within 8°. 

This again indicates the presence of cross fibers but generally good alignment. Both sets 

of fibers had a lower degree of alignment than pure PLLA fibers, which had a 2σ of about 

10°. The difference is attributable to the higher rotation rate for the collection required 

(3000rpm vs 1250rpm) by the higher polymer flow rates used for coaxial fibers (2mL/hr 

vs 0.9mL/hr). The higher wheel rotation rate required for coaxial fibers may also be due 

to the thicker strand pulled from the Taylor’s cone for the coaxial fibers than for the 

PLLA fibers, requiring more force to pull them into aligned scaffolds. To improve the 

alignment may require collection at an even higher wheel rotation rate. The coaxial fibers 
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are also exposed to a higher voltage than the pure PLLA fibers (20KV vs 17KV), since 

more electrostatic force is required to overcome the surface tension in the dual droplet to 

distort the droplet into a coaxial Taylor’s cone. 

 Viscosity testing showed a concentration range of the PLLA solution is between 6 

and 8wt% to create bead-free fibers (Figure 4-7). This indicates that the ideal range of 

viscosity is between 130 and 420cP (Table 4-1). The results of the viscosity profile 

indicated solutions with that low of a viscosity would case beaded fibers to form (Figure 

4-7). However, the viscosity of the core oleic acid-PEDOT solution was around 27cP. 

The viscosity of the inner solution did not have an effect on the morphology of the 

surface of the coaxial fibers. The inner solution can be of a lower viscosity because it 

becomes encapsulated in the sheath solution during the formation of the dual Taylor’s 

cone, so the viscosity of the sheath solution becomes dominant. Thus, the coaxial nature 

of the fibers allows for a great deal of flexibility in the selection of the core solutions and 

allows for solvents to be spun that would not normally create polymer fibers alone.  

 Reproducible testing is dependent on the indenter tip being directly over the 

center of the fiber prior to indentation, and striking the fiber at an angle may cause 

skidding of the probe and produce skewed data. The Young’s modulus was smaller for 

both sets of coaxial fibers than for pure PLLA. The modulus of the pure PLLA fiber was 

around 1GPa, whereas the moduli for the smaller diameter and larger diameter coaxial 

fibers were 0.7GPa and 0.16GPa, respectively. The thickness of the PLLA sheath around 

the core could affect the stiffness and allow the fiber to bend more easily under the 

indenter tip until the core was reached. The modulus for the larger diameter fibers was 
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smaller than the modulus for the smaller diameter fibers. Again, the larger sheath 

diameter around the core would make the fibers more elastic (Table 3). Also, the 

indentation depth of 1500nm indicates that the indenter was almost penetrating through 

the whole PLLA sheath, particularly for the smaller diameter fibers. The pure PLLA 

fibers are solid and would have less flex than coaxial fibers with a softer core. The 

surface hardness was similar for all the fibers, since the surface compositions are the 

same. Penetration of the sheath material at the maximum indentation depth could lead to 

inconsistent measurements, but was not apparent in our data.  

4.6 Conclusion 

 In this study, an apparatus and its associated process parameters necessary to 

electrospin highly aligned, coaxial microfibers were studied. The key process and 

solution parameters were found to be the sheath solution viscosity, the core solution 

conductivity, the collection wheel rotation rate, and the ratio of the core-to-sheath flow 

rate. A highly aligned, novel core-sheath fiber structure with a conductive polymer core 

and an insulating sheath was successfully produced and characterized. The polymer 

sheath was composed of biocompatible poly-L-lactic acid (PLLA) studied previously as a 

neural tissue scaffold to aid axonal outgrowth34 Viscosity testing indicated a 

concentration for the PLLA polymer solution for the sheath of between 6 and 8wt% 

would produce consistent, bead-free fibers.  PEDOT:PSS particles (<1µm) were  

synthesized through oxidative polymerization of the 3,4-ethylenedioxythiophene (EDOT) 

monomer, and a conductive polymer core solution was prepared by using a poly(3,4-

ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) suspension. When water 
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was used as the dispersing medium, the electrical conductivity of the suspension was too 

high to allow successful electrospinning.  To reduce the conductivity, oleic acid was used 

as the suspension medium, which lowered the conductivity and allowed the successful 

formation of a conductive core with an insulating PLLA sheath. Coaxial fibers of 

different outer diameters were spun using two combinations of core/sheath needles 

(22G/16G inner-outer and 22G/17G inner-outer combinations). Testing of various flow 

rate ratios for the core and sheath solutions indicated that the ratio of core to sheath flow 

rate of 0.5/1.5mL/hr (1:3) created the most consistently coaxial fibers for this system.  

 Fluorescence microscopy, FE-SEM imaging, and ATR-FTIR surface analysis all 

indicated successful formation of highly-aligned electrospun microfibers with a 

conductive, PEDOT:PSS core and an insulating PLLA sheath. Analysis of the surface 

charging from SEM images of the core/sheath fracture surface indicated the presence of a 

conductive core (Figures 10 and 11). Although the core conductivity was not quantified 

in situ, the original suspension conductivity was 54 mS/cm. Decreasing the diameter of 

the outer (sheath) needle from 16G to 17G (Figure 12) while retaining a 22G core needle, 

produced coaxial fibers with average diameters of 6.1µm and 3.3 µm respectively, while 

the core diameter remained in the range of 1.1 to 1.9 µm. Image analysis was performed 

to quantify the alignment, density and diameter of the core-sheath fibers, and compared 

to pure PLLA fibers. The statistical alignment of the coaxial fibers, while good, was less 

that the single PLLA strands, mostly due to more cross strands that affected the standard 

deviation. The coaxial fiber process required higher flowrates, and correspondingly 

higher electric field strengths.  The subsequent generation of stray electrical field is 
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probably responsible for the less uniform spinning we saw. Mechanical testing to 

determine the Young’s modulus and the hardness of the fibers was performed using a 

nanoindentation device. The results indicate that the PLLA sheathed fibers have a 

substantially lower modulus that the pure PLLA strands.  This may be due to the higher 

flexibility of the thinner PLLA sheaths, or because the nano-indenter penetration depth 

was on the order of the outer sheath thickness (~1.5µm)    

 One of the motivations for this study was the production of insulated, electrically 

conducting nano/micro-wires for use in applications ranging from microelectronics to 

electrically stimulated tissue scaffolds.  We have demonstrated for the first time, the 

electrospinning of highly-aligned fibers with an insulating sheath and a conductive core. 

