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ṁf Total fuel entering the cylinder per cycle (mg/cycle)
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Abstract

Reactivity controlled compression ignition (RCCI) is a combustion strategy that offers

high fuel conversion efficiency and near zero emissions of NOx and soot which can

help in improving fuel economy in mobile and stationary internal combustion engine

(ICE) applications and at the same time lower engine-out emissions. One of the

main challenges associated with RCCI combustion is the difficulty in simultaneously

controlling combustion phasing, engine load, and cyclic variability during transient

engine operations.

This thesis focuses on developing model based controllers for cycle-to-cycle combus-

tion phasing and load control during transient operations. A control oriented model

(COM) is developed by using mean value models to predict start of combustion (SOC)

and crank angle of 50% mass fraction burn (CA50). The COM is validated using tran-

sient data from an experimental RCCI engine. The validation results show that the

COM is able to capture the experimental trends in CA50 and indicated mean effective

pressure (IMEP). The COM is then used to develop a linear quadratic integral (LQI)

controller and model predictive controllers (MPC). Premixed ratio (PR) and start of

injection (SOI) are the control variables used to control CA50, while the total fuel

quantity (FQ) is the engine variable used to control load. The selection between PR

and SOI is done using a sensitivity based algorithm. Experimental validation results

xxxi



for reference tracking using LQI and MPC show that the desired CA50 and IMEP

can be attained in a single cycle during step-up and step-down transients and yield an

average error of less than 1.6 crank angle degrees (CAD) in the CA50 and less than

35 kPa in the IMEP. This thesis presents the first study in the literature to design

and implement LQI and MPC combustion controllers for RCCI engines.
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Chapter 1

Introduction

The Annual Energy Outlook report of 2017 [1] predicts that by 2040 the major driving

force in the transportation industry will still remain to be cars powered by internal

combustion engines (ICEs) with less than 11% of the total light-duty vehicle sales

coming from other sources such as plug-in hybrid vehicles (PHEV), battery electric

vehicles (BEV) and hydrogen fuel cell vehicles (FCV) combined. The EPA regu-

lations [2] for reduction in greenhouse gas (GHG) emissions for light duty vehicles

require vehicles to achieve an average industry fleet-wide fuel economy of 54.51 miles

per gallon (mpg) by 2025 in order to meet the CO2 emissions standards. To achieve

this target a significant impetus is being given to technological research on advanced

lean-burn combustion regimes, application of existing technologies such as cylinder

1Assuming reduction in CO2 is achieved exclusively through fuel economy improvements.
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deactivation, turbocharging and downsizing, and higher market penetration of diesel

engines [3]. Diesel engines provide higher thermal efficiency as compared to gasoline

powered engines due to the use of higher compression ratios and unthrottled intake

flow. However due to high peak temperatures achieved during combustion, emissions

of NOx and particulate matter (PM) are higher [4] and require a costly aftertreat-

ment system in diesel engines. Particulate traps are generally used for trapping PM

emissions but they require frequent active or passive regeneration [5]. NOx emissions

on the other hand can be tackled using selective catalytic reduction (SCRs) systems.

SCRs use a reducing agent like ammonia or urea and these agents need to be contin-

uously replenished for smooth operation of the SCR. As emission norms get stringent

the cost of these aftertreatment technologies is on the rise leading to the search for

alternative technologies.

1.1 Motivation towards LTC combustion

A potential strategy to tackle emissions and increase fuel economy of ICEs is through

implementation of low temperature combustion (LTC) strategies. LTC combustion is

based on the concept of lean burn to decrease the peak temperatures. Due to low in-

cylinder temperature, the energy lost due to heat transfer is low [6] resulting in higher

overall thermal efficiency. In addition, the intake air is unthrottled, thus removing

throttling losses in ICEs. Forms of LTC combustion such as homogeneous charge
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compression ignition (HCCI) and premixed charge compression ignition (PCCI) have

been known to give near zero engine out emissions of NOx and PM [7] [8]. HCCI relies

on auto-ignition of a homogeneous air-fuel mixture that has a very low equivalence

ratio. The short combustion duration prevents operation at high loads due to high

peak pressure rise rate. Various stratification techniques have been suggested to

control knock [9]. However the lack of control over the combustion phasing and heat

release rate is a major hurdle. HCCI and PCCI combustion strategies generally suffer

from high carbon monoxide (CO) and unburnt hydrocarbon (UHC) emissions [10].

Kokjohn et. al. [11] explored the possibility of using dual-fuel operation in premixed

compression ignition (PCI) engines as a method to control combustion phasing. Their

experimental results showed that at low load conditions (6 bar IMEP) high amount

(60%) of exhaust gas recirculation (EGR) was required to set combustion phasing to

the optimal point when only diesel fuel was used. The amount of EGR used could

be decreased significantly by using diesel blend with high amounts of gasoline (70

PRF). At high load conditions (11 bar IMEP) high amount of EGR (50%) and gaso-

line blends (80 PRF) were required for optimal combustion phasing. Even with the

combustion phasing well after TDC, the pressure rise rate was rapid. They concluded

that fuel reactivity is capable of combustion control but fuel stratification is required

to control pressure rise rates. On further experimentation with in-cylinder blending of

port fuel injected gasoline and direct injected diesel at high load conditions, low NOx

and soot levels were observed with high indicated thermal efficiency (close to 50%).
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CHEMKIN modeling results showed staged combustion with ignition location coin-

ciding with the location having high concentration of diesel fuel. This extended the

combustion duration; decreasing the heat release rate and pressure rise rate and al-

lowing for controlled combustion at high loads. They termed this form of combustion

as reactivity controlled compression ignition (RCCI).

RCCI combustion involves the use of two fuels of different reactivity. The low-

reactivity fuel is injected into the intake port. This fuel is introduced in the cylinder as

a homogeneous mixture with the intake air and EGR (if any). The high-reactivity fuel

is then directly injected into the cylinder. The early injection of the high-reactivity

fuel creates a reactivity gradient inside the cylinder, with pockets of charge rich in

high-reactivity fuel igniting first. This is due to the high-reactivity reacting with low-

temperature reactions, releasing enough energy to ignite the low-reactivity fuel [12].

This staged combustion helps to control the heat release rate. Figure 1.1 depicts the

fuel injection setup in an RCCI engine.

Figure 1.2 shows a comparison between emissions of different LTC regimes and con-

ventional diesel combustion (CDC). It can be seen that due to high local equivalence

ratios and in cylinder temperature, CDC suffers from high soot formation and NOx

emissions. LTC combustion typically occurs at a peak temperature of 1700 K [13]

which prevents formation of NOx. Due to low local equivalence ratios, soot formation

is negligible. However all LTC regimes suffer from high UHC and CO emissions, when
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Figure 1.1: RCCI fuel injection setup. Low reactivity fuel is injected into the intake port
while high reactivity fuel is directly injected into the cylinder.

LTC regimes are not fully optimized.

Figure 1.2: Contour plots showing NOx, CO, UHC and soot emissions with overlays of
different combustion regimes [14]. CDC stands for conventional diesel combustion.
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1.2 Prior studies in RCCI combustion

Extensive research regarding RCCI combustion modeling, performance and emissions

has been conducted. Initial studies include comparison between RCCI and CDC

combustion [15] and engine mapping studies [16]. Splitter et al studied the effects of

varying injection timing [17] and using multiple injections [18]. Studies also include

the use of alternative fuels such as natural gas [19] [20], methanol [21] and biodiesel

[22]. Effect of using different piston bowl geometries [23] [24] and cetane number

improvers [25] [26] have also been investigated. Figure 1.3 shows an overview of some

of the prior RCCI studies.

Figure 1.3: Overview of prior RCCI research in the areas ranging from fuel type to
injection parameters and combustion chamber design [14] [15] [16] [17] [18] [19] [20] [21] [22]
[23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37].
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However, only a few studies are found for research in the field of closed loop control

of RCCI combustion. Figure 1.4 shows an overview of prior studies in RCCI control.

Figure 1.4: Overview of prior studies in RCCI combustion control [38] [39] [40] [41] [42]
[43]

Wu et al. [39] used an experimentally validated GT-Power model to develop a control

strategy to control combustion phasing during load step-up and step-down transients.

They suggested using higher PR during step-down transients to offset the advance

in CA501 caused by the slow intake pressure decrease. Similarly during step-up

transients, the use of lower PR was recommended. Bekdemir et al. [40] developed a

mean-value model for control of natural gas-diesel RCCI combustion. Indrajuana et al

[41] developed a multivariable feedback control strategy for cycle-to-cycle control with

simulation results for reference tracking and disturbance rejection cases. The Energy

Mechatronics Lab (EML) team at Michigan Technological University has been doing

1Crank angle at 50% fuel mass fraction burnt.
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research on RCCI combustion control for the past four years. Sadabadi [42] developed

a physics based control oriented model (COM) to control combustion phasing. The

model was validated using simulation data from an experimentally validated CFD

combustion model. A linear quadratic integral controller was developed for CA50

control and validated using simulation data for reference traking and disturbance

rejection cases. Kondipati [38] used experimental RCCI engine data to parametrize

and validate a physics based dynamic model and implemented real-time PI control on

an RCCI engine. Experimental validation results showed that the PI controller was

able to track CA50 with a average error of 2 CAD. Arora [44] used a combination of

feed-forward and feedback PI control to develop a controller for transient operation

in light duty RCCI combustion applications. Arora et al. [43] proposed the use of a

sensitivity map to determine whether PR or SOI be used as the control variable. This

thesis builds upon the above mentioned works [38] [42] [43] to design and implement

new model based control strategies for combustion phasing and load control during

transient operation. To the best of the author's knowledge, this thesis presents the

first study undertaken in literature to design and implement model-based combustion

control (i.e., LQI, MPC) strategies for RCCI engines.

