
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2017 

AN ALGORITHM FOR RECONSTRUCTING THREE-DIMENSIONAL AN ALGORITHM FOR RECONSTRUCTING THREE-DIMENSIONAL 

IMAGES FROM OVERLAPPING TWO-DIMENSIONAL INTENSITY IMAGES FROM OVERLAPPING TWO-DIMENSIONAL INTENSITY 

MEASUREMENTS WITH RELAXED CAMERA POSITIONING MEASUREMENTS WITH RELAXED CAMERA POSITIONING 

REQUIREMENTS, WITH APPLICATION TO ADDITIVE REQUIREMENTS, WITH APPLICATION TO ADDITIVE 

MANUFACTURING MANUFACTURING 

Siranee Nuchitprasitchai 
snuchitp@mtu.edu 

Copyright 2017 Siranee Nuchitprasitchai 

Recommended Citation Recommended Citation 
Nuchitprasitchai, Siranee, "AN ALGORITHM FOR RECONSTRUCTING THREE-DIMENSIONAL IMAGES 
FROM OVERLAPPING TWO-DIMENSIONAL INTENSITY MEASUREMENTS WITH RELAXED CAMERA 
POSITIONING REQUIREMENTS, WITH APPLICATION TO ADDITIVE MANUFACTURING", Open Access 
Dissertation, Michigan Technological University, 2017. 
https://digitalcommons.mtu.edu/etdr/450 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Other Computer Engineering Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.mtu.edu%2Fetdr%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

 

AN ALGORITHM FOR RECONSTRUCTING THREE-DIMENSIONAL IMAGES 

FROM OVERLAPPING TWO-DIMENSIONAL INTENSITY MEASUREMENTS 

WITH RELAXED CAMERA POSITIONING REQUIREMENTS, WITH 

APPLICATION TO ADDITIVE MANUFACTURING 

 

By 

Siranee Nuchitprasitchai 

 

 

 

A DISSERTATION 

Submitted in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

In Computer Engineering 

 

MICHIGAN TECHNOLOGICAL UNIVERSITY 

2017 

 

© 2017 Siranee Nuchitprasitchai



 

 

This dissertation has been approved in partial fulfillment of the requirements for the Degree 

of DOCTOR OF PHILOSOPHY in Computer Engineering. 

 

Department of Electrical and Computer Engineering 

 

 Dissertation Advisor: Dr. Michael C. Roggemann 

 Committee Member: Dr. Timothy C. Havens 

       Committee Member: Dr. Jeremy P. Bos 

       Committee Member: Dr. Joshua M. Pearce 

 

 

 Department Chair: Dr. Daniel R. Fuhrmann 

 

 

 

 

 

 



 

iii 

 

Contents 

List of Figures ................................................................................................................... vii 

List of Tables ................................................................................................................... xiii 

Preface.............................................................................................................................. xvi 

Acknowledgement ......................................................................................................... xviii 

Abstract ............................................................................................................................ xix 

Chapter 1: Introduction ....................................................................................................... 1 

1.1 Motivation ............................................................................................................ 1 

1.2 Camera Model ...................................................................................................... 3 

1.3 Stereo Reconstruction in the Simplified Epipolar Geometry ............................... 5 

1.4 Scale Invariant Feature Transform (SIFT) ........................................................... 7 

1.5 RANdom SAmple Consensus (RANSAC) ........................................................ 11 

1.6 Approach ............................................................................................................ 12 

1.7 Summary of Key Results.................................................................................... 13 

1.8 Organization ....................................................................................................... 14 

1.9 References .......................................................................................................... 15 

Chapter 2: An Algorithm for Reconstructing Three Dimensional Images from 

Overlapping Two-Dimensional Intensity Measurements with Relaxed Camera 

Positioning Requirements ................................................................................................. 19 

2.1 Abstract .............................................................................................................. 19 



 

iv 

 

2.2 Introduction ........................................................................................................ 20 

2.3 Image Preparation and Triangulation-Based Geometric 3-D Reconstruction ... 22 

2.3.1 Image Rescaling and Rectification ............................................................. 22 

2.3.2 Sum of Absolute Difference Algorithm ...................................................... 25 

2.3.3 Depth of Triangulation ................................................................................ 26 

2.4 Experimental Results.......................................................................................... 31 

2.5 Conclusions ........................................................................................................ 40 

2.6 References .......................................................................................................... 40 

Chapter 3: Factors Effecting Real Time Optical Monitoring of Fused Filament 3-D 

printing .............................................................................................................................. 43 

3.1 Abstract .............................................................................................................. 43 

3.2 Introduction ........................................................................................................ 43 

3.3 Methods .............................................................................................................. 47 

3.3.1 Single Camera Setup ................................................................................... 50 

3.3.2 Two Camera Setup ...................................................................................... 52 

3.3.3 Validation .................................................................................................... 52 

3.4 Results ................................................................................................................ 55 

3.5 Discussion .......................................................................................................... 65 

3.6 Conclusions ........................................................................................................ 68 

3.7 References .......................................................................................................... 69 



 

v 

 

Chapter 4: An Open Source Algorithm for Reconstructing 2-D Images of 3-D Objects 

being Fabricated for Low-cost, Reliable Real-Time Monitoring of FFF-Based 3-D 

Printing .............................................................................................................................. 74 

4.1 Abstract .............................................................................................................. 74 

4.2 Introduction ........................................................................................................ 75 

4.3 Method ............................................................................................................... 77 

4.4 Results ................................................................................................................ 83 

4.4.1 The Normal State of Filament Condition.................................................... 86 

4.4.2 The Failure State of Filament Condition .................................................... 87 

4.5 Discussion .......................................................................................................... 89 

4.6 Conclusions ........................................................................................................ 91 

4.7 References .......................................................................................................... 91 

Chapter 5: 360 Degree Real-Time Monitoring of 3-D Printing Using Computer Analysis 

of Two Camera Views ...................................................................................................... 97 

5.1 Abstract .............................................................................................................. 97 

5.2 Introduction ........................................................................................................ 98 

5.3 Method ............................................................................................................. 101 

5.3.1 Experimental Equipment .......................................................................... 101 

5.3.2 Theory ....................................................................................................... 104 

5.3.3 Experiments .............................................................................................. 112 



 

vi 

 

5.3.4 Validation .................................................................................................. 115 

5.4 Results .............................................................................................................. 115 

5.4.1 Image Pre-Processing................................................................................ 116 

5.4.2 Error Detection.......................................................................................... 123 

5.5 Discussion ........................................................................................................ 136 

5.6 Conclusions ...................................................................................................... 139 

5.7 References ........................................................................................................ 140 

Chapter 6: Conclusions and Future Work ....................................................................... 147 

6.1 Conclusions ...................................................................................................... 147 

6.2 Suggestions for Future work ............................................................................ 148 

Appendix A: Supplementary Information for Chapter 2 ................................................ 149 

Appendix B: Supplementary Information for Chapter 4 ................................................ 155 

Appendix C: Supplementary Information for Chapter 5 ................................................ 158 

 

  



 

vii 

 

List of Figures 

Figure 1.1 Set up of two cameras for stereovision used in this study ................................. 3 

Figure 1.2 The equivalent of single thin lens camera geometry ......................................... 4 

Figure 1.3 Stereovision in the epipolar geometry ............................................................... 5 

Figure 1.4 Triangular geometry ........................................................................................ 13 

Figure 2.1 The equivalent of single thin lens camera geometry ....................................... 23 

Figure 2.2  Triangular geometry ....................................................................................... 24 

Figure 2.3  The relaxed camera positioning geometry ..................................................... 26 

Figure 2.4   Triangular geometry used in calculations after rotating the left camera ....... 28 

Figure 2.5  Height triangular geometry............................................................................. 30 

Figure 2.6  Four experiment setups from top view ........................................................... 32 

Figure 2.7   3-D pyramid image from different viewpoints .............................................. 33 

Figure 2.8   3-D jar image from different viewpoints ....................................................... 33 

Figure 2.9  Setup one: both cameras were parallel in the 𝑧-axis and the left camera was 

moved forward. ................................................................................................................. 35 

Figure 2.10  Setup two:  both cameras were parallel in the 𝑧-axis and the left camera was 

moved backward. .............................................................................................................. 36 

Figure 2.11  Setup three: the left camera was rotated 7 degrees clockwise around the 𝑦-

axis and was moved forward............................................................................................. 37 

Figure 2.12  Setup four: the left camera was rotated 4.5 degree clockwise around the 𝑦-

axis and was moved backward. ......................................................................................... 38 

Figure 3.1  MOST Delta printer with optical monitoring experimental setup.................. 49 



 

viii 

 

Figure 3.2  Rendering of STL models for testing:  a) tyrannosaurus rex skull, b) cube, c) 

twisted gear vase, d) rectangular prism, e) cylinder, and f) triangular prism ................... 49 

Figure 3.3  Error detection for single camera model flowchart ........................................ 51 

Figure 3.4  Error detection for two cameras model part 1 flowchart 1) checking 3-D 

object calculation, and 2) plotting stl file.......................................................................... 53 

Figure 3.5  Error detection for two cameras model part 2 flowchart. ............................... 54 

Figure 3.6  Original left and right image for different geometries with different color: a) 

tyrannosaurus rex skull (pink), b) cube (black), c) twisted gear vase (red), d) rectangular 

prism (red), e) cylinder (glow), and f) triangular prism (orange). .................................... 55 

Figure 3.7  Single camera setup with different geometries: a) tyrannosaurus rex skull 

(pink), b) cube (black), c) twisted gear vase (red), d) rectangular prism (red), e) cylinder 

(glow), and f) triangular prism (orange). .......................................................................... 57 

Figure 3.8  Single camera setup: error detection for different geometries between camera 

and STL image: a) skull model between 250 layers and full model, b) twisted gear vase 

model between 150 layers and full model, c) cube model between 150 layers and full 

model, d) rectangle model between 150 layers and 200 layers, e) cylinder model between 

150 layers and full model, and f) triangle model between 100 layers and full model ...... 59 

Figure 3.9  Tyrannosaurus rex skull (pink): a) width measurement and b) height 

measurement ..................................................................................................................... 62 

Figure 3.10  Twisted gear vase (red): a) width measurement and b) height measurement

........................................................................................................................................... 62 

Figure 3.11  Cube (black): a) width measurement and b) height measurement ............... 63 

Figure 3.12  Cylinder (glow): a) width measurement and b) height measurement .......... 63 



 

ix 

 

Figure 3.13  Triangle (orange): a) width measurement and b) height measurement ........ 64 

Figure 3.14  Rectangle (red): a) width measurement and b) height measurement. .......... 64 

Figure 4.1  MOST Delta printer experiment setup ........................................................... 78 

Figure 4.2  Light source circuit ......................................................................................... 79 

Figure 4.3  Slicing stl file flowchart ................................................................................. 80 

Figure 4.4  Gcode for pausing and moving the extruder to take the images .................... 81 

Figure 4.5  Rendering of STL models for testing ............................................................. 81 

Figure 4.6  Single camera error detection system flowchart ............................................ 84 

Figure 4.7  Full model from 1st, 2nd and 3rd camera: a) sun gear, b) prism, c) gear, and d) 

t55gear............................................................................................................................... 85 

Figure 4.8  The error detection (%) of normal state: a) sun gear, b) prism, c) gear, and d) 

t55gear............................................................................................................................... 86 

Figure 4.9  The computation time of normal state for four models .................................. 87 

Figure 4.10  The error detection (%) of failure state: a) sun gear, b) prism, c) gear, and d) 

t55gear............................................................................................................................... 88 

Figure 4.11  The computation time of failure state for four models ................................. 88 

Figure 5.1  MOST Delta printer experiment setup ......................................................... 103 

Figure 5.2  3-D reconstruction ........................................................................................ 103 

Figure 5.3  Light source circuit ....................................................................................... 104 

Figure 5.4  Logitech C525 webcam: a) webcam circuit board and body, and b) sensor of 

webcam ........................................................................................................................... 106 

Figure 5.5  Example of the checkerboard image ............................................................ 106 

Figure 5.6  Slicing stl file flowchart ............................................................................... 108 



 

x 

 

Figure 5.7  Python code for pausing and moving the extruder to take the images ......... 108 

Figure 5.8  Rendering of STL models for testing: a) sun gear, b) prism, c) gear, and d) 

t55gear............................................................................................................................. 109 

Figure 5.9  The error detection for double camera system flowchart ............................. 110 

Figure 5.10  The example of full model of sun gear image results from the first, the 

second and the third pair of cameras respectively: a-c) the images from the left camera, 

and d-f) the images from the right camera. ..................................................................... 116 

Figure 5.11  Image pre-processing - SIFT and RANSAC to rescale and rectification: the 

error detection of normal printing state for a) sun gear, b) prism, c) gear, and d) t55gear.

......................................................................................................................................... 117 

Figure 5.12  Image pre-processing - SIFT and RANSAC to rescale and rectification: the 

computational time of normal printing state for a) sun gear, b) Prism, c) gear, and d) 

t55gear............................................................................................................................. 118 

Figure 5.13  Image pre-processing - SIFT and RANSAC to rescale and rectification: the 

error detection of failure state for a) sun gear, b) Prism, c) gear, and d) t55gear. .......... 119 

Figure 5.14  Image pre-processing - SIFT and RANSAC to rescale and rectification: the 

computational time of failure state for a) sun gear, b) Prism, c) gear, and d) t55gear. .. 119 

Figure 5.15  Image pre-processing – Non-rescale and rectification: the error detection of 

normal printing state for a) sun gear, b) Prism, c) gear, and d) t55gear. ........................ 120 

Figure 5.16  Image pre-processing – Non-rescale and rectification: the computation time 

of normal printing state for a) sun gear, b) prism, c) gear, and d) t55gear. .................... 121 

Figure 5.17  Image pre-processing – Non-rescale and rectification: the error detection of 

failure state for a) sun gear, b) prism, c) gear, and d) t55gear. ....................................... 122 



 

xi 

 

Figure 5.18  Image pre-processing – Non-rescale and rectification: the computation time 

of failure state for a) sun gear, b) prism, c) gear, and d) t55gear. ................................... 122 

Figure 5.19  Error detection – Horizontal magnitude: the error detection of normal 

printing state for a) sun gear, b) Prism, c) gear, and d) t55gear. ..................................... 124 

Figure 5.20  Error detection – Horizontal magnitude: the computation time of normal 

printing state for a) sun gear, b) Prism, c) gear, and d) t55gear. ..................................... 124 

Figure 5.21  Error detection – Horizontal and vertical magnitude: the computation time of 

failure state for a) sun gear, b) Prism, c) gear, and d) t55gear. ....................................... 125 

Figure 5.22  Summary of image pre-processing: the error detection of normal printing 

state for a) sun gear, b) prism, c) gear, and d) t55gear. .................................................. 127 

Figure 5.23  Summary of image pre-processing: the computation time of normal printing 

state for a) sun gear, b) prism, c) gear, and d) t55gear. .................................................. 128 

Figure 5.24  Summary of image pre-processing: the error detection of failure state for a) 

sun gear, b) prism, c) gear, and d) t55gear...................................................................... 129 

Figure 5.25  Summary of image pre-processing: the computation time of failure state for 

a) sun gear, b) prism, c) gear, and d) t55gear. ................................................................ 130 

Figure 5.26  Summary of error detection: the error detection of normal printing state for 

a) sun gear, b) prism, c) gear, and d) t55gear. ................................................................ 132 

Figure 5.27  Summary of error detection: the computation time of normal printing state 

for a) sun gear, b) prism, c) gear, and d) t55gear. ........................................................... 133 

Figure 5.28  Summary of error detection: the error detection of failure state for a) sun 

gear, b) prism, c) gear, and d) t55gear. ........................................................................... 134 



 

xii 

 

Figure 5.29  Summary of error detection: the computation time of failure state for a) sun 

gear, b) prism, c) gear, and d) t55gear. ........................................................................... 135 

Figure A.1  Before rescaling the image .......................................................................... 149 

Figure A.2  An example of one matching point between the left and the right image ... 149 

Figure A.3  The difference between a pair of matching points ...................................... 150 

Figure A.4 Matching points for rescale after using SIFT ............................................... 152 

Figure A.5  After rescaling the image ............................................................................. 152 

Figure A.6  The difference in 𝑦-coordinates between the left and the right images ...... 153 

Figure A.7  Matching points for rectification after re-running the SIFT ........................ 153 

Figure A.8  After rectifying the image............................................................................ 154 

Figure C.1 Full model of sun gear image ....................................................................... 158 

Figure C.2 Full model of prism image ............................................................................ 159 

Figure C.3 Full model of gear image .............................................................................. 159 

Figure C.4 Full model of t55gear image ......................................................................... 160 

Figure C.5 3-D reconstruction of sun gear model: a) first pair of cameras, b)second pair 

of cameras, and c) third pair of cameras ......................................................................... 161 

Figure C.6 3-D reconstruction of prism model: a) first pair of cameras, b)second pair of 

cameras, and c) third pair of cameras ............................................................................. 162 

Figure C.7 3-D reconstruction of gear model: a) first pair of cameras, b)second pair of 

cameras, and c) third pair of cameras ............................................................................. 163 

Figure C.8 3-D reconstruction of t55gear model: a) first pair of cameras, b)second pair of 

cameras, and c) third pair of cameras ............................................................................. 164 

 



 

xiii 

 

List of Tables 

Table 2.1 The error values between the actual object size and the 3-D image size (unit: 

cm) .................................................................................................................................... 39 

Table 2.2 Qualitative results for the 3-D images for all cases (unit:cm) .......................... 40 

Table 3.1 Single camera: error measurements for each geometry (W: Width, H: Height)

........................................................................................................................................... 56 

Table 3.2 Single camera: example for error measurements when the printings fail in 

different layer heights ....................................................................................................... 56 

Table 3.3 Error measurements for complete project for each geometries with different 

color ( W is Width and H is Height) ................................................................................. 61 

Table 3.4 Error measurements for complete printing each tested geometry (W: Width, H: 

Height) of two cameras (size error) and single camera (shape error) ............................... 68 

Table B.1 Single camera error detection data for sun gear: Normal state ...................... 155 

Table B.2 Single camera error detection data for Prizm: Normal state .......................... 155 

Table B.3 Single camera error detection data for gear: Normal state ............................. 155 

Table B.4 Single camera error detection data for t55gear: Normal state........................ 156 

Table B.5 Single camera error detection data for Sun gear: Failure state ...................... 156 

Table B.6 Single camera error detection data for Prizm: Failure state ........................... 156 

Table B.7 Single camera error detection data for gear: Failure state .............................. 156 

Table B.8 Single camera error detection data for t55gear: Failure state ........................ 157 

Table C.1 Double camera error detection data for sun gear: Normal Printing State ...... 165 

Table C.2 Double camera error detection data for prism: Normal Printing State .......... 165 

Table C.3 Double camera error detection data for gear: Normal Printing State ............. 166 



 

xiv 

 

Table C.4 Double camera error detection data for t55gear: Normal Printing State ....... 166 

Table C.5 Double camera error detection data for sun gear: Failure State ..................... 167 

Table C.6 Double camera error detection data for prism: Failure State ......................... 167 

Table C.7 Double camera error detection data for gear: Failure State ........................... 168 

Table C.8 Double camera error detection data for t55gear: Failure State ...................... 168 

Table C.9 Double camera error detection data for sun gear: Normal Printing State ...... 169 

Table C.10 Double camera error detection data for prism: Normal Printing State ........ 169 

Table C.11 Double camera error detection data for gear: Normal Printing State........... 170 

Table C.12 Double camera error detection data for t55gear: Normal Printing State ..... 170 

Table C.13 Double camera error detection data for sun gear: Failure State ................... 171 

Table C.14 Double camera error detection data for prism: Failure State ....................... 171 

Table C.15 Double camera error detection data for gear: Failure State ......................... 172 

Table C.16 Double camera error detection data for t55gear: Failure State .................... 172 

Table C.17 Double camera error detection data for sun gear: Normal Printing State .... 173 

Table C.18 Double camera error detection data for prism: Normal Printing State ........ 173 

Table C.19 Double camera error detection data for gear: Normal Printing State........... 174 

Table C.20 Double camera error detection data for t55gear: Normal Printing State ..... 174 

Table C.21 Double camera error detection data for sun gear: Failure State ................... 175 

Table C.22 Double camera error detection data for prism: Failure State ....................... 175 

Table C.23 Double camera error detection data for gear: Failure State ......................... 176 

Table C.24 Double camera error detection data for t55gear: Failure State .................... 176 

Table C.25 Double camera error detection data for sun gear: Normal Printing State .... 177 

Table C.26 Double camera error detection data for prism: Normal Printing State ........ 177 



 

xv 

 

Table C.27 Double camera error detection data for gear: Normal Printing State........... 178 

Table C.28 Double camera error detection data for t55gear: Normal Printing State ..... 178 

Table C.29 Double camera error detection data for sun gear: Failure State ................... 179 

Table C.30 Double camera error detection data for prism: Failure State ....................... 179 

Table C.31 Double camera error detection data for gear: Failure State ......................... 180 

Table C.32 Double camera error detection data for t55gear: Failure State .................... 180 

 

  



 

xvi 

 

Preface 

This dissertation contains published, submitted, or to be submitted journal articles by the 

author of this dissertation. The overarching goal of this work was to develop, test, and 

experimentally evaluate measurement and processing techniques for reconstructing three-

dimensional object estimates from sets of two dimensional images using inexpensive 

cameras which could not be located in the geometry used in conventional stereo image 

reconstruction.  The original interest was to apply this work in surveillance activities, but 

as the project advanced an opportunity to apply this work to monitoring the evolution of 

object fabrication inside three dimensional printers arose. Three-dimensional printing is an 

appropriate application for this work due to the fact that many sources of error exist in a 

three-dimensional printer including errors in locating the print head and the dimensional 

instability of the materials used.  The physical arrangement of a three-dimensional printer 

prevents conventional stereo imaging camera placement, and hence the algorithms 

developed here provide an appropriate solution to this problem.  Four journal articles were 

developed from this work.  The first one is in print, and the remaining three are submitted 

and in review at the time of this writing. They are listed below: 

Chapter 2: Siranee Nuchitprasitchai, Michael C. Roggemann, and Timothy C. Havens. An 

Algorithm for Reconstructing Three Dimensional Images from Overlapping Two-

Dimensional Intensity Measurements with Relaxed Camera Positioning Requirements. 

IJMER, 6(9):69–81. Available online September 2016. S.N. wrote the algorithm, performed 

all experiments and analyzed the results. M.R. and T.H. formulated the project and assisted 

on the analysis. All authors co-wrote and edited the manuscript. 



 

xvii 

 

Chapter 3: Siranee Nuchitprasitchai, Michael C. Roggemann, and Joshua M. Pearce. 

Factors Effecting Real Time Optical Monitoring of Fused Filament 3-D Printing (to be 

published). S.N. wrote the algorithm, performed all experiments and analyzed the results. 

M.R. and J.P. formulated the project and assisted on the analysis. All authors co-wrote and 

edited the manuscript. 