The process discussed here utilizes PEDOT:PSS nanoparticles in a suspension of oleic 

acid.  Improved core materials are needed, but alternative conductive polymers for the 

core of the coaxial fibers are limited due to their poor solubility in most common 

solvents. Spinning more highly aligned fiber mats while reducing cross fibers and stray 

currents would also be important for making tissue scaffolds for in vitro and in vivo cell 

cultures. This might be done by increasing the rotation rate or the diameter of the 

collection wheel or using other methods of producing aligned fiber scaffolds (i.e. parallel 

electrodes).   Direct contact probes for measuring electrical conductivity in an FE-SEM 

or TEM are now available, and should be used to quantify the core conductivity in situ.  

The nano-engineering of conductive core/sheath fibers that can be used as micro-

connectors, neuro-electrical measurements tools, tissue scaffolds, and in microelectronics 

are obvious offshoots from this work.  
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5 In Vitro Chick Dorsal Root Ganglia Studies on 

PEDOT/PLLA Core/Sheath Microfiber Scaffolds 

5.1 Abstract 

 The formation of electrospun microfiber scaffolds with a core-sheath structure has 

been previously reported. These fibers had a conductive poly(3,4-

ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) core and a poly-L-lactic 

acid (PLLA) insulating sheath. To test the ability of the scaffolds to promote axonal 

outgrowth in vitro, cell studies were performed using stage E9 chick dorsal root ganglia 

(DRG) cells. Cells were cultured for 5 and 7 days on pure PLLA fibers, coaxial fibers 

with PEDOT:PSS core in the core, coaxial fibers with PEDOT:DBSA nanoparticles in 

the core, and coaxial fibers with only an oleic acid core. Cells were also cultured on two 

different diameter coaxial fibers spun with a 22G/16G spinneret combination and a 

22G/17G spinneret combination (inner/outer). Some cells were cultured while being 

exposed to electrical stimulation of 23.9mV for the first 18 hours of culture. The initial 

studies indicated that in our successful cultures, the axonal extension was similar to that 

on single PLLA fibers; however, electrical stimulation during culture was not beneficial. 

Several cultures were not successful in promoting axonal outgrowth, indicating the core 

material and culture conditions for coaxial fibers needs further research. 

5.2 Introduction 

               It has previously been shown that aligned PLLA fibers can aid in axonal 

outgrowth both in vitro and in vivo20,34. However, while fiber scaffolds have been shown 



125 
 

to aid in extensive tissue regeneration in a rat in vivo model, the functional recovery of 

hind limb motor function has not been demonstrated20. It may be necessary to use a 

combined strategy approach to improve on the in vivo results that were seen in the study 

by Hurtado et al. In their study, axonal regeneration of a spinal cord injury in rats was 

complete at the proximal end but a gap persisted at the distal end. Combining the 

topographical guidance of aligned fiber scaffolds with biochemical or electrical stimuli 

may prove to be beneficial in completing distal axonal outgrowth, thereby improving 

motor function. 

               Previously, electrical stimulation has been shown to aid in axonal outgrowth 

both in vitro and in vivo76,77,78,79,83. In some cases, electrical stimulation with no 

topographical guidance cues has been shown to aid in axonal outgrowth, while some 

researchers, such as Koppes and Adams, have shown that when cells are cultured on 

random fiber mats and then exposed to electrical stimulation, axonal outgrowth can again 

be enhanced73,77. Koppes et al. demonstrated their results on aligned fiber scaffolds and 

after only 24 hours of culture and electrical stimulation showed initial axonal outgrowth 

was achieved77. Some of these studies were performed on conductive polymer structures, 

but the scaffolds were not aligned. It is our hypothesis that by combining aligned fiber 

scaffolds with conductive polymers we can in effect create an “artificial axon” and 

simulate an environment where electrical stimulation might enhance axonal outgrowth. 

               To further the understanding of axonal interaction with different microfiber 

scaffold materials and to improve functional recovery in vivo, we demonstrated the 

formation of coaxial fiber scaffolds with a conductive, PEDOT:PSS core and an 
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insulating PLLA sheath. The mechanical and chemical properties of the fibers were 

studied, as well as the alignment, density, and diameter of the fiber scaffolds. Fibers were 

spun using a modified coaxial electrospinning technique. Using different sizes for a dual 

spinneret, fibers of different diameters were spun. Fibers spun using a 22G/16G spinneret 

set-up and a 22G/17G spinneret set-up created fibers of 6.1 and 3.3µm, respectively 

(inner/outer).  

5.3 Materials and Methods 

5.3.1 Coaxial Fiber Formation 

 Electrospinning fibers has been demonstrated previously (Chapter 4). The 

methodology is extensively outlined in Chapter 4. All of the mechanical and chemical 

methods and results, as well as the results of all fiber characterization, are also outlined in 

Chapter 4. 

5.3.2 Dorsal Root Ganglia (DRG) Isolation and Culture 

 Cell cultures were performed in accordance with the Michigan Technological 

University Institutional Animal Care and Use Committee (IACUC). Stages and 

coverslips prepared with fiber samples were sterilized using an ethylene oxide 

sterilization chamber. Samples were placed in a sterilization bag with a vial of ethylene 

oxide. The bag was purged of air, the vial broken, and the samples placed in the chamber 

for 12 hours. All DRG isolation and sterilization procedures are outlined in detail in 

Chapter 3. In short, chick DRG cells were isolated from embryos that were incubated for 

9 days. The cells were seeded on various fiber scaffolds cultured for 5 and 7 days. 
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5.3.3 Immunochemistry Staining 

 The staining procedures are detailed in Chapter 3. Briefly, after culture times were 

complete, a blocking buffer of 1% BSA in PBS was used to stop protein binding during 

staining. Primary TUG1 antibody was added to the cells and the cells were placed in the 

refrigerator overnight. The cells were washed and stained with secondary goat anti-mouse 

IgG antibody. The antibody was left to incubate on the cells at room temperature for 40 

minutes. The cells were rinsed, and a DAPI stain was added to stain for glial cells. The 

DAPI stain was allowed to sit for 10 minutes. The cells were rinsed and attached to 

coverslips for imaging. 

