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Abstract 
Sensitive and selective chemical/biological detection/analysis for proteins is 

essential for applications such as disease diagnosis, species phenotype 

identification, product quality control, and sample examination. Lab-on-a-chip 

(LOC) device provides advantages of fast analysis, reduced amount of sample 

requirements, and low cost, to magnificently facilitate protein detection research. 

Isoelectric focusing (IEF) is a strong and reliable electrophoretic technique capable 

of discerning proteins from complex mixtures based on the isoelectric point (pI) 

differences. It has experienced plenty of fruitful developments during previous 

decades which has given it the capability of performing with highly robust and 

reproducible analysis. This progress has made IEF devices an excellent tool for 

chemical/biological detection/analysis purposes. In recent years, the trends of 

simple instrument setting, rapid analysis, small sample requirement, and light labor 

intensity have inspired the LOC concept to be combined with IEF to evolve it into 

an “easily-handled chip with hours of analysis” from the earlier method of “working 

with big and heavy machines in a few days.”  

Although IEF is already a mature technique being applied, further LOC-IEF 

developments are still experiencing challenges related to its limitations such as 

miniaturizing the device scale without harming the resolving/discerning ability. With 

the facilitation of newly technologically advanced/improved fabrication tools, it is 

completely possible to address challenges and approach new limits of LOC-IEF. 

In this dissertation, a surface enabled printing technique, which can transfer liquid 

to a surface with prescribed patterns, was firstly introduced to IEF device 

fabrication. By employing surface enabled printing, a surface enabled IEF (sIEF) 

device running at a scale of 100 times smaller than those previously reported was 

designed and fabricated. Commercial carrier ampholytes (PharmalyteTM) with 

different pH range were engaged to generate a continuous pH gradient on sIEF 

device. Device design and optimized fabrication conditions were practically 

investigated; establishment of pH gradient was verified by fluorescent dyes; 
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dependencies of electric field strength and carrier ampholytes concentration were 

systematically examined. To further optimize the sIEF system, dependencies of 

surface treatment and additive chemicals were explored. Fluorescent proteins and 

peptides were tested for the separation capability of sIEF. Finally, the well 

optimized sIEF system was used as a tool for real protein (hemoglobin variants 

and monoclonal antibody isoforms) separations. Hemoglobin variants test results 

revealed that sIEF is capable of separating amphoteric species with pI difference 

as small as 0.2. Monoclonal protein tests demonstrated the capability of sIEF to 

be a ready-to-use tool for protein structural change monitoring. In conclusion, this 

new sIEF approach has lower applied voltages, smaller sample requirements, a 

relatively quick fabrication process, and reusability, making it more attractive as a 

portable, user-friendly platform for qualitative protein detection and separation.  
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1 Introduction 
1.1 Introduction 
Minimized microfluidic device systems, also known as lab-on-a-chip (LOC) or 

micro total analytical systems (µTAS), are small chips with fabricated patterns of 

miniature fluidic channels and chambers, electrodes, and/or mechanical structures 

at a micrometer or smaller. Microfluidic devices are an attractive option because 

they provide advantages of low detection limits, high-resolution, low-cost, low-

labor intensity, and parallel analysis with small sample requirements. LOC has 

been actively studied for about the last 30 years with applications possibilities in 

the medical science, biology, environment science, chemical engineering, material 

science and analytical equipment design fields [6]. Many applications require well 

designed and delicate LOC devices, whose development is influenced by 

fabrication techniques and materials properties: rapid prototyping allows for 

patterns with micro features to be created via computer aided design (CAD) [7, 8], 

soft lithography offers an opportunity to transfer a micro pattern onto different 

materials (silicon, glass, metal, polymer, etc), sealing methods can enclose fluid 

channels making the microdevice dismountable and reusable [9],  and 

improvement of polymer materials can streamline the device fabrication process 

and decrease the LOC cost [10]. Thus, LOC will continue to evolve alongside 

emerging microfabrication techniques, which will enable new applications in 

biological sensing, disease diagnostic testing and other biology related areas.  

In this dissertation, research into miniaturized LOC-IEF (surface enabled IEF, 

sIEF), which is motivated by the requirements of rapid response, robotic device 

fabrication and small labor expenses is being presented. Initially, the design of the 

device was initiated based on the physical mechanism of conventional IEF, and 

then device fabrication was conducted and optimized with multiple considerations, 

including materials, instrument operation, and environmental conditions. The 

second part of this dissertation is based on the concluded device fabrication in part 

one of the sIEF research. Continuous carrier ampholytes type pH gradient was 
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established in the device, and then examined by pH sensitive fluorescent dye. 

Fluorescent proteins and peptides were then used as samples for the sIEF device 

characterization, and possible dependencies based on traditional IEF were studied 

in this part. The third part of this dissertation involved methodically studying surface 

modification and the introduction of addictive chemicals, to optimize the whole 

system for improved resolving ability. Eventually, real complex protein mixtures 

(hemoglobin variants, monoclonal antibody isoforms) were applied to evaluate the 

sIEF system.  

Experimental results revealed that the sIEF system was capable of handling 

smaller volumes of proteins, carrier ampholytes, and gels-enabled separations 

with equivalent resolution to slab gel IEF; therefore, the results of this research is 

the first time bring IEF techniques down to the nanoliter scale for sample volumes, 

which is an essential addition for the development of IEF. Also, the small sample 

requirement and rapid analysis properties of sIEF may contribute to applications 

in diagnostic/treatment management of proteomic analyses and proteopathies 

diseases.  

In the following contents of this chapter, an introduction of LOC device and IEF 

technology general concepts, development of LOC-IEF devices, and surface 

enabled fabrication will be discussed. The motivation behind this research will also 

be explained as well. This chapter will serve as the storyline for the entire 

dissertation. 

1.2 Current Widespread Protein Analysis Techniques 

1.2.1 From DNA to Proteins 
Protein is one type of the essential biomolecules with an important role in both 

functional and structural processes of all living things. Structurally, proteins are 

complex macromolecules composed of different sequences of amino acids and 

covalent amide linkages, which are coded from deoxyribonucleic acid (DNA) 

sequences. To better understand gene sequences that code for proteins, current 

DNA profiling techniques require mL to µL scale samples and generate accurate 
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and reproducible sequence results that can discern sequence anomalies by 

comparing them to pre-collected DNA databases [11, 12]. While functional proteins 

are the direct result of the correct translation of the nucleic acid sequence into the 

amino acid sequence, the discordance between nucleic acid bases and the 20 

amino acids can significantly change protein functions. Also most proteins include 

strategic folding of polypeptide chains (primary structure) to yield a 3-D structure 

and compacted folded domains. Thus, it is hard to make a direct prediction from 

the amino acid sequence to a 3-D structure [13, 14].  

Between DNA’s section of relevant genetic information and the protein’s amino 

acid sequence, there is the intermediate ribonucleic acid (RNA) molecule. The 

gene's sequence from DNA is encoded into an RNA sequence first, and then the 

RNA message is translated into an amino acid sequence. Like DNA, RNA is also 

a 2-D sequence. The formation of the final functional protein follows the order of 

an amino acid sequence initially assembled with the 2-D sequence as a) the 

primary structure, b) different regions of 2-D sequence form into secondary 

structures (α-helices, β-strands, etc.), c) structural elements of primary and 

secondary build the compact 3-D tertiary structures, and/or d) the primary and 

secondary structures further arranged into complicated 3-D quaternary units (see 

Figure 1.1). The dynamics of these folding patterns are still not fully understood 

and remain a challenge [15].  Therefore, to interpret an accurate determination of 
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protein structures and sequence protein information from DNA results is not 

insufficient for current research demands [16]. 

Because proteins are the functional building blocks and assemblers of cell 

components, thorough and systematic information on protein physical properties 

is critically important, and tools to directly deduce these properties are essential.  

Researchers also need to directly measure characteristics of dynamic protein 

upregulation and downregulation in cellular physiology to fully understand healthy 

and diseased states. This knowledge can lead to improvements in diverse 

biomedical areas from biosynthesis to pharmaceutical developments to 

macronutrient physiology studies.   

Figure 1.1 A formation chain from genetic code to functional proteins 
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To systematically investigate protein structure and the mechanisms of action, there 

is no single methodology capable of running the complete analysis sequence. A 

reasonable solution is to break protein analysis into several stages and choose 

different tools for each stage. The whole protein analysis sequence includes 

protein purification, detection and characterization, as shown in Figure 1.2.  For 

any protein study, purification is necessary to isolate the desired proteins from ca. 

10,000 different proteins in a cell. To know the presence of the protein species of 

interest, tools to detect the molecule are needed. To finally understand protein 

structures from amino acid composition and sequences, it requires 

characterization techniques to selectively cleavage and disassemble protein 

molecules [14, 15].  For each stage, tools such as centrifugation, 2-D 

electrophoresis, mass spectrometry, etc. are mapped out in Figure 1.2 and will be 

introduced in the following paragraph. 

1.2.2 Protein Purification  
Protein studies begin with protein purification, which separates specific proteins 

from other molecules according to differences in physical properties. In the early 

Figure 1.2 Protein study flow chart: from single protein species 
extraction to protein structural characterization on a molecular level. 
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stage, purification is based on a protein’s surface properties (water-solubility, 

charge), mass, or density. To separate proteins from membranes, surfactants are 

utilized to disrupt membrane molecular structure by intercalating into phospholipid 

bilayers and solubilizing lipids and proteins. To separate proteins with different 

masses or densities, centrifugation with verified rates are used to force 

sedimentation in prescribed times. These type of protein purification methods can 

only do rough protein separations with distinctive physical differences [17]. With 

new instrument developments, novel methods are being used for protein 

purification to provide superior results; one example is electrophoresis. 

Electrophoresis is a technique for resolving molecules in a mixture under the 

influence of an applied electric field. Dissolved molecules in an electric field 

migrate at a speed determined by their charge to mass ratio. In protein applications, 

SDS-polyacrylamide gel electrophoresis (PAGE) is the most common and widely 

used method. Gels are cast between a pair of glass plates by polymerizing 

acrylamide monomer solutions into polyacrylamide chains and simultaneously 

cross-linking the chains into a matrix. The pore size of a gel can be varied by 

adjusting the concentrations of acrylamide and the polymerization catalyst. When 

protein mixtures are added to a gel and an electric field is energized, different 

proteins migrate through the gel pores at different rates. Meanwhile, proteins 

interact with the ionic detergent SDS (sodium dodecylsulfate) before and during 

gel electrophoresis; as a result, proteins are denatured and forced into extended 

conformations with similar charge to mass ratios so that mass is the sole 

determinant of electrophoretic migration [15]. The resolving power of SDS-PAGE 

is optimal for molecular weights between 1,000 and 300,000.  The variation of gel 

pore size [18], and the final resolving power can be optimized by adjusting other 

conditions such as environment pH, buffer solutions, and gel additives [19]. 

Currently, with the development of gel casting techniques and broader selections 

of commercial buffer solutions, SDS-PAGE remains one of the most powerful tools 

for protein purification.  
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In addition to SDS-PAGE, liquid chromatography (LC) is also used in protein 

purification. This method is based on the principle that protein species dissolved 

in a solution (mobile phase) will bind and dissociate with a solid surface (e.g. 

packed LC column) with different affinities, which is reflected into different 

migration rates through the LC packed column. The separation mechanisms vary 

among LC column types (for example, ion-exchange column for charge based 

separations [15]). Due to the cost and throughput limits, the use of LC for protein 

purification is not as common as electrophoresis or physical (detergent wash, 

centrifugation) methods. 

1.2.3 Protein Detection  
To further analyze the structure and function of proteins, a step for detecting, or 

assaying specific proteins is important. The earliest way to achieve individual 

protein detection was the use of specific enzymes and antibody assays. A typical 

assay capitalizes on a molecule’s highly distinctive ability to bind a particular ligand, 

catalyze a particular reaction, or to be recognized by a specific antibody. To make 

the results visualized, optical methods such as chromogenic substrates, which 

change color during the course of the reaction, and fluorescent detection are 

involved in enzyme and antibody assays.  These chromogenic substrates also 

facilitate the quantitative measurement of enzyme presence. However, due to the 

properties of selective binding/reaction, every enzymatic/antibody method is 

constrained by single types of proteins, which prevents enzyme and antibody 

assays to be a well-adapted general method in protein detections [15, 17]. 

As an alternative, electrophoresis based methods can also be applied for protein 

detections. Because some proteins differ in size and shape, yet have nearly 

identical charge to mass ratios, single dimensional electrophoresis results in little 

or no separation of molecules of different lengths. In this case, two-dimensional 

gel electrophoresis (2-DE) is introduced. This most common 2-D combination 

employs both the charge based (isoelectric point, pI) and mass based (molecular 

weight) separation mechanisms to sort different protein species from complex 

mixtures. 2-DE is capable of compiling separation information into a protein map 
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so that the changes in sample structural expression and post translational 

modification can be directly tracked. The early stage 2-DE used carrier ampholyte 

to achieve charge based separation. At that time, due to the immature carrier 

ampholyte manufacture level, 2-DE had low resolution and reproducibility and did 

not work well with analytes of very high/low pI values [20]. With the development 

of carrier ampholytes, a greater pH range was possible and the resolving power of 

2-DE was improved [21]. The most recent 2-DE applies immobilized pH gradients 

(IPG) for protein separations, such that IPG stripes range between pH 2.5–12, thus 

covering the pI values of most protein species. Also with the development of 

computer assisted analyses and 2-D protein databases, the resolving power of 2-

DE can reach ΔpI of 0.001, detect less than 1 ng of protein per sample, and up to 

5,000 protein species [22]. Another common 2-D combination is gel 

electrophoresis and antibodies/enzyme assays (Western blotting or 

immunoblotting). After gel electrophoresis, the pre-separated proteins are 

transferred or blotted onto a second matrix, then enzymes/antibodies are added to 

produce a detectable signal. This three-step method (electrotransfer, antibody 

detection and development) is commonly used to separate proteins and then 

identify a specific protein of interest [23]. 

Even faced with competition from other detection tools such as radioisotope 

labeling [15], 2-DE is still the most common and facile protein detection method 

due to the advantages of high resolution, commercially standardized operation flow, 

and simultaneously parallel analysis. However, the well-trained labor requirement, 

long operation, and analysis times (the whole scenario takes up to a day) makes 

the tool cost prohibitive and the largest challenge for 2-DE. 

1.2.4 Protein Characterization  
As mentioned earlier, a functional protein is a 3D complex from amino acid 

sequence. Types of amino acids, their abundance, their sequence, and their 

structure are critically important to protein identification. Therefore, 

characterization tools which can resolve molecular level differences in proteins are 

in demand. The earliest method to determine the amino acid sequence of a protein 
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or smaller polypeptide was Edman degradation. In this procedure the amino group 

at the N-terminus of a polypeptide was labeled and its amino acid is cleaved from 

the polypeptide, which left the polypeptide one residue shorter, with a new amino 

acid at the N-terminus. By repeating this cycle, the polypeptide was systematically 

shortened, until all the residues were identified [15]. However, this process was 

slow and the throughput was low. Thus, Edman degradation method was slowly 

replaced by other more powerful tools. 

Mass spectrometry (MS) is now the dominant technique in protein characterization 

research. The mechanism of MS for proteomics is to ionize protein species and to 

align the ions based on their mass-to-charge ratio. By recording and analyzing 

ionized protein molecule pieces, the micro structural information such as covalent 

structures can be obtained. At the beginning stage, the development of MS on 

protein analysis was mediocre due to instrument limitations. However, MS rapidly 

developed in the 1980s, which can be attributed to ionization and mass analyzer 

techniques. New ionization techniques such as electrospray ionization (ESI) and 

matrix assisted laser desorption/ionization (MALDI) [24] allowed MS to softly ionize 

samples to maintain the intact biomolecule pieces during sampling. This enabled 

MS to access smaller scale fragments at the polypeptide level. Also, new mass 

analyzers such as time-of-flight (TOF) and charge traps enabled better control of 

ionized fragments to be delivered to detector, which increased MS resolving power 

[25]. In the mid-1990s, MS became the mainstream analysis technique for 

determination of polypeptide molecular mass. Another development of MS for 

proteomic study was the use of multistage MS instruments. The combinations such 

as MALDI-MS (or Edman sequencing), TOF-TOF and MS-MS applied one stage 

to weigh molecules and another stage to analyze information of the selected 

fragments from previous stage. Through multistage MS, detailed peptides 

structural features could be inferred from masses analysis of the resulting 

fragments. Therefore multistage MS instruments were most commonly used to 

support a range of research strategies in proteomic studies. Recent MS 

instruments remain the most powerful tools capable of protein identification, 
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quantification, and detection of molecular modification, with high throughput and 

high resolution (up to 12,000 protein/peptides species) [17]. Due to the high 

purification sample requirements, high cost, long analysis time, and destructive 

analysis, most applications of proteomic MS in laboratories utilize post-separated 

samples and do not involve time sensitive protein complex analysis. 

1.2.5 Opportunities in Protein Analysis   
In summary, 2-DE and MS are the mainstream techniques for pre and post 

analysis of proteins, respectively. However, these tools encounter issues such as 

long analysis times, complicated sample processing, and larger sample 

consumption. For these reasons, there exists space for further development of 

proteomic tools and techniques. Development of a device/instrument able to 

maintain high resolution and reliability, while simultaneously featuring rapid 

separation, detection, and identification with smaller samples, would be an 

impactful advancement for protein analysis.   

1.3 Overview of LOC Technologies 
As described in the introduction, the design and fabrication of an LOC device 

requires advanced tools and techniques, such as lithography, thin metal layer 

deposition, and etching. Many of these processes were established with the growth 

in the semiconductor area [26, 27]. With the help of microfabrication tools, the 

scale of LOC can be miniaturized with improved complexity and integrity. LOC’s 

versatility enables a broad range of applications. A common utilization of 

microdevices in biological/chemical engineering is analyte manipulations; 

microdevices are employed to mimic laboratory processes in micro/nanoliter 

volumes by using the microchannels and microchambers fabricated onto the chips 

[28]. In 1979, Terry and his co-workers miniaturized gas chromatography [29]; 

sample injection, a capillary column, and a thermal conductivity detector (TCD) 

were integrated on a 5-cm-diameter silicon wafer with etched gas fluid channel 

features. Inorganic gas (nitrogen) and several organic gases (hexane, n-pentane, 

etc.) were successfully detected with retention times reduced from minutes at the 

macroscale to seconds at the microscale. This research was the earliest 
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demonstrated LOC, and it opened the gate to the detection and analysis of 

macromolecules. Over the last 30 years, LOC devices for cell manipulation [30, 

31], blood counting [32], vivo drug delivery [33], protein sensing [34], and even 

DNA array tests [35], have been developed.  

The main direction and motivation for further development of LOC for analyte 

manipulations include 1) miniaturization of  current techniques to make them more 

versatile and compact (e.g. mini scale gas chromatography [29] and capillary 

electrophoresis [36-38]); 2) Device portability which could  be carried easily and 

fitted well into the scenario immediately in need where very small sample amounts 

are available, rapid sample preparation and analysis in seconds or minutes can 

occur, and online analysis results are required; 3) modified chemical/biosensor or 

detector with enhanced resolution and sensitivity. Eventually, future LOC viability 

will be determined by user friendliness, test reproducibility, and device robustness. 

1.4 Lab-on-a-chip Applications on Protein Analysis  
Proteins are essential components of living organisms that play vital roles in 

physiological metabolic pathways. Miscoded or misfolded proteins are the root 

cause of many diseases including neurodegenerative diseases like Alzheimer's or 

Parkinson’s [39, 40]. Selective protein detection and separation can aid in 

measuring qualitative and quantitative changes in biological samples for disease 

diagnosis and management [41]. To reach this goal, techniques that are capable 

of accurate control and manipulation, rapid analysis, and handling small sample 

sizes are essential. LOC features practical movement of micro or even nanoscale 

samples, also it is feasible to be integrated with other analysis tools, such as 

chromatography, time-of-flight mass spectrometry (TOF-MS) and UV-visible 

spectroscopy for post sample analysis. These characteristics provide LOC with 

great potential toward advanced and complicated protein analysis. The earliest 

prototype of LOC for protein analysis appeared in the early 1990s. Karlsson and 

his colleagues attached a small microfluidic unit onto a surface plasmon resonance 

(SPR) sensor to study the kinetics of monoclonal antibody-antigen reactions [42]. 

The microfluidic unit was used for controllable immobilization of antibody and 
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antigen, which led to the observation and calculation of varied affinity and reaction 

rates. Later on, a micromachining technology was employed in the field of 

bioinstrumentation. A micron-sized electrical field-flow fractionation (μ-EFFF) 

system was introduced by Gale group [43]. Vertical aligned electrodes were 

patterned by Au and Ti depositing onto a silicon surface, a micro channel (4-6 cm 

length, 20-30 μm depth and 0.4-8 mm width) was formed by polyimide and a glass 

cover. Compared to conventional EFFF, the miniaturized μ-EFFF system has 

made significant improvements in reducing sample size and separation time. LOC 

can also be used in the microchip immunoassays field. The relationship between 

non-specific adsorption of IgG and the electroosmotic flow ability was investigated by 

Locascio and his co-workers [44]. A microfluidic channel was formed by imprinting 

chrome wire onto materials like acrylic, polystyrene and polyester. Non-specific 

protein `adsorption can be alleviated by reducing electroosmosis (EOF) mobility, 

which can be achieved by manipulating channel materials. Moreover, LOC 

techniques can be involved in areas such as isoelectric focusing (IEF) [45], protein 

biochemical reaction [46], and protein molecule library screening [47].  

Generally, LOC protein analysis techniques include physical and chemical 

methods [41]. Physical methods rely upon spectroscopy-like mechanisms 

(physical absorption, mass fraction detection, etc); minimized chromatography 

devices and surface adsorption based protein sensors are common examples [29, 

48].The latter example is one of the most popular fields for LOC-protein analysis 

combination. The motivation of LOC-protein analysis is the small sample analysis 

capability of proteomics studies. Conventional proteomic analysis was limited in 

massive information collection, which narrows the access to small molecules. 

Meanwhile, the automation, cost reduction, and high throughput characteristics 

were proven to be achieved in chip based devices, which makes LOC a good 

candidate technologies for the further development of proteomics [49]. There are 

two main categories among the different LOC systems that have been applied to 

the proteomic process: microfluidics systems and micro sample arrays. LOC 

microfluidic devices have evolved for protein analysis where channels less than 1 



13 

mm guide fluids from sample reservoirs to facilitate analyte separations or guide 

fluid to waste. Samples include protein or antibody suspensions and buffers [28, 

50]. Interesting property changes or phenomenon can be obtained directly from a 

LOC device (e.g. liquid components separation, fluidic diffusion, pH, velocity, and 

viscosity). These changes will either be visualized or be correlated to certain 

parameters (concentration, etc.) of protein species to achieve a detection/analysis 

purpose. It can be used in protein purification/separation and sample identification 

in chromatography. For purification/separation, the old school method of IEF for 

protein separation was successfully integrated onto microfluidic chips. The basic 

device design includes a microfluidic channel, wire/plane electrodes, and sample 

injection port/reservoirs [51-54]. Simple sample analysis were demonstrated using 

these kinds of devices. Furthermore, due to the integrality feature of microfluidic 

chip, IEF in a microfluidic device was incorporated with chromatography technique 

such as MS. In Wen’s research, inlets for sheath liquid and gas were designed in 

the microchannel IEF chip. Samples were pre-separated by IEF and then went into 

the electrospray interface emitter for later MS analysis. This concept unwrapped 

the path for highly integrated LOC-protein analysis [55]. The second type of micro 

array based device is a solution for integrated analysis for complicated samples. 

The basic idea is to create a multiple analytes array, which is easily accessed 

simultaneously. This array setting will reduce possibilities of sample degrade, non-

specific binding and loss of activity [49]. Techniques included in developing a 

protein array includes local chemical activation, electrospray deposition, 

micropads delivered activation, hydrogel stamper and spot synthesis [49, 56-58]. 

In conclusion, the protein array technique is still undergoing development, and can 

be facilitated with new techniques, such as electrowetting-on-dielectrics and 

surface printing [1, 47, 59-62]. There is still a room for the growth of protein array 

construction. 

As previously illustrated, chemical based method is another main technique of 

LOC protein analysis. Common examples of this method includes dye/stain 

labeling (organic/metal based, fluorescence/luminescence based, radioactive 
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based, etc) and amperometric detection based analysis. A typical use of dye/stain 

labeling is fluorescent labeled capillary isoelectric focusing (cIEF) for protein 

separations [63]. In the instrument setting, the capillary usually has an observation 

window or an optical detector. Compared to conventional cIEF, fluorescent labeled 

cIEF will keep the spectrum results for analysis, as well as enable the visualization 

of the focusing process [63, 64]. Amperometric detection based analysis is 

approached with a three electrodes system which is able to screen the change of 

generated current that comes from the redox reaction in analytes. The detection 

will only happen with electroactive analytes, and the detection limit can reach to 

the femtomolar scale [65]. In LOC-protein analysis applications, potential drop, 

which is caused by charge accumulation on the electrode surface, will be 

measured during testing. This mechanism was proven to work for  both in vivo and 

in vitro analysis [66].  

In brief, LOC techniques offer a platform that brings protein analysis down to the 

microscale. In the micro world, deliberate manipulation and accurate analysis are 

possible to achieve. Also, protein analysis provides LOC an opportunity for real 

applications that will continuously push its limitations in biomolecule analysis. 

1.5 Surface Enabled LOC Devices 
Traditional LOCs were designed to optimize fluid manipulation inside of device 

microchannels, which are generated either by hard surface etching of silicon/glass 

chips or reverse molding of polymer materials from a replicated mask. These types 

of LOC fabrication methods will certainly have some advantages such like low cost, 

good reproducibility and controllable device patterning; however, they also face 

three main challenges: 1) limited adaptability to submicrometer dimensions, which 

is confined by the resolution of conventional microfabrication techniques, 2) longer 

analysis times, and 3) operating qualifications of well-trained users. In order to 

approach the persnickety demands of complex biological and medical applications 

in modern society, the design and manufacturing of LOC devices, need to make 

breakthroughs. Opportunely, the rise of novel microfabrication/manufacturing 
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techniques have become the driving force that has sparked this LOC device 

revolution. 

1.5.1 Electrowetting-on-Dielectrics Technique 
One of the best candidates to free LOC devices from their confined microchannels 

is electrowetting technology. Electrowetting can manipulate tiny fluid droplets on a 

surface by using externally applied electrical signals under the surface, and 

thereby control fluid shape and movement [67]. Based on this concept, 

electrowetting-on-dielectrics (EWOD), which is operated on dielectric/dielectric-

coated surfaces, is showing significant potential on LOC fabrication and 

applications. Figure 1.1 is a typical EWOD device set-up [68]. A droplet positioned 

between parallel top electrode and bottom electrode arrays can be controlled with 

alternatingly applied electrical fields, which distort the droplet contact angle and 

thus their shape. Droplet shape can be restored if the electric field is turned off, but 

the position of the drop will depend on the new droplet’s edge. This process is 

capable of moving droplets across a surface. 

Characteristics of EWOD are valuable for LOC device operation, especially for the 

operations that moving, merging, mixing, and splitting droplets at the microliter 

Figure 1.3 Typical EWOD electrodes set-up. Diagram of a typical LOC-
EWOD system: droplet edges must overlap with at least two adjacent 
electrodes to get reliable droplet actuation; substrate separations are ca. 
100–500 μm. The order of electrode sizes is of 1 mm, typical droplet 
volumes are 0.1−1 μL [1]. © IOP Publishing. Reproduced with permission 
(see Appendix B). All rights reserved 
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scale. Srinivasan investigated a droplet-based LOC device for clinical diagnostics 

on human physiological fluids [69]. The EWOD device was composed of a 

photolithographically patterned metal electrode array on a glass substrate and a 

continuous ground parallel plane. Fluid was sealed between the upper and lower 

electrodes and insulated by Parylene C and Teflon 1600 coating. The switching 

frequency, which is the rate that a droplet can be moved across two adjacent 

electrodes, was dependent on applied voltage and human body liquid droplets, 

had different frequency responses. Huh et al. [1] introduced a LOC device with air-

liquid two phase channels. Two electrodes were underneath the channel, and by 

applying an electric field, the surface energy of air-liquid surface would change. 

This led to a flow pattern change used to manipulate flow direction in the channel.  

EWOD is an actively developing and exciting technology, which still has some 

pressing issues effecting LOC device performance [68]: 1) electrowetting requires 

two electrical contacts to the droplet, which is typically accomplished with 

sandwiched electrodes, 2) to allow for reliable droplet actuation, droplet edges 

must overlap with at least two adjacent electrodes such that 100–500 µm 

electrodes distance requires ca. 0.1-1 µL droplet volumes, and 3) the vapor 

pressure of water is rather high at room temperature; therefore,  evaporation from 

the small droplets can be a big issue. In summary, EWOD devices successfully 

bring macro-liquid-manipulation out of confined channels to surfaces and are the 

first step in new directions being taken for LOC devices. 

1.5.2 Surface Enabled Fabrication  
Surface enabled fabrication is a promising technique first introduced by our group 

in this document based on fluidics enhanced molecular transfer operations 

(FEMTO), which utilizes capillary forces with Bioforce Nano eNablerTM surface 

patterning tools (SPTs) to transfer a software-programmed liquid pattern onto a 

surface. This is an attractive technique because it requires fewer reagents via an 

easy and quick printing process used to create miniaturized or even 

ultraminiaturized patterns onto arbitrary surfaces. Innovated instruments like 

BioForce Nano eNablerTM, NanoArrayerTM, etc. have reduced difficulties loading 
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nanopipettes or blockage in closed channels, such that it is possible to deliver 

attoliter to femtoliter volumes of certain solutions/ink to precise locations with well-

defined patterns. In addition, surface enabled fabrication will allow a variety of 

liquid proteins, nucleic acids, lipids colloids, quantum dots, UV-curable adhesives, 

etchants and catalysts [70] materials to be printed into patterns. In the last 10 years, 

surface enabled fabrication/FEMTO methods have utilized a quill-type cantilever-

based SPT and constructed it for biological molecular patterning [71]. By 

experimentally generating a Cy3-streptavidin pattern onto a dithiobis-succinimidyl 

undecanoate (DSU) coated gold surfaces, the reservoir SPT with fluidic transport 

microchannel and split gap was able to generate biological arrays with 2-3 μm spot 

size. Later, the same research group [72] reported a construction of multiplexed 

biomolecular arrays using a modified multiple-cantilever SPT technique to allow 

for different sample inks to be printed onto a substrate simultaneously.  

Numerous liquids have been transferred to arbitrary surfaces including the 

deposition and patterning of quantum dots [62].  Commercial Streptavidin-

conjugated quantum dots (QD-SA) were mixed with buffer solution; 200 nl enabled 

1-hour of writing. The QD-SA could be written to a gold-coated silicon chip at a fast 

translation rate of 15-20 μm s-1. Metal nanoparticles can also be patterned by SPT. 