Chapter 4: Siranee Nuchitprasitchai, Michael C. Roggemann, and Joshua M. Pearce. An 

Open Source Algorithm for Reconstructing 2-D Images of 3-D Objects Being Fabricated 

for Low-cost, Reliable Real-Time Monitoring of FFF-based 3-D Printing (to be published). 

S.N. wrote the algorithm, performed all experiments and analyzed the results. M.R. and J.P. 

formulated the project and assisted on the analysis. All authors co-wrote and edited the 

manuscript. 

Chapter 5: Siranee Nuchitprasitchai, Michael C. Roggemann, and Joshua M. Pearce. 360 

Degree Real-time Monitoring of 3-D Printing Using Computer Vision Analysis of Two 

Camera Views (to be published). S.N. wrote the algorithm, performed all experiments and 

analyzed the results. M.R. and J.P. formulated the project and assisted on the analysis. All 

authors co-wrote and edited the manuscript. 

Each of these papers is presented in a chapter in the body of this dissertation. 

 

 

 

 



 

xviii 

 

Acknowledgement 

First of all, I would like to express my special thanks to my advisor, Dr. Michael C. Roggemann 

to give me the opportunity to be his advisee. My Ph.D. would not have been possible without 

my advisor. I really appreciate all his inspiration, support, patience, and guidance throughout 

the research. I would like to thank Dr. Joshua M. Pearce for his inspiration, support, and 

guidance throughout the research, and for serving as my committee member. I would like to 

thank Dr. Timothy C. Havens and Dr. Jeremy P. Bos for serving as my committee members to 

provide me the helpful suggestion in improving my research. I am grateful for my family and 

my husband for their support and love. He always be beside me through the storm or the sunny 

days together. I would like to thank all of my friends whom I met at Michigan Technological 

University for their love, friendship and all supports. They made my life more colorful while I 

studied here. I would also like to express my gratitude and appreciation to all the members of 

the Michigan Tech’s Open Sustainability Technology Lab for their friendship and supports, 

Adam Pringle, John Laureto, Shan Zhong, Handy Chandra, and Shane Oberloier. I am also 

thankful for the financial support from Royal Thai Scholarship, EERC department at Michigan 

Technological University, and the John Wesley James Jones Memorial Scholarship. I am also 

grateful for Sripaipan family who has helped and supported me since I arrived in Houghton. I 

would not be here to peruse my Ph.D., if my dear sister, Sopit KhanKhangn, did not believe in 

me that God would help me to accomplish God’s will for me in 2004. Finally, I would like to 

thank God, and my brothers and sisters in Jesus Christ here in USA, in Thailand, and around 

the world for their prayers and supports.   



 

xix 

 

Abstract 

Cameras are everywhere for security purposes and there are often many cameras installed 

close to each other to cover areas of interest, such as airport passenger terminals. These 

systems are often designed to have overlapping fields of view to provide different aspects 

of the scene to review when, for example, law enforcement issues arise.  However, these 

cameras are rarely, if ever positioned in a way that would be conducive to conventional 

stereo image processing.  To address this, issue an algorithm was developed to rectify 

images measured under such conditions, and then perform stereo image reconstruction. 

The initial experiments described here were set up using two scientific cameras to capture 

overlapping images in various cameras positons. The results showed that the algorithm was 

accurately reconstructing the three-dimensional (3-D) surface locations of the input 

objects.  

During the research an opportunity arose to further develop and test the algorithms for the 

problem of monitoring the fabrication process inside a 3-D printer.  The geometry of 3-D 

printers prevents the location of cameras in the conventional stereo imaging geometry, 

making the algorithms described above seem like an attractive solution to this problem.  

The emphasis in 3-D printing on using extremely low cost components and open source 

software, and the need to develop the means of comparing observed progress in the 

fabrication process to a model of the device being fabricated posed additional development 

challenges.  Inside the 3-D printer the algorithm was applied using two scientific cameras 

to detect the errors during the printing of the low-cost open-source RepRap style 3-D 

printer developed by the Michigan Tech’s Open Sustainability Technology Lab. An 



 

xx 

 

algorithm to detect errors in the shape of a device being fabricated using only one camera 

was also developed. The results show that a 3-D reconstruction algorithm can be used to 

accurately detect the 3-D printing errors.  

The initial development of the algorithm was in MATLAB. The cost of the MATLAB 

software might prevent it from being used by open-source communities. Thus, the 

algorithm was ported to Python and made open-source for everyone to use and customize. 

To reduce the cost, the commonly used and widely available inexpensive webcams were 

also used instead of the expensive scientific cameras. In order to detect errors around the 

printed part, six webcams were used, so there were 3 pairs of webcams and each pair were 

120 degrees apart. The results indicated that the algorithms are precisely detect the 3-D 

printing errors around the printed part in shape and size aspects. With this low-cost and 

open-source approach, the algorithms are ready for wide range of use and applications. 

 

 

 

 

 



 

 

1 

 

Chapter 1: Introduction 

1.1 Motivation 

Three-dimensional (3-D) image reconstruction from sets of two-dimensional (2-D) images 

using the stereovision technique has been an area of active research for many decades, and 

has been applied in many fields, such as medical imaging [1-2], robot navigation [3-4], 

image analysis [5-6], machine vision [7], and architecture [8-9]. In most cases, the 

geometries of the stereo cameras and the scene are carefully controlled to make the 

processing straightforward. In the most common configuration, the two cameras and the 

target are arranged in a simplified epipolar geometry.  In this case the camera positions are 

arranged so that horizontal lines in the two camera images result from the same points in 

the scene viewed from different perspectives [10-16].  When this is the case, the disparities 

needed to compute a 3-D image can be obtained from block matching applied in a 

horizontal line search manner.  In the simplified epipolar geometry the spatial scale of the 

two images is guaranteed to be the same, and the stereo reconstruction problem can be 

reduced to finding the disparities between corresponding points in the two images.  The 

corresponding points can be found with a manual, human in the loop approach [17-18], 

automated block-matching algorithms [19-21], gradient-based optimization [22-23], 

feature matching [24-27], dynamic programming [28-31], graph cuts [32-35], or belief 

propagation [36]. These techniques have been successfully demonstrated, and are 

commercially available products [37-38].  

The work presented here addresses the more general problem of stereo reconstruction when 

the camera-target geometry cannot be completely controlled. In this case the cameras are 



 

 

2 

 

not arranged in the conventional, simplified epipolar stereo imaging geometry. An example 

of this situation is crowd surveillance in an airport, where the cameras would have 

overlapping fields of view, but might not have matching physical parameters.   As a result, 

the image scales may be different, and the area where the images overlap may be 

uncontrolled and irregular. The geometry is illustrated in Figure 1.1. In this case the two 

cameras have 𝑥 and 𝑧-displacements from the simplified epipolar geometry, and the same 

𝑦-displacement; therefore, the images measured from identical cameras would be shifted 

and scaled differently, violating the condition of the simplified epipolar geometry, since 

for parallel cameras in the simplified epipolar geometry the image of any point must lie on 

the same horizontal line in each image.  When the cameras are not in the simplified epipolar 

geometry the images need to be rectified. Rectifying the images in stereovision is the step 

of transforming the measured images to lie in a common plane with a common spatial 

sampling. If two overlapping images of the same scene from a pair of cameras are aligned 

correctly, a conventional stereovision algorithm can be used to reconstruct the desired 3-D 

map of the surfaces in the scene. We propose a new approach for stereovision in this 

situation. Our approach uses the Scale Invariant Feature Transform (SIFT) [39-40] to find 

matching points between a pair of images, and using the RANdom SAmple Consensus 

(RANSAC) [41] to eliminate the wrong matching points. This information then is used to 

rescale and rectify the images. Next, a block-matching algorithm [42] is used to find the 

corresponding points in the left and in the right images of a stereo pair.  Finally, the 3-D 

surface location is found by using a set of equations generalized for the general epipolar 

geometry for the corresponding points.  



 

 

3 

 

 

Figure 1.1 Set up of two cameras for stereovision used in this study 

The main purpose of the rest of this chapter is to establish background information which 

is used throughout this dissertation.  The remainder of this chapter is organized as follows: 

theory regarding the camera model, stereo reconstruction in the simplified epipolar 

geometry, Scale Invariant Feature Transform (SIFT), RANdom SAmple Consensus, 

approach, summary of key results, and organization. 

1.2 Camera Model 

We now review the basic camera model for stereo reconstruction.  To reconstruct the 3-D 

images from sets of 2-D images knowledge of the camera parameters is required. The 

single thin lens camera is the simplest camera model that describes the mathematical 

relationship between the 3-D object points and the image points. In the thin lens model, the 

rays of light emitted from a point travel along paths through the lens, converging at a point 

behind the lens. In geometric optics, a ray passing through the center of a thin lens is called 

the chief ray, which is not deflected by the lens. The image is inverted in the image plane. 



 

 

4 

 

Figure 1.2 shows a chief ray in the thin lens camera model, except that the image plane is 

moved to the front of the lens instead of behind it, and in this case the image is not inverted. 

The perspective model explains the projection of an object point at location P to the point 

P′ where it is imaged as defined by a chief ray traced from P to P′ through the center of the 

lens. 

 

Figure 1.2 The equivalent of single thin lens camera geometry  

Inspection of Figure 1.2 shows that when a ray passes through the center of the aperture 

located at (0,0,0) and the notional image plane is located a distance 𝑓 in front of the lens, 

the projection of the object point 𝑃 at (𝑋, 𝑌, 𝑍) in an object space onto the image plane 

point 𝑃′ located at (𝑥, 𝑦) in the image plane. The image location (𝑥, 𝑦) is related to the 

object location (𝑋, 𝑌, 𝑍) by 

                  𝑥 =  𝑓𝑋 𝑍⁄                                                                  (1-1) 

    𝑦 = 𝑓𝑌/𝑍                                                                  (1-2)                                                        

Equations (1-1) and (1-2) show that the object location (𝑋, 𝑌, 𝑍) cannot be retrieved from 

the information in a single image, since there are three unknown variables (𝑋, 𝑌, 𝑍) with 



 

 

5 

 

only two measurements. In this paper, Equations (1-1) and (1-2) are applied in stereovision 

in order to calculate the object location points when the rays from each pair of 

corresponding points intersect at a common 3-D scene point. Finding the corresponding 

points in stereo image pairs is discussed next. 

1.3 Stereo Reconstruction in the Simplified Epipolar Geometry 

We now review the geometrical arrangement of stereo images measured in the simplified 

epipolar geometry. Figure 1.3 (a) shows a typical set up for a pair of stereo cameras where 

the cameras have only horizontal shift. Figure 1.3 (b) shows how the location of the image 

of the same point appears in both images, where 𝑐𝑙 and 𝑐𝑟 are the image centers for the left 

and the right images respectively, 𝑂𝑙 and 𝑂𝑟 are the camera centers for the left and the right 

cameras respectively, 𝑥𝑙 and 𝑥𝑟 are the image locations of 𝑃 in the left and the right images 

respectively, 𝑇 is the horizontal distance between the two cameras, 𝑓 is the focal length, 

and 𝐴 is the distance between the object point and the cameras.  

                           

                  (a) Stereo camera geometry                             (b) Triangular geometry 

Figure 1.3 Stereovision in the epipolar geometry 

The disparity value 𝑑 is the difference in the position of two points between the left and 

the right image planes where the right image is the reference image, which is  



 

 

6 

 

 𝑑 = 𝑥𝑟 − 𝑥𝑙                                                                  (1-3)   

Each corresponding points in a pair of images are minimum disparity value over the search 

region. After finding all corresponding points, the disparity map is created. The disparity 

map is an image where every pixel contains the disparity value of each corresponding 

points. From similar triangles in Figure 1.3 (b), the depth information 𝑍 for an object point 

is calculated by 

𝑍 = (𝑇 ∗ 𝑓)/𝑑                                                                  (1-4)  

Equations (1-1) and (1-2) are used to calculated the 𝑋, 𝑌 information for the object point 

given by 

𝑋 = (𝑥𝑙 ∗ 𝑍)/𝑓                                                                  (1-5) 

𝑌 = (𝑦𝑙 ∗ 𝑍)/𝑓                                                                  (1-6) 

where 𝑇 is the horizontal distance between the two cameras, 𝑓 is the focal length, (𝑥𝑙 , 𝑦𝑙) 

is the image locations of 𝑃 in the left image, and 𝑑 is the disparity value. 

Finding the corresponding points in the pairs of images is the key to successful stereovision 

reconstruction. We assume that the stereo images are rectified, which means that the 

corresponding lines are horizontal and on the same height in the left and the right images.  

Block-matching is one of the techniques to find the corresponding points between the left 

and the right images. A widely used block-matching algorithm is the Sum of Absolute 

Difference (SAD) [42]. In equation (1-7), the SAD is calculated by taking the absolute 

difference between   each pixel in a square block of certain size around the interested pixel 

http://en.wikipedia.org/wiki/Absolute_difference
http://en.wikipedia.org/wiki/Absolute_difference
http://en.wikipedia.org/wiki/Pixel


 

 

7 

 

in the right image (reference image) and finding the corresponding pixel within the square 

block in the left image, while moving along the corresponding scan line or the search 

region. For each pixel in the right image, there should be only one best pair of 

corresponding points between the left and the right images when the value of the SAD is 

minimum over the search region. The calculation is repeated for each pixel in the right 

image until all corresponding pixels in the left image are found. 

argmin
𝑥𝑙,𝑦𝑙∈𝑆𝑅

SAD(𝑥𝑙 , 𝑦𝑙 , 𝑥𝑟, 𝑦𝑟) = ∑ ∑ |𝐼𝑙(𝑥𝑙 + 𝑖, 𝑦𝑙 + 𝑗) − 𝐼𝑟(𝑥𝑟 + 𝑖, 𝑦𝑟 + 𝑗)|
(

𝐵−1

2
)

𝑖=(−
𝐵−1

2
)

(
𝐵−1

2
)

𝑗=(−
𝐵−1

2
)

     (1-7) 

where 𝐵 is the block size, 𝑆𝑅 is the search region, (𝑥𝑙 , 𝑦𝑙) is the candidate corresponding 

pixel in the left image, (𝑥𝑟 , 𝑦𝑟) is the interested pixel in the right image, 𝐼𝑙 and 𝐼𝑟 are the 

pixel intensities in the left and the right images, respectively. 

1.4 Scale Invariant Feature Transform (SIFT) 

We now describe the SIFT [40] algorithm and its application here to the problem of 

rectifying images when the cameras are not in the simplified epipolar geometry. 

Developing methods for working with cameras in more general geometries will 

significantly expand the physical camera arrangements from which three-dimensional 

information can be extracted. The use of a generalized camera geometry complicates the 

correspondence problem by requiring one of the images to be rescaled and to be rectified. 

In this section, we discuss the use of the SIFT algorithm to address these problems.  Here, 

the SIFT algorithm is applied to find the matching points between the stereo images when 

a pair of stereo images have different scales. The matching point information is used to 

rescale one of the images. After the pair of stereo images has the same scale, the SIFT 



 

 

8 

 

algorithm is reused to find matching points between the stereo images. The new matching 

point information is used to rectify the images, and then the 𝑆𝐴𝐷 algorithm is used to 

compute the disparities. The SIFT algorithm consists of four steps: scale-space extrema 

detection, key point localization, orientation assignment and key point descriptor. 

The first step of the SIFT algorithm is scale-space extrema detection.  To create the scale-

space of an image, the Difference of Gaussian (DoG) images is computed as an 

approximation of scale invariant of the Laplacian of Gaussian from the difference of two 

nearby scales separated by a constant number 𝑘. The DoG images are given by 

𝐷(𝑙,𝑛)(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘(𝑛)𝜎) − 𝐺(𝑥, 𝑦, 𝑘(𝑛−1)𝜎)) ∗ 𝐼(𝑥, 𝑦)                       (1-8) 

𝐺(𝑥, 𝑦, 𝜎) =  
1

2𝜋𝜎2 𝑒−(𝑥2+𝑦2)/2𝜎2
                                         (1-9) 

where 𝐷(𝑙,𝑛)(𝑥, 𝑦, 𝜎) is DoG, 𝑘 is a constant multiplicative factor, 𝑙 is the level number, 𝑛 

is the scale space image range [1, 𝑠 + 2] which 𝑠 =  log𝑘2, 𝜎 is the scale parameter, 

𝐺(𝑥, 𝑦, 𝜎) is a variable-scale Gaussian kernel, 𝐼(𝑥, 𝑦) is a grey-level input image, and * is 

the convolution operation. 

After the DoG images are calculated, all locations and scales are processed to find key 

point candidates. The key point candidate is a pixel where it is the greatest or least of all 

neighboring points. In 3-by-3 sub-regions, a key point candidate is found by comparing its 

to eight neighbors in the current DoG image, and nine neighbors in the above and the below 

DoG images. 



 

 

9 

 

The next step of the SIFT algorithm is key point localization. Not all key point candidates 

are useful as features because some of them have low contrast, or lie along an edge. Thus, 

some key point candidates are rejected to increase the efficiency and robustness of the 

algorithm by using a Taylor expansion. The Taylor expansion for the DoG image is given 

by 

𝑆(𝑋) = 𝐷 +
𝜕𝐷𝑇

𝜕𝑋
𝑋 +  

1

2
𝑋𝑇 𝜕2𝐷𝑇

𝜕𝑎2
𝑋                                         (1-10) 

where 𝑆(𝑋) is the Taylor expansion for the DoG image, 𝐷 is the DoG, and  𝑋 = (𝑥, 𝑦, 𝜎)𝑇 

is the current key point candidate. 

The location of extremum is calculated by taking the derivative of Equation (1-10) with 

respect to 𝑋 and setting it to zero, giving 

𝑋̂ =  − (
𝜕𝑇

𝜕𝑋
) (

𝜕2𝑇

𝜕𝑋2
)

−1

                                                     (1-11) 

where 𝑋̂ is the location of extremum. If  𝑋̂> 0.5 in any dimension, then it means that the 

extremum lies closer to a different key point.  

The low contrast key points are rejected when  |𝑆(𝑋̂)| < 0.03. The low contrast key point 

is calculated by substituting equation (1-11) into (1-10), giving 

𝑆(𝑋̂) =  𝐷 +  
1

2

𝜕𝐷𝑇

𝜕𝑋
𝑋̂                                                      (1-12) 

To increase stability, key point candidates that lie along an edge need to be rejected. If 

Ratio >  (𝑟 + 1)2/ 𝑟 when the SIFT uses r =10 then the key point candidate is deleted 

because it lies along the edge. Ratio is calculated by 



 

 

10 

 

                              Ratio =  
Tr(H)2

Det(H)
                                                               (1-13) 

where Tr(H) is the Trace of Hessian Matrix and Det(H) is the Determinant of Hessian 

Matrix. They are given by 

Tr(H) =  𝐷𝑥𝑥 +  𝐷𝑦𝑦                                                      (1-14)                                       

       Det(H) =  𝐷𝑥𝑥 𝐷𝑦𝑦 −  (𝐷𝑥𝑦)2                                          (1-15)    

where 𝐷 is the DoG and H is the Hessian Matrix in which second order partial of derivatives 

are estimated by taking differences of neighboring sample points (i.e. 𝐷𝑥𝑥 is second order 

partial of derivatives of 𝑥), which it is given by 

                                           H =  [
𝐷𝑥𝑥    𝐷𝑥𝑦

𝐷𝑥𝑦    𝐷𝑦𝑦
]                                                     (1-16)  

The following step of the SIFT algorithm is orientation assignment by using accurate key 

points which have been tested to be scale invariance from the previous step. Each key point 

is assigned both gradient magnitudes and gradient orientations from the Gaussian blurred 

image to provide one or more orientations’ invariance. The gradient orientations of the 

neighborhood pixels are then accumulated together in a histogram bar, which is divided 

into a 36-histogram bar. The gradient magnitude and the gradient orientation are calculated 

by 

𝑚(𝑥, 𝑦) = √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)2 + (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)2              (1-17) 

𝜃(𝑥, 𝑦) = tan−1 (
(𝐿(𝑥,(𝑦+1)−(𝐿(𝑥,𝑦−1))

(𝐿(𝑥+1,(𝑦)−(𝐿(𝑥−1,𝑦))
)                                            (1-18) 



 

 

11 

 

where 𝑚(𝑥, 𝑦) is the gradient magnitude, 𝜃(𝑥, 𝑦) is the gradient orientation which ranges 

from 0 to 360 degrees, and 𝐿(𝑥, 𝑦, 𝑘𝜎) is the Gaussian-smoothed image blurred given by  

𝐿(𝑥, 𝑦, 𝑘𝜎) =  𝐺(𝑥, 𝑦, 𝑘𝜎) ∗ 𝐼(𝑥, 𝑦)                                              (1-19) 

𝐺(𝑥, 𝑦, 𝑘𝜎) =  
1

2𝜋𝑘𝜎2 𝑒−(𝑥2+𝑦2)/2𝑘𝜎2
                                              (1-20) 

where 𝐺(𝑥, 𝑦, 𝜎) is a variable-scale Gaussian kernel, 𝜎 is the scale parameter, 𝑘 is a 

constant multiplicative factor, 𝐼(𝑥, 𝑦) is a grey-level input image, and * is the convolution 

operation. 

The final step of the SIFT algorithm is a key point descriptor. After the orientation 

assignment, each key point includes details about an image location, scale, and orientation, 

which are described by 16-by-16 windows.  To identify each key point correctly, a unique 

key point descriptor needs to be created. When comparing two different images, key point 

descriptors are never exactly the same. In order to create the key point descriptors, 16-by-

16 window of each key point are divided into sixteen 4-by-4 windows. For each 4-by-4 

window, there are 16 orientation samples, which result in an 8-histogram bar and each bar 

has a range of 45 degrees. Therefore, from 16 orientation samples with 4-by-4 windows, 

dimensional vectors are created and are equal to 128. This feature vector is a unique key 

point descriptor. 

1.5 RANdom SAmple Consensus (RANSAC) 

To improve reconstructing a 3-D image, RANSAC [41] is applied to eliminate incorrect 

matching points after using SIFT. RANSAC is a learning technique to estimate the 

parameters of a mathematical model from SIFT’s matching points data. First of all, we 



 

 

12 

 

need to find a mathematical model that fits to the set of hypothetical correct matching 

points. While estimating the parameters of a mathematical model, the outlier data is found 

when data does not fit the model because of an extreme value of the noise, erroneous 

measurement, or incorrect hypotheses about the interpretation of the data. The algorithm is 

an iterative method that consists of two steps. The first step is randomly selected a data 

subset from the original data. A fitting model and the corresponding model parameters are 

computed using only the selected data set. Secondly, all other data except selected data set 

are tested. If it does not fit the fitting model, a data element is considered as an outlier. The 

algorithm repeats these two steps until the algorithm reaches the maximum number of 

iterations allowed. Finally, the model that has the largest inliers would be used to eliminate 

the outlier. 