5.3.4 Electrical Stimulation 

 Electrical stimulation testing was done on some of the cell cultures to determine if 

the electrical cues in addition to the topographical cues would further aid in axonal 

outgrowth. The cover of a 6-well plate was modified with carbon electrodes. Slits were 

cut in the top of the cover where the cover fits over the wells in the culture plate. The 

carbon electrodes were slid in the slits and fit snugly. Six electrodes, for a total of three 

wells that could be stimulated, were fit into the cover. The electrodes were connected to a 

Keithly Instruments 225 current course microcurrent device (Figure 5-1). Testing was 

done to determine the appropriate level of current to supply. The first time the stimulation 

chamber was used the power supply was set to 3mA, which supplied 1mA of current per 

well, and the cells stimulated for 24 hours. However, that current setting caused an 

overload of the supplied voltage (>1V) and the medium evaporated from the cells. The 
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final setting was 12µA of current to the electrodes, which supplies 4µA per cell. After the 

cells were seeded on the samples and allowed to sit for four hours before adding medium, 

the power supply was turned on. The cells were stimulated for 18 hours. A multimeter 

connected to the power supply read 23.0mV of voltage supplied to the cells. After 18 

hours, the power supply was turned off and the cells allowed to culture until five total 

days of culture were completed. Some of the electrical stimulation testing was performed 

on cells that were cultured on fiber scaffolds that were collected using the elevated stages 

described in Chapter 3, while other testing was done on cells cultured on fiber scaffolds 

collected on flat coverslips. 
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Figure 5-1:Drawing and working prototype of stimulation cover. 

5.4 Results and Discussion 

5.4.1 In Vitro Tissue Cultures 

 Five sets of in vitro cell cultures were performed using stage E9 chick dorsal root 

ganglia (DRG) cells. These cultures were performed to study the interactions of neural 

cells with the coaxial fibers, compare axonal outgrowth on the coaxial fibers with pure 

PLLA fibers, and determine biocompatibility of the coaxial fibers. All studies were 

performed using pure PLLA fibers as a control. Coaxial fibers with only oleic acid in the 

core were used as a control for core-sheath fibers to determine the effect of the 
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PEDOT:PSS  and PEDOT:DBSA in the core on toxicity and axonal outgrowth. Some of 

the DRG cell cultures were performed in the presence of electrical stimulation to 

determine if additional axonal outgrowth would be observed using the designed electrical 

stimulation cover (Figure 5-1).  

 Results of the studies can be seen in Figures 5-2, 5-3 and 5-4. Figure 5-2 shows 

the results of the first study performed on coaxial fibers. Figure 5-2A is a 5-day cell 

culture on pure PLLA. Figure 5-2B is a 7-day cell culture on coaxial fibers with PEDOT 

nanoparticles in the core. Figure 5-2C is a 7-day cell culture on coaxial fibers with 

PEDOT:PSS in the core. Figure 5-2D is the DAPI staining showing the proliferation of 

glial cells of Figure 5-2C. Figure 5-2E is a 5-day cell culture on coaxial fibers with 

PEDOT:PSS in the core. All the coaxial fibers in Figure 5-2 were spun with the 22G-16G 

needle combination, and were performed on scaffolds collected on flat coverslips. The 

green stain shows tubulin staining indicating axonal outgrowth. The blue staining is 

showing the DAPI stain for cell nuclei. Since axons do not have nuclei, in the case of 

Figures 5-2, 5-3, and 5-4, the blue DAPI stain is showing the proliferation of glial cells. 

This indicates that the axons are supported by the glial cells, showing successful axonal 

extension. 

 Figure 5-3A shows a 7-day culture on fibers with a PEDOT:PSS core and a large 

diameter fiber. Figure 5-3B shows a 5-day culture on fibers with a PEDOT:PSS core and 

a small diameter fiber (average=3.3µm). Figure 5-3C shows a 5-day culture on fibers 

with a PEDOT:PSS core and a large diameter (average = 6.1µm). Figure 5-3D shows a 5-

day culture on coaxial fibers with only an oleic acid core. All of the scaffolds in Figure 5-
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3 were spun on fiber scaffolds collected on a flat coverslip. While some of these cultures 

indicated glial cell proliferation by showing blue DAPI staining (Figures 5-3B and 5-3C), 

none of these cultures showed green tubulin staining that would indicate axonal 

extension. 

 Figure 5-4 shows the results of the electrical stimulation studies. Figure 5-4A 

shows a cell that received 24 hours of stimulation and was cultured for 24 hours on an 

elevated stage with a PEDOT:PSS core. Figure 5-4B shows the blue DAPI stain of 5-4A, 

indicated glial cell proliferation. Figures 5-4A and 5-4B show one of the cells cultured 

during the initial cell culture in which the voltage was set too high and evaporated the 

medium, so the cell was only cultured for 24 hours. Figure 5-4C shows a cell that 

received 18 hours of stimulation and was cultured for 5 days on pure PLLA fibers on a 

coverslip. Figure 5-4D shows a cell that received 18 hours of stimulation and was 

cultured for 5 days on coaxial fibers with a PEDOT:PSS core spun on a coverslip.  
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Figure 5-2: Results of first round of chick DRG cell cultures on coaxial fibers. (A) 5-

day DRG on pure PLLA (B) 7-day DRG on coaxial fibers with PEDOT nanoparticles 

(C) 7-day DRG on coaxial fibers with PEDOT:PSS (D) Glial stain of 5-2C (E) 5-day 

DRG on coaxial fibers with PEDOT:PSS 
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Figure 5-3: Results from subsequent cell studies. Axonal outgrowth was not enhanced. 

(A) 7-day culture on fibers with PEDOT:PSS core and large diameter (B) 5-day culture 

on fibers with a PEDOT:PSS core and small diameter (C) 5-day culture on fibers with 

a PEDOT:PSS core and large diameter (D) 5-day culture on fibers with oleic acid core 
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Figure 5-4: Results from electrical stimulation studies. (A) 24-hour stimulation and 

culture on stage, coaxial fibers with PEDOT:PSS core (B) Glial stain of A (C) 18-hour 

stimulation and 5-day culture on PLLA, on coverslip (D) 18-hour stimulation and 5-

day culture 

 Multiple DRG cultures were performed on the coaxial fibers using both the large 

diameter and the small diameter fibers, and compared to pure PLLA fibers. Initial cell 

studies compared the fibers containing the synthesized PEDOT:PSS in the core with the 

fibers that contained PEDOT:DBSA nanoparticles in the core. The DBSA counter ion in 

the PEDOT nanoparticles can be toxic to cells and did not aid in axonal outgrowth. The 

DRG cells cultured on fibers containing DBSA appeared to die (Figure 5-2B). The initial 

study with the PEDOT:PSS coaxial fibers appeared to aid in axonal outgrowth, but after 
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performing multiple studies after, the results were never able to be replicated. Possible 

explanations include: (1) the fibers in the initial study were not perfectly coaxial, (2) fiber 

diameter was too large (22G/16G needle system, average diameter = 6.1µm), and (3) 

residual solvent on the fibers was inhibiting axonal outgrowth. A 22G-17G inner-outer 

system was used to smaller diameter fibers to test if the fiber diameter was inhibiting 

axonal outgrowth. A drying step was added to the electrospinning procedure to remove 

residual chloroform that may have been present on the fibers. After spinning, the samples 

were dried in a vacuum oven at 50°C for 30 minutes. However, these steps did not appear 

to assist the scaffolds in facilitating axonal outgrowth (Figure 5-3).  