Onoue and his colleagues [73] successfully fabricated silver nanoparticles metal-

mask onto glass or silicon oxide wafers. Fountain-pen nanolithography (FPN) of 

silver ink with the Nano eNablerTM could be adjusted by optimizing ink and surface 

conditions. Furthermore, a photomask successfully transferred the pattern to a 

photoresist film. SPT was also able to pattern 600-nm polystyrene (PS) spheres 

on glass substrates. Subsequent solution evaporation induced self-assembly 

(EISA) led the PS spheres to form a close-packed hexagonal pattern [61]. The PS 

sphere diameter could be further reduced by reactive ion etching (RIE), and the 
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resulting close packed PS sphere templated sub wavelength periodic structures 

for surface Plasmon enhanced optical transmission.  

Similar to EWOD, surface enabled fabrication is also compatible with macroscale 

liquid manipulation. Additional advantages include: 1) sample droplet/fluid patterns 

being particularly flexible, without an additional pre-design being necessary, 2) it 

is possible to replace the 3-D sandwiched electrode-sample configuration with a 

2-D planar set-up, which could further simplify the whole device fabrication process, 

and 3) Commercial instruments (BioForce Nano eNablerTM, NanoArrayerTM, can 

be seen in Figure 1.2) are available. Thus, we predict that fabrication stability and 

reproducibility can be improved beyond EWOD devices. Surface enabled 

fabrication is an emerging technique, signified by the few papers (list shown in 

Table 1) published in this area. We view this as a great opportunity to introduce 

novel, minimized LOC surface devices.  

  

Figure 1.4 BioForce Nano eNablerTM demonstration. a) The full instrument 
view. The main parts include the moving stage, optic microscope, surface 
patterning tool (SPT), SPT holder, and a chamber with controllable 
humidity. b) Image of SPT. c) SPT structure demonstration 
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Table 1 Utilization of Nano eNablerTM system in FEMTO fabrication 

 

 

 

Author Ink components Substrate 

Baba [74] SWNTs, organic 

semiconductor 
Silicon wafer 

Cady [75] DNA HfO2 

Fahrenkopf [76] DNA ZrO2, AlGaN, GaN, and 

HfO2 
Féréol [77] Protein Poly-L-lysine 

  Huang [77, 78] Extracellular matrix (ECM), 

dye 
Epoxide-modified glass 

Islam [79] C-reactive protein (CRP) 3-mercaptopropyl 

trimethoxysilane-coated 

 Korostynska [80] Polymers Silicon wafer 
Luo [61] Polystyrene nanospheres (PS) Glass 

Lynch [81] Protein Gold-coated silicon 

wafers 

Mei [82] ECM protein, dyes Octyltrichlorosilane 

(OTS) treated glass 

Neto [83] Biomaterials/proteins Superhydrophobic 

polystyrene (PS) surfaces 

Onoue [84] 
3-Aminopropyltriethoxy silane 

(APS), 2-(4-

Pyridylethil)triethoxysilane 

Silicon and thermal oxide 

silicon 

wafer 

Onoue [73] Silver nano particle glasses and silicon and 

oxide wafers 

Vengasandra [62] QDs 

conjugated to streptavidin 

 

Gold coated silicon chip 

Xu [71, 72] Cy3-streptavidin DSU coated gold 
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1.6 Research Motivations and Objectives  
Protein detection and separation via a LOC device is a popular research area with 

rapid growth. One of the most attractive facts about LOC is the capability of it being 

a miniaturized platform capable of carrying out conventional protein tests such as 

chromatography, electrophoresis, and sample sensing [85]. For protein detection 

and separation, isoelectric focusing (IEF) is one of the most effective methods 

capable of separating and grouping different protein species from a mixture 

according to their isoelectric points (pI value) differences. The combination of LOC 

and IEF is really motivating because it has great potential as a commercialized 

product that features both high resolution, good reliability inherited from 

conventional IEF, rapid detection, and less sample requirement descend from LOC 

[86-89]. 

The current LOC-IEF devices are at the millimeter scale, it has been reported that 

IEF pH gradient stability and separation time would be improved with decreasing 

separation length was decreasinng [90-92]. However, subjected to the resolution 

limits of conventional fabrication techniques, it is hard to further decrease the scale 

of IEF. In this dissertation, a novel surface enabled LOC-IEF device concept is 

presented, with the help of surface printing techniques. This project is aiming to 

develop an IEF device at the scale of 102 µm, which is 2 magnitudes smaller than 

previously existing LOC-IEF devices. This device has characteristics including 

simple fabrication, low cost, fast operation, and less sample requirements. In the 

meantime, the resolution of the LOC-IEF device is equivalent to the conventional 

IEF apparatus. The main story of this work follows the outline below: 

1) Establishment of surface enabled isoelectric focusing (sIEF). Our work 

aims to advance IEF via the surface enabled fabrication to achieve IEF at 

magnitudes of 100 times smaller than those previously reported [4, 93]. 

Polyacrylamide gels containing carrier ampholytes (CA) will be used to 

generate the pH gradients environment within which proteins can be 

focused to their pI. Surface enabled fabrication will be utilized to print IEF 

gels across parallel gold electrodes on a glass chip. The operating 
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parameters include gel composition and polymerization time, pH gradient 

range, surface treatment, microprinting conditions, and electrode potentials, 

which will be examined to determine optimized experimental conditions. 

The finalized device fabrication and operation will be utilized in all IEF 

working of this dissertation.  

2) Examination of pH gradient in the sIEF device. Performed to qualitatively 

and quantitatively study the pH gradient generation along the printed gel 

lines. Two pH inspecting systems are applied in this work: pH sensitive 

fluorescent dyes and fluorescent peptides pI markers with known pI value. 

The established pH gradient is monitored under a microscope, and the 

corresponding image intensity profiles are analyzed. At last, calibration 

curves showing the pH-location correlation are fitted based on experimental 

data.  

3) IEF performance test using fluorescent proteins. With the proven device 

concept and pH gradient, protein mixture IEF experiments are conducted in 

the sIEF device to test its detection/separation capability. A two-protein 

system which has fluorescent protein species with large pI value difference 

is used as sample for tests. Similar to the pH gradient test, microscope 

images are recorded during the IEF process and the corresponding image 

intensity profiles are drawn. Two IEF characteristic parameters: peak 

capacity and minimum resolvable pI differences are calculated and 

compared by species based on the IEF peaks in the intensity spectrum.    

4) Device optimization via surface modification and additive chemicals. 

Similar to conventional IEF, instable pH gradient phenomenon also 

observed in sIEF system. To suppress pH instability and improve the sIEF 

performance, electrode surface passivation and adding additive chemicals 

into the gel system are investigated. By passivating electrode surface, 

Faradaic reaction which can generate extra anions and cations could be 

controlled; by introducing additive chemicals, pH mobilizing force-
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electroosmosis flow (EOF) could be reduced, as does the protein-protein 

reaction and protein-surface reactions.    

5) Real proteins test in the optimized sIEF device: IEF of more complicated 

proteins systems are eventually evaluated in this part of the work. Three 

hemoglobin variants with less than 0.2 pI difference and glycosylated 

monoclonal antibody isoforms are separated via sIEF. This series of IEF 

tests is targeting the separation limits of sIEF platform, as well as exploring 

the potential in complex biological and medical sample detection and 

analysis.  
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 A Review of Isoelectric Focusing Techniques 
2.1  Introduction 
Isoelectric focusing (IEF) is a powerful electromigration technique for identifying, , 

separating and analyzing amphoteric molecules such as proteins and peptides, 

which makes IEF fundamental to medical diagnostics of proteopathy diseases 

involving protein abnormalities and pharmaceutical screening of therapeutic 

proteins. Traditionally, IEF is performed using large scale slab gels in clinical labs. 

The operation is resource, labor, and time intensive, which limits the rapid analysis 

in clinical/commercial applications. Beginning in the 1990s, more researches have 

been focused on scaling down IEF, in the aim of short analysis time, easy operation, 

and high integration, with comparable or even better resolution compared with 

conventional IEF. The main stream of IEF development is the replacement of large 

scale IEF by small volume, genomic and affinity approaches. Efforts to miniaturize 

and improve IEF have included channel-based microdevices with ion-exchange 

membranes, reservoirs, and reagent-release capillary arrays [88, 94-98], and 

capillary IEF (cIEF) [68, 99, 100]. Unfortunately, sample recovery from the 

channels remains cumbersome, and thus limit applications and accessibility to lay 

users. This demonstrates the demand in scientific and industrial sectors for even 

smaller-scale IEF technologies, while concurrently showing the need for simpler 

preparation, simpler operational requirements, versatility, and ease of focused 

spot recovery for subsequent protein characterizations [101]. As described 

previously, this dissertation focuses on the minimization method of IEF so the 

current IEF technique could be further explored. The inspirations and comparisons 

from microscale IEF will be the key point of this chapter. 

In the beginning of this review, however, conventional IEF techniques will still be 

involved. Theories and mechanisms of IEF will be defined at the beginning, 

including the working mechanism, dominated physical phenomenon, 

dependencies, criteria of IEF performance (peak capacity, resolution, etc.). After 

that, a history of IEF will be introduced by category, and will cover IEF from its very 

early prototype to recently developed techniques. To establish an IEF system, 
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materials will be summarized in the following part to provide a guide of experiment 

options. The last part will be an overview of future trends, and our surface 

isoelectric focusing (sIEF) concept will be introduced eventually, which is 

theoretically reasonable and applicable. 

2.2 Theories and Mechanisms of Conventional IEF 
During the first time that Kolin introduced the IEF prototype in the 1960s, 

ampholytes were being used for pH gradient generation [102, 103]. Ampholyte-

based IEF is the oldest among the electrophoretic equilibrium gradient methods [2, 

30-32]. As a mechanism, IEF is conducted with the pH distribution of carrier 

ampholyte (CA) molecules. (Commercial available CA including PharmalyteTM, 

Bio-Lyte, Ampholine, etc.). When being subjected to an electric field, the negatively 

and positively charged CAs migrate electrophoretically and cease to the place 

where the location pH is equal to their own isoelectric points. Due to the amphoteric 

feature, each CA is able to protect the environment pH from enormous change; 

therefore, the pH distribution in IEF separation space is composed of several 

fragments with pH equal to the pI values of local CAs. By adding different CAs with 

gradually changed pI values, a smooth, linear pH gradient can be established 

within the IEF separation space (shown in Fig 2.1) [2, 19, 33]. In order to make the 

established pH gradient as smooth as possible, commercial CAs are composed of 

more than 300 compounds with more than 1000 isoforms [21]. Similar to CAs, 

amphoteric analytes (proteins, peptides, etc) charges according to the surrounding 

pH during IEF separation processing: the analyte located in the place that pH is 

below its isoelectric point (pI) will be positively charged and migrate toward the 

cathode; if the environment pH is above the analytes’ pI, then the analyte will be 

negatively charged and migrate towards the anode [34]. At an analytes’ isoelectric 

focal point, it has zero charge and zero electrophoretic mobility and migration 

ceases. In the meantime, diffusive or convective migration and electrophoretic 

force driven flow are the counteracted factors for IEF, which bring unwanted 

phenomena such as band broadening [32]. However large amphoteric molecules, 
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like proteins, have small diffusivities; therefore, they are able to stay focused as 

tight bands for a certain amount of time before broadening happens.   

2.3 Theory and Quantification of IEF Efficiency 
To evaluate the performance of IEF, some key concepts need to be introduced. 

The first one is resolving power, which is defined as the minimum pI difference that 

can be resolved by IEF, as shown in Equation 2.1 [38]. 

∆pImin=3�
D/E

(dpH
dx )/(- dμ

dpH)
                                               (2.1) 

Where in Equation 2.1, D is the diffusion coefficient of the anlaytes, E is the applied 

electric field strength, dpH/dx is the pH gradient, and dμ/dpH is the change of 

analyte mobility against pH. For certain analyte species, the diffusion coefficient 

and mobility change are fixed constants; therefore, electric strength and pH 

gradient are the main contributors to the resolution of an IEF separation. The 

higher electric field that is applied, the less steep the pH gradient will be, and the 

better resolving power will be obtained. Electric field strength is dependent on the 

external power voltage and also the separation dimensions; pH gradient is 

Figure 2.1 A demonstration of the ampholyte type pH gradient formatting 
process 
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dependent on the carrier ampholyte that is being used. In general, the more 

amphoteric species with closer pI values in a carrier ampholyte, the smoother pH 

gradient would be formed along the applied electric field.  

Another key criterion in IEF is separation efficiency. A traditional terminology to 

evaluate a separation technique is theoretical plate number, which is defined by 

the discrete plate numbers required to achieve a designed separation efficiency at 

the equilibrium stage. This concept was originally used in packed distillation 

column evaluation before being  adopted to chromatography based separations 

due to having a  similar mechanism [104]. The estimation of theoretical plate 

numbers (N) can be described by Equation 2.2: 

N=16 Tr
2

w2                                                    (2.2) 

Where Tr is the retention time of the peak and w is the peak width at the base [105]. 

However in modern IEF, theoretical plate number was replaced by another 

terminology—peak capacity. It was defined for the first time by Giddings and 

Dahlgren in 1971, as the maximum resolvable components number [38]. The 

principle was similar to theoretical plate numbers, but the retention time was 

replaced by separation length, which is a characteristic factor of IEF device. A 

theoretical peak capacity (nt) can be calculated by Equation 2.3, where F is 

Faraday’s constant, R is the gas constant, T is the temperature, and L is the 

separation length. Similar to the minimum resolved pI, peak capacity is 

proportional to the square root of electric field strength, separation length, and pH 

increment.  

nt=�
-FE[ dq

d(pH)][
d(pH)

dx ]L2

16RT
                                             (2.3) 

Peak capacity can also be calculated using another method. In some types of IEF, 

the peak intensity profile is available to obtain, and the peak capacity can be easily 

estimated by Equation 2.4 [106-108]. This number is based on the experimental 
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results; therefore, we use ne to distinguish it from theoretical peak capacity in 

Equation 2.3. 

ne=1 + L
w
                                              (2.4) 

Where w is the peak width taken at 4σ, σ is the standard deviation of the intensity 

peak. This 4σ is consistent with Equation 2.4, which is expressed as the square 

root of 16. From both Equation 2.3 and 2.4, separation length is the dominant 

variable of peak capacity. Generally, longer separation distances among the IEF 

anode and cathode will offer more space for different types of analytes. However, 

this length cannot be infinitely increased, instrument capability and cost should 

always be considered in an IEF design.  

Focusing/separation time is another key factor that should be considered in an IEF 

process. Fundamentally, the entire process is dependent on the transport 

phenomena of analyte species in the system. The governing equation is shown as 

Equation 2.5 [88].  

∂C
∂t

= ∂
∂x

(D ∂C
∂x

-E zDF
RT

C)                                         (2.5) 

Where C is analyte concentration, D is the diffusion coefficient of the analyte, z is 

the net charge of the analyte, E the electric field strength, F is Faraday’s constant, 

T is temperature, x is the distance along the pH gradient, and t is process time. 

For fixed analyte species and temperature, separation time is proportional to 

distance along the pH gradient. It is one of the main motivations for IEF device 

miniaturization, which will be discussed in detail in a later section. Besides, 

increasing electric field strength can also shorten separation time.  

2.4 Main IEF Categories 

2.4.1 IEF Prototype 
As mentioned in Chapter 2.2, the earliest IEF prototype was reported by Kolin in 

Chicago during 1954. The device set-up can be seen in Figure 2.2, a U-shape tube 
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with square section was used for separation. In the two end parts connected to the 

U-shape section, the device was filled by a pH 9.6 buffer; in the U-shape section, 

the tube was filled with pH 2.6 buffer. Sucrose was used as an accessory chemical 

to increase the acid buffer density so it could stay at the bottom of the U-shape 

section. Protein samples were introduced in the intermediate zone (M in Figure 

2.2). After the electric field was applied, the entire device would serve as both a 

concentration function in the left half and a dilution function in the right half, 

depending on the direction of movement of the acid and base buffers. This 

research introduced the “concentration effect” of amphoteric analytes sandwiched 

by an acid buffer and a base buffer for the first time. Differing from conventional 

mobility difference based electrophoretic separation, analytes were sorted by their 

intrinsic character--isoelectric pH value, in the concentration half of the device [2]. 

Later on the same device was used for protein mixtures including hemoglobin, 

cytochrome C, catalase and collagen, with the use of buffer range from pH 3.3-7.7 

[109]. The establishment of natural pH gradient was numerically examined by 

Svensson in the 1960s, which showed the confidence of IEF to be used for 

amphoteric molecules separation [102]. In later work, Nguyen demonstrated the 

use of standard amphoteric buffer mixture in pH gradient formation: an Ampholine 

mixture, which contains 50-500 amphoteric constituents was oriented by an 

electric field and then formed a linear pH gradient. Strong acid and basic solutions 

(KOH and H2SO4 in cathode and anode, respectively) were applied as electrode 

solutions to stabilize the pH gradient during the analytes focusing process [110]. 

This type of pH gradient were getting finer after more amphoteric species were 

included as Ampholine components; therefore, analytes with smaller pI difference 

were able to be resolved. Rosa group applied modified narrow range Ampholine 

(pH 6.5-7.5) to hemoglobin variants separation, up to 70 variants were successfully 

resolved over a 30 mm separating distribution [111]. Since then, a prototype of 

amphoteric molecules moving toward their isoelectric point and being 

concentrated within a pH gradient and electric field was roughly established as an 

isoelectric focusing concept. This concept of concentrating molecules was surely 
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able to be applied for amphoteric molecules sorting or separating purposes. 

Millions of works had been conducted based on this concept by then. And the 

development of IEF started to follow either device modification or pH gradient 

modification routes. 

2.4.2 Polyacrylamide Gel IEF 
In IEF prototypes, pH gradient was successfully established and the amphoteric 

analytes had proven separation and concentration based on their pI values; 

however, with the presence of counter IEF phenomena such as diffusion and 

electrophoretic migration, a method to keep analytes focus longer is required. 

Among those counter IEF factors, diffusion plays an important role in IEF resolving 

power and focused band width. From Equation 2, the diffusion coefficient (D) is 

proportional to the minimum pI difference (ΔpImin); in other words, IEF resolving 

power can be increased by reducing D. With a fixed IEF device, increasing medium 

viscosity is the only way to lower down D and therefore is the first investigatory 

priority after the birth of IEF prototypes. Polyacrylamide gel as a universally applied 

IEF medium was first introduced to IEF by Leaback and Rutter in 1968 [5]. The 

experimental apparatus used is described in Figure 2.3: unpolymerized acrylamide 

monomer solution was poured into an 18 x 8 x 0.2 cm3 well to form a gel slab after 

polymerization. Electrode solutions were placed at the two edges of the well and 

connected with carbon or platinum electrodes. To run the IEF process, 

polymerized gel was soaked with carrier ampholytes and the sample was loaded 

into the middle of the gel. A lid was applied on top to prevent evaporations. In this 

work, the porous gel material structure served as a sieve, to make analytes travel 

longer distances during separation, and thereby increase the analytes diffusing 

time. Results demonstrated that protein focused zones had sharp band shapes. 

After this pioneer work, Righetti et al. published a work using narrow pH range 

carrier ampholytes with acrylamide gel for human hemoglobin variants separation 

[112]. Acrylamide gel was cast into a column, and the post-focused gel could be 

cut into pieces by different proteins focused locations for post sample analysis. 

Isoelectric points of focused hemoglobin variants were determined by measuring 
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the pH of gel eluates. Rowley et al. adapted Righetti’s method to investigate 

hemoglobin variants separation in polyacrylamide filled, 10 x 0.4 cm I.D. glass 

tubes. For post-focusing analysis, gel with focused species was scanned by 

spectrophotometer and each focused zone was shown as a peak in the scan 

profiles [113].  

The introduction of gel medium greatly improved analytes band shape and brought 

highly reproducible focusing protocols to IEF. Also in those IEF works, only the gel 

part was disposable, whereas all the other components of the device were fixed. 

This feature pushed the slab gel IEF to the commercial level. In general, a gel IEF 

instrument has three main components including the gel chamber, electrodes, and 

electrode solution reservoirs that are directly connected to the electrodes. The 

chamber shapes can be either cylindrical or rectangular, and gel can be either pre-

made or polymerized inside the chamber [114-119]. These days, there is plenty of 

Figure 2.2 Device demonstration of the earliest IEF prototype Reprinted 
from Kolin, A., Separation and Concentration of Proteins in a pH Field 
Combined with an Electric Field. The Journal of Chemical Physics, 1954. 
22(9): p. 1628-1629. [2], with the permission of AIP Publishing. (See 
Appendix B) 
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commercial slab gel IEF instruments (such as Bio-Rad Ready Gel ® System and 

Agilent 2100 Bioanalyzer) and pre-made ready-to-use gel (such as Life-Science 

Criterion™ and Ready Gel®, Thermo Fisher Novex) are commercially available, 

which makes gel-IEF techniques still being used for the same bulk scale 

commercial protein separation work.  

Couples of post-IEF detection techniques can be utilized for polyacrylamide IEF. 

In the earliest IEF analysis, focused sample zones in gel were cut into pieces and 

then placed into solvents for sample concentration measurement. To achieve 

better visualization, the gel could be stained with different types of dyes, including 

organic dyes, silver stains, negative stains, and fluorescent stains [57]. This stain-

cut-analysis has certain standard operation procedures to follow and thus provides 

good reproducibility. However, in some procedures (e.g. gel cut, wash, and 

regeneration) “endless” time to run the sequence is requires. Advanced post-IEF 

analysis methods including UV-vis detection and fluorescent can make the 

conventional labor intensive procedures replaced by computer controlled detectors, 

with the assistants of analysis software, post-IEF work can be more efficient. 

Overall, the gel stain-cut-analysis method is quite adaptive for some bulk, less time 

Figure 2.3 Demonstration of slab acrylamide gel IEF. Reprinted from 
Leaback, D. Polyacrylamide-isoelectric-focusing a new technique for the 
electrophoresis of proteins. Biochemical and biophysical research 
communications, 1968. 32(3): p. 447-453 [5]. Copyright (1968), with 
permission from Elsevier (See Appendix B). 
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sensitive proteomic cases. And the automatic detection method shows privilege in 

clinical and laboratory cases which require more information from samples.  

Since the time that polyacrylamide gel IEF was first demonstrated, it has revealed 

great potential as a reproducible and robust IEF technique. However, 

polyacrylamide gel IEF requires a long operation time due to the slow migration of 

analytes inside of gel pores. Also, the gel preparation steps are labor intensive, 

and the general apparatus scale requires a large amount of analytes to be used in 

the operation. Therefore, this technique is currently only practical for bulk 

separation and analysis. 

2.4.3 Capillary IEF 
As another device modification route of IEF prototype, capillary IEF (cIEF) began 

development in the early 1980s as the result of pursuing high IEF resolving powers. 

The first cIEF work was the extension of gel IEF. Baker et al. modified the 

experimental set-up of horizontal polyacrylamide gel IEF, gel components were 

filled into a glass capillary instead of rectangular slab gel chamber. About 15 

proteinases were detected within a pH gradient spanning from pH 3 to 10 [120]. A 

much advanced cIEF work was reported by Hjerten in 1985. The highlight of this 

work was the introduction of a commercial high performance electrophoresis (HPE) 

instrument to cIEF. Using the same glass capillary, a carrier ampholyte mixture 

was injected to establish the pH gradient. After each IEF run, the focused samples 

were mobilized to a UV-vis HPLC detector to be analyzed. The mobilization 

operation could either be done chemically, which introduced acid/base species at 

the anode/cathode end of the capillary to push the sample electrophoretically 

within the pH gradient to the detector end; or done physically, which employed 

conventional HPLC pump to pressurize the focused zone toward the detector. The 

focusing time could be shortened by replacing the polyacrylamide gel with free 

solution inside of the capillary. This would, however, possibly cause the band to 

be broadened [121].  
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Similar to gel IEF, capillary IEF also has electrodes and electrolyte reservoir 

components; however, capillary is the main IEF element in cIEF. Due to small 

capillary volumes (down to micrometer I.D.), both samples and solutions required 

to fill the separation space can be considerably reduced; therefore, cIEF is more 

economically efficient. Other than that, the maximum resolvable species, in terms 

of peak capacity, can be significantly improved by magnitude due to the raised 

separation length. Typically, a cIEF instrument can have a peak capacity of up to 

103, which makes cIEF a good candidate for complex protein mixtures analysis [64, 

122].  

Regarding post-IEF detection methods for cIEF, UV-vis and fluorescent are the 

mainstream techniques being employed. In the early stages of cIEF, either UV-vis 

or fluorescent detector was operated without visualization. Generation of pH 

gradient and concentration of analytes happened in the closed capillary column, 

and post-focused analytes were pushed through the detector with original in-

capillary distributions kept. Detectors output analytical results as electrograms 

while transferring absorption responses of analyte species, concentrations or other 

optical properties into intensities. In this case of scenario, UV-vis and fluorescent 

are working on very similar bias with the only difference being the optical 

absorption mechanism. However, in newly developed cIEF techniques, whole 

column imaging detection (WCID) was introduced to help simplify the IEF process 

[123-125]. This technique employed a short, optical transparent column instead of 

using conventional capillary coils. A charge coupled device (CCD) camera was 

mounted under capillary to replace conventional detectors which mounted at the 

end of column. In this case, fluorescent detection will offer better quality results 

with enhanced contrast and signal-to-contrast ratio, due to the intrinsic optical 

properties of fluorescein. 

With present-day highly integrated commercialization and automation level, the 

cIEF technique is being widely used as an IEF separation benchmark for complex 

and standardized sample separations in clinical and laboratory areas. Technically, 

cIEF is able to offer the best resolving power among all of the IEF techniques. The 
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shortcomings of cIEF including high cost, and highly skilled labor requirements in 

operation and data analysis, prevent cIEF from becoming a universal IEF tool. As 

mentioned previously, the main adaptive areas for cIEF are fine clinical analysis 

and laboratory, which are not economy and time sensitive  

2.4.4 Miniaturized IEF 
Even though gel IEF and cIEF are well established techniques with robust SOP 

and sufficient separation resolving power, the unsolved issues including long 

focusing time, large sample/chemical cost, and highly skilled labor requirements, 

make these two types of IEF somewhat cumbersome in certain applications. In the 

meantime of making gel IEF and cIEF more optimized, research focuses started 

to move toward the development of new IEF techniques. Miniaturized IEF (μIEF) 

was born in this new IEF era, and aimed to aid issues relating to the instrument 

size. The first miniaturized IEF prototype was based on a modification of a 

conventional cIEF work in 1999 [3]. To reduce the IEF scale, the original capillary 

was replaced by a 40 mm long, 100 μm wide and 10 μm height quartz chip. The 

detailed structure and dimension of the chip can be seen in Fig 2.4. The 

microchannel on the chip was created by photolithography and chemical etch. The 

chip was mounted under a linear CCD array and the UV light transmission through 

the channel was collected. Separation was tested by low molecular mass pI 

markers and myoglobin as model samples. Results reflected a resolving power of 

0.03 pH unit. The main contribution of this work was the demonstration of 

miniaturization possibilities in IEF. With adequate resolving power, IEF separation 

length could be reduced to 4~5 cm from the conventional 12~60 cm capillary. 

Besides, microfabrication technique such as photolithography were introduced to 

ensure the accuracy of the IEF fine feature design. After this work, μIEF 

experienced rapid developments due to the fast detection and low sample 

requirements scenario. 
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The main change of µIEF from conventional gel IEF and cIEF is the entire device 

size. Due to the development of microfabrication techniques, small features such 

as patterned electrodes and deliberate channels can be fabricated down to the 

nanometer level, which facilitates the miniaturization of IEF devices. Mostly, the 

major component of µIEF, separation spaces, are created following the 

photolithography masking-mold feature developing-replica molding route. To build 

up the separation channel, Poly (dimethylsiloxane) (PDMS) is one of the most 

popular materials due to its inexpensive cost, optical transparency, and ready-to-

go casting recipe. A typical microfabrication-PDMS based µIEF device can be 

obtained by the following: 1) a channel pattern is created via soft lithography onto 

a glass slide/silica wafer (photolithography masking), 2) after developing the 

photoresist layer, a positive channel feature can be created onto the slide/wafer 

(mold feature developing), 3) To form the PDMS layer with replica channel feature, 

polymerized liquid PDMS elastomer and curing agent mixture are poured onto the 

Figure 2.4 First μIEF chip structure and the experiment sequence set-up. 
Reproduced from Mao, Q. and J. Pawliszyn, Demonstration of isoelectric 
focusing on an etched quartz chip with UV absorption imaging detection. 
Analyst, 1999. 124(5): p. 637-641[3]. http://dx.doi.org/10.1039/A809756I . 
With permission of The Royal Society of Chemistry (See Appendix B).  

http://dx.doi.org/10.1039/A809756I
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featured slide/wafer. After the liquid fully polymerizes, the PDMS layer can be 

peeled off with the replica channel feature (replica molding). The obtained PDMS 

layer with features can be fully sealed later onto a glass/silica surface via plasma 

adhesion. In Cui et al.’s work, this described route was typically demonstrated. The 

obtained PDMS layer can be seen in Fig. 2.5. Channel structure was in dimensions 

of 2 cm-long, 300 µm-wide and 5 µm-deep. The inlet and outlet of the channel 

were created using a bio-punch, and the pH gradient was generated using 

PharmalyteTM with up to 200 V DC applied. IEF performance was tested using 

green fluorescent protein (GFP) and r-phycoerythrin (PE). Due to the optic 

transparency of PDMS, the protein focusing behaviors could be observed directly 

under a fluorescent microscope, which made a huge improvement in terms of 

visualization.  

With the assistance of microfabrication techniques, µIEF channel structure and 

material, device design, and scale can easily be manipulated by adjusting the 

fabrication parameters during manufacture, which give µIEF much better diversity 

Figure 2.5 Device photo and geography dimension of PDMS channel μIEF 
device. Reprinted with permission from Cui, H., et al., Isoelectric Focusing 
in a Poly(dimethylsiloxane) Microfluidic Chip. Analytical Chemistry, 2005. 
77(5): p. 1303-1309.[4] Copyright (2005) American Chemical Society (See 
Appendix B).  
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than conventional gel IEF and cIEF. A short summary is shown in Table 2 

regarding the channel structure, material, and pH gradient type. In fact, each of 

those properties can be combined freely for assigned applications making this 

customization capability the unbeatable advantage of µIEF.  
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Table 2 μIEF channel structure, material and pH gradient type 

Channel structure  Straight [3, 4, 91, 126-129];  

Triangular [130] 

House shoe [131] 

T-shape [132, 133] 

Parallel [134, 135];  

Droplet [136] 

Multidimensional [67, 69, 127, 131, 

134, 137, 138]  

Channel material Quartz [3, 91] 

Glass [67, 69, 92, 137, 139, 140] 

PDMS [4, 130, 133] 

PMMA [127, 134, 138] 

SU-8 photoresist [93] 

Polyester (Mylar) [126] 

Nonwoven fabric [129] 

pH gradient type CA type [4, 91, 131, 133, 137] 

Immobilized pH [130, 134, 140] 

Natural pH without CA [126] 

 

2.5 IEF Materials 

2.5.1 Materials for pH Gradient Generation  
Establishment of the pH gradient is the key process for the entire IEF work. Only 

with the pH gradient along the separation space are amphoteric analytes possible 

to be focused spatially. In the very first IEF prototype and its early follow-up work, 

pH was artificially manipulated by diffusion of non-amphoteric buffer with different 

pH value [2, 109, 141]. This deliberately formed pH gradient was confined by slow 

diffusion speed under the electric field and buffer solution type to secure pH 

stability; therefore, it could only be applied to simple amphoteric analytes with 

known pI values. To achieve better separation resolving power and use IEF for 
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unknown samples, a finer and smoother pH gradient is desperately in need. 

