
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2017

BLOSSOMSTTM HUB – AN ONLINE TOOL FOR DESIGNING STTM BLOSSOMSTTM HUB – AN ONLINE TOOL FOR DESIGNING STTM

VECTORS AND VISUALIZING PHENOTYPIC CHANGES OF STTM VECTORS AND VISUALIZING PHENOTYPIC CHANGES OF STTM

TRANSGENIC LINES TRANSGENIC LINES

Avinash Subramanian
Michigan Technological University, avsubram@mtu.edu

Copyright 2017 Avinash Subramanian

Recommended Citation Recommended Citation
Subramanian, Avinash, "BLOSSOMSTTM HUB – AN ONLINE TOOL FOR DESIGNING STTM VECTORS AND
VISUALIZING PHENOTYPIC CHANGES OF STTM TRANSGENIC LINES", Open Access Master's Report,
Michigan Technological University, 2017.
https://digitalcommons.mtu.edu/etdr/467

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Bioinformatics Commons, Computer Engineering Commons, and the Genetics and Genomics
Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F467&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.mtu.edu%2Fetdr%2F467&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.mtu.edu%2Fetdr%2F467&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/27?utm_source=digitalcommons.mtu.edu%2Fetdr%2F467&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/27?utm_source=digitalcommons.mtu.edu%2Fetdr%2F467&utm_medium=PDF&utm_campaign=PDFCoverPages

BLOSSOM STTM HUB – AN ONLINE TOOL FOR

DESIGNING STTM VECTORS AND VISUALIZING

PHENOTYPIC CHANGES OF STTM TRANSGENIC LINES

By

Avinash Subramanian

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2017

©2017 Avinash Subramanian

This report has been approved in partial fulfillment of the requirements for the Degree of
MASTER OF SCIENCE in Computer Science.

Department of Computer Science

Report Advisor: Dr. Hairong Wei

Committee Member: Dr. Zhenlin Wang

Committee Member: Dr. Myounghoon Jeon

Department Chair: Dr. Min Song

Contents

List of Figures ..v

Abstract ...vii

1 Introduction .. 1
1.1 MicroRNAs and Their Functions in Plants .. 1
1.2 Short Tandem Target Mimic (STTM).. 1
1.3 Objectives and Goals of Blossom STTM Hub ... 2

1.3.1 To Develop a Web Portal Called DesignSTTM to Automate STTM Vector
Design 2
1.3.2 To Develop a Web Portal Called MaterialSTTM to Display the Phenotypic
and Genotypic Data Generated from STTM Transgenic Lines 3
1.3.3 To Develop a Genome Browser to Visualize Genome-Wide Expression Data
Generated from STTM Transgenic Lines .. 3

2 Background Study ... 3
2.1 PlasMapper ... 4
2.2 SnapGene Viewer... 4
2.3 The Technologies Available to Be Used .. 5

3 Design .. 7
3.1 Model View Controller Architecture ... 7
3.2 Development of DesignSTTM Web Portal .. 9
3.3 DesignSTTM Result .. 11
3.4 Database Schema ... 13

4 Algorithm to Plot Plasmid Map .. 14
4.1 Construction of STTM Binary Vector ... 15

4.1.1 Blossom Plasmid Map Plotting Algorithm .. 15
4.1.2 Blossom Plasmid Large Features Labeling Algorithm 18

4.2 Blossom Plasmid Octant Divided Small Features and Restriction Enzyme Sites
Labeling Algorithm ... 21

5 Automatic Annotation System using Exact Search and Basic Local Alignment Search
Tool (BLAST) .. 29

5.1 Targeting the Designed STTM Sequence into the Destination Vector – mirna.pl 29
5.2 Annotating the Restriction Enzyme Sites Present in Destination Vector Sequence 30
5.3 Annotating the Larger Features (Genes, Promoters and Terminators) in Destination
Vector Sequence Using blast.pl ... 33
5.4 Automatic Annotation System – Labeling Features in the Destination Binary Vector 35

5.4.1 LABELING FEATURES INSIDE THE CIRCULAR PLASMID 36
5.4.2 Labeling Enzymes Outside the Plasmid Map .. 37

6 Implementation .. 40
6.1 Homepage .. 40

iii

iv

6.2 Login, User Registration and Update Profile Information ... 41
6.2.1 Login .. 41
6.2.2 User Registration ... 42

6.3 Web Portal of DesignSTTM .. 43
6.3.1 Step 1: Obtain miRNA Input and Select Intermediate Vector 44
6.3.2 Step 2: Select Destination Binary Vector and Restriction Enzyme Sites 47

6.4 Index3copy2 PHP Script: Design STTM Construct, Primers, and Plot Plasmid DNA
map 50

6.4.1 Map of destination vector map containing STTM structure............................ 51
6.4.2 Sequence .. 59
6.4.3 Features .. 60
6.4.4 STTM_Sequence ... 61
6.4.5 E-Mail Report .. 61

6.5 Material_STTM ... 62
6.5.1 Web Portal of Transgenic Lines .. 63
6.5.2 Blossom STTM E-Store .. 64

6.6 Documentation ... 64
6.7 User Account Web Interface .. 65

7 TF Cluster: Web Portal ... 66
7.1 Introduction to TF Cluster Web Portal... 67
7.2 Architecture to TF Cluster Web Portal .. 68
7.3 Design of GNETINDEX Input Form ... 69
7.4 TF Cluster User File System .. 71

8 Conclusion .. 73

9 Future Work ... 74

10 References ... 75

Appendix A………………..………………..………………..………………..………………...77

Appendix B………………..………………..………………..………………..………………...80

Appendix C………………..………………..………………..………………..………………...82

v

List of Figures

Figure 3.1: Depicts the Model, View, and Controller Layered Architectural pattern followed by
the Blossom STTM Web portal. ... 8

Figure 3.2: The workflow of DesignSTTM depicting the design process of STTM vector. The
designed STTM structure was inserted into an intermediate vector, and then transferred to a
binary vector that can be delivered into plant cells via Agrobacterium. 10

Figure 3.3: Design process of DesignSTTM module encoded in index3copy2 program............ 12

Figure 3.4: Database schema for Blossom STTM Hub. .. 14

Figure 4.1: Circular plasmid divided into octants to facilitate labeling of restriction enzyme sites
in the binary vector without overlapping text labels ... 22

Figure 4.2: Algorithm used to label restriction enzyme sites inside every octant. 23

Figure 4.3: A sample plasmid map generated by Blossom STTM Hub with various labeling. .. 28

Figure 5.1: Automatic Annotation System – Labeling the features inside the circular plasmid
along the arc. This uses the function DrawTextAlongArc() that computes the orientation and
position of each character of the feature name. .. 37

Figure 5.2: Automatic Annotation System – Labeling the features outside the circular plasmid
map. This uses the function draw_enzyme() that divides the circular plasmid into equal octants
and labels the features with positive and negative displacement methods. Octants that are set to
use positive displacement method label the features in anticlockwise direction. Octants using
negative displacement method label the features in clockwise direction………………………..39

Figure 6.1: Webpage displaying the main objectives of the DesignSTTM and MaterialSTTM
Web portals. .. 41

Figure 6.2: Blossom STTM Hub login page.. 42

Figure 6.3: Screenshot of web page illustrating new user registration process to Blossom STTM
Web Portal. .. 43

Figure 6.4: The web interface for submitting a miRNA name and sequence for designing STTM
structure in DesignSTTM Web Portal…………………………………………………………...45

Figure 6.5: Primers to amplify majority backbone of pOT2-STTM sequence for cloning it into a
destination binary vector. .. 47

vi

Figure 6.6: Addition of a binary vector to which the majority backbone of pOT2-STTM
sequence can be transferred. ... 48

Figure 6.7: Depicts the selection of restriction digestion enzyme site(s) in binary vector and
amplifying the designed STTM sequence in pOT2 with primers containing the enzyme site(s).
The amplified fragment is then inserted into the binary vector. ... 50

Figure 6.8: STTM construct design and insertion of designed STTM sequence into the
destination vector. ... 54

Figure 6.9: Plasmid DNA map of the binary vector pFGC5941 containing the designed STTM
structure depicting all the enzymes, genes, and features present in the destination binary vector
.. .57

Figure 6.10: Output of destination binary vector sequence after insertion of the designed STTM
construct displayed by the DesignSTTM Web Portal. ……………………………………….....59

Figure 6.11 The output list of features present in the destination binary vector sequence after
insertion of the designed STTM structure. These features are identified by the auto-annotation
system embedded in the DesignSTTM Web Portal. The auto-annotation system comprises a
database that stores the collected components (genes, promoters, replication origins etc.) of DNA
sequences in various plasmid vectors, and a sequence similarity analysis algorithm called Basic
Local Alignment Search Tool (BLAST). ……………………………………………………….60

Figure 6.12: Blossom STTM Hub Documentation file, which provides an instruction for using
and understanding the DesignSTTM and MaterialSTTM Web Portals. The documentation can be
reached from the Top Menu of the Blossom STTM Web Portal’s interface. …………………..65

Figure 6.13: The web interface of a user’s account where a list of files stored in the user’s
personal directory. An option for downloading or deleting the files is provided. The files can be
downloaded by clicking on the filename hyperlink. ……………………………………………66

Figure 7.1: Depicts the TF-Cluster Web Portal Homepage. It is a web portal that accepts
Transcription Factor (TF) list, Gene Expression Profiles, and the Theta values to build the
collaborative TF network and then decompose it to acquire a number of sub-networks of
collaborative TFs, each subnetwork regulates a complex trait. .. 69

Figure 7.2: Illustration of the TF Cluster User File System Web Portal. It stores the results of TF
Clusters derived from a high-throughput gene expression dataset by the TF Cluster Web Portal
System. It is also a place users can download the resultant TF Clusters. 71

Figure 7.1: Illustration of the TF Cluster result using the Triple Link Algorithm. It will contain
the Top 100 TF’s present in the cluster from the input genes…………………………………...72

Abstract

Small RNAs including microRNAs (miRNAs) and short interfering RNAs (siRNAs) are widely

present in plants. They are transcribed from non-coding small RNA genes and then play as

regulators to modulate the levels of messenger RNAs (mRNAs) of protein-coding genes via

sequence pairings. This is because a paired complementary double sequence helix structure can

trigger mRNA degradation or interfere with mRNA translation. Short Tandem Target Mimic

(STTM) is a recently developed technology that can be used to produce a complementary

sequence to a miRNA and destroy it or reduce the expression level of this miRNA via the

formation of paired double-strand structure. Research has shown success in plant species like

Arabidopsis [1] and tomato [2]. The main motivation of this thesis report is to describe a web

application named DesignSTTM portal, which has been developed to computerize and automate

the design of a STTM sequence that enables one to target a given miRNA species for

degradation via sequence complementarities mechanism. The DesignSTTM then inserts the

designed STTM sequence immediately downstream of the Cauliflower mosaic virus promoter

called 35S in a DNA plasmid vector that can carry 35S promoter + STTM expression cassette

into nuclei, and then insert it into a genome, where 35S can drive a STTM sequence to express

and produce complementary sequences to target miRNA for silencing. Before the DesignSTTM

portal displays the designed plasmid vector carrying STTM sequence in the form of a circular

map, it uses an algorithm called basic local alignment search tool (BLAST) to query a locally

installed vector database and then annotate all the elements in the plasmid vector. The elements

that will be identified and annotated include all the genes, restriction enzyme sites, promoters,

and the location of the inserted STTM sequence, which will then be plotted as features of

vii

viii

plasmid vector in a map. The portal also displays the plasmid DNA sequence resulting after the

insertion of STTM sequence, with a highlight of the location of the STTM sequence. The

DesignSTTM portal also has a function to design the primer sequences used to amplify the

STTM sequence and majority of plasmid vector using Polymerase Chain Reaction (PCR)

technology and transfer them to a binary vector. The DesignSTTM portal is also capable of

producing a PDF document incorporating all the derived results, and sending the file as an

attachment to users’ email. Blossom STTM Hub’s also maintains an account for each user to

store all the obtained results. The other web portal that was implemented in this Blossom STTM

Hub’s is called MaterialSTTM, which was designed to store and visualize both genotypic and

phenotypic data collected from STTM transgenic lines generated through transformation of

STTM plasmid vectors into different plant species. Users can purchase the transgenic seeds

available on MaterialSTTM portal by placing an order through the e-commerce store set up

through the MTU Touchnet service. This tool will be instrumental for numerous plant biologists

who study the functions of miRNAs species through modulating their expression levels in plants.

1

1 Introduction

1.1 MicroRNAs and Their Functions in Plants

MicroRNAs (miRNAs) are recently discovered non-coding small RNAs with a length of around

20 to 24 nucleotides [3]. The major function of a miRNA in an organism is to interfere with a

target message RNA (mRNA) through forming paired double-strand structure that leads to the

reduction of mRNA level or suppression of its translation. Therefore, miRNAs play a critical role

in modulating mRNA levels in plant. Since abundances of mRNA species represent the levels of

gene expression, researchers usually consider miRNAs as regulators in turning down gene

expression levels. Although they are conserved in both plants, plant miRNAs interfere with their target

mRNAs primarily through perfect or nearly perfect sequence pairings. The paired double-strand

structures can trigger a series of events that lead to either the degradation of target mRNAs through

effective cleavage or the suppression of mRNA translation. This has laid the foundation for using various

molecular techniques to characterize the functions of plant miRNAs.

1.2 Short Tandem Target Mimic (STTM)

STTM is a new technology developed by Dr. Guiliang Tang’s laboratory recently [4] that

performs a very special task: modulating the expression level of one or two miRNAs in plants

[4]. Each STTM vector carrying a STTM structure is designed based on one or two target

miRNAs nucleotide sequences. It can target the specific miRNA(s) for destruction without

disturbing the other miRNAs present in the species. This is a major advancement in

2

understanding miRNA functions in major crops like rice, Arabidopsis, maize and soybeans. This

technology enables us to learn miRNA functions through a loss-of-function mechanism.