1.3 Research Goals

The goals of this thesis are as follows:
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† To develop, and experimentally validate Mean Value Models (MVM) to predict

start of combustion (SOC) and CA50.

† To develop a dynamic model to predict cycle-to-cycle combustion phasing and

IMEP. The new dynamic model should include residual gas dynamics and fuel

transport dynamics.

† To design and experimentally validate linear quadratic integral (LQI) controllers

for RCCI combustion phasing control.

† To design and experimentally validate a multi input multi output (MIMO)

model predictive controller (MPC) for combustion phasing and load control.

† To develop switched MPC controllers and implement a sensitivity based strategy

for selecting between start of injection (SOI) and premixed ratio (PR) as the

control variable. This new control strategy aims to control combustion for a

large range of RCCI engine operation.

1.4 Organization of Thesis

Figure 1.5 gives an overview of this thesis. Chapter 2 discusses the experimental setup

in detail. In Chapter 3, a dynamic model is developed to predict SOC and CA50.

The model is parameterized using steady state experimental data and validated for

engine transient operating conditions. In addition, new models to predict IMEP and

9



Figure 1.5: Thesis organization schematic

to account for fuel dynamics are developed. In Chapter 4, the dynamic model is

simplified and converted into state space form in order to design a Linear Quadratic

Integral controller to control combustion phasing. The controller is then evaluated on
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the experimental setup. In Chapter 5, a MIMO model predictive controller is devel-

oped for combustion phasing and load control. Different MPC controllers including

sensitivity based MPC are tested out on the experimental RCCI engine setup and

discussed in detail. To conclude, a summary of the major contributions from this

thesis is provided and recommendations for future work are described in Chapter 6.
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Chapter 2

Experimental Setup

This chapter is divided into four parts. The first part introduces the engine test

setup. The second part discusses the control and data acquisition systems. The

third part explains the experimental test procedure and the fourth part describes the

uncertainty analysis.

2.1 Engine Setup

The engine used is a GM EcoTec Turbo 2.0-liter LHU engine coupled to a 460 hp AC

Dynamometer. The engine specifications are given in Table 2.1. Previous studies on

this engine include research on Homogeneous Charge Compression Ignition (HCCI)
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Table 2.1
Engine specifications

Make General Motors
Model Ecotec 2.0 L Turbocharged
Engine Type 4 Stroke, Gasoline
Fuel System Direct Injection
No of Cylinders 4
Displaced Voulme 1998 [cc]
Bore 86 [mm]
Stroke 86 [mm]
Compression ratio 9.2:1
Max engine power 164 @ 5300 [kW@rpm]
Max engine torque 353 @ 2400 [Nm@rpm]
Firing order 1-3-4-2
IVO 25.5/-24.5 [◦CAD bTDC]
IVC 2/-48 [◦CAD bBDC]
EVO 36/-14 [◦CAD bBDC]
EVC 22/-28 [◦CAD bTDC]
Valve Lift 10.3 [mm]

[45] [46], Partially Premixed Compression Ignition (PPCI) [47], and Reactivity Con-

trolled Compression Ignition (RCCI) [38] [44] [47]. The engine originally was a GDI

engine but was modified to enable dual fuel operation. Two low pressure fuel rails

were added to enable port fuel injection. More details about PFI injection systems

can be found in previous works [42] [47]. The turbocharger was disabled and all the

experiments in this thesis were carried out under naturally aspirated conditions. Two

controllable air heaters were installed along the intake air stream so that the intake air

temperature could be set to a desired value. The engine test setup schematic is shown

in Figure 2.1 along with the locations of the thermocouples, pressure transducers and

lambda sensors.
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Figure 2.1: Engine Test Setup Schematic
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2.2 Data Acquisition and Control

To control the engine, a dSPACE MicroAutoBox (MABX) was programmed to pro-

vide all required engine control unit (ECU) functions. To enable cycle-to-cycle com-

bustion control, a Xilinx Spartan-6 Field Programmable Gate Array (FPGA) was

programmed for real-time calculations of combustion metrics such as CA50, IMEP,

heat release rate (HRR), and start of combustion (SOC). These calculations were

carried out by feeding the pressure trace and encoder pulses through an I/O board.

The specifications of the FPGA and the I/O board are given in Table 2.2. These com-

bustion metrics were then fed to the real-time processor board of the MABX where

the controller was embedded. The detailed description regarding calculations of the

combustion metrics can be found in [44]. An overview of the MABX hardware is

shown in Figure 2.2. In addition, the control setup uses a RapidPro® which is a slave

processor/control unit that communicates with the MABX through CAN. RapidPro®

contains modules for controlling actuators like spark plugs, port-fuel injectors, direct

injectors, cam phasors, throttle valve and EGR valve and also for acquiring data from

sensors like lambda sensor, crank position sensor and cam position sensor. Details

regarding RapidPro® for the experimental setup in this study are found in [45].

The in-cylinder pressure was measured using four PCB Piezotronics 115A04 transduc-

ers. In this study, pressure data from only cylinder 1 is focused on. The specifications
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Table 2.2
FPGA board and I/O Specification

Component Specification

FPGA Xilinx Spartan-6 LX150
Logical cells (nos) 147443
Slice registers (nos) 184304
Slice LUT (nos) 92152
Block RAM blocks (kB) 4824
Clock speed(MHz) 80

I/O Board dSPACE DS1552
A/D converter
Sampling frequency (MSPS) 1
Resolution (Bit) 16
Input (V) ±10

Digital input
Update rate (MHz) 80
Input (V) ±40
Threshold level L ⇒ H (V) 3.6
Threshold level H ⇒ L (V) 1.2

of the pressure transducer used in cylinder 1 are given in Appendix C. Encoder Prod-

ucts Company's crank shaft encoder, model no. 260, with resolution of 1 Crank Angle

Degree (CAD) was used to measure the engine crank angle and RPM. A DSP Tech-

nology ACAP combustion analyser was used to monitor and post process combustion

data (CA50, IMEP, peak pressure, etc).
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Figure 2.2: MicroAutoBox hardware overview for cycle by cycle combustion phasing con-
trol in this work

2.3 Test Procedure

RCCI is a type of dual-fuel combustion where-in a high reactivity fuel is directly

injected into the cylinder while a low-reactivity fuel is injected via port-fuel injection.

The high reactivity fuel used in this work is n-heptane, while the low reactivity fuel

used is iso-octane. The properties of the fuels are given in Table 2.3

Table 2.3
Test fuel properties [48]

Property n-heptane iso-octane
Higher Heating Value[MJ/kg] 48.07 47.77
Lower Heating Value [MJ/kg] 44.56 44.30
Density [kg/m3] 686.6 693.8
Octane Number [-] 0 100
H/C ratio [-] 2.29 2.25
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N-heptane was injected using the high pressure DI fuel rail while iso-octane was

injected using one of the low pressure PFI rails. Since the compression ratio of the

test engine was low to facilitate cold start of RCCI combustion, initially the engine

was run in SI mode by injecting gasoline using the other PFI fuel rail to heat up

the engine. The amount of iso-octane and n-heptane injected was adjusted by a

factor called Premixed Ratio (PR). PR is defined as the ratio of iso-octane energy

equivalence to the total energy supplied by the fuel. PR is calculated by Equation

(2.1) where LHVn and LHVi are the lower heating values of n-heptane and iso-octane,

respectively.

PR = misoLHViso
misoLHViso +mnhepLHVnhep

(2.1)

Details regarding calculation of mass of fuels of the two fuels and injector pulse widths

based on a PR input can be found in [47]. Two types of experiments were mainly

conducted, including steady-state and transient tests. Steady-state data was used to

parameterize the Mean Value Models that will be discussed in Chapter 3. Data for

100 cycles was recorded for combustion analysis. Points with a Coefficient of Variation

(COV) of IMEP of over 5%1 were discarded. The tests were run at a constant speed

of 1000 RPM and a constant intake temperature of 60oC. For a particular PR and

start of injection (SOI), a fuel quantity sweep was conducted. The combination of

PR and SOI in this study are defined by the test matrix in Table 2.4.

The data used for parameterization can be found in appendix A. For transient tests
1Measured using the data recorded by ACAP combustion analyzer.
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Table 2.4
Steady state test matrix to obtain data for parameterizing mean value
models at 1000 RPM and Tin = 60oC, EGR=0% at naturally aspirated

conditions

PR SOI (CAD bTDC) FQ (mg/cycle)
10 30 19-25

35 20-25
40 21-25
45 21-25
50 22-24

20 30 20-25
35 21-25
40 21-25
45 23-26.5

30 35 22-25
40 22-25
45 22-25
50 23-26

40 40 24-27
45 23-27
50 22-27
55 22-25

used in chapters 3, 4 and 5, data was typically recorded for around 300 cycles.

2.4 Uncertainty Analysis of Measured and De-

rived Parameters

All measurements are subject to uncertainty mainly due to limited accuracy of the

measuring apparatus. Since the accuracy can propagate into derived parameters
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and affect the repeatability and reliability of results, it is essential to characterize

uncertainty in measure and calculated variables.

Table 2.5 provides a list of measured inputs with their range and their uncertainties.

Table 2.5
Measured input parameters and their uncertainties for the RCCI engine

experimental setup [47]

Parameter [Units] Value Uncertainty(±)
Bore[m] 0.086 0.001

Stroke[m] 0.086 0.001
Length[m] 0.145 0.001

Cylinder Pressure[kPa] 95-4000 1%
Crank Angle[CAD] 0-720 1

λ[-] 1.0-3.0 0.05
Tin[°C] 40-100 2%
N[rpm] 800-2200 10
mair[g/s] 12.1 - 31.0 0.72%

mfuel[mg/cycle] 11.0-40.0 0.1%
Pin[kPa] 95-105 0.5%
Texhaust[°C] 350-700 2%

The uncertainty in measured parameters is propagated into the derived parameters.