Svensson first introduced a “natural pH gradient” concept in 1961[102]. In this work, 

a principle of building up a favorable pH gradient system was defined as “pairs of 

buffers containing the same ion species”. To approach this principle, a pH gradient 

was attempting to generate by adding weak acid and base ampholytes to the 

separation instead of a strong acid and base buffer. In the anode and cathode 

ends, proton and hydroxide ions were consistently generated by electrolysis, which 

maintained the lowest and highest pH at pH gradient ends. Between electrodes, 

weak acid/base ampholytes were positively or negatively charged by protons or 

hydroxides from the electrode and therefore moved toward the position where the 

ion concentration could reach to equilibrium state again. Once the movement of 

ampholytes stopped, the final pH gradient would be dictated by ampholytes’ pI 

values. The significant contribution of this work is the demonstration of the direction 

for pH gradient stabilizing. In general, the more acidic and basic the components 

presented into the system are, the more stabilized the pH gradient will be that is 

formed. The natural pH gradient work enlightened a route of pursuing finer and 

smoother pH gradient for maximizing IEF resolving power. Later, many weak 

acid/base amphoteric species pairs were found and explored for pH gradient 

establishment. Eventually in 1964, a mixture of amphoteric species was 

commercialized as carrier ampholytes (CAs) solutions in accordance with a 

Sweden patent, and was granted the US Patent no. 3485736 in 1969. With highly 

standardized commercial control, CAs could easily be used to generate designated 

pH gradient with decent stability. In modern IEF, commercial CAs are still the most 

reliable solution for linear, smooth pH gradient usage.  

The most common 4 types of commercial CAs are Pharmalyte and Ampholine 

(product of LKB-produkter AB, purchased by Pharmacia in 1986), Bio-Lyte 

(product of BioRad), and Servalyt (product of Serva). All of these CAs are 

composed of amphoteric molecues and their corresponding isoforms (e.g.  

oligoamino, oligo-sulfonic acid (for low pH), and succinylmethyl group (for high 

pH)). As mentioned previously, the more amphoteric species in CAs, the smoother 
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the pH gradient that can be generated. Normally, commercial CAs contain 

hundreds of chemical entities and more than one thousand isoforms. Righetti 

reviewed all four types of CAs with different pH range in the market, and the 

information data is summarized in Table 3 [21]. From the compounds and isoform 

numbers, Servalyt CAs have the most varieties; therefore, they are supposed to 

be the CAs with the best performance. Servalyt also offers an extremely basic pH 

range from 9-11, which is not covered by other CAs. However, Servalyt CAs are 

not the most commonly used in IEF work. The reason for this could be an economic 

issue. Comparing with Servalyt, Pharmalyte has comparable compounds and 

isoforms numbers, and the cost is considerable lower. These benefits make 

Pharmalyte the leading CAs in IEF applications. It should be pointed out that 

compounds and isoforms numbers in different CAs bands vary in different pH 

ranges, for example, Pharmalyte contains more compounds but less isoforms than 

Servalyt in pH range of 4-6. Researchers should select CAs in order to achieve the 

best CAs performance for the specific IEF applications. 
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Table 3 Compounds information of commercial CAs  

Brand pH range Compounds 

numbers 
Isoforms numbers 

Ampholine 
2-4 105 446 
4-6 80 325 
6-8 80 326 

8-10 29 85 

Bio-Lyte 
2-4 84 383 
4-6 66 436 
6-8 32 237 

8-10 43 136 

Pharmalyte 
2-4 245 821 
4-6 217 812 
6-8 123 476 

8-10 58 102 

Servalyt 
2-4 227 1201 
4-6 199 1302 
6-8 126 703 

8-10 65 306 
*data referred from [21] 

In addition to CAs, which are prepared for linear type pH gradients, there is another 

way to establish pH gradient. This method is based on amphoteric molecules 

covalently linked to an anti-convection medium to maintain the local pH and then 

cast medium with different pH into a gradient. Due to the unchanged local pH in 

each medium section, the casted pH gradient was named “immobilized pH 

gradient”. The first immobilized pH gradient for IEF application was reported by 

Bjellqvist et al. in 1982, a set of acryloyl monomers called Immobiline were 

introduced in that research [142]. Each species of monomer contains only two 

weak acid/base to generate a pH gradient in a very narrow range (less than 0.2) 

within an electric field. After co-polymerization with acrylamide/bis monomer, the 

narrow pH gradient would be immobilized. By linearly casting different Immobiline 

species, any pH gradient between pH 3-10 could be built up. Compared with pH 

gradient generated from CAs, immobilized pH gradient was staircase type. 

However, by casting many stair-steps pH segments together, the final gradient 

could be pseudo liner. The most remarkable advantage of immobilized pH gradient 
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was the stability, and since free-flow solution was kept away from the IEF system, 

the established pH gradient would not decay by any transport driven force; 

therefore, it could last longer time than the CAs type gradient. Like the 

development of CAs, immobilized pH monomer was commercialized soon after. 

To make the product more user-friendly, the latest immobilized pH monomers were 

made into polyacrylamide gel strips, which can be cut into any size and then be 

casted orderly to obtain a designated pH gradient.  

It should be noted that even though immobilized pH gradient gel (IPG) is highly 

commercialized, and fairly easy to use with great stability, the size limit is still an 

issue hindering immobilized pH gradient from IEF miniaturization. In today’s world 

IPG is staying active only in bulk IEF separation applications.  

2.5.2 IEF Media  
In earlier IEF work, steps of pH gradient establishment, sample loading, and IEF 

separation were processed simultaneously in the separation space of the IEF 

device/instrument. This type of IEF operation was defined as “free-flow” IEF 

because all of the reagents including sample could move freely in the IEF 

separation space with an applied electric field. The mix-everything-together 

method did shorten the IEF prepared steps and made the operation less 

complicated, however, transport driven forces such as convention and 

elecroosmosis would noticeably disturb the IEF once it reached to the equilibrium 

stage. Accordingly, issues including pH gradient drift and focused band broadening 

could happen. To solve this intrinsic problem of free-flow systems, efforts such as 

increasing solution viscosity, and adding a coating layer onto the surface of the 

IEF path had been investigated [4, 67, 128, 143, 144]. These detailed solutions will 

be explained in the next chapter.  

On the other hand, gel IEF as an alternative IEF technique, uses gel as an IEF 

media. The monolith gel with millions of opening pore structures could allow big 

analyte molecules (e.g. protein molecules) to pass through. In the meantime, due 

to the twists and turns in gel pores, the travel time of analytes or other molecules 
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take longer than with the free-flow system. This character would secure focused 

sample from severe diffusion and therefore offered enough time for the post-

analysis of the focused samples. As mentioned in Chapter 2.3.2, polyacrylamide 

is the mostly used gel material in IEF and the physical characteristics have been 

thoroughly explored. In a polyacrylamide system, two key variables, T and C, are 

widely adopted to determine the pore structure of polymerized gel. T, which is 

defined as the total percentage concentration of monomer in the gel, can be 

estimated using Equation 2.6: 

T= 100 (Total acrylamide and bis)
Total gel volume

%                                      (2.6) 

And C, which is defined as the crosslinker (bis) percentage of both acrylamide 

and the crosslinker, can be described in Equation 2.7: 

C= 100 (bis)
Total acrylamide+bis volume

%                                        (2.7) 

In a commercial acrylamide/bis monomer regent, common T values vary from 2% 

- 40%, and C values are usually in 2.5% (acrylamide/bis=37.5:1), 3.3% 

(acrylamide/bis=29:1), and 5% (acrylamide/bis=19:1). By changing T and C 

numbers, the pore size of a polyacrylamide gel can be manipulated. T is inversely 

proportional to the pore size, the higher percentage gels (higher T), the smaller 

pores. Equation 2.8 can be used to estimate gel pore radius (rp) with known T 

value. The relationship of C to pore size is complex. Generally, the minimum pore 

size occurs when C is about 5% (a 19:1 gel). Decreasing C results in a more open 

pore structure because there are fewer crosslinker molecules. The T and C 

numbers should be chosen per the analytes size. Small molecules such as DNA 

can use high T and C values, while big molecules such as proteins require small 

T and C to be used in gel.  

rp=231×(100T)-0.51                                     (2.8) 
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2.5.3 Accessary Materials  
Except pH gradient generating agents and medium, there are a couple of 

accessary materials for an IEF system. These materials include electrode solutions, 

additive chemicals, and mobilizer (only for cIEF). Electrode solutions are employed 

at the anode/cathode end of the IEF separation space to fix the lowest/highest pH 

value along the established pH gradient. Usually strong acid/base solutions (e.g. 

phosphoric acid and sodium hydroxide) are selected at two ends of the pH gradient. 

The role of different electrode solutions were investigated by Naydenov in 1992 

[145]. In his research, ten and six electrodes solutions were used in anode and 

cathode, respectively. The anode electrode solutions included strong acids (HCl, 

H3PO4, HClO4, and H3PO4 in ethylene-glycole), weak acids (glycine, 

triethylenetetramine-ampholytes, En-ampholyte with pH 6.30 and CH3COOH) and 

a neutral H2O solution; the electrode solution at the cathode side included a strong 

base (NaOH, NaOH in ethylene-glycole), a weak base (NH3, triethylenetetramine-

ampholytes with pH 8.8 and PEHA) and a neutral H2O solution. Results 

demonstrated that using a strong acid/base for the electrode solutions could 

maximally maintain the developed pH gradient, while other types of electrode 

solutions made pH gradient narrower than it was supposed to be. The reason used 

to explain this was the proton/cation concentration did not change severely 

compared with bulk strong acid/base volumes at the two pH gradient ends. It 

should be mentioned that this is an expectation of electrode solutions in modern 

IEF. When working with miniaturized gel, electrode solutions and electrode strips 

may not be required due to thickness of the gel layer [146]. 

Additive chemicals are the regents which can facilitate IEF separation, maintain 

pH gradient, and improve separation efficiency. To facilitate IEF separation, a 

widely applied chemical type used is surfactant. The introduction of surfactant into 

IEF helps to release protein-protein or protein/surface interactions, and thereby 

allowing the protein precipitate phenomenon happening during the focusing 

process to possibly be alleviated. In the case of gel IEF, surfactant can also 

facilitate proteins bursting out from gel pores [147]. To maintain the pH gradient, 
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surface coating is a working method. A chemical coating onto the IEF separation 

space surface can manipulate surface properties such as zeta potential, 

hydrophilicity, and surface resist, to thereby alleviate external counter-IEF forces 

generated onto the IEF medium-surface boundary [148-152]. In the case of cIEF, 

chemical mobilizer can help the focused zone to move electrophoretically toward 

detector direction, and make the analytes better analyzed by detector [63, 121, 

125, 143, 144].  

There are also a few other accessary chemicals being used in IEF work. For 

example, in bulk gel IEF, it would be beneficial to add a mesh sealing to the 

separation space, to prevent gel dehydration [5]. In free flow IEF, Nafion® is 

applied in the two electrode sides to separate direct contact between electrode 

and electrode solutions [153]. Due to the selectively ion primitive feature of 

Nafion®, the hydrogen ion could be transported through the film while electron 

conduction was prevented. This modification lessened the ion strength by 40 fold 

during IEF pH gradient establishing process and therefore introduced less 

disruption. Thus, a more stable, longer-lasting pH gradient could be built up. In 

summary, applying accessory materials is optional and method dependent to an 

IEF work. Introducing accessory materials may grow the IEF device complexity in 

the manufacturing aspect, but if applied properly, accessory materials can 

sufficiently increase separation efficiency. 

2.6 Difficulties and Issues in IEF 

2.6.1 Focusing Time and Applied Voltage  
Equation 5 in Chapter 2.2 demonstrated the relationship between IEF separation 

time and separation space along a pH gradient. Conventional IEF usually has 

separation space at the scale of 10 cm or higher; therefore, a typical separation 

time is in the hour timescale [112, 113, 120, 150, 154, 155]. To shorten focusing 

time, reducing IEF separation space is one of the effective ways. That is also one 

of the motivations of IEF device miniaturization and has been proven by many 

previous μIEF researchers. With a typical separation space in 1 cm or less size, 
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focusing time was promptly reduced down to 20 min or less [4, 91, 93, 132]. It will 

be valuable to further investigate the lower limit of IEF devices in the separation 

space dimension aspect; however, the exploration of the IEF scale limit has 

reached a bottleneck due to fabrication techniques. The conventional optical 

lithography molding technique has a feature resolution at the μm scale [156-158], 

considering the other components such as sample inlet/outlet, electrode solution 

reservoirs and sampler, the final separation space will be much larger than the 

microfabrication limits, and this issue makes the currently smallest μIEF in 1 mm 

size [159]. To further investigate the IEF size limit, newer techniques having better 

resolution than optical lithography arenecessary, and a manipulating machine with 

finer operation capability is required.  

Another concern in conventional IEF is the applied voltage. The electric field is the 

main external driving force for IEF to achieve a full sample separation. In IEF 

operation, DC is directly applied along the separation space through the anode 

and cathode. To complete a separation and make the sample species focused into 

sharp bands, at least 102 cm/V electric field strength is required [68, 87, 160]. The 

electric field strength is proportional to the space dimension that is along the field. 

Depending on the separation space size, DC power can to reach up to 103 V for a 

typical cIEF, and even for μIEF 102 V will be necessary. The high DC power will 

not only make high energy consumption, but will also generate heat to the 

separation space, and lead to unexpected phenomena such as band distortion and 

broadening [115, 161-164]. Besides, extremely high DC power applied in an IEF 

operation is always a safety concern. To lower down the external DC, IEF 

miniaturization is again essential. The current μIEF are operated at the DC range 

of 50~500 V [88], comparatively safer than cIEF, but the further decrease of DC 

voltage to a safe level (e.g battery driven IEF) will always be a motivation for 

miniaturized IEF work. 

2.6.2 Unstable pH Gradient 
Since the establishment of IEF in the 1950s, the capability of IEF in real 

applications have been widely investigated and sample separation trials on 
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different proteins and peptides have been done. Along with the promising 

properties of IEF, issues regarding the pH gradient were being exposure. The CA 

type pH gradient was noticed to be unstable as a function of time and voltage due 

to the immigration of free ions, and as the result, focused amphoteric sample zones 

could decay or become dislocated towards the electrode [38, 165]. Nguyen et al. 

artificially made instable pH gradient scenarios and summarized the possible 

reasons [155]. In their work, all the observations including pH gradient drift, CA, 

and focused zones drift were following the direction toward the cathode side. 

These artificial phenomenon occurred in the case of 1) CA replaced by buffer, and 

2) electrode solutions replaced by buffer. During their experiment, other drift 

phenomenon were also observed when the electric field was just applied and the 

temperature changed. By summarizing the experimental results, they concluded 

that pH gradient would be stabilized by reversing the mass transports in IEF 

system, including suppressing EOF, selecting proper electrode solutions, and 

shortening the diffusion time. In Mosher’s work, a series of simulations were 

performed regarding the effect of electrode solution concentrations to the pH 

gradient. Results verified that the progressive loss of pH gradient end components 

was the reason for gradient drift, and by changing the electrode solution 

concentrations, drift phenomenon could be manipulated. As possible solutions, the 

electrode solution reservoirs should be much larger than separation space, and 

the ratio of electrode solutions concentration and current density should be 

maximized. Also, a physical barrier (ion exchange membrane) would help to cease 

the ampholyte migration.  

In general, unstable pH gradient is still a main concern for the development of IEF 

techniques. In any IEF design, a balance of spacing, the pH gradient chosen, and 

unwanted mass transport prevention should be seriously considered.  
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2.7 Current Trends and Future Directions of IEF Technology 

2.7.1 Current Trends and Future Directions 
The IEF development timeline has been fully illustrated in the previous chapter. In 

short, the entire IEF history has been through a large chamber, long tube, slab gel, 

capillary tube, and microchannel stage. This shows the general trend of IEF 

development: from large and complicated instruments to small and easy-to-use 

devices; from long time and labor intensity operations to programmed and 

automatic runs; from huge sample requirements to small sample loadings; from 

single detection to orthodox analysis/multiple functions integration. The most 

important attributes are lower detection limits and better resolutions.  

The work from Zubarev‘s group can be used as a good example for future 

generation IEF. A MJ-cIEF (multi-junction capillary isoelectric focusing) technique 

featured a multi-junction sampler and an immobilized staircase pH gradient [58, 

66, 166]. The device setting is based on capillary IEF, for sampling, a 6-way valve 

is employed to decrease sample requirement (typical 2 µL needed), also different 

samples can be processed with multiple injections. For pH gradient set-up, vials 

with fixed pH are put along the capillary flow direction. Nafion film is used for 

materials exchange between vials and capillary. This technique can reduce sample 

requirements as well as analysis time (since no time is necessary for pH gradient 

establishment). For applications, both proteins and peptides are proven to be pre-

separated. With an integrated desalting cartridge in their most advanced version, 

even plasma can be directly analyzed as sample for proteins prefractionation. 

2.7.2 Surface IEF and Its Application for Protein Separation 
As a chemical analysis method, isoelectric focusing (IEF) based electrophoresis 

and related blotting techniques are a mainstream protein analysis technique. In a 

certain pH gradient within an externally applied electric field, positive or negative 

charged amphoteric protein species will migrate toward different pH values, and 

then cease moving at the place where pH is equal to their isoelectric points. Since 

proteins have unique isoelectric points, protein mixtures can be separated into 
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focused bands. To establish a pH gradient within an externally applied electric field, 

carrier ampholytes (concept envisioned by Kolin [109]) and immobilized pH gels 

(IPG) (concept introduced by Reghetti [142]) are the two main routes. The final 

option is via natural pH gradients generated through water electrolysis at the anode 

and cathode [102]. Conventional IEF is conducted in bulk commercial instruments 

or in customized bulk gel slabs, and is not qualified to rapid analyses with small 

sample volumes. LOC development offered an opportunity to solve the issue. For 

instance, capillary isoelectric focusing (cIEF) is a combination of conventional IEF 

and capillary electrophoresis instrumentation [160]. Compared to large-scale IEF 

set-ups, cIEF can be conducted in centimeter scale chips and is considered 

portable. cIEF also has good resolution, comparable to conventional bulk IEF, and 

provides narrow focusing zones. Fused silica capillaries or channels are utilized 

with cIEF to contain the carrier ampholytes and allow for free solution IEF. During 

focusing, the capillaries do limit axial diffusion of proteins. In a typical cIEF 

operation, proteins can either be focused during transportation towards the 

detection point, or be focused and then moved past the detection point along with 

the focused zones. However, these capillaries prevent the easy recovery of IEF 

focused bands; the focused bands must be mobilized via electrophoresis or 

pressure, and the bands broaden with dispersion prior to recovery.  cIEF is 

considered as an effective, high-resolution method to separate closely related 

proteins with minor structural differences, such as Hemoglobin variants [167], 

transferrin, and peptides [160]. However, the stability and recoverability of proteins 

during cIEF indicates space for improvement in low concentration, sensitive protein 

analysis applications requiring subsequent MS-MS, TOF, or similar analysis.  

Channel IEF is a closely related technique, which has further reduced sample 

volumes and labor. Channel IEF utilizes microchannels from either hard etching or 

reverse mask replicating; the channels are filled with IEF gel media or carrier 

ampholyte solution, and IEF can be achieved upon applying an external electric 

field. Hofmann first minimized cIEF onto a small glass slide in 1999 [168] by 

utilizing wet etching on a glass chip to create capillary tube-like channels 7 cm in 
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length. Pharmalye® (GE brand of carrier ampholyte) with 1kV/cm electric field 

focused Cy-5 peptides, which were detected with laser-induced fluorescence (LIF). 

The final separation was a combination of chemical (IEF) and hydrodynamic 

electroosmotic flow (EOF) mobilization, which later proved to have a negative 

resolving factor for IEF [169]. Yager et al. reported an on-chip “channel” IEF 

application for protein separation in 2001 [126, 170]. In their experiment, a 40-mm-

long x 1.27-mm-wide x 0.354-mm-deep channel was fabricated by laser ablation 

micromachining of poly (Mylar). Gold/Palladium foil was electrodeposited on 

channel ends and functioned as electrodes for IEF. A natural pH gradient was 

generated by water electrolysis. This simple operated design was susceptible to 

the natural pH gradient being disturbed by perturbations to the applied voltage 

(high applied voltages cause electrolysis bubble generation). Cui et al. investigated 

carrier ampholyte (broad range 3-10 Pharmalyte®) based IEF in PDMS channels 

for fluorescent green fluorescent protein (GFP, pI 6.0) and phycoerythrin (PE, pI 

4.4). Methylcellulose (MC) was added to the solution to suppress EOF. GFP and 

PE were fully separated in the 2mm channel and focused bands were held 

stationary in up to 50 V/cm applied electric fields [4]. In the last few years, channel 

IEF chips have been optimized to be highly-integrated and tailored for certain 

separation purposes - continuous separation [67, 93, 137], and batch sample 

sorting [69, 138, 171], etc. 

However, all existing IEF devices require either large volumes of carrier 

ampholytes and electrode buffering solutions or require complicated device 

microfabrication. In my PhD research, a novel surface enabled isoelectric focusing 

(sIEF) concept will be introduced and interrogated. A microscale surface IEF chip 

was developed using 1 step photolithographic fabrication technologies combined 

with a surface-patterning instrument.  Preliminary data illustrates the viability of 

sIEF process in a 2-D gel line 300 microns in length. Commercial PharmalyteTM 

carrier ampholyte solution was used for pH gradient generation, and the generated 

pH gradient was characterized by pH sensitive fluorescent dye FITC Isomer I, pH 

insensitive TRITC (reference), and fluorescent pI markers with different pI values. 
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sIEF is attractive because it requires nanoliter reagent volumes and relies upon a 

highly reproducible, easy, and quick fabrication process. This unique and creative 

micro-scale surface approach has the potential to enable more efficient specialty 

protein separations from ultra-small sample volumes. The platform is reusable and 

simple to operate, and potentially able to replace current commercial and classic 

instrumentation. 

2.7.3 Quick Outlook of Future IEF 
In the future, bulk IEF and micro IEF will still co-exist due to different application 

requirements. For bulk IEF, the improvement of commercial instrumentation 

should be the main focus. Good existing examples are Bio-Rad Rotofor® and Mini 

Rotofor Cells, which have dimensions of 16.5 x 45.7 x 22.8 cm and are capable of 

discerning 20 species with up to 35 mL sample loading. Compared with 

conventional gel IEF instrument, Rotofor® and Mini Rotofor have equivalent 

throughput with much reduced sized and simplified operation. For micro IEF, the 

miniaturization will stay a mainstream trend, and it will be significant to further 

explore the miniaturizing limit for IEF. In the meantime, micro IEF will play as one 

of the dimension in a type of integrated mutil-dimensional separation chip. Also, 

new fabrication techniques should be involved in micro IEF design, to decrease 

the cost and manufacture complexity.  
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 Surface Printing Technique for LOC-IEF Device Fabrication1  
3.1 Introduction  
In the past two decades, materials were able to be exploited and manipulated 

under micro or sub-micro scale due to the rapid development of nanotechnologies, 

research areas such as medical, biomaterial and bioanalysis which requires 

miniaturized patterning and tests were very much benefited. Atomic force 

microcsopy (AFM) as one of commonly used imaging technology, was found to be 

able to carry and pattern micro scale organic materials via its micro cantilever 

probe in the late 20th century [49], this discovery opened a window of customized 

surface patterning: various of materials including organic chemicals and metals 

were investigated to be patterned on arbitrary surfaces such as metal, quartz, 

glass and silicon [47, 51, 52]. Nevertheless, as a tool explicitly designed for 

imaging process, AFM does not have designed features that facilitate 

micropatterning. Patterning shape, size and working duration were restricted by 

AFM cantilever. To make the surface patterning more operable and controllable, a 

technique called fluidics enhanced molecular transfer operations (FEMTO) was 

developed in the early 21st century. This type of instruments usually composed of 

liquid reservoirs to ensure working duration and fluidic channels to deliver sample 

to the surface. Plus, the instrument is easily to be customarily designed. At the 

beginning stage, FEMTO instruments were designed for liquid sample dots/dot 

matrix patterning. Later on the utilization of this technology was extended to variety 

of materials: from organic sample proteins [77, 79, 81], DNA [75, 76], polystyrene 

[61], quantum dots (QD) [62] to inorganic sample silver nanoparticle [73], carbon 

nanotubes [74].  

                                                            
1 The material contained in this chapter has been accepted for publication in 
Electrophoresis.  
DOI:10.1002/elps.201600565  
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As illustrated in Chapter 1, new tools and techniques can offer plenty of 

opportunities for new platform designs of IEF devices. FEMTO tool has already 

been proved to feasibly print liquid materials into more complicated shapes than 

simple dots/dot matrix under sub-micro level. In this chapter, we are continuing to 

investigate the capability of line-shape patterning using FEMTO tool, which will 

further enable the possibility of fabricating an IEF gel in micro scale.  

3.2 Materials and Methods  

3.2.1 Materials and Instrument 
A commercial FEMTO tool Nano eNablerTM (Bio science) is employed to 

investigate surface pattern. This tool enables precise pattern-printing of diverse 

fluids on arbitrary surfaces [24-30]. It includes a controllable sample stage (XY 

travel: 50 mm; XY resolution: 20 nm; Z travel: 50mm; Z Resolution: 100nm), 

surface patterning tool (SPT) holder, microscope with CCD camera and chamber 

with humidity control. The overlook of instrument can be seen as Fig 1.2 in Chapter 

2, and the structure of SPT, as well as microscope images can be seen in Fig 3.1 

A 40% w/v stock solution for acrylamide monomer was made from 29:1 ratio 

acrylamide and bis-acrylamide powder (Sigma-Aldrich, St. Louis, MO, USA), 

tetramethylethylenediamine (TEMED) and glycerin were obtained from PlusOne 

(New York, NY, USA). E-pure water with 18.2 Ω·cm resistivity was purified with an 

EMD Millipore Simplicity Ultrapure 185 water system (Billerica, MA, USA). 

Ammonium persulfate, (NH4)2S2O8, (APS, PlusOne, New York, NY, USA) at 

varies of concentrations water solution (10%, 15% and 20% w/v) was used as a 

polymerization catalyst for acrylamide solution. This mixture is referred to as the 

acrylamide/bis-acrylamide/APS solution below. 

For surface pre-cleaning a UV-ozone generator (BioForce UV/OZONE 

PROCLEANER™ system) was applied. This instrument removes from the SPT 

and device surface any organic molecules contamination such as sample residues, 

grease and finger prints. It secondarily influences the surface hydrophobicity. To 

quantify this impact on hydrophobicity, contact angle tests of acrylamide/bis-
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acrylamide/APS solutions on the IEF device substrate were performance via Kruss 

G-10 (Hamburg, Germany) drop shape analyzer with five repeats under three 

different UVO treatment times of the device substrate.   The data was processed 

via Drop Shape Analysis 1.0 software.  

E-pure water was loaded as sample for printing trial run, in order to inspect the 

drawing capability. After the water trial a printing was practiced with the delivery of 

acrylamide/bis-acrylamide/APS mixture solution. 

3.2.2 sIEF Electrodes Microfabrication 
Electrodes are in direct contact with the IEF gels as the conduit for the electric field 

application. In sIEF, planar electrodes were designed onto a 3 x 7 cm2 glass chip.  

The mask design includes a pair of L-shaped electrodes with 300 μm gap between 

the parallel electrode region, and a pair of circle contact pads with 5 mm diameter. 

The contact pads were used to connect to wire leads from the power supply.  

These micro-patterned gold electrodes (100 µm-wide spaced, 300 µm apart) were 

prepared using soft photolithography followed by electro-vapor deposition (E-

beam). The photolithography process includes substrate cleaning, preparation, 

photoresist application, exposure and developing steps. A 3 x 7 cm2 microscope 

glass slide was pre-cleaned three times in acetone, isopropanol, and distillated 

water, before spin-coating with PR-1000A photoresist at 1500 rpm for 40s. After 

Figure 3.1 The SPT structure (left) and microscope image of SPT tip 
(right) illustrating the microchannel for fluids to flow from the reservoir to 
the printing tip.  
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spin coating, the glass substrate was prebaked at 120 oC for 90 seconds. An 

electrode pattern was transferred from a computer designed, hollow caved mask 

onto the photoresist layer via UV exposure (see Figure 3.2). The glass substrate 

was directly covered by the mask followed by UV exposure at doses of 210 J/cm2. 

After exposure, the substrate was post baked again at 120 oC for 3 minutes. Finally 

the patterned photoresist was developed using RD-6 developer and the exposed 

photoresist was washed away. To obtain the patterned metal electrodes, E-beam 

was used to deposit metal on the exposed glass surface. Titanium was used as 

adhesion layer and gold was deposited on the top of Ti layer, with~0.500 kA° (500 

nm) deposition rate. The obtained metal layers contain 5 nm Ti followed by 150 

nm Au (SOP can be found in Appendix A). Photoresist and excess metal were 

removed via a lift-off process by acetone sonication at medium power for 10 

minutes.  

3.2.3 Surface Printing 
From previously reported research, Nano eNablerTM was mostly used to generate 

dots or dot matrix. In our research we want to explore the limitation of the 

instrument to generate lines. Before printing, liquid sample was loaded via two 

different ways: front loading and back loading based on the loading position of 

surface pattering SPT. The operation of front loading is to dip the SPT tip into a 

sample droplet and let sample attached on the tip by capillary force; the other 

operation, back loading, is to fill the reservoir in the back of SPT with liquid sample, 

Figure 3.2 AutoCAD design of sIEF drive electrode pattern 
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so it can be delivered to drawing surface though microchannel in SPT. The drawing 

was also tested via two different ways: one the method is to make a dot column 

with dense dots arrangement, and then let the dots merged by surface tension, the 

second method is similar like brush printing or ink-pen writing directly on the 

surface with sample as paint or ink. The Z-direction control allows SPT tip to reach 

to the patterning surface, and Y-direction vertical movement of sample stage 

enables the line formation.  