 The initial positive cell results and studies by other investigators indicate that 

PEDOT:PSS does not have a toxic effect on cells95.  It is possible the smaller diameter 

fibers are still too large to aid in axonal outgrowth (3.3µm), or the oleic acid core is 

causing a hindrance to the axonal outgrowth. It is also possible that the cross fibers 

causing the large deviation from alignment that was observed (Table 4-2) is hindering the 

axonal outgrowth. Wang et al. demonstrated that when axons encounter crossed fibers in 

the scaffold, outgrowth is stopped34.  

 More cell studies need to be performed, perhaps with a different culture 

methodology, different conductive polymer, or different core solvent. The lack of ability 

to replicate the initial positive results may indicate an issue with the culture methodology, 

as pure PLLA cultures did not show positive axonal extension as they had previously. 

Using a solvent other than oleic acid with PEDOT:PSS may create a more uniform 

dispersion of the PEDOT:PSS particles. If the PEDOT:PSS particles are more uniformly 
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dispersed and are smaller, spinning needles with smaller diameters can be used to create 

smaller diameter fibers. Coaxial fibers with a smaller diameter can also be spun by 

perhaps spinning at a slightly higher voltage, or lower flow rates. More aligned scaffolds 

can also be spun by increasing the rotation rate of the spinning wheel. Adding electrical 

stimulation did not assist in outgrowth. One sample appeared to show some initial 

outgrowth but once again, this result was never replicated (Figure 5-4A). There seems to 

be something inherent in either the fibers or the cell culture procedure that is limiting the 

axonal outgrowth on the scaffolds.  

 

5.5 Conclusions and Recommendations 

 Chick DRG cell cultures were performed on aligned, coaxial, core-sheath fiber 

structures with a conductive poly(3,4-ethylenedioxythiophene) (PEDOT) core and an 

insulating PLLA sheath. This structure created a type of “artificial axon” that could be 

used to supply electrical stimulation along the fibers during in vitro cell culture to provide 

multiple types of stimuli to promote axonal extension. Scaffolds were spun with either 

PEDOT:DBSA nanoparticles or synthesized PEDOT:PSS suspension in oleic acid as the 

core. Fibers with an average diameter of 6.1µm spun were with a 22G/16G (inner/outer) 

spinning needle combination and fibers with an average diameter of 3.3µm were spun 

with a 22G/17G spinning needle combination. Fibers of different diameters were used to 

determine the effect of fiber diameter on the ability of the scaffolds to promote axonal 

extension. Cells were also seeded on fiber scaffolds of pure PLLA and coaxial fibers with 
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a plain oleic acid core to compare to cells that were seeded on the conductive, coaxial 

fibers.  

 Initial cell studies performed on the coaxial fibers with PEDOT:PSS cores 

indicated the coaxial fibers promoted axonal extension similar to that seen on pure PLLA 

fiber scaffolds. The cells seeded on fibers with PEDOT:DBSA nanoparticles in the core 

of the fibers appeared to die, as DBSA can be toxic to cells. PEDOT:DBSA particles 

were not used in the core of the coaxial fibers in the subsequent studies. The results of the 

initial study on PEDOT:PSS fibers were never replicated, despite performing the cultures 

multiple times. While it appeared the DAPI stain showed glial cell spreading that was at 

times extensive, tubulin staining did not show axonal outgrowth.  

 Fiber scaffolds with a PEDOT:PSS core were spun on both elevated stages and 

flat coverslips and used in electrical stimulation studies to determine if the additional 

stimulation would assist in axonal extension. Pure PLLA fibers were spun on flat 

coverslips and were also used in the electrical stimulation studies as controls. Cells were 

exposed to 23.9mV of stimulation for 18 hours. The stimulation was then removed and 

the cells kept in culture for a total of 5 days. 

 The electrical stimulation experiments did not suggest that the additional 

stimulation was beneficial to promoting axonal extension. The initial experiment showed 

some initial extension. However, the stimulation that was supplied during the first study 

was much too high, greater than 1V. This caused the culture medium to evaporate, and 

the cells were removed from culture after 24 hours. Further studies were performed at a 
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much lower voltage, 23.9mV, for 18 hours of stimulation and then 5 total days of culture 

did not show tubulin staining indicating axonal outgrowth. These studies also did not 

show DAPI staining that indicated glial cell proliferation. 

Recommendations 

 Further experiments need to be performed to replicate and improve upon the early 

results from this study. Greater success might be achieved by: 

• Spinning fiber scaffolds with a higher degree of alignment. This can be done 

increasing the speed of rotation of the collection wheel, or looking at other methods 

to create aligned fiber scaffolds (i.e. parallel plates). 

• Using a different core solvent than oleic acid for the PEDOT:PSS core suspension 

may prove beneficial. The PEDOT:PSS is not very easily dispersed in oleic acid 

and forms large clumps that may be affecting the size of the fibers. A solvent that 

the PEDOT:PSS is soluble in, or creates a more uniform suspension with smaller 

PEDOT:PSS particles, will create more uniform distribution in the core of the 

polymers and may help reduce the size.  

• If smaller particles are present in the core, smaller diameter spinning needles can 

be used to create smaller diameter fibers. In the present study, the smallest diameter 

fibers that were spun had an average diameter of 3.3µm. Previous studies indicated 

that the best in vitro culture results were performed on fibers that were around 2µm 

in diameter35. Creating microfiber scaffolds with a smaller diameter may better 

promote axonal extension.  
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• Different methodologies for suppling electrical stimulation, such as different 

voltages, should be explored. Perhaps using electrical pulses rather than supplying 

a steady current for a given period would produce better results. A delayed 

stimulation after allowing the cells to culture for a day or longer may also improve 

the results. 

 Electrospun polymer fiber scaffolds have been shown to promote axonal 

extension and promote neural tissue regeneration. We hypothesize that by combining the 

topographical cues provided by the aligned scaffolds with electrical stimulation we can 

create a multifunctional fiber that can improve results previously seen and improve motor 

function in spinal cord injuries (SCI). Studies to better understand the interactions of cells 

with the fiber scaffolds and how cells respond to electrical stimulation need to be 

performed to improve the possibilities of clinical success of SCI repair.  
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6 Overall Conclusions and Recommendations for Future 

Work 

6.1 Conclusions 

 The work in this dissertation was performed to: (1) examine the literature to study 

the research of the use of electrospun fiber scaffolds to enhance axonal outgrowth, (2) 

examine the interactions of nerve cells with electrospun fiber scaffolds and answer 

previous criticisms about former research by our group, and (3) determine the parameters 

for electrospinning coaxial fiber scaffolds and examine the solution and fiber properties 

of coaxial fibers. The interactions of neural cells with coaxial fibers was also examined. 