1.6 Approach 

In this dissertation, I develop triangulation-based geometric equations for reconstructing 

3-D images. The triangular geometry based on the relaxed camera position is shown in 

Figure 1.4. The experiment is set up to test the algorithm by using two cameras. First, the 

images of the scenes with and without the target object are be acquired with the left and 

the right cameras respectively to allow the background to be removed, allowing us to do 

detailed engineering analysis of the output later in the paper. Our objective is to represent 

only the target object with the 3-D image reconstruction for demonstration process, and to 

assess performance.  The SIFT and RANSAC algorithm is then used to find a set of 

matching points in order to rescale and to rectify the images. Next, a set of 3-D point 

positions in an object space is calculated for each pixel between two rectified stereo images 

by using a block-matching algorithm and a derived set of equations for the geometry. 



 

 

13 

 

Finally, the 3-D images are reconstructed from the set of 3-D point positions.  

      

a)                                                                            b) 

Figure 1.4 Triangular geometry 

(a) both optical axis of cameras is parallel 

(b) the optical axis of the left camera is rotated around the 𝑦-axis 

1.7  Summary of Key Results 

In this dissertation, the triangulation-based geometric algorithm was developed for 3-D 

reconstruction from 2-D overlapping images with two relaxed scientific camera positioning 

requirements. This algorithm exploited the SIFT and RANSAC techniques to rescale and 

rectify the stereo images, and the SAD block matching was applied to find the 

corresponding points between the left and the right images which were inputs for the 

triangulation-based geometric algorithm. This algorithm was tested with four different 

experiments: both cameras were parallel in the 𝑧-axis and the left camera was moved 

forward, both cameras were parallel in the 𝑧-axis and the left camera was moved backward, 

the left camera was rotated clockwise around the 𝑦-axis and was moved forward, and the 

D1

A

b2

ω 

ω 

φl

φr

xl

xr

αl/2

P(x,y,z)

Z1

Z2

Cl

CrE

fl

fr

wl

wr

αr/2

b2

ω 

ω 

φl

φr

xl

xr

αl/2

P(x,y,z)

Cl

CrE

A

αr/2

fr

θ

wr



 

 

14 

 

left camera was rotated clockwise around the 𝑦-axis and was moved backward. The 3-D 

reconstruction results show that the algorithm could be used to extract the 3-D information 

with high accuracy with RMSE = 1.265. 

An opportunity arose in the monitoring of the failed 3-D printing in self-replicating rapid 

prototype (RepRap) 3-D printers research area, and this algorithm was improved and tested 

with the low-cost open-source RepRap 3-D printer developed by the Michigan Tech’s 

Open Sustainability Technology Lab. To improve reliability of error detection, the 

algorithm to detect the shape error had been added to the approach. The results showed that 

these algorithms can detect failed printing close to 100%.  

To make the approach a low-cost and open source reliable monitoring, the code is 

converted from MATLAB to Python, and it was tested with three pair of webcams setup 

around the printed part with 120 degrees apart. The quality of this approach using in 

experiments showed that the system was capable of a 100% rate for failure and error 

detection with 3X faster computation time for the shape technique comparing with code 

written in MATLAB.  

1.8 Organization 

The remainder of this dissertation is comprised of content from the first journal articles 

published by the editors of International Journal of Modern Engineering Research (IJMER) 

and the other articles have been completed and will be published. Chapter 2 is derived from 

“An Algorithm for Reconstructing Three Dimensional Images from Overlapping Two-

Dimensional Intensity Measurements with Relaxed Camera Positioning Requirements” 

which was published online September, 2016, in International Journal of Modern 



 

 

15 

 

Engineering Research (IJMER).  The paper provides the algorithm to reconstruct 3-D 

images for relaxed camera positions in MATLAB then applied for detecting an error in 3-

D printing describe in chapter 3. The content in chapter 3 will be published under the title 

“Factors Effecting Real Time Optical Monitoring of Fused Filament 3-D Printing.” To 

make this faster and open for everyone, the algorithm and the shape algorithm is ported to 

Python. The shape technique for single camera setup can be found in chapter 4. The content 

in chapter 4 will be published under the title “An Open Source Algorithm for 

Reconstructing 2-D Images of 3-D object being Fabricated for Low-cost, Reliable Real-

Time Monitoring of FFF-based 3-D Printing.” In chapter 5, the 3-D reconstruction 

technique for double camera setup is described and will be published under the title “360 

Degree Real-time Monitoring of 3-D Printing Using Computer Analysis of Two Camera 

Views.” 

1.9 References 

1. Stoyanov, Danail, et al. "Real-time stereo reconstruction in robotically assisted 

minimally invasive surgery." Medical Image Computing and Computer-Assisted 

Intervention–MICCAI 2010. Springer Berlin Heidelberg, 2010. 275-282. 

2. B. Andre, J. Dansereau, H. Labelle, “Optimized vertical stereo base radiographic 

setup for the clinical three-dimensional reconstruction of the human spine”, J 

Biomech, 27 (8) (1994), pp. 1023–1035 

3. Don Murray and James J. Little. "Using Real-Time Stereovision for Mobile Robot 

Navigation.", Autonomous Robots 8, (2000), pp.161–171. 

4. Grosso, Enrico, Giulio Sandini, and Massimo Tistarelli. "3D object reconstruction 

using stereo and motion." Systems, Man and Cybernetics, IEEE Transactions 

on 19.6 (1989): 1465-1476. 

5. Cardenas-Garcia, J. F., H. G. Yao, and S. Zheng. "3D reconstruction of objects 

using stereo imaging." Optics and Lasers in Engineering 22.3 (1995): 193-213. 

6. Kim, Hansung, Seung-jun Yang, and Kwanghoon Sohn. "3D reconstruction of 

stereo images for interaction between real and virtual worlds." Mixed and 

Augmented Reality, 2003. Proceedings. The Second IEEE and ACM International 

Symposium on. IEEE, 2003. 



 

 

16 

 

7. Suhr, Jae Kyu, et al. "Automatic free parking space detection by using motion 

stereo-based 3D reconstruction." Machine Vision and Applications 21.2 (2010): 

163-176. 

8. Baillard, Caroline, et al. "Automatic line matching and 3D reconstruction of 

buildings from multiple views." ISPRS Conference on Automatic Extraction of 

GIS Objects from Digital Imagery. Vol. 32. 1999. 

9. Pollefeys, Marc, et al. "Detailed real-time urban 3d reconstruction from video. 

"International Journal of Computer Vision 78.2-3 (2008): 143-167. 

10. S. I. Olsen. Epipolar line estimation for binocular stereovision. Proc. of the Nordic 

Summer School on Active Vision and geometric modellings Science. Aalborg : 

Aalborg Universitetsforlag, 1992. p. 143-149. 

11. S. I. Olsen. Epipolar line estimation. Proc. 2 European Conference on Computer 

Vision, Lecture Notes in Computers Science. Berlin, Tyskland : Springer, 1992. pp. 

307-311. 

12. E. Nishimura, G. Xu, and S. Tsuji. Motion segmentation and correspondence using 

epipolar constraint. In Proc. 1st Asian Conf. Computer Vision, Osaka, Japan, 1993, 

pp. 199-204. 

13. G. Xu, E. Nishimura, and S. Tsuji. Image correspondence and segmentation by 

epipolar lines: Theory, algorithm and applications. Technical report, Dept. of 

Systems Engineering, Osaka University, Japan, July 1993. 

14. D.V. Papadimitriou and T.J. Dennis, "Epipolar line estimation and rectification for 

stereo image pairs", in Proceedings of the International Workshop on Stereoscopic 

and Three Dimensional Imaging (IWS3DI), Santorini, Greece, pp. 128-133, 1995 

15. Z. Zhang and T.Kanade, “Determining the Epipolar Geometry and its Uncertainty: 

A Review”, IJCV, 27(2), 1998, pp.161-195. 

16. O. Faugeras and Q.-T. Luong, “The Geometry of Multiple Images”, MIT Press: 

Cambridge, MA. 

17. K. LU, X. Wang, Z. Wang and L. Wang, “Binocular stereovision based on opencv”, 

ICSSC, 2011, pp.74-77. 

18. T. Surgailis, A. Valinevicius, V. Markevicius, D. Navikas and D. Andriukaitis, 

“Avoiding forward car collision using stereovision system”, ELEKTRONIKA IR 

ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 8, 2012, pp. 37-40. 

19. J. Vanne, E Aho, T D Hamalainen and K Kuusilinna, “A High-Performance Sum 

of Absolute Difference Implementation for Motion Estimation”, IEEE TCSVT, v. 

16, n. 7, Jul. 2006, pp. 876-883. 

20. O. Faugeras, B. Hotz, H. Matthieu, T. Vieville, Z. Zhang, P. Fua, E. Theron, L. 

Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy, “Real Time Correlation-Based 

Stereo: Algorithm, Implementations and Applications,” INRIA Technical Report 

2013, 1993. 

21. D.N. Bhat and S.K. Nayar, “Ordinal Measures for Image Correspondence,” IEEE 

Trans. Pattern Analysis and Machine Intelligence, vol. 20, pp. 415-423, 1998. 

22. B.D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an 

Application to Stereovision,” Proc. Int’l Joint Conf. Artificial Intelligence, pp. 674-

679, 1981. 

23. V.S. Kluth, G.W. Kunkel, and U.A. Rauhala, “Global Least Squares Matching,” 

Proc. Int’l Geoscience and Remote Sensing Symp., vol. 2, pp. 1615-1618, 1992.  



 

 

17 

 

24. S. Randriamasy and A. Gagalowicz, “Region Based Stereo Matching Oriented 

Image Processing,” Proc. Computer Vision and Pattern Recognition, pp. 736-737, 

1991. 

25. V. Venkateswar and R. Chellappa, “Hierarchical Stereo and Motion 

Correspondence Using Feature Groupings,” Int’l J. Computer Vision, vol. 15, pp. 

245-269, 1995. 

26. F. Bigone, O. Henricsson, P. Fua, and M. Stricker, “Automatic Extraction of 

Generic House Roofs from High Resolution Aerial Imagery,” Proc. European Conf. 

Computer Vision, pp. 85-96, 1996. 

27. S. Birchfield and C. Tomasi, “Depth Discontinuities by Pixel-to- Pixel Stereo,” 

Proc. IEEE Int’l Conf. Computer Vision, pp. 1073-1080, 1998. 

28. Y. Ohta and T. Kanade, “Stereo by Intra- and Intra-Scanline Search Using Dynamic 

Programming,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 7 pp. 

139-154, 1985. 

29. S.S. Intille and A.F. Bobick, “Incorporating Intensity Edges in the Recovery of 

Occlusion Regions,” Proc. Int’l Conf. Pattern Recogni- tion, vol. 1, pp. 674-677, 

1994.  

30. I.J. Cox, S.L. Hingorani, S.B. Rao, and B.M. Maggs, “A Maximum Likelihood 

Stereo Algorithm,” Computer Vision and Image Under- standing, vol. 63, pp. 542-

567, 1996. 

31. C. S. Park, H. W. Park, A robust stereo disparity estimation using adaptive window 

search and dynamic programming search, Pattern Recognition (2000). 

32. H. Zhao, “Global Optimal Surface from Stereo,” Proc. Int’l Conf. Pattern 

Recognition, vol. 1, pp. 101-104, 2000. 

33. Y. Boykov and V. Kolmogorov, “An Experimental Comparison of Min-Cut/Max-

Flow Algorithms for Energy Minimization in Vision,” Proc. Third Int’l Workshop 

Energy Minimization Methods in Computer Vision and Pattern Recognition, 2001.  

34. Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy Minimization via 

Graph Cuts,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 

11, pp. 1222-1239, Nov. 2001. 

35. V. Kolmogorov and R. Zabih, “Computing Visual Correspon- dence with 

Occlusions Using Graph Cuts,” Proc. Int’l Conf. Computer Vision, 2001.  

36. J. Sun, H.-Y. Shum, and N.-N. Zheng, “Stereo Matching Using Belief 

Propagation,” Proc. European Conf. Computer Vision, pp. 510-524, 2002. 

37. http://www.thefoundry.co.uk/products/ocula/features/. Accessed 2015, September 

10 

38. http://www.ptgrey.com/support/downloads/documents/TAN2008005_Stereo_Visi

on_Introduction_and_Applications.pdf. Accessed 2015, September 10 

39. D. Lowe, Distinctive image features from scale-invariant key points, International 

Journal of Computer Vision, 60, 2 (2004), pp. 91-110. 

40. D. Lowe, Object recognition from local scale-invariant features, International 

Conference on Computer Vision, Corfu, Greece (September 1999), pp. 1150-1157. 

41. Fischler, M.A. and R.C. Bolles, Random sample consensus: a paradigm for model 

fitting with applications to image analysis and automated cartography. 

Communications of the ACM, 24, 6 (1981), p. 381-395. 



 

 

18 

 

42. T. Tao, J. C. Koo, H. R. Choi, “A fast block matching algorithm for stereo 

correspondence,” in Proc. IEEE Int. Cyber. Intell. Syst., Sep. 2008, pp. 38–41. 

 

 

  



 

 

19 

 

Chapter 2: An Algorithm for Reconstructing Three 

Dimensional Images from Overlapping Two-Dimensional 

Intensity Measurements with Relaxed Camera Positioning 

Requirements1 

2.1 Abstract 

This paper proposes and demonstrates an algorithm to generate three-dimensional (3-D) 

reconstructions using images from a stereo vision of two-dimensional (2-D) surveillance 

camera without calibration. In the surveillance of public environment, the cameras are not 

set up for a binocular stereo system for a 3-D reconstruction, but here they can be used 

when there is an overlapped scene. When the field of view of multiple cameras overlap, 

the potential exists for computing the 3-D location of surfaces in the overlapping regions 

of the images. In this paper, we apply the Scale Invariant Feature Transform (SIFT), the 

RANdom SAmple Consensus (RANSAC), and the Sum of Absolute Differences (SAD) to 

reconstruct 3-D image from two overlapping images. The camera parameters and the 

geometry of the cameras are known; however, they do not correspond to conventional 

stereo image measurements. The process consists of two steps: image preparation and 3-D 

reconstruction. Image preparation involves rescaling, rectifying, and finding the 

corresponding points between the left and the right stereo images.  The SIFT and the 

RANSAC algorithm are applied to find the difference of object size between the images 

and then to rescale and rectify the images. The corresponding points on the two images are 

                                                 
1 This chapter has been published as an article in International Journal of Modern Engineering Research 

(IJMER). Citation: Nuchitprasitchai S, Roggemann M, & Havens T (2017). An Algorithm for 

Reconstructing Three Dimensional Images from Overlapping Two Dimensional Intensity Measurements 

with Relaxed Camera Positioning Requirements. IJMER, 6(9):69–81. Available online September 2016 
http://www.ijmer.com/papers/Vol6_Issue9/Version-2/J9226981.pdf.  

 



 

 

20 

 

found with a block matching method using the SAD technique. For 3-D reconstruction, a 

set of prototype geometric equations is introduced to calculate the 3-D locations (x,y,z) for 

each corresponding point. This algorithm for 3-D reconstruction was evaluated using 

different camera geometries, and using different objects. The results show that the target 

dimension estimated from the 3-D images has a small Root-Mean-Square-Error (RMSE) 

as compared to the actual dimension of the target. 

2.2 Introduction 

Security has become more important in both private and public areas. Camera surveillance 

systems are widely used for security purposes [1-5].  In order to cover the area of interest, 

there are often multiple cameras present that have overlapping fields of view. These digital 

images of the same scene can be used to extract three-dimensional (3-D) information of 

the objects in the overlapping fields of view, such as the height of the person, the size of 

an object in that scene, or object distance [6-9]. 3-D image reconstruction from sets of two-

dimensional (2-D) images using stereo vision has been an area of active research for many 

decades, and has been applied in many fields, such as medical imaging [10], robot 

navigation [11], image analysis [12], machine vision [13], and architecture [14]. In most 

cases, the geometry of the stereo cameras and the scene are carefully controlled to make 

the processing straightforward. In this geometry, the spatial scale of the two images is 

guaranteed to be the same, and the stereo reconstruction problem is straightforward [15]. 

In stereo vision, disparities between corresponding points in the two images can be found 

by using the following techniques: block-matching [16], gradient-based optimization [17], 

feature matching [18], dynamic programming [19], graph cuts [20], and belief propagation 

[21]. These techniques have been successfully demonstrated, and are used in commercially 



 

 

21 

 

available products when the camera and the target geometries can be controlled.  

In this paper, we propose a triangulation method based on the SIFT algorithm as a means 

of expanding the range of camera geometries from which 3-D information can be extracted. 

Our camera geometries are more flexible compared to standard stereo vision [22]. The 

optical axes of the cameras do not need to be parallel and the cameras do not need to have 

the same distance from object. The 3-D reconstruction process consists of two steps: 

preparing the images and reconstructing the 3-D image. For the first step, the Scale 

Invariant Feature Transform (SIFT) [23] is applied to rescale and rectify the images. Some 

candidate matching points output by SIFT are incorrect, and including them in subsequent 

processing has negative effects on the 3-D image reconstruction. These incorrect matching 

points (outliers) are eliminated by using the RANdom SAmple Consensus (RANSAC) 

algorithm [24]. RANSAC is an iterative method to create a mathematical model fit to 

remove outlier data.  In the next step, the Sum of Absolute Differences (SAD) block 

matching technique [25, 26] is used to find the corresponding points between the left and 

the right images. Triangulation-based geometric equations are used to calculate the 3-D 

location of each corresponding point. This 3-D data may be used to extract detailed shape 

information of objects in the scene. A comparison of the 3-D information with 

measurements of the target shows that the result is accurate to within small errors on the 

order of a few centimeters. The errors are evaluated more completely in the experimental 

section. 

The remainder of the paper is organized as follows. Image preparation and triangulation-

based geometric 3-D reconstruction regarding the proposed geometry, our approach for 



 

 

22 

 

calculating the 3-D object point locations, is presented in Section 2. Experimental results 

showing 3-D image reconstructions and the errors between the actual size of the object and 

the measured size of the object are presented in Section 3. Conclusions are discussed in 

Section 5. 

2.3 Image Preparation and Triangulation-Based Geometric 3-D 

Reconstruction 

Our approach is to extracting 3-D information from 2-D overlapping images taken by two 

cameras that do not need to be on the same baseline, and do not need to be parallel like the 

standard stereo vision [22]. The cameras can also be rotated around the axes and have the 

different distance from the object. The different distances from the object results in that 

the camera positions may have 𝑧-axis displacement from each other; so, the cameras do 

not need to be on the epipolar line as in conventional stereo vision. For example, the left 

camera can be closer to the object than the right camera, or vice versa.  The 3-D model is 

created by finding pixels in one 2-D image that can be identified as originating from the 

same point in another 2-D image. This is referred to as the correspondence problem [27] 

in stereo reconstruction. To solve the correspondence problem, 2-D images need to be 

prepared using SIFT, RANSAC, and SAD.  This preparation is now explained. 

2.3.1 Image Rescaling and Rectification 

We employ a camera model based on the single thin lens camera. The single thin lens 

camera [22] describes the mathematical relationship between the 3-D object points and the 

image points. In the thin lens model, the rays of light emitted from a point travels along 

paths through the lens, converging at a point behind the lens. In geometric optics, a ray 



 

 

23 

 

passing through the center of a thin lens is called the chief ray, which is not deflected by 

the lens. The image is inverted in the image plane. Figure 2.1 shows a chief ray in the thin 

lens camera model, except that the image plane is moved to the front of the lens instead of 

behind it, and in this case the image is not inverted. The perspective model explains the 

projection of an object point at location P to the point P′, where it is imaged as defined by 

a chief ray traced from P to P′ through the center of the lens. 

 

 

Figure 2.1 The equivalent of single thin lens camera geometry 

 

We apply the equivalent of single thin lens camera geometry from Figure 2.1 to the 

geometry shown in Figure 2.2. The left and the right camera positions have 𝑧-axis 

displacement as shown in Figure 2.2 (a) when both optical axis of cameras are parallel and 

in Figure 2.2 (b) when the optical axis of the left camera is rotated around the 𝑦-axis; 

therefore, the target objects in the left and the right images have different scales and 

aspects. 

 



 

 

24 

 

      

b)                                                                            b) 

Figure 2.2  Triangular geometry 

(a) both optical axis of cameras is parallel 

(b) the optical axis of the left camera is rotated around the 𝑦-axis 

 

Here, the SIFT algorithm [23] is applied to find the matching points between stereo images 

when a pair of stereo images have different translation and scales. However, there can be 

many incorrect matching points or outliers in the result of SIFT that will cause problems 

for the 3-D reconstruction unless some means of correcting for this effect is implemented. 

Here we use the RANSAC [24] algorithm to eliminate incorrect matching points after using 

SIFT. 2-D intensity from the left and the right images saved in 2-D array are used in the 

SIFT algorithm to find the matching points and then the matching point information is 

filtered by the RANSAC algorithm to eliminate the outliers.  The remain matching point 

information is used to rescale one of the images. After the pair of images have the same 

scale, the SIFT and the RANSAC algorithms are used again to find correct matching points 

between the images. The new matching point information is used to rectify one of the 

D1

A

b2

ω 

ω 

φl

φr

xl

xr

αl/2

P(x,y,z)

Z1

Z2

Cl

CrE

fl

fr

wl

wr

αr/2

b2

ω 

ω 

φl

φr

xl

xr

αl/2

P(x,y,z)

Cl

CrE

A

αr/2

fr

θ

wr



 

 

25 

 

images. In this paper, we used SIFT and RANSAC code from an open source library called 

VLFeat [28]. Now both left and right images are ready to find the corresponding pixel in 

the next step. 

2.3.2 Sum of Absolute Difference Algorithm 

From a rescaled and rectified image pair, we acquire corresponding points by employing a 

block-matching algorithm using the SAD algorithm [25, 26]. The SAD value is computed 

by 

argmin
𝑥𝑙,𝑦𝑙∈𝑆𝑅

SAD(𝑥𝑙 , 𝑦𝑙 , 𝑥𝑟, 𝑦𝑟) = ∑ ∑ |𝐼𝑙(𝑥𝑙 + 𝑖, 𝑦𝑙 + 𝑗) − 𝐼𝑟(𝑥𝑟 + 𝑖, 𝑦𝑟 + 𝑗)|
(

𝐵−1

2
)

𝑖=(−
𝐵−1

2
)

(
𝐵−1

2
)

𝑗=(−
𝐵−1

2
)

 ,   (2-1) 

where 𝐵 is the block size, 𝑆𝑅 is the search region, (𝑥𝑙 , 𝑦𝑙) is the candidate corresponding 

pixel in the left image, (𝑥𝑟 , 𝑦𝑟) is the interested pixel in the right image, and 𝐼𝑙 and 𝐼𝑟 are 

the pixel intensities in the left and the right images, respectively. 

In Equation (1), SAD is calculated by taking the absolute difference between each pixel in 

a square block of certain size around the pixel of interest in the right image (reference 

image) and finding the corresponding pixel within the square block in the left image, while 

moving along the corresponding scan line or the search region. There should be only one 

best pair of corresponding points between the left and the right images that are determined 

when the value of SAD is minimum over the search region. When each pair of 

corresponding points between the left and the right images is found, the 3-D object point 

will be calculated as described in the next step until cover all corresponding points.  