3.2.4 Optimizing Printing Conditions 
Series of optimization factors were conducted including 1) surface hydrophobicity, 

2) humidity of printing environment, 3) sample loading way in SPT and 4) 

polymerization time. For surface hydrophobicity modification, UV-ozone cleaner 

was applied as mentioned previously, degree of surface modification was 

investigated by varying treatment time. Printing humidity was controlled by 

humidifier that directly connected to the chamber in Nano eNablerTM, chamber was 

closed during printing process. Both front loading and back loading were examined 

Figure 3.3 Sample back loading of the SPT. a) Magnified image 
of loaded SPT with the sample appearing as a dark droplet in the 
reservoir near the tip. b) Microscope images of an unloaded SPT 
tip demonstrating the channel that connect the reservoir to the tip 
and c) Microscope image of a loaded tip with fluid within the 
channel ready to be printed. 
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for line printing as sample loading investigation. The gelation degree of printed line 

was investigated by applying different polymerization time. 

3.3 Results and Discussion 

3.3.1 Sample Loading 
The Nano eNablerTM instrument achieves surface printing by utilizing attributes of 

the surface patterning tool (SPT), which is comprised of a larger flat square of 

silicon substrate with a reservoir etched onto the back and a 150 µm-long 

cantilever that extends below the surface on the front side. The cantilever has with 

a tapered end; the reservoir and the cantilever are connected with a channel. 

During instrument operation, there are two techniques for sample loading for 

printing/patterning: front and back loading. Back loading sample printing is more 

controllable because the printing/patterning solutions are stored in the back 

reservoir of the surface patterning tool (SPT) then flow down the channel to SPT 

tip for printing onto the surface. Back printing works similar to a modern ink pen. 

Preliminary experiments showed this loading method worked well with low to mid 

viscosity liquid samples such as water (Figure 3.2). However, when printing high 

viscosity materials, such as acrylamide, the in-situ gelation properties prevented 

flow from the reservoir along the SPT channel to the tip. Thus, front sample loading 

was utilized similar to a dip quill pen. A small acrylamide droplet (0.1 μL) was 

pipetted on the glass slide adjacent to the experiment working area. The SPT was 

maneuvered to the acrylamide droplet, the tip immersed, then lifted and positioned 

for subsequent printing.  

Precision and reproducibility of sample printing was ensured via NanoWareTM 

software that automated control of the cantilever tip movements. The software 

allowed total range of motion of 50 mm of XY (with controllable 2~200 µm/s speed) 

travel and 45 mm of total Z travel. Step resolution in XY and Z directions is 20nm. 

An optical zoom camera allowed real-time monitoring of the tip and surface; the 

field of view can be magnified between 1.72 mm X 1.72 mm and 0.26 mm X 0.26 

mm. To aid with reproducibility, relative XYZ stage position can be saved and 

reloaded as needed.  
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To protect the fragile SPT cantilever tip as it approached the glass surface, the 

contact pressure was monitored via NanoWareTM and adjusted as necessary to 

optimize tip-surface position. Figure 3.3 shows the different pressure levels applied 

to the SPT tip, which can be visualized by the extent of tip bending. Without 

tip/surface contact, printing is not successful. However, if the tip is bent, the tip 

tends to break during vector movements. Figure 3.3a shows no tip/surface contact, 

3.3b shows optimal tip/surface contact, and 3.3c illustrates tip bending. These 

visual cues were used to assess optimal tip contact to ensure smooth, reproducible 

printing as well as extend the SPT lifetime.   

Acrylamide gel printing was achieved via front loading of the tip and strategic 

vector motions to produce printed lines across the parallel microfabricated 

electrodes on the glass chip. A 0.2 µL volume drop of acrylamide was manually 

pipetted onto the glass slide away from the micropatterned electrode. The SPT 

cantilever tip was positioned in XYZ, then dipped into the acrylamide drop.  The 

liquid-loaded SPT was then repositioned in XYZ at one electrode edge then was 

moved linearly (by programming in a start/end position and rate in the software) to 

deposit a line spanning across the parallel electrodes, as shown in Figure 3.3.  

Figure 3.4 SPT tip with varying degrees of contact with the surface. 
a) No contact between the tip and surface. b) Tip gently resting on 
the surface and c) Excess pressure on the tip such that it 
experienced bending. 
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3.3.2 Hydrophilicity/Hydrophobicity of the Surface  
Surface hydrophobicity was found to be critical to reproducibly print samples.  The 

extent of surface hydrophobicity can be tailored via UV-ozone (UVO) treatments. 

The microscope glass slide is primarily comprised of SiO2, making the surface 

slightly hydrophilic due to the weak bond between O atoms of SiO2 and the H 

atoms of H2O. However,  the adsorption of hydrophobic organic molecules from 

the environment onto the glass surface can slowly increases glass hydrophobicity 

over time [53]. UVO treatments are a convenient method to remove organics and 

thus to recover surface hydrophilicity. In a typical UVO cleaner, there are two 

wavelengths of UV light generated; 184.9 nm can be used for ozone generation, 

and 253.7 nm can be used for ozone destruction.  As the ozone generation-

destruction intermediate product, atomic oxygen, serves as a strong oxidant to 

react with UV excited organic contaminants on the surfaces to converts them into 

volatile molecules [55].  This UVO cleaning process enables electrode 

micropatterned glass-slides to be reused ~50 times for sIEF tests before failure. 

In our printing optimization, UVO treatment time dependency was investigated to 

compare the hydrophobicity/hydrophilicity effects on acrylamide line printing quality. 

UVO exposure times of 5 min, 10 min, and 20 min were examined and the printed 

gel line shape was observed under an optical microscope. With 5 min UVO 

exposure, the glass slide remained hydrophobic such that the liquid-glass surface 

Figure 3.5 Demonstration of acrylamide gel line drew via front 
loading of SPT and automated linear vector movement of the 
SPT. 
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tension broke the printed line into several fragments and the line integrity was 

broken. As treatment time increased to 10 min, line integrities remained good with 

uniform width.  This result illustrates sample/glass interfacial tension decreased 

with decreasing surface hydrophobicity such that the printed line shape was not 

distorted by surface tension. This smooth printed line shape was desirable for 

subsequent line printing. An extended 20 min treatment time further increased 

surface hydrophilicity, which resulted a low contact angle phenomenon whereby 

an irregular, flat printed line was observed. Microscope images of the printed line 

with 5 min, 10 min and 15 min UVO treatment can be seen in Figure 3.5. By 

comparing line quality, surface UVO cleaning times of 10 minutes yielded the most 

uniform and consistent acrylamide gel line printing.   

To verify these microscope observation based UVO treatment time dependency, 

the contact angles between acrylamide solution and glass surface under different 

UVO treatment time were tested. Figure 3.5 showed the UVO time-contact angle 

dependency: as surface treating time increased, the contact angle became smaller, 

which implicated more hydrophilic glass surface. This result is consistent with the 

microscope observation. In the meantime, as UVO time increased, the standard 

deviations of each repeat sets under different test conditions became smaller. This 

variation of standard deviations are due to the variation of surface purity of glass. 

As commercial product, the untreated glass slide has plenty of organic impurities 

such as grease randomly attached on the surface. The short time UVO treatment 

cannot thoroughly remove those impurities, therefore the contact angle test 

repeats that performed in different location varies a lot. With longer time UVO 

cleaning, more impurities on glass surface were removed and therefore the test 

results on different locations were more consistent with each other. For the 

reference of experiments in further chapters, another surface, dielectric hafnium 

oxide (HfO2), was also been tested through the same conditions. The surface 

contact angle results are shown in Figure 3.5. Again, the UVO time-contact angle 

dependency was similar to the result of glass, longer surface cleaning can 

maximally regenerate the hydrophilicity of HfO2. However, the standard deviations 
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on HfO2 showed better consistency compared with glass due to the much lower 

contaminations on the cleanroom produced HfO2 layer. It needs to be mentioned 

that the overall contact angle of HfO2 is little higher than glass, which make lower 

quality yield of surface printing on HfO2. 

3.3.3 Relative Humidity in the Printing Environment 
Unlike surface property effects, humidity did not substantially influent surface 

printing quality indicators like width and integrity. However, longer-term 

stabilization of the 3D gel shape was observed to correlate to printing chamber 

humidity. Ideal gel line characteristics for sIEF should include 1) straight line with 

smooth uniform width and 2) shape retention for ~3 hours to allow time for gelation 

and subsequent sIEF run. The Nano eNablerTM instrument can manipulate and 

monitor relative humidity (RH) in the printing chamber throughout the printing 

process. To determine optimized humidity conditions, RH between ambient and 

Figure 3.6 Microscope images of surface printed line and surface contact 
angle data based on both glass and HfO2 surface. Both of the printing and 
contact angle measurement were based on UVO surface treatment time 
of 5 min, 10 min and 15 min. For both surface, optimized UVO treatment 
time are all in 10 min, which is able to maintain the line shape without 
over-wetting or discontinued. 
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50% were explored. The 40% w/v acrylamide/bis (29:1 v/v) solution was fixed in 

all the experiments.  Figure 3.6 compares gel status in ambient (open chamber 

enclosure), 15%, 30%, and 50% RH settings on the module, which were 

maintained both during printing and for 3 hours after printing. All printings 

experiments were completed on the same day to ensure consistent room humidity.  

In the open chamber, ambient conditions control at around 10% RH, printing was 

successfully performed, but the gel line experiences rapid evaporation (due to the 

high air circulation caused by chamber opening) achieving a dried out state in less 

than 30 minutes. These conditions would not allow sufficient time for acrylamide 

gelation. Thus, we increased the chamber humidity controller to 15% RH with 

successful printing. Further, the gel line shape remained optimal for the 4 hours 

observed. Printing remained successful with 30% RH setting, however, the gel line 

began swelling after 1 hour to compromise final gel line quality. To fully explore 

humidity saturation, a gel line was printed at an extremely high humidity setting of 

50 % RH. Condensation was observed such that the whole glass chip flooded 

within an hour. Thus, 15% RH control was utilized for all sIEF line printings.  



63 

3.3.4 Catalyst Concentration and Related Acrylamide Gelation Time 
Active printing requires the sample to be aqueous, while sIEF run requires a gel 

state. We engineered around these constraints by mixing the monomeric 

acrylamide solution with the gelation catalyst (APS, Ammonium polysulfide) just 

prior to SPT tip loading and printing, then allowed ample time for complete gelation. 

Previous IEF research utilizes 20 % w/v APS aqueous solution added to 

29:1acrylamide:bis-acrylamide solution to achieve gelation (0.4 % w/v in entire gel) 

in about half an hour time [172]. Adaption of these same conditions achieved full 

gelation in less than a minute, leaving insufficient time to print the solution.  

To prolong gelation times, we performed line printing with APS concentrations with 

10 % w/v and 15 % w/v APS (0.2 - 0.3 % w/v in entire gel). Gel polymerization 

results are shown in Figure 3.7. With 10 % w/v APS, even though the printing was 

good, the acrylamide solution did not polymerize within 4 hours. Using an APS 

concentration of 15% w/v, gelation was observed within 2.5~3 hours. This enabled 

ample time to print multiple gel lines. And as mentioned previously, APS 

Figure 3.7 Humidity control during printing process. Different chamber 
humidity were applied include a) No humidity control, gel line get dried out. 
b) 15 % humidity, line stayed well. c) 30% humidity, line became swelling 
with environment humidity increased. And d) 50% humidity, flood 
phenomenon observed in glass chip. 
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concentrations at 20 % w/v polymerized rapidly and prevented printing. Thus, 15% 

w/v became the standard solution conditions for all subsequent sIEF experiments. 

 

3.4 Conclusions 
The fabrication of sIEF device, including electrodes fabrication and separating gel 

printing, was completed by photo lithography, E-beam deposition and nano-

printing techniques. For electrode fabrication, a uniform Au-Ti layer with 

controllable deposition rate was achieved by E-beam depositor. For nano-printing 

operations, Nano eNablerTM instrument was first time adapted for IEF purposes. 

Printing conditions of sample loading methods, surface hydrophobic/hydrophilic 

property, printing humidity and acrylamide gelation were investigated to reinforce 

gel line shape with good reproducibility. The final recipe was determined to be SPT 

front loading, 10-minute UV-ozone recovery of surface hydrophilicity, 10%~20% 

relative printing humidity, and the use of 15% w/v APS with 3 hours of 

polymerization. As the result, a sIEF device contains two parallel drive electrodes 

and a straight acrylamide/bis gel line contacted by electrodes was prepared for 

later sIEF operation.  

Figure 3.8 Acrylamide gelation photos with different APS concentration. 
a) 10 % w/v, b) 15 % w/v and c) 20 % w/v. With 10 % w/v APS acrylamide 
solution is not able to polymerize. Both 15 and 20 % w/v will allow 
acrylamide turn into gel, but only 15 % w/v will offer enough 
polymerization time to finish line printing. 



 

65 

 Isoelectric Focusing (sIEF) with Carrier Ampholyte pH 
Gradient2 

4.1 Abstract  
Isoelectric focusing (IEF) is a powerful tool for amphoteric species separations 

because of high sensitivity, bio-compatibility, and reduced complexity compared to 

other separation techniques. IEF miniaturization is attractive because it enables 

rapid analysis, easier adaptation to point of care applications, and smaller sample 

demands. However, existing small-scale IEF tools have not yet been able to 

analyze single protein spots from array libraries, which are ubiquitous in many 

pharmaceutical discovery and screening protocols. Thus, we introduce an in situ, 

novel, miniaturization approach we have termed surface isoelectric focusing (sIEF). 

Low volume printed sIEF gels can be run at length scales of ~300 μm, utilize ~0.9 

ng of protein with voltages below 10 V. Further, the sIEF device platorm is so 

simple that it can be integrated with protein library arrays to reduce cost; devices 

demonstrate reusability above 50 uses. An acrylamide monomer solution 

containing broad-range carrier ampholytes was microprinted with a Nano 

eNablerTM between micropatterned gold electrodes spaced 300 µm apart on a 

glass slide. The acrylamide gel was polymerized in situ followed by protein loading 

via printed diffusional exchange. A pH gradient formed via carrier ampholyte 

stacking when electrodes were energized; the gradient was verified using 

ratiometric pH-sensitive FITC/TRITC dyes Green fluorescent protein (GFP) and R-

phycoerythrin (R-PE) were utilized both as pI markers and to test sIEF 

performance as a function of electric field strength and ampholyte concentration. 

Factors hampering sIEF included cathodic drift and pH gradient compression, but 

were reduced by co-printing non-ionic Synperonic® F-108 surfactant to reduce 

protein-gel interactions. sIEF gels achieve protein separations in < 10 minutes 

                                                            
2 The material contained in this chapter has been accepted for publication in 
Electrophoresis.  
DOI:10.1002/elps.201600565  
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yielding bands < 50 µm wide with peak capacities of ~8 and minimum pI 

differences from 0.12 to 0.14. This new sIEF technique demonstrated comparable 

focusing at ~100 times smaller dimensions than any previous IEF. Further, sample 

volumes reduced four orders of magnitude from 20 μL for slab gel IEF to 0.002 μL 

for sIEF. In summary, sIEF advantages include smaller volumes, reduced power 

consumption, and surface accessibility to the gel all with equivalent separation 

resolutions to prior IEF tools. These attributes position this new technology for 

rapid, in-situ protein library analysis in clinical and pharmaceutical settings. 

4.2 Introduction  
Isoelectric focusing (IEF) separates amphoteric molecules based on differences in 

their isoelectric points (pIs). Applied DC electric fields order amphoteric species 

between the cathode and anode to achieve stable pH gradients within which 

molecules focus to their individual pI [109]. Initially IEF hemoglobin and 

cytochrome protein separations suffered from poor resolution and pH gradient 

instabilities [141]. Carrier ampholyte (CA) mixtures, such as Bio-Lyte, Servalyt and 

PharmalyteTM [21], enabled slab gel IEF [112], capillary IEF [37], and most 

microfluidic chip-based IEF (μIEF) [4, 159] to achieve linear, stable pH gradients 

capable of resolving proteins pI differences as small as10-1-10-2. With advances in 

microscale protein synthesis and drug conjugation in spot arrays, IEF is being 

displaced by more costly Edman sequencing or matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI-MS) for peptide mass 

fingerprinting and post-source decay (PSD) analysis because these tools only 

require nL volumes [173].  

Current slab gel IEF and cIEF require large sample volumes (~20 μL), high 

potentials (~kilovolts) and long analysis times (~ hours for slab IEF, ~ tens of 

minutes for cIEF) [36, 38] which are consequences of the 10-cm and longer 

separation lengths. For both techniques, sample and gel preparation procedures 

are time and labor intensive [38]. Microfluidic chip-based IEF (μIEF) has enabled 

portability [88] while improving sample, power and time demands [4, 38, 159]; μIEF 

is normally conducted across 1 cm to 1 mm free solution with ~0.5-1 μL sample 
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volumes [135, 137], ~10s volts [4, 138, 170], and analysis times ~ 20 min [126, 

140]. Multiple μIEF platforms have been demonstrated with polymer, graphene, 

and hydrogels channel packing or materials and microchannels, zig-zap slip chips, 

membrane, and pH layered device designs all of which have enhanced μIEF 

separations [174-176]. Disadvantages of free solution μIEF include discontinuous 

pH gradients caused by local potential drops and convective flow issues [88]. Thus, 

hybrids of slab gel IEF and free solution μIEF were combined into polymer film 

coated μIEF devices [67, 148], microchips with thin-cut immobilized pH gradient 

(IPG) strips [127] [127], microfluidic devices with polyacrylamide gels cast inside 

microchannels [128, 177], followed by microchannel gels with photo-immobilized 

pH gradients [178, 179]. These hybrid IEF techniques demonstrated stabilized pH 

gradients, sharp sample peak signals and that CA pH gradients effectively scale 

down, while separation time and reproducibility improved as size decreased [90].  

Thus, we hypothesized that further miniaturization of IEF from centimeter to 

microscale separation lengths would offer opportunities for enhanced performance 

of extremely small sample volumes for rapid analysis. Since power requirements 

scale with separation distance, shorter gel lines require smaller applied voltages 

to achieve the same electric field strength. While µIEF demonstrated a 1000-fold 

improvement in material consumption over slab gels. Since power requirements 

scale with separation distance, shorter gel lines would require smaller applied 

voltages to achieve comparable electric field strengths for IEF separations.  

In this chapter, we demonstrates a novel surface isoelectric focusing (sIEF) 

technique in which ultraminiaturized gel lines of polyacrylamide monomer were 

printed between planar gold electrodes on a glass surface, allowed to polymerize, 

and then were loaded with proteins. Upon electric field application, CA alignment 

established the pH gradient, which was fluorescently imaged, and the proteins 

were focused to their pI points. This work further presents a parametric study of 

CA concentration and operating voltage to determine optimal operating conditions. 

Fluorescent protein samples, green fluorescent protein (GFP) and R-phycoerythrin 

(R-PE), were utilized to quantify and compare sIEF protein separation and focusing 
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capabilities to literature μIEF. Lastly, this work demonstrates that a non-ionic 

surfactant can reduce cathodic drift and pH gradient compression within sIEF gels. 

This work provides the first demonstration of surface accessible IEF, with 

resolutions equivalent to large-scale methods, nanogram sample volumes, 

voltages of ≤ 9V, and run times < 10 minutes. 

4.3 Materials and Methods  

4.3.1 Reagents 
Broad range carrier ampholytes (PharmalyteTM pH 3-10) were purchased from GE 

Healthcare (Pittsburgh, PA, USA). A 40% w/v stock solution for acrylamide 

monomer was made from 29:1 ratio acrylamide and bis-acrylamide powder 

obtained from Sigma-Aldrich (St. Louis, MO, USA). Ammonium persulfate (APS, 

gel polymerization catalyst), tetramethylethylenediamine (TEMED, co-catalyst with 

APS for gel polymerization), and glycerol (to impede gel drying) were obtained 

from PlusOne (New York, NY, USA). APS at 15% w/v solution was used as a 

polymerization catalyst for the acrylamide solution. E-pure water with 18.2 Ω·cm 

resistivity was made by EMD Millipore Simplicity Ultrapure 185 water system 

(Billerica, MA, USA). APS at 15% w/v solution was used as a polymerization 

catalyst for the acrylamide solution in E-pure water (18.2 Ω·cm, EMD Millipore 

Simplicity Ultrapure 185, Billerica, MA, USA). pH sensitive Fluorescein-5-

isothicyanate (FITC Isomer I, Invitrogen Eugene, OR, USA), and pH insensitive 

TRITC (Sigma-Aldrich, St. Louis, MO, USA) dyes were pre-mixed to a 1:2 v/v ratio 

(50 mM FITC and 100 mM TRITC) [180]. Green fluorescent protein (GFP, 1 mg/mL, 

pI 6.0, diffusion coefficient 5x10-7cm2/s, EMD Millipore, Billerica, MA, USA) came 

suspended in 1 mM phosphate buffer saline (PBS) solution. R-phycoerythrin (R-

PE, 20 mg/mL, pI 4.4, diffusion coefficient 3.94 ± 0.13 × 10-7cm2/s, AnaSpec, 

Fremont, CA, USA) was first dialyzed using a Slide-A-Lyzer MINI Dialysis kit (10K 

MWCO, Sigma-Aldrich, St. Louis, MO, USA) against a 1 mM PBS (made from pre-

mixed pellets, EMD Millipore, Billerica, MA, USA) to remove extra salts, and then 
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diluted to 1 mg/mL using 1 mM PBS. Synperonic® F-108 surfactant (Sigma-Aldrich, 

St. Louis, MO, USA) was used at 1% w/v. 

4.3.2 Device Fabrication 

A 7 cm x 3 cm microscope slide was micropatterned with three sets of 100 µm-

wide gold electrodes spaced parallel 300 µm apart (Figure 4.1) prepared via soft 

photolithography and electro-vapor deposition. As previously demonstrated [181], 

Figure 4.1 Schematic showing configuration and operation of the surface-
enabled IEF (sIEF) device. a) Schematic of sIEF device illustrating carrier 
ampholyte alignment into a pH gradient. Broad range (3-10) PharmalyteTM 
was co-printed with polyacrylamide between gold electrode pairs spaced 
300 μm apart.  The gel forms in-situ; a pH gradient forms within the gel upon 
electric field application. The obtained gel line has half-cylindrical shape with 
35±5 μm height (H). b) Photograph of sIEF device illustrating copper leads 
attached to micropatterned gold electrodes. c) A 20x fluorescence 
microscope was utilized to visualize the gel as well as the pH fluorophores 
and proteins within the gel.  
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a glass slide was spin-coated with negative photoresist (PR1-1000A, Futurrex, 

Franklin, NJ, USA), masked, then UV exposed (EVG620, EV-Group, Austria). 

Design features were developed with RD-6 developer (Futurrex, Franklin, NJ, 

USA), he slide was cleaned of undeveloped photoresist, then sputter-coated with 

50 nm titanium adhesion layer followed by 150 nm gold (Randex sputtering system 

2400, Perkin-Elmer, USA). Photoresist and excess metal were removed via 

acetone sonication. Copper wires were attached to the gold electrode contact pads 

using silver epoxy (MG chemical 8331, 0.007 Ω·cm electrical resistivity and 0.90 

W/m/K thermal conductivity). 

For sIEF, a single gel line was printed via a software-programmed vector motion 

to the micropatterned microscope slide surface using a fluidics-enhanced 

molecular transfer operations (FEMTO) instrument, Bioforce Nano eNablerTM 

(Bioforce, USA). This tool enables precise pattern-printing of diverse fluids on 

arbitrary surfaces [47, 61, 71-74, 182]. The instrument includes a controllable 

sample stage, surface patterning tool (SPT) holder, microscope with CCD camera 

and chamber with humidity control. The PharmalyteTM, acrylamide, and APS 

solutions were pre-mixed and loaded into the 60 μm rounded surface patterning 

tool (SPT-S-C60R) mounted on the SPT holder. Acrylamide/APS solution was 

printed at room temperature via 100 nm z-dimension SPT tip resolution to the 

patterned glass slide on the computer controlled x, y sample stage (20 nm 

resolution). A 60-µm-wide, 300-µm-long line was printed via stage vector 

movements in the x-direction. The printed gel line overlapped the 200 nm thick 

electrodes by ca. 20 μm at each end to ensure good electrical contact between the 

gel and the electrodes. Printing was monitored in real time and recorded at 20X 

magnification. Printing and polymerization parameters were optimized to achieve 

complete gelation (3 hours), surface properties of glass slide (10 min UV-ozone 

treatment to control surface hydrophobicity) and printing chamber humidity (15% 

relative humidity at 25˚C). The 3D profile of the printed gel was examined and 

modeled via a custom-built optical profilometer. The gel surface was scanned via 

a laser and beam reflection was analyzed via shape modeling software. The gel 
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line had a half-cylindrical shape with a height of 35+/-5 μm and width (also verified 

via traditional optical microscope of 60 μm. Spent gel lines were completely 

removed via ethanol; the sIEF slide were cleaned via UV-ozone treatment and 

reused. In addition, the surface configuration enabled printing of multiple gel lines 

to conduct multiple IEF experiments simultaneously.  

4.3.3 pH Fluorescence Calibration and pH Gradient Quantification 
To directly image the pH gradient development, FITC:TRITC fluorescent dyes at 

1:2 v/v were printed over the polymerized gel lines on the sIEF slides, then allowed 

to stand for 5 minutes to allow fluorophore diffusion into the gel. All experiments 

were conducted in a darkroom and fluorescent readings were shuttered to 

minimize photobleaching effects.  The slide was removed from the Nano eNablerTM 

stage and mounted on an inverted fluorescence microscope (Axiovert 200 M, Carl 

Zeiss, Thornwood, NY, USA) for video imaging with a 20X Neoplan objective. FITC 

was excited from an Hg light source filtered through a 485±25 nm band-pass filter, 

and emissions filtered through 515 nm long-pass and 535±40 nm band-pass filters. 

TRITC was excited with a 546±25 nm band-pass filter, and emissions filtered by a 

640±25 nm band-pass filter. Dye/pH calibrations were performed within printed 

gels by co-printing FITC/TRITC with pre-made standard pH 4, 5, 6, 7, 8, 9, and 10 

solutions onto the premade gels. FITC and TRITC images were acquired every 1 

minute for 10 minutes; >3 independent repeats were conducted. Fluorescent FITC 

and TRITC emission intensities were averaged over the gel area between 

electrodes with Image J software (NIH, USA), then normalized via equation 4.1:  

R= ΣIi,j
F

ΣIi,j
T                                                   (4.1) 

R is the normalized intensity ratio, IF and IT are pixel intensities of FITC and TRITC, 

respectively, i is the horizontal pixel location and j is the vertical pixel location.  

To image pH gradient formation during sIEF runs, gels were similarly prepared 

with FITC: TRITC and broad range PharmalyteTM. A baseline (time 0) was 

imaged and then a 9V potential was applied and recorded for 10 minutes. The 
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normalized intensity ratio was translated into pH with the calibration curve to 

monitor pH gradient formation during sIEF runs. 

4.3.4 Isoelectric Focusing of Protein Mixture and Image Analysis 
Dialyzed GFP and R-PE samples were pre-mixed at a 1:1 v/v ratio to achieve a 

final concentration of 0.5 μg/μL, and then printed on top of the sIEF gel line via a 

SPT. Total protein loading into the micro gels were consistently 0.9±0.04 ng. This 

sIEF slide was mounted onto the fluorescent microscope allowing 5 minutes for 

protein diffusion into the gels. The uniform presence of GFP and R-PE (single 

channel, excitation 485±25 nm, emission 535±40) was verified at time 0 in the gel. 

Then, images were acquired every minute for 15 minutes to monitor protein band 

focusing. Experiments were repeated 3 times for each solution condition. Focused 

band shapes as well as intensity profiles at the gel midline were obtained for 

comparisons. Demonstrations of focus recording are can be seen in Figure 4.2 and 

4.3. Figure 4.2 illustrates the pH gradient formation at 200V/cm electric field for 10 

minutes. The first column illustrates the raw images while the second column 

demonstrates the image intensity profile at the midline (shown by the dashed white 

line in the first image). Images are shown every 2 minutes because additional 

granularity does not provide significant insights. Figure 4.3 illustrates the time 

progression of GFP and PE focusing at 200V/cm field electric field with 

PharmalyteTM concentration of 2% w/v for 10 min. Raw images are shown in the 

left column and the corresponding intensity profile at the midline is demonstrated 

in the right column. 
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Figure 4.2 Images of dynamic pH gradient establishment 
within the printed polyacrylamide sIEF gels. The 50 μM FITC, 
100 μM TRITC mixture was printed on the gels. Images shown 
every 2 minutes from the entire recording in the pH sensitive 
FITC channel. Intensity profile lines obtained at the midline 
are shown in the right column for each image.  
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4.3.5 sIEF Dependencies and Optimization  
Electric field strength and carrier ampholyte concentration dependencies were 

investigated. DC potentials from 3 to 9 V were applied across the 300 µm gel line 

to achieve electric fields from 100 V/cm to 300 V/cm. CAs concentrations of 2%, 

4% and 6% w/v PharmalyteTM were examined under experimental conditions 

described in section 2.5. To explore sIEF optimizations, 1%w/v Synperonic® F-108 

surfactant, CHAPS (zwitterionic detergent, Sigma-Aldrich), or Dithiothreitol (DTT, 

Figure 4.3 Images of dynamic GFP/R-PE protein mixture focusing 
within the printed polyacrylamide sIEF gels. Protein mixture contains 
GFP and R-PE in 1:1 v/v ratio with 0.5 mg/mL concentration of each 
species. Images shown every 2 minutes for 10 minutes (images 
acquired every 1 minute). Intensity profile lines obtained at the 
midline are shown in the right column for each image.  
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Sigma-Aldrich) were added into the acrylamide/APS solution (section 2.1), with 2% 

w/v PharmalyteTM and 6V DC was applied. Pre-mixed GFP and R-PE were used 

at a 1:1 v/v ratio.  

4.3.6 Quantitative sIEF Resolution Power Estimations 
The focusing effectiveness of sIEF was determined, similar to other IEF platforms 

[91, 183], by quantifying the minimum difference between isoelectric points, ΔpI, 

and peak capacity, n (see Equation 4.2, 4.3 and 4.4). These parameters indicate 

resolvability of proteins by pI as well as the number of protein species that can be 

distinguished within an IEF gel, respectively [91, 183]. For ΔpI , the pH gradient, 

d(pH)/dx, diffusion coefficient, D, and pH gradient mobility difference, -dμ/d(pH), 

are assumed constant under ideal conditions [102]. Most commercially available 

CAs achieve reproducible and stable pH gradients in PAGE gels such that these 

assumptions are valid, at least over shorter operation times before cathodic drift 

and compression issues compound. Thus, ΔpI is directly tunable via electric field 

strength, E [102]:  

∆pImin=3�
D/E

(dpH
dx )/(- dμ

dpH)
                                                (4.2) 

To calculate ΔpI from experiments, pH gradients were determined directly from the 

image, diffusion coefficients were specific for R-PE and GFP, and the mobility 

difference was approximated as 1 from PharmalyteTM titration curves. The 

theoretical expression for peak capacity, nt adds additional insights into separation 

performance. Under ideal conditions, the pH gradient and effective charge over 

pH, dq/d(pH), are considered constant and nt is directly tunable via E [38],  

nt=�
-FE[ dq

d(pH)][
d(pH)

dx ]L2

16RT
                                          (4.3) 

Same to Equation 2.3 in Chapter 2, F is Faraday’s constant, R is the gas constant, 

T is the temperature, and L is the total separation length. To calculate peak 
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capacity, ne, from experiments, we adapt, as others have done, a method from 

capillary IEF and chromatography to the sIEF intensity profiles as shown in 

Equation 4.4 [106-108], 

ne=1 + L
w
                                             (4.4) 

Where w is the peak width taken at 4σ where σ is the standard deviation of the 

intensity peak. This 4σ is consistent with equation 4, which expresses this as the 

square root of 16. The minimum difference between isoelectric points and peak 

capacities are compared across experimental conditions. 