A STTM structure can destroy one or two targeted miRNAs through sequence pairing. A

typical STTM sequence is designed to generate the RNA sequence complementary to one or two

target miRNAs. When a STTM structure is expressed, it produces one or two single strand small

RNA molecules that are complementary to target mRNAs, leading to the formation of the double

stranded RNA(s) between STTM RNA sequence and its target miRNA(s), which then trigger(s)

a series of scenarios that leads to the degradation of STTM targeted miRNAs, allowing for

probing and characterization of miRNA functions.

1.3 Objectives and Goals of Blossom STTM Hub

Designing STTM manually is time-consuming and error-prone. To reduce the workload for

biologists, we developed Blossom STTM Hub. The objectives of the Blossom STTM Hub

include the following:

1.3.1 To Develop a Web Portal Called DesignSTTM to Automate STTM

Vector Design

Dr. Guiliang’s laboratory at Michigan Technological University published the STTM vector

design method. The tool’s algorithm should mimic the manual design process and transform that

labor-intensive design process into a computational construction process. For biologists and

researchers around the world, we attempt to provide a tool that implements Dr. Guiliang’s

method to design STTM vector sequences and deliver accurate and annotated plasmid maps of

3

the designed vectors. This portal facilitates utilization of the published STTM method and

inculcates further growth around this field of research.

1.3.2 To Develop a Web Portal Called MaterialSTTM to Display the

Phenotypic and Genotypic Data Generated from STTM Transgenic

Lines

The MaterialSTTM is designed to store the designed STTM vectors and the phonotypical

genotypic data of STTM transgenic lines online so that other researchers in the plant research

community can query and study the functions of miRNA species. Specifically, the system is to

display the transgenic lines showing genotypic and phenotypic changes after the target miRNAs

being destroyed by deigned STTM structures.

1.3.3 To Develop a Genome Browser to Visualize Genome-Wide Expression

Data Generated from STTM Transgenic Lines

A genome browser is developed to display various RNA-seq and ribo-seq data produced from

transgenic lines of various miRNAs-STTM structures, this web portal is still under construction.

2 Background Study

After defining the research objectives, I searched and studied the available tools and techniques

that are potentially useful to this web application, especially those that are of similar

applications. Understanding the underlying architectures and methods of operation in similar

applications helps to develop an efficient web application. The following are the web

applications that were explored:

4

2.1 PlasMapper

PlasMapper [5] is an online tool developed by David Wishart et al., and it can generate annotated

high-quality circular plasmid maps with input DNA vector sequences. It makes use of the Basic

Local Alignment Search Tool (BLAST) [6] to annotate the genes and other features within the

plasmid, map all the restriction enzyme digestion sites, and then labels them accurately. It has the

capability to detect promoters, terminators, cloning sites, open reading frames, and replication

origins present in the input DNA vector sequences. The generated plasmid maps are shown as a

graph with high resolution. It also provides various customizable options that users can utilize to

get a clearer picture of a DNA vector. The output can also be obtained in different image formats

as needed. The PlasMapper uses Java and C as a combination to prepare the plasmid maps.

2.2 SnapGene Viewer

SnapGene Viewer is powerful software that also computes and draws circular plasmid maps of

DNA vectors and has a wide range of features from which users can choose. It detects all the

restriction enzyme digestion sites and other features, and provides several dynamic

functionalities to add and customize vectors. The main drawback of the SnapGene Viewer could

be that it is not an online tool, and users have to download it to use Snapgene as a stand-alone

software application. Blossom STTM Hub needs to function online, and it does not require some

of the advanced functionalities of the SnapGene Viewer.

5

2.3 The Technologies Available to Be Used

After analyzing the objectives and requirements of the Blossom STTM Hub online tool project,

it became clear that it needed to function as a web application with spectacular speed, security,

efficiency, and accuracy. The Blossom STTM Hub is based on the Michigan Technological

University Linux operated Apache server named “blossom.ffr.mtu.edu,” and the server has

MySQL Database Service installed in it. We decided to proceed with PHP for server side

scripting to complete the LAMP platform, which works well for dynamic web applications [7].

The LAMP platform consists of four components that are structured in a layered way and all four

components form integral parts of the software application. The layers of the LAMP platform are

collectively known as web stack when used for a standalone web application. Linux – It is the

lowest level layer and acts as the operating system that has the ability to run all the remaining

layers of the software stack. The next layer in the LAMP platform is Apache which is a web

server that provide the mechanics to render a web page on the Internet. MySQL provides the data

storage layer of the LAMP platform and uses relational databases to store large and complex data

that can be accessed through SQL queries. The last layer in the LAMP platform is PHP and it

acts as a binding layer to other layers. PHP resides inside the Apache web server and is used to

create dynamic content capable of using the data stored in the MySQL database. To

communicate with server, a server side scripting technique needs to be used. A few examples of

server side scripting languages are JSP (Java Server Pages), Perl CGI, and PHP. The main

difference between PHP as compared to JSP and other scripting languages is that PHP code is

interpreted by the server directly whereas JSP codes and others are executed by a virtual

machine. For large scale multipurpose applications, using a virtual machine has a positive impact

6

but for the requirements of our portal, interpreted server code is the least computationally

intensive technique and provides better performance. This is the main reason why PHP is chosen

to be used as the serve side scripting language over other alternatives.

<html>….<p>The current system date is <?php echo date(); ?></p> ….</html>

The above code shows how a PHP code is embedded into a HTML program. To perform this

using Java would require the HTML to redirect to a Java scriptlet and retrieve the output back

after the Java Virtual Machine processes the result. Java functions are faster and more powerful

for complex server side computations, but for a Web portal such as the DesignSTTM in which

numerous client side computations take place, the PHP-HTML embedded capabilities make it a

better alternative [8]. This makes the overall system less dependent on the server for small

errands and less error prone. The tool also needs to use Perl to call executable software and

BLAST to annotate the DNA vectors. For the front-end development, CSS, HTML5, and HTML

Canvas have been used. HTML5 [9] was chosen because of its state of the art features and core

simplicity. The HTML Canvas 2D Context API provides an empty canvas (a blank bitmap) to

draw shapes, text, or images on it. Canvas content can be easily modified applying transforms

(scale, rotate, or translate), compositing coordinate changes, or modifying shadow attributes. It

offers good performance in complex scenes and features like dumping the content of the canvas

to an image element [10]. HTML5 Canvas can be used to plot drawings automatically [11], and

it turns out to be faster than other available languages like Java Applets or Swing [12].

JavaScript has been used for computing the pixel locations while plotting the DNA plasmid map,

7

and for performing client side validations and JQuery for implementing certain dynamic

functionalities like automatic scrolling, multi-page parsing, and background processing [13].

3 Design

As aforementioned, this Web application contains two Web portals, DesignSTTM and

MaterialSTTM, and one genome browser for visualizing RNA-seq or ribo-seq data yielded from

STTM transgenic lines. The DesignSTTM and MaterialSTTM Web portals are based on the

MVC architecture.

3.1 Model View Controller Architecture

The DesignSTTM Web portal was built on the Model View Controller (MVC) architecture. The

Model layer contains all users’ information, enzyme digestion sites, list of vectors and their

sequences, and information about users’ directories. All these are stored as tables in a MySQL

Database. Then, the View layer that forms the front-end user interface for the Web portal is

developed using HTML5, CSS, and Canvas programming languages. The View layer is what a

user sees. It consists of the interface through which the user provides input and views the final

output updated by the Model layer. The user does not have access to the Model layer directly.

This provides the application with data encapsulation feature. The final layer is the Controller

layer, which acts as a bridge between the user and the Model layer. The functions of controller

layer are to obtain the user input, process them, and manipulate the Model layer. In our Web

portal, the Controller layer uses PHP and Perl scripts. Designindex.php is the PHP script that

takes the input obtained to the Model layer, and Index3copy2.php is the PHP script that uses the

input to plot the plasmid map and other results of the DNA vector containing the STTM

8

sequence. BLAST.pl and miRNA.pl are the Perl scripts that implement the BLAST algorithm for

annotation of DNA vectors and designing the STTM sequence and the primers, respectively.

Figure 3.1: Depicts the Model, View, and Controller Layered Architectural pattern followed by

the Blossom STTM Web portal.

9

3.2 Development of DesignSTTM Web Portal

The workflow of DesignSTTM explains the multiple steps in designing a STTM vector starting

from an input miRNA sequence. First, a user enters the miRNA sequence and its name. The

entered sequence is checked for validity—the miRNA sequence has to be between 18 and 30 bp

(bp - base pair is a unit consisting of two nucleobases bound to each other by hydrogen bonds.

They form the building blocks of the DNA double helix, and contribute to the folded structure of

both DNA and RNA. Here bp acts as a unit of measure for the length of sequences) in length and

must contain only the characters “atgc” or “augc.” If the input is invalid, the system alerts the

user. Then the user needs to select the vector sequences to include the designed STTM sequence

(like pOT2). Next, the user has the option of transferring the designed STTM sequence into a

binary vector. If the user chooses to transfer STTM structure into a binary vector, the user needs

to identify one or two restriction enzyme sites to insert the STTM sequence structure into the

binary vector (also called destination vectors). Then the index3copy2 program is called to

execute to prepare the STTM vector sequence. If the user does not wish to transfer the STTM

sequence to a binary vector, the STTM sequence will be inserted into an intermediate vector like

pOT2 when the index2copy3 program is called for execution.

https://en.wikipedia.org/wiki/Nucleobase
https://en.wikipedia.org/wiki/Hydrogen_bond
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/RNA

10

Figure 3.2: The workflow of DesignSTTM depicting the design process of STTM vector. The
designed STTM structure was inserted into an intermediate vector, and then transferred to a
binary vector that can be delivered into plant cells via Agrobacterium.

11

3.3 DesignSTTM Result

The DesignSTTM-index3copy2 PHP script obtains the designed STTM sequence and inserts it

into a vector uploaded by the user to produce the miRNA targeted STTM Plasmid Vector, which

is displayed as a map on the Web portal. The system also uses the script when the user uploads a

new vector to the Web portal. In this case, the script will use the BLAST algorithm to plot the

features present in the uploaded vector and send the control back to Design STTM portal, where

the user will now be able to use the vector they have uploaded. The following steps occur if the

user passes the destination vector and STTM sequence to the index3copy2 script:

• Find the position of restriction enzymes in the destination vector.

• Insert the designed STTM sequence from the previous step into the destination vector

at one the restriction enzyme site or between two restriction enzyme sites and use the

BLAST algorithm to annotate the features and gene families present in the miRNA

targeted STTM destination vector.

• The circular plasmid map is then plotted using HTML5 Canvas, and the annotated

enzymes are labeled across the plasmid map using Draw_Arc() and

Draw_Enzyme_Label() functions, which will be discussed in a later section.

12

Figure 3.3: Design process of DesignSTTM module encoded in index3copy2 program.

13

3.4 Database Schema

The Blossom STTM Web portal uses a MySQL Database. The database structure implemented

in the Web portal is a simple single database instance called STTM. There are five distinct tables

used in the STTM Database. The “userdetails” table stores a user’s profile information including

username, encrypted password, email, and phone number. The system will use this information

to verify the user during login and to identify the user when generating plasmid maps. The

“root_vector” table contains the vector name, enzyme name, and the starting position storing the

features for the default vectors available for the user to use (Ex. p5941). The “uservectors” table

is a table created for every user to add his own annotated vectors to the database. The

“enzyme_list” is the table that contains the selective list of available restriction enzymes

shortlisted from the REBASE NEB database. The schema also has the highlighted

“sttm_destination_vectors” table that will be implemented in the future and this table will store

all users’ resultant destination vectors after insertion of STTM sequence. The “transgenic” table

stores the primers and species names of the various transgenic lines expressed in the STTM

MaterialSTTM Web portal. The “phenotypic” table stores the image reference names for each of

the phenotypic changes shown for the STTM transgenic line of the species. The

“admin_userdetails” table stores the user details who will act as admins and will be populating

the “transgenic” and “phenotypic” tables from the portal.

14

Figure 3.4: Database schema for Blossom STTM Hub.

4 Algorithm to Plot Plasmid Map

To draw the designed STTM constructs and display the features are a very difficult task. The

challenges lie in three aspects:

1) We need to identify the features in a designed STTM construct.

2) We need to illustrate and label the features precisely along the circular DNA.

3) We need to label the restriction enzyme digestion sites along the circular DNA.

To overcome all the above challenge, a custom solution needs to be developed that would work

for plasmids of different lengths (plasmids can be of drastically different lengths—they can be

15

less than 4000kb or even greater than 15000kb). The circular plasmid map should be consistent

in appearance, and all the enzymes should be clearly labeled without any overlaps.

4.1 Construction of STTM Binary Vector

As mentioned in the previous section, the DesignSTTM Web Portal designs a STTM sequence

for each miRNA, inserts it into the destination binary vector, annotates the vector using

BLAST.pl, and plots the plasmid DNA map along with other results. The circular map of the

plasmid vector DNA containing the STTM construct is plotted using HTML Canvas. The Canvas

element has a defined width and height that is set dynamically based on the size of the plasmid.

The circular plasmid in plotted on the canvas with all genes, promoters, terminators and

restriction enzymes along with the designed STTM sequence marked and labeled. Then the

features of the plasmid are plotted on the canvas by translating the starting and ending locations

of all the features to X & Y pixel coordinates with scale. On completion of this process, the

system converts the canvas element to an image, displaying it on the screen. The following

Algorithms have been designed to plot the plasmid map using HTML <canvas> element that

renders graphics on a webpage:

4.1.1 Blossom Plasmid Map Plotting Algorithm

The Blossom Plasmid Map Plotting Algorithm plots the destination binary vector as a circular

map. The algorithm receives the input from the BLAST results of the destination binary vector

and performs recursive calls to the function DRAW_ARC() for every identified feature

(enzymes, genes, promoters, and terminators). Comparing to the available radius on the Canvas

to the length of the destination binary vector, the algorithm determines the scale to which the

16

plasmid can be plotted. The circumference of the circular plasmid map to be plotted is divided

into as many parts according to the length of the plasmid. Now the DRAW_ARC() function plots

each feature from the BLAST result on the divided circular plasmid map. Refer to Appendix A

for the code that runs draw_arc() function.