 

http://en.wikipedia.org/wiki/Absolute_difference
http://en.wikipedia.org/wiki/Pixel


 

 

26 

 

2.3.3 Depth of Triangulation 

The typical stereo vision system [22] is set up with two cameras positioned parallel to each 

other, observing an object placed along the axis perpendicular to a line connecting the 

cameras, and centered between the cameras. In this case, the standard stereo vision 

geometry yields a straightforward result for finding the 3-D object points from stereo 

images. However, in a security system, the camera positions are relaxed. It will not always 

be in the parallel position, and the target will not always be on a line bisecting the cameras. 

In these cases, the requirements of the standard stereo vision geometry will not be satisfied. 

Here, we propose a new approach for reconstructing a 3-D image from a pair of cameras 

that are not parallel, while some parts of the images overlap with each other. Our method 

for calculating a set of 3-D object point positions is presented here with the geometry 

shown in detail in Figure 2.3. 

     

Figure 2.3  The relaxed camera positioning geometry 

(a) camera Positions (b) triangular geometry 

P(x,y,z)

(Object)

(xl, yl)

(xr, yr)

Cl

(Left)

Cr

(Right)

Optical

axis

x

y

z

x

y

z

Optical

axis

D1

A

b2

ω 

ω 

φl

φr

xl

xr

αl/2

P(x,y,z)

Z1

Z2

Cl

CrE

fl

fr

wl

wr

αr/2



 

 

27 

 

In Figure 2.3 (b), the optical axes of both cameras are parallel but the camera positions 

have 𝑧-axis displacement. The left camera is closer to the object than the right camera. 

Each best pair of corresponding points between the left and the right images from the last 

step will be used to calculate each 3-D object point here. The angle between the interest 

point and the camera position in 𝑥-axis in the left and in the right images, 𝜑𝑙 and 𝜑𝑟, are 

calculated by 

𝜑𝑙 =   
𝜋

2
−  

𝛼𝑙

2
        and      𝜑𝑟 =  

𝜋

2
− 

𝛼𝑟

2
  ,                                    (2-2) 

where 𝛼𝑙 and 𝛼𝑟 are the angle between the optical axis and the interested point in the left 

and in the right images as calculated by 

𝛼𝑙

2
=   tan−1 (

𝑑𝑙

2∗𝑓𝑙
  )     and     

𝛼𝑟

2
=   tan−1 (

𝑑𝑟

2∗𝑓𝑟
 ) ,                            (2-3) 

where 𝑓𝑙 and 𝑓𝑟 are the focal length of the lens of the left and the right camera, and 𝑑𝑙 and 

𝑑𝑟 are the size in the left and the right image from the middle of the image to the interested 

point as calculated by 

𝑑𝑙

2
= ( 𝑥𝑙 −

𝑤𝑙

2
 )×𝜗𝑙       and      

𝑑𝑟

2
= ( 

𝑤𝑟

2
−  𝑥𝑟 )×𝜗𝑟 ,                        (2-4) 

where 𝑥𝑙 and 𝑥𝑟 are the points of interest in the left and the right image that represents point 

𝑃 of the object, 𝑤𝑙 and 𝑤𝑟 are the width of the left and the right image size, and 𝜗𝑙 and 𝜗𝑟 

are the pixel size of the left and the right image. 

In another case of the relaxed camera position, the cameras are moved arbitrarily as shown 

in Figure 2.4. From Figure 2.3 (b), when the left camera is rotated 𝜃 degrees clockwise 



 

 

28 

 

around the 𝑦-axis, the triangular geometry would be changed as shown in Figure 2.4 (a). 

The additional geometric considerations to accommodate this situation are as follows. 

    

Figure 2.4   Triangular geometry used in calculations after rotating the left camera  

(a) before rescaling the image, and (b) after rescaling the image 

 

From Figure 2.4 (b), after rescaling, the new left camera position 𝐶𝑙,𝑛𝑒𝑤 is calculated by 

 𝐶𝑙,𝑛𝑒𝑤  =     𝑇2 ∗ 𝑅𝑦 ∗ 𝑇1 ∗ 𝐶𝑙,𝑜𝑙𝑑,                                                       (2-5)   

where 𝐶𝑙,𝑛𝑒𝑤 =  [
𝐶𝑙,𝑛𝑒𝑤,𝑥

𝐶𝑙,𝑛𝑒𝑤,𝑧

1

], 𝐶𝑙,𝑜𝑙𝑑 =  [
𝐶𝑙,𝑜𝑙𝑑,𝑥

𝐶𝑙,𝑜𝑙𝑑,𝑧

1

], and𝑅𝑦 is the rotation matrix around the 𝑦-

axis with a rotation of 𝜃 degrees, 𝑇1 is the translation matrix from the original left camera 

position to the origin, and 𝑇2 is the translation matrix from the origin back to the origin of 

the left camera position.  

For each best pair of corresponding points, a 3-D object point is calculated. When the left 

camera is rotated 𝜃 degrees, Equation (2-2) needs to be altered to  

𝜑𝑙 =   
𝜋

2
− 

𝛼𝑙

2
 + 𝜃      and      𝜑𝑟 =  

𝜋

2
−  

𝛼𝑟

2
,                                   (2-6) 

b2

ω 

ω 

φl

φr

xl

xr

αl/2

P(x,y,z)

Cl

CrE

A

αr/2

fr

θ

wr

ω 

ω 

φl
φr

xl
xr

αl/2

P(x,y,z)

Cl,new

Cr

b1

E

A

αr/2

fr

θ

wr



 

 

29 

 

where 𝜑𝑙 and 𝜑𝑟 are the angle between the interest point and the camera position in the left 

and in the right images, 𝛼𝑙 and 𝛼𝑟 are the angle between the optical axis and the interested 

point in the left and in the right images as calculated from Equations (3-4), and 𝜃 is the 

degree of the left camera rotation. 

𝐷1 and 𝐷2 are calculated by 

𝐷1 =  (𝑏1× sin(𝛽𝑟)) sin 𝜙⁄ ,                                         (2-7)    

𝐷2 =  (𝑏1× sin(𝛽𝑙)) sin 𝜙⁄ ,                                         (2-8) 

where 𝜙 is calculated by 

𝜙 =  𝜋 − 𝛽𝑙 − 𝛽𝑟,                                               (2-9) 

and 𝛽𝑙 =  𝜑𝑙 + 𝜔 and 𝛽𝑟 =  𝜑𝑟 − 𝜔.   The quantity 𝜔 is calculated by 

𝜔 =  sin−1( (𝐴× sin( 𝜋 2⁄ )) 𝑏1⁄ ),                                (2-10)  

where 𝑏1 =  √𝐴2 + 𝑏2
2 ;  𝐴 = 0 after rescaling because both camera positions became 

parallel in virtual scene.  

The 𝑋 and 𝑍 information for object points are calculated by 

𝐷1 =  √(𝐶𝑙𝑥 − 𝑋)2 + (𝐶𝑙𝑧 − 𝑍)2,                                  (2-11) 

𝐷2 =  √(𝐶𝑟𝑥 − 𝑋)2 + (𝐶𝑟𝑧 − 𝑍)2.                                 (2-12)  



 

 

30 

 

 

Figure 2.5  Height triangular geometry 

 

From Figure 2.5, the 𝑌 information for each object point from the left camera is 

calculated by 

𝑌 =  (𝑦/𝑓𝑙)×𝑍,                                                  (2-13) 

𝑦 =  ((ℎ/2) − 𝑦𝑙)×𝜗𝑙,                                           (2-14)   

where 𝑓𝑙 is the focal length of the left camera, 𝑍 is the depth value from point 𝑃 of the 

object to 𝐶𝑙, ℎ is the height of the left image size (height by width), 𝑦𝑙 is the image point 

in the left image that represents the location of 𝑃, and 𝜗𝑙 is the pixel size of the left image. 

The 𝑌 information for the object point can be calculated by using the parameters of the 

right camera in the same way. 

The object point (𝑋, 𝑌, 𝑍) calculation is repeated until all corresponding pixels are 

calculated. Finally, the 3-D images were displayed from the set of 3-D object points using 

a 3-D scatter plot in MATLAB. 

Y

Cl

y

yl

fl

Z1

P



 

 

31 

 

2.4 Experimental Results 

In this section, we describe experiments to demonstrate 3-D image reconstruction using the 

geometry described in Section 3. The cameras used in this study were two identical 1394a 

Firefly MVs, with an image size of 480-by-640 (height-by-width), pixel size 𝜗=6 𝜇𝑚 with 

square pixels, and a focal length of 16.6 𝑚𝑚. The left and the right camera positions had 

𝑧-axis displacement as shown in Figure 2.3 when both cameras were parallel and in Figure 

2.4 when one camera was rotated around the 𝑦-axis; therefore, the target objects in the left 

and the right images had different scales and aspects. In order to rescale and to rectify the 

target object in the image, the SIFT algorithm was used to find a set of matching points 

between the left and the right gray scale images. Color images needed to be converted to 

be gray scale images before using the SIFT algorithm. The output of SIFT was passed on 

to RANSAC to find and to exclude outliers from the matching set originally generated by 

SIFT.  Next, a set of 3-D point positions in object space was calculated for each pixel 

between two rectified images. To find the corresponding pairs, a block-matching algorithm 

with the 𝑆𝐴𝐷 in Equation (1) was used with a 67x67 block size and  ±15 pixels of search 

region size. After the corresponding points were found in the left image (𝑥𝑙 , 𝑦𝑙) and in the 

right image (𝑥𝑟 , 𝑦𝑟), the object points (𝑋, 𝑌, 𝑍) were calculated by using Equations (2) -

(14). Finally, the 3-D image was reconstructed from the set of 3-D object points.  

To setup the experiment, there were two different conditions for the cameras’ settings. The 

first condition is that both cameras remained parallel in the 𝑧-axis, whereas the second 

condition is that the left camera was rotated 𝜃 degrees clockwise around the 𝑦-axis and the 

right camera remained the same. For each condition, the left camera was both moved 



 

 

32 

 

forward and backward compared to the right camera’s position. In the four camera settings, 

the right camera position was referenced at 𝐶𝑟= (0, 0, 0) and both cameras were positioned 

at the same height. The four experiment set ups are shown in Figure 2.6.  

                     

                                a)                                   b) 

                   

                    c)                                                        d)   

Figure 2.6  Four experiment setups from top view 

(a) both cameras were parallel in the 𝑧-axis and the left camera was moved forward. 

(b) both cameras were parallel in the 𝑧-axis and the left camera was moved backward. 

(c) the left camera was rotated 7 degrees clockwise around the 𝑦-axis and was moved 

forward. 

(d) the left camera was rotated 4.5 degrees clockwise around the 𝑦-axis and was moved 

backward. 

 

  

  



 

 

33 

 

The 3-D images were reconstructed from each pair of images taken from all for camera 

scenarios. Images were taken of five different objects in four experiments. The five objects 

were a jar, a fox, two dolls, an engine model, and a pyramid. There were two examples 

where the 3-D images were looked at from multiple viewpoints as shown in Figures 2.7 

and 2.8. All 3-D image reconstructions created from 2-D images of the five objects in 

different conditions and cases are shown in Figures 2.9-2.12. The error between the object 

actual size and 3-D image reconstructions for all cases of different objects are calculated 

and shown in Table 2.1.  

 

                    a)              b)              c) 

Figure 2.7   3-D pyramid image from different viewpoints 

 

                    a)      b)                    c) 

Figure 2.8   3-D jar image from different viewpoints 

  



 

 

34 

 

Figures 2.7 and 2.8 showed that the result of reconstruction of the pyramid and jar from 

different viewpoints had discontinuous surfaces because of the quantization noise when the 

cameras captured the real world objects into the pixels of the digital images. These pixels 

could not represent the continuity of the surface of the objects. This is similar to when 

converting analog to digital. 

  



 

 

35 

 

      

a) b) 

      

b) d) 

 

e) 

Figure 2.9  Setup one: both cameras were parallel in the 𝑧-axis and the left camera was 

moved forward. 



 

 

36 

 

             

                a)                    b) 

     

           c)       d) 

 

e) 

Figure 2.10  Setup two:  both cameras were parallel in the 𝑧-axis and the left camera was 

moved backward. 



 

 

37 

 

             

              a)       b) 

          

             c)      d) 

 

e) 

Figure 2.11  Setup three: the left camera was rotated 7 degrees clockwise around the 𝑦-

axis and was moved forward. 



 

 

38 

 

                       

                a)      b) 

  

                                c)      d) 

 

               e) 

Figure 2.12  Setup four: the left camera was rotated 4.5 degree clockwise around the 𝑦-

axis and was moved backward. 



 

 

39 

 

It can be noticed from Figures 2.9-2.12 that the 3-D images contain enough quality 3-D 

information to represent one side of the actual object. Table 2.1 shows the error values 

between the actual object size and 3-D image size for height and width for all conditions 

and cases.  Experiments were performed to evaluate the prototype 3-D geometry algorithm 

by using RMSE.  Table 2.2 shows RMSE measurement of object sizes between the actual 

size and the 3-D image size. There are some errors in 3-D reconstructions because there 

are incorrect matching points during block matching process. This can be attributed to 

errors in a search region—if the intensity of pixels is about the same, they will give similar 

results for SAD that lead to high probability of generating the incorrect matching points. 

Table 2.1 The error values between the actual object size and the 3-D image size (unit: cm) 

Object First condition Second condition 

Name Size 

First case Second case First case Second case 

3-D 

image 
Error 

3-D 

image 
Error 

3-D 

image 
Error 

3-D 

image 
Error 

Pyramid 

Height 16.5 13.9 2.6 13.76 2.74 16 0.5 14 2.5 

Width 10.5 10 0.5 9.05 1.45 11 -0.5 9.7 0.8 

Fox 

Height 10.5 8.78 1.72 8.9 1.6 10 0.5 9.6 0.9 

Width 10 9.8 0.2 9 1 11.5 -1.5 9.5 0.5 

Engine 

Height 9.5 8.76 0.74 8.98 0.52 7.6 1.9 9.21 0.29 

Width 11.5 10.24 1.26 9.7 1.8 9.4 2.1 10.96 0.54 

Doll 

Height 9.5 8.6 0.9 8 1.5 9.75 -0.25 8.89 0.61 

Width 6 6.1 -0.1 5.48 0.52 6.4 -0.4 6 0 

Jar 

Height 12 10.37 1.63 9.76 2.24 11.9 0.1 10.13 1.87 

Width 12 12 0 11 1 11 1 11.4 0.6 

  



40 

Table 2.2 Qualitative results for the 3-D images for all cases (unit:cm) 

First condition Second condition 

First case Second case First case Second case 

RMSE 1.249 1.588 1.106 1.12 

2.5 Conclusions 

In this study, we proposed a triangular geometry to calculate 3-D information objects. This 

set of equations were used with processed images when the two cameras had 𝑥 and 𝑧-

displacement shift, and when one camera was rotated around the 𝑦-axis. Therefore, a set 

of 3-D object points could be calculated.  

The findings of the study showed that the 3-D information captured in this manner has 

enough quality to represent one side of the actual object. The RMSE between the actual 

size and the measured 3-D image result in the first case when the left camera was moved 

backward for both conditions are less than the second case when the left camera was moved 

forward.  The average RMSE is equal to 1.265. The results indicated that our set of 

prototype geometric equations could be used to calculate the 3-D information that can build 

a 3-D image with high reliability.  

2.6 References 

1. Robert-Inacio, F., A. Raybaud, and E. Clement, Multispectral target detection and

tracking for seaport video surveillance. Proceedings of the IVS Image and Vision

Computing New Zealand, 2007: p. 169-174.

2. Hampapur, A., et al., Smart video surveillance: exploring the concept of multiscale

spatiotemporal tracking. Signal Processing Magazine, IEEE, 2005. 22(2): p. 38-51.

3. Valera, M. and S.A. Velastin. Intelligent distributed surveillance systems: a review.

in Vision, Image and Signal Processing, IEE Proceedings-. 2005. IET.



 

 

41 

 

4. Bird, N., et al. Real time, online detection of abandoned objects in public areas. in 

Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International 

Conference on. 2006. IEEE. 

5. Singh, A., et al. An abandoned object detection system based on dual background 

segmentation. in Advanced Video and Signal Based Surveillance, 2009. AVSS'09. 

Sixth IEEE International Conference on. 2009. IEEE. 

6. Cucchiara, R. Multimedia surveillance systems. in Proceedings of the third ACM 

international workshop on Video surveillance & sensor networks. 2005. ACM. 

7. Calderara, S., et al. Entry edge of field of view for multi-camera tracking in 

distributed video surveillance. in Advanced Video and Signal Based Surveillance, 

2005. AVSS 2005. IEEE Conference on. 2005. IEEE. 

8. Mustafah, Y.M., A.W. Azman, and M.H. Ani. Object Distance and Size 

Measurement Using Stereo Vision System. in Advanced Materials Research. 2013. 

Trans Tech Publ. 

9. Nedevschi, S., et al. High accuracy stereo vision system for far distance obstacle 

detection. in IEEE Intelligent Vehicles Symposium. 2004. 

10. Stoyanov, D., et al., Real-time stereo reconstruction in robotically assisted 

minimally invasive surgery, in Medical Image Computing and Computer-Assisted 

Intervention–MICCAI 2010. 2010, Springer. p. 275-282. 

11. Murray, D. and J.J. Little, Using real-time stereo vision for mobile robot 

navigation. Autonomous Robots, 2000. 8(2): p. 161-171. 

12. Kim, H., S.-j. Yang, and K. Sohn. 3d reconstruction of stereo images for interaction 

between real and virtual worlds. in Mixed and Augmented Reality, 2003. 

Proceedings. The Second IEEE and ACM International Symposium on. 2003. 

IEEE. 

13. Suhr, J.K., et al., Automatic free parking space detection by using motion stereo-

based 3D reconstruction. Machine Vision and Applications, 2010. 21(2): p. 163-

176. 

14. Pollefeys, M., et al., Detailed real-time urban 3d reconstruction from video. 

International Journal of Computer Vision, 2008. 78(2-3): p. 143-167. 

15. Dhond, U.R. and J.K. Aggarwal, Structure from stereo-a review. IEEE transactions 

on systems, man, and cybernetics, 1989. 19(6): p. 1489-1510. 

16. Tao, T., J.C. Koo, and H.R. Choi. A fast block matching algorthim for stereo 

correspondence. in Cybernetics and Intelligent Systems, 2008 IEEE Conference on. 

2008. IEEE. 

17. Lucas, B.D. and T. Kanade. An iterative image registration technique with an 

application to stereo vision. in IJCAI. 1981. 

18. Venkateswar, V. and R. Chellappa, Hierarchical stereo and motion 

correspondence using feature groupings. International Journal of Computer Vision, 

1995. 15(3): p. 245-269. 

19. Park, C.S. and H.W. Park, A robust stereo disparity estimation using adaptive 

window search and dynamic programming search. Pattern Recognition, 2001. 

34(12): p. 2573-2576. 

20. Boykov, Y., O. Veksler, and R. Zabih, Fast approximate energy minimization via 

graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 

2001. 23(11): p. 1222-1239. 



 

 

42 

 

21. Sun, J., N.-N. Zheng, and H.-Y. Shum, Stereo matching using belief propagation. 

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2003. 25(7): p. 

787-800. 

22. Hartley, R. and A. Zisserman, Multiple view geometry in computer vision. 2003: 

Cambridge university press. 

23. Lowe, D.G., Distinctive image features from scale-invariant keypoints. 

International journal of computer vision, 2004. 60(2): p. 91-110. 

24. Fischler, M.A. and R.C. Bolles, Random sample consensus: a paradigm for model 

fitting with applications to image analysis and automated cartography. 

Communications of the ACM, 1981. 24(6): p. 381-395. 

25. Bhaskaran, V. and K. Konstantinides, Image and video compression standards: 

algorithms and architectures. 1997. Kluwer Academic Publishers, Norwell, MA, 

USA. 

26. Vassiliadis, S., et al. The sum-absolute-difference motion estimation accelerator. 

in Euromicro Conference, 1998. Proceedings. 24th. 1998. IEEE. 

27. Scharstein, D. and R. Szeliski, A taxonomy and evaluation of dense two-frame 

stereo correspondence algorithms. International journal of computer vision, 2002. 

47(1-3): p. 7-42. 

28. Fulkerson, A.V.a.B. VLFEAT: An Open and Portable Library of Computer Vision 

Algorithms. 2008; Available from: http://www.vlfeat.org/. 

 

  



 

 

43 

 

Chapter 3: Factors Effecting Real Time Optical Monitoring of 

Fused Filament 3-D printing2 

3.1 Abstract 

This study analyzes a low-cost reliable real-time optimal monitoring platform for fused 

filament fabrication-based open source 3-D printing. An algorithm for reconstructing 3-D 

images from overlapping 2-D intensity measurements with relaxed camera positioning 

requirements is compared with a single camera solution for single side 3-D printing 

monitoring. The algorithms are tested for different 3-D object geometry and filament 

colors. The results showed that both algorithms with a single and double camera system 

were effective at detecting a clogged nozzle, incomplete project, or loss of filament for a 

wide range of 3-D object geometries and filament colors. The combined approach was the 

most effective and achieves 100 percent detection rate for failures. The combined method 

analyzed here has a better detection rate and a lower cost compared to previous methods. 

In addition, this method is generalizable to a wide range of 3-D printer geometries, which 

enables further deployment of desktop 3-D printing as wasted print time and filament are 

reduced, thereby improving the economic advantages of distributed manufacturing. 

3.2 Introduction 

As the Stratasys patent [1] expired on fused deposition modeling (FDM) in 2009, a more 

generalized form (fused filament fabrication (FFF)) enabled the self-replicating rapid 

prototyper (RepRap) 3-D printer project [2-4] to develop and scale. The RepRap project 

                                                 
2 This chapter has been completed as an article to submit. Citation: Nuchitprasitchai S, Roggemann M, & 

Pearce J (2017). Factors Effecting Real Time Optical Monitoring of Fused Filament 3-D Printing 

 



 

 

44 

 

was developed using open source hardware protocols [5] around the Arduino 

microcontroller [6-7]. The expected rapid innovation in the open source community [8] 

succeeded, and dropped the cost of FFF 3-D printers by several orders of magnitude [9], 

spawned dozens of 3-D printer startup companies and brought 3-D printing to prosumers 

at a rapid rate [10]. This change had helped to lower the cost of an open source RepRap 

style 3-D printer first under US$1000 and now to under US$500 in parts, which makes it 

economically viable for average consumers to offset purchases with 3-D printing [11]. 

RepRaps can reproduce more than half of their own components and can self-upgrade, 

which make them attractive for a wide range of applications including sustainable 

development and farming [12-14], education [15-19], rapid prototyping standard products 

[20,21] to microfluidics [22,23] small business manufacturing [24-27], as well as scientific 

tools [28-31].  However, these low-cost printers are still short of the reliability standards 

[32-35] that consumers are accustomed to with other consumer products. Some work has 

estimated a 20% failure rate for inexperienced 3-D printer users on DIY machines [11]. 