If a derived variable is a function of multiple measured variables then, the uncertainty

propagation is calculated by Equation (2.2) [49]:

Uy =

√√√√√∑
i

 ∂Y

∂Xi

2

U2
Xi

(2.2)

where, Y is the derived variable, Xi are the measured variables; and Uy and UX are

the uncertainties in derived and measured variables, respectively. Table 2.6 shows the

uncertainty analysis conducted for the engine and experimental steup in this study.
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Table 2.6
Uncertainties of derived parameters from measured variables for the RCCI

engine experimental setup in this thesis [38]

Derived parameter [Units] Value± Uncertainty

BD [CAD] 6±1

CA50 [CAD aTDC] -1±1

IMEP [kPa] 540.7±28.1
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Chapter 3

RCCI Dynamic Modelling

3.1 Modelling Introduction

For model-based real-time combustion and load control, a plant model is required.

This plant model should be computationally efficient yet accurate enough that it could

be utilized for closed-loop combustion control. Over the years various plant models

have been developed for compression ignition (CI) engines, ranging from complex

CFD models [17] [50] [51] to simple physics-based control-oriented models (COM) [40]

[42]. CFD models although accurate are computationally intensive and thus cannot

be used for real-time combustion control. Prior studies on developing simple COMs

to predict combustion phasing in HCCI [52] [53] and RCCI [42] have shown that they
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combine computational efficiency with required accuracy for control applications.

Figure 3.1: Control-oriented autoignition models for compression ignition
engines [38] [42] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67]
[68] [69] [70]

Figure 3.1 lists some of the previous studies in developing COMs for CI combustion.

COMs such as Arrhenius-like models [55] [56] [57] [59] and Shell auto-ignition models

[62] [63] [64] have been widely used for predicting SOC in diesel as well as HCCI com-

bustion. The Knock Integral Model (KIM) was originally developed by Livengood et

al. [71] for predicting the onset of knock in SI engines. Hillion et al. [67], Arsie et

al. [69] used the KIM to predict SOC in diesel combustion. Shahbakhti and Koch

[72] used this model to predict SOC in HCCI combustion. Sadabadi and Shahbakhti
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[73] developed a COM by modifying the KIM for predicting SOC in RCCI combus-

tion. This COM was parameterized using the data obtained from KIVA simulations.

Kondipati [38] then used experimental RCCI engine data to parametrize the COM

to predict SOC in RCCI engines. This work uses the Modified Knock Integral Model

(MKIM) developed by Sadabadi and Shahbakhti [42] and the modified Weibe model

developed by Kondipati [38]. The MKIM is less accurate as compared to the shell

auto-ignition model for predicting SOC. However it is computationally more efficient.

These Mean Value Models (MVMs) are used to predict the steady-state SOC and

CA50, respectively. MVMs are then combined with physics-based equations to in-

clude transient dynamics operation in RCCI engines. In this chapter, new models are

developed to calculate the IMEP, and to account for residual gas thermal dynamics

and fuel dynamics. The dynamic model developed is then simplified further and lin-

earized for RCCI controller design. The following sections explain the development

of the COM in detail.
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3.2 Start of Combustion (SOC)

3.2.1 Modified Knock Integral Model (MKIM)

Livengood et al. [71] developed the Knock Integral Model to predict auto-ignition in

SI engines. Later it was modified by Shahbakhti and Koch [72] to predict auto-ignition

in HCCI engines. Sadabadi [42] extended the MKIM to include RCCI combustion by

dividing the model into two stages; the first stage is from intake valve closing (IVC)

to start of injection (SOI) which deals with the compression of the port fuel injected

low reactivity fuel (iso-octane). The second stage is from SOI to IVC which deals

with the compression of the mixture of high and low reactivity fuels and the onset of

auto-ignition.

∫ SOC

SOI

dθ

A2N

(
φB2DI
DI + φB2PFI

PFI

)
exp

(
C2

CNmix+b (Pivcvncc )D2

Tivcv
nc−1
c

)+

∫ SOI

IV C

dθ

A1NφBPFIexp
(
C1(Pivcvncc )D1

Tivcv
nc−1
c

) = 1

(3.1)

Where N is the engine speed, Pivc and Tivc are the pressure and temperature at intake

valve closing conditions, respectively. φDI and φPFI are global equivalence ratios of
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n-heptane and iso-octane respectively calculated by using the following equations:

φDI = (1− PR).φtot (3.2a)

φPFI = PR.φtot (3.2b)

Where φtot is the global combined equivalence ratio.

Since IVC occurs at 2 CAD before BDC, Pivc and Tivc are taken to be equal to the

manifold pressure and temperature. CNmix in Equation (3.2) is the Cetane Number

and is used to account for the reactivity of the fuel mixture. The CN of the mix-

ture is given by Equation (3.3) where FARst,nhep and FARst,iso; CNiso and CNnhep

are stoichiometric fuel-air ratios and cetane numbers of n-heptane and iso-octane,

respectively.

CNmix =

(
FARst,nhepφDICNnhep + FARst,isoφPFICNiso

)
FARst,nhepφDI + FARst,isoφPFI

(3.3)

nc in Equation (3.2) is the polytropic compression coefficient which is the slope of the

compression stroke on the PV diagram. vc is the ratio of the volume at IVC to the

volume at any instant.

vc = VIV C
V (θ) (3.4)

A1, A1, B,B2DI , B2PFI , b, C1, C2, D1, D2 are constants which are estimated using the

parametrization data from Chapter 2.
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3.2.2 Parameterization of MKIM

To parametrize and validate the MKIM model, 47 steady-state operating points were

recorded. 24 points were used for parameterizing the MKIM, while the rest of the data

points were used to validate the model. The data points were taken at a constant 1000

RPM and intake temperature of 60 oC. The operating conditions of the experimental

data points are given in Table 3.1. Previous work by Kondipati [38] used an iterative

optimization approach to calculate the parameters of the MKIM. This work uses the

same approach by using the fminsearch command in MATLAB®. This command

uses the Nelder-Mead simplex optimization method [74] to reduce the error between

the estimated SOC and the experimental SOC. The optimized parameters are given

in Table 3.2.

Table 3.1
Operating engine conditions for estimation and validation of the MKIM

model

Parameter [Units] Operating value
PR [-] 10-20-30-40

SOI [CAD bTDC] 30-40-50-60
Tin [°C] 60
λ [-] 2.5-1.0

Pin [kPa] 96.5
IVO [CAD bTDC] 25.5
EVC [CAD bTDC] 22

Speed [RPM] 1000

,

28



Table 3.2
Optimized parameters for the MKIM model

A1 B C1 D1 A2

0.5366 -0.0072 5.2104 -0.0002 0.0024

B2DI B2PFI C2 b D2

0.0016 7.3403e-05 1512.17e+03 174.24 -0.2374

Figure 3.2 shows the SOC estimation results along with the average experimental

SOC (diamond symbols) and the range of cyclic data for 100 cycles recorded for each

operating point. It can be seen that the SOC can be estimated with an average error of

1.8 CAD. eave and σe show the average and standard deviation of errors, respectively.

The estimated parameters were then used to calculate the SOC for 23 steady-state

data points different from those used to estimate the MKIM parameters. Figure 3.3

shows the validation results. The average error is 1.9 CAD which is sufficient for

RCCI combustion control.
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Figure 3.2: Estimation of MKIM parameters using 24 steady-state operating points
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Figure 3.3: Validation of MKIM model using 23 steady-state operating points
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3.3 Combustion Phasing (CA50) Model

3.3.1 Modified Weibe Model

Combustion phasing is one of the main parameters which characterize RCCI combus-

tion; thus, combustion phasing and hence is an important control parameter to achieve

high efficiency RCCI operation [47]. Sadabadi [42] developed a modified Weibe func-

tion to calculate CA50 using the mass fraction burned (xb) in RCCI combustion.

CA50 is taken as the crank angle at which xb reaches 0.5. Here, xb is calculated using

the RCCI modified Weibe model from [42]:

xb(θ) = 1− exp
(
− A

[
θ − θsoc
θd

]B)
(3.5)

where, θsoc is SOC predicted from the MKIM. θd is the burn duration given by Equa-

tion (3.6).

θd = C(1 +Xd)D.(φEDI + φFPFI) (3.6)

Xd is the dilution fraction which accounts for the EGR and residual gases. φDI

and φPFI are the global equivalence ratios of n-heptane and iso-octane, respectively

given by Equation (3.2). A,B,C,D,E, F are constants which are estimated using

the experimental data.
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3.3.2 Parametrization of CA50 model

To paramterize the CA50 model, a similar approach to Section 3.2.2 was used. 24

steady state operating points were used to parameterize the model and 23 operat-

ing points, different from the ones used for parameterization, were used to validate

the CA50 model. The parameterization was done using the Nelder-Mead Simplex

algorithm [74]. The optimized parameters are listed in Table 3.3.

