
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's 
Reports - Open 

Dissertations, Master's Theses and Master's 
Reports 

2015 

MOWER : A NEW DESIGN FOR NON-BLOCKING MISPREDICTION MOWER : A NEW DESIGN FOR NON-BLOCKING MISPREDICTION 

RECOVERY RECOVERY 

Zhaoxiang Jin 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Computer Sciences Commons 

Copyright 2015 Zhaoxiang Jin 

Recommended Citation Recommended Citation 
Jin, Zhaoxiang, "MOWER : A NEW DESIGN FOR NON-BLOCKING MISPREDICTION RECOVERY", Master's 
Thesis, Michigan Technological University, 2015. 
https://digitalcommons.mtu.edu/etds/918 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Computer Sciences Commons 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/151511036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.mtu.edu%2Fetds%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.mtu.edu%2Fetds%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages


MOWER : A NEW DESIGN FOR NON-BLOCKING MISPREDICTION

RECOVERY

By

Zhaoxiang Jin

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2015

© 2015 Zhaoxiang Jin





This thesis has been approved in partial fulfillment of the requirements for the Degree

of MASTER OF SCIENCE in Computer Science.

Department of Computer Science

Thesis Advisor: Dr. Soner Onder #1

Committee Member: Dr. Zhenlin Wang #1

Committee Member: Dr. Saeid Nooshabadi #2

Committee Member: Dr. Nilufer Onder #3

Committee Member: Dr. Zhuo Feng #4

Department Chair: Dr. Min Song





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Instruction Level Parallelism . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Register Renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Speculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Branch Prediction . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Reorder Buffer . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Mower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



3.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Explicit Dependency Tracking and Out-of-order Branch Resolution 23

3.3 Tracking Rename Map Validity . . . . . . . . . . . . . . . . . . . . 25

3.4 Tracking Branch Dependencies . . . . . . . . . . . . . . . . . . . . . 27

3.5 Recovery Timing and Details . . . . . . . . . . . . . . . . . . . . . 28

4 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Renaming Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Bit Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Fixing The RAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Power Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1 Contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



List of Figures

2.1 The bubbles in the pipeline . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Instruction Level Parallelism . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Register Renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 History-Based Branch Prediction . . . . . . . . . . . . . . . . . . . 14

2.5 Branch Target Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Reorder Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Misprediction Recovery . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Mower Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Mow all the invalid instructions through ROB, release all the relative

resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Explicit Dependency Tracking . . . . . . . . . . . . . . . . . . . . . 25

3.4 Interleaved reclamation and dispatching on ROB . . . . . . . . . . . 29

3.5 Fix the RAT by the reclamation . . . . . . . . . . . . . . . . . . . . 30

4.1 Branch Dependency Matrix . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Recovering RAT from MDM . . . . . . . . . . . . . . . . . . . . . . 37

vii



5.1 IPC vs In-flight Branches . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 The Damaged F-RAT through the recovery process . . . . . . . . . 42

5.3 The average number of invalid instructions left in the pipeline when

misprediction is detected . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Spec2006 Integer Speedup . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Spec2006 Float Speedup . . . . . . . . . . . . . . . . . . . . . . . . 44

5.6 Power Evaluation Spec2006 Integer . . . . . . . . . . . . . . . . . . 46

5.7 Power Evaluation Spec2006 Float . . . . . . . . . . . . . . . . . . . 46

5.8 EDP normalized to baseline configuration . . . . . . . . . . . . . . 49

viii



List of Tables

5.1 The configuration of the simulation . . . . . . . . . . . . . . . . . . 40

5.2 Misprediction Rates for Spec2006INT . . . . . . . . . . . . . . . . . 45

5.3 Power distribution in Spec2006 . . . . . . . . . . . . . . . . . . . . 47

ix





Acknowledgments

I would like to thank all those who have helped me learn, understand and appreciate

this subject as well as those who helped me with LATEX.

I started to work on my thesis one year ago and it is my first time to do research

work at an academic level. Find out the problem, abstract it and come with the

solution and test it. During this time, Dr Soner helped me, guided me on the right

way to accomplish this mission. Your top-down strategy in writting is very efficient

and make the writting not boring any more. I appreciate the help Gorkem gave in

the survey of the related work. With your thorough help I could get a clear sense of

what has been done and what is the contribution of my work. Murat, thank you for

your hard work on the cache implementation. We all know that’s not easy and you

figure that out.

At this moment, how can I forget my lovely parents and my best friends. Without

your support and encouragement, it is impossible for me to finish my MSc degree and

make contributions to the field of Computer Architecture. Thank you to my parents,

Jianmin Jin and Huizhu Xu, I miss your delicious traditional Chinese food so much.

Thanks to all my labmates for your kindness and friendship.

xi





Abstract

Mower is a micro-architecture technique which targets branch misprediction penalties

in superscalar processors. It speeds-up the misprediction recovery process by dynam-

ically evicting stale instructions and fixing the RAT (Register Alias Table) using

explicit branch dependency tracking. Tracking branch dependencies is accomplished

by using simple bit matrices. This low-overhead technique allows overlapping of the

recovery process with instruction fetching, renaming and scheduling from the correct

path. Our evaluation of the mechanism indicates that it yields performance very

close to ideal recovery and provides up to 5% speed-up and 2% reduction in power

consumption compared to a traditional recovery mechanism using a reorder buffer

and a walker. The simplicity of the mechanism should permit easy implementation

of Mower in an actual processor.

xiii





Chapter 1

Introduction

Branch prediction is a vital component in any contemporary processor. Today, most

superscalar processors are organized in the form of decoupled architectures where

an in-program-order front-end chases the instruction stream by relying on accurate

branch prediction and an out-of-program-order back-end schedules and executes these

instructions based on operand availability. The performance of such an architecture is

dependent on not only the accuracy of branch prediction, but also the cost of branch

misprediction. A branch misprediction leaves the two halves of the processor in an

incorrect state which needs to be corrected before instruction fetch and execution can

resume.

When a particular branch is detected to be mispredicted, the processor needs to do

1



the following: (1) Eliminate all the instructions which follow the mispredicted branch;

(2) Restore the processor structures, such as rename map tables which are frequently

referred to as Register Alias Table (RAT), to their correct values; (3) Resume fetching

from the correct branch target.

Each of these tasks contribute to the branch misprediction penalty and each must

be targeted individually to reduce its impact on processor performance. In other

words, to be effective, any technique which targets branch misprediction penalty must

reduce both the duration of each task and permit overlapping of individual tasks to

the maximum extent possible. Eliminating instructions following the mispredicted

branch requires knowledge of where in the processor these instructions are and a

mechanism to nullify them. Restoring the processor structures requires knowledge

of what constitutes the correct processor state [1]. Resuming the fetching from the

correct target requires knowledge of the correct target and the resources necessary

to store the new instructions. Provision of resources is particularly important if

fetching is to resume before the invalidation is complete as newly fetched instructions

cannot be mixed with those already in the pipeline. As a result, either a separate

set of locations must be provided to store the correct instructions or a mechanism

should exist to distinguish the two. As we will discuss shortly, Mower accomplishes

a reduction in the duration of all three tasks and maximises their overlap, in essence

reducing the overall branch misprediction penalty.

2



In order to understand the issues involved, revisiting a commonly used basic recovery

mechanism [2] will be helpful. This simple recovery scheme incorporates a reorder

buffer (ROB) into which instructions are fed in program-order as they are fetched. A

front-end register alias table (F-RAT) is used to speculatively rename the incoming

instruction stream and a retirement register alias table (R-RAT) is used to record the

in-order state as the instructions complete and retire. The F-RAT is updated when in-

structions are being renamed and the R-RAT is updated when an instruction commits,

i.e., it is determined to be part of the in-order state. Once a branch misprediction

is detected, instruction fetching is halted and the execution of existing instructions

continues until the mispredicted branch arrives at the head of the reorder buffer. At

this point, it is known that all the instructions still in the pipeline are invalid and the

R-RAT has the correct in-order state. Waiting for the completion of prior instructions

leaves only invalid instructions in the pipeline and hence promotes the development

of simple and fast mechanisms to squash invalid instructions by making the identifi-

cation of invalid instructions trivial and restoring the correct state easy. When the

branch reaches the head of ROB the retirement map table R-RAT contains the correct

state which can simply be copied over F-RAT. On the other hand, this simple mech-

anism does not permit overlapping of subtasks involved in the recovery process and

accomodates a highly variable misprediction penalty that is strongly correlated with

the position of the mispredicted branch in the ROB. When the branch is close to the

ROB head, it takes less time for the rear-end to retire the instructions preceding the

3



mispredicted branch. However, if the mispredicted branch is far from the ROB head,

or, if the rear-end is waiting for a long latency operation ahead of the branch (such as

a missed load), the time to recover from the misprediction may increase significantly.