This is primarily due to inherent challenges of FFF printing, which although far improved 

in the last several years [36] persist, including: warping, elephant foot, more first layer 

problems, lower parts shrink, skewed prints/ shifted layers, layer misalignment, missing 

layers, cracks in tall objects, pillowing, stringing, under-extrusion, over-extrusion, gaps in 

the top layers, visible lines in the bottom layers, scars on the top surface, or no filament 

comes out of the nozzle [37]. These errors cost money and waste time as they reduce 

prosumer use due to frustration and reduce the environmental benefits of distributed 

manufacturing [38-42].  



 

 

45 

 

Several attempts have been made to improve the reliability of 3-D printers using high 

resolution imaging. However, the majority of this work has been based on high-cost, high 

resolution laser based 3-D printing systems.  Kleszczynski, et al. [43] presented an 

overview of an error detection in an EOS INT M 270 Laser Beam Melting System with a 

monochrome CCD camera system, a tilt and shift lens to reduce perspective distortion, and 

an adjustable tube for changing height or reducing the distance between the lens and the 

object. Similarly, Jacobsmühlen, et al. [44] successfully applied their images to inspect a 

powder bed AM process result on a microscopic scale for flaw detection, missing powder 

or low energy input, surface quality, and measurements of part geometries. Later, 

Jacobsmühlen, et al. [45] showed that for providing high-resolution image-based 

measurements, calibration of perspective correction need to be done by using their template 

matching approach based on the experiment setup from [44]. Kleszczynski, et al. [46] 

presented two approaches to improve 3-D printing process stability including 1) using a 

high-resolution imaging setup and 2) an enhanced version with a proximity sensor. In 

addition, several commercial systems based on proprietary computer visions systems are 

also available for high-end printers. For example, the price for a Sintavia relies on Concept 

Laser for 3-D process monitoring in real-time for metal additive manufacturing system, 

costs around US$800,000 [47]. 

Relatively little work has investigated error detection in prosumer desktop FFF-based 3-D 

printing. This work is based primarily on monitoring Makerbot branded derivatives [48-

53] of the RepRap project. Baumann, et al. met with limited success that did not support 

flat objects and those with similar material color with the printer using and open source 

software approach with OpenCV [54] and Python [55] to detect errors including 



 

 

46 

 

detachment, missing material flow and deformed object with a Playstation eye cam [50]. 

Hurd et al. successfully applied a mobile device to remotely monitor internal and external 

errors with Samsung Galaxy Tab 3 [48].  Ceruti et al. met with limited success using and 

open source software approach with Augmented Reality toolkit (AR) [56], Speeded Up 

Robust Features (SURF) algorithm [57], and The RANdom SAmple Consensus 

(RANSAC) algorithm [58] to detect the differences between a reference 3-D model (CAD) 

and the 3-D printing model with a camera and Augmented Reality Wuzix glasses [51].  

Faes et al. had nearly zero production failure in the 𝑧-direction to detect the deposited tracks 

and to determine the dimension of interest in a closed-loop feedback in an Extrusion based 

3-D printing (E3DP) with a modular 2-D laser triangulation scanner [49].  Straub 

successfully applied a visible light scanning with a multi-camera system and open source 

software approach with C# and Dot Net Framework [59] to detect dry printing when 

filament is not applied and premature job termination when project is not complete with 

Raspberry Pi [60], five Raspberry Pi cameras, and a visible light 3-D scanning system [52].  

Straub provide an overview on how to characterize an internal structures and covered 

surfaces defects of complex objects with a Raspberry Pi [60], a multi-camera system (five 

Raspberry Pi cameras), and a visible light 3-D scanning system [53].   Flexible plastic toys 

production line prototype systems with the integration of a 3-D printer, industrial robot and 

machine vision have been demonstrated in a laboratory environment [62]. Finally, 

Cummings, et al. [62] presented some preliminary results with the detection and correction 

of filament in closed loop control for 3-D printing using ultrasonic signals with limited 

success.  



 

 

47 

 

To build on this work in order to develop a low-cost reliable real-time optimal monitoring 

platform for FFF-based 3-D printing, this paper undertakes a detailed study of the use of 

an algorithm for reconstructing 3-D images from overlapping 2-D intensity measurements 

with relaxed camera positioning requirements [63]. For single side 3-D printing 

monitoring, single and double camera solutions are compared for the following variables: 

six different 3-D object geometry, five filament colors. The results are compared between 

the two camera setups as well as the results of previously published techniques. The 

limitations of this approached are detailed and future work is described. The results are 

then discussed and conclusions are drawn in the context of furthering the adoption of 

desktop 3-D printing for distributed manufacturing. 

3.3 Methods 

For this paper, experiments were setup in two different ways: 1) using one camera to 

capture a 2-D image from a single 3-D printing model to do a 2-D shape image, and 2) 

using two cameras to capture two 2-D images from a single 3-D printing model to do a 3-

D reconstruction. A different algorithm is used for each experimental setup, but the same 

type of camera, printer and tested objects are used. Due to the distance between the camera 

and the printer for the experiment setup, the field of view for both cameras can cover the 

printed area of 70 mm in width and 60 mm in height. To eliminate the shadow on the object 

scene, there should be sufficient light sources. Both experimental setups used the same 3-

D printer using a delta-style RepRap, Point Grey cameras, distance between the camera 

and the printer, distance between the light sources and the printer, blue printing base, and 

filament brand. The relation of geometry between the 3-D printer and the camera system 

need to be known for using camera calibration technique to calculate the intrinsic and 



 

 

48 

 

extrinsic parameters for a specific camera setup. These parameters will be used to correct 

for lens distortion and to determine the location of the camera in the scene. 

A low-cost (<US$500 in parts) [16] open source delta-style polymer printing RepRap  

(MOST Delta) is used [64]. The MOST Delta is a RepRap [65] derived from the Rostock 

[66] printer with a cylindrical build volume 270 mm in diameter and 250 mm high and 

overall dimensions of 375 mm diameter and 620 mm high. The cameras are setup on 1 side 

of the printer 580 mm from the outer edge as shown in Figure 3.1. The cameras used in 

this study are two identical 1394a Firefly MVs, with an image size of 480-by-640 (height-

by-width), pixel size is 6 μm with square pixels, and a focal length of 16.6 mm. The 

computer models chosen are a Tyrannosaurus rex skull, cube, twisted gear vase, 

rectangular prism, cylinder, and triangular prism are available [67] as shown in Figure 3.2. 

The printing parameters used are: layer height 0.2 mm, shell thickness 1 mm, unable 

retraction, bottom/top thickness 1mm, fill density 20%, print speed 60 mm/s (except the 

skull model, which used 20 mm/s), printing temperature 180oC, diameter filament 1.94mm-

1.98 mm, flow filament 100%, and nozzle size 0.5 mm.  The PLA filament used in this 

experiment is Hatchbox 3-D PLA with dimensional accuracy +/- 0.05 mm on 1 kg spools, 

1.75 mm diameter with red, pink, glow, black, and orange colors.    



 

 

49 

 

 

Figure 3.1  MOST Delta printer with optical monitoring experimental setup 

 

 

Figure 3.2  Rendering of STL models for testing:  a) tyrannosaurus rex skull, b) cube, c) 

twisted gear vase, d) rectangular prism, e) cylinder, and f) triangular prism 



 

 

50 

 

3.3.1 Single Camera Setup 

To detect an error from a single camera setup as shown in Figure 3.3, after simulating a 2-

D shape image (cameraimage) of the 3-D object then comparing observation to the 2-D 

shape model (stlimage). To create a stlimage, a rendered 3-D model in OpenSCAD is saved 

into stl file (stlimage), then all data from stl file are plotted in 𝑥, 𝑦, 𝑧 axes by using stlTools 

[68] to display the shape of the rendered 3-D model, which can be observed from different 

viewpoints.  The position of the viewer for plotting the model needs to be set specify as the 

position of camera viewpoint while taking an image. Thus, in the right position of the 

viewer, the shape of the stlimage is saved as PNG image type on 𝑥𝑧-plane. The 

cameraimage is created after capturing a 2-D image from the 3-D printing model. The 

background is then removed and rendered white. Distortion is removed from the image by 

intrinsic parameters from camera calibration [69] following the details in the method. Next 

a region of interest (ROI) is calculated from the image by converting the color image into 

a gray scale image, then converting it into binary image. The object area in the binary image 

is converted to be white used as the ROI, otherwise is converted to be black. The size of 

the object in stlimage and cameraimage are defined by edge detection, then the object size 

ratio between these two images can be found for rescaling.  After rescaling, edge detection 

is applied again to find minimum and maximum positions of object in both images for 

rectification. After rectification, any errors in the process are detected by subtracting the 

simulated 3-D object image from the actual image. If the difference of subtraction is greater 

than 5%, there is an error, otherwise there is no error flagged. 



 

 

51 

 

 

Figure 3.3  Error detection for single camera model flowchart 



 

 

52 

 

3.3.2 Two Camera Setup 

To detect an error from the two-camera setup between a 3-D printed object and a 3-D 

reconstruction from two cameras the following process is used as shown in Figure 3.4 and 

3.5.  First, the background is removed and rendered white from the images taken from two 

cameras (leftimage and rightimage). Distortion and the ROI are calculated as above.  

However, in the two-camera case there is another problem as points in 3-D space must be 

matched between the two images.  To resolve this problem, the Scale Invariant Feature 

Transform (SIFT) [70] and the RANdom SAmple Consensus (RANSAC) [58] models are 

applied for rescaling and rectification.  The algorithm for doing this has been described 

previously [63]. 

Next, the error detection is obtained by comparing the 3-D printed object and 3-D 

reconstruction image. If the difference between the two more than 5%, there is an error is 

identified, otherwise there is no action taken to stop the print. 

3.3.3 Validation 

The dimensions of the 3-D printed objects are measured with a digital caliper (+/-0.05mm). 

A 3-D reconstruction of the object is created from two images and the object size is 

calculated. Next, the size of both objects is compared to calculate size difference an error 

of the reconstruction.  For validation of this approach six different test objects with 

different color filament are printed including a) Tyrannosaurus rex skull (pink), b) cube 

(black), c) twisted gear vase (red), d) rectangular prism (red), e) cylinder (glow), and f) 

triangular prism (orange).      



 

 

53 

 

                                  

Figure 3.4  Error detection for two cameras model part 1 flowchart 1) checking 3-D 

object calculation, and 2) plotting stl file. 



 

 

54 

 

 

Figure 3.5  Error detection for two cameras model part 2 flowchart. 



 

 

55 

 

3.4 Results 

The validation print images are shown in Figure 3.6. They are printed in order to detect 

missing material flow when the supply of filament is cut during a 3-D print.   

 

Figure 3.6  Original left and right image for different geometries with different color: a) 

tyrannosaurus rex skull (pink), b) cube (black), c) twisted gear vase (red), d) rectangular 

prism (red), e) cylinder (glow), and f) triangular prism (orange). 

The error detection from one camera was tested with different geometries (Tyrannosaurus 

rex skull, cube, twisted gear vase, rectangular prism, cylinder, and triangular prism) with 

different filament colors (pink, black, red, glow, and orange) because different color gives 

both different 3-D printing results and can represent different challenges for image 

processing. The error detection system is tested with two different conditions: first is when 

the 3-D printer finish complete printing and second is when the 3-D printer fails and a print 

is incomplete. Printing is tested with different geometries are shown in Figure 3.7. Table 

3.1 shows that the shape errors are between 0.984% and 2.987%. This error is acceptable 



 

 

56 

 

because the error of shape difference is less than 5%. The incomplete project has been 

tested with different geometries between the cameraimage and stlimage in different 

conditions as shown in Figure 3.8. Table 3.2 shows that the shape errors are greater than 

5%.  When the nozzle is clogged, or an incomplete project is caused by filament running 

out that effect the 3-D printing shapes so they are smaller than the STL models. The one 

exception in this case is the triangle model that is less than 5% between cameraimage (150 

layers) and stlimage (200 layers) because the top of triangle has a small area.  

Table 3.1 Single camera: error measurements for each geometry (W: Width, H: Height) 

Object skull Cube Twisted   

gear vase 

Rectangle Cylinder Triangle 

Color Pink Black Red Red Glow Orange 

Size 

(mm) 

Axes 
W H W H W H W H W H W H 

 STL 

model 
28.68 60.55 30.00 30.00 43.82 38.03 10.00 50.00 28.10 51.10 50.23 43.50 

Shape error (%) 2.98 1.34 2.20 0.98 2.58 2.06 

Calculation 

time (sec.) 
6.64 6.90 7.07 7.16 9.03 6.56 

 

Table 3.2 Single camera: example for error measurements when the printings fail in 

different layer heights 

Layer heights Error (%) 

cameraimage stlimage Skull Cube Vase Rectangle Cylinder Triangle 

50 100 18.68 15.87 12.71 19.36 15.06 13.76 

100 150 13.82 9.97 11.97 11.54 12.19 7.60 

150 200 12.95  6.78 10.04 10.13 3.39 

 



 

 

57 

 

 

Figure 3.7  Single camera setup with different geometries: a) tyrannosaurus rex skull 

(pink), b) cube (black), c) twisted gear vase (red), d) rectangular prism (red), e) cylinder 

(glow), and f) triangular prism (orange). 

 

 

 

 

 

 

 



 

 

58 

 

 

 

Figure 3.7 (cont.)  Single camera setup with different geometries: a) tyrannosaurus rex 

skull (pink), b) cube (black), c) twisted gear vase (red), d) rectangular prism (red), e) 

cylinder (glow), and f) triangular prism (orange). 



 

 

59 

 

 

Figure 3.8  Single camera setup: error detection for different geometries between camera 

and STL image: a) skull model between 250 layers and full model, b) twisted gear vase 

model between 150 layers and full model, c) cube model between 150 layers and full 

model, d) rectangle model between 150 layers and 200 layers, e) cylinder model between 

150 layers and full model, and f) triangle model between 100 layers and full model 

 

 

 

 

 



 

 

60 

 

 
 

Figure 3.8 (cont.)  Single camera setup: error detection for different geometries between 

camera and STL image: a) skull model between 250 layers and full model, b) twisted gear 

vase model between 150 layers and full model, c) cube model between 150 layers and full 

model, d) rectangle model between 150 layers and 200 layers, e) cylinder model between 

150 layers and full model, and f) triangle model between 100 layers and full model 

 

 

 



 

 

61 

 

The error detection for the complete project from two cameras setup was tested with 

different geometries (Tyrannosaurus rex skull, cube, twisted gear vase, rectangular prism, 

cylinder, and triangular prism) with different filament colors (pink, black, red, glow, and 

orange) because different color gives us different 3-D printing results. A manual caliper is 

used to measure the width and the height of the real object size in millimeters (the 3-D 

model printing) as seen in Figure 3.9. The width and the height of the 3-D reconstruction 

is calculated after pointing those points on the image to get the 𝑥, 𝑦, 𝑧 positions manually. 

The percentage of the error measurements for the complete project for each geometry with 

different colors for the width and the height are calculated after the difference in the width 

and height are found in millimeter. The 3-D reconstruction for different geometries are 

shown in Figure 3.9 -3.14 and the percentage of errors are less than 3.94% that there are 

acceptable because the error of size difference is less than 5% as shown in Table 3.3. 

Table 3.3 Error measurements for complete project for each geometries with different 

color ( W is Width and H is Height) 

Object Skull Cube Twisted gear 

vase 

Rectangle Cylinder Triangle 

Color Pink Black Red Red Glow Orange 

Axes W H W H W H W H W H W H 

Size 

(mm) 

Real  

Object 
28.68 60.55 29.86 30.23 44.01 38.50 9.59 50.14 28.65 49.48 50.73 43.58 

3-D 

recon-

struction 

28.70 61.1 30.39 30.00 44.35 38.19 9.52 51.2 29.78 50.98 51.00 44.00 

Error +/- +0.02 +0.55 +0.53  -0.22 +0.34 -0.30  -0.07 +1.06 +1.13 +1.5 +0.27 +0.42 

 % 0.07 0.90 1.80 0.75 0.77 0.79 0.70 2.11 3.94 3.03 0.54 0.96 

Calculation 

Time (sec.) 
73.88 45.66 67.05 38.73 58.78 51.56 

 



 

 

62 

 

 

Figure 3.9  Tyrannosaurus rex skull (pink): a) width measurement and b) height 

measurement 

 

Figure 3.10  Twisted gear vase (red): a) width measurement and b) height measurement 

 



 

 

63 

 

 

Figure 3.11  Cube (black): a) width measurement and b) height measurement 

 

Figure 3.12  Cylinder (glow): a) width measurement and b) height measurement 

 



 

 

64 

 

 

Figure 3.13  Triangle (orange): a) width measurement and b) height measurement 

 

Figure 3.14  Rectangle (red): a) width measurement and b) height measurement. 



 

 

65 

 

3.5 Discussion 

The experiments demonstrate that both the single and two cameras set up can be used detect 

a catastrophic FFF 3-D printing error such as clogged filament. Table 3.3 shows the 

percentage of error for complete printing between single and two camera setups. The size 

error percentage of two cameras is less than the shape error percentage of single camera. 

However, the calculation time of two cameras is greater than the single camera. For two 

cameras set up provided the width and height error. There are more error details for the 

double camera setup than the single camera provided only the total shape error.  

The error detection system works as designed for both the single and two camera setups. 

To detect an error more accurately, the perspective view of stlimage needs to be set as the 

actual perspective view between cameras and the 3-D printing object. It should be noted, 

that a printed 3-D object usually has a small error when compared to its designed 3-D 

model because of the FFF process that impacts error detection calculation.  These 

experiments show that the shape error detection can determine when the printing has failed 

because the 3-D printed objects are smaller than the STL models and the error percentage 

is greater than 5%.  However, the error detection system will detect an error better than 

either process alone, when the single and two camera setups are combined to detect error 

together. While the 3-D printer is printing, the single camera system detects a shape error 

every N layers because the computation time is less than 10 seconds for the whole object. 

If a shape error is greater than 5%, it will report to the user.  If there is no shape error, the 

two cameras system will start to detect a size error.  If a size error is greater than 5%, it 

will report to user. If there is no size error, the 3-D printer will continue. This combined 



 

 

66 

 

method provides both the size and shape error detection with required accuracy in 

reasonable times for FFF printing. 

Overall, the combination of the two methods (single and double camera) was found to be 

the most effective. The use of cameras can be less expensive than other methods used to 

determine the accuracy of a 3-D print such as a laser scanning or sensor [49]. Using the 

single camera method, the computation time (6.9 seconds for 9 square cm) is faster than 

both subtraction (fastest is 10 seconds for 6.25 square cm) and the searching (fastest is 12 

seconds for 6.25 square cm) algorithm developed by Hurd et al. [48].  There are other 

methods to stop catastrophic failures. For example, Barker developed a system that works 

for delta-style RepRaps, which stops a print when electrical connections are broken if any 

of the linking rods are thrown [71]. In addition, to the increase in complexity for the 3-D 

printing system this is also not generalizable to other 3-D printers that do not have 

magnetic bearings (e.g. most Cartesian based printers).  Early work has tried to determine 

ways to use relatively expensive ultrasonic sensors to detect errors with promise, but 

unreliable results [62]. This method (100 % detection) can detect an error better than 

vision based error detection for 3-D printing processes when missing material flow (80% 

detection) [50]. When the square model is tested printing every 10 layers when the layer 

height is 0.2 mm, the shape errors are greater than 5% when the nozzle is clogged, or an 

incomplete project. Using the single camera method can detect an error at 2mm in height 

which is smaller than 5 mm [51]. 

Other solutions to 3-D print failure provided in the RepRap community have had video 

monitor of printing [72], but the user has to stop the print manually if the user detects and 

error through continuous human surveillance. This obviously undermines one of the 



 

 

67 

 

primary benefits of bespoke automated fabrication with 3-D printers because of the 

necessary human involvement. The system described here overcomes that issue to allow 

for automatic error detection with no human oversight. However, the algorithm here still 

has two fundamental limitations. First, the finite (several seconds) of commutation time 

(as summarized in Table 3.4) does not allow every layer to be monitored in real time for 

small printed objects as the print speed is faster than the analysis time. For larger more 

complex prints this is a less of an issue and as the results have shown here sampling a 

printed object after several layers is adequate for catastrophic failures although it does not 

enable real time automatic error detection (and the potential for real time error correction). 

To get to that goal the computation time would need to be reduced. This may be possible 

by streamlining the computation and removing it from the MATLAB environment. Doing 

the latter, will also overcome one of the other primary challenges to the use of this method 

in the distributed manufacturing community. Specifically, although the algorithms 

provided here are open source [73]. They currently are run in the MATLAB environment 

which costs $2,150 [74]. This is not that expensive for research or in higher end 3 -D 

printer applications, but represents a barrier to deployment in the low-cost prosumer 

printers used for distributed manufacturing, which generally cost in total $2,500 or less 

(the RepRap used in this study was $500 in parts). 

In addition, to overcoming these limitations there are several other areas of future 

research. First, this system would be improved if it was applied to all sides of the printing 

object. For future research, this error detection system will be implemented and extended 

from the basic approach into 360 degree around FFF-based 3-D printing. It will improve 

the object detection capability as there is better understanding for the scene geometry and 



 

 

68 

 

therefore for object detection in the depth dimension. Furthermore, to reduce the cost for 

adding the error detection system to FFF-based 3-D printing, low-cost web cameras will 

be applied in this system. Using low cost optics will need to be vetted for its effects on the 

performance of the system and the algorithms presented here. 

Table 3.4 Error measurements for complete printing each tested geometry (W: Width, H: 

Height) of two cameras (size error) and single camera (shape error) 

 

Object Skull Cube Twisted gear 

vase 

Rectangle Cylinder Triangle 

Color Pink Black Red Red Glow Orange 

Axes W H W H W H W H W H W H 

Size 

(mm) 

STL 

model 
55.13 59.90 30.00 30.00 43.82 38.03 10.00 50.00 48.45 49.00 50.23 43.50 

Size error (%) 0.07 0.90 1.80 0.75 0.77 0.79 0.70 2.11 3.94 3.03 0.54 0.96 

Calculation 

time (sec) 
73.88 45.66 67.05 38.73 58.78 51.56 

Shape error 

(%) 
2.98 1.34 2.20 0.98 2.58 2.06 

Calculation 

time (sec) 
6.64 6.90 7.07 7.16 9.03 6.56 

 

3.6 Conclusions 

This paper described a low-cost reliable real-time monitoring platform for FFF-based 3-D 

printing based on a single and two cameras system for a single side. The results showed 

that both algorithms with a single and double camera system were effective at detecting a 

clogged nozzle, loss of filament, or an incomplete project for a wide range of 3-D object 

geometries and filament colors. The error calculation was determined from the difference 

in shape between stlimage and cameraimage, or the different size between stlimage and the 

3-D reconstruction. The error was reported when these errors exceeded 5%. The validity 

of this approach using experiments shows that the error detection system is capable of a 



 

 

69 

 

100 percent detection rate for failure detection. The combined method analyzed here has a 

better detection rate and a lower cost to previous methods. In addition, this method is 

generalizable to a wide range of FFF 3-D printer geometries, which enables further 

adoption of desktop 3-D printing for distributed manufacturing as wasted print time and 

filament are reduced. 