Table 3.3
Optimized parameters for the CA50 model

A B C

0.1073 14.952 6.5361

D E F

0.03813 -0.1726 0.1064

The results of the 24 points used for parameterization are shown in Figure 3.4. It can

be seen that the average error between predicted and experimental values of CA50 is

1 CAD. The validation results are shown in Figure 3.5. The validation results confirm

that the model is able to predict the CA50 with an average error of 1 CAD. This

error is minimal; thus, the CA50 model can be used for RCCI controller design.
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Figure 3.4: Estimation of CA50 parameters using 24 steady-state operating points
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3.4 Dynamic Model

In order to control transient operation of the engine on a cycle-to-cycle basis, a control

oriented model is developed to predict the metrics of the RCCI engine cycle. Hence

the mean value models developed in Sections, 3.2 and 3.3 are extended to include

the entire cycle from intake valve opening to exhaust valve closing. In addition, the

effect of the previous engine cycle on the combustion of the current cycle is taken into

account by including the effect of mixing of the residual gases trapped at the end of

the previous cycle with the fresh charge from the current cycle.

3.4.1 Intake Stroke (IV O → IV C)

The dynamic model is initialized with operating parameters including engine speed,

PR, SOI, Tin, φtot, and the exhaust pressure (Pexh). In Section 3.2 it was assumed

that Pivc and Tivc are equal to the manifold pressure and temperature respectively

since IVC occurs close to BDC at 2 CAD before BDC. However, the temperature of

the residual gases greatly affects Tivc and in turn affects the SOC and combustion

phasing. The mixing temperature at IVC is calculated by Equation (3.7), where Xrg

is the residual gas mass fraction. Trg,k is the residual gas temperature of the previous
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cycle and Tin,k+1 is the intake manifold temperature of the current cycle.

Tivc,k+1 = (1−Xrg)Tin,k+1 +XrgTrg,k (3.7)

For the first cycle it is essential to estimate the value of Trg in order to initialize the

model. Cavina [75] developed a model for estimating the residual gas fraction. This

model is used to estimate the value of Xrg in this work.

Xrg =
√

1
C
.
π.
√

2
360 .

rc − 1
rc

.
OF

N

√
R.Tin|Pexh − Pin|

Pexh
.

(
Pexh
Pin

) γ+1
2γ

+

1
C
.
rc − 1
rc

φtot
Vivo
Vdis

.

(
Pexh
Pin

) 1
γ

(3.8)

Where, rc is the compression ratio and OF is the overlap factor of the intake and

exhaust valves. Pexh is the exhaust pressure, Tin and Pin are the intake manifold

temperature and pressure, respectively. R is the gas constant. Vivo and Vdis are the

volume at intake valve closing and displaced volume, respectively. k is the ratio of

specific heats. C is given by:

C =
[
1 + LHV

cvTin(mtot
mf

).rγ−1
c

] 1
γ

(3.9)
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where cv is the specific heat capacity at constant volume at IVC condition and LHV

is the lower heating value of the fuel mixture given by

LHV = PR

100 .LHViso +
(

1− PR

100

)
.LHVnhep (3.10)

The Xrg from Equation (3.8) is used to initialize the engine cycle. Then at the end of

the current cycle, the Xrg is re-calculated using Equation (3.11). Next, an iterative

loop is carried out until the value of Xrg converges to a terminal value. In a similar

way, Trg is re-calculated at the end of the cycle and an iterative loop is used to

converge to a terminal value.

Xrg = mrg

mtot

(3.11)

Where, mr is the mass of the residual gasses and mtot is the total mass of mixture

inside the cylinder at IVC. mrg is calculated based on exhaust valve closing (EVC)

conditions as will be explained in subsequent sections.

3.4.2 Polytropic Compression (IV C → SOC)

By assuming the compression to be polytropic [76], the pressure at SOC (Psoc) and

temperature at SOC (Tsoc) are calculated by the Equations (3.12) and (3.13). For

using these equations, the SOC needs to be deterimined. This is done by using the
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MVM developed in Section 3.2.1.

Tsoc,k+1 = Tivc,k+1

(
Vivc

Vsoc,k+1

)nc−1
(3.12)

Psoc,k+1 = Pivc,k+1

(
Vivc

Vsoc,k+1

)nc
(3.13)

Where, nc is the polytropic coefficient calculated from the experimental data. Vivc

and Vsoc are the volumes at IVC and SOC, respectively.

3.4.3 Combustion (SOC → EOC)

CA50 is predicted by using the CA50 model developed in Section 3.3. End of com-

bustion (EOC) is predicted by using the following Burn Duration (BD) model.

3.4.3.1 BD Model for EOC state estimation

In RCCI combustion, the primary combustion mechanism is through spontaneous

ignition front since the charge is incapable of sustaining flame propagation [50]. Sad-

abadi [42] developed a correlation to link the spontaneous ignition front speed (Sig)

with the burn duration as follows:

BD = K2(Sig)t (3.14)
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Where, K2 and t are parameters to be estimated. The introduction of the high reactive

fuel creates fuel stratification and combustion starts in pockets rich in high reactivity

fuel. Thus the ignition delay is not constant throughout the chamber. Sadabadi [42]

proposed using the following equation to calculate the ignition front speed in RCCI

combustion:

Sig = 1
| dτ
dφDI
||OφDI |

(3.15)

Where, τ is the ignition delay which is given by the denominator of MKIM Equation

(3.1) from SOI to SOC period. The gradient of equivalence ratio is given by:

|OφDI | =
K1

IDp
.φrDI (3.16)

where ID refers to ignition delay and is calculated by using:

ID = SOI − SOC (3.17)

Once BD is estimated, EOC is calculated by using Equation (3.18):

EOC = SOC +BD (3.18)

The temperature rise during combustion is calculated by [42]:

4T = LHVDI(F/A)st,nhep.φDI + LHVPFI .(F/A)st,iso.φPFI
cv((F/A)st,nhep.φDI + (F/A)st,iso.φPFI + 1) (3.19)
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A factor e1 is introduced to account for heat losses during combustion. The factor e1

can be assumed to be a second degree polynomial [77]. Thus the temperature at the

end of combustion (EOC) can be given by:

Teoc,k+1 = Tsoc,k+1 + e1.∆T (3.20)

Similarly the pressure at the end of combustion is estimated by using the following

equation.

Peoc,k+1 = Psoc,k+1 + e2.∆T (3.21)

The factors e1 and e2 are determined by:

e1 = a0 + a1θsoc + a2θ
2
soc (3.22)

e2 = b0 + b1θsoc + b2θ
2
soc (3.23)

where a0, a1, a2, b0, b1, b2, p, r,K1, K2 and t are constants to be estimated. These pa-

rameters are estimated using the same optimization method used for parameterizing

the MKIM and CA50 model. The final optimized parameters are given in Table 3.4.
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Table 3.4
Optimized parameters for the BD model

K1 t K2 a0 a1 a2

4.254 -0.3347 32.6389 0.2152 -1.2389e-05 4.1071e-07

b0 b1 b2 p r

12.42655 0.001407 -3.3397e-05 2.2201e-05 0.53812

3.4.4 Polytropic Expansion (EOC → EV O)

The expansion process can be modeled as a polytropic process [76]. The temperature

and pressure at exhaust valve opening (EVO) can be calculated using the following

polytropic equations:

Tevo,k+1 = Teoc,k+1

(
Veoc,k+1

Vevo

)ne−1
(3.24)

Pevo,k+1 = Peoc,k+1

(
Veoc,k+1

Vevo

)ne
(3.25)

Where ne, is the polytropic expansion coefficient calculated from the experimental

data. Pevo and Tevo are the pressure and temperature at the EVO condition, respec-

tively.
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3.4.5 Exhaust Stroke (EV O → EV C)

The exhaust process can be approximated to be a polytopic process [42] and the

temperature at EVC can be given by:

Tevc,k+1 = Tevo,k+1

(
Pexh,k+1

Pevo,k+1

) (ne−1)
ne

. (3.26)

where Pex is the exhaust pressure. The residual gas temperature is assumed to be

equal to the Tevc. The mass of the residual gases (mr) is calculated by using the ideal

gas law for the EVC conditions

mevc,k+1 = Pexh,k+1.Vevc
Revc.Trg,k+1

, (3.27)

Where, Revc is the gas constant. The residual gas fraction is calculated by:

Xrg,k+1 = mevc,k+1

mtot,k+1
. (3.28)

The schematic of the entire RCCI dynamic model is summarized in Figure 3.6.

41



Figure 3.6: Dynamic Model of the RCCI engine cycle

42



3.5 IMEP Model

The dynamic model is extended to include IMEP to enable development of engine

load controller. IMEP is calculated using the cyclic integral of the pressure trace

times the volume given by Equation (3.29).

IMEP = 1
Vdis

∮
V
PdV (3.29)

However, accurate prediction of the pressure trace is difficult and computationally

intensive. Bidarvatan [53] proposed using the temperature variations to calculate

IMEP using the Equation (3.30). This work uses the same approach.

IMEPk+1 = mt,k+1
cv
Vdis

(Tivc,k+1 − Tsoc,k+1 + Teoc,k+1 − Tevc,k+1) (3.30)

Figure 3.7 shows the validation results of the IMEP model using the 23 steady-state

experimental data points.
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Figure 3.7: Validation of the IMEP model against the 23 steady-state
operating conditions

3.6 Fuel Transport Dynamics

The fuel injected from the PFI injectors undergoes transport dynamics before going

inside the cylinder. This becomes important for PR control during engine transients.