Branch misprediction penalty has been the target of several techniques which can

be broadly classified into two groups: those which target the pipeline fill delay after

a misprediction and those concerned mainly with state maintenance. Techniques

which target the pipeline fill delay are orthogonal to Mower and we do not discuss

them further except in related work. Existing state maintenance techniques can be

grouped into checkpointing and (ROB) walking. Checkpointing is a technique where

a copy of the RAT is made for each potential misprediction. When a misprediction

is detected, the correct copy of the RAT is restored immediately from one of the

available checkpoints. The technique also permits fast invalidation of instructions

within the processor as the required information is readily available and part of the

checkpoint. Since checkpointing requires a copy of the RAT per checkpoint, each

checkpoint may require a significant amount of space. As a result, taking a checkpoint

at every branch may be prohibitively expensive. Several common modifications to

the base checkpointing technique are available to address this. An example of these

modifications is to take checkpoints only on low confidence branches and using the

basic recovery technique outlined above to recover from branches that do not have

checkpoints [3].

4



Walking is a technique where the RAT is corrected by walking over the ROB. Walking

over the ROB from the ROB head up to the mispredicted branch while pseudo-retiring

each instruction in between will construct the correct R-RAT, which can then be used

to restore the front-end state as well. Since the processor does not actually have to

wait for instructions to complete to construct the alias table, this technique fetches

instructions from the correct path faster than waiting. Alternatively, we can forego the

use of a retirement alias table and store the previous mapping values in ROB entries.

Then, we can walk over the ROB starting from the tail up to the mispredicted branch

and undo each change that was made in error [2].

Mower attempts to combine several concepts from the basic recovery techniques such

as checkpointing and walking, and provides complete overlapping of the recovery

tasks. It accomplishes rapid elimination of invalid instructions by explicitly keeping

track of the dependencies by means of simple bit matrices. It also permits immediate

fetching of instructions from the correct path upon a misprediction detection by (1)

selectively blocking entries in the front-end map table RAT while the recovery process

is continuing; (2) by relying on a novel walking mechanism which rapidly restores the

state and mows the invalid instructions to provide the space where new instructions

can be stored.

The rest of the thesis is organized as follows: In Chapter 2, the necessary back-

ground is provided. Chapter 3 gives an overview of the technique we propose, Mower.

5



Chapter 4 provides the detailed design. In Chapter 5 we present our experimental

evaluation and analysis. In Chapter 6, we review the recent techniques and make

comparisons with Mower. Finally, we summarize our critical findings in Chapter 7.

6



Chapter 2

Background

This chapter is written to help the readers to fully understand the concepts used and

contributions made by this thesis. It contains the background information to under-

stand the functioning of a contemporary superscalar processor. We will start with

the explanation of the fundamental speedup factor in modern superscalar processor

design, instruction level parallelism. Then we will discuss more about the rename

strategy and how it solves the false data dependence problem. Following, the differ-

ence between speculative state and in-order state is illustrated. Finally, the recovery

process will be discussed when speculation is wrong and the in-order state needs to

be restored.

7



2.1 Instruction Level Parallelism

When a simple in-order pipelined processor is running, instructions are flowing

through the pipeline sequentially. In this configuration younger instructions can not

pass the old ones. If an old instruction is stalled, all the younger instructions have to

stall in their previous position in the pipeline and no new instructions are fetched in

that cycle. an example is shown in figure 2.1 which depicts a classic 5 stages MIPS

processor, IF(Instruction Fetch), ID(Decode), EX(Execute), MEM(Memory Access)

and WB(Writeback). The result of the instruction is not available until it is written

back into the register file in WB stage. In this case, I2 is supposed to read the result

of I1 so it has to wait for I1 get to the end of the pipeline. During this time it can

not do anything except stay in the ID stage in which case a bubble is inserted into

the pipeline. Because it’s an in-order processor in which all the following instruc-

tions have to wait, significant performance degradation may occur if back to back

dependencies are observed frequently in the program.

In fact it is unnecessary to block the pipeline in terms of the correct execution. We

can continue the instruction flow as long as it reads the correct operands, disregarding

the program order. When a block of code is fetched as shown in figure 2.2, not all

the instructions are dependent to each other back to back. We can always find some

8



IF ID EX WBMEMI1

I2

I3

Time

IF ID EX MEM WB

IF ID EX MEM WB

Figure 2.1: The bubbles in the pipeline

instructions which are able to execute during this period. In figure 2.2 I1 and I3 are

executed in the 1st cycle since all the operands are available. I2 and I4 are scheduled

to issue in the following cycle as both of them require the result from I1. When the

constraint of sequential program order is removed, more instructions can run ahead

depending on the data dependences. Substantial improvement has been achieved by

processing more instructions in the same cycle which is measured as IPC (Instructions

Per Cycle).

I1 : R2 <= R1 + 3
I2 : R3 <= R2 − R1
I3 : R4 <= R1 + R4

Cycle 1

I4 : R5 <= R2 + 100 Cycle 2

Figure 2.2: Instruction Level Parallelism

Tomasulo’s algorithm [4] is the first algorithm devised to explore ILP through re-

naming. Instead of executing instructions in program order, Tomasulo’s algorithm

9



will select those which have their operands ready and execute them first, disregard-

ing their original order. Those instructions which do not have their operands ready

wait and rescheduled into the execution units when their operands become available.

Tomasulo’s algorithm uses a CDB(Common Data Bus) to broadcast the ALU results

to all the pending instructions. If the tag matches with the pending ones, the data

will be stored locally. When both operands are collected, the pending instruction

is signalled to execute. By doing this instructions are simultaneously executed by

observing data dependencies, simultaneous execution in this manner is called instruc-

tion level parallelism, ILP. ILP processors aim to aggressively push as many ready

instructions as possible to execute following the data dependencies, this is a common

design employed in today’s superscalar processors.

2.2 Register Renaming

In order to maximize the ILP, the processor has to somehow track down the true data

dependencies as well as break down the false dependencies. A true dependence exists

between two instructions if an instruction needs the output of a prior instruction.

There are two different types of false dependencies, namely anti-dependence and

output dependence. Anti-dependence is the reverse condition of true dependence. The

register is read first then updated by the following instruction. An output dependence

occurs when two or more instructions need to write to the same location. True or

10



false, all data dependencies must be observed for correct execution. However, false

data dependencies can be eliminated by ”renaming” the operand locations.

We can classify the register renaming techniques into two categories, implicit and

explict. The implicit renaming temporarily renames the registers using tags. The

register is renamed to the output of its corresponding execution unit(EU), so all

the following instructions can collect their operands when the EUs broadcast them.

Meanwhile the results are captured by the register file if they are the most recent

definitions of that value. As the result all the future instructions can read their

operands from the register file directly.

The explicit renaming algorithm is renaming the logical registers to physical registers

permenantly during its life time. When the result is calculated it will write back to

its assigned physical register, not the logical register. The operands are also read

from the physical register file during the execution phase. In this manner, all the

communications are unified via the physical register file.

I1 : R1(P0) <= 1

I3 : R1(P2) <= 2
I2 : R2(P1) <= R1(P0) + 1

Figure 2.3: Register Renaming

For example, in figure 2.3 I1 and I2 are truely dependent on each other, I2 and I3 are

anti-dependence, I1 and I3 have output dependence. By renaming all these registers

11



to the physical registers P0,P1 and P2, we can execute I3 in any order, Since now it

is not depend on I1 or I2.

Given the fact that all the instructions have distinct new names, only true data

dependencies are left in the program which empower the superscalar processor to

maximize the ILP.

2.3 Speculation

The processor may encounter exceptions like branch mispredictions, interrupts, traps,

etc. To exploit the maximum amount of ILP, the superscalar processor continues

to process incoming instructions until an exception is confirmed. During this time

these instructions are in the speculative state. When an instruction is confirmed

to be correct, we change it to so-called in-order state and permanently update the

processor state. On the other hand, if it is confirmed as an exception, a recovery

process is initiated to restore the processor back to its correct state. As a side effect

the processor needs to discard some of the work finished previously belonging to the

wrong state. Among all the exceptions, branch misprediction is the most common one.

We discuss branch prediction and misprediction in detail in the following sections.

12



2.3.1 Branch Prediction

In addition to data dependencies described in section 2.2, we also have control depen-

dencies in the program. When a branch is seen in the pipeline, the processor needs to

know where to fetch the next instruction immediately or stall until the branch result is

calculated. These dependencies are called control dependencies because all the future

instructions are depend on the result of this branch. Modern processors incorporate

branch predictors to predict the result of the branch so that the processors can keep

fetching instruction.

Branch predictors rely on the past history to predict whether or not the branch will

be taken. As a static branch is executed repeatedly at rum time, it is possible to

make an accurate prediction by observing the dynamic behavior of each branch. The

most common technique is a history-based branch predictor. A history-based branch

predictor predicts a given branch by asking for the history profile of this branch.