 Chapter 2 lays out the review of the literature that was done to compile the work 

done by others in the field of electrospinning tissue scaffolds, and to examine gaps in the 

literature. It was determined that while much work has been done to perfect the 

parameters of electrospinning, study various polymers and biochemical agents and 

investigate the use of more complex fiber structures, research was missing that combined 

core-sheath fibers with a conductive polymer in the core and an insulating sheath to 

create a type of artificial axon. It was also determined that while some partially 

successful in vivo tests have been performed and reported, further investigation as to the 

interactions between neural tissue and implanted fiber scaffolds and ways to improve on 

the in vitro and in vivo success needs to be performed.  
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 The examination of the literature in Chapter 2, as well as criticisms of previous 

work that had been performed, led to the work that is explained in Chapter 3. Previously, 

Wang et al. had shown that aligned, electrospun PLLA fiber scaffolds could extensively 

assist in axonal outgrowth in an in vitro model34. Reviewers commented that a possibility 

for the in vitro success observed was due more to the restrictions caused by spinning the 

fibers on a flat, two-dimensional coverslip than the topographical cues provided by the 

fibers themselves. By spinning the fibers on a flat surface and then performing tissue 

cultures, the axons are restricted to the 2D plane and may be falling in the channels 

between the fibers, becoming trapped in the channels and growing outwards along them. 

If this is the case, the axons are not truly adhering to the fibers and following the 

alignment of the fiber surface. After testing different designs, a three-dimensional 

elevated stage was made using 3D-printing and machining techniques to both address 

these comments and provide an in vitro model to study in vivo interactions of axons with 

the fiber scaffolds. The stage had columns of 3mm height and were 10mm apart in 

distance. The elevated stage provided a 3D in vitro tissue culture environment and 

removed the constraint of the 2D surface that was used previously. Also, by creating a 3D 

tissue environment for in vitro studies, the in vivo environment is more closely replicated 

and provides insight to how the scaffolds interact with the tissues when implanted in vivo. 

 Examination of the fiber scaffolds spun on the elevated stages indicated that they 

did not differ greatly from PLLA scaffolds spun on flat coverslips in diameter or in 

alignment (Table 3-1). The results of the in vitro stage E9 chick dorsal root ganglia 

(DRG) studies in Chapter 3 indicated that removing the 2D environment did not have a 
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negative effect on the ability of the fiber scaffolds to assist in axonal outgrowth (Table 3-

2, Figure 3-7). Cell studies performed in vitro on both PLLA scaffolds spun on the 

elevated stages and on flat coverslips were compared. The elevated scaffolds still showed 

extensive axonal outgrowth. These results show that the axons attach to the PLLA fibers 

and the aligned scaffolds provide topographical guidance for axonal outgrowth. These 

results also indicate that scaffolds implanted in vivo would guide axonal outgrowth in the 

biological environment. 

 The work in Chapter 4 looked to address the mixed results of Hurtado et al20. 

Their work on an in vivo rat model looked at repairing the severed spinal column of rats 

with scaffolds made from aligned PLLA fibers. While extensive tissue regeneration in the 

spinal column was observed, the results of hind limb motor function testing did not 

indicate full functional recovery20. Although at the proximal end of the nerve injury 

regeneration was mostly complete, at the distal end, a gap remained after the axonal 

outgrowth had reached its maximum. Additional stimuli of the distal end may improve 

outgrowth across this gap. It was hypothesized that in the complex in vivo environment, 

multiple types of stimulation may be required to fully repair spinal cord injuries. The 

scaffolds implanted in the Hurtado study only supplied topographical cues. Additional 

stimuli may be necessary for repair of these injuries. Chapter 4 looked at electrospinning 

aligned coaxial, core-sheath microfiber scaffolds with a conductive core and an insulating 

sheath. Fibers of this structure provide the ability of the scaffolds to supply two sources 

of stimuli: electrical and topographical. By supplying an electrical current along the 



143 
 

conductive fibers during in vitro cell cultures, electrical cues can be provided to the axons 

during outgrowth and may further assist in regeneration and repair.  

 Extensive analysis was performed to determine the best coaxial nozzle design to 

use, what proper flow rates for the two solutions were, the proper solvent to act as 

medium for the conductive core, the correct viscosity and concentration of the PLLA 

sheath, and rotation rate of the wheel necessary to spin aligned fibers. The inner and outer 

solutions were colored with different colored fluorescent dyes for imaging and 

characterization purposes. Conductive polymer PEDOT:PSS was synthesized to use in 

the conductive core of the polymer. Oleic acid provided the most consistent coaxial 

fibers. Different spinning needle combinations were used to create coaxial fibers of 

different diameters to determine the effect of the fiber diameter on axonal outgrowth 

during in vitro tissue culture. FE-SEM imaging was used to determine if the fibers were 

coaxial in nature. The FE-SEM imaging was also performed to determine if the fibers had 

a conductive core and insulating sheath. FTIR analysis was also performed to determine 

if the fibers were coaxial through chemical analysis of the surface. Mechanical testing 

was performed to determine the Young’s modulus and hardness of the fibers to determine 

if they were suitable for tissue culture.  

 PEDOT:PSS polymer was successfully synthesized (Figure 4-5). Coaxial fibers of 

different diameters were spun (Table 4-2 and Figure 4-12). The fibers were coaxial in 

nature and had a conductive core with an insulating sheath (Figures 4-9, 4-10 and 4-11). 

Chapter 5 lays out the in vitro work that was performed to study the interactions of neural 

cells with both the coaxial fibers and electrical stimulation. An electrical stimulation 
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cover was designed to provide stimulation to cells in a 6-well culture plate during in vitro 

tissue culture (Figure 5-1). Initial in vitro chick DRG cell studies indicated that the 

coaxial fiber scaffolds aided in axonal outgrowth and the PEDOT:PSS in the core was not 

toxic to the cells during culture (Figure 5-2). However, subsequent cultures on both the 

small and large diameter fibers did not show significant axonal outgrowth (Figure 5-3). 

Electrical stimulation studies also did not appear to assist in axonal outgrowth (5-4). It is 

possible the fiber diameters were too large, or the fiber scaffolds did not have a high 

enough degree of alignment to allow the fibers to provide enough guidance to the axons 

during culture.  