Here, fuel transport dynamics are modeled using the x − τf model from [52] and

[78]. This model assumes that the total injected fuel (ṁfi) into the intake ports gets

divided into two parts. A fraction x is deposited onto the surface of the intake ports

in the form of a thin liquid film, while the remaining part (1 − x) is present in the

form of vapor. Thus the fuel entering the cylinder is in two parts; fuel entering as
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liquid due to the fuel film (ṁff ) and fuel entering into the cylinder in the vapor phase

(ṁfv). The fuel entering the cylinder through the film is directly proportional to the

mass of the fuel in the film and inversely to the time constant (τf ). Thus the total

fuel entering the cylinder (ṁf ) is determined by the following equations:

ṁf = ṁfv + ṁff (3.31)

ṁfv = (1− x)ṁfi (3.32)

m̈ff = xṁfi − ṁff

τf
(3.33)

Other dynamics include the measurement dynamics of the lambda sensor and the

transport delay caused due to the time it takes for the injected fuel to reach the lambda

sensor. The measurement dynamics and the transport delay can be represented by

a first order pole with a time constant of τm and a pure delay ∆Tm, respectively.

Putting together the three dynamics discussed above yields:

ṁfm(s)
ṁfi(s)

= 1 + τf (1− x)s
1 + τfs

Kp

1 + τms
e−s∆Tm (3.34)

where, ṁfm is the fuel flow calculated using the lambda sensor measurements.
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3.6.1 Model Parameterization

3.6.1.1 AFR sensor time constant and exhaust transport delay

When PR is set to zero, the entire fuel mass is injected from the DI fuel injector.

Thus there is no dynamics caused by the fuel film formation in the intake ports. The

fuel dynamics at this condition can be modeled simply by a single pole with delay as

follows.
ṁfm(s)
ṁfi(s)

= Kp

1 + τms
e−s∆Tm (3.35)

By using system identification methods, ∆Tm and τm are obtained by giving a step

change to the fuel quantity. The resulting identified parameters are ∆Tm = 0.15sec

and τm = 0.43sec. Figures 3.8, 3.9 and 3.10 shows the comparison between input λ1,

the λ with included lag effect, and the measured λ.

3.6.1.2 Fuel film dynamics

Using the parameters estimated in Section 3.6.1.1, x and τf are estimated by giving

a step change to the fuel quantity at PR 20 and PR 40. Figures 3.9 and 3.10 show

the estimation results at PR 20 and PR 40, respectively.

1λ is the ratio of actual AFR to the stoichiometric AFR
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Figure 3.8: Measured and estimated Lambda with included lag effect, N=1000 RPM,
Tin = 60oC, PR=0. No fuel film dynamics are present here; thus X = 0.
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Figure 3.9: Measured and estimated Lambda with included lag effect, N=1000 RPM,
Tin = 60oC, PR= 20. The identified parameters are x = 0.095 and τf = 0.06sec
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Figure 3.10: Measured and estimated AFR with lag , N=1000 RPM, Tin = 60oC, PR=40.
The identified parameters are x = 0.195 and τf = 0.16sec

3.7 Validation of the Dynamic RCCI Model

To develop the dynamic model, some assumptions were made. Hence it is imperative

to validate the dynamic model with experimental data. This is done by subjecting

the dynamic model to transient experiments and then compare the output with ex-

perimental results. The following section discusses the effect of giving step inputs to

PR, SOI and FQ in separate tests. To account for measurement noise in experimental

results a measurement noise of standard deviation of 1.1 CAD and 23 kPa was added

to the outputs of the dynamic model.
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3.7.1 PR Step Transient Validation

Figure 3.11 shows the performance of the dynamic model when the engine is undergoes

a step change in PR. We can see that as the PR is increased, the CA50 gets retarded.

The dynamic model is able to predict CA50 with an average error of 1.6 CAD and

predicts the IMEP with an average error of 36 kPa.
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Figure 3.11: Validation of the dynamic model with experimental results for varying PR,
N=1000 RPM, Tin = 60oC, SOI= 50 CAD bTDC, FQ= 23 mg/cycle.
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3.7.2 SOI Step Transient Validation

Performance of the developed dynamic model is also assessed when the RCCI engine

undergoes a step change in SOI, as shown in Figure 3.12. We can see that as the

SOI is retarded, the CA50 gets retarded. The dynamic model is able to predict CA50

with an average error of 1.8 CAD and the IMEP with an average error of 28.2 kPa.
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Figure 3.12: Validation of the dynamic model with experimental results for varying SOI,
N= 1000 RPM, Tin = 60oC, PR= 20, FQ= 23 mg/cycle
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3.7.3 FQ Step Transient Validation

Experimental validation of the dynamic model for a step change in total fuel quantity

(FQ) is shown in Figure 3.13. We can see that as the injected FQ is increased, the

IMEP increases while the CA50 remains almost unchanged. The dynamic model is

able to predict CA50 with an average error of 2.6 CAD and the IMEP with an average

error of 43.3 kPa.
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Figure 3.13: Validation of the dynamic model with experimental results for varying FQ,
N=1000 RPM, Tin = 60oC, PR=20, SOI= 50 CAD bTDC
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Thus we can conclude that the dynamic model is able to predict the experimental

CA50 and IMEP with reasonable accuracy. The next chapter centers on design of

RCCI combustion controllers.
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Chapter 4

Linear Quadratic Integral (LQI)

Control

In this chapter a model-based RCCI controller is developed to control combustion

phasing (CA50) using Start of Injection (SOI) as the control variable. The dynamic

model developed in Chapter 3 is used as a virtual plant model to initially test the

designed controller. The controller is then validated by testing it on the experimental

RCCI engine setup.
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4.1 Simplified Control Oriented Model and Model

Linearization

In Chapter 3 a dynamic model was developed to predict SOC, CA50 and BD. However

the non-linear nature of the dynamic model makes it difficult to for use in the design

of linear controllers. In this chapter the dynamic model is converted into simplified

equations which will then be used to linearize the plant model. The linearized plant

model is finally used to design an observer-based state-feedback controller for tracking

CA50.

4.1.1 Simplified COM

The CA50 in RCCI combustion depends on parameters such as the air-fuel mixture

temperature and pressure at intake valve closing, the fuel-air equivalence ratio (φtot),

and the fuel premixed ratio (PR). Here, a linear empirical correlation is developed

to estimate CA50. As shown in Equation (4.1) the coefficients of this correlation are
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calculated by applying a linear regression fit to the experimental data.

CA50k = C(1).PRk + C(2).SOIk + C(3).Pivc,k

+ C(4).Tivc,k + C(5).φtot,k + C(6) (4.1)

Where,

C =
[
0.2299 −0.4041 0.6281 −0.3435 −0.1055 85.745

]
(4.2)

Figure 4.1 shows the simplified linear COM is able to predict the CA50 with reason-
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Figure 4.1: Validation of the simplified COM against experimental CA50 and predicted
CA50 from the detailed physical model (Chapter3). eave and σe show the average and
standard deviation of errors between CA50 from the simplified COM and the experimental
CA50.
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able accuracy for the experimental conditions studied. This empirical model is also

� �� �� �� ��� ��� ��� ��� ��� ��� ��� ���

'
%
�
�

�'
%
(
�E
8
(
'


�

�

��

��

I
EZI
�����'%(

�E

7MQTPMJMIH�1SHIP

(]REQMG�1SHIP

']GPI��

� �� �� �� ��� ��� ��� ��� ��� ��� ��� ���

7
3
-�
�'
%
(
�F
8
(
'


��

��

��

��

�F

Figure 4.2: Validation of the simplified model against the dynamic RCCI model (Chap-
ter3) for a step change in SOI at PR=20, FQ=23 mg/cycle and Tin=313.1 K.

validated against the detailed dynamic model for transient RCCI operations. Figure

4.2 shows the results of the two models.

4.1.2 State-Space RCCI Model

For designing a state-feedback controller we need to select states that completely

describe the RCCI engine operation. The following variables are selected as states of

the simplified COM:
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1. Crank angle for 50% mass fraction burned (CA50)

2. Temperature at Start of Combustion (Tsoc)

3. Pressure at Start of Combustion (Psoc)

4. Residual gas temperature (Trg)

By considering a cycle to start from IVC, the states of the current cycle (k + 1) can

be expressed as a function of the states of the previous cycle (k) and inputs of the

current cycle (k+ 1) by including the cycle to cycle thermal coupling in the dynamic

model.

CA50k+1 = f1(CA50k, Tsoc,k, Psoc,k, Trg,k, SOIk, PRk, FQtot,k) (4.3)

Tsoc,k+1 = f2(CA50k, Tsoc,k, Psoc,k, Trg,k, SOIk, PRk, FQtot,k) (4.4)

Psoc,k+1 = f3(CA50k, Tsoc,k, Psoc,k, Trg,k, SOIk, PRk, FQtot,k) (4.5)

Trg,k+1 = f4(CA50k, Tsoc,k, Psoc,k, Trg,k, SOIk, PRk, FQtot,k) (4.6)

This can be expressed in the form of a state space equation:

Xk+1 = A.Xk +Bi.uk +Bd.wk (4.7)
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and

yk+1 = C.Xk+1 +D.uk+1 (4.8)

where

X =
[
CA50 Tsoc Psoc Trg

]T
(4.9)

u =
[
SOI

]
(4.10)

w =
[
PR

]
(4.11)

y =
[
CA50

]
(4.12)

Where X is the state vector, u is the vector of inputs, y is the output vector and w

is the disturbance vector.