Figure 2.4 demonstrates how it works. It’s a FSM(Finite State Machine) with 4

different states. In each state the most significant bit represents the prediction, 1

means taken and 0 means not taken. Therefore state {11,10} will predict branch

taken and state {00,01} will predict branch not taken. When the predictor is in state

{11}, it will predict taken until two consecutive not taken are observed and vice versa

for state {00}. The added hypothesis helps the predictor by changing its decision

13



slowly and ignoring rapid fluctuations.

11

10

01

00

T

N T

N

N

T

T

N

Figure 2.4: History-Based Branch Prediction

Knowing the direction of a given branch instruction is not sufficient. When it is

predicted taken, branch predictor should also provide the correct target address used

in the next cycle. Branch Target Buffer(BTB) is dedicated to supply the next PC

address. The input of the BTB is the current PC address as shown in figure 2.5. For

each entry in the BTB, it has BIA(Branch Instruction Address), BTA(Branch Target

Address) and branch history fields. BIA and BTA are correlated, BIA is the current

branch pc and BTA is the associative target PC if the branch is taken. Finding a

given BIA in the BTB is called a BTB hit in this scenario. The corresponding line

will be read to make a prediction. The branch history field contains 2 bits of the

current FSM status which is used to prdict the direction. BTA is fetched as the

14



target address if it predicts the branch is taken.

Branch instruction
address field address field

Branch target Branch
history

BIA BTA

FSM

Predict taken
or not taken

Speculative target address

PC

Figure 2.5: Branch Target Buffer

2.3.2 Reorder Buffer

As discussed before, when a branch is predicted, but not confirmed, all the follow-

ing instructions fetched into the pipeline are in the speculative state. They are not

permitted to change the processor state until the branch is confirmed to be correct.

A Reorder Buffer (ROB) is used to keep speculative instructions until they are com-

mitted.

The block diagram of the ROB is illustrated in figure 2.6. The instructions are dis-

patched into the ROB following the program order, I1 to I10. Then the instructions

are executed based on their data dependencies irrespective of the program order. All

15



I1

I2

I3

I4
I5

I6

I7
I8

I9

I10

Processor
State

Reorder Buffer

di
sp

at
ch

re
tir

e

Figure 2.6: Reorder Buffer

the executed instructions are illustrated in shadow in the figure. On the other hand,

the processor state is updated in the original program order. Only the completed

instructions can update the processor state. Every time the instruction at the head

of ROB updates the processor state, we call this instruction is retired from ROB. So

I1 will be the first one to retire, then I2,I3 and I4. I5 is uncompleted so it will not

retire at this moment and all the following instructions can not retire either.

To an outside observer, the mechanism gives the illusion that instructions are being

executed in program order, similar to an in-order processor. The only difference is

that superscalar processor is running ahead by speculatively executing instructions

and keeping the speculative states in the ROB. When the speculation is correct, a

significant amount of performance is obtained compared to an in-order processor.

16



2.4 Recovery

When an exception like misprediction happens, recovery process is triggered. All the

instructions before the exception should commit into the processor state. All the

remaining instructions need to be evicted out, only the correct instructions can be

fed into to pipeline and everything move on.

ROB plays an important roles here for recovery. All the instructions allocated in

ROB obey the program order. Once a misprediction happens, ROB keeps retiring

the instructions until it hits the mispredicting instruction. At this point all the in-

structions left in the ROB can be flushed away. The operation of the ROB therefore

follows the FIFO(First Input First Output) scheme. Instructions flow into it in pro-

gram order and retire out of it in the same order. Each time an exception happens

with some instructions, it is easy to delete the incorrect ones as they are consecutive

and always follow the mispredicted instruction.

Figure 2.7 demonstrates the recovery process. I4 is a mispredicted branch. In-

structions are retired to processor state starting with I1 until I4 is reached. All the

following instructions from I5 to I10 will be flushed out of the ROB. New instructions

come from the correct path of I4 are allocated into the ROB replacing I5 towards

the tail.

17



I5

I6

I7
I8

I9

I10
re

tir
e

Processor
State

I1

I4

I3

I2

misprediction

Reorder Buffer

fl
us

h 
aw

ay

I11

I12

Figure 2.7: Misprediction Recovery

2.5 Summary

In this chapter, we described the basic concepts of superscalar processor, how to

eliminate the false dependencies, how to execute speculatively and how to recover from

exceptions. All these basic operations are critical for the reader to fully understand the

proposed mechanism, Mower. With the conventional recovery algorithm in mind, We

start to describe Mower in detail, an innovative misprediction recovery mechanism.

18



Chapter 3

Mower

3.1 General Overview

Mower is a novel technique which aims for complete overlapping of new instruction

fetching with state restoration after a branch misprediction. This approach implies

that the front-end will be fetching and processing instructions even if the back-end has

not yet been drained of incorrect instructions. Mixing invalid instructions with valid

instructions in the pipeline requires several concepts to be realized in the processor.

In the front-end, renaming must be delayed for new valid instructions if they are refer-

encing invalid mappings that have not yet been restored. Mower must therefore know

if each RAT mapping is valid or not. In the back-end, Mower must release resources

19



occupied by invalid instructions precisely to restore the state without damaging the

current state created by valid instructions. More specifically, the RAT mappings must

be restored to their previous values and invalid instructions must be evicted or other-

wise made ineffectual in reservation stations, execution units as well as the load/store

queue.

Fetch

Decode

Rename

Dispatch

Mower

LSQ Reservation
Station

Jump
Unit

Execution Unit
Free

Register

Pool

retire and reclaim

invalid inst complete
PRF

Fl
ag

 B
it

Baseline Superscalar
Fl

ag
 B

it

Mower

invalid the destroyed mapping

fix mapping by reclamation

F−RAT

Unit

allocate new instructions reclamation

2 to 1

Reorder Buffer

head tail

Figure 3.1: Mower Block Diagram

Figure 3.1 shows the overall additions required by Mower on a typical out-of-order

superscalar pipeline. In the figure, darker colored sections show Mower components.

20



Overall, the pipeline stages for the traditional superscalar are kept the same. Branches

and jumps are resolved in the jump unit (separated from execution units for clarity).

Examining the figure by following the pipeline flow order, the first change we notice

is the additional bits which are attached to RAT. Mower uses these bits to iden-

tify whether a mapping has been damaged by a previous misprediction or not. All

mapping bits start out valid. They are selectively invalidated when a branch instruc-

tion mispredicts. Note that there is no R-RAT under Mower, as the front RAT is

incrementally updated to reflect the correct mapping after a misprediction.

Next, the Mover Unit (Figure 3.1, top-right) is responsible for maintaining and gener-

ating the mapping bits for RAT, walking over the ROB entries for rapid state recovery

and releasing the resources kept by invalid instructions as well as making sure that

invalid instructions still located in deep execution pipelines do not modify the state

upon completion. Mower uses a single bit attached to each register in the Physical

Register File (PRF) (Figure 3.1, bottom-left) to selectively disable writes for a partic-

ular register so that invalid instructions in deep pipelines can be allowed to complete

without changing the state.

The operation of the Mower Unit involves its interaction with the jump unit, the

reorder buffer and the renamer. The jump unit consults the Mower Unit, which

provides a list of all mappings dependent on the mispredicting branch. These valid

bits therefore allow the front-end to delay the renaming of those instructions which

21



reference to invalid mappings until the correct mapping is restored. In addition,

during rename each jump or branch instruction is assigned a unique tag used by the

Mower Unit. Since each branch is allocated a tag, the total number of in-flight branch

instructions is equal to the number of available tags.

Although the Mower algorithm uses walking to reclaim resources, it is quite different.

Mower walks sequentially from the mispredicted branch towards the ROB tail as

opposed to existing algorithms, such as the walking technique which scans from the

head of ROB towards the mispredicted branch and the history-buffer which starts

from the tail of the buffer towards the mispredicted branch. Both of these techniques

have to complete the entire scan before a usable, correct state is restored. In contrast,

in case of Mower, due to its ability to identify damaged set of registers through a

separate mechanism, scanning starts at the mispredicted branch and each register

need to be corrected only once and at each step it is clearly known which part of

the state is valid and which part of the state is still damaged. During Mower’s

walking process, each visited ROB entry undoes any changes it made to the processor

structures. Visited invalid instructions are evicted from the reservation stations,

load/store queues; release physical registers and restore their previous mappings in

the RAT. Instructions which are still in deep pipelines are permitted to continue

their execution as discussed above. When such an instruction completes, it frees the

register instead of writing its result in that register. The walker then mows away all

invalid instructions until the position of the ROB tail at the time of misprediction is

22



reached. Newly fetched instructions are stored in the freshly mowed area. Figure 3.2

illustrates resources released from the back-end by Mower.