 The overall conclusions of this dissertation are as follows:  

(1) Removing the 2D constraint of fibers spun on a flat coverslip by spinning elevated 

fiber scaffolds did not hinder the ability of the fiber scaffolds to aid and direct axonal 

outgrowth.  

(2) The model provided by the in vitro cultures on elevated fiber scaffolds in Chapter 2 

indicate that in the complex, three-dimensional biological environment, aligned fiber 

scaffolds still provide topographical cues to guide axonal outgrowth along fiber 

alignment. 

(3) Coaxial fibers of different diameters with a conductive core and insulating sheath 

were spun using modified electrospinning nozzles and parameters. 

(4) Initial In vitro DRG cell cultures performed on the coaxial fibers showed similar 

axonal outgrowth to the pure PLLA fibers. However, subsequent tests, both with and 
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without electrical stimulation, did not appear to aid in axonal outgrowth during both 5 

and 7-day cultures. 

6.2 Recommendations for Future Work 

 While the work in Chapter 5 did not demonstrate the ability of conductive coaxial 

core-sheath fibers with a PEDOT:PSS core and PLLA sheath to improve upon the axonal 

outgrowth seen with pure PLLA fibers. However, we still hypothesized that fiber 

scaffolds can act as a bridge across the glial scar tissue present in spinal cord injuries 

(SCIs) and that through further examination, can be used to assist in the repair and 

restoration of function after injury. More highly aligned coaxial fiber scaffolds should be 

spun so the alignment is closer to that of pure PLLA fiber scaffolds as shown in Chapter 

3 (Table 3-1). Increasing the rotation speed or diameter of the aluminum wheel may 

allow for a higher degree of alignment. It is also possible to spin coaxial fibers with an 

even smaller diameter than what was shown in Chapter 4 (Table 4-2). Increasing the 

voltage or decreasing the inner and outer flow rates without changing the 1:3 inner to 

outer flow rate ratio that was shown to provide the best coaxial fibers can allow for 

smaller diameter fibers. It would be difficult to use a smaller diameter needle for the core 

solution than the 22G needle because clogging becomes an issue. Also, a needle smaller 

than 17G would be too small for the 22G needle to fit inside. 

 While the electrical stimulation did not appear to aid in axonal outgrowth, it is 

still our hypothesis that electrical stimulation can be used not only to provide additional 

stimuli to aid in axonal outgrowth, but can be used to manipulate the outgrowth and 

reconnections of the axons in vivo. It may be necessary to look at different conductive 



146 
 

polymers. The suspension of polymer in the core can be improved to change the fibers in 

a way that improves the axonal outgrowth observed on the fiber scaffolds. While oleic 

acid in this study spun the most consistent coaxial fibers, a larger variety of solvents can 

be investigated. The coaxial nature of core-sheath fibers allows for a great deal of 

flexibility of core solvents to be used. The coaxial fiber structure can also be used with 

APIs such as nerve growth factor (NGF), either in addition to the conductive polymer or 

on their own, to improve axonal outgrowth. This dissertation did not look examine the 

effect of biochemical cues on axonal outgrowth. Placing NGF in the core of the fiber, 

either with a conductive polymer or without, or by placing NGF in the sheath with the 

PLLA and keeping the conductive polymer in the core, one can increase the number of 

stimuli that is being provided during axonal outgrowth and perhaps improve the 

outgrowth seen in the results of Chapter 5. Other biochemical agents or biopolymers, 

such as collagen or laminin, can be used to improve the biocompatibility of the fibers or 

to improve the axonal outgrowth. 

 Injuries to both the central nervous system (CNS) and peripheral nervous system 

(PNS) continue to be areas of extensive research. The lack of regenerative capabilities of 

neural tissue indicates the need for clinical interventions for repair of these injuries and 

restoration of neural function. The research in our work, like that of the literature, 

presented mixed results. Some electrospun fiber scaffolds aided in axonal outgrowth in 

vitro (Chapter 3), while other scaffolds did not appear to aid in axonal outgrowth of chick 

DRG cells in vitro (Chapter 5). Our results and those of other researchers indicate that 
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more extensive research is needed to promote the clinical use of using electrospun fiber 

scaffolds to repair neural injuries. 
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8 Appendices 

8.1 2015 MRS Conference Proceedings: Electrospinning 3D Scaffolds 

for use in Neural Tissue Engineering 

Rachel Martin1, M. E. Mullins1, F. Zhao2, Zichen Qian2 

1Department of Chemical Engineering, Michigan Technological University, Houghton, 
MI 
2Department of Biomedical Engineering, Michigan Technological University, Houghton, 
MI 

ABSTRACT 

Polymer nanofiber scaffolds for use in neural tissue engineering have been 

fabricated via electrospinning of poly-L-lactic acid (PLLA) directly onto a 3D printed 

support.  Previously, the investigators have shown success in promoting the directed 

growth of neural axons on highly aligned PLLA substrates both in vitro and in vivo. 

However, one criticism of the earlier in vitro studies is that by spinning fibers on a flat, 

two-dimensional surface, the growth of the axons is restricted to one plane.  Thus the 

axon-to-fiber attachment may not be the sole mechanism for aligning the growth of the 

axons along the fibers, and the channels between the fibers and the substrate could 

contribute to the results.  Using 3D-printing, elevated or “bridge” spinning stages were 

made with supports at varying heights, allowing the fibers to be suspended 2 to 5 mm 

above the substrate surface in different configurations.  This 3D structure promotes better 

access of in vitro cell cultures on the fibers to the growth media during incubation, 
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reduces substrate effects, allows more degrees of freedom for axonal growth, and more 

closely simulates the growth environment found in vivo.   Using these 3D stages, we have 

electrospun free-standing, highly-aligned pure PLLA fiber scaffolds. We are exploring 

spinning coaxial fibers with a PLLA sheath and a second core polymer.  These coaxial 

fiber scaffold structures offer additional opportunities for in situ delivery of growth 

agents and/or electrical stimulation for improved axonal growth results. 

INTRODUCTION 

Previous research using highly aligned PLLA fibers spun on flat, 2-D coverslips 

proved successful during in vitro studies in aligning neural outgrowth of the axons from 

chick dorsal root ganglia (DRG)[1]. It was found that the axons grew along the aligned 

fibers in a parallel fashion, which is important if directed axonal outgrowth from neurons 

is to be achieved in vivo. In addition, in vivo rat studies were performed at the Kennedy-

Krieger Institute of Johns Hopkins University[2]. A high percentage of spinal cord 

regeneration in rats who had suffered a surgically severed spine was observed. However, 

Hind Limb Motor Function (HLMF) tests produced lower scores than anticipated, 

indicating that the desired degree of neural reconnection was not achieved[2]. 