Function: DRAW_ARC()

function draw_arc(start, end, lnwidth, color, label_x_val, label_y_val, is_direction,

comp)

Parameters and definitions:

Start → the start position of a feature

End → the end position of a feature

Lnwidth → the width of the line to be drawn

Color → the color chosen from a pool of colors

Label_x_val → The current X coordinate header position to label the feature

Label_y_val → The current y coordinate header position to label the feature

Is_direction → represents the orientation of the feature obtained from the Blast program

Comp → The name of the feature

Note: Here feature refers to any of the enzyme, promoter, terminator or origin

Algorithm for DRAW_ARC()

A. Begin procedure draw_arc(start, end, lnwidth, color, label_x_val, label_y_val,

is_direction, comp)

B. radius = RADIUS_OF_CIRCULAR_PLASMID

C. counter = comp[].length

17

 For I = 0 to counter

 temp1 = (start / total_nucleotides) * (2 * π * radius)

 temp2 = (end / total_nucleotides) * (2 * π * radius)

 //Draw Arc from temp1 to temp2 using context.arc()

 Context.arc(radius, temp1, temp2)

 context.lineWidth = lnwidth

 context.strokeStyle = color

 if is_direction == PLUS

 arrow1_startx = (label_x_val + 15 pixels)

 arrow1_starty = (label_y_val - 15 pixels)

 arrow2_startx = (label_x_val - 15 pixels)

 arrow2_starty = (label_y_val - 15 pixels)

 arrow3_startx = (label_x_val + 15 pixels)

 arrow3_starty = (label_y_val + 15 pixels)

 end if

 if is_direction == MINUS

 arrow3_startx = (label_x_val)

 arrow3_starty = (label_y_val)

 arrow2_startx = (label_x_val + 15 pixels)

 arrow2_starty = (label_y_val - 15 pixels)

18

 arrow3_startx = (label_x_val - 15 pixels)

 arrow3_starty = (label_y_val - 15 pixels)

 end if

 // Form a triangle with the three points

 Move to (arrow1_startx, arrow1_starty)

 Line To (arrow2_startx, arrow2_starty)

 Move to (arrow2_startx, arrow2_starty)

 Line To (arrow3_startx, arrow3_starty)

 Move to (arrow3_startx, arrow3_starty)

 Line To (arrow1_startx, arrow1_starty)

 end for

D. End procedure

4.1.2 Blossom Plasmid Large Features Labeling Algorithm

After plotting of the BLAST results on the canvas to form the circular plasmid, it could not be

interpreted by a user if the genes and enzymes are not labeled. This was a more significant

practical challenge than plotting the features. The main challenges are as follows:

• In a region of the plasmid where many enzymes need to be labeled, using an

algorithm to label enzymes without getting overlapped was a major challenge.

• There was a need to differentiate between labeling enzymes and other gene features

in order to identify them clearly.

19

In order to overcome the above difficulties, I came up with two algorithms—one to label large

gene features using curved text along circular plasmid’s inner circle and the other algorithm to

label the smaller enzymes features with label lines from the outer circle of the circular plasmid:

function drawTextAlongArc(context, str, centerX, centerY, radius, start, end)

Parameters and definitions:

Context → the current focus header (focus header is the flat Cartesian surface whose

origin (0,0) is at the top left corner where the <canvas> begins and its x-coordinate

increases moving right and y-coordinate increases when going down the canvas.)

Str → the string name of the feature to be labeled

centerX → the X coordinate of the center position of the feature

center → The Y coordinate of the center position of the feature

radius → The radius of the canvas circle

start → starting position of the feature

end → ending position of the feature

Note: Here feature refers to any of the enzyme, promoter, terminator or origin

Refer to Appendix B for the code in drawTextAlongArc()

Algorithm of DrawTextAlongArc()

Begin procedure drawTextAlongArc(context, str, centerX, centerY, radius, start, end)

B. totalbp = total number of nucleotides in vector

C. radius = RADIUS_OF_CIRCULAR_PLASMID

D. if (start < (totalbp) * 0.25) || (start > (totalbp)*0.75)

 multiplier = (end / totalbp) * 2 * π * radius

20

 angle = (-1) * 2 * π * ((end – start) / totalbp)

 len = string length of (str[])

 Rotate cursor by multiplier

 for i = 0 to len

 Rotate cursor by (-1)*(angle/len)/2

 currentFocus = cursor position

 context.fillText(str [i])

 Restore cursor position to currentFocus

 end for

 end if

E. if (start > (totalbp) * 0.25) AND (start < (totalbp) * 0.75)

 multiplier = (start / totalbp) * 2 * π * radius

 angle = (+1) * 2 * π * ((end – start) / totalbp)

 len = string length of (str)

 Rotate cursor by multiplier

 for i = 0 to len

 Rotate cursor by (-1) * (angle / len) / 2

 currentFocus = cursor position

 context.fillText(str [i])

 Restore cursor position to currentFocus

 end for

 end if

21

F. End procedure

The above algorithm was developed to plot the principal features that are at least one-twentieth

as long as the size of the destination binary vector, and the remaining features and restriction

enzyme digestion sites are marked and labeled outside the circular rings. The restriction enzyme

digestion sites and smaller features are plotted and labeled using draw_enzyme() function. The

reason the threshold length for the features along the curve to be fixed at least one-twentieth was

to avoid potential overlapping of labels.

4.2 Blossom Plasmid Octant Divided Small Features and

Restriction Enzyme Sites Labeling Algorithm

DNA vectors usually contain many features like restriction enzyme digestion sites, promoters,

gene coding regions, terminators, plasmid vector replication origin segments, and so on.

Annotating and labeling of the designed plasmid circular maps is necessary because so many

enzyme digestion sites often become crowded around the same regions. As such, there is a high

chance that the labels of the different enzyme sites may overlap with each other. A foolproof

algorithm was designed for labeling enzyme site specifically to comply with the plasmid map

generated by the DesignSTTM Web portal. Figure 4.1 shows the concept of splitting the circular

plasmid into eight octants for labeling. Figure 4.2 shows a rough example of labeling the

enzymes in an octant.

In order to obtain the list of gene families and features present in the vector sequence, we

used the NCBI tool called the BLAST (Basic Local Alignment Search Tool) [24]. The

BLAST finds regions of similarity between biological sequences, and the BLAST finds regions

22

of local similarity between sequences. The program compares nucleotide or protein sequences to

sequence databases and calculates the statistical significance of matches of similar gene families

present in the vector. We have used the curtailed “emvec” database containing

vector sequences to perform the BLAST for our plasmid vectors.

Figure 4.1: Circular plasmid divided into octants to facilitate labeling of restriction enzyme sites
in the binary vector without overlapping text labels

23

Figure 4.2: Algorithm used to label restriction enzyme sites inside every octant.

Function draw_enzyme():

draw_enzyme(start,end,lnwidth,color,label_x_val,label_y_val,is_direction, comp ,isgene)

Parameters and definitions:

Start → starting position of the enzyme

End → ending position of the enzyme

Lnwidth → width of the line to be drawn to label the enzyme

Color → color of the labeling text (red if it is a small gene or STTM sequence, black

otherwise)

Label_x_val → X coordinate of the enzyme label position

Label_y_val → Y coordinate of the enzyme label position

Is_direction → orientation of the enzyme as obtained from BLAST program

24

Comp → name of the enzyme to be labeled

Isgene → the flag which determines if the feature is an enzyme or a small gene

Note: Here small gene refers to features of the vector DNA that are lesser than 5% of the

total size of the vector DNA.

Refer to Appendix C for the code in draw_enzyme() function

Algorithm for draw_enzyme():

A. Begin procedure

draw_enzyme (start,end,lnwidth,color,label_x_val,label_y_val,is_direction,comp,isgene)

B. radius = RADIUS_OF_CIRCULAR_PLASMID

C. startbp = (start * totalbp) / (2 * π)

D. endbp = (end * totalbp) / (2 * π)

E. if "STTM_" ⊂ comp // Check if comp has the substring STTM_

 context.strokeStyle = "brown"

 else if isgene == 1

 context.strokeStyle = "red"

 else

 context.strokeStyle = "black"

 end if

F. Draw fixed short line from enzyme position

 context.moveTo(label_x_val, label_y_val)

 context.lineTo(label_x_val+15, label_y_val+15)

G. line1_startx = label_x_val+15

25

 line1_starty = label_y_val+15

H. angle = (startbp + endbp)/2

I. OCTANT1CONDITION = ((angle > (-0.50) * (π)) && (angle < ((-0.25) * (π)/2)));

 OCTANT2CONDITION = ((angle > (-0.25) * (π)) && (angle < 0));

 OCTANT3CONDITION = ((angle > 0) && (angle < (0.25 * (π))));

 OCTANT4CONDITION = ((angle > (0.25) * (π)) && (angle < ((0.50) * (π))));

 OCTANT5CONDITION = ((angle > (0.50) * (π)) && (angle < ((0.75) * (π))));

 OCTANT6CONDITION = ((angle > (0.75) * (π)) && (angle < (1 * (π))));

 OCTANT7CONDITION = ((angle > (-1) * (π)) && (angle < ((-0.75) * (π)/2)));

 OCTANT8CONDITION = ((angle > (-0.75) * (π)) && (angle < ((-0.50) * (π)/2)));

J. if(OCTANT1CONDITION)

 movex1 = 50;

 movey1 = movey1 + 15;

 line1_startx = line1_startx+movex1;

 line1_starty = line1_starty-movey1;

 end if

 if(OCTANT2CONDITION)

 movex2 = 50;

 movey2 = movey2 + 15;

 line1_startx = line1_startx+movex2;

 line1_starty = line1_starty+movey2;

26

 end if

 if(OCTANT3CONDITION)

 movex3 = 100;

 movey3 = movey3 + 15;

 line1_startx = line1_startx+movex3;

 line1_starty = line1_starty-movey3;

 end if

 if(OCTANT4CONDITION)

 movex2 = 25;

 movey4 = movey4 + 13;

 line1_startx = line1_startx-movex4;

 line1_starty = line1_starty+movey4;

 end if

 if(OCTANT5CONDITION)

 movex2 = -50;

 movey5 = movey5 + 13;

 line1_startx = line1_startx+movex5;

 line1_starty = line1_starty+movey5;

 end if

 if(OCTANT6CONDITION)

 movex2 = -100;

 movey6 = movey6 + 13;

27

 line1_startx = line1_startx-movex6;

 line1_starty = line1_starty-movey6;

 end if

 if(OCTANT7CONDITION)

 movex7 = -50;

 movey7 = movey2 + 15;

 line1_startx = line1_startx-movex2;

 line1_starty = line1_starty+movey2;

 end if

 if(OCTANT8CONDITION)

 movex8 = 0;

 movey8 = movey2 - 15;

 line1_startx = line1_startx+movex1;

 line1_starty = line1_starty-movey1;

 end if

K. context.moveTo(line1_startx,line1_starty);

 context.lineTo(line1_startx,line1_starty);

L. context.fillText(comp) – Label the enzyme at the end of the drawn line

M. End procedure

The main reason for dividing the circular map into octants and not as quadrants is to avoid the

situation of overlapping labels in a quadrant where a large number of enzymes are grouped

28

together. The reason for using positive and negative shifts in coordinates is to reverse the

direction of labeling every octant. This allows enough lateral spacing to the labels that hover

around the borders of each octant. The values of the displacement constants depend on the size

of the circular map drawn onto the canvas and is computed dynamically for every execution. An

example output from a test run is shown below in Figure 4.3.

Figure 4.3: A sample plasmid map generated by Blossom STTM Hub with various labeling.

29

5 Automatic Annotation System using Exact Search and

Basic Local Alignment Search Tool (BLAST)

After designing the STTM sequence, it must be incorporated into the destination vector sequence

and the resulting sequence must be plotted into a circular plasmid. To accomplish this, two

important functions need to be realized:

• To locate the one or two selected restriction enzymes in the initial vector binary sequence

at which the designed STTM sequence should be inserted into. The designed STTM can

gain the same restriction enzyme site or two different restriction enzyme sites at two ends

by PCR amplification with the restriction enzyme sites to be incorporated into the

primers. Both the amplified STTM sequence and the destination vector sequence were

cut by one or two selected enzymes, and linked into a circular DNA. This procedure was

achieved by mirna.pl PERL script.

• To automatically localize and annotate all the genes and restriction enzyme sites located

in the destination vector sequence. This is achieved by blast.pl PERL script and stripos()

PHP function.

5.1 Targeting the Designed STTM Sequence into the Destination

Vector – mirna.pl

The mirna.pl PERL script is called for execution from Index3Copy2 PHP script using the PHP

command exec(). The syntax to execute mirna.pl script is as follows:

30

exec(“perl mirna.pl <restrictionenzyme1> <restrictionenzyme2> <STTM sequence> <initial

vector> ”,”<OUTPUT>”);

where,

a. Restrictionenzyme1 – First restriction enzyme

b. Restrictionenzyme2 – Second restriction enzyme (optional parameter)

c. STTM sequence – The designed STTM sequence

d. Initial vector – Initial vector sequence selected by a user

e. OUTPUT – The returned destination vector after the PERL script execution is completed

The mirna.pl PERL script searches for the location of the restriction enzyme site(s) in the initial

vector sequence. If only one restriction enzyme is selected, the STTM sequence amplified from

PCR with same restriction enzyme sites at two ends was placed at the location of this restriction

enzyme site, and then returned back to the exec() call in the OUTPUT variable. If two restriction

enzyme sites are selected, both are located in the initial vector sequence and the shorter sequence

in between these two selected restriction enzyme sites was removed and replaced with the

designed STTM sequence amplified from PCR with two different restriction enzyme sites at two

ends of the STTM sequence. The PERL script returns the destination vector sequence containing

the inserted STTM sequence back to the exec() call in the OUTPUT variable.