4.4 Results and Discussion 
IEF miniaturization onto surfaces is motivated by in situ protein analysis 

applications due to the need to increase protein array versatility, enable rapid 

analysis, and reduce materials and resource costs. Given that power requirements 

scale with separation distance, shorter gel lines require smaller applied voltages 

to achieve the same electric field strength. Since 1 mm µIEF demonstrated a 1000-

fold improvement in material consumption over 15~20 cm slab gels, a 100-1000 

fold improvement in sample consumption and reduced power requirements is 

possible when IEF is scaled to 300 μm in length as detailed herein. This section 

details results from this first sIEF evaluation including direct pH gradient imaging 

with the sIEF gels, electric field strength and carrier ampholyte concentration 

dependencies, followed by band focusing optimizations via surfactant additions. 

4.4.1 pH Calibration and pH Gradient Imaging 
Printed gel lines were half-cylindrical in shape with heights of 35±5 μm and widths 

(also verified via traditional optical microscope) of 60±5 μm. To dynamically 

observe and characterize the formation of a pH gradient within the gel line, a 

ratiometric FITC/TRITC calibration was first performed followed by sIEF pH 

gradient imaging. For the calibration, molecularly similar and identically charged 

FITC, a pH-dependent fluorophore, and TRITC, a pH insensitive fluorophore, were 

measured ratiometrically with standard pH solutions in the gel lines as described 
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in materials section, Equation 4.1 to yield Figure 4.2 calibration results. An 

exponential fit to the calibration curve is consistent with prior fluorophore results 

[180], as shown in the following equation and in Figure 4.2: 

pH=8.76 ln(R) + 1.67                                           (4.5) 

Where R is the FITC/TRITC intensity ratio from Equation 9. Experimental data and 

the fitted curve match well between pH 4 to 9 nearly covering the PharmalyteTM pH 

3-10 range. For sIEF pH gradient imaging, pH was ratiometrically quantified during 

electric field application. The fluorescent image in Figure 3a demonstrates the pH 

gradient profile with a plateau region 0-210 μm from the anode and an increasing 

pH gradient from 210 to 300 μm. Using the calibration curve in Figure 4.2, the 

corresponding pH intensity profile is calculated and shown in Figure 4.3b, right 

hand axis.  

Figure 4.4 Calibration of pH fluorophores within the polyacrylamide 
gels. a) Fluorescent images of the surface printed polyacryalamide gel 
lines adjusted to pH 4 and pH 10. The 50 μM FITC, 100 μM TRITC 
mixture at a 1:2 v/v ratio was printed on top of the polymerized gels. 
Nearly simultaneous 20x microscope images were obtained with FITC 
535±40 nm and TRITC 640±25 nm bandpass filters. b) Intensity data 
from FITC images were normalized by TRITC images, then fit to a curve 
with the trend line equation shown. Error bars are standard error for n=3 
repeats. 
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Ideally, commercial carrier ampholytes should generate a linear pH gradient that 

spans the anode to cathode gel length of 300 μm. Figure 4.3 illustrates the pH 3-

10 CAs were compressed near the cathode, a common phenomenon reported 

previously [91, 96, 159, 184-187] In a large slab gel with small reservoirs that 

allowed electrolytes to diffuse into the gel, the pH gradient was observed to 

compress due to differing anion and cation migration rates within the gel lines [162]. 

Similarly, a free solution μIEF device with reservoirs at either end of a channel and 

similar electrolyte diffusion yielded compression [4]. In our sIEF configuration, the 

separation channel was micrometers in length and no reservoirs were utilized with 

the intent to minimize anion/cation disruptions. However, the compression 

observed in Figure 4.3 suggests pH-disruptive ion migration effects remain, likely 

due to Faradaic reactions at the electrode surface [181]  

4.4.2 Demonstration of Protein Focusing in SIEF  
Despite pH gradient compression issues, trial protein IEF runs were conducted at 

2% w/v PharmalyteTM concentration and 200 V/cm applied electric field strength. 

A 1:1 mixture of fluorescent GFP and R-PE proteins, were printed onto the micro 

gels and monitored during electric field focusing. Figure 4.3a gel images illustrate 

that R-PE was separated from GFP and focused into two straight bands at 

positions of 225 μm and 260 μm from the anode, respectively. Protein peak 

locations were compared against the pH gradient intensity profile in Figure 4.3a 

and b. At the R-PE band position 225 μm from the anode, the corresponding 

calibration-inferred pH value is ~4, while the pH reading at the GFP band position 

of 260 μm is ~6. These two values are close to the known isoelectric points of R-

PE (pI=4.4) and GFP (pI=6.0). The consistency between protein IEF and the 

established pH gradient illustrate that protein migration and isoelectric focusing to 
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bands can be successfully achieved in microprinted acrylamide gel lines at length 

scales almost 100 times smaller than previous μIEF. 

 

Figure 4.5 pH gradient establishment and protein focusing in sIEF. a) 
Direct imaging of the pH gradient established within the printed 
polyacrylamide sIEF gels.  b) Demonstration of sIEF separation of R-
phycoerythrin (R-PE, pI=4.4) from green fluorescent protein (GFP, pI=6.0) 
within a 200V/cm field and 2 % w/v PharmalyteTM to gel. b) Corresponding 
intensity profiles for the pH gradient (blue, right hand side y-axis) and for 
R-PE, GFP sIEF separation (black, left side y-axis) as a function of 
position.  
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4.4.3 Electric Field Strength Optimization 
As suggested by Equations 4.2, the factors we examined to optimize sIEF 

operation included electric field strength and carrier ampholyte concentration 

because these directly influence peak width and resolvability as well as the pH 

gradient. The impact of electric field strength (100, 200, and 300 V/cm) on band 

focusing was investigated and quantified via ΔpI and n. Figure 4.4 demonstrates 

typical images of the separated and focused proteins along with their 

corresponding intensity profiles between the anode and cathode. To compare 

focusing potential intensity profiles were obtained at the centerline of the gel thus 

neglecting gel edge effects. Figure 4.4a illustrates both protein species focused at 

all three electrical field strengths after 10 minutes while Figure 4.4c illustrates 

protein focusing at 3 min for 300 V/cm, 5 min for 200 V/cm. Individual protein 

focusing efficiency, band shape, and position in the gels differ. Total protein in the 

gel was fixed and thus larger intensities per pixel area in Figures 4 b and d indicate 

more effective focusing. Total protein in the gel was fixed and thus larger intensities 

per pixel area indicate more effective focusing. As illustrated in Figure 4.4, protein 

focusing efficiency increases with increasing field strength. This is expected 

because higher electric fields impart greater electrophoretic forces to overcome 

any protein/gel interactions impeding protein mobility. 

However, 100 V/cm and 300 V/cm gel bands displayed distortion at the gel’s side 

edges, whereas 200 V/cm produced smooth smiling bands for GFP and a weaker 

undistorted straight band for R-PE as shown in Figure 4.4a. Distortion in smaller 

electric fields, such as 100 V/cm, are more susceptible to gel non-uniformity effects 

because protein migration is not strong enough to overcome pore geometry 

differences [188]. These effects become more pronounced at walls, or in our 

system, the gel side edges, because the field is weaker and the interface hinders 

protein transport pathways. With increasing electric field strength (200 V/cm), the 

IEF driving force is able to overcome gel nonuniformities and geometric limitations, 

thus yielding smoother bands. Further increases in field strength (300 V/cm) 

increase the tendency and strength of electrokinetic and hydrodynamic effects 



81 

[159]. For the band shape illustrated at 300 V/cm, electric double layer induced 

electroosmotic flows (EOF) could be occurring at both the gel/glass interface as 

well as the gel/air interface. The gel is fully saturated with sample and CA solution, 

so it is possible a thin liquid film exists as well. In summary, band shape 

dependencies are complex depending upon gel uniformities and competing 

electroosmosis and hydrodynamic effects within the narrowing edges of the gel. 

Thus, all future experiments were conducted at 200 V/cm because protein 

transport effects were consistently more uniform across all repeats.  

Band position, measured as distance from the anode, varied with electric field 

strength as shown in Figure 4.4a. Idealy, the pH gradient should be liner across 

the entire separation length. In this case, pH gradient of 4.4-6 should have length 

of 47 μm (band position distance between PE 134 μm and GFP 181 μm from 

anode). In the real experiment, band positions directly correlate with the level of 

pH gradient compression and drift, the closer bands’ distance from  anode, the 

less cathodic drift; the larger distance between bands, the less the pH gradient 

compression experienced. At 100 V/cm electric field, GFP and PE band are 250 

μm and 260 μm from anode, respectively, with bands distance of 10 μm. . When 

the electric field increased to 200 V/cm, GFP band slightly moved by 5 μm closer 

to anode, and PE moved by 2 μm, the distance between two bands increased to 

13 μm. The higher electric field improved pH compression from 79% to 72% and 

reduced cathodic drift. At 300/cm, both R-PE and GFP shifted 10 μm closer to the 

anode, but band spacing did not change suggesting a reduction in cathodic drift 

but no improvement in pH gradient compression. Reducing cathodic drift and pH 

gradient compression was desired, so 200 V/cm was identified as the optimal 

electric field strength.  
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Figure 4.6 Electric field comparisons of GFP and R-PE protein 
separations in sIEF gels after 10 minutes in 300 V/cm, 200 V/cm, 
and 100 V/cm. Pharmalyte was co-printed at 4 % w/v with the 
polyacrylamide gel. For better visualization, images were 
enhanced via +5% brightness and +10% contrast. a) Fluorescent 
images of the gels with the GFP and R-PE bands illustrating shape 
and focusing efficiency differences. b) Corresponding protein 
intensity profiles illustrate band positions shift toward the cathode 
with decreasing voltage and protein focusing efficiencies increase 
with greater voltages. More uniform and preferred protein band 
shapes were consistently obtained at 200 V/cm. 
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4.4.4 Carrier Ampholyte Concentration Optimization 
Carrier ampholyte (CA) concentrations were also systematically varied to ascertain 

the most stable, uncompressed pH gradient between the anode and cathode. 

Ampholyte species are essential for stable pH gradient formation and also strongly 

influence protein behavior during IEF. Prior CA concentrations were reported in 

the 2-4% w/v range [21]. Due to the size of the gel in our sIEF device and the 

absence of reservoirs at either end, we expanded this range up to 6% w/v to 

determine if PharmalyteTM concentration may have a greater influence. 

Fluorescent images and corresponding intensity profiles for three CA 

concentrations (2%, 4%, and 6% w/v) at 200 V/cm are shown in Figure 4.5. Images 

illustrate that R-PE and GFP proteins separation and focusing at all three 

PharmalyteTM concentrations meaning that stable pH gradients formwith all 2%-6% 

w/v CA concentrations. However, protein migration behavior differed among the 

PharmalyteTM concentrations: in 4% and 6% w/v, a curved R-PE band and a 

straight GFP band were observed although protein focusing efficiency was greater 

at 4% w/v for R-PE and slightly greater at 6% w/v for GFP. In the 2% w/v case, R-

PE and GFP bands focused into straight lines, although efficiency was reduced as 

evidenced by lower band intensities. To track protein focusing progress current-

time plots were tracked for each run as shown in Figure 4.5b inset. Current 

dropped then stabilized to ~20 nA as CAs and proteins approach electroneutrality 

upon focusing to their pI. Thus, a low stable current was an indicator of a fully 

developed pH gradient. The 2% w/v current trace suggests rapid alignment and 

focusing within ca. 2.5 minutes while both 4% and 6% w/v concentrations exhibit 

a shoulder near ca. 2.5 min and delayed stabilization until 5 min or longer. The 

straight bands in 2% w/v correlate with more rapid focusing and stabilization, 

whereas the curved bands and dispersed, unfocused proteins contribute to the 

delays in 4% and 6% w/v PharmalyteTM gels. These observations are consistent 

with prior reports that CAs concentrations influence IEF focusing behaviors [189]. 

Concentrations up to 32% w/v revealed that higher CAs concentrations take longer 

to establish stable pH gradients and ampholyte concentrations effect protein 
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behavior during IEF [190]. At low CAs concentration (2~4% w/v), ampholyte 

mobility was not effected by ion strengths. However, at higher CA concentrations, 

free ions above 56.1 mM change the transient states of CAs and proteins. Our 

sIEF gels have a total volume of 0.9 nL, and cross sectional area of ~ 1400 μm2 

which suggests ions present have a greater probability of interacting with the 

carrier ampholytes as they pack into localized regions in the gel. These interactions 

are less probable at lower CA concentrations, likely explaining why the 2% w/v 

results were more consistently reliable than 4% w/v CA. Thus, to successfully form 

a pH gradient and minimize ion effects, the 2% w/v CA concentration was selected 

as an optimal value for subsequent sIEF experiments.  

4.4.5 Additional Improvements for SIEF  
These preliminary results demonstrate the viability and potential for dynamically 

printable surface isoelectric focusing. Inspired by prior IEF knowledge, 

mechanisms impeding protein focusing as well as practical approaches to improve 

separation performance are briefly discussed. First, pH gradient compression has 

been attributed to pH-disruptive anion and cation accumulation near the electrodes 

[155, 164] either from free ion sources or electrochemical reaction byproducts. In 

sIEF, Faradaic reaction byproducts can alter glass-gel interfaces and/or cause 

adverse protein-protein interactions. Byproducts can, in severe cases, cause gel 

degradation [150, 152, 191]. Additional influencers of free ion concentrations 

include glycerol, gel components, and/or protein solution impurities. As discussed 

in sample preparation section, dialysis was utilized to reduce free ion 

concentrations and glycerol was employed to impede sample drying. Regardless 

of the source, higher concentrations of ions in the gel adversely affect band 

focusing behaviors [138, 159]. Second, electroosmotic flows at interfaces may 

exacerbate band distortion [192, 193], and can also cause protein precipitation due 

to removal of the water hydration layer around proteins [193]. Some protein 

precipitation and stagnation within the gels were observed as protein residues near 

the anode in our sIEF experiments apparent in Figure 4.5a, 6% w/v. Last, band 

distortion is sometimes attributed to Joule heating and spatial variations in 



85 

temperature [194]. However, due to the large glass surface area under the sIEF 

gel lines and glass thermal conductivity, calculations show this would be less than 

0.5˚C. Thus, this work explores additives to counter negative ion effects.  

  

Figure 4.7 PharmalyteTM concentration dependence on sIEF gel-
based GFP and R-PE protein separations for 6 % w/v, 4 % w/v and 
2 % w/v. A 200 V/cm electric field was applied for 10 min. For better 
visualization, all the images are enhanced by 5% brightness and 
10% contrast. a) Fluorescent images illustrate the shape and 
intensity differences between GFP and R-PE bands for the 
different PharmalyteTM concentrations. b) Corresponding intensity 
profiles illustrate different relative protein capture efficiencies with 
only minor band position changes. Inset for b) is the current-time 
plot for each separation shown. A 2 % w/v PharmalyteTM 
concentration best facilitated protein focusing into two straight 
bands within the shortest time. 
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To reduce protein/gel interactions as well as protein/surface interactions, a 

nonionic surfactant was added for the sIEF runs. In these experiments, 1% w/v of 

Synperonic® F-108 surfactant was added to the acrylamide/APS solution 

(materials section), then sIEF was run exactly like previous trials. Figure 4.6 

illustrates improved protein focusing efficiency and reduced pH compression with 

the 1% w/v F-108. Compared with the fluorescent image in Figure 4.3, the GFP 

and R-PE bands show an obvious focusing roughly halfway between the anode 

Figure 4.8 Demonstration of surfactant improved focusing 
efficiency. Both microscope images and corresponding intensity 
profiles are include in the figure. After F-108 surfactant introduced, 
intensified bands as well as suppressed gradient drift can be seen 
from microscope images, and those effect can be verified by 
shaped peaks and moved peak locations in intensity profiles. Also 
the focusing time was slightly reduced. Experiments run under the 
conditions of 200 V/cm and 2% w/v PharmalyteTM. 
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and cathode meaning pH gradient compression was substantially reduced. In 

addition, the bands were focused with high intensity, which implies greater protein 

capture capability to their isoelectric point, without noticeable protein residues 

elsewhere in the gel. Lastly, bands exhibited the traditional crescent curvature 

without the severe band distortions observed in Figure 4. Using a surfactant to coat 

capillary surfaces, prior cIEF results showed EOF can be reduced while increasing 

the local viscosity near the surface [148, 149, 195]. Our results illustrate that gel 

co-printing with surfactant F-108 may may similarly reduce EOF and 

protein/gel/surface interactions. 

4.4.6 sIEF Resolving Power 
From conventional IEF theory, separation performance can be estimated using the 

minimum pI difference and peak capacity. The minimum pI difference, ΔpI, was 

calculated by applying Equation 1. Table 4 compares the smallest pI difference 

that can be resolved for GFP and R-PE peaks in gels with and without the nonionic 

surfactant. The ΔpI values of GFP and R-PE without surfactant are 0.14 and 0.12, 

but with surfactant this reduces to 0.05 and 0.09, respectively. The magnitude of 

these sIEF results are similar to and slightly smaller than both cIEF (1x10-1) and 

free-flow/microchip IEF (2 to 4x10-1) [91, 137, 196, 197]. 

Table 4 Comparison of experimental peak capacity and minimal pI difference 
from surfactant trial and non-surfactant trial 

Peak and Condition Peak Capacity  ΔpI 
GFP, without surfactant 8 0.14 
GFP, with surfactant  24 0.05 
R-PE, without surfactant 8 0.12 
R-PE, with surfactant 53 0.09 

 

Theoretical and experimental peak capacities were estimated and compared from 

equations (3) and (4). For both GFP and R-PE without surfactant, ne are ~8 while 

the theoretical nt values for GFP and R-PE were both around 10. Experimental 

values with the nonionic surfactant were ne = 24 and ne = 53 for GFP and R-PE, 

respectively. The corresponding theoretical nt for GFP and R-PE were 24 and 59, 
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respectively. Theoretical and experimental peak capacities agree well. Peak 

capacity numbers were also comparable to free-flow and microchip IEF which are 

between 23 and 48 [91, 137]. However, cIEF results analyzed with precision MS 

or similar, more costly analytical tools report peak capacities 1 to 2 magnitudes 

larger [196, 197]. 

Numerical comparisons of pI difference and peak capacity indicate that sIEF, with 

additional optimizations, has the potential to approach the resolving power of other 

IEF platforms. The three to seven fold increase in resolution observed for GFP and 

R-PE with F-108 nonionic surfactant is promising. Further, the presence of 

surfactant increased the GFP peak capacity by ~3 fold and R-PE by 1.3 times. 

These results are consistent with the intensified focused bands and suppressed 

pH gradient compression and cathodic drift visually observed under the 

microscope. Thus, further investigation of additional surfactants and additives is 

warranted to further optimize sIEF. 

4.5 Conclusions 
This paper is the first report of surface isoelectric focusing conducted at a scale of 

100s of microns. This 10 to 100-fold reduction in gel length enables a 10-fold 

reduction in power requirements and a 100-fold improvement in sample 

consumption. The sIEF technique builds upon prior protein focusing knowledge in 

slab gel IEF and μIEF to engineer a more powerful, versatile, surface-accessible 

IEF platform. This work demonstrates protein separation and focusing at a scale 

two orders of magnitude smaller than previous reports with roughly equivalent 

resolution.  

The acrylamide gel lines can be readily printed on normal microscope glass slides 

using surface-printing techniques. Our results demonstrate that pH gradients can 

be successfully and reproducibly generated in 300 µm long, 60 µm wide, and ~35 

µm tall and curved gels using broad range PharmalyteTM (pH 3-10). The pH 

gradient was verified via ratiometric pH sensitive and pH insensitive fluorescent 

dyes. Further, 0.9 ng of GFP and R-PE protein samples (0.5 mg/mL) were 
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separated and focused to pH~4 and pH~6 consistent with their pI values. pH 

gradient stabilization was demonstrated in 2 minutes while complete protein 

focusing was demonstrated within 10 minutes and successfully imaged in real time 

via fluorescent video microscopy. Electric field strengths and carrier ampholyte 

concentrations were investigated to determine optimized experimental conditions 

of 2% w/v PharmalyteTM and 200 V/cm. Focused band results elucidated 

challenges with pH compression and band distortions within the sIEF device. Thus, 

trials utilizing nonionic Synperonic® F-108 surfactant within the gel revealed three 

to seven-fold improvements in protein separation efficiencies and in the sIEF 

resolving capability. Further investigations are warranted to fully explore ion 

accumulation effects and EOF to alleviate pH compression, band distortions, and 

protein precipitation; these will ultimately improve sIEF performance. 

In summary, this new sIEF approach can transform the ease and versatility of 

nanoscale protein analysis by rapidly generating pH gradients and focus proteins 

on versatile and easily accessible glass surfaces. To achieve comparable focusing 

and resolving power, sIEF technique requires 10-100 times smaller applied 

voltages, and only 0.002 µL of sample instead of the 10-20 µL in cIEF or gel IEF. 

The ~100-fold reduction in gel length presented in this work enables a 10-fold 

reduction in power requirements and a 100-fold improvement in sample 

consumption. The supporting glass slides can be easily cleaned for reusability in 

excess of 50 runs. In addition, the surface printing will enable rapid construction of 

customizable sIEF gels that can be integrated into protein array libraries for 

specialized and/or orthogonal separations. The surface geometry also enables 

easy accessibility for spot picking tools in tandem with secondary protein analysis 

such as MS and MALDI-TOF. These advantages make sIEF attractive for future 

portable, user-friendly, in situ protein separations.  
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 Surface Isoelectric Focusing (sIEF) Optimization and 
Application for Hemoglobin Variants Separation with Narrow 
Range pH Gradient3 

5.1 Abstract 
Isoelectric focusing (IEF) plays an important role in amphoteric biological molecule 

pre-fractionation. For modern pre-fractioning techniques, sample species 

grouping, quick processing, and easy sample accessibility are required. Recently 

developed surface isoelectric focusing (sIEF) has characteristics that include quick 

analysis, a friendly sample accessing interface, and device multi-time usage. 

These attributes make sIEF a platform biomolecule pre-fractionation tool. This 

work expands sIEF capabilities for protein variant identification and fractionation 

to narrow pH ranges. Unpolymerized acrylamide gel lines were printed between 

parallel electrodes, then allowed to polymerize in situ. Narrow range carrier 

ampholyte PharmalyteTM was used, along with a DC electric field, to generate a 

pH gradient ranging from 6.7 to 7.7 across the printed gel line. Fluorescent 

isoelectric point (pI) markers at 6.8, 7.2 and 7.6 were used to characterize the 

established pH gradient. Results demonstrate rapid and stable narrow range pH 

gradients on the sIEF device with good reproducibility. Hemoglobin (Hb) variants 

A, S and F were successfully separated with peak capacities around 50. Focused 

bands displayed curvature, and were attributed to electrolysis byproducts 

distorting the gel gradient at the edges. To impede electrochemical reactions at 

the electrode surfaces, the entire sIEF device was coated with a 50nm dielectric 

HfO2 thin film. The modified sIEF device separated Hb variants with 50% higher 

band peak capacities.  Thus, HfO2 modification proved to be a promising technique 

for sIEF protein pre-fractionation. Surface access attributes will likely enable more 

                                                            
3  The material contained in this chapter is in preparation for submission to 
Biomicrofluidics 



91 

seamless sIEF integration with secondary-analysis tools such as orthogonal 

electrophoretic mobilization to MS, MALDI-TOF, etc. 

5.2 Introduction  
Rapid, highly efficient screening of complex biomolecule mixtures, such as 

hemoglobin screening to identify variant/abnormal protein forms, which involves 

the discernments of structural variation from identical heme groups in molecular 

level. Also difficulties including identifying highly unstable hemoglobin that may 

manifest clinically as hemolytic anemia or thalassemia, or small amounts of variant 

hemoglobin that might not be detected by diagnostic techniques used in most 

clinical laboratories, require multistep separation/identification runs with the 

integration of different technologies. For the first-step screening tool, which plays 

as the coarse filter in the very beginning, accurate identification and quantification 

of fractionates are crucially important. The majority of pharmaceutical and 

biomedical analysis protocols utilize chromatography, gel or capillary 

electrophoresis for the first step biomolecule fractionation followed by mass 

spectrometry as the fine analysis tool [132, 198-200]. However, as pre-

fractionation tools, conventional electrophoresis and chromatography will 

encounter limitations including long processing times, large sample volumes, and 

labor intensive protocols [68, 88]. Furthermore, the conventional pre-fractionation 

tools do not translate readily to time sensitive and space confined situations such 

as emergency or battlefield analysis. Thus, modifications and improvements to 

conventional fractionation and separation techniques for biosample pre-screening 

are urgently in need.  

Microfluidic chip-based IEF (μIEF) has been investigated and developed for more 

than a decade. With microfabrication techniques becoming more established, the 

focus of μIEF has transitioned from device design to real test applications [88]. 

Many biological/biomedical applications have found μIEF attractive as a first 

dimension fractionation tool leveraging amphoteric biomolecules focusing to 

unique pI. This feature allows different amphoteric samples to be grouped and 

concentrated from complex analyte mixtures. Sample loading can also be reduced 
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from the typical 10~20 μL required from conventional electrophoresis to ~0.1 μL in 

μIEF as a result of smaller operating scales [57, 133]. Lastly, miniaturized devices 

reduce the μIEF operation times [88]. Additionally, μIEF’s decreased device size 

does not compromise protein separation resolutions; therefore, commercial carrier 

ampholytes in μIEF efficiently resolves proteins with pI differences as small as 10-

1-10-2 [68, 87, 88, 91].  

Other first dimension separation tools, such as chromatography-based capillary 

IEF, remain competitive due to high resolution and reproducibility. As a mechanism, 

ampholytic samples are either mixed together with carrier ampholytes or injected 

into the capillary to cause simultaneous pH gradient generation and IEF separation, 

or injected into a carrier ampholytes pre-filled capillary to run the separation. The 

sample injecting, voltage, and pressure controls are usually automatic, and all the 

capillaries and carrier ampholytes are commercial products; these advantages 

make the tools robust, and they are still being employed as widely accepted 

benchmark technologies [64, 201]. However, those tools require external forces to 

mobilize samples down the enclosed capillaries to detectors which increase 

dispersion [68, 202]. Also the cost, complicated operation, and large sample 

volume requirements are constraints of chromatography-based tools. While in 

another technique micro IEF (μIEF), samples are directly loaded into separation 

channels via diffusion or capillary forces, namely, no elaborate sampling technique 

required to keep analysis results consistent [132].   

Despite μIEF advantages of fast and simple biomolecule fractionation without 

compromising resolution, the tool has issues that impede further development 

including pH gradient instability, reaction byproducts, mass transport, and sample 

access post separation. With more than 600 chemical entities and at least one 

thousand isoforms, carrier amphoteric molecules are oriented by a DC electric field 

to form a continuous pH gradient [21]. These amphoteric molecules experience 

anodic/cathodic drift and gradient compression due to the prolonged focusing time 

and high applied DC voltage [155, 164]. These unstable pH gradient phenomena 

reduce resolvability and resolution of the protein separations. Also, Faradaic 
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reaction (sometimes observed as electrolysis) at electrode surfaces alter the ionic 

composition of the gel media. Mass transport via electroosmotic flow (EOF) or 

electric field mediated migration of ionic species other than the amphoteric proteins 

can also alter local conditions [46, 203, 204], thus altering the established pH 

gradient [91, 164]. EOF can be attenuated, but remains inevitable in μIEF [205-

207]. Despite μIEF’s power, the tool has remained a research novelty without 

mainstream adoption due in large part to difficulties involving automating sample 

injections and the cumbersome steps (EOF mobilization to a deliberate range to 

reduce focusing time without sample over dispersion; sample modifications to 

suppress sample/device interface reaction; multilayers/channels design to improve 

resolving power, etc. [92, 93, 127, 132, 137].) Also μIEF needed to recover the 

focused samples from the short enclosed channels for secondary analysis. 

Therefore, the combination of μIEF’s advantages of scale with cIEF’s advantages 

of pH gradient stability and focused sample recovery would yield an extremely 

powerful high-resolution separation tool. 

We recently demonstrated surface isoelectric focusing (sIEF) [208] whereby small 

scale separations were conducted on sample accessible surfaces. Surface 

isoelectric focusing was conducted in a 60 μm x 300 μm microprinted 

polyacrylamide gel line spanning two thin-film electrodes on a glass slide. The 

present work demonstrates improved pH gradient stability and sIEF resolutions 

achieved within narrow range pH 6.7-7.7 PharmalyteTM gels to separate 

hemoglobin variants. First, fluorescent peptide pI markers were utilized to quantify 

the position and shape of established CA pH gradients. Hb variants A, S and F, 

which have pI differences between 0.2 and 0.4, were explored and separation 

efficiencies quantified via peak capacity and resolution. The impact of pH gradient 

stability was further explored via control of Faradiac reaction byproducts and 

chemical additives. Faradaic reaction byproducts from electrode surfaces were 

prevented from entering the gels by passivating the entire glass/microfabricated 

electrode surface with a HfO2 dielectric layer [181]. Chemical additives were 

incorporated into the gel to explore potential improvements to pH gradient drift and 
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compression. For all conditions explored, quality of band resolvability was 

quantified and compared to identify optimal conditions for sIEF protein separations 

in nanoliter volume gels. This work demonstrates successful separations of 

proteins with hard to resolve 0.2 pI differences in off-the-shelf narrow range 

PharmalyteTM CAs. 