One criticism of the previous research is that the success of the in vitro studies 

may not be solely due to the alignment of the nanofibers, since the fibers were spun onto 

a flat surface, thus restricting the outgrowth of axons within a 2D plane. However, the 

nanofiber scaffolds used for the in vivo studies were constructed within a 3-dimensional 

tubular structure. In this configuration, in addition to axonal growth along the fibers, the 

axons may also grow outward from the plane of the fibers. If this phenomenon 
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contributes to a significant decrease in the alignment of the axons in vivo, then the mixed 

results of the HLMF studies might be explained. 

To address this hypothesis, we have devised a method for fabricating 3D tissue 

scaffolds.  Via 3D printing, we have constructed a PLLA substrate or “stage” onto which 

we have electrospun PLLA nanofibers. The stages have been fabricated with support 

columns at various heights, and the fibers have been directly electrospun across the 

columns; thus the fibers are suspended at a specified distance from the surface of the 

stage. Subsequently, by replicating the previous in vitro studies with chick DRG cells, 

first on 2D coverslips as before, and then by using similarly prepared 3D “bridge” stages, 

the effect of the extra degrees of freedom on axonal outgrowth may be observed.  

EXPERIMENTAL 

Electrospinning Methods 

Our studies have employed a conventional electrospinning apparatus, as shown in 

the schematic and photograph in Figure 8-1.  The principles of electrospinning from a 

polymer solution have been previously discussed in detail[3].  Our system also employs a 

rotating ground electrode or “wheel” for alignment of the fibers during collection from 

the spinning process.  For the present work, either 6.5wt% or 8wt% PLLA in chloroform 

was used as the spinning solution. Samples were prepare by dissolving the desired weight 

of solid PLLA into a sample vial with 10mL of chloroform and a stir bar. The vial was 

capped, sealed with Parafilm®, and heated and mixed until the solution was homogenous 

(one to two hours). The solution was then drawn into a syringe fitted with a 16 gauge 
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needle, and placed in a syringe pump. The pump flow rate was set based upon the PLLA 

concentration of the solution, but ranged between 0.8 and 1.7mL/hr. Depending upon 

multiple variables, including the concentration of the solution, the humidity of the room 

and inside of the box, and the temperature of the room and inside the box, the flow rate 

was increased or lowered to achieve stable spinning. A higher flow rate was required for 

a more concentrated, viscous solution; whereas, a lower flow rate was required for less 

concentrated solutions. Tygon® tubing (I.D. 0.8mm) was connected to the syringe needle 

and the other end into the injection port. A 22 gauge “spinning” needle was attached to 

the injection port end of the tubing, and threaded through a specially fitted nozzle. The 

spinning needle was placed at a standard distance of 10cm above a spinning aluminum 

wheel to allow sufficient distance to produce dry fibers.  The collection wheel is attached 

to a variable speed motor set to 1250rpm. The entire apparatus is placed inside a 

Plexiglas® box, allowing control of the spinning environment. Dry air can be pumped 

into the box to control the humidity, and other disturbances in the lab are less likely to 

affect the spinning process.  A Glassman® high voltage power supply is connected to the 

spinning needle and set to between 15 and 25kV. Halogen lamps were used to illuminate 

the box, and a video camera focused on the needle to allow a clear view of the spinning, 

and to record the results.  We can then verify that a Taylor cone (Figure 8-2) is formed at 

the needle tip to ensure proper spinning is occurring and high quality fibers are spun. 

          When the apparatus is active, solution is pulled from the needle by the voltage 

difference between the charged needle and the grounded aluminum wheel as a thin fiber 1 

to 4 microns thick. The fibers collect on the stages and flat coverslips that are attached to 



170 
 

the rotating wheel. Spinning times varied, but usually lasted between 10 and 30 minutes 

in order to collect a dense enough fiber layer. Once spinning was complete, the sample 

stages were removed and optically imaged, then sterilized and set aside for the tissue 

culture studies.  

 

 

Figure 8-1: Left: A schematic of the electrospinning apparatus. (A) syringe pump, (B) 

syringe, (C) injector port, (D) needle with fiber strand production, (E) motor with speed 

control, (F) 6” aluminum wheel, (G) vibration table, (H) temperature/relative humidity 

meter, (I) humidity control with air flow, (J) light with high powered halogen bulbs, 

(K) camera, (L) TV monitor, (M) recorder. Right: Photo of spinning apparatus. 
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Electrospinning Stages 

 Spinning stages were made on a 3D printer out of PLLA for compatibility with 

the fibers and the subsequent culture media.  The initial design is simple, with 

perpendicular columns extending from the base of the stage. The column heights range 

from 2 to 4 mm, to provide sufficient clearance between the fibers and the base, but not 

so high as to disturb the electrical field and air currents during the spinning process. 

Figure 8-3 shows photographs of a typical stage. The stages were adhered to the outer 

circumference of the aluminum wheel on the electrospinning apparatus using double-

sided tape. The fibers are then directly spun across the columns and remain suspended 

above the surface of the stage.  By simply changing the shape of the stage, we can 

thereby create a mandrel on which a variety of 3D shapes can then be spun directly, 

without additional manipulation or contamination. 

 

Figure 8-2:  Video image of Taylor cone during spinning 
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Figure 8-3: 3D printed polylactic acid stages. The dimensions of the base are 

1cmx1cm, height of the columns ranges from 3mm to 4mm in height. The stages are 

placed on the wheel and the fibers are spun across the columns so they are suspended 

above the base of the stage. 

 

DISCUSSION 

Images of the fiber scaffold samples, both on the 3D stages and on flat coverslips, 

were obtained using an optical microscope with a digital camera attachment to determine 

if they were suitable for the tissue culture studies. Characteristics including dryness, 

diameter, alignment and density of fiber mat were determined using the microscope. 

Figure 4 shows examples of the spinning results obtained for both flat coverslips and 3D 

stages obtained during the same electrospinning run (i.e. under the same process 

conditions, spinning time and solution concentration.) Here the typical fiber diameter was 

from 2 to 5μm. 

I

 

B 
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Tissue cultures were performed using chick dorsal root ganglia (DRG) cells 

obtained from fertilized chick eggs. The eggs were incubated for 9 days and the DRG’s 

harvested. The cells were seeded onto sterilized fiber samples and cultured for 5-7 days. 