5.2 Annotating the Restriction Enzyme Sites Present in

Destination Vector Sequence

Most of the restriction enzymes are small sequences and can be searched for exact matches in the

destination vector. NEB provides a list of all the known restriction enzymes sites called

31

REBASE [14]. Using this list of restriction enzymes from REBASE, a table named

‘enzyme_list’ was formed with three columns – the first one(‘enzyme_name’) contains the name

of the enzyme, the second one(‘start_seq’) contains the 5’ sequence of the enzyme and the third

column(‘end_seq’) contains the 3’ sequence of the enzyme. The destination vector is searched

for the presence of these restriction enzymes and if an exact match is found, the name and

position of the enzyme in the destination vector are added to two arrays named enzyme[] and

pos[]. These two arrays will be used to plot the enzymes in the plasmid map and then to label

them. To search for the presence of restriction enzymes in the destination vector, the PHP

function ‘stripos()’ - that uses linear search algorithm - was used.

Syntax of stripos(): stripos(searchstring, findstring, startposition)

Where, ‘searchstring’ is the string to search for the substring, ‘findstring’ is the string to look for

in the search string and ‘startposition’ is the position in the searchstring to start finding a match

for the findstring.

The following steps are involved in annotating the restriction enzymes in the destination vector:

• Retrieve all the enzymes stored in the ‘enzyme_list’ database using an SQL query

--

sql_query = “select * from enzyme_list”;

sql_statement = mysqli_prepare(db_connection, sql_query);

mysqli_stmt_execute(sql_statement);

mysqli_stmt_store_result(sql_statement);

mysqli_stmt_bind_result (sql_statement, enzyme_name, enzyme_sequence);

--

32

where db_connection is the reference to the connected database, mysqli_prepare() and

mysqli_stmt_execute() functions execute the SQL query from PHP. sql_statement is the

reference object where the results returned by mysqli_stmt_store_result() function from the SQL

query are stored and the mysqli_stmt_bind_result() splits each column of the results in separate

arrays (in this case the enzyme name and enzyme sequence).

• While(mysqli_stmt_fetch(sql_statement))

{

 returned_position = stripos(destination_vector_sequence,enzyme_sequence,0);

 if (returned_position != FALSE)

 {

 Store position of enzyme in destination vector to pos[] array

 Store name of enzyme sequence to enzyme[] array

 }

}

The above Pseudo code uses the stripos() method and completes the automatic annotation

process of the enzymes present in the destination vector by storing the enzyme names and

position in the destination vector to enzyme[] and pos[] arrays respectively.

33

5.3 Annotating the Larger Features (Genes, Promoters and

Terminators) in Destination Vector Sequence Using blast.pl

To annotate the larger fragments that contain genes and other features present in the destination

vector, it was not efficient to use a direct linear search as these fragments are very long and

hence slow the process of finding exact matches in the destination vector sequence. In order to

annotate these larger gene fragments, promoters, terminators and other features, we make use of

the percentage matching algorithm BLAST search. After the destination vector sequence is

returned from mirna.pl PERL script, it is passed to another PERL script named blast.pl that

identifies all the genes and other features present in the sequence. PHP command shell_exec() is

used to execute blast.pl. Before calling the blast.pl program, the destination vector sequence is

stored in a temporary file called “qry.txt”. Syntax for calling blast.pl: shell_exec(“perl blast.pl”);

Blast.pl reads the input vector sequence from “qry.txt” and performs a BLAST search [15] with

the query sequence to determine the matching fragments present in the vector. A BLAST search

reads in the query, parameters for the search and the database for identifying matches. The

database that has been used in the BLAST search is a list of all the popularly known gene

fragments obtained from the NCBI’s reference sequences [16], a non-redundant sequence

database of genomes, transcripts and proteins “feature.fasta.nt”. This list has about 346

sequences of gene fragments (consisting of genes, promoters, terminators and other features).

Each gene fragment from this list is in fasta format. The “vecdb” database is created by

extracting each gene fragment from the “feature.fasta.nt” file. The fragment name and the

fragment sequence form the two columns in “feature_list” table of the “vecdb” database. BLAST

search offers the Command line BLAST search query blastn that is used in this application. The

34

BLAST search first checks the query for low complexity repeats and divides the large query into

smaller words to be checked in detail. As this the query sequence is divided into smaller words,

the matches from the databases are also initiated. In this preliminary search, the database is first

scanned for matches in the divided words of the query to a subject sequence in the database

where all the currently available vector sequence components are stored. When multiple words

are found match a subject sequence in the database, the BLAST search extends to the two sides

of each word matches. If exact match is not found, the percentage of gap free extensions is

computed for every field in the database and is assigned a score. The lower scoring matches are

deleted if too many matches are found. The highest scoring matches are then returned as the

possible matches found in the overall query. The matches found in the destination vector are

written to a file named ‘match_su.txt’.

The syntax used for using the command line BLAST search ‘blastn’ is as follows:

`blastn -query qry.txt -db vecdb -out match_su.txt -outfmt "<DETAILS OF THE EACH ROW

OF MATCH FOUND>" -task "blastn-short"`;

Where,

a. qry.txt – input of the destination vector sequence

b. vecdb – The database of the list of the fragments to be searched by BLAST extracted

from the list of 346 fragments consisting of genes, promoters and terminators from the file

‘feature.fasta.nt’

c. match_su.txt – The output file where the matches found after BLAST search are

stored.

35

d. <DETAILS OF EACH OF MATCH FOUND> - this is the list of genes or other

features after they have been identified as matches by BLAST search. It includes fields like

length of fragment, gene sequence, starting and ending position of the gene fragment in the

destination vector, percentage of the gene or feature fragment sequence matching in the vector

and the orientation of the gene or feature fragment. After the BLAST search is completed, the

blast.pl reads the results returned in ‘match_su.txt’ file. For each gene fragment in this file, it’s

sequence, it’s starting and ending positions in the vector and orientation are hashed to form a

tabular structure and the table is written to a file called ‘feature_list.txt’. This ‘feature_list.txt’

file is returned as the final output of ‘blast.pl’ script. Index3Copy2 then reads, identifies and

labels the gene fragments present in the destination vector from this file to plot the plasmid map.

5.4 Automatic Annotation System – Labeling Features in the

Destination Binary Vector

As discussed in the previous section, the BLAST tool identifies the features contained in the

destination plasmid vector and stores the resultant list in “feature.txt”. It is important to label the

genes, promoters, terminators and enzymes of the destination vector on the plasmid map so that

they can be identified by a user. The larger fragments are labeled inside the circular plasmid map

along the arc whereas the smaller fragments and the restriction enzyme sites are labeled outside

the circular plasmid map.

36

5.4.1 LABELING FEATURES INSIDE THE CIRCULAR PLASMID

It is not feasible to label all the features inside the circular plasmid map due to space limitations.

Only features that are at least 5% as long as the destination vector, are labeled inside the plasmid

along the arc. That is, feature will be named inside the plasmid if:

(end position of feature – start position of feature) >= (5/100)*length of plasmid

The list of features that satisfy this condition are selected from the BLAST results and this list is

sent as an array parameter to the DrawTextAlongArc() function which also take starting position

and ending position of the features as additional parameters. The algorithm to print the label

along the arc between start and end positions of a feature is discussed in section 4.1.2 above. The

implementation of this algorithm is shown in Figure 5.1.

37

Figure 5.1: Automatic Annotation System – Labeling the features inside the circular plasmid
along the arc. This uses the function DrawTextAlongArc() that computes the orientation and
position of each character of the feature name.

5.4.2 Labeling Enzymes Outside the Plasmid Map

All the smaller fragments that are lesser than 5% of the total length of the destination vector and

all the restriction enzymes are labeled outside the circular plasmid map. The challenging part in

labeling these features is to ensure that no two labels overlap with each other. Since the

destination vector could contain various enzymes depending on the initial vectors used, it is not

possible to determine which will be the regions where more number of enzymes exists close to

each other. To tackle this challenge we make use of the octant division labeling algorithm

38

discussed in section 4.2.1. draw_enzyme() function is used to implement this algorithm. The

following steps occur during the labeling of enzymes outside the circular plasmid map:

• The circular plasmid is divided into 8 equal octants of 45 degrees each.

• All the smaller features and restriction enzymes that have to be labeled are divided into 8

groups based on which octant they are present.

• Octants I, III, V and VII use positive(+ve) displacement method whereas octants II, IV,

VI and VIII use negative(-ve) displacement method.

o What is positive displacement method: The features in this octant are labeled in

the anticlockwise direction. The angle in a canvas circle in HTML5 increases

from 0 to 360 in anticlockwise direction and hence the name +ve displacement.

The first feature has the shortest label line (line from the position of feature in the

plasmid map to the feature’s name in the label) and the least angle in the octant.

The successive features have sequentially longer label lines which increase in

constant displacements and are oriented at a higher angle than the previous

feature.

o What is negative displacement method: The features in this octant are labeled in

the clockwise direction. In this method, the first feature has the shortest label line

and the highest angular orientation to the circular plasmid. Successive features

have sequentially longer label lines and lesser angle of orientation than the

previous feature. The equations to these variables can be found in the

draw_enzyme() function description in section 4.2.1.

39

• Once the label lines are drawn for all the features, the name of the feature is printed in a

straight line without any angular orientation used to label the larger features.

• The octants use positive and negative displacement methods alternatively in order to

avoid overlaps between the features that exist near either side of the octant’s border.

• The implementation of this algorithm is shown in Figure 5.2.

Figure 5.2: Automatic Annotation System – Labeling the features outside the circular plasmid
map. This uses the function draw_enzyme() that divides the circular plasmid into equal octants
and labels the features with positive and negative displacement methods. Octants that are set to
use positive displacement method label the features in anticlockwise direction. Octants using
negative displacement method label the features in clockwise direction.

40

6 Implementation

This section explains how all the Web pages in the Blossom STTM Hub were developed and the

underlying work flow behind each web page. It also depicts the validation used in each of the

inputs obtained from a user. The figures used in this section are all screenshots taken from the

Blossom STTM Hub at corresponding stages of execution.

6.1 Homepage

The Blossom STTM Hub’s homepage acts as a welcome page for users, and it contains essential

information about the Short Tandem Target Mimic (STTM) project funded by National Science

Foundation. The objectives of the project, the critical experimental approaches developed, the

resources for looking up more regarding the project, and the participants involved are provided at

the homepage. Figure 6.1 shows a screenshot of the Blossom STTM Hub’s homepage.

41

Figure 6.1: Webpage displaying the main objectives of the DesignSTTM and MaterialSTTM
Web portals.

6.2 Login, User Registration and Update Profile Information

This section explains the login functionality and the process of new user registration to the

STTM Web portal.

6.2.1 Login

The Login page has two functional flows—one for new users to register to Blossom STTM Web

portal and the other for registered users to login to the portal. Registered users use their username

and password to login to the portal. The system identifies new users by unique usernames to

avoid username redundancy. Figure 6.2 shows a screenshot of the login page.

42

Figure 6.2: Blossom STTM Hub login page.

6.2.2 User Registration

The user registration process of Blossom STTM Hub was developed to obtain several user

details (name, password, university, E-mail and Phone), validate them, and instantiate a new

entry to the userdetails database containing the parsed input. JQuery plugins [25] were used to

implement dynamic functions like checking for the availability of a username and correctness of

the entered password in the “Confirm Password” text field. A user who intends to register to the

Blossom STTM Hub is asked to provide the following information: username, password, and

electronic mail address, institute or organization, and phone number. The username typed in by

the user will be checked in the database, and the user will not be able to choose a username that

already belongs to an existing user. The confirmation password field turns green only if the value

entered matches with the password field’s string. If it does not match, it stays in red for easy

43

recognition. The username, password, and email fields are mandatory fields, whereas other fields

are optional. The user can update his profile information after registration using the Update

Profile feature of the portal. Figure 6.3 shows a screenshot that depicts the user registration

process in Blossom STTM Hub.

Figure 6.3: Screenshot of web page illustrating new user registration process to Blossom STTM
Web Portal.

6.3 Web Portal of DesignSTTM

The DesignSTTM Web Portal’s main functions are to receive the various inputs such as the

miRNA sequence, an intermediate vector, a destination vector, and restriction enzyme sites, and

design the STTM sequence using these inputs and finally plot the destination plasmid DNA map.

The DesignSTTM Web Portal comprises of two significant parts—designindex.php and

index3copy2.php. Designindex.php script handles reception of inputs, whereas index3copy2.php

44

script accomplishes the tasks such as utilizing the inputs to design STTM sequence structure and

plotting the destination plasmid DNA containing the designed STTM sequence.

Designindex PHP script: Acquisition of inputs from a user to design STTM sequence

As mentioned above, the main functions of the “designindex” PHP script is to obtain miRNA

sequence, intermediate vector, destination binary vector and the restriction enzyme sites from a

user, validate these inputs, and pass them to the “index3copy2” PHP script to design the STTM

sequence and plot the destination plasmid DNA map containing the STTM structure. The

Designindex PHP script accomplishes the design in two steps. The first step is to obtain the

miRNA sequence and the intermediate vector from the user. The second step is to obtain the

destination binary vector chosen by the user in the circumstance in which the designed STTM

structure needs transferring to a destination binary vector. The insertion of STTM structure into

the destination binary vector occurs at one restriction enzyme digestion site, or between two

restriction enzyme sites. The Designindex PHP script thereby needs to obtain one or two

restriction digestion sites in the destination binary vector.

6.3.1 Step 1: Obtain miRNA Input and Select Intermediate Vector

● A user has to enter a name for the miRNA sequence for designing the STTM

sequence. This name will be used as a reference in naming the STTM construct once

it is inserted into a plasmid vector. The miRNA name will also be used for the

filename in the output report, so that the user can be easily identified it for future

reference.

o Validation: The miRNA name field cannot be empty, and the system will stop the

user from submitting the vector without a name.