5.3 Materials and Methods 

5.3.1 Chemicals: 
Fluorescent IEF markers (peptides with pI’s of 6.8, 7.2 and 7.6), acrylamide/bis-

acrylamide (29:1, 40% w/v stock solution), and Synperonic® F-108 surfactant were 

ordered from Sigma-Aldrich (St. Louis, MO, USA). Tetramethylethylenediamine 

(TEMED), glycerin and ammonium persulfate (APS, 15% w/v solution 

polymerization catalyst of acrylamide/bis-acrylamide solution) were ordered from 

PlusOne (New York, NY, USA). Narrow range carrier ampholytes (PharmalyteTM 

pH 6.7-7.7) were purchased from GE Healthcare (Pittsburgh, PA, USA). Simplicity 

Ultrapure 185 water system (E-pure water generator providing an 18.2 Ω·cm 

resistivity product) and phosphate buffer saline (PBS) pre-mixed pellets were 

purchased from EMD Millipore (Billerica, MA, USA). Hemoglobin variants (Hb A, 

S, and F mixture, diluted to 1 mg/mL with 1 mM PBS solution) were purchased 

from Analytical Control Systems, Inc. (Fishers, IN, USA). Negative photoresist 

PR1-1000A and photoresist developer RD-6 were ordered from Futurrex (Franklin, 

NJ, USA). Silver epoxy is a commercial product of MG chemical (MG8331, 0.007 

Ω·cm electrical resistivity and 0.90 W m-1·K-1 thermal conductivity). 

5.3.2 Device Fabrication  
A 3 x 7 cm2 glass chip with micro-patterned gold electrodes (100 µm-wide spaced, 

300 µm apart) was prepared using soft photolithography followed by electro-vapor 

deposition (E-beam), details are as described in Chapter 3.2.2. In short, a glass 

slide was pre-cleaned and then spin-coated with PR-1000A photoresist. Electrode 

pattern transfer onto the glass slide was achieved by UV exposure under a 

computer designed, hollow caved mask, followed by RD-6 developing. Patterned 

metal electrodes were deposited using E-beam, the obtained metal layers contain 
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5 nm titanium followed by 150 nm gold. Photoresist and excess metal were 

removed by acetone sonication. 

A HfO2 thin film was attached onto the metal patterned glass chip using sputter 

deposition (PE 2400 Sputter Tool-8 inch) by first pre-vacuuming the chamber to 

3x10-7 Torr, and then applying 700 W plasma with 18 sccm Ar flow and 4 sccm O2 

flow (7.4x10-3 Torr) to obtain a 50 nm HfO2 layer at a 7 nm/min deposition rate. 

During deposition, a cover glass slide was tapped on top of the electrode contact 

pads to prevent passivation. The HfO2 coated glass chip was uniformly heated on 

top of a 6” Si wafer on a hotplate for 30 min at 250oC (temperature increase of 

50oC /min from room temperature to 250oC before cooling naturally) to enhance 

the rigidity and remove pinholes. External copper wires were attached on the 

completed glass chip contact pads using silver epoxy. 

The sIEF gel printing protocol is the same as described in Chapter 4.2.3. In brief, 

a 60-µm x 300-µm line was printed via a software-programmed surface printing tip 

(SPT) vector motion monitored in real time under microscope. The glass slide with 

micro-patterned electrode was pretreated in UVO cleaner, and the SPT was 

preloaded with a mixture of acrylamide/bis solution, narrow range PharmalyteTM, 

and APS. The overall device fabrication flowchart is described in Figure 5.1. 



96 

 

 

5.3.3 Experiment Set-up 
Fluorescent IEF markers (pI’s of 6.8, 7.2, and 7.6) were focused using sIEF for pH 

gradient calibration. Pre-mixed IEF markers (1:1:1 v/v ratio, with final 

concentrations of 0.33 mg/mL for each species) were printed on top of the pre-

printed sIEF gel line by SPT and then allowed 5 minutes for uniform sample 

diffusion throughout the gel. A 200 V/cm electric field was applied through the gel 

while images of the IEF markers movement were recorded at 30 second intervals 

Figure 5.1 Configuration of the electrode-passivated surface-enabled IEF 
(sIEF) device. Device fabrication sequence includes a) 100 um wide gold 
electrode pairs patterned onto a glass slide with circles representing contact 
pads, b) HfO2 passivation layer sputtered over the electrodes, c) Finished 
device with PharmalyteTM co-printed with polyacrylamide gel spanning 
between gold electrode pairs spaced 300 μm apart, and d) Image of the 
completed sIEF device. Gels were run with and without the HfO2 layer.  
Gelation occurred in-situ; a pH gradient formed within the gel upon electric 
field application. 
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over 15 minutes to monitor activity. Intensity profiles at the gel middle zone 

(analysis area of 10 x 300 µm2) were obtained using Image J.  

The IEF experimental conditions for Hb variants were similar to that of IEF markers. 

Hb variants A, S and F were premixed to final concentrations of 0.6 mg/mL, 0.2 

mg/mL and 0.2 mg/mL, respectively. The Hb mixtures were loaded onto pre-

printed gel with SPT. The Hb imaging was processed under bright field illumination 

to obtain well-visualized images and image intensity profiles. The raw microscope 

images were rendered first in negative colors and analyzed by Image J before 

being processed with contrast and brightness enhancement to visualize the 

focused bands as shown in Figure 5.2.  

 

Figure 5.2 Demonstration of image processing and analysis 
procedures. a) The gel area spanning between the electrodes in the 
raw 20X microscope image was processed via brightness and 
contrast enhancement (b) to accentuate the focused bands. c) The 
image was also inverted and the negative image utilized for (d) 
intensity profile analysis. a) Raw microscope image, b) Enhanced 
image in gel area, c) Negative image for intensity analysis and d) 
Corresponding intensity profile.  Focused proteins are shown as 
peaks in the profile and aligned with the enhanced image bands. 
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5.4 Results and Discussions 

5.4.1 pH Gradient Establishment and Calibration 
In previous work, we reported the establishment and calibration of broad range pH 

gradients in a similarly constructed sIEF device. The pH distribution along the 

printed gel line was correlated to fluorescent intensity of pH sensitive dyes FITC 

and TRITC. However, FITC’s working pH range (pH 3.6-8.9) was too broad to be 

an effective indicator for the narrow pH range (pH 6.7-7.7) investigated herein [209]. 

Thus, we utilized an alternative pH calibration method adapted from conventional 

IEF – namely to focus samples with known isoelectric point to infer pH locations 

and thus the gradient [64, 204, 210]. Premixed fluorescent IEF markers with pI 

values of 6.8, 7.2 and 7.6 were loaded onto sIEF gels and focused at 200 V/cm. 

The focused band positions were imaged and the position recorded as described 

in Figure 5.2, then correlated to pH as shown in Figure 5.3. Figure 5.3a 

demonstrates an enhanced contrast microscope image of IEF markers after 10 

minutes of focusing in addition to the corresponding intensity profile. The 

fluorescent image illustrates three IEF markers focused at different locations; 

furthermore, the intensity profile more easily illustrates the focused bands reflected 

as peaks. In Figure 5.3b, five individual repeats were compiled and a correlation 

between pH and location was fitted using a non-linear Harrison model (Equation 

5.1) where D is the distance from the anode. This fitting reveals that the established 

pH gradient had a plateau from pH 6.8 to pH 7.2, and a pseudo linear region from 

pH 7.2 to pH 7.6. This pseudo linear region offers optimal separation conditions 

for proteins with pI values greater than 7. However, separations will not be ideal 

for proteins with pI < 7.  

pH= 1
a∓bDc                                                    (5.1) 

The narrow range pH 6.7-7.7 gradient followed a power law dependence in 

equation 1 while the broad range pH 3-10 gradient previously described followed 

a slightly different power law distribution pH=(2.57-(9.58x10-6)D2.17)-1[180]. 

Deviations from linear pH gradients reduces the ease, identification, and 
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separation efficiencies of proteins. Therefore, sIEF modifications via electrode 

surface passivation and chemical additives were systematically explored to alter 

the pH gradient into a flatter pH distribution over position. The pH fit variables under 

conditions of blank control, passivation only, surfactant only and passivation + 

surfactant are summarized in Table 5 and discussed separately below.  

Table 5 The pH fit, Equation 5.1, variables under different sIEF device 
modifications 

Equation 5.1*: pH= 1
a+bDc 

Device modification type, Narrow Range 

Pharmalyte a b c 

No passivation, no additive (blank control) 0.15 -9.55E-18 6.17 

HfO2 passivation, no additive 0.15 -3.52E-14 4.77 

No passivation, F-108 0.15 -1.01E-16 5.78 

HfO2 passivation, F-108 0.15 -3.87E-15 5.14 

Broad Range PharmalyteTM  

No passivation, no additive 2.57 -9.58E-6 2.17 

*D: distance from anode, μm 
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5.4.2 SIEF Modifications to Improve the PH Gradient: Electrode 
Passivation  

In microscale electrokinetics, including IEF, electrolysis of water at electrode 

surfaces produces H+ and OH- that can cause non-ideal phenomena including pH 

compression and pH gradient instabilities [4, 91, 92, 155, 164]. The ionic 

electrolysis products move electrophoretically and thus accumulate within the IEF 

gels near the oppositely charged electrodes. These ion accumulations lead to 

increasingly acidic or basic local environments near the anode and cathode, 

respectively. Local acidic/basic conditions interfere with carrier ampholyte stacking 

Figure 5.3 Demonstration of image processing and analysis 
procedures. a) The gel area spanning between the electrodes in the 
raw 20X microscope image was processed via brightness and contrast 
enhancement (b) to accentuate the focused bands. c) The image was 
also inverted and the negative image utilized for (d) intensity profile 
analysis. a) Raw microscope image, b) Enhanced image in gel area, c) 
Negative image for intensity analysis and d) Corresponding intensity 
profile.  Focused proteins are shown as peaks in the profile and aligned 
with the enhanced image bands. 
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causing gradient compression, drift or secondary electrohydrodynamic forces [91, 

155, 164].  

In any lab-on-a-chip device with direct contact between electrodes and aqueous 

media, electrolysis at the electrode surfaces contributes protons and hydroxides 

into the solution [126]. Equations 5.2 and 5.3 show Faradaic electrolysis reactions 

at the anode and cathode, where Eeq is the standard equilibrium electrode potential:  

Anode:𝐻𝐻2𝑂𝑂 → 1/2𝑂𝑂2 + 2𝐻𝐻+ + 2𝑒𝑒−   (in acid, Eeq=1.23 V [211])      (5.2) 

Cathode: 2𝐻𝐻2𝑂𝑂 +2𝑒𝑒− → 𝐻𝐻2 + 2𝑂𝑂𝐻𝐻− (in base, Eeq =-0.83V [211])   (5.3) 

IEF has traditionally utilized gold and platinum electrodes, for which the 

overpotential is less than 2V DC. However, the applied DC voltages to drive IEF 

separations are 6V in our sIEF case while up to 1900V for cIEF [63]. This means 

electrolysis reactions are inevitable at IEF electrodes. This work therefore explores 

a method to reduce/alleviate electrolysis for sIEF.  

Electrode passivation (EP) is a convenient, but less explored method to reduce 

electrolysis. EP materials used within lab-on-a-chip devices include polymer and 

dielectric coatings. The most common polymers are PDMS and photoresist [212-

214] whose shortcoming include durability and coating uniformity.  Examples of 

dielectric coatings include silicon, silicon dioxide, and HfO2 [215-217]. The 

shortcomings of Si materials including opaqueness and low dielectric constant led 

to an alternative material, HfO2, being widely used in metal–oxide–semiconductor 

and ion sensitive field effect transistors (MOSFET and ISFET, respectively) and in 

electrochemical research, but has been used in a limited capacity in microfluidic 

devices. HfO2 features outstanding chemical stability, high dielectric constant as 

well as favorable optical characteristics [218-220]. To the best of our knowledge, 

only six published lab-on-a-chip devices have employed HfO2 for electrode 

modification [187, 216, 221-225]. For example, HfO2 passivation layers on 

aluminum electrodes of a complementary metal oxide semiconductor (CMOS) 

biosensor demonstrated current leakages less than 40 nA/cm2 with applied 
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voltages up to 6V [216]. Further HfO2 coating of glass was demonstrated in a 

square 500 μm capillary subsequently used for waveguides and micro-optics [226]. 

Our group previously demonstrated a 150 nm HfO2 film deposited over gold 

electrodes on glass slides, which prevented Faradiac reactions at the electrode 

surface [181]. HfO2 has proven to be relatively easy to deposit, and has 

demonstrated stability under a wide range of voltages; therefore, it was selected 

as a viable material to explore reduced ion production into sIEF gels.  

To explore HfO2 electrode passivation, pH gradients of uncoated and coated 

devices were compared. A pH gradient was obtained for the HfO2 coated sIEF 

device (section 3) as shown in Figure 5.3c via the blue solid line. Equation 1 was 

utilized to fit power law parameters to the pI markers location; these parameters 

are summarized in Table 5. The gradient between pH 6.8 to pH 7.6 extended from 

150 μm to the cathode at 300 μm when HfO2 was present. Without HfO2 

passivation, the same gradient spanned 200 μm to 300 μm. Considering the typical 

focused band width is ca. 5 μm, the 50% increase (50 μm) in functional separation 

space in the gel means up to 7 additional protein bands can be resolved assuming 

a 2 μm gap between each band. The mechanism behind the extended pH gradient 

via HfO2 passivation is reduction of electrolysis reactions at the electrodes 

whereby free electrons are unable to access the metal for redox reactions to split 

water into hydrogen and oxygen gases as well as H+ and OH- ions (Equations 2 

and 3). As a consequence, fewer free ions are released into the gel thus reducing 

cation/anion accumulation and gradient compression.  This mechanism plays a 

substantial role in pH gradient establishment and stability [91, 155, 164]. The 

electric field in the gel is attenuated by ~44 % with the dielectric coating [227]which 

increases the time required to fully establish the pH gradient from 7 ± 1 min to 10 

±1 min. Thus, the beneficial pH gradient spatial elongation observed with minor 

increases in time to establish the pH gradient is attributed to limiting ion production 

from the electrodes.  



103 

5.4.3 SIEF Modifications: Chemical Additives 
Separation efficiency can be increased by reducing pH gradient compression and 

improving focused band shape.  Prior work has demonstrated that band distortions 

in IEF can be reduced via chemical additives, as demonstrated in cIEF as well as 

in our recently demonstrated broad range sIEF [207, 228]. Irregular band shape 

and/or band distortion are due to factors including EOF, protein precipitation, 

protein-surface interactions, and protein-gel interactions. The first three factors are 

concerns in both gel IEF and free-flow IEF while the latter is only a concern in gel 

IEF. To minimize EOF, surface modifications are common in cIEF with channel 

coatings or chemical additive techniques translated into μIEF [4, 133, 229-232]. In 

PDMS channel free-flow μIEF, EOF suppressants include methylcellulose (MC), 

polyvinylalcohol (PVA) and polyvinylpyrrolidone (PVP) [133, 205, 206], MC is the 

most common because it also helps alleviate PDMS/analyte interactions. However, 

EOF suppressants for quartz surfaces include non-ionic surfactant F-108, poly(L-

lysine)-g-poly(ethylene glycol) (PLL-PEG) and n-dodecyl-β-D-maltoside (DDM) 

with F-108 suppressing EOF mobility most effectively [228]. To enhance gel based 

IEF, surfactants have been used to simultaneously tune surface 

hydrophobicity/hydrophilicity and alter protein-gel interactions. Li’s work 

demonstrated surface hydrophilicity changes by introducing cyclic olefin 

copolymer (COC) to polyacrylamide gel , which reduced surface resistance and 

translated into higher IEF peak capacities [150]. Park et.al. demonstrated that non-

ionic surfactant F-108 facilitated larger acrylamide gel pores thus easing protein 

squeezing through pores [147]. Considering that non-ionic F-108 demonstrated 

benefits with quartz surfaces and polyacrylamide gels, our group thus co-printed 

F-108 with gels on glass for sIEF. Protein-surface interactions and precipitations 

were reduced and the band shape was improved[208].  

Therefore, the pH gradient was obtained with and without F-108 as shown in 

Figure 5.3c; this comparison was completed both with and without HfO2 

passivation. Table 5 provides parameters for Equation 14 to fit the data. Without 

HfO2 passivation, comparisons show that the pH distribution between pH 6.8 and 
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7.2 was spread over 125 µm whereas the no surfactant control was 100 µm, which 

translates into a 25% increase in functional separation space. Surfactant-based 

pH gradient improvement (25%) was not as effective as electrode passivation 

(50%), and the 7 ± 1 min focusing time was nearly the same as the no surfactant, 

no passivation control.  

The presence and absence of F-108 was also conducted with HfO2 passivation 

under identical conditions as all prior experiments (2% w/v narrow range 

PharmalyteTM and 200 V/cm). Unexpectedly, increases in the pH gradient spread 

was not additive. The HfO2 passivation, F-108 (brown dot line) in Figure 5.3c 

shows that the functional separation space was increased by only 30% with 9 ± 1 

min focusing time. This is slightly better than F-108 only and worse than HfO2 

passivation only. This could be attributed to differing F-108 surface modifications 

on HfO2 compared with glass, as well as EOF mobility differences between glass 

and HfO2.  

5.4.4 Hemoglobin Separation with Narrow Range pH sIEF  
After reproducibly demonstrating narrow range pH gradient formation, qualitative 

and quantitative protein sIEF could be evaluated. Hemoglobin variant mixtures 

containing Hb A (pI 6.9), Hb F (7.1), and Hb S (7.3) [112] were selected to test 

resolvability. Hb sIEF was operated under identical electric field conditions of 200 

V/cm with PharmalyteTM concentrations of 2% w/v. Separations were performed 

with and without a passivation layer and with and without F-108 additive.  

Initially, Hb band focusing was imaged without device passivation and without 

chemical additives. Figure 5.4a shows the raw microscope image and 

corresponding intensity profile of Hb bands after 7 minutes of focusing. For three 

repeats, Hb variants A, F, and S were all successfully separated and focused into 

bands with focusing time deviating by less than one minute. The Hb variants were 

not fluorescently tagged to avoid alteration of the protein pI point; the trade-off was 

reduced image contrast which was countered by closely coupling images with their 

corresponding intensity profiles. By applying Equation (1), the experimental pI 
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values of Hb variants A, F and S were found to be 6.80, 6.95 and 7.04, respectively 

(with ± 0.003 error).  These differ from the reported literature values by 0.10, 0.15, 

and 0.26, respectively [112]. Hb A was the only variant whose pI positioned it in 

the plateau pH region. This facilitated a larger positional separation from Hb F and 

Hb S, which were positioned at 219 μm and 232 μm. An easily recognizable Hb 

mixture separation was obtained for the control conditions without passivation and 

without additives. 

Similar to pH gradient experiments, hemoglobin variants were investigated under 

different sIEF modification conditions. Figure 5.4a and 4b compare focused 

images and intensity profiles without and with passivation and without additive; 

curved bands were obtained without HfO2 passivation while the sIEF device with 

Figure 5.4 Microscope images and corresponding intensity profiles of 
sIEF-focused hemoglobin variants A, S and F with pI 6.97, 7.21 and 7.06, 
respectively. a) no electrode passivation, no additive, b) 50 nm HfO2 
passivated electrode, no additive, and c) no electrode passivation, 1% 
w/v Synperonic® F-108.  Although condition a) had defined bands, the 
surfactant and passivation layer improved band distortion with d) 50 nm 
HfO2 passivation, 1% w/v Synperonic® F-108. All experiments were 
conducted at 2% w/v narrow range PharmalyteTM (pH 6.7-7.7) and 200 
V/cm electric field. 
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passivation yielded straight bands. This result demonstrated a noticeable shape 

improvement with the presence of HfO2 coating, even though it took 2 additional 

minutes to focus the bands. Figure 5.4c illustrates band focusing with 1% w/v F-

108 without passivation; the F-108 also alleviated band distortion and the run time 

was similar to Figure 5.4a control (7 ± 1 min for 3 repeats). With both passivation 

and F-108 in Figure 5.4d, straight bands and minor increased focus time (9 ± 1 

min) were observed, consistent with the separate dependency results. Similar to 

prior reports [147, 150, 228], F-108 improved band shape due to: 1) enlarged pores 

in acrylamide gel that ensured open routes for protein movement, 2) decreased 

protein-gel interactions, 3) reduced protein precipitation, and 4) reduced EOF at 

the glass/gel/liquid interface. Thus, the presence of both HfO2 and F-108, either 

together or separate, improves interactions of the proteins with the gel and device 

surface resulting in improved band quality. 
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5.4.5 PharmalyteTM and Surfactant Concentration 
HfO2 passivation results demonstrated improved IEF band shape.  Similar to prior 

work, PharmalyteTM concentration has been shown to alter the shape of focused 

protein bands [91, 208]. This effect was examined in narrow range sIEF with 

PharmalyteTM concentrations of 2%, 3% and 4% w/v. Results are shown in Figure 

5.5 for HfO2 passivated devices. Raw microscope images illustrate that only 2% 

w/v of PharmalyteTM was capable of maintaining straight focused bands as shown 

in the insets. In 3% and 4% w/v PharmalyteTM, curved bands were again observed. 

Higher PharmalyteTM concentrations introduce more amphoteric molecules in 

closer proximity causing an increase in ionic strength. This increases the current 

making pH gradient stabilization harder to achieve. This observation is consistent 

with broad range pH sIEF results [91]. 

Figure 5.5 PharmalyteTM concentration dependency on 
HfO2 coated device. 2%, 3% and 4% w/v PharmalyteTM 
results are shown in a), b) and c), respectively.  The most 
reproducible and straight bands were obtained with 2% 
PharmalyteTM. As PharmalyteTM concentration increased, 
distortion of focused band became more severe. 
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Since the combination of HfO2 passivation and F-108 achieved straight band 

focusing for two out of three Hb variants, an F-108 concentration dependency 

study was conducted to discern whether all Hb variants could be efficiently focused. 

Experiment conditions were kept identical except the concentration of F-108 was 

reduced to 0.5% w/v. Figure 5.6 compares F-108 concentrations whereby all three 

Hb variants resolved at 0.5% w/v. Hb S and Hb F focused into sharp, straight bands 

while Hb A demonstrated a broader precipitated band. The peak capacities of Hb 

F and S were 51.7 and 77.5, respectively. The broad Hb A band enables 

identification, but peak capacity could not be reliably calculated.  This improvement 

to identification of all three Hb variants is likely due to better surface-protein 

interactions in the presence of low concentrations of surfactants. 

Figure 5.6 Surfactant concentration investigate on HfO2 
coated device. F-108 concentration was controlled at a) 
0.5% w/v and b) 1% w/v. Bands were more optimally spaced 
with the 0.5% w/v surfactant concentration enabled resolving 
of HbA while 1% w/v did not. 
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5.4.6 Peak Capacity Comparison 
As described in Chapter 4.4.3, experimental peak capacity, ne, is an important 

comparative criterion for IEF capability, which can be calculated from the intensity 

profile as shown in Equation 5.4. [106-108]. 

ne=1 + L
w
                                                (5.4) 

Where w is the peak width taken at 4σ, and L is fixed at 300 µm. While narrow 

peak widths are desirable, higher peak capacities mean more bands can be 

resolved. The experimental peak capacity calculation results for Hb variants A, F 

and S are 24.7, 60.5 and 27.0, respectively. Calculated theoretical peak capacities, 

nt, as previously described [208], are 1.9, 34.7, and 44.3, respectively. This low 

theoretical Hb A peak capacity is due to the flat pH gradient region from 0 to 150 

μm within which the Hb A pI value lands. Hb F and Hb S experimental and 

theoretical peak capacities are of similar magnitude with slightly greater 

experimental Hb F and slightly lower experimental Hb S peak capacities. 

The experimental peak capacities for the Hb variants under each modification 

conditions are as shown in Table 6. As a result of superior band shape, the HfO2 

passivated devices and F-108 added runs, yielded better peak capacity than 

devices without passivation or without F-108; however, the presence of HfO2 and 

F-108 individually and together caused reduced discrimination of Hb variants. Only 

Hb A and Hb F bands were observed in passivation only experiments; only Hb F 

was focused with F-108 only experiments. Hb F and Hb S focused when both HfO2 

and F-108 were present, but significant compression near the cathode was 

observed. Thus, only the no passivation, no additive control was able to resolve all 

three Hb variants.  
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Table 6 Peak capacity calculations of different sIEF passivation and additive 
conditions 

sIEF Modification 

Peak Capacity (experimental) 

Hb A  Hb F  Hb S  

Blank control 24.7 60.5 27.0 

HfO2 passivation only 63.5 65.7 - 

1% w/v F-108 only - - 69.8 

HfO2 passivation, 1% 

w/v F-108 
- 53.1 51.2 

HfO2 passivation, 0.5% 

w/v F-108 
Precipitated  51.7 77.5 

  

Peak capacity magnitude in sIEF was also compared with conventional IEF and 

proteomics analysis tools, as shown in Table 7. Chromatography-based tools such 

as MS and cIEF in tandem with secondary analysis still have better resolving 

capabilities with peak capacities ranging from 102 to 103. However, those tools 

remain higher in cost, laboratory tethered, and are more time consuming due in 

part to higher labor skill demands (sample preparation, pre and post IEF run set-

up). MS and cIEF are extravagant for most first dimension separations. 

Miniaturized, low-cost μIEF has 1~2 magnitudes smaller resolving power (peak 

capacities of 30~50), but μIEF is more adaptive for portable, fast analysis 

requirements and is highly suitable for most first dimension separations. sIEF has 

equivalent or even better resolving power than μIEF, but boasts conveniences 
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such as open sample access, smaller sample requirements, and simpler device 

fabrication.  Therefore, sIEF has a potential niche utilization. Selective use of cIEF 

and MS as second dimension analysis tools following first dimension sIEF could, 

in many situations, provide the greatest resolving power with fewer resources. 

Table 7 Peak capacity comparisons between mainstream techniques 

Technique Peak Capacity 

MS [233] 103 

cIEF followed by second dimension 

analysis [122] 

103 

First dimension cIEF [234] 102 

μIEF [91] 30-50 

sIEF Up to 70 

 

5.5 Conclusions 
This work explored surface isoelectric focusing (sIEF) for narrow pH range 

PharmalyteTM as an extension of our previous broad pH range sIEF work. The 

narrow range resolving power was later examined with a highly relevant medical 

diagnostic system of three hemoglobin variants, Hb A, F, and S with hard to resolve 

0.2 pI differences. Attributes of sIEF demonstrated herein include straightforward 

gel printing via automatically controlled software, fast sample focusing and 

detection via video microscopy, low sample volume requirements due to gel size 

and nanoliter droplet printing, and surface accessibility for post sample treatment. 

By using commercial PharmalyteTM, a narrow range pH gradient from 6.7-7.7 was 

successfully established between two microfabricated electrodes spanned by a 

300-μm-long polyacrylamide gel line. Fluorescent IEF markers with pI values of 

6.8, 7.2 and 7.6 were utilized to correlate pH to gel position. These successfully 

generated and imaged pH gradients suggest that other narrowly confined pH 
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ranges could be sustained in a sIEF gel by specifying the carrier ampholyte mixture 

for desired pH values.  

Within the narrow range pH gradients, hemoglobin variants Hb A, F and S were 

successfully separated and identified. Discernments of the structural variations 

from heme groups was demonstrated with 12 μm spatial separation of Hb bands 

in less than 10 minutes with sample volumes as low as 90 nL. With the aim to 

improve sIEF resolving power, a dielectric HfO2 thin film was deposited to prevent 

direct contact between the electrode surfaces and the aqueous gel media. This 

reduced electrochemical reactions at the electrode surfaces to yield a more 

broadly distributed pH gradient with improved protein band shapes. This suggests 

passivation layers may be extendable to any IEF electrode to suppress electrolysis. 

Additionally, non-ionic surfactant F-108 was co-printed with the gel to improve 

protein/gel/surface interactions and successfully demonstrated improvements to 

the focused band shapes. Results from more than 3 repeats revealed that the most 

effective Hb variant separations - as judged via total focused bands and peak 

capacities - were achieved with a combination of HfO2 surface passivation, 0.5% 

w/v F-108, and 2% w/v PharmalyteTM. Peak capacities improved from ca. 25 to ca. 

70. sIEF peak capacities were comparable to prior μIEF results (peak capacities 

of 30~50) and one to two orders of magnitude smaller than cIEF.  This suggests 

that cIEF remains an ideal tool for the highest resolution applications where 

analysis time and expense is not a factor.  

Furthermore, sIEF performance places it alongside μIEF for time sensitive, space 

confined, portable, screening demands such as rapidly discerning structural 

variations of proteins for medical diagnostics and pharmaceutical synthesis. 

Additional attributes of sIEF beyond μIEF include easier surface access, simpler 

device fabrication and device reusability up to ~50 times. In summary, miniaturized 

sIEF has sufficient resolving power and versatility to be adapted as a pre-

fractionation tool for portable, fast analysis requirements that are highly suitable 

for most first dimension separations. Lastly, sIEF can be integrated with post-
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analysis tools for orthogonal separations and/or other more advanced biological 

molecule analysis.  
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 Surface Isoelectric Focusing (sIEF) as Auxiliary Tool for Rapid 
Glycoprotein Pre-analysis4 

6.1 Abstract 
As one type of the major components of mammalian cells, glycoprotein plays 

important role in fundamental pharmaceutical research. By performing 

glycobiology analysis, plenty of valuable information can be obtained including 

improve molecular stability, regulate physicochemical and pharmacological 

properties, and improve pharmacokinetics with better absorption and longer 

circulation times. Since molecular modifications in different glycoprotein domains 

can lead to different biological consequences, monitoring of those modifications 

are critical. Conventional proteomics tool such as HPLC and MS can offer a 

systematically examination and still be employed for glycoprotein modification 

checking. However, main drawbacks including complicated pre-sampling and pre-

analysis process and are always be the obstacle of rapid glycoprotein 

characterization. Isoelectric focusing (IEF) is an effective and widely used tool for 

amphoteric molecule pre-fractionation, which featuring fast sample species 

grouping by isoelectric points (pI values) and quick processing. The newly 

developed miniaturized surface isoelectric focusing (sIEF) in our group offers quick 

analysis as well as friendly sample accessing interface, which make it suitable for 

glycoprotein pre-analysis. This paper examines sIEF’s capabilities to discern 

glycoprotein structural modification. Narrow range ampholytic pH gradients 

ranging from 6.7-7.7 were established within micro printed acrylamide gels using 

200 V/cm DC electric fields.. Modification of a monoclonal antibody mouse IgG 

glycoprotein was tested via sIEF before and after urea-induced denaturation and 

partial dithiothreitol (DTT) reduction glycoprotein major structure.  The extent of 

molecular unfolding of mouse IgG was controlled by varying urea concentrations 

between 0 and 8 M. DTT concentrations were fixed at a previously optimized 25 

                                                            
4  The material contained in this chapter is in preparation for submission to 
Electrophoresis 
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mM to achieve protein reduction.  Results revealed that molecular unfolding affects 

the subsequent IgG reduction levels, which can be successfully monitored via sIEF 

because unfolding and reduction of disulfide bonds alters the glycol protein’s 

surface charge triggering a pI shift. With increased urea concentration, light chain 

(LC) and heavy chain (HC) fragments of IgG were fully separated into two distinct 

IEF bands. Samples were concurrently compared against capillary IEF (cIEF) 

revealing sIEF’s equivalent glycoprotein separation power to cIEF. However, 

advantages such as time, low sample requirements, cost, and in-situ sample 

access within protein spot libraries makes sIEF a promising tool for future 

glycobiology research. 