3.7 References 

1. Crump, S.S., Stratasys, Inc., 1992. Apparatus and method for creating three-

dimensional objects. U.S. Patent 5,121,329. 

2. Sells E, Smith Z, Bailard S, Bowyer A, Olliver V (2010) RepRap: The Replicating 

Rapid Prototyper: Maximizing Customizability by Breeding the Means of 

Production. In: Piller FT, Tseng MM (eds) Handbook of Research in Mass 

Customization and Personalization: Strategies and concepts, Vol.1. World 

Scientific, pp 568-580. 

3. Jones R, Haufe P, Sells E, Iravani P, Olliver V, Palmer C, Bowyer A (2011) RepRap 

– the replicating rapid prototype. Robotica 29:177–191.doi:10.1017/S0263574710 

00069X 

4. Bowyer A (2014) 3D printing and humanity's first imperfect replicator. 3D Printing 

and Additive Manufacturing 1(1): 4-5. doi:10.1089/3dp.2013.0003 

5. Gibb, A. and Abadie, S., 2014. Building open source hardware: DIY manufacturing 

for hackers and makers. Pearson Education. 

6. Banzi, M. and Shiloh, M., 2014. Getting Started with Arduino: The Open Source 

Electronics Prototyping Platform. Maker Media, Inc.. 

7. Arduino https://www.arduino.cc/ Accessed 10 November 2016 

8. Raymond, E. The cathedral and the bazaar. Knowledge, Technology & Policy 1999, 

12(3), pp.23–49. 

9. Rundle, G. A Revolution in the Making. Simon and Schuster, 2014. 

10. Wohlers T. (2016) Wohlers Report 2016. Wohlers Associates, Inc; 2016 Apr 10. 

11. Wittbrodt, B.T.; Glover, A.G.; Laureto, J.; Anzalone, G.C.; Oppliger, D.; Irwin, 

J.L.; Pearce, J.M. Life-cycle economic analysis of distributed manufacturing with 

open-source 3-D printers. Mechatronics 2013, 23(6), pp. 713-726. 

12. Pearce, J.M.  Morris Blair, C. , Laciak, K. J., Andrews, R., A. Nosrat and I. 

Zelenika-Zovko, “3-D Printing of Open Source Appropriate Technologies for Self-

Directed Sustainable Development”, Journal of Sustainable Development 3(4), pp. 

17-29 (2010). 

13. Fox, S., After the factory [Manufacturing renewal]. Engineering & Technology, 

5(8), pp.59-61 (2010). 

https://www.arduino.cc/


 

 

70 

 

14. Pearce, J.M.(2015). Applications of Open Source 3-D Printing on Small Farms. 

Organic Farming 1(1), 19-35. DOI:10.12924/of2015.01010019 

15. Kentzer, J., Koch, B., Thiim, M., Jones, R.W. and Villumsen, E., 2011, May. An 

open source hardware-based mechatronics project: The replicating rapid 3-D 

printer. In Mechatronics (ICOM), 2011 4th International Conference On (pp. 1-8). 

IEEE. 

16. Irwin, J.L.  Oppliger, D.E.  Pearce, J.M.  Anzalone, G. Evaluation of RepRap 3D 

Printer Workshops in K-12 STEM. 122nd ASEE 122nd ASEE Conf. Proceedings, 

paper ID#12036, 2015.  

17. Gonzalez-Gomez, J., Valero-Gomez, A., Prieto-Moreno, A. and Abderrahim, M., 

2012. A new open source 3d-printable mobile robotic platform for education. In 

Advances in autonomous mini robots (pp. 49-62). Springer Berlin Heidelberg. 

18. Grujović, N., Radović, M., Kanjevac, V., Borota, J., Grujović, G. and Divac, D., 

2011, September. 3D printing technology in education environment. In 34th 

International Conference on Production Engineering (pp. 29-30). 

19. Schelly, C., Anzalone, G., Wijnen, B. and Pearce, J.M., 2015. Open-source 3-D 

printing technologies for education: Bringing additive manufacturing to the 

classroom. Journal of Visual Languages & Computing, 28, pp.226-237. 

20. Campbell, I., Bourell, D. and Gibson, I., 2012. Additive manufacturing: rapid 

prototyping comes of age. Rapid Prototyping Journal, 18(4), pp.255-258. 

21. Gibson, I., Rosen, D. and Stucker, B., 2014. Additive manufacturing technologies: 

3D printing, rapid prototyping, and direct digital manufacturing. Springer. 

22. O'Neill, P.F., Azouz, A.B., Vazquez, M., Liu, J., Marczak, S., Slouka, Z., Chang, 

H.C., Diamond, D. and Brabazon, D., 2014. Advances in three-dimensional rapid 

prototyping of microfluidic devices for biological applications. Biomicrofluidics, 

8(5), p.052112. 

23. Pearce, J.M., Anzalone, N.C. and Heldt, C.L., Open-source Wax RepRap 3-D 

Printer for Rapid Prototyping Paper-Based Microfluidics, Journal of Laboratory 

Automation 21(4) 510–516 (2016).  

24. Rimock, M., 2015. An Introduction to the Intellectual Property Law Implications 

of 3D Printing. Canadian Journal of Law and Technology, 13(1). 

25. Laplume, A., Anzalone, G.C. and Pearce, J.M. Open-source, self-replicating 3-D 

printer factory for small-business manufacturing. The International Journal of 

Advanced Manufacturing Technology. 85(1), pp 633-642 (2016). doi:10.1007/

s00170-015-7970-9  

26. Tech, R.P., Ferdinand, J.P. and Dopfer, M., 2016. Open Source Hardware Startups 

and Their Communities. In The Decentralized and Networked Future of Value 

Creation (pp. 129-145). Springer International Publishing. 

27. Troxler, P. and van Woensel, C., 2016. How Will Society Adopt 3D Printing?. In 

3D Printing (pp. 183-212). TMC Asser Press. 

28. Pearce, J. M. 2012. Building Research Equipment with Free, Open-Source 

Hardware. Science 337 (6100): 1303–1304. DOI: 10.1126/science.1228183 



 

 

71 

 

29. Pearce, J.M. Open-Source Lab: How to Build Your Own Hardware and Reduce 

Research Costs, Elsevier, 2014. 

30. Baden, T., Chagas, A. M., Gage, G., Marzullo, T., Prieto-Godino, L. L., & Euler, 

T. (2015). Open Labware: 3-D Printing Your Own Lab Equipment. PLOS Biology, 

13(3). DOI: 10.1371/journal.pbio.1002086  

31. Coakley, M. and Hurt, D.E., 2016. 3D Printing in the Laboratory Maximize Time 

and Funds with Customized and Open-Source Labware. Journal of Laboratory 

Automation, p.2211068216649578. 

32. Kłodowski, A., Eskelinen, H. and Semken, S., 2015. Leakage-proof nozzle design 

for RepRap community 3D printer. Robotica, 33(04), pp.721-746. 

33. Mercuri, R. and Meredith, K., 2014, March. An educational venture into 3D 

Printing. In Integrated STEM Education Conference (ISEC), 2014 IEEE (pp. 1-6). 

IEEE. 

34. Chonga, S., Chiub, H.L., Liaob, Y.C., Hungc, S.T. and Pand, G.T., 2015. Cradle to 

Cradle® Design for 3D Printing. CHEMICAL ENGINEERING, 45. 

35. Moilanen, J. and Vadén, T., 2013. 3D printing community and emerging practices 

of peer production. First Monday, 18(8). 

36. Frauenfelder, M., Make: Ultimate Guide to 3D Printing 2014: Maker Media. Inc., 

O’Reilly, Sepaspol CA, 2013. 

37. Alastair J. (2016) presented 16 common 3D Printing Problems and Solutions 

publishing all3dpweb. https://all3dp.com/common-3d-printing-problems-and-

their-solutions/ Accessed 10 November 2016 

38. Kreiger, M. and Pearce, J.M., 2013. Environmental life cycle analysis of distributed 

three-dimensional printing and conventional manufacturing of polymer products. 

ACS Sustainable Chemistry & Engineering, 1(12), pp.1511-1519. 

39. Vera, J., 2010. Promoting Tools that integrate LCA into the Product Design 

Process: a Case Study in Ontario. 

40. Kreiger, M. and Pearce, J.M., 2013. Environmental impacts of distributed 

manufacturing from 3-D printing of polymer components and products. In MRS 

Proceedings (Vol. 1492, pp. 85-90). Cambridge University Press. 

41. Kostakis, V., Roos, A. and Bauwens, M., 2016. Towards a political ecology of the 

digital economy: Socio-environmental implications of two competing value 

models. Environmental Innovation and Societal Transitions, 18, pp.82-100. 

42. Bonvoisin, J., 2016. Implications of Open Source Design for Sustainability. In 

Sustainable Design and Manufacturing 2016 (pp. 49-59). Springer International 

Publishing. 

43. Kleszczynski, S., Zur Jacobsmühlen, J., Sehrt, J.T. and Witt, G., 2012, August. 

Error detection in laser beam melting systems by high resolution imaging. In 

Proceedings of the Solid Freeform Fabrication Symposium. 

44. zur Jacobsmühlen, J., Kleszczynski, S., Schneider, D. and Witt, G.,  "High 

resolution imaging for inspection of laser beam melting systems." 2013 IEEE 

International Instrumentation and Measurement Technology Conference (I2MTC). 

IEEE, 2013.  

https://all3dp.com/common-3d-printing-problems-and-their-solutions/
https://all3dp.com/common-3d-printing-problems-and-their-solutions/


 

 

72 

 

45. zur Jacobsmühlen, J., Kleszczynski, S., Witt, G. and Merhof, D., "Robustness 

analysis of imaging system for inspection of laser beam melting systems." 

Proceedings of the 2014 IEEE Emerging Technology and Factory Automation 

(ETFA). IEEE, 2014.  

46. Kleszczynski, S., zur Jacobsmühlen, J., Reinarz, B., Sehrt, J.T., Witt, G. and 

Merhof, D.,"Improving process stability of laser beam melting systems." 

Proceedings of the Frauenhofer Direct Digital Manufacturing Conference. 2014.  

47. Concept Laser http://www.conceptlaserinc.com/ Accessed 10 November 2016 

48. Hurd, Sam, Carmen Camp, and Jules White. "Quality Assurance in Additive 

Manufacturing Through Mobile Computing." International Conference on Mobile 

Computing, Applications, and Services. Springer International Publishing, 2015.  

49. Faes, M., Abbeloos, W., Vogeler, F., Valkenaers, H., Coppens, K. and Ferraris, E., 

2014, September. Process monitoring of extrusion based 3D printing via laser 

scanning. In PMI 2014 Conference Proceedings (Vol. 6, pp. 363-367). 

50. Baumann, Felix, and Dieter Roller. "Vision based error detection for 3D printing 

processes." MATEC Web of Conferences. Vol. 59. EDP Sciences, 2016.  

51. Ceruti, Alessandro, Alfredo Liverani, and Tiziano Bombardi. "Augmented vision 

and interactive monitoring in 3D printing process." International Journal on 

Interactive Design and Manufacturing (IJIDeM) (2016): 1-11.  

52. Straub, J. "Initial Work on the Characterization of Additive Manufacturing (3D 

Printing) Using Software Image Analysis." Machines 3.2 (2015): 55-71.  

53. Straub, J. "Characterization of internal geometry/overed surface defects with a 

visible light sensing system." SPIE Commercial+ Scientific Sensing and Imaging. 

International Society for Optics and Photonics, 2016. 

54. Opencv http://opencv.org/ Accessed 10 November 2016 

55. Python software foundation [US] https://www.python.org/ Accessed 10 November 

2016 

56. ARTOOLKIT https://artoolkit.org/ Accessed 10 November 2016 

57. Bay, H., Ess, A., Tuytelaars, T. and Van Gool, L., "Speeded-up robust features 

(SURF)." Computer vision and image understanding 10.3 (2008): 346-359. 

58. Fischler, Martin A., and Robert C. Bolles. "Random sample consensus: a paradigm 

for model fitting with applications to image analysis and automated cartography." 

Communications of the ACM 24.6 (1981): 381-395. 

59. Microsoft https://msdn.microsoft.com/ Accessed 13 November 2016 

60. RaspberryPi https://www.raspberrypi.org/ Accessed 10 November 2016 

61. Hu, F., Li, L., Liu, Y. and Yan, D., “Enhancement of Agility in Small-Lot 

Production Environment Using 3D Printer, Industrial Robot and Machine Vision." 

doi: 0.5013/ IJSSST.a.17 

62. Cummings I, Hillstrom E, Newton R, Flynn E, Wachtor A. "In-Process Ultrasonic 

Inspection of Additive Manufactured Parts." Topics in Modal Analysis & Testing, 

Volume 10. Springer International Publishing, 2016. 235-247. 

63. Nuchitprasitchai, S., Roggemann, M.C.and Havens, T.C. "Algorithm for 

Reconstructing Three Dimensional Images from Overlapping Two-Dimensional 

http://www.conceptlaserinc/
http://opencv.org/
https://www.python.org/
https://artoolkit.org/
https://msdn.microsoft.com/
https://www.raspberrypi.org/


 

 

73 

 

Intensity Measurements with Relaxed Camera Positioning Requirements to 

reconstruct 3D image." IJMER 6.9 (2016): 69-81. 

64. Appropedia. Delta Build Overview:MOST publishing appropediaweb. 

http://www.appropedia.org/Delta_Build_Overview:MOST Accessed 13 June 2016 

65. RepRap. http://reprap.org/ Accessed 13 June 2016 

66. Johann . Rostock  http://reprap.org/wiki/Rostock Accessed 5 November 2016 

67. Nuchitprasitchai 3-D models https://osf.io/6rfky/ 2016-11-17  

68. Pau M. (2015) presented stlTools publishing mathworksweb. 

https://www.mathworks.com/matlabcentral/fileexchange/51200-stltools Accessed 

1 October 2016 

69. Camera Calibration publishing mathworksweb. https://www.mathworks.com/help/ 

releases/R2013b/vision/ug/find-camera-parameters-with-the-camera-

calibrator.html Accessed 15 October 2016 

70. Lowe, D.G., 1999. Object recognition from local scale-invariant features. In 

Computer vision, 1999. The proceedings of the seventh IEEE international 

conference on (Vol. 2, pp. 1150-1157).  

71. Barker, B. Thrown Rod Halt Mod. Published on Appropedia.org  

http://www.appropedia.org/Thrown_Rod_Halt_Mod Accessed 5 November 2016 

72. David G. (2016) presented adding a Raspberry Pi case and a camera to your 

LulzBot Mini publishing kupoos Web. http://www.kupoos.com/video/q7oq 

OPzCHYE/adding-a-raspberry-pi-case-and-a-camera-to-your-lulzbot-mini/ 

Accessed 20 November 2016 

73. Real Time Optical Monitoring of Fused Filament 3-D Printing. Published on the 

Open Science Framework.  https://osf.io/hwdzm/ Accessed 8 December 2016. 

74. Mathworks, Pricing and Licensing  https://www.mathworks.com/pricing-

licensing/index.html?intendeduse=comm  Accessed 8 December 2016. 

 

 

 

 

 

 

 

 

 

 

http://www.appropedia.org/Delta_Build_Overview:MOST
http://reprap.org/
http://reprap.org/wiki/Rostock
https://osf.io/6rfky/
https://www.mathworks.com/matlabcentral/fileexchange/51200-stltools
http://www.appropedia.org/Thrown_Rod_Halt_Mod
https://osf.io/hwdzm/
https://www.mathworks.com/pricing-licensing/index.html?intendeduse=comm
https://www.mathworks.com/pricing-licensing/index.html?intendeduse=comm


 

 

74 

 

Chapter 4: An Open Source Algorithm for Reconstructing 2-D 

Images of 3-D Objects being Fabricated for Low-cost, Reliable 

Real-Time Monitoring of FFF-Based 3-D Printing3 

4.1 Abstract 

Although the open source nature of self-replicating rapid prototoyper (RepRap) 3-D 

printers have enabled the democratization of additive manufacturing, these 3-D printers are 

still challenged to meet reliability standards. Relatively little work has investigated error 

detection in such prosumer desktop 3-D printing. In this study an open source low-cost 

reliable real-time optimal monitoring platform for 3-D printing is presented with a goal of 

reducing errors below 10% between reconstructed images and the 3-D printed object. This 

error detection system is implemented with low-cost web cameras from three different 

perspectives (providing 360 degrees of coverage) by extending an algorithm previously 

described for a single camera. The algorithm is now developed using open-source Python 

to reduce the cost and computation time. The results show that the algorithm was 100% 

effective at detecting a clogged nozzle, loss of filament, or an incomplete print for a wide 

range of 3-D object geometries. Error calculations were determined from the difference in 

shape between the rendering of the 3-D design and the camera image of the print and a 7% 

difference was found to be an accurate threshold for error detection. The validity of this 

approach using experiments shows that the error detection system is capable of a 100% 

rate for failure detection, which is a better detection rate at a lower cost than previous real-

time monitoring methods. In addition, this method is generalizable to a wide range of fused 

                                                 
3 This chapter has been completed as an article to submit. Citation: Nuchitprasitchai S, Roggemann M, & 

Pearce J (2017). An Open Source Algorithm for Reconstructing 2-D Images of 3-D Objects being 

Fabricated for Low-cost, Reliable Real-Time Monitoring of FFF-Based 3-D Printing 



 

 

75 

 

filament 3-D printer geometries, which enables further adoption of desktop 3-D printing 

for distributed manufacturing. 

4.2 Introduction 

With the development of the Arduino electronic prototyping platform [1-3] the self-

replicating rapid prototoyper (RepRap) [4-6] was developed following open source 

hardware design principles [7] formulated in the software industry [8].  The free and open 

source nature of the RepRap 3-D printer quickly led to cost declines [9,10] and now the 

cost of open source RepRap style 3-D printers using fused filament fabrication (FFF) are 

under US$100 in parts. RepRaps can produce their own components [4-6] and can self-

upgrade, which assists in rapid technical growth [11-12]. At the same time the open nature 

makes them accessible to many fields including appropriate technology and sustainable 

development [13-15], education [16-20], rapid prototyping [21-22], microfluidics [23,24], 

decentralized manufacturing [25-28], and bespoke scientific equipment [29-32].  However, 

these low-cost 3-D printers are still challenged to meet reliability standards due to common 

problems including: warping, elephant foot at the base of a print, bed adhesion, lower parts 

shrinking, skewed prints and shifted layers, layer misalignment, missing layers, cracks in 

tall objects, pillowing, stringing, under-extrusion, over-extrusion, gaps in the top layers, or 

lack of filament exiting the nozzle [33-38].  These failures cost money and printer operator 

time, and waste resources (polymers and energy), which detract from the environmental 

and sustainability benefits of distributed manufacturing with 3-D printing [39-43]. Over 

the last several years, many researchers have improved these issues using automatic error 

detection, however, the majority of this work has been on high-cost and high resolution 

laser-based 3-D printing systems [44-47].  



 

 

76 

 

Relatively little work has investigated error detection in prosumer desktop FFF-based 3-D 

printing. Some research in this area has used laser sensors to detect an error [48-50]. Faes 

et al. had nearly zero production failure in the z-direction to detect the deposited tracks and 

to determine the dimension of interest in a closed-loop feedback in an extrusion based 3-D 

printing with a modular 2-D laser triangulation scanner [48]. Volpato et al. could reduce 

the error in z-axis up to 50 % of the surface quality of the support base in the trademarked 

version of FFF (fused deposition modeling (FDM)) by using a Roland MDX-40 milling 

machine attached to a piezoelectric sensor [49]. Haixi et al. successfully applied the 

relationship between the machine conditions and the features of acoustic emission (AE) 

system to detect the extruder in different conditions (normal, semi-blocked, and blocked) 

for a non-intrusive condition monitoring of HYREL3-D [50].  Other works have used 

cameras or webcams to monitor 3-D printers. Hurd et al. successfully applied a Samsung 

Galaxy Tab 3 to remotely monitor printing errors [51], though it can detect only the top 

side of the printed object. Baumann, et al. [52] used a PlayStation eye cam to detect errors 

including detachment, missing material flow and deformed objects with OpenCV [53] and 

Python [54]. But this work can detect only the front side of the printed object and it could 

only detect failed printing up to 80% of the time.  Straub successfully applied a visible light 

3-D scanning system, five Raspberry Pi cameras, Raspberry Pi [55], and open source 

software approach with C# and Dot Net Framework [56] to detect incomplete prints [57]. 

However, this work cannot detect errors that occur in the horizontal axis. Other solutions 

to detect failure in RepRap 3-D printers have had video monitoring of printing [58-62], but 

the user has to watch the video of the print and end the print manually.  



 

 

77 

 

To monitor a 3-D printing error around FFF-based 3-D printing, an open source low-cost 

reliable real-time optimal monitoring platform for FFF-based 3-D printing is presented here 

with a goal of reducing errors between reconstructed images and the 3-D printed object 

below 10% while guaranteeing 100% print error detection. This error detection system is 

implemented with low-cost web cameras and extended from the basic approaches 

discussed above into 360 degrees around the printed object from three different 

perspectives by extending the algorithm previously described for the single camera setup 

[63]. The algorithm is developed using open-source Python and run on Raspberry Pi3 to 

reduce the cost and the computation time. For 3-D printing monitoring in three different 

perspectives, the single camera setup is tested with four different 3-D object geometries. 

The results are compared between the normal and the failure states as well as the results of 

previously published techniques. The limitations of this approached are detailed and future 

work is described and conclusions are drawn. 

4.3 Method 

For this study, optical experiments were set up around a delta-style RepRap as shown in 

Figure 4.1 running a single camera detection algorithm [64]. The single camera error 

detection from a given perspective uses the images from three cameras in different views 

to calculate three 2-D shape images. A Python algorithm was written for the experimental 

setup and is made available free and open source under an AGPLv3 license [65,66]. Due 

to the distance between the camera and the printer for the experiment setup, the field of 

view for all cameras can cover the printed area of 70 mm in width and 60 mm in height. 

The optical parameters of the camera system need to be known for using a camera 



 

 

78 

 

calibration technique [65] in order to calculate the intrinsic and extrinsic parameters for a 

specific camera setup. These parameters are used to correct for lens distortion and image 

rectification. A low-cost (<US$500 in parts) [16] open source delta-style polymer printing 

RepRap (MOST Delta) is used [67]. The MOST Delta is a RepRap [68] derived from the 

Rostock printer with a cylindrical build volume 270 mm in diameter and 250 mm high and 

overall dimensions of 375 mm diameter and 620 mm high [67,68]. Three LED light sources 

[69] are installed on the three sides of the printer. All light sources are connected to the 

circuit (Figure 4.2) with 4 volts from a DC power supply. Each camera is setup on the same 

side of LED light sources. All cameras are connected to a 7 port USB 3.0 hub with 12V/3A 

power adapter which is turn connected to Raspberry Pi3 [70]. The cameras used in this 

study are three Logitech C525 webcams, with an image size of 480-by-640 (height-by-

width).   