The samples were then fluorescently stained and imaged. The cell harvesting and cultures 

procedures are discussed in detail elsewhere1. Figures 8-5A and 58-B show images 

obtained from 5 day cell cultures. In Figure 8-5C, a 7 day cell culture performed on fibers 

spun on a 3D stage is shown. The images in Figures 8-5B and 8-5C show mixed results, 

with axons both following the fibers in some regions and jumping across the top to other 

areas of the sample. Figure 5 shows two images from 5 day cell cultures performed, one 

on a flat coverslip and one on a stage. As can be seen in Figure 8-5A, the axonal 

outgrowth of the nerve cell follows the axis of alignment of the PLLA fibers, which is 

very similar to what was observed previously1. On the other hand, in Figure 8-5B, the 

axonal outgrowth of the DRG seeded on the fibers is not as easily seen, but it appears as 

though the axons are still attempting to follow the fibers, but are not very closely aligned. 

A major aspect of this project was to determine if fibers could be spun onto not 

just 2D surfaces, but as free-standing fibers; and if the fibers could be aligned similarly to 

those spun on flat coverslips. As can be seen in Figure 8-4, we have successfully 

electrospun highly aligned, free standing fiber samples on the 3D stages comparable to 

the fiber samples spun on 2D surfaces. Figures 8-4A and 8-4B show fibers spun across 

the bridged structure which and appear very similar to the fibers spun on flat coverslips 

(Figures 8-4C-D) in size, density, and alignment. This is important because it allows us to 

perform tissue cultures on both supported and unsupported samples, thus providing 

information on the mechanisms for the aligned axonal growth. 
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Figure 8-4: Optical microscopic images of the electrospun PLLA fibers. Spinning time 

was 23min with a voltage of 17KV and a flow rate of 1.05mL/hr.  A and B show fibers 

spun on 3D stages with columns at 4mm column height. C and D show fibers spun on 

flat coverslips. The samples were obtained on 12/11/14. 

 

 

 



175 
 

 

Figure 8-5: Fluorescent imaging of  chick DRG cell cultures after 5 and 7 days. (A) 

shows a 5 day culture of a DRG performed on 3/19/15 seeded on fibers spun on a flat 

coverslip . The axons are growing straight outwards, along the alignment of the fibers. 

(B,C) 5 day cell culture performed on 3/19/15 and 7 day cell culture performed on 

12/18/14. Both cells were seeded on stages. (B) The axons of the nerve cell seeded on 

the fibers spun on the stage still appear to be following the fibers, but it does not 

appear to have adhered very well. (C) The image is showing dual results. The right-

hand side of the cell (I) appears to have axons following the fibers. However, the left-

hand side of the cell and the top of the cell (II) appear to have grown vertically and 

jumped to another area of the fiber network. Fiber conditions for the samples cultured 

on 3/19/15 are 8wet% solution spun for 23 minutes on 12/11/14. 

 

II 

I 

II 
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Figures 8-5B-C show results from chick DRG studies performed on 3D stages. 

Initially, there was difficulty in seeding the cells on the elevated fibers, perhaps because 

of a lack of fiber density. If the fiber density was not sufficiently high, the DRGs may not 

attach or fall off. The DRGs that were well attached to the tissue scaffold exhibited a 

range of interesting axonal growth behavior. Figure 8-5A shows how the axons follow 

the alignment of the fibers when the fibers are spun on coverslips, which was similar to 

what was observed previously[1]. Figure 8-5B shows a 7 day culture on a 3D stage with 

different results. Groups of axons from the DRG appear to still be attempting to follow 

the alignment of the fibers.  This grouping or clumping of axons during growth has been 

noted in the absence of aligned fibers or on PLLA films used as supports[1]. It appears in 

this image that the DRG did not adhere well, which indicates the extremely important 

effect of cell/axon adhesion in the cultures, and in the alignment of axonal growth with 

the fiber scaffold. Figure 8-5C shows dual results, where some of the axons appear to be 

following the alignment of the fibers, yet additional axonal growth is seen outside of the 

plane of the fiber scaffold. It appears that the axons, if not strongly attached to the fiber 

surface may not reliably grow in alignment with the fibers. Here some axons grow above 

or below the plane of the stage, into the plane, jump to a different part of the sample, or 

have limited extension. The axons on the left-hand side of the sample in 8-5C appear to 

exhibit all of these behaviors. More studies will be performed to determine the cause.  

FUTURE WORK 

In the next phase of our research, we are examining the effect of surface 

chemistry on cell adhesion.  By enhancing the axonal adhesion to the PLLA fiber with 
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the addition of surface modifiers, the alignment of axonal growth with the freestanding 

fibers may be improved.  This may in turn, improve the success of the in vivo scaffold 

implants. Better adhesion might be achieved by using laminins, proteoglycans or similar 

substances that promote stronger axonal adhesion on the fiber surface, and observing the 

effect on axon alignment with the fibers. We will also explore electrospinning coaxial 

fibers. We would like to look at spinning fibers with a conductive polymer core and an 

insulating sheath. We will explore spinning fibers with a polypyrrole core and a PLLA 

sheath. We would also like to explore spinning fibers with a PEDOT core and a PLLA 

sheath, as PEDOT is known to have more stable conducting abilities than polypyrrole. 

We would also like to explore the ability to spin the fibers with the sheath containing 

pores so the axons have access to the conducting core. Once the new fibers are spun, in 

vitro studies using chick DRG cells will be performed, as well as new in vivo rat studies.  

CONCLUSIONS 

We have shown that consistent, 3D scaffolds can be manufactured using 3D 

printing, and fibers can be spun on these scaffolds. The fibers that are spun are of 

appropriate quality for cell cultures. We have also shown that cell cultures can be 

performed on these samples. However, the culture studies performed are not conclusive 

as to the driving force behind the axonal growth. More culture studies need to be 

performed in order to further determine the surface effects on axonal outgrowth and the 

mechanism of the outgrowth. The ability to manufacture 3D scaffolds allows for the 

freedom to spin samples of varying geometries. This may provide an advantage later in 

performing in vivo studies. We would like to explore the possibility of making new 3D 
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structures for the spinning process, such as spinning conduits directly rather than rolling 

them as done previously[2]. 
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8.2 Additional Optical Microscopy and FE-SEM Images Showing 

Core-Sheath Structure 

 

Figure 8-6: Yellow overlay created from red and green fluorescence images obtained 

from a coaxial fiber sample with PEDOT:DBSA nanoparticles in the core. Spun at 

2500rpm wheel rotation speed and 16G outer needle. 
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Figure 8-7: Yellow overlay created from red and green fluorescent images from a 

coaxial fiber sample with PEDOT:PSS in the core. Spun at 2250rpm wheel rotation 

speed and 16G outer needle. 
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Figure 8-8: FE-SEM image obtained showing core-sheath structure. The core is pulled 

out of the sheath and is shown to be conductive. Apparant brightening of the sheath 

does not occur for the core fiber strand. 
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8.3 Copyright Clearance for Images used in Chapter 2
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