3.2 Explicit Dependency Tracking and Out-of-

order Branch Resolution

In order to accomplish full overlap of instruction fetching and state restoration as

outlined, there are two problems which needs to be addressed. First, we need to keep

track of branch dependency information for each instruction so that the required in-

formation is readily available as soon as a branch is mispredicted. In this respect,

we are particularly interested to know which registers had been redefined after a

mispredicted branch so that the front-end map table validity information can be im-

mediately updated. Second, due to the out-of-order nature of branch completion,

branch mispredictions may be detected in an out-of-order manner, which means ad-

ditional mispredictions may come from those branches which follow as well as precede

the branch which is in the process of state recovery. Obviously, mispredictions which

come from later branches need to be ignored and mispredictions from prior branches

should take over.

We address these issues by relying on two simple bit matrices, called the Mapping

23



Reservation Station Execution Unit

Rob TailMisprediction

Free Register

Rob Head

PR

LoadQ StoreQ

Figure 3.2: Mow all the invalid instructions through ROB, release all the

relative resources.

Dependency Matrix (MDM) and the Branch Dependency Matrix (BDM). The oper-

ation of these matrices are identical; if a given resource (branch for BDM or register

mapping for MDM) assigned to row i is dependent on a branch assigned to column j,

the location [i, j] is set to one. This organization permits easy extraction of the set

of branches a particular resource is dependent on as well as the set of branches which

are dependent on a particular resource.

24



b1 b2 b3

OR

B
ra

nc
he

s

Pr
od

uc
er

1

2
BDR

BDM

Fl
ag

 b
it

Fl
ag

 b
it

b3

reset the column

MDM

Figure 3.3: Explicit Dependency Tracking

3.3 Tracking Rename Map Validity

The organization of the MDM, which tracks rename map validity bits is shown to-

gether with the BDM which tracks in-flight branches in Figure 3.3. Each line in the

MDM corresponds to a logical register number. Each column represents a dependency

to a given branch tag. Therefore the MDM has a size of L×B where L is the number

of logical registers and B is the number of in-flight branches. When Mower recovery

starts, the column corresponding to the mispredicted branch is checked. If a given

25



logical register has a dependency on the mispredicted branch, i.e., it was redefined af-

ter the branch, it will have a 1 in the mispredicted branch id’s column. Consequently,

it is flagged as invalid. An invalid mapping can’t be used to rename new instructions

until corrected.

To populate the MDM, the Mower Unit must keep track of what branches a register

should be dependent on at rename-time. A register called the Branch Dependency

Register (BDR) of size B is maintained in the unit. Each time a branch is assigned a

tag (decoded), the bit corresponding to the assigned tag is set in the register. BDR

therefore provides an accurate representation of active dependencies at rename time.

Each time an instruction is renamed, the BDR is inserted into the corresponding

mapping line in the MDM, as shown in the figure.

When a branch instruction completes, there are two possible outcomes. If the branch

has been correctly predicted, we should release the branch tag so new branches can

use it. Since the branch is now complete, new instructions shouldn’t be dependent on

it either. Therefore we reset the corresponding bit in the BDR. Pre-existing physical

registers should also clear their dependencies on the recently completed branch since

the tag could now be re-used for a later branch instruction. Dependency clearing is

accomplished by resetting the column corresponding to the branch tag in the MDM.

In the case where the branch is mispredicted, the BDR and the MDM are handled in

the same manner. Before clearing the MDM column, each register’s dependency on

26



the mipsredicted branch is checked. If it is dependent on the mispredicted branch,

the register is marked as invalid.

The MDM covers invalidation of instructions that have a physical register mapping.

Store and branch instructions do not have such a mapping. Handling invalid store

instructions is simple. Stores do not affect processor state until they commit but

they will not be allowed to write to memory since they are behind the mispredicted

branch. All that needs to be done is to wait for the walker. Branch instructions are

handled as discussed below.

3.4 Tracking Branch Dependencies

Branch exception ordering requires identification of which branch instructions are

dependent on one another. Clearly, a branch instruction which was fetched after

another branch instruction is dependent on that instruction. In order to track B

in-flight branches, a B × B BDM matrix is used. When a branch is decoded, the

BDR is copied into the BDM before being modified. When a branch is completed,

the corresponding columns in the BDM, MDM, and BDR are cleared regardless of

prediction accuracy. It is easy to see that the BDM is functionally identical to the

MDM and provides a similar information with respect to branch instructions.

27



Let’s now see an example of these matrices in action. Considering Figure 3.3, let

us assume the branches b1, b2 and b3 are in program order, but they are resolved

in the order b2, b3 and b1. b2 and b3 are mispredicted. When b2 resolves, the

Mower Unit will check the BDM and MDM to discover branch instructions and map-

pings affected by b2 ’s misprediction, and supply these flags to external structures if

necessary. Following that, the bit columns corresponding to b2 ’s tag from the BDM

and MDM will be cleared, as well as the bit corresponding to the tag in the BDR.

When b3 resolves, the BDM’s flag register will inform the Mower Unit that it is an

invalid branch. Thus, all columns corresponding to b3 ’s tag will still be cleared but

no recovery will be triggered even though b3 is a mispredicted branch. Finally, when

b1 resolves, the columns and the bit corresponding to b1 ’s tag will be cleared, but

no additional action will be taken since b1 has been predicted correctly.

3.5 Recovery Timing and Details

Mower precisely recovers resources by walking over the ROB starting from the mis-

predicted instruction while allowing new instructions to be fetched and inserted into

the ROB as soon as possible. Considering the corrections required in ROB, the cor-

rect location for the first instruction from the correct path in the ROB should be

at the tail pointer, which should be reset to the mispredicting branch for recovery.

In Mower, at the time of misprediction detection, these ROB slots are occupied by

28



invalid instructions and may contain data crucial to precise state recovery. Therefore

Mower must walk over several ROB entries before these entries could be allocated.

Walking over the ROB requires entries to be read and written to the ROB. If Mower

had to accomplish this in the same cycle as it is fetching instructions, we would be

required to double the number of ports on the ROB. We clearly can’t start fetching

new instructions before doing at least some recovery since the slots in the ROB are

occupied.

new tail

old tail

roll back ROB tail

Time Line

switch pointer

Mower

Figure 3.4: Interleaved reclamation and dispatching on ROB

We observe that it will take several cycles, based on pipeline depth, for newly fetched

instructions to make it to the rename stage in the pipeline. Mower would like to

29



overlap this time with recovery time. We use an interleaved reclamation scheme

where the ROB ports are split in half. The first half are used to walk over and

recover some ROB entries. The next half is used to insert new instructions into ROB.

Note that instructions are not inserted into the ROB until several cycles into the

pipeline. During these cycles, Mower uses the full ROB port bandwidth available

to recover resources. An example timeline can be seen in Figure 3.4. Using this

interleaved technique, Mower can walk over the ROB as it is being populated by

new instructions without adding much extra hardware. Most notably, Mower does

not require extra ports for the ROB. While new instructions dependent on damaged

mapping will need to be stalled at the rename stage, we observe that by the time

instructions make it to the rename stage, most mappings will have been recovered.

P8

P7

P9

b1

b1

R1

R2

R3

Tag
P6

P3

Logical

Physical

Previous

P6

P6

P7

P1

P8 P9

P3P2

R1 R2 b1 R1 R3

ROB head ROB tail

Figure 3.5: Fix the RAT by the reclamation

30



Figure 3.5 shows an example of RAT recovery in Mower. b1 is a mispredicted branch.

When b1 is confirmed to be mispredicted, R1 and R3 mappings are marked as invalid.

As Mower walks over these entries, the previous entry in the RAT is replaced with

the previous mapping entry stored in the ROB. The register mapped to the invalid

instruction is returned to the free pool (P8, in R1’s case), and the register re-written

into the table is marked as valid (P6, in R1’s case). Note that walking in this direction,

only one fix per RAT entry is applied. Once a RAT entry is fixed, further mappings

to that logical register during walking is ignored and only physical register release is

performed.

31





Chapter 4

Hardware Design

In this section we discuss the hardware design of the structures required to implement

Mower. In Figure 3.1 the darker structures show the additions by Mower.

4.1 Renaming Branches

As discussed in Section 3.1, Mower assigns unique physical tags to each branch from

a free pool of tags when a branch is decoded. If there are no free tags available

(i.e. processor has reached the limit of in-flight branches), that branch is stalled until

more tags become available. In-use branch tags are released when the related branch

instruction is completed or reclaimed for invalid branch instructions during recovery.

33



Branch tags are encoded differently compared to regular rename identifiers. If there

are B in-flight branches allowed in the processor, each tag will be B bits long. The

tag contents will be the same as a 2log(B)-to-B decoder. For example, for B = 4, the

branch tags will be 0001, 0010, 0100 and 1000.

4.2 Bit Matrices

To implement Mower as explained in Section 3.2, we need to build a B ×B BDM as

well as a L× B MDM. One possible hardware implementation of these matrices can

be found in [5].