6.2 Introduction 
Glycan information can reflect up to 2% of genome encoded enzymes and 

inherited disorders found in glycosidases and glycosyltransferases, which are 

involved in glycan synthesis activation. These are directly or indirectly related to 

several human diseases [235-242]. For this reason, exploring glycoprotein 

expression is critical to understand mammalian cellular processes and as such 

they are key targets for pharmaceutical interventions for genetic disorders and 

other diseased states. Proteins modified with glycans exhibit pathologically 

beneficial structural and charge variations due to covalently attached 

oligosaccharides. Manipulating glycosylation of pharmaceutically active proteins 

improves molecular stability, helps regulate physicochemical and pharmacological 

properties, and improves pharmacokinetics via better absorption and longer 

circulation times [243-245].  Further, the study of glycoprotein structural variations 

provides insights into cell growth, immune defense, viral replication, and cell-cell 

adhesion [245, 246]. The glycobiology field has adopted a mapping approach to 

investigate oligosaccharide influences on protein properties.  Structure recognition 

is best identified from glycosylation sites and subsequent glycosylated functional 

groups that change between healthy and diseased states [247]. Knowledge of 

extent of glycosylation, glycoprotein structures, and their biochemical pathways 
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have advanced considerably with analytical tools including conventional HPLC, 

MS, MALDI-TOF and CE [248-250].  

Mass spectral techniques such as MS or MALDI-TOF can provide explicit 

identifications of glycoprotein molecular weights to infer molecular structures and 

thus are often applied for sequential, library-based analysis such as protein 

mapping and automated sample/factor dependencies in protein arrays [251-253]. 

These well-established and commercial available techniques offer robust and 

reproducible data given sufficient time and funding. These drawbacks include 

labor-intensive sample preparation, long analysis times, limited equipment access, 

and high instrumentation/run costs which prevent their accessibility and utility for 

preliminary screening for most glycobiological analyses. For these reasons, 

electrophoresis based techniques remain the primary tools employed to evaluate 

and monitor molecule/domain charge changes due to glycol-molecular reactions 

such as deamination during glycosylation or glycoprotein cleavage. 

Electrophoretic techniques can discern charge and 3D size differences with less 

resolvability and sensitivity than mass spectral techniques, but the easy operation 

and rapid processing times make them excellent 1st-step analysis tools to proceed 

higher power secondary analyses. 

Among regular glycobiolgy analysis tools, chromatography based techniques such 

as MS or MALDI-TOF can provide explicit identifications of glycoprotein molecule 

structures and thus be often applied for details analysis such as protein mapping 

and complicate sample array analysis. Those type of techniques are well 

established and commercial available therefor have capability of offer robust and 

reproducible data. However the long-time, complicate sample preparing and 

processing steps, as well as the high cost prevent them to be a commonly applied 

technique in the beginning stage of glycobiolgy analysis. Alternatively, 

electrophoresis based techniques are always employed to evaluate and monitor 

molecule/domain charge changes due to chemical reactions such as deamination 

during glycosylation or glycoprotein cleavage process. Those techniques cannot 

offer fancy capability to collect as much details as possible during analysis, but the 



117 

easy operation and rapid processing time make them remaining to be an excellent 

1st-step analysis tools and cannot be fully replaced by chromatography based 

techniques. 

During a biological development, oligosaccharide structures of glycoproteins could 

change drastically, and those changes could be associated with pathological 

conditions. Tracking the structural change of glycoproteins is critical in clinical 

therapeutic development. Immunoglobulin G (IgG) is one of marketed recombinant 

monoclonal antibody (mAb) under glycoprotein category and has been widely 

investigated on glycoprotein developments and have been extensively analyzed 

via cIEF. Early IgG myeloma sera research used a silica capillary and cathodic 

mobilization to resolve myeloma IgG, a mAb protein species with 10-15 fold peak 

height enhancements [254]. Monoclonal antibody isoforms from healthy vs ovary 

and lymphatic cancer donors had similar retention times but α-1-Acid glycoprotein 

peak position and peak area were utilized to quantify differences [242]. Qualitative 

glycoprotein detection in cIEF can be achieved via whole column cIEF imaging 

[232, 255, 256] or cIEF-SDS [257]. Whole column cIEF allows charged protein 

isoforms to be monitored and quantified in real time, which decreases single run 

analysis times to ~18 min per run. SDS binds with glycan moieties to disrupt 

glycoprotein covalent bonds enabling conformational changes and accentuating pI 

differences, which are discernable in cIEF. Automated 2-D array/sample matrix 

configurations interfaced with cIEF-SDS can discern proteins with molecular 

weights from 14–200 kDa. Modifications include cIEF-MS [258, 259] and cIEF –

MALDI-TOF [260, 261]. These quantitative secondary detection systems increase 

resolution and protein fragment identification, but lengthen run processing times, 

increase sample/solvent consumption, and require access to the advanced 

instrumentation.  

As the foundational standard for mAb and glycobiology analyses, cIEF could 

benefit from improvements to run times, material consumption, and instrument 

simplicity/accessibility. Capillary IEF processing and sample demands cost time 

and money in pharmaceutical research. Run sequences require 2-3 hours to 
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complete column prep (rinse, surface  methylcellulose polymer coating), sample 

injection, equilibration, pH gradient establishment, sample focusing, and mobilizer 

injection to move bands to the detector, followed by column flushing. Each injection 

requires 10~20 μL which accumulates material consumption. Micro fluidic/lab-on-

a-chip technologies have enabled miniaturized (and more accessible) IEF tools 

with 0.5-1 hour shorter run times and ~2 orders of magnitude smaller sample 

requirements while maintaining comparable cIEF resolving power [68, 262, 263].  

A further miniaturized surface IEF (sIEF) technique developed in our group has 

decreased run times further to 10 min and sample consumption to 1 ng for different 

protein species detection/sorting including green fluorescent protein phycoerythrin 

and hemoglobin variants [208, 264]Surface IEF’s tunable pH gradient range and 

surface accessibility to samples provides simplicity and flexibility for higher level 

protein/reagent dependency studies. In this paper, the sIEF technique was used 

to reproduce a previously demonstrated glycoprotein denaturation/conformational 

change study [248, 265]. sIEF was first tested for mouse IgG focusing quality, and 

then adapted to track extent of mouse IgG denaturation and reduction. Protein 

denaturing conditions were varied from 0 to 8 M urea, while reducing condition was 

fixed at 25 mM Dithioerythritol (DTT). Also denaturing only and reducing only 

controls were conducted for denaturing and reducing comparison.The 

corresponding reducing products were observed via sIEF. Further, sIEF results 

were compared with cIEF under identical modification conditions. This novel, new 

sIEF demonstrates equivalent resolving capacity supporting sIEF’s potential as a 

1st-stage separation tool in glycobiology research that is easily interfaced with 

secondary mass spectrometry tools. 

6.3 Materials and Methods 

6.3.1 Materials 
Narrow range carrier ampholytes (PharmalyteTM pH 6.7-7.7) were purchased from 

GE Healthcare (Pittsburgh, PA, USA). Tetramethylethylenediamine (TEMED), 

glycerin and ammonium persulfate (APS, made into 15% w/v solution as a 
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polymerization catalyst for the acrylamide/bisacrylamide solution) were obtained 

from PlusOne (New York, NY, USA). Phosphoric acid, sodium hydroxide, acetic 

acid (made into 1% w/v with E-pure water) and methylcellulose (MC, 4000cp 

viscocity), acrylamide/bis-acrylamide powder (29:1 ratio), urea, Dithiothreitol (DTT, 

≥98%) were ordered from Sigma-Aldrich (St. Louis, MO, USA). Mouse IgG (1 

mg/mL) was purchased from Fisher Scientific, Inc. (Fishers, IN, USA), loaded 

directly onto sIEF gel while operating. Futurrex negative photoresist PR1-1000A 

and RD-6 photoresist developer (Franklin, NJ, USA) was utilized for generating 

reverse mold electrode pattern according to previous research [266]. Silver epoxy 

(chemical, MG8331, 0.007 Ω·cm electrical resistivity and 0.90 W m-1·K-1 thermal 

conductivity) was used as packaged.  

6.3.2 sIEF Device Fabrication  
The 100 µm-wide spaced, 300 µm apart parallel micropatterned gold electrodes 

were prepared on glass microscope slides via soft photolithography followed by E-

beam electro-vapor deposition as previously described Chapter 3.2.2. Electrodes 

were comprised of 5 nm Ti/95 nm Au. Hafnium oxide (HfO2) passivation layers 

were sputter deposited under identical conditions as described in Chapter 5.3.2. 

Silver epoxy connected gauge18 gauge copper wire to the micropatterned 

electrode pads (Figure 1). Polyacrylamide gel was printed into a 60-µm-wide, 300-

µm-long unpolymerized acrylamide line across Au electrodes (Bioforce Nano 

eNablerTM) and then allowed to gel in-situ. Figure 1 illustrates three replicate 

electrode pairs on one glass chip with HfO2 passivation over the Ti/Au electrodes. 
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6.3.3 Sample Preparation  
IgG, a recombinant mouse mAb, which contains two light chain (LC) and heavy 

chain (HC) in its molecule, can be split into LC and HC by partially reducing the 

disulfide bond that connects them [247, 267]. This was done via IgG sample 

denatured by urea and the reduced by DTT: IgG was firstly treated by urea at 25 
oC overnight and then followed by DTT treatment at 65 oC for 15 minutes. The 

treated IgG was directly applied on sIEF gel for experiments. Urea concentration 

dependency was tested under conditions of 4, 5, 6 and 8 M urea. To investigate 

Figure 6.1 Demonstration of the electrode-Hafnium oxide passivated 
surface-enabled IEF (sIEF) chip. The chip was compose with three 
identical Au/Ti electrode pairs, HfO2 passivation layer and printed gel lines. 
Each electrode pair contained functioning parts in two 100 μm-wide 
parallel lines with 300 μm spare distance; 200 μm-radius circles were 
located at the end of electrode as contact pads. HfO2 passivation layer 
was deposited to cover functioning area of electrodes. Gel line was printed 
over parallel electrode area with ca. 20 μm overlap on each electrode lines. 
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the individual effects of denaturation and reduction, two blank controls were also 

conducted under the conditions of only 25 mM DTT treated IgG and only 8 M urea 

treated IgG, respectively.  

6.3.4 IEF Operation  
Protein sample was directly loaded onto sIEF gel via surface patterning tool. The 

microscope slide was moved from the Nano eNablerTM stage to an inverted light 

microscope Zeiss Axiovert 200 M (Carl Zeiss Microimaging, Thornwood, NY, USA) 

with a 20X Neoplan objective , leads connected to Agilent 33250A function 

generator providing 200 V/cm electric field  through gel. Fluorescent images were 

recorded every 30 seconds and monitored for 10 min to observe sample focusing 

behaviors (fluorescent setting with excitation 485±25 nm, emission 535±40). 

Image contrast enhancement followed by intensity profile extraction were 

conducted according to the method in Chapter 5.3.3, from the middle zone (with 

10 x 300 µm2 analysis area) of gel and output as plot via Image J.  

Control experiments were conducted to discern the pH gradient formation for blank 

control (IgG only), IgG with 5/8 M urea and 25 μM DTT (control for real IgG 

modification process), IgG with only 25 μM DTT (control for reduction environment) 

and IgG with only 8 M urea (control for denature environment).which correspond 

to all denaturing/reducing conditions explored with the IgG. IEF markers mixture 

(pI 6.8, 7.2 and 7.6 mixed in 1:1:1 v/v ratio, with final concentrations of 0.33 mg/mL 

for each species) were employed to get a pH-location fitting as illustrated in 

Chapter 5.4.1. 

6.3.5 Capillary IEF Operation 
All cIEF analyses were performed at room temperature (25 oC), the capillary was 

flushed with ethanol and deionized water. The protein samples together with 

PharmalyteTM and protein sample were introduced into the capillary by 

autosampler, focused for 20 min at 15 kV and then replaced anolyte solution by 

acetic acid to mobilize focused species past the detector for another 10 min.  
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Capillary operations were modified to alter the direction of polarity mid-operation 

in order to capture proteins focusing nearest to the anode, but beyond the location 

of the detector. Polarity reversal enabled these proteins to be pushed back towards 

the cathode such that the detector could collect data. To establish a cIEF protocol, 

factors including separation voltage, focusing time, and protein mobilization 

strategies were investigated. The finalized conditions for Hb and mAb are shown 

in Table 8. 

  



123 

 

Table 8 cIEF run conditions for mAb system 

  

Capillary: Neutral capillary 

Carrier ampholytes: 2% w/v PharmalyteTM, pH 6.7-7.7 

Anolyte: 0.25 M phosphoric acid 

Catholyte:  0.3 M sodium hydroxide  

Mobilizer: 0.35 M Acetic Acid 

IEF marker: 

pI marker 6.8 

pI marker 7.2 

pI marker 7.6  

all in 1mg/ml 

EOF suppressant: 1% w/v methylcellulose  

Sample: 

Mouse IgG, denatured with 0-8 M 

urea, reduced by 25 mM 

dithiothreitol 

Detection:  UV-absorption at 280 nm (20°C) 

Focusing 20 min, 17.5 kV 

Mobilization 15 kV 
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6.4 Results and Discussion 
For clinical and therapeutic developments and applications, the 

quality/components of glycoprotien is significantly important. In molecular level, 

glycoprotein quality and biological consequences can be directly linked to the 

structural modifications, such as domain structures and sideline positions. 

Therefore, it will be beneficial if those structural modifications can be characterized 

and monitored. IEF as a first step detection and separation tool was sensitive for 

structural based glycoprotein characterization due to the varied isoelectric point (pI 

value) during sturctual modifications. In prior work, IEF had been applied in mAb 

characterization for years via conventional gel IEF and capillary IEF tools [242, 

268-270]. For IEF characterization of protein structural change, an artificial pre-

modification is usually included. To deliberately modify glycoprotein in molecular 

level, methods including glycosylation, amino acid sequence modification, linker 

introduction and functional constant region removal were widely applied [271]. In 

the case of IgG type sample that we are studying, urea denaturing followed by 

dithiothreitol (DTT) partially reducing was a common method to investigate 

molecule domains change, it helped to individually monitor IgG domain 

components such as heavy chain (HC), light chain (LC) and crystallizable fragment 

(Fc) [249]. Therefore we choose the similar route for mouse IgG modification and 

monitored the process in sIEF system. 

6.4.1 Mouse IgG Separation via SIEF 
The sIEF operations were followed as previously reported, in short, a device with 

50 nm HfO2 passivation layer on electrodes was used in IEF separation, together 

with 0.5 w/v nonionic surfactant F-108 co-printing polyacrylamide gel. pH gradient 

was generated using 2 % w/v PharmalyteTM under 200 V/cm electric field. Focused 

protein image and the corresponding image intensity profile can be seen in Figure 

2. From the visual observation, mouse IgG was successfully focused into a narrow 

band after 200 V/cm electric field applied and narrow pH gradient (6.7-7.7) 

established. Correspondingly, the focused protein was shown as a sharp peak in 
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intensity profile. The pI value of mouse IgG was estimated by comparing with a 

pH-position correlation that generated using IEF markers with known pI values 

from 6.8 to 7.6, which was also detailed described in our prior work (Chapter 5.4.1). 

The microscope image of focused IEF markers was also shown in Figure 2 a, and 

the corresponding image intensity was compared with mouse IgG in Figure 2 b. 

From microscope image, mouse IgG band was located at ca. 125 µm from anode, 

this position was correlated to a equivalent pI value of 6.82 according to the pH-

position fitting. According to literature, the general pI value of mouse IgG was in 

neutral pH range, which was around 7 [268, 272]. This number was very close to 

the pI value we estimated from sIEF trail.  

 

Figure 6.2 Mouse IgG sIEF separation and corresponding image 
intensity profile. Isoelectric focusing process was with 2 % w/v 
PharmalyteTM (pH 6.7-7.7) and 200 V/cm electric field. 1 mg/mL protein 
(ca. 0.9 ng in total) was loaded directly on gel. Image was captured 
after 10 min focus. 
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6.4.2 Discern Protein Denaturation and Reduction Environment 
Before monitoring IgG denaturation and reduction via sIEF, it is important to 

understand the urea/DTT effects on pH gradient. For this purpose, a set of control 

experiments had been conducted. The corresponding pH-location fits can be seen 

in Figure 3. In Figure 3a, the same denaturing and reducing environment were 

studied individually. Obtained pH gradient under 8 M urea only condition 

developed in a linear way, while in the 25 µM DTT only condition, the obtained pH 

gradient just had a slight offset toward cathode compared with blank control. This 

result demonstrated that urea was the main contributor to linearly developed pH 

gradient, and DTT played minor effect on pH gradient development. Figure 3b 

demonstrates the pH gradient changes under mixed denaturing conditions of 8 M 

urea and 5 M urea with reducing condition of 25 μM DTT, which is the same to the 

real IgG modification process. A blank control (no urea no DTT) was also 

incorporated in the pH gradient comparison. The results again showed better 

linearity with the presence of urea and DTT compared with the blank control. In 

meantime, urea concentration had impact on pH gradient: immensely high urea 

concentration in gel would compress the formed pH gradient toward cathode. 

Compared with 5 M urea denaturing conditions, the use of 8 M urea caused 

steeper pH gradient slope over separation space in Figure 3b. To make the 

denature reagent effect more confident, other denaturing conditions (4 M and 6 M 

urea, not shown in Figure 3b) were also investigated and all the conditions and 

corresponding band position data were listed in Table 2. From the band positions, 

it is easy to see all the focused bands were consistently moved toward cathode 

with the increment of urea concentration. Those control experiments demonstrated 

the pH gradient would established with better linearity under IgG denature/reduce 

conditions, however, the over concentrated urea would lead a pH compression.  

We also run IgG IEF with the same the control conditions and the microscope 

images and intensity profiles are shown in Figure 4. With only reducing reagent 

presence, only an intact group rather than a sharp band (Figure 4 c and f) was 

observed; with only denaturing reagent presence, a broad focused band was 
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observed and the pI value of this band shifted over 7. Those phenomena were due 

to the IgG denaturing-reducing sequence: the artificial IgG structural modification 

followed denaturing-reducing sequence, protein molecules were firstly unfolded by 

denaturing reagent and then became partially reduced by reducing reagent. With 

only 8 M urea, IgG was not reduced but the high urea concentration made a 

compressed pH gradient, therefore a band broadening and shift could be observed; 

with only DTT, folded IgG molecules were only reduced in very low level and the 

internal bonding was not released, that explained the intact band formed after 

focusing. In all, reducing reagent did not play a major role within the pH gradient 

during IEF process, while the concentration of denaturing reagent affected pH 

gradient dynamically. 

 

Figure 6.3 pH gradient fits under different environment controls. a) A 
comparison of pH gradients under blank control, 8 M urea only and 25 µM 
DTT only. The most linear pH gradient was obtained with 8M urea control. 
With only 25 µM DTT, pH gradient showed tiny drift toward cathode 
comparing with blank control,  b) A comparison of pH gradients under blank 
control, 8 M urea 25 µM DTT and 5 M urea 25 µM DTT. Consistent with 
urea/DTT only control, the introducing of urea helped pH gradient to maintain 
linear tendency, while the combination of over concentrated urea 
concentration (8 M) and DTT made pH gradient compressed again.  All IEF 
experiments were operated with 2 % w/v PharmalyteTM (pH 6.7-7.7) and 200 
V/cm electric field. 
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Table 9 Focused IgG/IgG fragments locations under different denaturing and 
reducing conditions 

Conditions 

Averaged band 

positions (μm from 

anode) 

No treatment 138.4±10.1 

0 M urea 

25 mM DTT 
130.4±1.8 

4 M urea 

25 mM DTT 

LC 155.2±21.8 

HC 201.0±9.5 

5 M urea 25 mM DTT 
LC 157.2±23.8 

HC 200.0±8.5 

6 M urea 25 mM DTT 
LC 174.9±11.4 

HC 208.6±8.9 

8 M urea 25 mM DTT 
LC 174.3±10.9 

HC 208.7±12.0 

 

Since all the pH gradient control experiments were operated under IgG denature 

and reduce environment, it is necessary to have a control experiment that studies 

reduce environment individually, so the effect on pH gradient from DTT could be 

excluded. An 8 M urea only and a 25 μM DTT only experiments were run 

separately as control for individual denature and reduce environment. The fitted 

pH-location curves are shown in Figure 5. Similar to the urea+DTT control, 

obtained pH gradient under 8 M urea only condition developed linearly, while in 

the 25 μM DTT only condition, the obtained pH gradient did not have much offset 

compared with no urea no DTT control. This result demonstrated the minor effect 

from DTT on pH gradient development. We also run IgG IEF on the control 

conditions and the microscope images and intensity profiles are shown in Figure 
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6.4. As describe in previous section, the artificial IgG structural modification 

followed denaturing-reducing sequence, protein molecules were unfolded by 

denaturing reagent first and then became partially reduced by reducing reagent. 

With only reducing reagent presence, only the surface of protein was reduced and 

focused as an intact group rather than a sharp band (Figure 6.4 c and f); with only 

denaturing reagent presence, also a broad focused band was observed and the pI 

value of this band shifted over 7. It could be the unusual protein structure change 

under extreme denaturing condition (8 M urea). As a conclusion, reducing reagent 

did not play a major role within the pH gradient during IEF process, while the 

concentration of denaturing reagent affected pH gradient dynamically.  

 

 

Figure 6.4 Denature and reduce environment control of mouse IgG. a-c) 
microscope images of blank control, unfolding only control and reducing 
only control, respectively. d-f) Image intensity and pH profiles of IEF 
images. Without any denaturing/reducing agent, IgG was focused into a 
sharp band. Without only reducing agent DTT, an intact band was 
observed in the experiment. With only reducing agent urea, IgG focused 
band was broaden, also the band shifted toward cathode. None of those 
control experiments showed a separation of LC and HC. This tendency 
was consistent with the pH gradient control. All IEF experiments were 
operated with 2 % w/v PharmalyteTM (pH 6.7-7.7) and 200 V/cm electric 
field. 



130 

6.4.3 Protein Isoelectric Focusing under Mixed Denaturing and Reducing 
Conditions 

As mentioned previously, urea-DTT treatment was adapted to mouse IgG for sIEF 

sampling. Denature control were varied by urea concentration at 4~8 M and reduce 

condition was fixed using 25 µM of DTT. Because IgG would appeared as intact 

sample under native condition (0 M urea), this condition was also in urea 

concentration list. The microscope images after IgG focused and a corresponding 

intensity profiles are shown in Figure 6.5. Under native condition (0 M urea), DTT 

reduced protein shown as an intact piece in microscope image and a flat head 

peak was correspondingly found in intensity profile (Figure 6.5 a and f). As urea 

concentration increased, the intact piece became unleashed and the fragments 

became redistributed along the sIEF gel (Figure 6.5 b and g). Once urea 

concentration reached to 5 M, two separated bands was observed in gel line 

(Figure 6.5 c and h), due to the separation of LC and HC fragments. As urea 

concentration increased to 6 M, the focusing became more integrated (Figure 6.5 

d and i). The further increasing of urea concentration made LC and HC band 

focused being more integrated. However, the urea concentration could not be 

infinitely increased. There is a solubility of urea, also the high denature 

concentration can interrupt the pH gradient establishment according to previous 

studies [164]. In our experiment, maximum urea concentration was 8 M, focused 

images and intensity profiles can be seen in Figure 6.5 e and j. A slightly bands 

movement toward cathode was observed under 8 M urea concentration, which 

implicated a pH gradient shift. This observation was consistent with both the pH 

gradient change in previous section and the description from literatures.  
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6.4.4 sIEF Focusing Verification with cIEF 
A comparison between sIEF and cIEF results was conducted for the same sample 

preparation and treatment. For sIEF, microscope images of focused mAb species 

were captured and a corresponding intensity profile was obtained to identify gel 

locations of the focused species. A separate pH-band calibration curve was also 

Figure 6.5 Denature condition control of mouse IgG reduction. a-e) 
microscope images of protein reduction products at the denature condition 
of 0 M, 4 M, 5 M, 6 M and 8 M urea environment, respectively. f-j) Image 
intensity and pH profiles of IEF images. With 0 M urea, the partially reduced 
IgG was focused as an intact band, as urea concentration increased, the 
intact protein became unfolded. A separation of LC and HC started at 5 M 
urea concentration and the separation level became better with increased 
urea concentration. Also the focused bands revealed shift toward cathode 
with 6 M and 8 M due to the pH gradient compression. IEF was operated 
with 2 % w/v PharmalyteTM (pH 6.7-7.7) and 200 V/cm electric field. 
Reduction condition was fixed at 25 µM DTT. Corresponding pH-location 
differences at each conditions were also labeled in intensity profiles.  
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fitted using fluorescent IEF markers 6.8, 7.2, and 7.6. For cIEF, the same IEF 

markers were used as internal standards and mixed directly with the IgG samples; 

this enabled the estimation of the relative pI values of IgG reducing species. As 

first step, untreated IgG focusing under sIEF and cIEF were compared. The 

combined sIEF-cIEF comparisons are shown below in Figure 6.6a. In both of the 

two IEF techniques, pH gradient was successfully formed and IgG species were 

successfully focused. By pulling out the pH profile, the three point of pH gradient 

(6.8 7.2 and 7.6) are relatively consistent. The focused IgG shown as a stand-

alone peak at the location of 125 um from anode, which corresponding to pH 

6.81±0.003 in sIEF, and the IgG peak is located in the middle of pH 6.8 and 7.2 in 

cIEF. However, the protein was shown as a scattered pattern rather than fully 

focused in cIEF. 

Secondly, Figure 6.6b shows sIEF and cIEF results of IgG treated under 8 M urea 

and 25 μm DTT. Successful pH gradient establishment and IgG focusing were 

observed in both techniques. The ends of the pH gradient (6.8 and 7.6) were 

consistent. However, in cIEF’s pH 7.2-7.6 region, the pH gradient is narrower than 

sIEF implicating that sIEF experienced less pH compression than cIEF. 

Compression translates into loss of resolution for protein focusing. Sample 

focusing locations in sIEF are in the 7.0-7.3 region; while the locations in cIEF are 

in 6.9-7.2 region. These mappings suggest a ~0.1 pH inconsistency between sIEF 

and cIEF. The reduced products from IgG treatment, light chain (LC) and heavy 

chain (HC) are located at 157 um and 200 um from anode in sIEF, which correlated 
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to pH 7.03±0.083 and pH 7.19±0.036, respectively. While in cIEF all the reduced 

products are located in the middle of pH 6.8 and 7.2, which roughly at 7.0.  

6.5 Conclusions  
This work explored miniaturized surface isoelectric focusing (sIEF) for artificially 

glycoprotein molecular modification monitoring. A narrow range pH gradient was 

established within electrode passivated sIEF chip to resolve a selected 

glycoprotein spices—mouse IgG. As a visualized IEF technique, sIEF borrowed 

conventional whole column imaging cIEF concept, proteins focusing in transparent 

gel media was directly monitored under microscope. Also the entire focusing 

process only required less than 10 minutes. The resolving capability was examined 

with untreated IgG sample and later the denaturing-partially reducing treated IgG 

was tested. The focused IgG protein band was recorded using microscope, and 

the corresponding isoelectric point was estimated to be 6.82, according to a 

position-pH correlation that developed from fluorescent IEF markers. The 

denaturing-partially reducing operation was controlled using urea and dithiothreitol 

Figure 6.6 cIEF run results of IgG in different conditions. a) Untreated 
IgG mixed with pI markers 6.8, 7.2 and 7.6. IgG molecule was shown as 
unfocused group. b) IgG treated with 8 M urea and 25 μM DTT and mixed 
with pI markers 6.8, 7.2 and 7.6. LC and HC segments were successfully 
separated at the location where pH was approximately 7. 
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(DTT). IgG was denatured with urea and then reduced by DTT. The denaturing 

level was controlled by varying urea concentration from native (0 M) to saturated 

(8 M). DTT concentration was fixed at 25 μM to reduce IgG partially. Results 

illustrated that IgG reducing products were shown as intact band at native condition 

due to the unfolded molecule structure. As denaturing reached to higher level, the 

IgG became better unfolded and two of the main reduce product light chain (LC) 

and heavy chain (HC) were cleanly separated. However the focused band 

experienced a drift toward cathode under saturated urea condition. To rule out the 

contribution of DTT for protein band cathodic drift, a blank control that only included 

varied urea concentration was conducted and a focus position-pH correlation was 

produced using IEF markers. More severe pH gradient compression was observed 

under higher urea concentration. In the meantime, the pH profile from the condition 

with only 25 μM DTT revealed negligible change compared with no DTT no urea 

control. This suggested urea was the only active factor to interrupt pH gradient 

during isoelectric focusing in sIEF system.  

Additionally, the denaturing-partial reducing results were also verified with 

commercial cIEF. The observations demonstrated a great consistency between 

sIEF and cIEF, which suggested sIEF was able to successfully monitor/detect the 

IgG molecular changes. Although cIEF remains to be an ideal tool for the highest 

resolution requirement, sIEF is more adaptive as 1st step screening tool for time 

sensitive, space confined, portable, screening demands. It has sufficient resolving 

power and versatility to be integrated with advanced post-analyses tools such as 

MS and MALDI-TOF.  
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 Future Work 
In this dissertation, the new sIEF approach to small volume protein separations 

has been systematically explored from concept design to real world applications. 

sIEF offers the potential for simpler, cheaper, quicker, and time sensitive analysis 

by operating 100 times smaller than previous IEF techniques. The main objective 

of this dissertation was to establish a new concept and investigate its feasibility. 

Due to PhD study cycle time constrains, there could be some details that have not 

been fully covered and are listed in the following paragraphs of this chapter.  

7.1 Quantifying Electroosmotic Flow (EOF) on Hafnium Oxide Surfaces for 
Surface IsoElectric Focusing (sIEF) 

Electroosmotic flow (EOF) is a common phenomenon in microfluidic system. As a 

dynamic force in fluidics, EOF possibly exists in sIEF due to the solution that is 

introduced from sampling. As a mass transport force, EOF will play as a counter-

focusing factor in a sIEF system, and causes disturbances during focusing. This 

phenomenon was experienced in our preliminary results. According to previously 

reported cIEF work, the most common method to reduce EOF is by coating the 

channel surfaces with polymers [4, 206, 207, 228, 230]. To better understand these 

forces, a systematic investigation of EOF-suppression should be conducted. To 

stimulate the conventional coatings method, a thin layer of hafnium oxide, which 

was applied in this dissertation, will be used for sIEF device surface coating on the 

glass slide. The EOF mobility behavior in that hafnium oxide coated device will be 

measured using the current monitoring method [273]. Proposed device setting is 

shown in Figure 7.1. A PDMS layer with a micro fluidic channel will be sealed 

together with halfnium oxide on the top and bottom. As a comparison, EOF will 

also be tested in a similar device having been sealed together with glass on the 

top and bottom. 
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7.2 Further Exploration of the Device Design.  
In this dissertation, sIEF device design and separation space were fixed based on 

the preliminary optimization; however, there is still room to utilize creativity on 

device designs. As the first priority, varied IEF separation space should be 

considered. The idea to address this is a tapered electrode design, which is shown 

in Figure 7.1. Due to the feasibility of Nano eNabler, a gel line can be created in 

any position between two electrodes and therefore the separation distance can be 

varied along the tapered electrodes. Secondly, incorporation of a sensing 

electrode array under the IEF gel, which can assist resolving focused protein 

bands. Confined by optical limitations, some proteins are hard to be imaged in sIEF 

with good resolution, therefore, a spatially resolvable detection via an array of 

micro-patterned sensing electrodes underneath the sIEF gel could be a solution 

for this is shown of discerning proteins according to their focused locations. A 

proposed design for this is shown in Figure 7.2.  