45

● A user then enters the miRNA sequence of 18 to 30 characters long to be used to

construct the STTM sequence. A miRNA sequence in DNA format (ATGC) or in

RNA format (AUGC) can be entered, but the latter will be converted to DNA format

automatically before it is to be used for designing STTM vector in DNA format.

o Validation: The miRNA sequence entered by the user must contain only valid

sequences with A, T, G, and C nucleotides or A, U, G, and C nucleobases(A-

adenine, T-thymine, G-Guanine, and C-cytosine), and their lengths must vary

between 18 and 30. If the user either provides an empty or invalid sequence, an

error message is prompted, and the program will halt.

Figure 6.4: The web interface for submitting a miRNA name and sequence for designing STTM
structure in DesignSTTM Web Portal.

● Selection of a vector from the database: The DesignSTTM web interface enables a

user to select an intermediate vector from a dropdown menu to insert the designed

46

STTM construct temporarily before being transferred to a destination binary vector.

Based on current development, pOT2 vector, a custom intermediate vector, is used to

harbor the STTM structure before it is transferred to the destination vector. In the

future, more intermediate vectors may be added to the database and the dropdown list.

Figure 6.4 shows screenshots of Step 1 of workflow for DesignSTTM.

● Once a user has provided the miRNA sequence and selected the intermediate vector,

he is provided an option to transfer the designed STTM construct to a destination

binary DNA vector that can be used to deliver a STTM structure or the majority of

intermediate vector (except origin sequence) into plant cells. The origin sequence

involves the regions where the circular plasmid initiates the duplication of itself. By

transferring a STTM structure to a binary vector, we meant to use the PCR to amplify

the majority of STTM sequence + pOT2 vector, and then insert the PCR product into

a destination binary vector that the user chooses. The origin segment sequence in the

pOT2 vector needs to be removed before transferring into a destination binary vector.

This is because a binary vector cannot have more than one origin segment [4]. This

step will determine the next step dynamically. If option “NO” is chosen, the designed

STTM construct will be inserted into the intermediate vector at one of the restriction

enzyme digestion sites or between two restriction enzyme digestion sites selected by

the user, and the resulting plasmid DNA vector containing the STTM structure will be

plotted to the map. If option “YES” is chosen, STEP 2 is triggered dynamically, in

which the user selects the destination binary vector and the restriction enzyme sites to

47

insert the majority backbone of the intermediate vector containing STTM sequence

into the destination binary vector.

6.3.2 Step 2: Select Destination Binary Vector and Restriction Enzyme Sites

● If a user chooses “YES” to transfer the designed STTM construct into a destination

binary vector, the origin segment has to delete in the intermediate vector before

transferring to the binary vector. To achieve this, we designed two primers to amplify

the majority of backbone of STTM structure present in non-binary vector like pOT2

(Origin-deletion PacI forward primer —TCCCTTAATTAAGTTTGCAAGCA

GCAGATTACGCG and reverse primer – TCCCTTAATTAAGAAAGGCGGACAG

GTATCCGGTAAG). The replicate origin skipped in pOT2 is 616 bp long. Figure 6.5

shows the primers to be used to amplify the majority backbone of the constructed

STTM vector into the binary vector.

Figure 6.5: Primers to amplify majority backbone of pOT2-STTM sequence for cloning it into a
destination binary vector.

● Selecting the binary vector:

o A user can either choose from a list of binary vectors using the drop down menu

or enter his own binary vector sequence, which would be added to his personal

directory.

48

o The following actions take place in the background once the user chooses to enter

his own vector sequence to the tool:

▪ The sequence is checked to contain only adenine(A), thymine(T),

Guanine(G), and cytosine(C) nucleobases, and it is saved to a file in the

user’s personal directory and the vector is added to the user’s personal

database.

▪ Additionally, the sequence is annotated by running the BLAST [17] Perl

script, and the enzymes and other features of the vector are also stored in

the database. The user can now use the destination binary vector added to

be targeted by the designed STTM sequence.

▪ The user then selects the binary vector from the drop down menu. Figure

6.6 shows the process of adding a binary vector to transfer the constructed

STTM sequence into it.

Figure 6.6: Addition of a binary vector to which the majority backbone of pOT2-STTM
sequence can be transferred.

49

● When a user selects the binary vector from the drop down menu, the vector sequence

is retrieved from database and displayed in a text area dynamically using jQuery

inline script [18].

● The last step in designindex script is to select restriction enzyme digestion site(s) to

insert the majority backbone of the intermediate vector that includes the constructed

STTM construct into the destination binary vector. All the restriction enzymes

contained in the binary vector are displayed in a drop down menu as a list for

selection. A user can select either a single restriction enzyme site or two restriction

enzyme sites. If one restriction enzyme site is selected, the STTM construct will be

inserted at the location of this enzyme in the binary vector. If two restriction enzyme

sites are selected, the STTM construct is inserted between these two enzymes in the

destination binary vector. Figure 6.7 depicts the selection of restriction digestion

enzyme site(s) in a binary vector, amplifying the designed STTM sequence in the

intermediate vector, and then inserting the majority backbone of the intermediate

vector into the destination binary vector.

50

Figure 6.7: Depicts the selection of restriction digestion enzyme site(s) in binary vector and
amplifying the designed STTM sequence in pOT2 with primers containing the enzyme site(s).
The amplified fragment is then inserted into the binary vector.

● Upon reception of all the necessary inputs, the index3copy2.php script is called for

execution.

6.4 Index3copy2 PHP Script: Design STTM Construct, Primers,

and Plot Plasmid DNA map

The script of Index3copy2 was developed to realize the following functionalities: (1) designing

the STTM construct; (2) designing forward and reverse primers to be used to amplify the STTM

construct in the destination binary vector; (3) plotting the plasmid DNA vector map containing

the designed STTM sequence, (4) displaying the final sequence and features, and send results as

a PDF document to the user’s email.

51

1) Map of destination vector map containing STTM structure

2) Sequence of destination vector

3) Features of destination vector

4) STTM Sequence

5) Electronic-mail REPORT

6.4.1 Map of destination vector map containing STTM structure

Generation of the plasmid map of the destination binary vector containing the designed STTM

construct is the most critical step in index3copy2 PHP script. The inputs (miRNA sequence,

intermediate vector, destination binary vector, and restriction enzyme sites) given by a user in

designindex script are stored in PHP session variables and are passed on to the index3copy2 PHP

script. The STTM sequence is designed based on these inputs. This is followed by the

construction of forward and reverse primers that can be used to amplify the designed STTM

sequence using Polymerase Chain Reaction(PCR) [19] and then transfer it into a destination

binary vector. A binary vector is a circular DNA that can serves as a vehicle for delivering the

gene to plant genome. Finally, the designed STTM construct is inserted into the destination

binary vector at the restriction enzyme’s location, and the plasmid DNA map is plotted using

HTML Canvas.

● STTM sequence design:

o The STTM sequence is designed by a Perl sub-routine mirna.pl that is executed

from index3copy2 PHP script. The mirna Perl sub-routine takes in the two

restriction enzymes, the miRNA input sequence and the intermediate vector

sequence from the stored SESSION variables and incorporates the following

algorithm to design the STTM sequence:

Let us take the design of STTM165/166-48nt as an example:

52

The miR165 sequence is: 5’ UCGGACCAGGCUUCAUCCCCC 3’

and the miR166 sequence is 5’ UCGGACCAGGCUUCAUUCCCC 3’

→ Reverse compliment the miRNA input sequence

 The anti-paralleled miR165 is: 5’ GGGGGAUGAAGCCUGGUCCGA 3’

 The anti-paralleled miR166 is: 5’ GGGGAAUGAAGCCUGGUCCGA 3’

→ Then replace the NNN sequences with the reverse complimented miRNA

sequences.

5’catttggagaggacagcccAAGCTTGGGGGAUGAAGCCUGGUCCGAgttgttgttgtta

tggtctaatttaaatatggtctaaagaagaagaatGGGGAAUGAAGCCUGGUCCGAGAATT

Cggtacgctgaaatcaccag 3’

→ Add a bulge sequence with a length of 3 nucleotides in between the miRNA

sequence. The 3 nucleotide bulge sequence can be any random sequence except

for the condition that it must not be the same as the compliment of the sequence

between the 11th and 13th nucleotides of the miRNA sequence. The bulge

sequence is placed so that the binding sites could trap miRNAs without being

cleaved. The bulge sequence is added between the 10th and 11th nucleotide of the

miRNA sequence.

5’catttggagaggacagcccAAGCTTGGGGGAUGAAGctaCCUGGUCCGAgttgttgttg

ttatggtctaatttaaatatggtctaaagaagaagaatGGGGAAUGAAGctaCCUGGUCCGAGA

ATTCggtacgctgaaatcaccag 3’ (In this case the chosen bulge sequence is ‘cta’)

→ Split the spacer sequence into two halves using the SwaI enzyme location as

the midpoint. The first half of the spacer is to be added into the forward primer

53

containing the first half of the STTM sequence while the second half of the spacer

is added into the reverse primer containing the second-half of the STTM sequence.

→ Finally the STTM sequence is constructed by concatenating the following

calculated parameters:

STTM sequence = first restriction enzyme +

Reverse complimented miRNA sequence +

 Spacer sequence + reverse complementary miRNA(same

or different miRNA)

 Sequence + second restriction enzyme +

 Spacer sequence

In the above STTM design method, either one or two different miRNA sequences

can be targeted to form the STTM vector. If only one miRNA is used for

designing STTM structure, then the STTM sequence contains two copies of

complimented sequences of the same miRNA at both two loci that are separated

by spacer sequence. If two different miRNA’s are targeted, normal sequence of

the first miRNA and anti-paralleled sequence of the second miRNA are used to

design the STTM sequence.

→ The designed STTM sequence is inserted into the intermediate vector at the

location between two the restriction enzyme sites, as shown in Figure 6.8. The

54

resultant intermediate vector sequence containing the designed STTM sequence is

stored in a text file in the user’s personal directory.

Figure 6.8: STTM construct design and insertion of designed STTM sequence into the
destination vector.

● Designing forward and reverse primers to amplify the STTM structure:

55

o Forward and reverse primers were designed to amplify the designed STTM

construct into the destination binary vector through PCR (Polymerase Chain

Reaction) [19]. PCR is a technique that is widely used in molecular biology when

there is a need to amplify a DNA fragment into multiple copies of several orders

of magnitude. In our case, we use PCR to amplify the designed STTM sequence

and the majority of intermediate vector (except replication origin) into a

destination vector sequence. The DesignSTTM Web Portal computes the forward

and reverse primers, and the sequences are also displayed to users. The detailed

procedure for designing the forward and reverse primer sequences are listed

below.

• Forward primer:

o Copy the second half of the designed STTM sequence.

o Add a few bases GCC to the 5’ end of primer so that the restriction enzyme site at

the 5’end is protected.

o Replace any U’s in the sequence with T’s.

• Reverse primer:

o Copy the first half of the designed STTM sequence

o Reverse the sequence

o Complement the reversed sequence - change A->T, T->A, G->C, C->G

o Add the 5’end protection sequence to the 5’s end of reverse primer sequence so

that the restriction enzyme sites at the 5’end to be protected.

o Replace any U’s in the sequence with T’s

56

• An example of designing STTM structure :

o Designed STTM sequence with miRNA166:

catttggagaggacagcccAAGCTTTCGGACCAGGCgtaTTCATCCCCCgttgttgttgttat

ggtctaatttaaatatggtctaaagaagaaggatTCGGACCAGGCgtaTTCATCCCCCGAATT

Cggtacgctgaaatcaccag

Forward primer:

GCCatttaaatatggtctaaagaagaaggatTCGGACCAGGCgtaTTCATCCCCCGAATT

Cggtacgctgaaatcaccag

Reverse primer:

GCCatttaaattagaccataacaacaacaacGGGGGATGAAtacGCCTGGTCCGAAAGCT

Tgggctgtcctctccaaatg

Restriction Enzymes used in the above example: HindIII – AAGCTT & ECoRI -

GAATTC

• Designed STTM construct has to be transferred into a destination binary vector from an

intermediate vector, and then the replication origin segment presents in the intermediate

vector needs to be deleted because the destination binary vector has its own replication

origin.

57

Figure 6.9: Plasmid DNA map of the binary vector pFGC5941 containing the designed STTM
structure depicting all the enzymes, genes, and features present in the destination binary vector

● If a user selects one restriction enzyme site to insert the designed STTM construct,

the system searches the site in the destination binary vector. Once this location

containing the site is determined, the intermediate vector sequence (without

58

replication origin) containing the designed STTM sequence is retrieved and inserted

into the site.

● If a user selects two restriction enzyme sites, the intermediate vector with the

designed STTM sequence is inserted between the restriction enzymes.

● Again, blast.pl is executed to annotate the genes, promoters and terminators, and

stripos() PHP method is used to annotate the restriction enzyme sites contained in the

resulting destination binary vector after the insertion of the STTM construct. The

results are written to the text file “feature_list.txt”.

● The enzyme names, positions in the sequence, and their orientations are stored in

distinct arrays(enzyme[] and pos[]) that are used later to plot the plasmid map onto

the canvas [20].

● Now that all the data required for the plasmid map plotting have been prepared,

index3copy2 script plots the plasmid map using HTML canvas element, labels the

enzyme sites, and shows their orientations.

● DRAW_ARC() is the function that maps the features of the STTM containing

plasmid vector onto the canvas.

• DrawTextAlongArc() is the function which is used to label the features along the

circular ring. Only features that are longer than one-twentieth of the overall vector

length are labeled inside the circular ring in the map. This is done to avoid overriding

of labels when trying to plot smaller features that are closer to each other in the

vector.

59

• DRAW_ENZYME_ARC() plots and labels the enzymes contained in the destination

binary vector.

● Figure 6.9 shows a sample plasmid map plotted by the DesignSTTM Web Portal.