For LQI controller design, the simplified COM is linearlized around an operating

point given in Table 4.1.
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Table 4.1
Operating conditions of the linearization point for the design of an LQI

controller

Parameter Value

CA50 (CAD aTDC) 8

Tsoc (K) 772.1

Psoc (kPa) 1828.47

Trg (K) 863.9

FQ (mg/cycle) 23

SOI (CAD bTDC) 42.7

PR (-) 20

Tin (K) 333.1

Pman (kPa) 96.5

The plant matrices are as follows

A =



−0.1658 −0.01754 0.007405 −0.009838

0.8424 0.08911 −0.03763 0.04999

−1.3 −001375 0.05807 −0.7715

−0.6189 −0.06546 0.02764 −0.01133


(4.13)

Bi =
[
−0.4165 −0.3423 −3.267 −2.32

]T
(4.14)
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Bd =
[
0.2207 −0.1814 1.731 1.204

]T
(4.15)

C =
[
1 0 0 0

]
(4.16)

D =
[
0
]

(4.17)

4.2 Linear Quadratic Integral Control

A Linear Quadratic Integral (LQI) controller is designed to track the desired CA50

trajectory. An LQI controller is a full-state feedback optimal controller with a linear

state function and a quadratic cost function [79]. Since the LQI is a model-based

controller it can outperform a PID controller while controlling transient operation of a

system, particularly against system disturbances [80]. A full-state feedback is required

for LQI controller. If all the states are not measurable, then an observer/estimator is

required, as will be designed in Section 4.2.2. For applying LQI control, a non-linear

system needs to be linearized around a stable operating point (see Table 4.1). The

performance of the controller deteriorates as the operating region moves away from

the stable operating point. Another limitation of an LQI controller is that it cannot

handle constraints as the control law is solely based on optimal cost computation.

Figure 4.3 shows an overview of structure of the LQI controller designed for RCCI

combustion phasing control.
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Figure 4.3: Structure of the designed RCCI combustion phasing controller

In order to include the integral state (Xi) into the plant model, the plant model is

augmented by modifying state vector.

Xaug,k =

Xk

Xi

 (4.18)

Therefore, the following augmented plant model is obtained:

Xaug,k+1 =

A 0

C I

Xaug,k +

Bi

0

uk (4.19)
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4.2.1 Control law

An LQI controller minimizes the following cost function (J)

J = 1
2

∞∑
k=1

[XT
aug(k)QXaug(k) + uT (k)R u(k)] (4.20)

where Q and R are semi-positive definite and positive definite matrix, respectively.

The control law is given by:

uk = −K.Xaug,k (4.21)

K is the feedback gain given by

K = (R +BT
augPBaug)−1BT

augPAaug (4.22)

where P is calculated by solving the discrete-time algebraic Riccati Equation (DARE):

[81]:

P = ATaugPA− ATaugPBaug(R +BT
augPBaug)−1BT

augPAaug +Q (4.23)
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4.2.2 State Estimator Design

The CA50 is the only measurable state of the system. In order to get full state

feedback an observer is designed. The observer estimates the current states of the

system (Xk) based on the current output measurement (yk) and the system input (uk).

A Kalman Filter is designed as a state estimator. This also gives the added advantage

of filtering out the measurement noise. The designed estimator is represented by

Equation (4.24) and (4.25):

X̂[k|k] = X̂[k|k − 1] +M(yc[k]− CX̂[k|k − 1]) (4.24)

X̂[k + 1|k] = AX̂[k|k] +Bu[k] (4.25)

where X̂ is the estimated state vector and M is the observer gain. X̂[k+1|k] signifies

the predicted value of X̂ at engine cycle k+ 1 based on information available at cycle

k. The gain M is calculated using Equation (4.26)

M = PCT (CPCT + R̄)−1 (4.26)

Where, Q̄ and R̄ are the process noise and measurement noise covariance matrix

respectively. An initial estimate of R̄ is obtained by calculating the covariance of an

open loop measurement. The initial value of Q̄ is taken close to zero [82] and later
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tuned for best performance. P is obtained by solving the DARE given by Equation

(4.27). This calculation can be simplified by using the MATLAB® command kalman

[83]

P = BdQ̄B
T
d + APAT − APCT (CPCT + R̄)−1CPAT (4.27)

'
%
�
�

�'
%
(
�E
8
(
'


�

�

��

��

I
EZI
�����'%(

�E

3FWIVZIH�7XEXIW

4L]�1SHIP�7XEXIW

8
W
S
G
��
/


���

���

���

I
EZI
�����/

�F

4
W
S
G
��
O
4
E


����

����

����

����

I
EZI
������O4E

�G

']GPI��

� �� �� �� ��� ��� ���

8
VK
��
/


���

���

���

���
I
EZI
�����/

�H

Figure 4.4: State-Observer Performance

In order to validate the state estimator, the estimated states are compared with

the states of the dynamic model. Figure 4.4 shows the performance of the designed

state estimator. A measurement noise of standard deviation of 1.1 CAD (based

on experimental data) was added to the output of the dynamic model to test the

estimator’s response to noise. It can be seen that the estimator is able to filter out

the noise while estimating the four required states. The estimator error is small
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enough not to adversely affect the performance of the LQI controller. The errors

between the states of the physical system and the observed states are due to model

mismatch.

4.3 Simulation and Experimental Results

In this section, performance of the designed LQI controller is first evaluated on a

virtual engine (detailed physical model from Chapter 3). Next, performance of the

controller is tested on a real engine.

4.3.1 CA50 Tracking

Figures 4.5 and 4.6 show the simulation and experimental results of the LQI controller,

respectively. The controller is able to track the reference CA50 without any steady

state error in the simulation results. In the experimental results, due to measurement

noise an average error of 1.6 CAD is observed.
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Figure 4.5: Simulation CA50 Tracking Results. Operating conditions: N= 1000 RPM,
PR = 20, FQ= 23mg/cycle, Tin= 313.1K
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Figure 4.6: Experimental CA50 Tracking Results. Operating conditions: N= 1000 RPM,
PR = 20, FQ= 23mg/cycle, Tin= 313.1 K
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4.3.2 Disturbance Rejection

It is important that the designed controller can operate over a range of PR values.

PR variations are included in the controller design via a disturbance term. To test

the disturbance rejection capability of the controller a PR step of 20 was given. As

seen in Figure 4.7 the controller is able to track CA50 despite the sudden change in

PR.
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Figure 4.7: Simulation results for disturbance rejection when a PR step is given, FQ= 23
mg/cycle, Tin= 313.1 K, N= 1000 RPM at naturally aspirated conditions
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Figure 4.8: Experimental results for disturbance rejection when a PR step is given, FQ=
23 mg/cycle, Tin= 313.1 K, N= 1000 RPM, At naturally aspirated conditions

Figure 4.8 shows the experimental disturbance rejection capability of the controller.

The PR is varied from 0 to 40 in multiple steps. The controller is able to track the

reference CA50 with an average error of 1 CAD.
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Chapter 5

Model Predictive Control of

Combustion Phasing and Load

This chapter discusses the development of a MIMO COM and a model predictive

controller (MPC) for controlling combustion phasing and engine load (IMEP) in the

RCCI engine. Furthermore, a strategy to select between PR and SOI as control

variables is also designed.
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5.1 Development of MIMO COM and Model Lin-

earization

As discussed previously in Chapter 4 a simplified COM for CA50 was developed. In

order to fully define the plant model, the IMEP is added as a new state. To remove

plant model complexity Trg is removed from plant states. Thus the states of the

MIMO COM are defined as:

1. Crank angle for 50% fuel mass fraction burned (CA50)

2. Temperature at Start of Combustion (Tsoc)

3. Pressure at Start of Combustion (Psoc)

4. Indicated Mean Effective Pressure (IMEP )

These states are then expressed as a function of the states of the previous cycle and

thus can be expressed in state space form as shown in Equation (5.1)

Xk+1 = A.Xk +B.Uk (5.1)

and

Yk+1 = C.Xk+1 +D.Uk+1 (5.2)
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where,

X =
[
CA50 Tsoc Psoc IMEP

]T
(5.3)

U =
[
SOI FQ

]T
or U =

[
PR FQ

]T
(5.4)

Y =
[
CA50 IMEP

]T
(5.5)

This state space plant model is linearized around a nominal operating point. The

operating conditions of the linearization point are given in Table 5.1.

Table 5.1
Operating conditions for the point used to linearize the MIMO COM

Parameter Value

CA50 (CAD aTDC) 8

Tsoc (K) 777.7

Psoc (kPa) 1828.4

IMEP (kPa) 620

FQ (mg/cycle) 22.89

SOI (CAD bTDC) 40.4

PR (-) 20

Tin (K) 333.1

Pman (kPa) 96.5
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The linearization yields the following plant matrices:

A =



−0.1193 −0.01442 0.005329 0.007647

0.6055 0.07319 −0.02705 −0.03881

−0.9355 −0.1131 0.04179 0.05997

−0.7149 −0.06431 0.03193 −0.04349


(5.6)

B =

−0.4165 −0.3448 −3.267 2.259

−0.3176 1.871 −2.491 28.39


T

(5.7)

C =

1 0 0 0

0 0 0 1

 D =

0 0

0 0

 (5.8)

5.2 Model Predictive Controller (MPC) Design

A 5-step prediction MPC is developed to control CA50 and IMEP. Control of IMEP

is done by using the total fuel quantity (FQ) as the control variable. On the other

hand, CA50 control is achieved by adjusting either SOI or PR. A strategy developed

by Arora [43] is used to determine whether SOI or PR should be used as the control

variable. In this section, initially separate controllers with PR and SOI as control

variables are developed, simulated and validated on the experimental setup. Then, a

unified control strategy is developed for MIMO MPC for the RCCI engine.
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5.2.1 Controller Design

One of the major advantages of MPC is the ability to include state constrains and

control actuator constraints. in the controller formulation. MPC is based on real-

time iterative optimization of a plant model [84]. The model is optimized over a finite

number of time steps and a control strategy is decided based on the optimization

results. This finite number of time steps is called prediction horizon. Only the first

step of the optimization strategy is implemented at the current time step and the

entire optimization process is repeated for the next time step. Since the prediction

horizon keeps shifting forward in time, MPC is also known as receding horizon control.

MPC requires fore-knowledge of the reference input over the prediction horizon.