The composition/structure of the gel can be considered as an independent variable 

in the future sIEF work. As illustrated in Chapter 2, the pore size of polyacrylamide 

gel is controlled by acrylamide/bis ratio. To achieve the best separation efficiency, 

gel pore size should be tuned according to the target protein size. Information 

Figure 7.1 EOF test device design with HfO2 coating 
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regarding the dependency of gel pore-sample size should be included in future 

sIEF work. 

 

7.3 Image Detection for Band Identification 
Automatic data processing is desirable in any IEF work. In sIEF, the image 

resolution of focused protein band is due to the protein type. The colorless or 

undyed proteins usually bring difficulties for image detection; therefore, automatic 

image processing will be crucial for post focusing analysis. As a possible solution, 

a widely used scale-invariant feature transform (SIFT) method could be adapted 

to sIEF. This technique has functions including detection of scale-space extrema, 

accurate keypoint localization, orientation assignment, and specifically in sIEF 

local image descriptors [274]. SIFT can be used to detect the focused band from 

microscope images. To process a sIEF image, a Matlab code can be created by 

Figure 7.2 3-D view of tapered electrode design and a series of parallel 
sensing electrode lines ca.10 microns across and spaced ca. 10-20 
microns apart located between the two sIEF working electrodes. Local 
capacitance of the gels can be determined by sequentially applying DC 
or AC potentials to pairs of sensing electrodes. 
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the following the sequence: 1) select a reference feature from detection area, 2) 

define a similarity based on reference feature, 3) define a similarity threshold, 4) 

start a rule-out calculation, 5) scan the entire image, and output the test image 

analysis result. A demonstration can be seen in Figure 7.3. A reference image is 

given at the beginning, and a set of criteria for the region of interest will be pre-

input into the computer. Once a testing image has been loaded, the computer will 

automatically scan the image and locate the region with the best similarity to the 

reference image. By setting up this similarity threshold, it is possible to pull out the 

focused band directly from loaded images. With the help from the SIFT code, the 

sIEF post image analysis will be more robust and have a better confidence interval. 

  

Figure 7.3 Interested area image detection demo. A reference image was 
pre-loaded into Matlab with the interested area circled out by a red color, 
as shown in the top row. The testing image was then loaded into Matlab, 
and the area with the best similarity was detected using the rule of 
interested area feature. The results were then outputted as shown in the 
bottom row. 
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 Conclusions 
8.1 Introduction 
Isoelectric focusing techniques have been developed in a miniaturized direction, 

to achieve low sample requirements, portable, economic friendly and easy access. 

The separation space have been reduced from the centimeter to the millimeter 

scale or even smaller. In the meantime the development of advanced 

micromanipulation techniques such as AFM and FEMTO play an important role in 

moving toward IEF miniaturization. Further, exploration of IEF miniaturization will 

be a challenging, but also a remarkable experience, to test the lowest space limit 

of IEF design and fabrication based on conventional and new born technologies. 

The surface enabled isoelectric focusing (sIEF) work presented in this dissertation 

is a creation designed combining old and new microfabrication techniques. The 

conventional metal deposition method is a convenient way to make a planar metal 

layer; therefore, it is being applied in sIEF for electrode fabrication. The nanometer 

scale electrode thickness offers plenty of flexibility for IEF separation space 

distribution design. A novel FEMTO based surface printing technique brings an 

opportunity for nano-scale IEF media patterning, working with practical planar 

electrode design, a sIEF device can be miniaturized in magnitude compared with 

the currently existing IEF system. During device fabrication, different parameters 

including printing humidity, surface hydrophilicity, IEF media loading method and 

sIEF gel polymerization have been considered and optimized. This novel method 

for sIEF device fabrication brings with it the opportunity to explore the 

miniaturization limit of IEF techniques. 

Carrier ampholytes (CAs) have been proven to be an efficient way of establishing 

continuous pH gradient. Also the high commercialization level makes CA type pH 

gradient robust and highly reproducible. Therefore this method has been grafted 

to the sIEF device in this work. The established pH gradient has been successfully 

characterized by pH sensitive dyes, with the pH gradient range tunable by 

selecting different commercial CA products. To verify the resolving power of sIEF 

in protein separation and detection, different protein systems including GFP-PE 
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mixture, hemoglobin variants and mouse IgG partially reduced products have been 

tested as samples. Results demonstrated that sIEF has adequate resolving power 

as well as highly adaptive characteristics for time sensitive, space confined, and 

portable, screening demands; therefore, sIEF is a good complementary technique 

to currently existing IEF. 

8.2 SIEF Device Design and Fabrication 
The two main components of a miniaturized sIEF device, electrodes and 

separation gel media, were fabricated via metal deposition and a nano-printer, 

respectively. For metal deposition, a uniform layer with controllable deposition rate 

could be achieved by using commercial sputter or an electron-beam depositor; 

therefore, sIEF device optimization was focused on nano-printing operations, 

which was first time adapted for IEF purposes. Printing parameters including 

methods of sample loading, surface hydrophobic/hydrophilic property, printing 

humidity and acrylamide gelation were explored, were investigated to ensure a 

nice line shape with good reproducibility. The final recipe was determined to be 

SPT front loading, 10-minute UV-ozone recovery of surface hydrophilicity, 10%~20% 

relative printing humidity, and the use of 15% w/v APS with 3 hours of 

polymerization. With these optimized printing parameters, a straight acrylamide/bis 

gel line sized 300 µm (L) X 60 µm (W) X 35 µm (H) could be successfully fabricated, 

which then prepares the ready-to-go platform for the sIEF operation.   

8.3 SIEF with Broad Range pH Gradient and Protein Resolving Test 
Using the produced sIEF device with separation space at a scale of 100 μm, a CA 

type pH gradient was ready to be established. The commercially available CA 

product PharmalyteTM, with broad pH ranging 3 to 10, was applied to generate a 

continuous pH gradient with the electric field turned on. This pH gradient was 

verified via a gradually decreasing intensity ratio of pH sensitive and pH insensitive 

fluorescent dyes along the separation gel space. Furthermore, a mixture of GFP 

and R-PE protein samples were tested with an extremely small loading amount of 

0.9 ng. The focusing results visually showed GFP and R-PE were separated and 

focused to pH~4 and pH~6, respectively, and was consistent with their pI values. 
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Electric field strengths and carrier ampholyte concentrations were investigated to 

determine the optimized experimental conditions of 2% w/v PharmalyteTM and 200 

V/cm. 

A pH gradient drift/compression after pH gradient establishment, which is a 

common issue that involved in conventional IEF, was also observed in sIEF. To 

alleviate this problem, a nonionic surfactant was co-printed within a gel with the 

aim of reducing the physical-chemical interactions in the sample-gel-chip 

interfaces, and control the EOF on the chip surface. Experimental results revealed 

improvements of 3-7 fold in protein separation efficiencies and in the sIEF 

resolving capability, which will eventually improve the performance of sIEF. 

In summary, sIEF experimental results demonstrated that dimension reduction in 

gel length not only enabled a 10-fold reduction in power requirements but also 

offered a 100-fold less sample requirement. Additionally, the sIEF chip could be 

easily cleaned for reusability in more than 50 runs. This novel, surface enabled IEF 

method, will enable rapid construction of customizable sIEF gels. The surface 

geometry allow for easily accessible spot picking for secondary protein analysis; 

therefore, it can be integrated into protein array libraries for specialized and/or 

orthogonal separations.  

8.4 SIEF with Narrow Range pH Gradient and Protein Resolving Test  
Similar to traditional CA type pH gradient IEF work, sIEF also has a tunable pH 

gradient by using CA in different ranges. This capability was verified in this 

dissertation. In Chapter 5, sIEF for narrow pH range PharmalyteTM was explored 

as an extension of previously broad pH range sIEF work. A narrow range pH 

gradient from 6.7-7.7 was successfully established between two microfabricated 

sIEF electrodes with the use of commercial 6.7-7.7 PharmalyteTM. Fluorescent IEF 

markers with pI values of 6.8, 7.2 and 7.6 were utilized to find a pH-gel position 

correlation. These successfully generated and imaged pH gradients suggest that 

other narrowly confined pH ranges could be sustained in an sIEF gel by specifying 

the carrier ampholyte mixture for desired pH values.  
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Resloving power was later examined with a highly relevant medical diagnostic 

system of three hemoglobin variants, HbA, F, and S, with hard to resolve 0.2 pI 

differences. The hemoglobin variants were successfully separated and identified 

within the narrow range pH gradients, exhibiting 12-15 μm spatial separation of Hb 

bands in less than 10 minutes and sample volumes as low as 2 nL.  

With the aim to improve sIEF resolving power, a thin dielectric HfO2 film was 

deposited between the electrode surfaces and the aqueous gel media. This 

prevented direct contact, and reduced the electrochemical reactions at the 

electrode surfaces to yield a more broadly distributed pH gradient and improved 

protein band shapes. The contribution  insulation layer suggested it could be 

extended to any IEF electrode to suppress electrolysis. Additionally, the non-ionic 

surfactant F-108 was co-printed with the gel to improve protein/gel/surface 

interactions, and it successfully demonstrated improvements to the focused band 

shapes. Overall, the most effective Hb variant separations were achieved with a 

combination of HfO2 surface passivation, 0.5% w/v F-108, and 2% w/v 

PharmalyteTM. These parameters could be futher utilized in the future narrow range 

sIEF work.  

In summary, sIEF performance places it alongside micro isoelectric focsing (μIEF) 

for time sensitive, space confined and portablescreening demands including 

rapidly discerning structural variations of proteins for medical diagnostics and 

pharmaceutical synthesis. Additional attributes of sIEF beyond μIEF include easier 

surface access, simpler device fabrication and device reusability up to ~50 times. 

sIEF has sufficient resolving power and versatility to be adapted as a pre-

fractionation tool for portable and fast analysis requirements that are highly 

suitable for most first dimension separations. sIEF also can be further integrated 

with post-analysis tools for orthogonal separations and/or other more advanced 

biological analysis of molecules. 



143 

8.5 Glycoprotein Modification Monitoring by sIEF with Narrow Range pH  
Following real protein tests under different pH gradients, the flexibility of sIEF being 

used for real world applications needed to be examined. Glycoprotein is an 

important protein subcategory for pharmacological applications because the 

structural variations of glycoproteins provides insight into cell growth, immune 

defense, viral replication, and cell-cell adhesion. Technologies that adapt to time 

sensitive, low sample stock and portable analyses scenarios are still inadequate 

in the modern world. In chapter 6 of this dissertation, sIEF was explored for artificial 

glycoprotein molecular modification monitoring. Narrow range pH gradient once 

again was established within electrode passivated sIEF chip to resolve a selected 

glycoprotein—mouse IgG, and a position-pH correlation was developed from 

fluorescent IEF markers. To monitor IgG molecular modifications, an artifical 

denaturing-partially reducing operation was conducted using urea and 

dithiothreitol (DTT). This resulted in the development of IgG reducing products 

were successfully observed under microscope using sIEF devices. The higher the 

denaturation level, the better separation of the main products light chain (LC) and 

heavy chain (HC). To determine the effect of DTT and urea on pH gradient, a blank 

control that included only variations of urea concentrations was conducted, and a 

focus position-pH correlation was also produced using IEF markers. More severe 

pH gradient compression was observed under higher urea concentrations. In the 

meantime, the pH profile having only 25 μM DTT revealed negligible change 

compared with no DTT no urea control. This suggested urea was the only active 

factor that interrupted pH gradient during IEF in sIEF system.  

Additionally, the denaturing-partial reducing results were also verified with 

commercial cIEF. The observations demonstrated a great consistency between 

sIEF and cIEF, which suggested sIEF was able to successfully monitor/detect the 

IgG molecular changes. As mentioned in the beginning, sIEF is more adaptive as 

the 1st step screening tool for time sensitive, space confined, and portable 

screening demands. The high versatility of sIEF also makes it capable of being 

integrated with advanced post-analyses tools. Therefore, sIEF is a strong 
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candidate in becoming the next generation of 1st step screening tool in protein 

analyses. 
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Appendix A: Microfabrication Demonstration and Standard 
Operating Procedure 

 

Microfabrication applies well established technologies for substrate processing 

and manufacturing. In this dissertation, the main purpose of microfabrication was 

to electroplate metals and metal oxides in a pre-designed pattern on a substrate, 

in order to get micro-sized electrodes for a lab-on-a-chip device. The general 

process flow includes spin coating (distribute a thin layer of photoresist uniformly 

on a substrate), lithography (crosslink/bond photoresist under UV energy), 

development (further crosslink/bond photoresist and remove the residuals to 

create designed features on photoresist layer), metal deposition (create metal 

layer with replicated photoresist pattern), and lift-off (remove metal and photoresist 

residuals and obtain the final device). This process flow is demonstrated in Figure 

AP1. 

 

 

Figure AP 1 Demonstration of microfabrication processing flow 
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It is important to choose the proper photoresist at the very beginning of the entire 

microfabrication operation. Photoresist is a UV light-sensitive polymer used in 

lithography to coat, then pattern features on a surface. Photoresists are 

engineered to be positive or negative.  For positive photoresists, the polymer 

monomers exposed to light become soluble in the corresponding photoresist 

developer while the rest of portion remains insoluble; for negative type 

photoresists, the UV exposed portion becomes insoluble to photoresist developer 

while the rest of portion remains soluble and can be washed away. By choosing 

the right photoresist type, a feature that replicates or inversely replicates the photo 

mask can be obtained. The common positive and negative photoresists are S1800 

series (Dow Electronic Materials) and NR9 series (Futurrex), respectively. The 

common developers for positive and negative photoresist are MIF series (Dow 

Electronic Materials) and RD series (Futurrex), respectively.  

To obtain desirable feature resolutions using different photoresists, spin rate, light 

exposure energy, and hardbake time optimizations need to be carefully 

investigated. The spin rate data can be easily obtained from photoresist 

manufacture’s website or manual calibration (shown in Figure AP 2). The exposure 

energy and hardbake times need to be optimized manually, although literature 

provides starting guidance. Table AP 1 demonstrates an example of one 

photoresist optimization matrix utilized in this study. As the example, photoresist 

NR9-1500P can achieve the best feature resolution at the conditions of 210 J/cm2 

UV intensity, 2000 rpm spin rate and 1min hardbake time. Figure AP 3 

demonstrates the obtained pattern features before and after optimization. 
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Table AP 1 Example of NR9-1500p photoresist optimization matrix 

 

  

Exposure 
time 

20 s 
(211 mJ/cm2) 

22.5 s 
(238 mJ/cm2) 

25 s 
(265 

mJ/cm2) 
Spin 

coating 
speed 

1000 rpm 
(2565-2835 nm) 

2000 rpm 
(1805-1995 nm) 

3000 rpm 
(1425-1575 

nm) 
Hardbake 

time 1 min 2 min 3 min 

Figure AP 2 Spin speed-photoresist thickness curve measured 
via profilometer after hardbaking. Negative photoresist NR9-
1500p was utilized for this manual calibration. 
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All the microfabrication steps are completed in Class 1000 softwall cleanroom 

in the Microfabrication Core Facility (MFF) located on the 4th floor of the M&M 

Building, Michigan Technological University. The instruments employed to 

manufacture sIEF chips for this dissertation included clean room, lithography mask 

aligner (EVG 620), plasma cleaner (Trion Technology Phantom II), electron beam 

deposition (E-beam, Denton DV-502A), sputter deposition (Perkin Elmer 2400 Sputter 

Tool - 6 inch and 8 inch), profilometer (Perthometer S2, Mahr), and ellipsometer (J.A. 

Woollam VASE). Each instrument requires training and check-out with the MFF lab 

director before individual operation. To check the instrument details, schedule, training 

details and chemical supplies, please check the Microfabrication Core Facility 

website: https://www.mtu.edu/microfabrication. 

 

Suggested Standard Operating Procedures (SOP) for the main 
microfabrication instruments are listed as follows (additional optimization 
will be required if using different process): 

A. Photolithography Masking and Feature Development 
Electrode pair features on microscope glass slide are completed by 
photolithography under homemade film mask: 

Figure AP 3 Demonstration of NR9-1500P photoresist optimization of 
lithography process. a) microscope images of patterns created using 
microfabrication lab default parameters: 200 J/cm2 UV intensity, 1000 rpm 
spin rate, and 1 min hardbake. b) microscope images of patterns created 
at optimized conditions: 210 J/cm2 UV intensity, 2000 rpm spin rate, and 1 
min hardbake.  

https://www.mtu.edu/microfabrication
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a. Clean slide surface. Sonication 5 min with Acetone (CMOS grade)/IPA 
(CMOS grade)/DI water, air dry it and further dry on a hot plate (120 oC) for 
2 min.  
b. Spin photoresist Futurrex PR1-1000A following the steps below to get a 
0.7 μm - 2.1 μm layer. 

• Spin at 800rpm for 15 sec with acceleration=100 
• Spin at 800rpm for 30 sec with acceleration =300 

c. Prebake on hotplate 120 oC, 30 s 
d. Soft contact. Expose 210J/cm2. Antireflective coating required on the 
backside – use blue dicing saw tape for this purpose. Operations are as 
followed: 

• Setup EVG machine 
• Check EVG machine for green light 
• Turn on EVG machine at key switch and computer CPU 
• Open EVG software 
• Install appropriate lithography mask (follow along with computer 

instructions) 
Important parameters: 
• Mask thickness: no change 
• Mask size: 5 inch 
• Substrate size: 4 inch 
• Substrate thickness: 1 mm 
• Process time: exposure time is equal to the incident energy (210 

J/cm2) divided by incident light intensity (in W/cm2), which can be 
measured at the beginning of lithography process. 

e. Post-bake on hotplate 120 oC for 30 s 
f. Develop with undiluted photoresist Futurrex RD6, 15 s (minimal agitation) 
g. Immerse in DI water to stop reaction, and further rinse with plenty of DI 
water 
 
To obtain the best feature resolution, operation conditions should be 
optimized based on variables including exposure energy, spin-coating 
speed (photoresist thickness) and photoresist baking time. An example 
optimization matrix is listed in the following table. For a new photoresist 
employed, the spin speed-thickness calibration curve can be found in 
manufactures website as reference, however, the optimization matrix 
should be still reapplied due to the different experiment conditions.  
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B. RIE/ICP Etch System for Slide Pre-Deposit Cleaning 
a. Sample loading steps are as following 

• Select cancel from touchscreen (remember to always be wearing 
gloves when touching screen) 

• Select “vent chamber” 
• Wait until chamber has vented and the lid opens 
• Load sample with O-rings surrounding sample 
• Select “chamber close” from touchscreen menu 

b. Cleaning steps are as following 
• Select PR-1 from the files menu 
• Turn on oxygen at tank 

Input suitable process parameters from “manual process control” menu 
• RIE: 500 
• ICP: 50 
• O2 flow: 100 
• Time: 15 sec 
• Pressure: 150 

c. Once system has pumped down completely run recipe by going to 
“automatic process control”. After process has ended put system in standby 
mode for 5 minutes and then elect “vent chamber”, remove sample and 
select “chamber close” and allow system to pump down completely 
 
 

C. Electrode Metal Layer Deposition and Liftoff 
Electrodes metal layer can be obtained by E-beam (a) or sputter deposition (b). 
E-beam deposition rate can be simultaneously read from the display window; 
sputter deposition rate can be read from the pre-calibrated data sheet in 
Microfabrication Core Facilities, however, the calibration is suggested to be 
redone every year to ensure the accuracy. The recalibration curve can be 
achieved by depositing metal in standard silicon wafer at different deposition 
length and recording the corresponding deposition thickness using ellipsometer.  
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Figure AP 5 Suggested sputter deposition rate calibration data 
sheet offered by Microfabrication Core Facilities (left) and a 
demonstrated manual calibration curve of Au and Ti (right). If a 
process requires accurate metal deposition thickness information, a 
manual calibration is suggested before starting the process. 

Figure AP 4 E-beam information board in Microfabrication 
Core Facilities. Metal or oxides crucibles (Ti, Cr, Pt, Au, Al, 
SiO2, Fe, Ni) are numbered from 1 to 8. The real time 
deposition rate are wrote down near each metal names.  
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a. E-beam Ti-Au Deposition 
Pump up from high vacuum to atmospheric pressure 

• Turn off high vacuum gauge off 
• Turn knob to Manual Pump 
• Turn on Mechanical pump 
• Let Mechanical pump warm up 
• Turn vent valve on 
• Pull lever to open chamber door, letting vent continue until door 

opens easily 
• Check the temperature near bottom of Ebeam, should read 15 K (if 

not inform lab manager) 
• Once door easily opens, unscrew circle plate and place the 

substrates on it 
• Change glass slides on chamber door 
• Change the crucible position to correct metal 
• Check the O-ring (door seal) 
• Close door but do not lock it 
• Turn vent valve off 
• Lock chamber door 

Pump down to high vacuum 
• Turn knob to Auto Pump 
• Wait until red light for high vacuum to come on (this will occur when 

pressure reads ~120 mTorr, transition point) 
• Turn on high vacuum gauge 
• Turn off mechanical pump 
• Vent mechanical pump line 
• Pump Down for 3+ hrs 

1st layer deposition - Ti 
• Turn on all power on (supply/monitor/water/controller/rotation) 
• Wait for 5 min 
• Change the program setting to Ti (its number input, check whiteboard 

to get the number for Ti) 
• Turn ON current power and slowly turn UP the current 
• Turn up current power half way to center beam (halfway of starting 

point listed on whiteboard) 
• Wait till Ti melt (about 5 min), beam should be positioned at the 

center of crucible (stable deposition rate 1 kÅ/min recommended) 
• Open shutter and deposit Ti ~0.500 kÅ (500nm) 
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• After reaching target thickness, close shutter 
• Turn down all current power all the way down (knob should be turned 

all the way to the left) and turn off current power 
• Let system cool for 5 min 

2nd layer deposition (Au) 
• Change the crucible to Au position (using whiteboard) 
• Change the program to Au (number input) 
• Turn ON current power and turn UP current halfway 
• Center beam on Au crucible. Once Au molten (about 1 min) do not 

wait longer than a minute (saves on Au material) 
• Do not expose Au to high currents (< 2 A. Large value can evaporate 

all of gold and burn a hole through crucible)  
• Open shutter and deposit Au ~ 0.500 kÅ (500nm) 
• Close shutter 
• Turn down current 
• Turn off current 
• Turn off controller 
• Turn off power/water/monitor/rotation 
• Wait 5 min before turning off main power switch (bottom flip switch) 

Pump up from high vacuum to atmospheric pressure 
• Turn off high vacuum gauge off 
• Turn knob to Manual Pump 
• Turn on Mechanical pump 
• Let Mechanical pump warm up 
• Turn vent valve on 
• Pull lever to open the door, letting vent continue until door opens 

easily 
• Check the temperature near bottom of E-beam, 15 K (if not inform 

lab manager) 
• Once door easily opens, unscrew circle plate and remove substrates 
• Check the O-ring (door seal) 
• Close door but do not lock it 
• Turn Vent valve off 
• Lock the door 
• Pump down to high vacuum 
• Turn knob to Auto Pump 
• Wait until red light for high vacuum is on, pressure will be around 

~120 mTorr which is a transition point 
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• Turn on the high vacuum gauge 
• Turn off mechanical pump 
• Vent mechanical pump line 

 
b. Sputter Deposition: chamber is pre-vacuumed at 5x10-7 Torr. Gas flow 
for plasma generation are 7~7.5 sccm Ar flow and 0.5 sccm O2 flow, 
respectively. Operation pressure is 7.5x10-3 Torr. Plasma power is fixed at 
100W. Ti deposition rate is 10 nm/s, Au deposition rate is 30 nm/s. The final 
Ti and Au layer thickness are 5 nm and 95 nm, respectively. The detailed 
SOP are as following: 

 
Pump up to atmosphere from high vacuum 

• Turn ion gauge off 
• Close the high vac valve 
• Open vent valve 
• Wait for the chamber to reach atmospheric pressure 
• Open the chamber 
• Pump down from atmosphere to 5x10-2 Torr 
• Put substrate in the chamber as close to the center of the target as 

possible 
• Close the chamber almost all the way 
• Close the vent valve 
• Close the chamber completely, making sure it lines up to avoid leaks 
• Close the foreline valve 
• Open the roughing valve (the foreline and roughing valves should 

never be open at the same time even though the system does not 
have a failsafe to prevent this) 

• Wait for the pressure to reach at least 5x10-2 Torr 
• Pump from 50mTorr to high vacuum 
• Close the roughing valve 
• Open the foreline valve 
• Wait for the foreline to evacuate (the pressure reading will stabilize) 
• Open the hi-vac valve 
• Turn on the ion gauge when the chamber is at 10-3 
• Wait for the chamber to reach the desired pressure of 2~3x10-6 (This 

can take 2.5-3 hours so you can leave when the pressure is steadily 
dropping- usually less than 10-3) 

• Sputtering 
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• Turn off the ion gauge 
• Turn on the water for head 
• Turn on the power supply 
• Close throttle valve 
• Turn on the gas (at the tank and the valve) 
• Set gas flow to 10 sccm 
• Turn on tuning control (this light should normally come on but may 

not because of a blown fuse) 
• Change process to sputter deposit 

 
Titanium Sputtering 
• Need to pre-clean the titanium target by moving the Table to Target 1 

(Farthest from Target 3)  
• Set the tuning cap positions 
• Turn up the power until the plasma lights (reflected power to a little 

above 10 and press ignition switch).  
• Reduce the reflected power (=0) and increase forward power (=10) 
• Adjust the tuning cap positions as needed to achieve the power 

settings 
• Let run for 5 minutes 
• Move the table back to Target 3 
• Set the tuning cap positions 
• Turn up the power until the plasma lights (reflected power to a little 

above 10 and press ignition switch).  
• Reduce the reflected power (=0) and increase forward power (=10) 
• Adjust the tuning cap positions as needed to achieve the power 

settings 
• Let run for 5 minutes 

 
Gold Sputtering 
• No pre-cleaning required 
• Move the table to Target 2 
• Set the Target to Target 2 
• Set the tuning cap positions 
• Turn up the power until the plasma lights (reflected power to a little 

above 10 and press ignition switch).  
• Reduce the reflected power (=0) and increase forward power (=10) 
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• Adjust the tuning cap positions as needed to achieve the power 
settings 

• Let run for desired length of time (deposits at a rate of 30 nm/min) if 
longer than 5 minutes do 5 minutes on and 2 minute cool down in 
between each 5 minute period 

Unload sample 
• Set the table position to “etch” 
• Turn down the argon flow and switch the valve off (on equipment and 

at tank) 
• Turn off power 
• Venting the chamber 
• Make sure the gas is turned off and then open the throttle valve (put 

in down position) 
• Close the hi-vac valve 
• Open the vent valve 
• Wait for the chamber to reach atmospheric pressure 
• Shut vent valve 
• Open the chamber and remove samples 
• Pump down to hi-vac when finished 

Liftoff photoresist with undiluted Futurrex RR4 or Acetone until excess metal 
is removed (sonication 5 min or stay still 30 min) 

 
D. Passivation Layer: 50nm of Sputter Deposited HfO2 Film with 8” Hafnium 

Target. 
a. HfO2 passivation layer is obtained via sputter deposition: at 3x10-7Torr: 
18sccm Ar flow, and 4sccm O2 flow (7.4x10-3Torr). 700W, 6.5 min (50nm). 
Detailed operations are the same to Ti/Au deposition. Contact pads area is 
protected by thermal tape. 
b. HfO2 anneal on hot plate: 250 oC, 30min (ramp temperature up from room 
temperature, and let cool down slowly, do not move it off the hot plate if 
temperature is higher than 100C). Also place glass wafer on top of a >4” Si 
wafer to increase heating uniformity. 
 

Conclusions: 
Achieving highly reproducible microdevices in the most efficient time-frame 
possible can be accomplished by a) verifying the actual parameters (i.e. film 
thickness, quality, device yield rate, etc.) as you go in the process and b) tabulating 
those results every time they are measured in a comparison table. Microfabrication 
is partially an art, but optimizing the skill requires documentation of conditions 
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utilized making it more controllable with good scientific documentation skills. In 
summary, the items to track regularly include: 

• Film thickness of photoresist/dielectric films, measurable via 
elipsometry (thickness > 1 μm, opaque substrates) or profilometry 
(thickness > 1 μm, transparent substrates). 
• Real time UV light beam intensity (perform intensity test in EVG 
machine) and exposure energy. 
• Hardbake time and develop time (may vary according to temperature 
and humidity. Keep record of real time temperature and humidity is 
suggested) 
• Lift-off chemical and process time.  
• Lithography pattern quality check using microscope, record at least 
one microscope images. 
• If plasma clean or etch is performed, record power, process time, 
gas flow rate, and plasma color. 
• For metal/dielectric layer deposition, record process time, gas flow 
rate, chamber vacuum level, processing vacuum level, and final 
deposition thickness (need to be measured by elipsometry or 
profilometry). Check crucial status before use. 
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A suggested check-out list can be seen in the table below, it should be modified 
and updated based on real process operations. 
 
 

Table AP 2 Microfabrication process parameters check out sheet 

Process 
performed User Key parameters 

Spin 
coating 

 

Photoresist 
used 

Spin 
speed/recipe 
and real film 

thickness 

Prebake 
and 

hardbake 
time 

Temperature 
and humidity 

Lithography 

Lamp 
intensity 

and 
process 
energy 

Substrate 
type and 

transparency 

Photoresist 
developer 

used 

Develop 
time 

Plasma 
clean/etch 

Process 
energy 

Gas flow 
rate 

Plasma 
color 

Process 
time 

Thin layer 
deposition  

Process 
energy 

Deposition 
time (record 

room 
temperature 

and 
humidity) 

Vacuum 
level 

(during 
pumping 
down and 

processing) 

Real film 
thickness 
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Appendix B: Permission Letters of Reprinted Figures 
Permission of Figure 1.3 
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Permission of Figure 2.2 
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Permission of Figure 2.3  
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Permission of Figure 2.4 
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Permission of Figure 2.5 
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