6.4.2 Sequence

“Index3Copy2” PHP script displays the destination binary vector sequence obtained after

inserting the STTM construct from the intermediate vector to the binary vector. The STTM part

of the destination vector sequence will be highlighted to facilitate easy identification. Figure 6.10

shows the STTM vector sequence as displayed in the results page.

Figure 6.10: Output of destination binary vector sequence after insertion of the designed STTM
construct displayed by the DesignSTTM Web Portal.

60

6.4.3 Features

The features section of the output presents the integral list of features contained in the destination

binary vector and their positions, as retrieved from the stored feature_list.txt file. The STTM

sequence location is also displayed along with these features. Figure 6.11 shows a sample list of

features in the pFGC5941 destination binary vector as displayed by the DesignSTTM Web

portal.

Figure 6.11 The output list of features present in the destination binary vector sequence after
insertion of the designed STTM structure. These features are identified by the auto-annotation
system embedded in the DesignSTTM Web Portal. The auto-annotation system comprises a
database that stores the collected components (genes, promoters, replication origins etc.) of DNA
sequences in various plasmid vectors, and a sequence similarity analysis algorithm called Basic
Local Alignment Search Tool (BLAST).

61

6.4.4 STTM_Sequence

This section displays the STTM sequence and the different ways to incorporate the prepared

STTM sequence into the binary vector, which include back-to-back primer pairing, face-to-face

primer pairing, and oligo annealing. The back-to-back and face-to-face primer pairing methods

provide the forward and reverse primers that can be used to amplify the STTM sequence using

Polymerase chain reaction (PCR) technology, and then incorporate it into the binary vector,

whereas oligo annealing is to synthesize the two strings—top and bottom strands of DNA, with

addition of adaptors harboring the restriction enzyme site(s) selected (like PacI). The two strands

synthesized can be dissolved in water and mixed in equal amounts before they are heated to a

high temperature and then cooled down, during which the two strands anneal to produce double

strands with two sticky-ends. This double strand DNA with two sticky-ends can be cut with

restriction enzymes (like Pac I) and incorporated directly into the pre-digested vector.

6.4.5 E-Mail Report

The system combines all the results obtained and displayed to a user to formulate a PDF

document report. The system sends this report as an attachment to the user’s email.

To dynamically generate PDF reports, a TCPDF [21] PHP library is used. The PDF is prepared

simultaneously when every section of the output is computed. For example, when the portal

generates the plasmid map, it is written immediately to the PDF, and the same applies to the

Sequence, Features, and the STTM-Sequence results as well.

A user can choose from two options to receive the generated PDF report: send to registered email

or send to a different email. If the user selects the “Send to registered Email”, the PDF prepared

62

is written to a file with a name of “Merged_Report_STTM_< the miRNA name given > and

store it in the personal directory of the user. The system will fetch the user’s registered Email ID

from the database, and then execute SendEmail program. If the user selects “Send to another

mail” option, the system alerts a text field to get the Email ID from the user. The system

validates the email address entered before it is used by the SendEmail program to send the PDF

report to it.

6.5 Material_STTM

The main objective of the Material_STTM Web Portal is to support the distribution of STTM

constructs, genotypic evidence and phenotypic information as well as the seeds of transgenic

lines generated with the designed STTM constructs. The portal is designed to collect and show

the availability of both STTM constructs of different miRNAs, the genotypic evidence, and the

phenotypic alternations of transgenic crops lines transformed with previously designed STTM

constructs. Material_STTM Web Portal is intended to serve as a venue through which various

STTM plasmid vectors and transgenic seeds of various STTM constructs can be distributed to

the research community. The contents of Material_STTM are displayed through a web portal

called “STTM_Vectors and Transgenic Lines.” Due to the unavailability of STTM vectors, the

web portal of STTM_VECTORS_TRANSGENIC_LINES has not been constructed.

63

6.5.1 Web Portal of Transgenic Lines

The Web Portal of Transgenic Lines display page contains a list of transgenic lines of various

STTM constructs. For each STTM transgenic line, there is various genotypic and phenotypic

information that includes the following:

• Genotyping by sequencing: primers used to amplify genomic DNA in each of the

transgenic lines to verify integration of STTM construct through regular PCR are

provided along with cloned PCR products that are sequenced with the Sanger

sequencing technology.

• Genotyping by qPCR: an integrated image is generated to show the expression levels

of the following genes: a STTM, the STTM targeted microRNAs, and the target

genes of the STTM-targeted microRNA.

• Genotyping by Northern: an integrated hybridization image produced from Northern

Blot to show the expression levels of not only the STTM targeted miRNA but also the

target genes of STTM targeted miRNA using Northern Blot technique.

• Phenotyping: images and plots to depict the altered phenotypes of the STTM

transgenic lines in which the targeted miRNA’s are destroyed.

This genotypic evidence is to confirm the transgenic lines of a STTM construct are genuine and

the phenotypic alternations of transgenic lines of a STTM construct are caused by the

degradation of STTM targeted miRNA’s in transgenics.

64

A link to the Blossom STTM E-store is provided along with every STTM construct, and a user

can use each link to navigate to the store where they can purchase the STTM construct and the

transgenic seeds from the STTM line they choose.

6.5.2 Blossom STTM E-Store

The Blossom STTM E-store was set up using the Michigan Tech Touchnet Marketplace Service.

The cart functionality is integrated, and a user can select the required constructs and/or

transgenic lines of a specific miRNA in a species, and then place an order for desired quantity.

The system will record each order and assign each a transaction ID for tracking. The order will

be received and processed within the specified period subject to availability [22]. The E-Store

has a working prototype developed and can become existent in the market when more vectors

and STTM constructs are added to the inventory upon further research.

6.6 Documentation

 Documentation is very vital to a Web portal, as it acts as a reference for users on how to use the

application, and provides directions for users to realize the different available features in the tool.

A PDF document is made available to users through the Blossom STTM Web portal that

contains all the critical steps involved in using the DesignSTTM and MaterialSTTM Web

portals. Figure 6.12 shows the documentation file of the blossom STTM Hub.

65

Figure 6.12: Blossom STTM Hub Documentation file, which provides an instruction for using
and understanding the DesignSTTM and MaterialSTTM Web Portals. The documentation can be
reached from the Top Menu of the Blossom STTM Web Portal’s interface.

6.7 User Account Web Interface

As aforementioned, a user has a personal directory created upon registration. The personal

directory is a place where all results generated by the user are stored. A front-end interface

called “My Account” was developed to display the list of all files stored in the user’s

66

personal directory. The user can browse the list of files stored in his personal directory,

which is updated every time after the user utilizes the Blossom STTM Hub tool to design

a STTM construct. The user can also download or delete any of these stored results

through the “My Account” web interface. Figure 6.13 shows the front-end interface of the

user’s “My Account” section.

Figure 6.13: The web interface of a user’s account where a list of files stored in the user’s
personal directory. An option for downloading or deleting the files is provided. The files can be
downloaded by clicking on the filename hyperlink.

7 TF Cluster: Web Portal

This section is independent from the STTM Web Portal. TF Cluster Web Portal is to develop an

online version of TF-Cluster, which is a tool for building collaborative network of TFs and then

decomposing it into collaborative sub-networks. Each sub-network has been proven to contain a

67

group of TFs that are highly collaborative in controlling a biological process or a complex trait

[23]. This section includes the following contents:

• Introduction to TF Cluster Web Portal.

• Architecture to TF Cluster Web Portal.

• Design of GNETINDEX Input Form.

• TF Cluster User File System.

7.1 Introduction to TF Cluster Web Portal

Identification of key transcription factors (TFs) that control a biological process, pathway, or

complex trait is an important step towards understanding of molecular regulatory mechanisms,

but due to the presence of a large number of genes and sophisticated interaction among them,

identifying these TF’s becomes very challenging. The TF-Cluster Web portal can identify

coordination TF clusters through construction of a coordination network of all TFs followed by

network decomposition. Each resulting cluster contains a group of coordinated TFs known to

control the same biological pathway, process, or complex trait. The TF-Cluster Web portal will

facilitate the use of this pipeline to more gene expression data for novel biological knowledge

discovery. The TF-Cluster interface was built with HTML. CSS was the front-end technologies

whereas PHP and PERL were used as backend scripting technologies. The reason for developing

the TF-Cluster as a Web application is to facilitate the use of the TF-Cluster for knowledge

discovery. Additionally, the shortcomings of using standalone software and the complication

ensues are eliminated in an online Web application.

68

7.2 Architecture to TF Cluster Web Portal

The TF-Cluster Web portal follows the renowned MVC (Model-View-Controller) architecture,

which perfectly supports this application. The internal algorithm built using PERL and R

programming forms the Model of the TF-Cluster architecture. The HTML, CSS, and JavaScript

built Web portal forms the user interface of the application acting as the Controller. The

presentation layer that stores the input data coming in temporary outputs, and user file systems

with the outputs forms the presentation or the View layer of the system. The Web interface has

been designed to represent a simple and responsive system that efficiently caters to the needs of a

user to traverse through the portal with ease. The latest version of HTML and HTML5 was used

along with CSS3 to build the client side pages. JavaScript was used to implement the dynamic

functions needed in the system, and PHP was used to carry the input data submitted by the user

to the back-end server for processing, and then to the TF-Cluster implementation algorithm,

which executes the Perl and R programming scripts to create the outputs. The system then sends

the outputs back to the Controller and issues the user an email with the results.

69

7.3 Design of GNETINDEX Input Form

Figure 7.1: Depicts the TF-Cluster Web Portal Homepage. It is a web portal that accepts
Transcription Factor (TF) list, Gene Expression Profiles, and the Theta values to build the
collaborative TF network and then decompose it to acquire a number of sub-networks of
collaborative TFs, each sub-network regulates a complex trait.

A user first enters the name for the data folder, which is where the output files would be stored in

the file system after the execution of the TF-Cluster pipeline. The name should not be similar to

any other data folder names they have used previously, and if they enter the same name, the

system alerts the user with a message requesting them to choose a unique name for the data

folder. The user then needs to submit the Transcription Factor list and the Gene Expression

profiles of all the genes. Both files must be text files. The system provides sample files for each

70

of the two input files next to each other, which would help the user to provide the correct input

files. These two input files will be used to form the TF-gene correlation matrix which is a matrix

of the form P * Q, where P is the number of TFs and Q is the number of genes. This matrix is to

be computed by using one of the four correlation coefficients: Spearman Rank, Pearson,

Weighted Rank, or Kendall correlation coefficients. The user chooses which of the four

coefficients to use to compute the TF-gene correlation matrix. The next input is the drop down

list from which the user can select how many correlated genes would be considered for each TF,

which is used for building coordination networks of all TFs. The choices for this input can vary

between 50, 100, 150, 200, 250, or 300, with 100 being the default value. Using the TF-gene

correlation matrix, the Shared Co-expression Connectivity Matrix (SCCM) of P x P is built, in

which each element of the matrix is the number of genes commonly represented in the top co-

expressed genes to the two corresponding TFs in a row and a column. The TF-Cluster Web

portal uses the Triple Link algorithm to decompose the SCCM matrix and to compute the final

output. The algorithm searches through the entire SCCM matrix to identify the pair of TFs with

the highest element and correlation. Once the pair of TFs—TF1 and TF2—is identified, the third

TF3 would be added to the network only if it contains significant connectivity to the first two

TFs, and the fourth TF4 is added to the network only if it contains at least three significant links

to the first three TFs. The algorithm goes on to complete the closely correlated network of TFs

and uses three parameters of “theta”: θ1, θ2, and θ3. The user is allowed to enter his own values

of these θ based on his specific requirements.

71

Once the user successfully enters all inputs, the system validates the form for any errors before

submitting to the backend where the input files are uploaded to the user file system in a separate

folder created in the name specified by the user. The PHP script then executes the Triple link

algorithm to get the output stored to the same folder as the input, which leads to easy

identification for the user to locate his output. Once the user submits the form, a message

showing successful submission is displayed, and the user will receive an email once the

execution has been completed.

7.4 TF Cluster User File System

Figure 7.2: Illustration of the TF Cluster User File System Web Portal. It stores the results of TF
Clusters derived from a high-throughput gene expression dataset by the TF Cluster Web Portal
System. It is also a place users can download the resultant TF Clusters.

A user registered to the TF-Cluster Web portal will have his own file system under the My

Account section. The user will be able to see all of his previous TF-cluster data folders and

72

output files. The system provides each user the option of downloading these files whenever he

wants to, and he can delete those files that are no longer needed. The user file system connects

directly to the Apache server backend file system of the TF-Cluster Web portal. This makes the

retrieval of data back from the server in the My Account section very efficient, minimizing the

time taken for execution.

Figure 7.3: Illustration of the TF Cluster result using the Triple Link Algorithm. It will contain
the Top 100 TF’s present in the cluster from the input genes.

As mentioned before, every user has his own folder created at the time of registration to the TF-

Cluster Web portal, and all the submissions he makes in the TF-cluster portal would be stored in

separate folders inside the clusteroutput folder for all users. The above images depict the

73

hierarchy of how the system creates and stores the output folders, and the outputs are stored

dynamically inside specific folders. The data folder created for every submission would contain

all the uploaded input files as well as the temporary files created by the Triple Link algorithm.

Additionally, the system creates a folder named “output” for every submission where the result

files are stored. This includes the Top 100 genes co-expressed as a TF computed in the end, and

the folder is compressed and sent as an email attachment to the user’s email.

8 Conclusion

The DesignSTTM Web portal designs the STTM sequence using the miRNA sequence

and the initial vector passed as inputs and the designed STTM sequence is targeted into the

destination vector using PCR between one or two restriction enzymes chosen by a user. The user

can use pOT2 or pFGC5941 as the initial vectors or can add any other vector of his choice as the

initial vector. The resulting destination vector is plotted as a circular plasmid map. All the genes

and enzymes present in the destination vector are identified by using BLAST tool and are legibly

labeled using the automatic annotation system. This automatic annotation system makes use of

the algorithms drawTextAlongArc() and draw_enzyme() to label all the genes, enzymes and

other features present in plasmid. The circular plasmid map of the destination vector, containing

the designed STTM sequence can be sent to the user’s email and also gets stored in the user’s

personal directory. The MaterialSTTM Web portal represents genotypic and phenotypic

evidence of STTM constructs in transgenic crops. Users can visually see evidence in transgenic

lines of the designed STTM constructs. It also encompasses the portal to sell transgenic seeds to

customers by taking in orders through the online store.