Both matrices require updates on certain events. When a relevant instruction (a

branch for the BDM, a result producing instruction for the MDM) is decoded, a new

line is inserted into the matrices. When a branch completes, it clears the correspond-

ing columns it was renamed to in both matrices. Each line in the matrix indicates if

it has a dependency on a certain branch.

To facilitate insertions into the matrices, a Branch Dependency Register is located

near the matrices. This branch dependency register contains the logical OR of all

current in flight branch tags. This operation constructs a B bit register which has

the value 1 for branches that are currently in-flight and 0 for unassigned branches.

34



Each time a new entry is inserted into either matrix at the correct position, the BDR

is copied into the line instead to simplify acquiring new entries.

rename b1 to 0100

0 0 0 1

BDM

0   0   0   1

OR
0   1   0   0

010 1 updated 

1 2

3

rename b2 to 1000

BDM

0   0   0   1
0 1 0 1

OR
1   0   0   0

1 1 0 1 updated 

0   1   0   1

be correct
branch 0001 verified to

0   0    0   1

BDM

1 1 0 1 0

0   1   0  1 0

0   0   0  1 0

4 branch b1 is misprediction

1 0

0   0   0   0BDM

0   1    0   0

1 00

0 1 0  0   0
invalidate

b2

Figure 4.1: Branch Dependency Matrix

Figure 4.1 illustrates all the possible operations on a BDM in a processor which only

allows 4 in-flight branches. In the figure 1○ b1 is renamed to 0100 and the current BDR

value is copied to the 2nd row of the BDM. The BDR is updated to 0101 by setting the

35



2nd most significant bit. Then in figure 2○ we rename another branch b2 to 1000, the

BDR is copied to the 1st row of BDM and we can see that the 2nd most significant

bit is set which means b2 is dependent on b1. Both b1 and b2 are dependent on

branch 0001. In figure 3○, branch 0001 is resolved and has been correctly predicted.

Thus we reset its corresponding column in both the BDR and the BDM. All future

branches will be independent from this cleared branch until a new branch is renamed

to that value. Finally in figure 4○ b1 is resolved and is mispredicted. We still reset

its column as before. However, we also invalidate all younger branches in flight by

invalidating all the entries which have a dependency on the physical tag of b1 (which

is 0100 in this example). Updates to the MDM are handled similarly.

4.3 Fixing The RAT

As with the BDM, the MDM is updated by copying the BDR into the line which

corresponds to the register that was just renamed. On a misprediction on a given

branch b, entries which have a 1 in column b correspond to damaged mapping entries.

Figure 4.2 demonstrates the procedure to fix the alias table as well as correctly up-

dating the MDM.

The figure on the left shows I2 being renamed, where I1 is an instruction older than

36



I1 I2 I3 I1 I2 I3

RAT MDM RAT MDM

New PR

Reorder Buffer

AND

misprediction

BDR

Figure 4.2: Recovering RAT from MDM

I2 and I3 is younger than I2. All three instructions write to the same logical register.

When I2 is renamed, its previous mapping and MDM information are stored in the

ROB. At this point, we update both the RAT and the MDM with current information.

The figure on the left shows the state of the structures after a misprediction is detected

between I1 and I2. When walking back over the ROB, if the RAT entry corresponding

to the instruction’s logical destination is damaged, the previous mapping stored in

ROB is restored and the RAT entry is marked clean. In the example, we can see

that when walking over I2, we will correct the RAT to I1’s mapping (since I2 stored

that as it was being renamed), but not when we walk over I3 since the mapping table

entry is marked as clean at that time. In the MDM, we unfortunately can’t simply

restore the entry from the ROB. A branch the mapping was depended on may have

completed, making the archived entry invalid. In essence, we want the intersection

of the archived branch dependencies and the current branch dependencies. We can

achieve this by ANDing the archived entry with the entry currently in the MDM. This

37



concludes everything necessary to restore the RATmappings and maintainMDM state

while walking back over the ROB after a mispredicition.

38



Chapter 5

Evaluation

5.1 Methodology

We use MIPS I ISA to evaluate Mower. Mower is modeled in ADL [6], an architec-

ture description language used to generate cycle-accurate simulators. We incorporated

power models and estimated the power consumption for both Mower and the baseline.

Power values have been obtained by adapting Wattch[7] to the ADL simulator frame-

work. The power results have been validated against the McPAT[8] tool tested with

a very similar superscalar pipeline to ensure correctness. Additionally, the non-ideal

clock gating option is enabled in Wattch (causes only 10% power use when a particu-

lar port is not in use) as well as the dynamic activity factors (only precharges memory

39



lines if they previously contained 0). The BDM and MDM matrices are implemented

as CAM-like structures in Wattch for power evaluation purposes.

Table 5.1

The configuration of the simulation

Processor Configuration
Physical Register size 128
LSQ size 32
Fetch width 8
Decode width 8
Issue width 8
Int adder/subtractor 1 cycle
Int multiplier 3 cycles
Int divider 7 cycles
Float adder/sutractor 7 cycles
Float multiplier 7 cycles
Load Speculation Store Set
Branch Predictor 4KB GShare

14 bits global branch history
shift register

We use the Spec2006 benchmark suite for performance and power evaluations. The

suite was compiled using gcc version 4.3 with the highest optimization setting (-O3).

Binutils 2.22 was used as the software environment. uClibC 0.9.33 was used to link

the benchmarks and was simulated along with benchmark code. O/S kernel was

not simulated. The ref inputs for the given benchmarks were ran for 500 million

instructions to warm up the branch predictor and the cache, and an additional 1

billion instructions were simulated to gather the data.

The baseline implementation is an 8-wide conventional superscalar processor. A

40



GShare branch predictor is used in the front end.

Aside from the baseline superscalar implementation, we also compared Mower with

EMR (Eager Misprediction Recovery)[9] and CPR (Checkpoint Recovery) [10] al-

gorithms. For sanity checking purposes, a perfect recovery technique is also tested

against Mower.

The tested EMR implementation is implemented with 4 in-flight checkpoints which

are used per misprediction recovery. Invalid instructions are assumed to be eliminated

immediately once detected. The CPR utilizes 8 checkpoints. Each decoded branch

will occupy one checkpoint until all instructions dependent on that branch complete.

Checkpoints are released out-of-order. 8 checkpoints were chosen since it is expensive

to implement a large number of checkpoints. The perfect recovery technique is an

ROB based technique which recovers from a misprediction in the same cycle with no

delays and resources being occupied.

5.2 Performance Results

We first explored the Mower design space to figure out what the in-flight branch limit

should be. Figure 5.1 shows the average IPC value of Mower with different in-flight

branch numbers. Even with only 4 in-flight branches, Mower can extract 98.2% of

41



0 5 10 15 20 25 30 35

1.6

1.8

2
IP

C

Figure 5.1: IPC vs In-flight Branches

performance available to a processor with access to unlimited in-flight branches. In

our experiments, we set the in-flight branch number to 12 which puts our Mower

implementation at 99.99% performance of a Mower processor with unlimited in-flight

branches.

40
0.
p
er
lb
en
ch

40
1.
b
zi
p
2

40
3.
gc
c

42
9.
m
cf

44
5.
go
b
m
k

45
6.
h
m
m
er

45
8.
sj
en
g

46
2.
li
b
q
u
an

tu
m

46
4.
h
26
4r
ef

47
3.
as
ta
r

41
0.
b
w
av
es

41
6.
ga
m
es
s

43
3.
m
il
c

43
5.
gr
om

ac
s

43
6.
ca
ct
u
sA

D
M

43
7.
le
sl
ie
3d

44
4.
n
am

d
45
0.
so
p
le
x

45
4.
ca
lc
u
li
x

45
9.
G
em

sF
D
T
D

46
5.
to
n
to

47
0.
lb
m

48
1.
w
rf

48
2.
sp
h
in
x
3

A
ve
ra
ge

0

5

10

6 5 4 3 2 1 0

Figure 5.2: The Damaged F-RAT through the recovery process

Next, we show the number of damaged mappings throughout the recovery procedure.

42



In figure 5.2, the values identified by 0 show the number of damaged mappings when

misprediction is first indicated. Index 1 shows damaged mappings after one cycle

of recovery. Index 2 shows damaged mappings after two cycles of recovery and so

on. Our data shows that after 6 cycles, Mower recovers nearly as much as the perfect

recovery baseline, and no delays will be incurred by instructions arriving at the rename

stage at this point.