 

Figure 4.1  MOST Delta printer experiment setup 



 

 

79 

 

 

Figure 4.2  Light source circuit 

There are three steps to prepare the error detection system before printing a 3-D model: 1) 

camera calibration, 2) preparing STereoLithography (STL) files and resultant images, and 

3) setting up a pause and loop to move the extruder out of the field of view during imaging. 

STL [71] is a file format describing a 3-D model by using a series of connected triangles 

to create the surface of the model and it is usually generated by computer aided design 

(CAD) software. The first step is camera calibration.   Sixteen chessboard images are taken 

from three different view of the cameras after the MOST Delta printer experiment is setup 

for camera calibration. There are three cameras named as camera0, camera1, and camera2. 

The sixteen chessboard images are taken in different perspectives, calculated, and saved as 

calibrationdata1, calibrationdata2, and calibrationdata3. The second step is preparing an  

stlimage by slicing stl files into every N layers where the error will be detected as shown 

in Figure 4.3. The layer height and the amount of slicing layers need to be assigned for 

slicing the stl file in three different views of the cameras. The layer height and the amount 

of total layers can be found in the gcode file. All data at every N layers from the stl file are 

plotted in the 𝑥, 𝑦, 𝑧 axes to display the shape of the rendered 3-D model, which can be 

observed from different viewpoints. Thus, the shape of the stlimage is saved as PNG image 

type on the 𝑥𝑧-plane. If the modulus after division between the total height and the height 



 

 

80 

 

of every N layers is not equal to zero, the last PNG files are named as the amount of total 

layers. For example, if the 3-D model in gcode has 129 total layers, layer height of 0.2 mm, 

and the 3-D model is sliced in every 30 layers, then the stl file is sliced at layer 30, 60, 90, 

120, and 129 which result in heights of 6, 12,18, 24, and 25.8 mm, respectively. The first 

STL slicing files are saved as SCAD30_1.png, SCAD30_2.png, and SCAD30_3.png, the 

next slicing files are saved as SCAD60_1.png, SCAD60_2.png, and SCAD60_3.png, and 

so on. Slicing the stl files for four model found that three stl files can start slicing at every 

layers 10, 20, or 30, but the t55gear stl file can start slicing at every 30 layers. Therefore, 

this study uses six images every 30 layers. The last step in the process involves setting up 

a pause and a loop to move the extruder out of the images every N layers in order to 

eliminate visual noise in the object images. The extruder movement is paused and moved 

to the certain height out of the field of view of all cameras. The 3-D model is designed in 

OpenSCAD version2015.03-3 [72] and it is rendered and saved into an stl file. After the 3-

D model stl file is opened in Cura version15.04.6 [73], the 3-D model is saved as a gcode 

file. The 3-D model gcode file is opened by any text editor program to add the extra code 

in every N layers as shown in Figure 4.4.   

 

Figure 4.3  Slicing stl file flowchart 



 

 

81 

 

 

Figure 4.4  Gcode for pausing and moving the extruder to take the images 

The 3-D printing models chosen (Figure 4.5) after the preparing stlimages step are: sun 

gear [74], prism, gear [75], and t55gear [76], which are freely available [77]. The printing 

parameters used are: layer height 0.2 mm, shell thickness 1 mm, enable retraction, 

bottom/top thickness 1mm, fill density 20%, print speed 60 mm/s, printing temperature 

180oC, diameter filament 1.74 - 1.78 mm, flow filament 100%, and nozzle size 0.5 mm. 

The PLA filament used in this experiment is Hatchbox 3-D PLA (pink) with dimensional 

accuracy +/- 0.05 mm on 1 kg spools, 1.75 mm diameter. 

    

         a) sun gear                   b) prism                        c) gear                        d) t55gear  

Figure 4.5  Rendering of STL models for testing 

The error detection algorithm, written in Python, will alert users if the error is greater than 

7% for single camera setup as shown in Figure 4.6. After the user orders printing a 3-D 

model through Franklin [78] with the amount of slicing layer number (N), the background 

images are taken before printing the 3-D model. The background images are taken from 

three cameras saved as bg1, bg2, and bg3, where the number 1, 2, and 3 mean the first, the 

second and the third cameras. At every N layers, the printer is paused to detect an error. 



 

 

82 

 

After the extruder is moved up 100 mm from the current height, the object images are taken 

and from three cameras saved as obj1, obj2, and obj3. In the input image preparation 

process, the object images have the background removed, rendered black between bg and 

obj images for each camera, and saved as new.png. It should be noted there can be a light 

reflection of the object on the substrate in the images that may cause an error.  The new.png 

from the previous error detection will be used in the next error detection to create the new 

images named as newimg.png. For an example, if the current layer is the same as the 

amount of slicing layer number, the images after removing background are saved into two 

different file names as new and prev. If they are not equal, they are saved as newimg. The 

prev images is needed for the next step to improve the process of removing the background. 

If the current layer is greater than the slicing layer number, the prev image is read to 

combine the interested object area between the prev and the newimg images into two 

different file names as new and prev. Distortion is removed from the image by intrinsic 

parameters from camera calibration [79]. Next, a region of interest (ROI) is calculated from 

the image by converting the color image into a gray scale image, then converting it into a 

binary image. The object area in the binary image is converted to be white to be used as 

the ROI, otherwise it is converted to be black. The stlimages are read and resized to the 

same size as the cameraimages. The shape of the object in stlimage and cameraimage are 

defined by edge detection, then the object size ratio between these two images can be found 

for rescaling. After rescaling, edge detection is applied again to find min and max positions 

of the object in both images for rectification. After rectification, any errors in the process 

are detected by subtracting the shape between the stlimage and cameraimage. The error 

detection is calculated for all three images at the same time. If only one of them has the 



 

 

83 

 

difference of subtraction that is greater than 7%, there is an error; otherwise there is no 

error flagged and 3-D printing will continue. The two experiments tested by the single 

cameras setup are in the normal and the failure state. In the normal state the filament is in 

normal condition to completely print the 3-D object. In the failure state the printing is 

manually impeded by the experimenter to simulate a failure that would prevent printing the 

3-D object.   

After starting printing the 3-D model, all three background images were taken from three 

cameras in three different views. The filament was in normal condition to complete printing 

the 3-D object. After the extruder was paused and moved up for 100 mm at every 30 layers, 

the three object images from three cameras in three different perspectives was taken. The 

single camera error detection is calculated by absolute value of subtracting between the 

three 2-D shape images and the stlimages as explained in Equation (4.1). 

𝐸𝑟𝑟𝑜𝑟 (%) = (
∑( |𝐶𝑎𝑚𝑒𝑟𝑎𝐼𝑚𝑎𝑔𝑒−𝑆𝑇𝐿𝐼𝑚𝑎𝑔𝑒|)

∑(𝑆𝑇𝐿𝐼𝑚𝑎𝑔𝑒)
) ∗ 100                         (4.1) 

 

4.4 Results 

The experimental procedures are tested in normal and failure states for the single camera 

setup with different object geometries (sun gear, prism, gear, and T55gear).  In order to 

eliminate the background noise from the extruder, the images were taken after pausing 

printing and the extruder was moved from all three camera views. The full model image 

results for four different 3-D object geometries from three different perspectives are shown 

in Figure 4.7.   

 



 

 

84 

 

 

Figure 4.6  Single camera error detection system flowchart 

 



 

 

85 

 

      

                  1.a)          2.a)                                          3.a)  

             

                  1.b)          2.b)                                          3.b)  

     

                  1.c)          2.c)                                          3.c)  

     

                  1.d)          2.d)                                          3.d)  

Figure 4.7  Full model from 1st, 2nd and 3rd camera: a) sun gear, b) prism, c) gear, and d) 

t55gear 

  

 



 

 

86 

 

4.4.1 The Normal State of Filament Condition 

The graph of the error detection percentage for the single camera setup for all four 

geometries is shown in Figure 4.8. Figure 4.8 shows that the shape errors are less than 7 % 

for each geometry. This meets the design goal of less than 10% error for shape 

reconstruction.  This error is acceptable because the error of shape difference is less than 

7%. The computation time for all images from three perspectives are fast as they are less 

than 11 second to detect an error as shown in Figure 4.9.  

      
 

                               a)                                                                   b) 

 

      

                             c)                                                                   d) 

Figure 4.8  The error detection (%) of normal state: a) sun gear, b) prism, c) gear, and d) 

t55gear. 

 



 

 

87 

 

 

Figure 4.9  The computation time of normal state for four models 

 

4.4.2 The Failure State of Filament Condition 

The failure state has been tested every 30 layers with different geometries between the 

cameraimage and stlimage in different conditions. Figure 4.10 shows that the shape errors 

are greater than 7% for each geometry.  When the nozzle is clogged, or an incomplete 

print is caused by filament running out that effect the 3-D printing shapes so they are 

smaller than the SCAD models. The computation time for all images from three 

perspectives are fast and less than 9 second to detect an error as shown in Figure 4.11. 

 

 

 

 



 

 

88 

 

     

                               a)                                                                   b) 

     

                               c)                                                                   d) 

 

Figure 4.10  The error detection (%) of failure state: a) sun gear, b) prism, c) gear, and d) 

t55gear. 

 

Figure 4.11  The computation time of failure state for four models 



 

 

89 

 

4.5 Discussion 

The experimental results show that the three-camera setup in Python can be used to 

automatically detect a 3-D printer error such as clogged extruder, loss of filament, or an 

incomplete project for a wide range of 3-D object geometries. These errors can be 

significant a new user attempting RepRap printing can have a 20% failure rate [12]. 

Previous solutions depended on either continuous observation of the printer or proprietary 

software and expensive hardware. This work has overcome these limitations [65] by 

reducing the computation time for multiple cameras and reducing the cost of software to 

zero. The computation time here using Python is 3X faster and less expensive than the 

code [65] with the same algorithm run in the MATLAB environment, which costs $2,150 

[80].  Although, this is not that expensive for research or in higher-end 3-D printer 

applications, it represents a barrier to deployment in the low-cost prosumer printers used 

for distributed manufacturing, which generally cost in total $2,500 or less (the RepRap 

used in this study was $500 in parts).  

The single camera error detection works as designed. It should be noted, that a printed 3-

D object usually has a small error when the 3-D model file is compared to the real 3-D 

printed object. These experiments show that the shape error detection can detect when the 

printing has failed because the 3-D printed objects are smaller than the SCAD models and 

the error percentages are greater than 7%. The use of web cameras can be less expensive 

than other methods that have more accurate error detection of a 3-D print such as a laser 

scanning or sensor [48], or science research-grade cameras [64-65]. Using the single 

camera method, the computation time for all three cameras for each model is faster than 

both subtraction (fastest is 10 sec. for 6.25 square cm) and the searching algorithm 



 

 

90 

 

developed by Hurd et al. (fastest is 12 sec. for 6.25 square cm) [48]. There are other 

methods to stop catastrophic failures. For example, Nuchitprasitchai developed a rod 

alarm system for delta-style RepRaps, which alerts users when electrical connections are 

broken if any of the linking rods lose connection with the end effector (hot end) [81]. The 

raspberry Pi and the raspberry Pi camera has also been installed on the delta-style 

RepRaps to remotely monitor the printer manually [82].  Barker also developed a thrown 

rod halt mod system for delta-style RepRaps, which stops a print when electrical 

connections are broken if any of the linking rods are thrown [83]. This new method 

presented here with 100 % detection can detect an error better than vision based error 

detection for 3-D printing processes when missing material flow (80% detection) [52].  

 Other solutions to detect the failure 3-D printing in the Reprap 3-D printer have 

had a video monitor of printing [58-62], but the user has to watch the video and stop the 

print manually. The error detection system here overcomes this issues by enabling the 

printer to automatically stopping printing without human oversight. However, the 

algorithm here still has limitations. First, slicing the stl model into every N layers cannot 

be done for some number of layers that user wants because Slic3r reported an error about 

removing a facet on a specific 3-D model. For example, the t55gear model used here 

could not be sliced into every 10 or 20 layers, which is why in this study it is sliced every 

30 layers. Second, this method does not work for 3-D printing models that create too 

many shadows. In the background removal process, such models lose a lot of data from 

the bottom of the interested object in the image, which causes a faulty error detection. It 

should be noted before buying inexpensive web cameras for this application, the focal 



 

 

91 

 

length should be at least10 cm as it need to support the open-source environment 

discussed here. 

In addition, to overcoming these limitations there are several other areas of future 

research. First, the slicing stl model process needs to be investigated to eliminate the error 

for removing a facet for an arbitrary number of layers. Second, the background removal 

algorithm can be more accurate to remove only noise in the images. Furthermore, to 

increase the quality of removing the background, new mathematic equations can be tested 

for their performance in this system. 

4.6 Conclusions 

This paper described an open-source low-cost reliable real-time monitoring platform for 

FFF-based 3-D printing based on a single camera system for three perspectives around 360 

degrees. The results showed that the algorithms were effective at detecting a clogged 

nozzle, loss of filament, or an incomplete project for a wide range of 3-D object geometries. 

The error calculations were determined from the difference in shape between stlimage and 

cameraimage. The error was reported when these errors exceeded 7%. The validity of this 

approach using experiments shows that the error detection system is capable of a 100 % 

detection rate for failures. The method analyzed here has a better detection rate and a lower 

cost than previous methods. In addition, this method is generalizable to a wide range of 

FFF 3-D printer geometries, which enables further adoption of desktop 3-D printing for 

distributed manufacturing as wasted print time and filament are reduced. 

4.7 References 

1. Banzi, M. and Shiloh, M., 2014. Getting Started with Arduino: The Open Source 

Electronics Prototyping Platform. Maker Media, Inc. 

2. Arduino https://www.arduino.cc/ (accessed 10.11.16) 



 

 

92 

 

3. Oxer, J. and Blemings, H., 2011. Practical Arduino: cool projects for open source 

hardware. Apress. 

4. Sells E, Smith Z, Bailard S, Bowyer A, Olliver V (2010) RepRap: The 

Replicating Rapid Prototyper: Maximizing Customizability by Breeding the 

Means of Production. In: Piller FT, Tseng MM (eds) Handbook of Research in 

Mass Customization and Personalization: Strategies and concepts, Vol.1. World 

Scientific, pp 568-580. 

5. Jones R, Haufe P, Sells E, Iravani P, Olliver V, Palmer C, Bowyer A (2011) 

RepRap – the replicating rapid prototype. Robotica 29:177–191. 

doi:10.1017/S026357471000069X 

6. Bowyer A (2014) 3D printing and humanity's first imperfect replicator. 3D 

Printing and Additive Manufacturing 1(1): 4-5. doi:10.1089/3dp.2013.0003 

7. Gibb, A. and Abadie, S., 2014. Building open source hardware: DIY 

manufacturing for hackers and makers. Pearson Education. 

8. Raymond, E. The cathedral and the bazaar. Knowledge, Technology & Policy 

1999, 12(3), pp.23–49. 

9. Rundle, G. A Revolution in the Making. Simon and Schuster, 2014. 

10. Wohlers T. (2016) Wohlers Report 2016. Wohlers Associates, Inc; 2016 Apr 10. 

11. Wohlers, Terry. "3D Printing and Additive Manufacturing State of the Industry 

Annual Worldwide Progress Report." Wohlers Report (2014). 

12. Wittbrodt, B.T.; Glover, A.G.; Laureto, J.; Anzalone, G.C.; Oppliger, D.; Irwin, 

J.L.; Pearce, J.M. Life-cycle economic analysis of distributed manufacturing 

with open-source 3-D printers. Mechatronics 2013, 23(6), pp. 713-726. 

13. Pearce, J.M.  Morris Blair, C. , Laciak, K. J., Andrews, R., A. Nosrat and I. 

Zelenika-Zovko, “3-D Printing of Open Source Appropriate Technologies for 

Self-Directed Sustainable Development”, Journal of Sustainable Development 

3(4), pp. 17-29 (2010). 

14. Birtchnell, T. and Hoyle, W., 2014. 3D printing for development in the global 

south: The 3D4D challenge. Springer. 

15. Pearce, J.M. (2015). Applications of Open Source 3-D Printing on Small Farms. 

Organic Farming 1(1), 19-35. DOI:10.12924/of2015.01010019 

16. Kentzer, J., Koch, B., Thiim, M., Jones, R.W. and Villumsen, E., 2011, May. An 

open source hardware-based mechatronics project: The replicating rapid 3-D 

printer. In Mechatronics (ICOM), 2011 4th International Conference On (pp. 1-

8). IEEE. 

17. Irwin, J.L.  Oppliger, D.E.  Pearce, J.M.  Anzalone, G. Evaluation of RepRap 3D 

Printer Workshops in K-12 STEM. 122nd ASEE 122nd ASEE Conf. 

Proceedings, paper ID#12036, 2015.  

18. Gonzalez-Gomez, J., Valero-Gomez, A., Prieto-Moreno, A. and Abderrahim, M., 

2012. A new open source 3d-printable mobile robotic platform for education. In 

Advances in autonomous mini robots (pp. 49-62). Springer Berlin Heidelberg. 

19. Grujović, N., Radović, M., Kanjevac, V., Borota, J., Grujović, G. and Divac, D., 

2011, September. 3D printing technology in education environment. In 34th 

International Conference on Production Engineering (pp. 29-30). 



 

 

93 

 

20. Schelly, C., Anzalone, G., Wijnen, B. and Pearce, J.M., 2015. Open-source 3-D 

printing technologies for education: Bringing additive manufacturing to the 

classroom. Journal of Visual Languages & Computing, 28, pp.226-237. 

21. Campbell, I., Bourell, D. and Gibson, I., 2012. Additive manufacturing: rapid 

prototyping comes of age. Rapid Prototyping Journal, 18(4), pp.255-258. 

22. Gibson, I., Rosen, D. and Stucker, B., 2014. Additive manufacturing 

technologies: 3D printing, rapid prototyping, and direct digital manufacturing. 

Springer. 

23. O'Neill, P.F., Azouz, A.B., Vazquez, M., Liu, J., Marczak, S., Slouka, Z., Chang, 

H.C., Diamond, D. and Brabazon, D., 2014. Advances in three-dimensional rapid 

prototyping of microfluidic devices for biological applications. Biomicrofluidics, 

8(5), p.052112. 

24. Pearce, J.M., Anzalone, N.C. and Heldt, C.L., Open-source Wax RepRap 3-D 

Printer for Rapid Prototyping Paper-Based Microfluidics, Journal of Laboratory 

Automation 21(4) 510–516 (2016).  

25. Knips, C., Bertling, J., Blömer, J. and Janssen, W., 2014. FabLabs, 3D-printing 

and degrowth–Democratisation and deceleration of production or a new 

consumptive boom producing more waste?. In Fourth International Conference 

on Degrowth for Ecological Sustainability and Social Equity. 

26. Laplume, A., Anzalone, G.C. and Pearce, J.M. Open-source, self-replicating 3-D 

printer factory for small-business manufacturing. The International Journal of 

Advanced Manufacturing Technology. 85(1), pp 633-642 (2016). 

doi:10.1007/s00170-015-7970-9  

27. Tech, R.P., Ferdinand, J.P. and Dopfer, M., 2016. Open Source Hardware 

Startups and Their Communities. In The Decentralized and Networked Future of 

Value Creation (pp. 129-145). Springer International Publishing. 

28. Troxler, P. and van Woensel, C., 2016. How Will Society Adopt 3D Printing?. In 

3D Printing (pp. 183-212). TMC Asser Press. 

29. Pearce, J. M. 2012. Building Research Equipment with Free, Open-Source 

Hardware. Science 337 (6100): 1303–1304. DOI: 10.1126/science.1228183 

30. Pearce, J.M. Open-Source Lab: How to Build Your Own Hardware and Reduce 

Research Costs, Elsevier, 2014. 

31. Baden, T., Chagas, A. M., Gage, G., Marzullo, T., Prieto-Godino, L. L., & Euler, 

T. (2015). Open Labware: 3-D Printing Your Own Lab Equipment. PLOS 

Biology, 13(3). DOI: 10.1371/journal.pbio.1002086  

32. Coakley, M. and Hurt, D.E., 2016. 3D Printing in the Laboratory Maximize 

Time and Funds with Customized and Open-Source Labware. Journal of 

Laboratory Automation, p.2211068216649578. 

33. Kłodowski, A., Eskelinen, H. and Semken, S., 2015. Leakage-proof nozzle 

design for RepRap community 3D printer. Robotica, 33(04), pp.721-746. 

34. Mercuri, R. and Meredith, K., 2014, March. An educational venture into 3D 

Printing. In Integrated STEM Education Conference (ISEC), 2014 IEEE (pp. 1-

6). IEEE. 

35. Chonga, S., Chiub, H.L., Liaob, Y.C., Hungc, S.T. and Pand, G.T., 2015. Cradle 

to Cradle® Design for 3D Printing. CHEMICAL ENGINEERING, 45. 



 

 

94 

 

36. Moilanen, J. and Vadén, T., 2013. 3D printing community and emerging 

practices of peer production. First Monday, 18(8). 

37. Frauenfelder, M., Make: Ultimate Guide to 3D Printing 2014: Maker Media. 

Inc., O’Reilly, Sepaspol CA, 2013. 

38. Alastair J. (2016) presented 16 common 3D Printing Problems and Solutions 

publishing all3dpweb. https://all3dp.com/common-3d-printing-problems-and-

their-solutions/ (accessed 10.11.16) 

39. Kreiger, M. and Pearce, J.M., 2013. Environmental life cycle analysis of 

distributed three-dimensional printing and conventional manufacturing of 

polymer products. ACS Sustainable Chemistry & Engineering, 1(12), pp.1511-

1519. 

40. Vera, J., 2010. Promoting Tools that integrate LCA into the Product Design 

Process: a Case Study in Ontario. 

41. Kreiger, M. and Pearce, J.M., 2013. Environmental impacts of distributed 

manufacturing from 3-D printing of polymer components and products. In MRS 

Proceedings (Vol. 1492, pp. 85-90). Cambridge University Press. 

42. Kostakis, V., Roos, A. and Bauwens, M., 2016. Towards a political ecology of 

the digital economy: Socio-environmental implications of two competing value 

models. Environmental Innovation and Societal Transitions, 18, pp.82-100. 

43. Bonvoisin, J., 2016. Implications of Open Source Design for Sustainability. In 

Sustainable Design and Manufacturing 2016 (pp. 49-59). Springer International 

Publishing. 

44. Kleszczynski, S., Zur Jacobsmühlen, J., Sehrt, J.T. and Witt, G., 2012, August. 

Error detection in laser beam melting systems by high resolution imaging. In 

Proceedings of the Solid Freeform Fabrication Symposium. 