Based on this fore-knowledge, the states of the system over the prediction horizon are

calculated. Thus the predictive control output can be defined as [84]:

Yk = F.Xk + φ.Uk (5.9)

where,

Yk =
[
y(ki + 1|ki) y(ki + 2|ki) y(ki + 3|ki) y(ki + 4|ki) y(ki + 5|ki)

]T
(5.10)
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F =



CA

CA2

CA3

CA4

CA5



;φ =



CB 0 0 0 0

CAB CB 0 0 0

CA2B CAB CB 0 0

CA3B CA2B CAB CB 0

CA5 CA3B CA2B CAB CB



(5.11)

y(ki +N |ki) is defined as the i+N th step prediction at step i. We can define the cost

function as follows

J =
N∑
i=1

[(Ψi − Yi)TQ(Ψi − Yi) + UT
i RUi] (5.12)

Where Ψ is the vector of the reference inputs over the prediction horizon and Q and

R are weights on the reference tracking and the control variable, respectively. The

optimal solution to this cost function is given by [84]:

U = (ΦTQΦ +R)−1ΦTQ(Ψ− FXk) (5.13)

To prevent the control variable from being set to values outside the safe operation

limits of the engine, we impose amplitude constraints onto the control variable. Thus

the optimal solution is subject to constraints and hence it can be expressed as a

quadratic programming problem in terms of U as

J = 1
2U

TEU + UTH (5.14)
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subject to the constraints

AconsU 6 Bcons (5.15)

where

E = (ΦTQΦ +R); H = ΦTQ(Ψ− FXk) (5.16)

and

Acons =

 1 0 0 0 0

−1 0 0 0 0

 ; Bcons =

Umax − u(ki − 1)

Umin + u(ki − 1)

 (5.17)

5.2.2 Tracking Performance

Figure 5.1 shows the simulation results for a MIMO MPC with PR and FQ as the

control variables. The results show that the controller is able to track both CA50 and

IMEP satisfactorily. A measurement noise is added to the output of CA50 and IMEP

to test the controller response to experimental noise. In the experimental results

shown in Figure 5.2 a simultaneous step of CA50 and IMEP is given. Due to cyclic

variability and measurement noise we get an average tracking error of 1.1 CAD in

CA50 and an error of 23.6 kPa in the IMEP results.

Figure 5.3 shows the simulation results for a MIMO MPC with SOI and FQ as the

control variables. The results show that the controller is able to track both CA50

and IMEP satisfactorily when a simultaneous step is given to both CA50 and IMEP.
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Figure 5.1: Simulation results for CA50 and IMEP control using PR and FQ as control
variables. Operating conditions: SOI= 45 CAD bTDC, Tin= 333.1 K at 1000 RPM.
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Figure 5.2: Experimental results for CA50 and IMEP control using PR and FQ as control
variables. Operating conditions: SOI= 45 CAD bTDC, Tin= 333.1 K at 1000 RPM.

Figure 5.4 shows the experimental results for MIMO MPC with SOI and FQ as the

control variables. Due to cyclic variability and measurement noise we get an average

tracking error of 0.9 CAD in CA50 and an average error of 26.2 kPa in the IMEP
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tracking results.
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Figure 5.3: Simulation results for CA50 and IMEP control using SOI and FQ as control
variables. Operating conditions: PR= 20, Tin= 333.1 K at 1000 RPM.
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Figure 5.4: Experimental results for CA50 and IMEP control using SOI and FQ as control
variables. Operating conditions: PR= 20, Tin= 333.1 K at 1000 RPM.
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5.3 Switched MPC controllers

In Section 5.2.2, a MIMO MPC with SOI as the control variable was discussed.

However this single MPC is only able to track the reference input in a small region

around the nominal operating point. If we change operating region by changing

parameters such as engine RPM, intake temperature or PR the controller performance

degrades drastically. Figure 5.5 shows the effect of changing the operating region by
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Figure 5.5: Experimental results of a SISO MPC at varying PR values, Tin=333.1 K at
1000 RPM

changing the PR on a single MPC. The MPC has been designed at PR20 and it is not

able to track the CA50 when the PR is changed to 0 or 40. To increase the operating

range of the controller, multiple MPCs can be designed. A scheduling parameter is

selected which acts as a switch between multiple MPC controllers when the operating
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region changes.

Thus a set of MPCs is designed with PR as the scheduling variable. Table 5.2 gives

the operating range of each MPC.

Table 5.2
Operating range of individual controllers in switched MPC setup.

Controller Name PR range

MPC1 5 < PR < 15

MPC2 16 < PR < 25

MPC3 26 < PR < 35

MPC4 36 < PR < 45

Figure 5.6 shows the experimental results of using switched MPCs with PR as the

scheduling variable. The CA50 and IMEP are kept constant at 9 CAD aTDC and

600 kPa, respectively, while multiple step inputs are given on the PR. The controller

is able to track the reference CA50 and IMEP over a wide range of PR ranging from

5 to 45. For instance when the PR is changed from 12 to 40 (between cycles 250 and

300), the operating region changes and control switches from MPC1 to MPC4. Due

to cyclic variability and measurement noise, there is an average error of 1.3 CAD in

CA50 and 23.8 kPa in IMEP tracking.
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Figure 5.6: Experimental results for maintaining optimum CA50 and desired IMEP by
using switched MPCs using PR as a scheduling variable, Tin=333.1 K at 1000 RPM

5.4 Sensitivity Based Controller Design

To decide whether PR or SOI should be used as the variable for CA50 control, a PR

sweep for different values of SOI is conducted at constant engine speeds and intake

conditions. The results of this sweep can be seen in Figure 5.7. We can observe from

Figure 5.7, in the region marked with R1, CA50 is more sensitive to changes in PR

and using PR as the control variable will result in a more effective way to control

CA50, compared to using SOI. Similarly in the region marked with R2, the CA50 is

more sensitive o changes in the SOI and using SOI as a control variable will be more

80



effective than PR. Thus a sensitivity factor is defined in Equation (5.18) which is used

to select between PR or SOI control. If SSOI > SPR then SCA50
SOI = 1 and SCA50

PR = 0;

thus, SOI will be selected as the control variable and vice versa.

Figure 5.7: SOI and PR sweeps at Tin = 60◦C at 1000 RPM at naturally aspirated
conditions. Experimental data points are shown by dot symbols.

SSOI = dCA50
dSOI

SOI

CA50 (5.18)

SPR = dCA50
dPR

PR

CA50 (5.19)
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Figure 5.8: Schematic of the designed sensitivity based switched MPC controller for
adjusting RCCI combustion phasing (CA50) and load (IMEP)
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The entire controller structure can be summarized as shown in Figure 5.8. The

maximum thermal efficiency, maximum allowable pressure rise rate, allowable peak

in-cylinder pressure, and combustion stability (COVIMEP ) were all considered while

making the engine map which is part of the designed controller structure. Based on

the current load and speed requirements, the engine map will provide feed-forward

values of PR, SOI and CA50. Based on the sensitivity values, either SOI or PR

control will be utilized. Next, switched MPC controllers will adjust CA50 and IMEP

to desired values. In addition, a feed-forward fuel compensator was included in the

control structure to account for the lag caused by fuel dynamics through PFI injec-

tions. The transfer fucntion of the compensator was chosen as the inverse of the fuel

dynamics model (x− τf ) developed in Section 3.6 [85].

G(s) = 1 + τf (1− x)s
1 + τfs

(5.20)

This compensator affects only transient response of the system.

5.4.1 Tracking Performance

First, the controller shown in Figure 5.8 is tested on the dynamic model from Chapter

3. A load step is given while the CA50 is held constant at 8 CAD aTDC. Measurement

noise is added to the dynamic model to test the effect of noise on the controller.

83



Figure 5.9: Simulation tracking results of the designed sensitivity based MPC, Tin= 333.1
K at 1000 RPM

Figure 5.9 shows that the controller is able to track CA50 and IMEP closely. At

low load the CA50 is more sensitive to SOI hence the SOI based MPC is active. At

the high load conditions, the PR controls gets activated. The controller is tested on

the experimental setup with constant engine speed, intake temperature and pressure.

The results are shown in Figure 5.10. The controller is able to track the combustion

phasing and load closely with an average tracking error of 1.2 CAD in CA50 and 15.5
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Figure 5.10: Experimental tracking results of the designed sensitivity based switched
MPC, Tin=313.1 K at 1000 RPM

kPa in IMEP.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

An experimental and simulation study was conducted to design optimal model-based

RCCI engine controllers. Major contributions/findings from this thesis are summa-

rized in the following:

† Mean Value Models were developed for predicting CA50 and SOC. The Modified

Knock Integral Model (MKIM) is able predict SOC with an average error of 1.9

CAD. The new modified Weibe model is able to predict the CA50 with an

average error of 1 CAD.
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† A physics based dynamic RCCI model was developed by incorporating the

MVMs to predict CA50 and SOC along with other physics based equations.

Cycle-to-cycle residual gas thermal coupling was modeled and a new model was

developed to estimate IMEP. The dynamic RCCI model was then validated for

transient operations including PR, SOI and FQ step changes. The experimen-

tal validation results show that the developed model can predict cycle-to-cycle

CA50 and IMEP with average errors of 2.6 CAD and 43 kPa, respectively.

† The dynamic model was simplified and converted into state space form, Next,

a single input single output Linear Quadratic Integral controller was developed.

The LQI controller used SOI as the control input to control CA50 and had dis-

turbance rejection capability to enable the the controller operation over a range

of PR. A state observer was designed to estimate the non-measurable states of

the system. The controller was tested out on the RCCi engine experimental

setup. The controller was able to track the desired CA50 with an average error

of 1.6 CAD. The controller was also able to reject the disturbance input PR

and maintain the desired CA50.