40
0.
p
er
lb
en
ch

40
1.
b
zi
p
2

40
3.
gc
c

42
9.
m
cf

44
5.
go
b
m
k

45
6.
h
m
m
er

45
8.
sj
en
g

46
2.
li
b
q
u
an

tu
m

46
4.
h
26
4r
ef

47
3.
as
ta
r

41
0.
b
w
av
es

41
6.
ga
m
es
s

43
3.
m
il
c

43
5.
gr
om

ac
s

43
6.
ca
ct
u
sA

D
M

43
7.
le
sl
ie
3d

44
4.
n
am

d
45
0.
so
p
le
x

45
4.
ca
lc
u
li
x

45
9.
G
em

sF
D
T
D

46
5.
to
n
to

47
0.
lb
m

48
1.
w
rf

48
2.
sp
h
in
x
3

A
ve
ra
ge

20

40

60

Figure 5.3: The average number of invalid instructions left in the pipeline

when misprediction is detected

We also measure the number of invalid instructions left in the processor when a

misprediction occurs. This data is presented in Figure 5.3. Looking at Figure 5.3 and

Figure 5.2 together, we see invalid instructions almost up to 60 after a misprediction

yet the number of invalid mappings never exceeds 8. This is partly due to store and

branch instructions within the invalid instructions which do not have mappings, and

partly due to register overrides. Having very few invalid mappings makes the recovery

43



job easier.

3-1 4-1 5-1 6-1 3-2 4-2 5-2 6-2

1.01

1.02

1.03

EMR Mower Perfect CPR

Figure 5.4: Spec2006 Integer Speedup

3-1 4-1 5-1 6-1 3-2 4-2 5-2 6-2

1.000

1.005

1.010

1.015

EMR Mower Perfect CPR

Figure 5.5: Spec2006 Float Speedup

In Figure 5.4 and 5.5 we show the geometric mean of the speed up factor over the

baseline system in all Spec2006 Integer and Float bechmarks, respectively. Different

shades of color indicate different configurations. The first number in the configuration

is the number of front-end pipeline stages (up to where an instruction would be

inserted into the reservation stations) and the second number indicates the number

of stages before retirement but after execution. These graphs show that having a

shorter front-end pipeline is better for faster recovery. This is expected since a shorter

pipeline fill delay will benefit all techniques implemented here. Another observation is

44



that performance increase jumps up when retiring an instruction takes more than one

cycle after completion. The baseline implementation has to wait for the misprediction

to retire, but Mower moves ahead with the fetching during the same time frame. Most

notably, we can see that Mower performs very close to perfect misprediction recovery

in every case.

Table 5.2

Misprediction Rates for Spec2006INT

Spec2006 Mispred. Per 10k Mower Speedup

401.bzip2 30.0 1%
403.gcc 66.9 3%
429.mcf 59.9 2%
445.gobmk 89.4 5%
458.sjeng 52.4 4%
462.libquantum 11.9 0%
464.h264ref 31.5 1%
473.astar 88.8 4%

Looking at Table 5.2 lets us examine the speedups provided by Mower. In general, we

can see a correlation between the misprediction rate and performance increase in the

integer benchmarks. There are some outliers, for instance the 429.mcf benchmark

shows a smaller speedup while having a greater misprediction rate than 458.sjeng.

A more telling example is the comparison of the gcc benchmarks for Spec2000 and

Spec2006 suites. 176.gcc from Spec2000 shows 132.9 mispredictions per 10k instruc-

tions, which is roughly double the number of mispredictions from the Spec2006 ver-

sion. The performance is similarly impacted: 176.gcc shows close to 6% performance

increase using the same parameters. Since Mower is a technique that targets branch

misprediction recovery delays, if many mispredictions do not occur in the base case,

45



not much performance will be extracted since there are no delays in the first place.

5.3 Power Estimation
40
0.
p
er
lb
en
ch

40
1.
b
zi
p
2

40
3.
gc
c

42
9.
m
cf

44
5.
go
b
m
k

45
6.
h
m
m
er

45
8.
sj
en
g

46
2.
li
b
q
u
an

tu
m

46
4.
h
26
4r
ef

47
3.
as
ta
r

0.940

0.960

0.980

1.000

1.020

total power consumption average power consumption

Figure 5.6: Power Evaluation Spec2006 Integer

41
0.
b
w
av
es

41
6.
ga
m
es
s

43
3.
m
il
c

43
5.
gr
om

ac
s

43
6.
ca
ct
u
sA

D
M

43
7.
le
sl
ie
3d

44
4.
n
am

d

45
0.
so
p
le
x

45
4.
ca
lc
u
li
x

45
9.
G
em

sF
D
T
D

46
5.
to
n
to

47
0.
lb
m

48
1.
w
rf

48
2.
sp
h
in
x
3

0.950

1.000

1.050

1.100

total power consumption average power consumption

Figure 5.7: Power Evaluation Spec2006 Float

46



Table 5.3

Power distribution in Spec2006

Mower Baseline

total average average average total average

power power BDM MDM power power

400.perlbench 39414282.82 23.0847 0.0178 0.3418 41711982.94 22.9941

401.bzip2 19912545881 36.5107 0.0099 0.4674 20209901773 36.4707

403.gcc 20577678552 31.064 0.0177 0.4205 21044400878 30.3547

429.mcf 24399551282 23.9638 0.0125 0.2964 24962176205 23.9732

445.gobmk 21246144709 30.1403 0.0116 0.4082 22043497993 29.7116

456.hmmer 20169386181 52.1055 0.0108 0.7009 20578874932 51.9498

458.sjeng 20952348479 45.881 0.0243 0.5581 21498326343 45.7369

462.libquantum 18367126463 56.8546 0.014 0.7518 18062344589 55.7114

464.h264ref 19009792993 44.2755 0.015 0.5757 19321361564 44.6614

473.astar 25288238076 47.5951 0.0157 0.6439 26039881396 47.5177

410.bwaves 23545019645 49.1315 0.0012 0.5251 23570556909 49.1887

416.gamess 20683416431 53.3552 0.0097 0.6136 20859995597 52.8809

433.milc 22033327175 40.0966 0.004 0.4567 22017599284 39.7845

435.gromacs 20251109581 41.9003 0.0329 0.5177 20689221337 40.9992

436.cactusADM 24119700357 28.5811 0.0018 0.3049 24181298377 28.62

437.leslie3d 22490620504 44.733 0.0043 0.5086 22515068357 44.3398

444.namd 19011620317 47.6229 0.0348 0.5776 19297024881 47.6767

450.soplex 3531370375 42.2901 0.0134 0.5432 3558493095 41.6645

454.calculix 10508899197 51.8637 0.0172 0.6256 10344855160 45.8328

459.GemsFDTD 18450836352 42.359 0.0428 0.5504 18700506380 40.4183

465.tonto 21579146650 45.8823 0.022 0.605 23147948645 47.7491

470.lbm 21052658006 34.911 0.003 0.3709 20799850538 34.4426

481.wrf 23438584264 56.3007 0.015 0.5877 23322660370 55.017

482.sphinx3 20007152673 45.5453 0.0387 0.5723 20354623969 45.564

In Figure 5.6, we illustrate the power consumption of Mower for all integer bench-

marks. The data is normalized to the baseline superscalar. The lighter bar is the

average power consumption and the darker bar is the total power consumption for

a given benchmark. Average power consumption is the energy dissipated per second

and the total power consumption is the energy dissipated by the whole benchmark.

Mower saves close to 2% of total power in most integer benchmarks (462.libquantum

47



is an exception). All power savings come from early reclamation. Looking at per-

formance results, we can also see an association between performance increase and

power savings. Reclaiming more invalid instructions for mispredictions translates to

power savings.

Unfortunately, Figure 5.7 shows a poorer picture for total power dissipation. This is

due to the smaller number of branches in floating point benchmarks. Fewer branches

mean even fewer mispredictions, and fewer mispredictions mean the additional struc-

tures employed by Mower are being used without providing a major advantage.

465.tonto has more branches than any other floating point benchmark, explaining

the power difference.

It should be noted that the average power consumption is always worse for Mower

since additional structures are involved. However, since Mower completes workloads

faster, total power per workload is lower when Mower structures are being taken

advantage of.

Detailed power numbers can be seen in Table 5.3. MDM dominates the additional

power use of Mower due to it’s large size compared to the BDM. Additionally, all

instructions which produce a value update the MDM while this is only true for branch

instructions in the case of BDM. A possible solution for this issue would be to bank

the MDM as described in [11].

48



In order to evaluate the power efficiency of a given technique an appropriate metric is

needed. Traditionally, energy per instruction metric was wideld used to measure the

power efficiency. This metric is proportional to CV2 where C is the capacitance of

the transistor and the V is the operational voltage of the processor. A processor can

be designed for power efficiency by using smaller transistors or decreasing the voltage.

However this technique accomplishes energy efficiency at the expense of performance.

Therefore EDP[12] makes more sense to evaluate the power efficiency. Generally

speaking, EDP compares the energy consumption under the same performance. For

example, if the processor saves energy with the same execution time or consumes the

same energy but reduces the execution time, both of them are regarded as power

efficient in terms of EDP measurement.