74

The TF-Cluster Web portal is an online tool that builds a collaborative network of

Transcription Factors (TFs) and then decomposes it into highly collaborative subnetworks. This

portal will greatly facilitate the use of the Triple Link algorithm for identifying the transcription

factors (TFs) as different clusters or subnetworks from high throughput gene expression data.

TFs in each cluster or subnetwork are found to govern a biological process or a complex trait in

plants. The front-end user interface of this portal contains the input form called GNETINDEX

and this form requests the list of TF’s, gene expression profiles of all genes and one of the four

correlation coefficients: Spearman Rank, Pearson, Weighted Rank, or Kendall correlation

coefficients. A user provides all the inputs and chooses from the option of four correlation

coefficients to use to compute the TF-gene correlation matrix. When the user submits the form,

the portal uses the Triple Link Algorithm to show the top 100 subnetworks that are expressed by

the TFs. The result is sent to the user in an email and can also be obtained from the user’s

personal directory in the server.

9 Future Work

As part of future enhancements to the Blossom STTM Hub, the gene repository supporting the

transfer of STTM could be increased as more successful results are obtained. Additionally, more

transgenic lines can be made available to users as researchers produce results working on the

STTM technology. The algorithm used to plot the circular plasmid maps can be extended to

serve other applications in which data visualization is needed for large volumes of data.

75

10 References

[1] J. Y. G. X. J. W. K. S. P. X. T. X. C. a. G. T. Yan, "Effective small RNA destruction by the
expression of a short tandem target mimic in Arabidopsis," The Plant Cell, vol. 24, no. 2, pp. 415 -
427, 2012.

[2] X. D. N. F. W. Y. J. G. Y. T. X. .. &. T. G. Jia, "Functional plasticity of miR165/166 in plant
development revealed by small tandem target mimic," Plant Science, vol. 233, pp. 11-21, 2015.

[3] D. P. Bartel, "MicroRNAs: genomics, biogenesis, mechanism, and function.," Cell, vol. 2, no. 116,
pp. 281-297, 2004.

[4] G. J. Y. Y. G. M. Q. R. F. Y. M. a. X. T. Tang, "Construction of short tandem target mimic (STTM)
to block the functions of plant and animal microRNAs," Methods, vol. 58, no. 2, pp. 118 - 125, 2012.

[5] X. P. S. I. J. F. a. D. S. W. Dong, "PlasMapper: a web server for drawing and auto-annotating
plasmid maps," Nuclear acids research, p. 5, 2004.

[6] S. F. W. G. W. M. E. W. M. a. D. J. L. Altschul, "Basic local alignment search tool," Journal of
molecular biology , vol. 215, no. 3, pp. 403-410, 1990.

[7] H. E. a. D. L. Williams, Web database applications with PHP and MySQL, O'Reilly Media, 2004.

[8] D. Powers, PHP solutions: dynamic web design made easy, Apress, 2014.

[9] P. B. A. a. F. S. Lubbers, Overview of HTML5, In Pro HTML5 Programming, Apress, 2011.

[10] P. M. A. V. a. D. L.-d.-I. Garaizar, "Presentation accuracy of the Web revisited: animation methods
in the HTML5 era," PloS one 9, vol. 10, no. e109812, 2014.

[11] M. Grady, "Functional programming using JavaScript and the HTML5 canvas element," Journal of
computing sciences in colleges, vol. 26, no. 2, pp. 97 - 105, 2010.

[12] C. B. J. O. S. a. L. H. Lienert, "Current trends in vector-based Internet mapping: A technical review,"
InOnline maps with APIs and WebServices, no. Springer Berlin Heidelberg, pp. 23-36, 2012.

[13] J. a. K. S. Chaffer, Learning jquery: better interaction design and web development with simple
javascript techniques, Packt Publishing, 2007.

[14] V. T. P. J. M. D. Roberts RJ, "REBASE: restriction enzymes and methyltransferases.," Nucleic Acids
Research, vol. 1, no. 31, pp. 418-420, 2003.

[15] M. T., "The BLAST Sequence Analysis Tool - The NCBI Handbook [Internet] - 2nd Edition," 15
March 2013. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK153387/.

[16] T. T. D. R. M. Kim D. Pruitt, "NCBI Reference Sequence (RefSeq): a curated non-redundant
sequence database of genomes, transcripts and proteins," Nucleic Acids Research, 33(1), pp. 501-
504, 2005.

76

[17] I. M. Y. a. J. B. Korf, Blast, O'Reilly Media, Inc, 2003.

[18] C. R. G. G. P. T. L. a. R. A. Györödi, "Web 2.0 Technologies with jQuery and Ajax," in Computer
Technology and Computer Programming: Research and Strategies, 2011.

[19] K. B. F. F. a. R. A. G. Mullis, in Polymerase Chain Reaction, Boston, MA, 1994.

[20] D. Shappir, "Performing binary composition of images onto an html canvas element". US Patent
U.S. Patent Application 13/414,735, 8 March 2012.

[21] V. Chowdhary, Generate PDF with PHP: FPDF, TCPDF, DOMPDF, ezPDF, FPDI and
HTML2PDF, 2011.

[22] C. a. M. B. Darie, Beginning PHP 5 and MySQL E-Commerce: From Novice to Professional,
Apress, 2004.

[23] J. e. a. Nie, "TF-Cluster: a pipeline for identifying functionally coordinated transcription factors via
network decomposition of the shared coexpression connectivity matrix (SCCM)," BMC Systems
Biology 5, 2011.

[24] M. Schrenk, Webbots, spiders, and screen scrapers: A guide to developing Internet agents with
PHP/CURL, No Starch Press, 2012.

[25] T. Merz, "HTML and PDF, Web Publishing with Acrobat/PDF,," Springer Berlin, pp. 2 - 8, 1998.

[26] C. K. D. K. M. A. R. a. J. C. C. Llave, "Endogenous and silencing-associated small RNAs in plants,"
The Plant Cell, vol. no. 7, no. 14, pp. 1605 - 1619, 2002.

[27] W. L. H. L. L. a. J. L. Cui, "The research of PHP development framework based on MVC pattern,"
Computer Sciences and Convergence Information Technology - Fourth International Conference on
IEEE, pp. 947-949, 2009.

[28] C. Russell, PHP development tool essentials, 2016.

[29] M. Thomas, "The BLAST Sequence Analysis Tool," 2013. [Online]. Available:
https://www.ncbi.nlm.nih.gov/books/NBK184580/?report=reader.

[30] W. Gilmore, "Creating Ajax-enhanced Features with jQuery and PHP," in Beginning PHP and
MySQL: From Novice to Professional, 2010, pp. 437-448.

[31] G. J. Y. Y. G. M. Q. R. F. e. a. Tang, "Construction of short tandem target mimic (STTM) to block
the functions of plant and animal microRNAs," Methods, no. 58, pp. 118-125, 2012.

77

APPENDIX A

SOURCE CODE – FUNCTION DEFINITION draw_arc()

function draw_arc(start,end,lnwidth,color,label_x_val,label_y_val,is_direction,comp)
{
 // Get value of the radius for the circular map from ASSIGNED_RADIUS global variable
and if it is not set, assign it to 250 which is the default radius value in pixels
 var radius = ASSIGNED_RADIUS;
 if(!(ASSIGNED_RADIUS))
 radius = 250;
 var counterClockwise = false;

 // Position of starting and ending positions of the feature to be labeled
 var temp1=(start/Math.PI)*((<?php echo json_encode($totalbp);?>)/2);
 var temp2=(end/Math.PI)*((<?php echo json_encode($totalbp);?>)/2);
 temp1=parseInt(temp1);
 temp2=parseInt(temp2);

 //Draw the arc between the starting and ending positions of the feature using context.arc()
 context.beginPath();
 context.arc(x, y, radius, (((temp1)/((<?php echo json_encode($totalbp);?>)/2))*Math.PI),
(((temp2)/((<?php echo json_encode($totalbp);?>)/2))*Math.PI), counterClockwise);
 context.lineWidth = lnwidth;
 context.strokeStyle = color;
 context.stroke();
 context.closePath();
 context.beginPath();

 //To draw the arrow in clockwise direction is is_direction is PLUS
 if((is_direction == "plus")&&((temp2-temp1)>50))
 {
 context.lineWidth = 10;
 context.strokeStyle = color;
 context.stroke();
 context.closePath();
 context.beginPath();
 context.lineWidth = 2;
 var arrow1_startx = getPointx(x,y,radius+15,(((temp2-(radius/5))/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI));
 var arrow1_starty = getPointy(x,y,radius-15,(((temp2-(radius/5))/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI));
 var arrow2_startx = getPointx(x,y,radius-15,(((temp2-(radius/5))/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI));

78

 var arrow2_starty = getPointy(x,y,radius-15,(((temp2-(radius/5))/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI));
 var arrow3_startx = getPointx(x,y,radius,(((temp2+15)/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI));
 var arrow3_starty = getPointy(x,y,radius,(((temp2+15)/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI));
 context.moveTo(arrow1_startx,arrow1_starty);
 context.lineTo(arrow2_startx,arrow2_starty);
 context.lineTo(arrow3_startx,arrow3_starty);
 context.lineTo(arrow1_startx,arrow1_starty);
 context.fillStyle = color;
 context.fill();
 context.stroke();
 context.closePath();
 }

 //To draw the arrow in anti-clockwise direction is is_direction is MINUS
 if((is_direction == "minus")&&((temp2-temp1)>50))
 {
 context.arc(x,y,radius,(((temp1+(radius/7))/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI),(((temp1+(radius/7)+60)/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI),false);
 context.lineWidth = 10;
 context.strokeStyle = color;
 context.stroke();
 context.closePath();
 context.beginPath();
 context.lineWidth = 2;
 var arrow1_startx = getPointx(x,y,radius,(((temp1+(radius/5))/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI));
 var arrow1_starty = getPointy(x,y,radius,(((temp1+(radius/5))/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI));
 var arrow2_startx = getPointx(x,y,radius-15,(((temp1+(radius/5))/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI));
 var arrow2_starty = getPointy(x,y,radius-15,(((temp1+(radius/5))/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI));
 var arrow3_startx = getPointx(x,y,radius,(((temp1-15)/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI));
 var arrow3_starty = getPointy(x,y,radius,(((temp1-15)/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI));
 context.moveTo(arrow1_startx,arrow1_starty);
 context.lineTo(arrow2_startx,arrow2_starty);
 context.lineTo(arrow3_startx,arrow3_starty);
 context.lineTo(arrow1_startx,arrow1_starty);

79

 context.fillStyle = color;
 context.fill();
 context.stroke();
 context.closePath();
 }
}

80

APPENDIX B

SOURCE CODE – FUNCTION DEFINITION drawTextAlongArc ()

function drawTextAlongArc(context, str, centerX, centerY, radius, start, end) {

 var len = str.length, s;
 var startbp=parseInt((start/Math.PI)*((<?php echo json_encode($totalbp);?>)/2));
 var endbp=parseInt((end/Math.PI)*((<?php echo json_encode($totalbp);?>)/2));

//Check if the feature is in the top semicircle of the circular plasmid map
 if(((startbp)>(((parseInt(<?php echo
json_encode($totalbp);?>))/10)*2))&&((startbp)<(((parseInt(<?php echo
json_encode($totalbp);?>))/10)*7)))
 {

 // Check if the feature is atleast 5% of the total length of the circular plasmid - that is atleast
1/20th of the total circumference of the circular map
 if((endbp-startbp)>((parseInt(<?php echo json_encode($totalbp);?>))/20))
 {
 var totalbpval = (parseInt(<?php echo json_encode($totalbp);?>));
 if((endbp-startbp)>(totalbpval/10))
 {
 var mid = (endbp + startbp)/2;
 startbp = mid - (totalbpval/20);
 endbp = mid + (totalbpval/20);
 }
 context.save();
 context.translate(centerX, centerY);
 var multiplier = ((endbp)/(<?php echo json_encode($totalbp);?>))*2*Math.PI;
 var anglesize = 2*((endbp - startbp)/(<?php echo json_encode($totalbp);?>))
 var angle = -1*2*Math.PI*((endbp - startbp)/(<?php echo json_encode($totalbp);?>));
 context.rotate((multiplier+Math.PI));
 context.rotate(-1 * (angle / len) / 2);
 for(var n = 0; n < len; n++) {
 context.rotate((angle / len));
 context.save();
 context.translate(0, 1 * radius);
 s = str[n];
 context.font="bold 14px Calibri";
 context.textAlign = 'center';
 context.fillStyle = "black";
 context.fillText(s, 0, 0);
 context.restore();

81

 }
 context.restore();
 }
 }

 //If the feature is in the bottom semicircle of the circular plasmid map
 else
 {

 if((endbp-startbp)>((parseInt(<?php echo json_encode($totalbp);?>))/20))
 {
 var totalbpval = (parseInt(<?php echo json_encode($totalbp);?>));
 if((endbp-startbp)>(totalbpval/10))
 {
 var mid = (endbp + startbp)/2;
 startbp = mid - (totalbpval/20);
 endbp = mid + (totalbpval/20);
 }
 context.save();
 context.translate(centerX, centerY);
 var multiplier = ((startbp)/(<?php echo json_encode($totalbp);?>))*2*Math.PI;
 var anglesize = 2*((endbp - startbp)/(<?php echo json_encode($totalbp);?>))
 var angle = 2*Math.PI*((endbp - startbp)/(<?php echo json_encode($totalbp);?>));

 context.rotate(multiplier);
 context.rotate(-1 * (angle / len) / 2);
 for(var n = 0; n < len; n++) {
 context.rotate((angle / len));
 context.save();
 context.translate(0, -1 * radius);
 s = str[n];
 context.font="bold 14px Calibri";
 context.textAlign = 'center';
 context.fillStyle = "black";
 context.fillText(s, 0, 0);
 context.restore();
 }
 context.restore();
 }
 }