† A multi input multi output MPC with a 5-cycle prediction horizon was devel-

oped to control both CA50 and IMEP. The MPC was tested out initially on

the dynamic model using PR as the control input and then using SOI as the

control input. The controller was then tested out on the experimental RCCI

engine. The average errors for tracking CA50 and IMEP were found to be 1.1
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CAD and 23.6 kPa when PR was used as the control input and 0.9 CAD and

26.2 kPa when SOI was used as the control input.

† The designed MPC could only work in a small operating region around the nom-

inal operating point; thus switched MPC controllers were designed for different

operating regions. PR was selected as the scheduling variable for switching be-

tween the MPC controllers. The experimental results showed that the controller

is successfully able to maintain the desired CA50 and reach the required IMEP

when the operating region changes.

† A sensitivity-based control strategy was developed in order to select between PR

and SOI as the control variable to adjust CA50. An engine map was developed

to decide the optimal operating point. Based on the sensitivity of CA50 at that

operating point, a selection between PR or SOI control was made. Experimental

results of the sensitivity based controller showed that the controller was able to

track CA50 and IMEP over a wide RCCI operating range.

6.2 Future Work

Building upon the findings from this thesis, the following research avenues can be

investigated to further improve the outcomes from this thesis:
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† Since the dynamic model is non-linear, a non linear model based controller could

be used to get better tracking results, though computational cost needs to be

taken into account. Adaptive MPC controllers could be designed by using online

model estimation or by developing Linear parametric varying (LPV) models for

the RCCI engine.

† By incorporating exhaust gas thermofluid dynamics, the MPC could be ex-

tended to control exhaust gas temperature. This could be useful for maintain-

ing the light-off temperatures of catalytic converters used for oxidizing tailpipe

UHC and CO emissions.

† The MPC controller can be extended to control COV of IMEP. This can lead

to a wider operating range of RCCI combustion. By controlling CA50 during

transient operation while switching combustion modes, it is possible to extend

the operating range even further.

† Increasing the compression ratio could lead to a wider operating range of the

RCCI engine. This can be done by the newly designed pistons [46] for the

engine.

† The RCCI controllers could be extended to include all the four engine cylinders

in order to minimize cylinder-to-cylinder variability.
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Appendix A

Experimental Data for Model

Parameterization

A.1 Data used for Parameterizing the Mean Value

Models
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A.2 Data used for Validating the Mean Value

Models
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Appendix B

Injector Calibration

B.1 DI rail calibration

Figure B.1 shows the calibration of DI rail. The engine was run at 1000 rpm and fuel

was injected at an injection pressure of 100 bar for injection durations varying from

1ms to 5ms. The fuel consumption data for 100 cycles was recorded and averaged out

to calculate the fuel consumed per cycle. The data was plotted against the injection

duration and a linear fit was conducted to get the gain and offset values.
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Figure B.1: Calibration of DI rail

B.2 PFI rail calibration

Figure B.2 shows the calibration of PFI rail running iso-octane fuel to the intake man-

ifold. The engine was run at 1000 rpm and fuel was injected at an injection pressure

of 3 bar for injection durations varying from 1ms to 10 ms. The fuel consumption

data for 100 cycles was recorded and averaged out to calculate the fuel consumed

per cycle. The data was plotted against the injection duration and a linear fit was

conducted to get the gain and offset values.
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Figure B.2: Calibration of PFI rail
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Appendix C

Calibration sheet for DI fuel

injector

114



Figure C.1: Calibration certificate of piezoelectric pressure transducer
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Appendix D

Summary of Program and Data

Files

D.1 Chapter 1

Table D.1
Figure Files

File name File Description

LTC comparison new.png Figure1.2

Lit review RCCI.eps Figure1.3

CLCC RCCI litreview.eps Figure1.4

Thesis Organization.eps Figure1.5
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Table D.2
Visio Files

File name File Description

Lit review RCCI.vsd Figure1.3

CLCC RCCI litreview.vsd Figure1.4

Thesis Organization.vsd Figure1.5

D.2 Chapter 2

Table D.3
Figure Files

File name File Description

LTC Engine Setup.eps Figure2.1

ECU setup.eps Figure2.2

Table D.4
Visio Files

File name File Description

LTC Engine Setup.vsdx Figure2.1

ECU Setup.vsdx Figure2.2
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D.3 Chapter 3

Table D.5
Figure Files

File name File Description

Autoignition litreview MVM.eps Figure3.1

SOC pred.fig Figure3.2

SOC val.fig Figure3.3

CA50 pred.fig Figure3.4

CA50 val.fig Figure3.5

DynamicModelSchematic.eps Figure3.6

IMEP val.fig Figure3.7

Fuel dyn PR0.eps Figure3.8

Fuel dyn PR20.fig Figure3.9

Fuel dyn PR40.fig Figure3.10

DynModel VAl PR.fig Figure3.11

DynModel VAl SOI.fig Figure3.12

DynModel VAl FQ.fig Figure3.13
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Table D.6
Visio Files

File name File Description

Autoignition lit review MVM.vsd Figure3.1

DynamicModelSchematic.vsd Figure3.6
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Table D.7
Matlab/Simulink Files

File name File Description

MVM val plots.m M-file for plotting estimation and valida-

tion Figures 3.2 3.3 3.4 3.5 3.7 of MVM.

Model pred val FPGA.m M-file for estimation and validation of

MKIM and CA50 models using steady-

state data. The file uses the experimental

data from RCCI T60 param.xls file.

RCCI dyn 60.m M-file containing the detailed physical

model

Dynamic model.slx Simulink file used for validating the dy-

namic model. Requires RCCI dyn 60.m

to run.

dyn plots.m M-file used to plot transient validation

Figures 3.11 3.12 3.13 for the dynamic

model.

Fuel comp.m M-file containing script used for estimat-

ing fuel transport model parameters and

for plotting Figures 3.8 3.9 3.10

Data analysis akshat.m m-code for saving raw data into .mat file

RCCI T60 data new.xlsx Excel file containing data
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Table D.8
Matlab Workspace Files

File name File Description

FPGA param T60 data.mat Matlab workspace file containing data

points used for parameterization and val-

idation of MVMs

FQ TR.mat File containing experimental data point

used for validating dynamic model for

varying FQ

PR TR.mat File containing experimental data point

used for validating dynamic model for

varying PR

SOI TR.mat File containing experimental data point

used for validating dynamic model for

varying SOI
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D.4 Chapter 4

Table D.9
Figure Files

File name File Description

nlfit.fig Figure4.1

nonlin val.fig Figure4.2

Control Model Schematic.eps Figure4.3

observer val.fig Figure4.4

LQI sim.fig Figure4.5

LQI tracking.fig Figure4.6

dist rej sim.fig Figure4.7

dist rej exp.fig Figure4.8

Table D.10
Visio Files

File name File Description

Control Model Schematic.vsdx Figure4.3
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Table D.11
Matlab/Simulink Files

File name File Description

LinearizationTest.slx Simulink file to covert simplified

model into state space form. Requires

RCCI dyn nonlin SISO.m to run

RCCI dyn nonlin SISO.m M-file containing simplified dynamic

model.

CA50 nonlin val plot.m M-file used to develop simplified fit for

CA50

LQI implementation.m Simulink file for simulating LQI controller.

Requires RCCI dyn 60 to run.

Table D.12
Matlab Workspace Files

File name File Description

Control Transient 527.mat LQI experimental result data file

Control Transient 542.mat Disturbance rejection experimental result

file
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D.5 Chapter 5

Table D.13
Figure Files

File name File Description

MPC PR val.fig Figure5.1

PR MPC exp.fig Figure5.2

MPC SOI val.fig Figure5.3

SOI MPC exp.fig Figure5.4

single MPC multi PR.fig Figure5.5

Switched MPC exp plot.fig Figure5.6

sens map.eps Figure5.7

MPC Control Struct.eps Figure5.8

sens based MPC.fig Figure5.9

Sens based exp.fig Figure5.10

Table D.14
Visio Files

File name File Description

MPC Control Model Schematic.vsdx Figure5.8

125



Table D.15
Matlab/Simulink Files

File name File Description

MPC 1 PR.slx Simulink file for MPC control with PR

and FQ as control variable.

MPC 1 SOI.slx Simulink file for MPC control with SOI

and FQ as control variable.

Switched MIMO.slx Simulink file for switched MPC control

Sensitivity MPC.slx Simulink file for sensitivity based MPC

control.

Table D.16
Matlab Workspace Files

File name File Description

Control Transient 513.mat Experimental result data file for Figure

5.4

Control Transient 516.mat Experimental result data file for Figure

5.10

Control Transient 519.mat Experimental result data file for Figure

5.6

Control Transient 521.mat Experimental result data file for Figure

5.2
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D.6 dSpace Files

Table D.17
dSpace Files

File name File Description

Allengine68.slx Simulink file used for controller implementation on

dSpace MABX

Allengine68.ppc Compiled object file for execution on the DS1104

HCCI SI Switch.lay Layout file for control desk experiment

allengine68.sdf System description file

Allengine68.trc Variable description file

PR 10.mat Data file for toolbox MPC. Needs to be loaded into

workspace while building model

PR 20.mat Data file for toolbox MPC. Needs to be loaded into

workspace while building model

PR 30.mat Data file for toolbox MPC. Needs to be loaded into

workspace while building model

PR 40.mat Data file for toolbox MPC. Needs to be loaded into

workspace while building model
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Appendix E

Letter of Permission

Letter of permission for Figure 1.2

Figure E.1: Letter of Permission
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