40
1.
b
zi
p
2

40
3.
gc
c

41
0.
b
w
av
es

41
6.
ga
m
es
s

42
9.
m
cf

43
3.
m
il
c

43
5.
gr
om

ac
s

43
6.
ca
ct
u
sA

D
M

43
7.
le
sl
ie
3d

44
4.
n
am

d
44
5.
go
b
m
k

45
0.
so
p
le
x

45
4.
ca
lc
u
li
x

45
6.
h
m
m
er

45
8.
sj
en
g

45
9.
G
em

sF
D
T
D

46
2.
li
b
q
u
an

tu
m

46
4.
h
26
4r
ef

46
5.
to
n
to

47
0.
lb
m

47
3.
as
ta
r

48
1.
w
rf

48
2.
sp
h
in
x
3

0.900

0.950

1.000

EDP

Figure 5.8: EDP normalized to baseline configuration

49



Figrue 5.8 displays the EDP of Mower normalized to the baseline configuration. It is

not surprising that a benchmark which saves more energy will be more power efficient

since it reduces the total execution time at the same time. Mower helps to reclaim the

invalid instructions early by which more energy is saved and misprediction penalty is

reduced. In this manner, Mower is more power efficient in most benchmarks except

462.libquantum and 470.lbm. Even in these two benchmarks Mower is only 1% worse

than the baseline. In other benchmarks, Mower performs much better than our

baseline configuration in power efficiency. For example in 465.tonto Mower is 13%

more power efficient.

50



Chapter 6

Related Work

Many misprediction recovery techniques have been proposed over the years. We will

show an overview of existing work in this field as well as discuss a few techniques that

are orthogonal to Mower.

Smith et. al. [2] show recovery mechanisms using ROB in their study to set the stage

for the majority of non-checkpointing based recovery techniques. Hwu et. al. [10]

propose a checkpointed recovery system to repair processor state. A checkpoint of the

processor state is taken at every branch and recovery happens from these checkpoints

on a misprediction. This is the technique Mower was tested against in this paper.

Variations and improvements using checkpoints have been proposed by other authors.

Akkary et. al. [3] propose Checkpoint Processing and Recovery (CPR). The major

51



relevant contribution of CPR is selective checkpointing (only low confidence branches

are checkpointed). Both the original chekpointing algorithm as well as CPR do not

use an ROB.

Zhou et. al. [9] proposed Eager Misprediction Recovery (EMR), which is the sec-

ond technique we compared with Mower. EMR creates checkpoints of the front-end

mapping tables. However, when a misprediction occurs, instructions from the new

path are immediately fetched and decoded. Misprediction recovery allows each new

instruction to reach up to the reservation station but incorrect front-end mappings

are marked as damaged. Unlike Mower, which restores the correct mappings be-

fore instructions are renamed, EMR instead restores the correct values of damaged

mappings into the damaged physical registers by utilizing functional units.

Amit et. al. [13] proposes Selective Branch Recovery which is another technique which

does not necessarily discard all instructions from the incorrect path immediately. SBR

attempts to detect if the mispredicted path will converge back on to the correct path.

If such a convergence is detected, some results from the incorrect path may still be

useful.

Akl et. al. [14] propose Turbo-ROB, which is an ROB based recovery design that

only allocates ROB entries at certain points determined to be repair points. Turbo-

ROB allows for the illusion of a larger ROB while using fewer entries at the cost of

not being able to restore the state to any instruction. Latorre et. al. [15] provide a

52



similar improvement with CROB but handle misprediction recovery by copying over

a checkpoint of relevant processor structures per branch.

Hilton et. al. [16] propose a checkpointing scheme with an ROB called CPROB.

CPROB switches to an ROB based recovery scheme if mispredictions are frequent

and uses a smaller window. If predictions are going well, the window size is dynami-

cally expanded and the misprediction recovery scheme switches to using checkpoints.

Golander et. al. [17] propose a similar scheme without an ROB utilizing checkpoint-

ing. They take checkpoints more frequently when mispredictions are frequent, and

vice versa.

BranchTap [18] by Akl et. al. is a technique that allows a processor to stop fetching

instructions when a threshold of low confidence branches are in the processor. This

threshold is dynamically calculated during execution. BranchTap can work with or

without checkpointing available. BranchTap is orthogonal to Mower - not fetching

many incorrect instructions would speed up Mower’s recovery.

Another technique orthogonal to Mower is WPE [19] by Armstrong et. al. WPE

detects so called Wrong Path Events which include unusual or illegal behaviour such

as a NULL pointer access or a divide by zero. These events are then used to speculate

that we are on the wrong path of execution. WPE would allow Mower to start recovery

early.

53



Several techniques have been proposed that fetch instructions from both paths on

low confidence branches. Such techniques target the pipeline fill delay, which is not

targeted by Mower. Use of these techniques alongside Mower could further improve

Mower’s performance. Disjoint Eager Execution (DEE) by Uht et. al. [20] is one of the

earlier examples. Code paths that are likely to be executed are taken, meaning both

paths on a branch that is likely to mispredict will be executed. DEE is implemented

in a custom architecture called LEVO. Heil et. al. [21] propose Selective Dual Path

Execution (SPDE) which selectively executes two (and only two) branch paths at

the same time based on prediction confidence. SPDE is implemented in a regular

superscalar processor with the addition of confidence predictors and an additional

register alias table. Another work in this area is Selective Eager Execution (SEE)

by Klauser et. al. [22] SEE is similar to SPDE but uses a novel instruction tagging

and register renaming to avoid including a second RAT. The architecture is called

PolyPath. Wallace et. al. [23] apply a similar technique to simultaneous multi-

threading processors to allow the SMT processor to execute two paths from the same

process called Threaded Multiple Path Execution (TMPE). TMPE introduces the

Mapping Synchronization Bus which allows a new thread to be forked when a low

confidence branch is encountered. TMPE also deals with resource use between the

multiple paths. Dual Path Instruction Processing (DPIP) is proposed by Aragon et.

al. [24]. DPIP specifically targets the window fill penalty where it fetches, decodes

and renames instructions from the alternate path but does not execute them. An

54



extension to DPIP gets pre-fetched instructions in an estimated schedule for rapid

issue into execution units.

55





Chapter 7

Conclusion

7.1 Contribution of the thesis

Mower is an innovative mechanism to provide better branch misprediction recovery for

superscalar processors. we believe there are several important contributions made by

the Mower algorithm. These are 1) ability to dynamically release the stale resources

while keeping correct dependencies; 2) Fixing the frontend RAT at the same time in

order to make an expedited channel to the backend. 3) sharing ROB access ports

during reclaim process to maximize the utilization.

In most recovery algorithms, the recovery process is limited by hardware resources

which are predetermined. We believe Mower is the first approach to do it in a dynamic

57



way so that there are no predetermined limitations in the sense that it can deal with

any number of mispredictions which can happen. Mower is also a low-cost solution.

Added structures are small in size, providing reasonable power consumption while

improving performance. Our evaluation indicates that Mower eliminates nearly all

of state restoration penalty component of branch mispredictions. We believe the

proposed technique is an effective technique, particularly for integer programs which

contain a large number of high penalty branch mispredictions.

7.2 Future work

Mower is dedicated to dynamically fixing the pipeline before the ROB is drowned

when misprediction happens. It accelerates the renaming procedure by fixing the

RAT on-line. Meanwhile it will nullify the stale instructions through the ROB by the

shared port. One of the biggest issues here is the large number of invalid instructions

left in the pipeline, for example, figure 5.3. It takes time and wastes energy to do so.

Chou et. al. [25] devise a mechanism to detect CI(Control Independence) instructions.

Generally speaking, when a program diverges at the branch, most of the time it will

converge at a later point. All the instructions after the convergence point are control

independent of the branch. The CI detection technique can be integrated into Mower

seamlessly to minimize the trashed instructions when we clear the ROB. Not all the

58



instructions after the misprediction are useless. If we can find a way to identify the

useful ones, it will further mitigate the penalty of misprediction.

59





References

[1] Mike Johnson, Superscalar Microprocessor Design, Prentice Hall, 1991.

[2] James E. Smith and Andrew R. Pleszkun, “Implementing precise interrupts in

pipelined processors”, Computers, IEEE Transactions on, vol. 37, no. 5, pp.

562–573, 1988.

[3] Haitham Akkary, Ravi Rajwar, and Srikanth T Srinivasan, “Checkpoint pro-

cessing and recovery: Towards scalable large instruction window processors”, in

MICRO-36. Proceedings. 36th Annual IEEE/ACM International Symposium on

Microarchitecture. IEEE, 2003, pp. 423–434.

[4] R.M. Tomasulo, “An efficient algorithm for exploiting multiple arithmetic units”,

IBM Journal of Research and Development, vol. 11, no. 1, pp. 25–33, Jan 1967.

[5] Peter G. Sassone, Jeff Rupley, II, Edward Brekelbaum, Gabriel H. Loh, and

Bryan Black, “Matrix scheduler reloaded”, in Proceedings of the 34th Annual

61



International Symposium on Computer Architecture, New York, NY, USA, 2007,

ISCA ’07, pp. 335–346, ACM.