}

82

APPENDIX C

SOURCE CODE – FUNCTION DEFINITION draw_enzyme_arc ()

function
draw_enzyme_arc(start,end,lnwidth,color,label_x_val,label_y_val,is_direction,comp,isgene)
{

 // Get value of the radius for the circular map from ASSIGNED_RADIUS global
variable and if it is not set, assign it to 250 which is the default radius value in pixels
 var radius = ASSIGNED_RADIUS;
 if(!(ASSIGNED_RADIUS))
 radius = 250;

 var counterClockwise = false;
 var startbp=parseInt((start/Math.PI)*((<?php echo json_encode($totalbp);?>)/2));
 var endbp=parseInt((end/Math.PI)*((<?php echo json_encode($totalbp);?>)/2));
 start = start - ((Math.PI)/2);
 end = end - ((Math.PI)/2);
 context.beginPath();
 context.arc(x, y, radius, start, end, counterClockwise);
 context.lineWidth = lnwidth+20;
 context.strokeStyle = color;
 var sttmname = <?php echo json_encode($sttm_name);?>;
 if(isgene == 1)
 {
 if(comp=="STTM_")
 {
 context.fillStyle = "brown";
 context.strokeStyle = "brown";
 context.lineWidth = lnwidth+20;
 }
 else
 {
 context.fillStyle = "red";
 context.strokeStyle = "red";
 }
 }
 else
 {
 context.fillStyle = "black";
 context.strokeStyle = "black";
 }

83

 context.stroke();
 context.closePath();
 context.beginPath();
 var angle = (start+end)/2;
 var line1_startx = getPointx(x,y,(radius+35),angle);
 var line1_starty = getPointy(x,y,(radius+35),angle);

//These are conditions to check which octant the enzymes will fall in

var OCTANT1CONDITION = ((angle>(-0.50)*(Math.PI))&&(angle<((-0.25)*(Math.PI)/2)));
var OCTANT2CONDITION = ((angle>(-0.25)*(Math.PI))&&(angle<0));
var OCTANT3CONDITION = ((angle>0)&&(angle<(0.25*(Math.PI))));
var OCTANT4CONDITION = ((angle>(0.25)*(Math.PI))&&(angle<((0.50)*(Math.PI))));
var OCTANT5CONDITION = ((angle>(0.50)*(Math.PI))&&(angle<((0.75)*(Math.PI))));
var OCTANT6CONDITION = ((angle>(0.75)*(Math.PI))&&(angle<(1*(Math.PI))));
var OCTANT7CONDITION = ((angle>(-1)*(Math.PI))&&(angle<((-0.75)*(Math.PI)/2)));
var OCTANT8CONDITION = ((angle>(-0.75)*(Math.PI))&&(angle<((-0.50)*(Math.PI)/2)));

//Use this method to label enzymes in 1st Octant
if((OCTANT1CONDITION))
{
 movex1 = 50;
 movey1 = movey1 + 15;
 context.moveTo(line1_startx,line1_starty);
 line1_startx = line1_startx+movex1;
 line1_starty = line1_starty+movey1;
 context.lineTo(line1_startx,line1_starty);
 context.moveTo(line1_startx,line1_starty);
 context.font = 'italic 15pt Calibri';
 context.textAlign="left";
 if(comp==="STTM_")
 {
 context.fillText(comp+sttmname, line1_startx+5, line1_starty+10);
 }
 else
 {
 context.fillText(comp+" "+startbp, line1_startx+5, line1_starty+10);
 }
}
//Use this method to label enzymes in 2nd Octant
else if((OCTANT2CONDITION))
{
 movex2 = 50;
 movey2 = movey2 + 15;

84

 context.moveTo(line1_startx,line1_starty);
 line1_startx = line1_startx-movex2;
 line1_starty = line1_starty-movey2;
 context.lineTo(line1_startx,line1_starty);
 context.moveTo(line1_startx,line1_starty);
 context.font = 'italic 15pt Calibri';
 context.textAlign="right";
 if(comp==="STTM_")
 {
 context.fillText(comp+sttmname, line1_startx-5, line1_starty+10);
 }
 else
 {
 context.fillText(comp+" "+startbp, line1_startx-5, line1_starty+10);
 }
}
//Use this method to label enzymes in 3rd Octant
else if((OCTANT3CONDITION))
{
 movex3 = 50;
 movey3 = movey3 + 15;
 context.moveTo(line1_startx,line1_starty);
 line1_startx = line1_startx-movex3;
 line1_starty = line1_starty-movey3;
 context.lineTo(line1_startx,line1_starty);
 context.moveTo(line1_startx,line1_starty);
 context.font = 'italic 15pt Calibri';
 context.textAlign="right";
 if(comp==="STTM_")
 {
 context.fillText(comp+sttmname, line1_startx-5, line1_starty+10);
 }
 else
 {
 context.fillText(comp+" "+startbp, line1_startx-5, line1_starty+10);
 }
}

//Use this method to label enzymes in 4th Octant
else if((OCTANT4CONDITION))
{
 movey4 = movey4 + 13;
 context.moveTo(line1_startx,line1_starty);
 line1_startx = line1_startx+movex4+10;

85

 line1_starty = line1_starty+movey4-5;
 context.lineTo(line1_startx,line1_starty);
 context.moveTo(line1_startx,line1_starty);
 context.font = 'italic 15pt Calibri';
 context.textAlign="left";
 if(comp==="STTM_")
 {
 context.fillText(comp+sttmname, line1_startx+5, line1_starty+10);
 }
 else
 {
 context.fillText(comp+" "+startbp, line1_startx+5, line1_starty+10);
 }
}
//Use this method to label enzymes in 5th Octant
else if((OCTANT5CONDITION))
{
 movey5 = movey5 + 13;
 context.moveTo(line1_startx,line1_starty);
 line1_startx = line1_startx+movex5;
 line1_starty = line1_starty+movey5;
 context.lineTo(line1_startx,line1_starty);
 context.moveTo(line1_startx,line1_starty);
 context.font = 'italic 15pt Calibri';
 context.textAlign="left";
 if(comp==="STTM_")
 {
 context.fillText(comp+sttmname, line1_startx+5, line1_starty+10);
 }
 else
 {
 context.fillText(comp+" "+startbp, line1_startx+5, line1_starty+10);
 }
}

//Use this method to label enzymes in 6th Octant
else if((OCTANT6CONDITION))
{
 movey6 = movey6 + 13;
 context.moveTo(line1_startx,line1_starty);
 line1_startx = line1_startx+movex6;
 line1_starty = line1_starty+movey6;
 context.lineTo(line1_startx,line1_starty);
 context.moveTo(line1_startx,line1_starty);

86

 context.font = 'italic 15pt Calibri';
 context.textAlign="left";
 if(comp==="STTM_")
 {
 context.fillText(comp+sttmname, line1_startx+5, line1_starty+10);
 }
 else
 {
 context.fillText(comp+" "+startbp, line1_startx+5, line1_starty+10);
 }
}

//Use this method to label enzymes in 7th Octant
else if((OCTANT7CONDITION))
{
 movex7 = 50;
 movey7 = movey2 + 15;
 context.moveTo(line1_startx,line1_starty);
 line1_startx = line1_startx-movex2;
 line1_starty = line1_starty-movey2;
 context.lineTo(line1_startx,line1_starty);
 context.moveTo(line1_startx,line1_starty);
 context.font = 'italic 15pt Calibri';
 context.textAlign="right";
 if(comp==="STTM_")
 {
 context.fillText(comp+sttmname, line1_startx-5, line1_starty+10);
 }
 else
 {
 context.fillText(comp+" "+startbp, line1_startx-5, line1_starty+10);
 }
}
//Use this method to label enzymes in 8th Octant
else
{
 movex8 = 50;
 movey8 = movey2 - 15;
 context.moveTo(line1_startx,line1_starty);
 line1_startx = line1_startx+movex1;
 line1_starty = line1_starty+movey1;
 context.lineTo(line1_startx,line1_starty);
 context.moveTo(line1_startx,line1_starty);
 context.font = 'italic 15pt Calibri';

87

 context.textAlign="left";
 if(comp==="STTM_")
 {
 context.fillText(comp+sttmname, line1_startx+5, line1_starty+10);
 }
 else
 {
 context.fillText(comp+" "+startbp, line1_startx+5, line1_starty+10);
 }

}

 context.lineWidth = 2;
 context.stroke();
 context.closePath();
 context.beginPath();

//If the enzyme orientation is PLUS, i.e. if equal to 1, mark the enzyme at the 5 prime end of the
enzyme which is the starting position of the enzyme and if it is MINUS, vice versa
 if(is_direction == 1)
 {

context.arc(x,y,radius,(((temp2-60)/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI),end,false);

 context.lineWidth = 15;
 context.strokeStyle = "black";
 context.stroke();
 context.closePath();
 context.beginPath();
 context.lineWidth = 2;
 var circle_angle=((temp2/((<?php echo json_encode($totalbp);?>)/2))*Math.PI);
 var circle_startx = getPointx(x,y,radius,end);
 var circle_starty = getPointy(x,y,radius,end);
 var direction_angle = end-Math.PI;
 context.arc(circle_startx,circle_starty, 15,(Math.PI+direction_angle),((2 *
Math.PI)+direction_angle), false);
 context.fill();
 context.stroke();
 context.closePath();
 }
 if(is_direction == 2)

{
 context.arc(x,y,radius,start,(((temp1+60)/((<?php echo
json_encode($totalbp);?>)/2))*Math.PI),false);

88

 context.lineWidth = 15;
 context.strokeStyle = "black";
 context.stroke();
 context.closePath();
 context.beginPath();
 context.lineWidth = 2;

 var circle_angle=((temp2/((<?php echo json_encode($totalbp);?>)/2))*Math.PI);
 var circle_startx = getPointx(x,y,radius,start);
 var circle_starty = getPointy(x,y,radius,start);
 var direction_angle = start-Math.PI;
 context.arc(circle_startx,circle_starty, 15,(direction_angle),(Math.PI +
direction_angle), false);
 context.fill();
 context.stroke();
 context.closePath();
 }
}

	BLOSSOMSTTM HUB – AN ONLINE TOOL FOR DESIGNING STTM VECTORS AND VISUALIZING PHENOTYPIC CHANGES OF STTM TRANSGENIC LINES
	Recommended Citation

	Report Advisor: Dr. Hairong Wei
	Committee Member: Dr. Zhenlin Wang
	Committee Member: Dr. Myounghoon Jeon
	Department Chair: Dr. Min Song
	List of Figures
	Abstract
	Small RNAs including microRNAs (miRNAs) and short interfering RNAs (siRNAs) are widely present in plants. They are transcribed from non-coding small RNA genes and then play as regulators to modulate the levels of messenger RNAs (mRNAs) of protein-codi...
	1 Introduction
	1.1 MicroRNAs and Their Functions in Plants
	1.2 Short Tandem Target Mimic (STTM)
	1.3 Objectives and Goals of Blossom STTM Hub
	1.3.1 To Develop a Web Portal Called DesignSTTM to Automate STTM Vector Design
	1.3.2 To Develop a Web Portal Called MaterialSTTM to Display the Phenotypic and Genotypic Data Generated from STTM Transgenic Lines
	1.3.3 To Develop a Genome Browser to Visualize Genome-Wide Expression Data Generated from STTM Transgenic Lines

	2 Background Study
	2.1 PlasMapper
	2.2 SnapGene Viewer
	2.3 The Technologies Available to Be Used

	3 Design
	3.1 Model View Controller Architecture
	3.2 Development of DesignSTTM Web Portal
	3.3 DesignSTTM Result
	3.4 Database Schema

	4 Algorithm to Plot Plasmid Map
	4.1 Construction of STTM Binary Vector
	4.1.1 Blossom Plasmid Map Plotting Algorithm
	4.1.2 Blossom Plasmid Large Features Labeling Algorithm

	4.2 Blossom Plasmid Octant Divided Small Features and Restriction Enzyme Sites Labeling Algorithm

	5 Automatic Annotation System using Exact Search and Basic Local Alignment Search Tool (BLAST)
	5.1 Targeting the Designed STTM Sequence into the Destination Vector – mirna.pl
	5.2 Annotating the Restriction Enzyme Sites Present in Destination Vector Sequence
	5.3 Annotating the Larger Features (Genes, Promoters and Terminators) in Destination Vector Sequence Using blast.pl
	5.4 Automatic Annotation System – Labeling Features in the Destination Binary Vector
	5.4.1 LABELING FEATURES INSIDE THE CIRCULAR PLASMID
	5.4.2 Labeling Enzymes Outside the Plasmid Map

	6 Implementation
	6.1 Homepage
	6.2 Login, User Registration and Update Profile Information
	6.2.1 Login
	6.2.2 User Registration

	6.3 Web Portal of DesignSTTM
	6.3.1 Step 1: Obtain miRNA Input and Select Intermediate Vector
	6.3.2 Step 2: Select Destination Binary Vector and Restriction Enzyme Sites

	6.4 Index3copy2 PHP Script: Design STTM Construct, Primers, and Plot Plasmid DNA map
	6.4.1 Map of destination vector map containing STTM structure
	6.4.2 Sequence
	6.4.3 Features
	6.4.4 STTM_Sequence
	6.4.5 E-Mail Report

	6.5 Material_STTM
	6.5.1 Web Portal of Transgenic Lines
	6.5.2 Blossom STTM E-Store

	6.6 Documentation
	6.7 User Account Web Interface

	7 TF Cluster: Web Portal
	7.1 Introduction to TF Cluster Web Portal
	7.2 Architecture to TF Cluster Web Portal
	7.3 Design of GNETINDEX Input Form
	7.4 TF Cluster User File System

	8 Conclusion
	9 Future Work
	10 References