[6] Soner Önder and Rajiv Gupta, “Automatic generation of microarchitecture sim-

ulators”, in IEEE International Conference on Computer Languages, Chicago,

May 1998, pp. 80–89.

[7] David Brooks, Vivek Tiwari, and Margaret Martonosi, “Wattch: A framework

for architectural-level power analysis and optimizations”, in Proceedings of the

27th Annual International Symposium on Computer Architecture, New York,

NY, USA, 2000, ISCA ’00, pp. 83–94, ACM.

[8] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,

and Norman P Jouppi, “Mcpat: an integrated power, area, and timing mod-

eling framework for multicore and manycore architectures”, in 42nd Annual

IEEE/ACM International Symposium on Microarchitecture. IEEE, 2009, pp.

469–480.

[9] Peng Zhou, Soner Önder, and Steve Carr, “Fast branch misprediction recovery

in out-of-order superscalar processors”, in Proceedings of the 19th Annual In-

ternational Conference on Supercomputing, New York, NY, USA, 2005, ICS ’05,

pp. 41–50, ACM.

62



[10] Wen-mei W. Hwu and Yale N Patt, “Checkpoint repair for out-of-order execu-

tion machines”, in Proceedings of the 14th annual international symposium on

Computer architecture. ACM, 1987, pp. 18–26.

[11] J.-L. Cruz, A. Gonzalez, M. Valero, and N.P. Topham, “Multiple-banked reg-

ister file architectures”, in Proceedings of the 27th International Symposium on

Computer Architecture, June 2000, pp. 316–325.

[12] R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose micropro-

cessors”, Solid-State Circuits, IEEE Journal of, vol. 31, no. 9, pp. 1277–1284,

Sep 1996.

[13] Amit Gandhi, H. Akkary, and S.T. Srinivasan, “Reducing branch misprediction

penalty via selective branch recovery”, in 10th International Symposium on High

Performance Computer Architecture, Feb 2004, pp. 254–264.

[14] Patrick Akl and Andreas Moshovos, “Turbo-rob: a low cost checkpoint/restore

accelerator”, in High Performance Embedded Architectures and Compilers, pp.

258–272. Springer, 2008.

[15] Fernando Latorre, Grigorios Magklis, Jose González, Pedro Chaparro, and Anto-

nio González, “Crob: implementing a large instruction window through compres-

sion”, in Transactions on high-performance embedded architectures and compilers

III, pp. 115–134. Springer, 2011.

63



[16] Andrew Hilton, Neeraj Eswaran, and Amir Roth, “Cprob: Checkpoint process-

ing with opportunistic minimal recovery”, in 18th International Conference on

Parallel Architectures and Compilation Techniques. IEEE, 2009, pp. 159–168.

[17] Amit Golander and Shlomo Weiss, “Checkpoint allocation and release”, ACM

Trans. Archit. Code Optim., vol. 6, no. 3, pp. 10:1–10:27, Oct. 2009.

[18] Patrick Akl and Andreas Moshovos, “Branchtap: Improving performance with

very few checkpoints through adaptive speculation control”, in Proceedings of

the 20th Annual International Conference on Supercomputing, New York, NY,

USA, 2006, ICS ’06, pp. 36–45, ACM.

[19] David N Armstrong, Hyesoon Kim, Onur Mutlu, and Yale N Patt, “Wrong path

events: Exploiting unusual and illegal program behavior for early misprediction

detection and recovery”, in 37th International Symposium on Microarchitecture.

IEEE, 2004, pp. 119–128.

[20] Augustus K Uht, Vijay Sindagi, and Kelley Hall, “Disjoint eager execution:

An optimal form of speculative execution”, in Proceedings of the 28th annual

international symposium on Microarchitecture. IEEE Computer Society Press,

1995, pp. 313–325.

[21] Timothy H Heil and James E Smith, “Selective dual path execution”, Tech.

Rep., Technical report, University of Wisconsin-Madison, 1996.

64



[22] Artur Klauser, Abhijit Paithankar, and Dirk Grunwald, “Selective eager execu-

tion on the polypath architecture”, in ACM SIGARCH Computer Architecture

News. IEEE Computer Society, 1998, vol. 26, pp. 250–259.

[23] Steven Wallace, Brad Calder, and Dean M Tullsen, “Threaded multiple path

execution”, in ACM SIGARCH Computer Architecture News. IEEE Computer

Society, 1998, vol. 26, pp. 238–249.

[24] Juan L Aragón, José González, Antonio González, and James E Smith, “Dual

path instruction processing”, in Proceedings of the 16th international conference

on Supercomputing. ACM, 2002, pp. 220–229.

[25] Yuan Chou, Jason Fung, and John Paul Shen, “Reducing branch misprediction

penalties via dynamic control independence detection”, in Proceedings of the

13th International Conference on Supercomputing, New York, NY, USA, 1999,

ICS ’99, pp. 109–118, ACM.

[26] O. Ergin, D. Balkan, D. Ponomarev, and K. Ghose, “Increasing processor perfor-

mance through early register release”, in Computer Design: VLSI in Computers

and Processors, 2004. ICCD 2004. Proceedings. IEEE International Conference

on, oct. 2004, pp. 480 – 487.

[27] Timothy M. Jones, Michael F. P. O’Boyle, Jaume Abella, Antonio González, and

Oğuz Ergin, “Energy-efficient register caching with compiler assistance”, ACM

Trans. Archit. Code Optim., vol. 6, no. 4, pp. 13:1–13:23, oct 2009.

65



[28] T.M. Jones, M.F.R. O’Boyle, J. Abella, A. Gonzalez, and O. Ergin, “Compiler

directed early register release”, in 14th International Conference on Parallel

Architectures and Compilation Techniques,, sept. 2005, pp. 110 – 119.

[29] J. Alastruey, T. Monreal, V. Vinals, and M. Valero, “Microarchitectural sup-

port for speculative register renaming”, in Parallel and Distributed Processing

Symposium, 2007. IPDPS 2007. IEEE International, march 2007, pp. 1 –10.

[30] J.-L. Cruz, A. Gonzalez, M. Valero, and N.P. Topham, “Multiple-banked reg-

ister file architectures”, in Proceedings of the 27th International Symposium on

Computer Architecture, june 2000, pp. 316 –325.

[31] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “Reducing the com-

plexity of the register file in dynamic superscalar processors”, in Proceedings.

34th ACM/IEEE International Symposium on Microarchitecture, dec. 2001, pp.

237 – 248.

[32] D.M. Brooks, P. Bose, S.E. Schuster, H. Jacobson, P.N. Kudva, A. Buyukto-

sunoglu, J. Wellman, V. Zyuban, M. Gupta, and P.W. Cook, “Power-aware

microarchitecture: design and modeling challenges for next-generation micro-

processors”, Micro, IEEE, vol. 20, no. 6, pp. 26 –44, nov/dec 2000.

[33] John Paul Shen and Mikko H Lipasti, Modern processor design: fundamentals

of superscalar processors, Waveland Press, 2013.

66



[34] Doug Burger and Todd M. Austin, “The simplescalar tool set, version 2.0”,

SIGARCH Comput. Archit. News, vol. 25, no. 3, pp. 13–25, June 1997.

[35] J. Adam Butts and Gurindar S. Sohi, “Use-based register caching with decou-

pled indexing”, in Proceedings of the 31st annual international symposium on

Computer architecture, Washington, DC, USA, 2004, ISCA ’04, pp. 302–, IEEE

Computer Society.

[36] M.M. Martin, A. Roth, and Charles N. Fischer, “Exploiting dead value informa-

tion”, in Proceedings., Thirtieth Annual IEEE/ACM International Symposium

on Microarchitecture, Dec, pp. 125–135.

[37] S. Onder and R. Gupta, “Automatic generation of microarchitecture simulators”,

in Proceedings. 1998 International Conference on Computer Languages, 1998, pp.

80–89.

[38] Jeff Bastian and Soner Onder, “Specification of intel ia-32 using an architecture

description language”, in Architecture Description Languages, 2005, pp. 151–166.

[39] E. Quiones, J. Parcerisa, and A. Gonzalez, “Early register release for out-of-order

processors with registerwindows”, in 16th International Conference on Parallel

Architecture and Compilation Techniques, 2007, pp. 225–234.

[40] José F Mart́ınez, Jose Renau, Michael C Huang, and Milos Prvulovic, “Cherry:

67



checkpointed early resource recycling in out-of-order microprocessors”, in Pro-

ceedings. 35th Annual IEEE/ACM International Symposium on Microarchitec-

ture. IEEE, 2002, pp. 3–14.

68


	MOWER : A NEW DESIGN FOR NON-BLOCKING MISPREDICTION RECOVERY
	Recommended Citation

	zjin3MS.pdf