45. zur Jacobsmühlen, J., Kleszczynski, S., Schneider, D. and Witt, G.,  "High 

resolution imaging for inspection of laser beam melting systems." 2013 IEEE 

International Instrumentation and Measurement Technology Conference 

(I2MTC). IEEE, 2013.  

46. zur Jacobsmühlen, J., Kleszczynski, S., Witt, G. and Merhof, D., "Robustness 

analysis of imaging system for inspection of laser beam melting systems." 

Proceedings of the 2014 IEEE Emerging Technology and Factory Automation 

(ETFA). IEEE, 2014.  

47. Kleszczynski, S., zur Jacobsmühlen, J., Reinarz, B., Sehrt, J.T., Witt, G. and 

Merhof, D.,"Improving process stability of laser beam melting systems." 

Proceedings of the Frauenhofer Direct Digital Manufacturing Conference. 2014.  

48. Faes, M., Abbeloos, W., Vogeler, F., Valkenaers, H., Coppens, K. and Ferraris, 

E., 2014, September. Process monitoring of extrusion based 3D printing via laser 

scanning. In PMI 2014 Conference Proceedings (Vol. 6, pp. 363-367). 

49. Volpato, N., Aguiomar Foggiatto, J. and Coradini Schwarz, D., 2014. The 

influence of support base on FDM accuracy in Z. Rapid Prototyping Journal, 

20(3), pp.182-191. 

50. Wu, H., Wang, Y. and Yu, Z., 2016. In situ monitoring of FDM machine 

condition via acoustic emission. The International Journal of Advanced 

Manufacturing Technology, 84(5-8), pp.1483-1495. 



 

 

95 

 

51. Hurd, S., Camp, C. and White, J., 2015, November. Quality Assurance in 

Additive Manufacturing Through Mobile Computing. In International 

Conference on Mobile Computing, Applications, and Services (pp. 203-220). 

Springer International Publishing. 

52. Baumann, F. and Roller, D., 2016, January. Vision based error detection for 3D 

printing processes. In MATEC Web of Conferences (Vol. 59). EDP Sciences. 

53. Opencv http://opencv.org/ (accessed 10.11.16) 

54. Python software foundation [US] https://www.python.org/ (accessed 10.11.16) 

55. RaspberryPi https://www.raspberrypi.org/ (accessed 10.11.16) 

56. Microsoft https://msdn.microsoft.com/ (accessed 13.11.16) 

57. Straub, J. "Initial Work on the Characterization of Additive Manufacturing (3D 

Printing) Using Software Image Analysis." Machines 3.2 (2015): 55-71.  

58. David G. (2016) presented adding a Raspberry Pi case and a camera to your 

LulzBot Mini publishing kupoos Web. 

http://www.kupoos.com/video/q7oqOPzCHYE/adding-a-raspberry-pi-case-and-

a-camera-to-your-lulzbot-mini/ (accessed 20.11.16) 

59. Admin (2016) Free IP Camera Monitoringfor 3-D printerwith old webcam usb in 

5 min publish-ing printer3d Web. http://www.printer3d.one/en/forums/topic/free-

ip-camera-monitoring-for-3d-printer-with-old-webcam-usb-in-5min/ (accessed 

18.03.17) 

60. MusicTech (2016) Controlling and Monitoring your 3D printer with BeagleBone 

and Octoprint publishing element14 community web. 

https://www.element14.com/community/community/design-

challenges/musictech/blog/2016/03/16/controlling-your-3d-printer-with-

beaglebone-and-octoprint (accessed 18.03.17) 

61. Jeremy S. (2014) Monitoring your 3D prints publishing 3duniverse web. 

https://3duniverse.org/2014/01/06/monitoring-your-3d-prints/ (accessed 

18.03.17) 

62. KenVersus (2015) Logitech C170 webcam mount for daVinci 3D printer 

publishing Thingiverse web. http://www.thingiverse.com/thing:747105 (accessed 

18.03.17) 

63. Camera Calibration publishing OpenCV-Python Tutorials web. http://opencv-

python tutroals. readthedocs.io/en/latest/py_tutorials/py 

calib3d/py_calibration/py_calibration.html. (accessed 15.03.17) 

64. Nuchitprasitchai, S., Roggemann, M.C.and Havens, T.C. "Algorithm for 

Reconstructing Three Dimensional Images from Overlapping Two Dimensional 

Intensity Measurements with Relaxed Camera Positioning Requirements to 

reconstruct 3D image." IJMER 6.9 (2016): 69-81. 

65. Nuchitprasitchai, S., Roggemann, M.C.and Pearce, J.M. "Factors Effecting Real 

Time Optical Monitoring of Fused Filament 3-D Printing." (to be published). 

66. Source code for single camera. Open Science Framework. https://osf.io/atgx8/ 

(accessed 4.6.2017) 

67. Anzalone, G.C., Wijnen, B. and Pearce, J.M., 2015. Multi-material additive and 

subtractive prosumer digital fabrication with a free and open-source convertible 

delta RepRap 3-D printer. Rapid Prototyping Journal, 21(5), pp.506-519. 



 

 

96 

 

68. MOST Delta 3-D printer 

http://www.appropedia.org/Delta_Build_Overview:MOST (accessed 3.12.16) 

69. LED Light Sources https://www.dollartree.com/ (accessed 3.12.16) 

70. RaspberryPi: https://www.raspberrypi.org/ (accessed 3.12.16) 

71. STL (file format): https://en.wikipedia.org/wiki/STL_(file_format) (accessed 

05.04.17) 

72. OpenSCAD http://www.openscad.org/ (accessed 3.12.16) 

73. Cura https://ultimaker.com/en/products/cura-software (accessed 3.12.16) 

74. Thing-O-Fun (2012) Exploded Planetary Gear Set publishing Thingiverse web. 

http://www.thingiverse.com/thing:18291 (accessed 3.12.16) 

75. Jetty (2012) Paper Crimper publishing Thingiverse web. 

http://www.thingiverse.com/thing:17634 (accessed 3.12.16) 

76. Droftarts (2012) Parametric pulley-lots of tooth profiles publishing Thigiverse 

web. http://www.thingiverse.com/thing:16627 (accessed 3.12.16) 

77. Nuchitprasitchai 3-D models https://osf.io/utp6g/ (accessed 5.04.17) 

78. Wijnen, B., Anzalone, G.C., Haselhuhn, A.S., Sanders, P.G. and Pearce, J.M., 

2016. Free and open-source control software for 3-D motion and processing. 

Journal of Open Research Soft-ware, 4(1). 

79. OpenCV camera calibration and 3-D reconstruction, 

http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_rec

onstruction.html#stereobm (accessed 3.12.16) 

80. Mathworks, Pricing and Licensing  https://www.mathworks.com/pricing-

licensing/index.html?intendeduse=comm  (accessed 8.12.16) 

81. Nuchitprasitchai, S. Rod Alarm. Published on Appropedia.org  

http://www.appropedia.org/Rod_alarm (accessed 20.03.17) 

82. Tjmahan Raspberry Pi Comtrol and Wireless Interface. Published on 

Appropedia.org  

http://www.appropedia.org/Raspberry_Pi_Control_and_Wireless_Interface 

(accessed 20.03.17) 

83. Barker, B. Thrown Rod Halt Mod. Published on Appropedia.org  

http://www.appropedia.org/Thrown_Rod_Halt_Mod (accessed 20.03.17) 

  



 

 

97 

 

Chapter 5: 360 Degree Real-Time Monitoring of 3-D Printing 

Using Computer Analysis of Two Camera Views4 

5.1 Abstract 

Prosumer (producing consumer)-based desktop additive manufacturing has been enabled 

by the recent radical reduction in 3-D printer capital costs created by the open-source 

release of the self-replicating rapid (RepRap) prototype. Despite this success, these low-

cost 3-D printers still suffer from a litany of printing challenges. There have been some 

efforts made to this end, which are either too expensive or not automated. A more 

promising method is to use computer vision and although there has been progress in this 

area the success rates are still too low for widespread use. To overcome these challenges 

an open source low-cost reliable real-time optimal monitoring platform for RepRap-based 

3-D printing from double cameras is presented here. This error detection system is 

implemented with low-cost web cameras and extended from the basic approaches 

discussed above for 360 degrees around the printed object from three different perspectives 

by extending the algorithm using SIFT and RANSAC. The algorithm is developed in 

Python and run on a Raspberry Pi3 mini-computer to reduce the costs and computation 

time. For 3-D printing monitoring in three different perspectives, the systems are tested 

with four different 3-D object geometries (two experiments tested in the normal operating 

mode and two in failure states). This system is tested with two different techniques in the 

image pre-processing step: SIFT and RANSAC to rescale and rectify, and with non-rescale 

and rectification. The error percentage is calculated by the horizontal, and horizontal and 

                                                 
4 This chapter has been completed as an article to submit. Citation: Nuchitprasitchai S, Roggemann M, & 

Pearce J (2017). 360 Degree Real-Time Monitoring of 3-D Printing Using Computer Analysis of Two 

Cameras Views. 



 

 

98 

 

vertical magnitude methods. The error calculations were determined from the horizontal 

and vertical magnitude of 3-D reconstruction image for the non-rescale and rectification 

technique successfully 100% detects the normal printing and failure state for all models, 

which is better than the single camera set up only. The computation time of the non-rescale 

and rectification technique is 2X faster than SIFT and RANSAC to rescale and rectification 

technique.   

5.2 Introduction 

Prosumer (producing consumer)-based additive manufacturing has been enabled by the 

recent radical reduction in 3-D printer capital costs (Wohlers, 2016) created by the open-

source release of the self-replicating rapid (RepRap) prototyper (Sells et al., 2010; Jones, 

et al., 2011; Bowyer, 2014). The open-source hardware approach (Gibb and Abadie, 2014) 

has followed the traditional rapid development seen in free and open source software 

(Raymond, 1999) and the top-desktop 3-D printers are now routinely open source RepRaps 

derivatives (Make, 2017). The fast growth of the RepRap 3-D printers is a result of their 

ability to replicate (e.g. print their own parts) and self-upgrade its own parts (e.g. print a 

new cooling fan) as well as their ability to easily pay for themselves by fabricating 

consumer goods (Wittbrodt et al., 2013; Petersen and Pearce, 2017). In addition, open 

source desktop 3-D printers have been applied to create high value items in a wide range 

of fields including: rapid prototyping (Campbell, et al., 2012; Gibson, et al., 2014), 

distributed manufacturing (Kentzer, et al., 2011;;Pearce, 2015;), education (Irwin, et al., 

2015; Gonzalez-Gomez, et al.,  2012; Schelly, et al., 2015) , sustainable technology 

(Pearce, et al., 2010; Fox, 2010; Birtchnell and Hoyle, 2014; Pearce, 2015), scientific tools 



 

 

99 

 

(Pearce, 2012; Pearce, 2014; Baden, et al., 2015; Coakley and Hurt, 2016), microfluidics 

(O’Neill, et al., 2014; Pearce, et al., 2016).  

Despite this success, these low-cost 3-D printers still suffer from a litany of printing 

challenges related to building up a part from thermoplastic one layer at time from a flat 

print bed including warping, elephant foot (thicker part touching the print bed), bed 

adhesion (prints peeling off of the bed during print), distortion due to shrinking, skewed 

prints/ shifted layers, layer misalignment, clogged nozzles, or snapped filament  (Campbell, 

et al., 2012; O’Neil, et al., 2014;  Rimock, 2015). These unintended results reduce the 

economic as well as the environmental advantage of distributed manufacturing with 3-D 

printing (Laplume, et al., 2016; Tech, et al., 2016; Troxler and Woensel, 2016; Pearce, 

2012; 2014) in the aspect of environmental and sustainability. Many works had been done 

to automatically detect the errors while printing, but most of them are for the expensive 

laser-based 3-D printing (Kleszczynski, et al., 2012; Zur, et al., 2014, Kleszczynski, et al., 

2014; Concept Laser, 2016). Therefore, there is an acute need for a low-cost real-time error 

detection system for prosumer-grade 3-D printers.  

There have been some efforts made to this end.  There were several works detecting an 

error based on the laser and piezoelectric sensors, which are not easily adapted to the low-

cost market (Faes, et al., 2014; Volpato, et al., 2014; Wu, et al., 2016). A more promising 

method is to use computer vision, which has been shown to be highly effective at process 

monitoring for manufacturing (Atli, et al., 2006; Bradley, et al., 2001; Bradski, et al., 2008; 

Edinbarough, et al., 2005; Golnabi, et al., 2007; Ji, et al., 2002; Kerr, et al., 2006; Klancnik, 

et al., 2015; Lanzetta, et al., 2001; Li, et al., 2010; Pfeifer, et al., 2000; Wang, et al., 2007). 



 

 

100 

 

Some previous works used cameras to monitor the 3-D printing process (Hurd, et al., 2015; 

Baumann and Dieter, 2016; Straub, 2015). Hurd et al. installed Samsung Galaxy Tab 3 on 

the printer and monitored the printing via mobile phone (Hurd, 2015) but this can monitor 

only the top view of the printed part. Therefore, horizontal size can be determined.  

Baumann et al. used OpenCV (Opencv, 2016), Python (Python, 2016) and a PlayStation 

eye cam to detect detachment, missing material flow and deformed object in 3-D printing 

(Baumann, and Dieter, 2016), however, this work can detect only the shape of the printed 

part from only one side with success rate of 80%. Straub successfully applied a visible light 

3-D scanning system, five Raspberry Pi cameras, Raspberry Pi (Raspberry, 2016), and 

open source software approach with C# and Dot Net Framework (Microsoft, 2016) to 

detect incomplete prints (Straub, 2015). Nonetheless, the work can only detect error in the 

shape aspect. Other solutions to detect the failure 3-D printing in the RepRap 3-D printer 

have had a video monitor of printing but the user must manually check the video and stop 

the printing if something goes wrong (Gewirtz, 2016; Printer3-D, 2016; Carmelito, 2016; 

Simon, 2014; KenVersus, 2015).  

To monitor errors during FFF-based 3-D printing, an open source low-cost reliable real-

time optimal monitoring platform for FFF-based 3-D printing from double cameras is 

presented here. This error detection system is implemented with low-cost web cameras and 

extended from the basic approaches discussed above for 360 degrees around the printed 

object from three different perspectives by extending the algorithm using the Scale 

Invariant Feature Transform (SIFT) (Lowe, 1999) and the RANdom SAmple Consensus 

(RANSAC) (Fischler and Robert, 1981) models previously described (Nuchitprasitchai, et 

al., 2016). The algorithm is developed under open-source Python and run on a Raspberry 



 

 

101 

 

Pi3 mini-computer to reduce the costs and computation time. For 3-D printing monitoring 

in three different perspectives, the systems is tested with four different 3-D object 

geometries (two experiments tested in the normal printing and two in the failure state). The 

normal printing state means that the filament can print correctly and complete printing the 

3-D object. The failure state is the incomplete printing the 3-D object. This system is tested 

with two different techniques in the image pre-processing step: SIFT and RANSAC to 

rescale and rectify, and with non-rescale and rectification. The error percentage is 

calculated by the horizontal magnitude. Then the technique that can detect the error in the 

normal printing and the failure state correctly will be used in the second experiment were 

two different error detection methods are used: horizontal magnitude, and horizontal and 

vertical magnitudes. The results are discussed; conclusions are drawn and the limitations 

of these approaches are detailed. 

5.3 Method 

5.3.1 Experimental Equipment 

For this work, optical experiments were setup around a delta-style (Anzalone, et al., 2015) 

RepRap as shown in Figure 5.1 running double cameras. This low-cost (<US$500 in parts) 

open source delta-style polymer printing RepRap (MOST Delta). The MOST Delta is a 

RepRap (Anzalone, et al., 2016) derived from the Rostock (Rostock, 2016) printer with a 

cylindrical build volume 270 mm in diameter and 250 mm high and overall dimensions of 

375 mm diameter and 620 mm high. The double camera error detection use left and right 

images do three 3-D reconstruction (as seen in Figure 5.2). A Python algorithm was written 

for the experimental setup and is made available free and open source under an AGPLv3 



 

 

102 

 

license (Nuchitprasitchai, 2016). A different Python algorithm is used for each 

experimental setup, but the same type of webcam, 3-D printer, Raspberry Pi3, USB 3.0 

hub with 12V/3A power adapter, three LED light sources, tested objects, black printing 

base, black background, and filament brand are used. Due to the distance between the 

camera and the printer for the experiment setup, the field of view for both cameras can 

cover the printed area of 70 mm in width and 60 mm in height.  The relation of geometry 

between the 3-D printer and the camera system need to be known for using camera 

calibration technique (OpenCV, 2016) to calculate the intrinsic and extrinsic parameters 

for a specific camera setup. These parameters will be used to correct for lens distortion and 

image rectification. The three LED light sources (DollarTree, 2016) are installed on the 

three sides of the printer. All light sources are connected to the circuit with 4 volts from a 

DC power supply. The three pairs of cameras are setup on the same side of LED light 

sources. All cameras are connected to a 7 port USB 3.0 hub with 12V/3A power adapter 

which is connected to Raspberry Pi3. The cameras used in this study are six Logitech C525 

webcams, with an image size of 480-by-640 (height-by-width), pixel size is 5.52-by-5.82 

μm (height-by-width), and a focal length of 39.5 mm. The pixel size and the focal length 

calculation of the webcam below. The circuit of the light sources is shown in Figure 5.3. 



 

 

103 

 

 

Figure 5.1  MOST Delta printer experiment setup 

 

 

Figure 5.2  3-D reconstruction 

MOST Delta

3D printer

Logitech c525 

webcams

Circuit

DC power supply 

Light source Light source

Logitech c525 

webcams
Logitech c525 

webcams

Light source

Python    Franklin Software GUI

USB hub power

Raspberry Pi 3



 

 

104 

 

 

Figure 5.3  Light source circuit 

5.3.2 Theory 

5.3.2.1 Calculating Webcam Pixel Size and Focal Length 

Unlike scientific cameras, inexpensive webcams do not normally ship with detailed 

technical specifications. The procedure below enables the extraction of pixel size and focal 

length from any inexpensive webcam. The Logitech C525 webcams used here do not come 

with information on the pixel size and focal length (on the package or the website), so the 

webcam was taking apart to calculate this information through the sensor size in the 

webcam as shown in Figure 5.4. The webcam sensor size is 2.52-by-3.73 mm (height-by-

width), and the webcam diagonal is 4.50 mm. The width and the height of pixel size are 

calculated by 

 𝑊𝑑 = 𝑊𝑠 𝑊𝑖⁄      (𝜇𝑚)                                         (5.1)   

Where 𝑊𝑑is a width of pixel size (𝜇𝑚), 𝑊𝑠 is a width of sensor size (mm), and 𝑊𝑖 is a 

width of images size (pixels). 

𝐻𝑝 = 𝐻𝑠 𝐻𝑖⁄       (𝜇𝑚)                                          (5.2) 



 

 

105 

 

Where 𝐻𝑝 is a height of pixel size (𝜇𝑚), 𝐻𝑠 is a height of sensor size (mm), and 𝐻𝑖 is a 

height of images size (pixels). 

The checkerboard image shown in Figure 5.5 is taken to calculate the focal length in pixels. 

The checkerboard image was printed in 2-D for taking the image and the size of 

checkerboard square on a paper is 7-by-7 mm (Nuchitprasitchai, et al., 2016). The 

checkerboard image was taken where the distance between the image and the webcam was 

230 mm, and the size of checkerboard square in the image was 20-by-20 pixels. The focal 

length in pixels is calculated by  

𝐹 =  (𝑃 ∗ 𝐷) 𝑊𝑐⁄                   (pixels)                         (5.3) 

Where 𝐹 is the focal length (pixels), 𝑃  is the size of checkerboard square in the image 

(pixels), 𝐷  is the distance between the image and the webcam, and 𝑊𝑐   is the size of 

checkerboard square on a paper (pixels). 

𝑓 =  (𝐹 ∗ 𝑊𝑑) 𝑊𝑖⁄                   (mm)                            (5.4)   

Where 𝑓 is the focal length (mm), 𝐹 is the focal length (pixels), 𝑊𝑑 is a width of pixel size 

(𝜇𝑚), and 𝑊𝑖 is a width of images size (pixels). 

 



 

 

106 

 

 

Figure 5.4  Logitech C525 webcam: a) webcam circuit board and body, and b) sensor of 

webcam 

 

 

Figure 5.5  Example of the checkerboard image 

 

5.3.2.2 Computer Vision Error Detection 

There are three steps to prepare the error detection system before printing a 3-D model: 1) 

camera calibration, 2) preparing STereoLithography (STL) files and resultant images, and 

3) setting up a pause and loop to move the extruder out of the view of the cameras for 

imaging. STL file is a file format describing 3-D model by using series of connected 

triangles to create the surface of the model and it is usually generated by computer aided 

design (CAD) software. The first step is camera calibration. Sixteen chessboard images are 

taken from three different views of the cameras after the 3-D printer experiment is setup 



 

 

107 

 

for camera calibration. There are six cameras named as camera0, camera1, camera2, 

camera3, camera4, and camera5. The camera0 and camera1 are setup as the first pair of 

cameras, camera2 and camera3 are setup as the second pair, and camera4 and camera5 are 

setup as the third pair.  The camera0, camera 2, and the camera 4 are setup as the left 

cameras, and camera1, camera 3, and the camera 5 are setup as the right cameras. The 

calibration is calculated and saved as CalibrationData1, CalibrationData2, and 

CalibrationData3.  The second step is preparing stlimage by slicing stl files into every N 

layers where the error will be detected as shown in Figure 5.6. The layer height and the 

amount of slicing layers need to be assigned for slicing stl file in three different views of 

the cameras. The layer height and the amount of total layers can be found in gcode file. All 

data at every N layers from stl file are plotted in 𝑥, 𝑦, 𝑧 axes to display the shape of the 

rendered 3-D model, which can be observed from different viewpoints. Thus, the shape of 

the stlimage is saved as PNG image type on 𝑥𝑧-plane. If a modulus after division between 

the total height and the height of every N layers is not equal to zero, the last PNG files are 

named as the amount of total layers. For example, if the 3-D model in gcode file has 129 

total layers, layer height of 0.2 mm, and the 3-D model is slicing in every 30 layers, then 

the stl file is sliced at layer 30, 60, 90, 120, and 129 which result in heights of 6, 12, 18, 

24, and 25.8 mm, respectively. The first stl slicing files are saved as SCAD30_1.png, 

SCAD30_2.png, and SCAD30_3.png, the next slicing files are saved as SCAD60_1.png, 

SCAD60_2.png, and SCAD60_3.png, and so on. After slicing stl files for four models, it 

was found that three stl files can start slicing every layer 10, 20, or 30, but t55gear stl file 

can start slicing at every 30 layers. Therefore, this study will be taking six images every 30 

layers are printed. The last step in the process is involves setting up a pause and a loop to 



 

 

108 

 

move the extruder out of the images every N layers in order to eliminate visual noise in the 

object images, the extruder of 3-D printing will be paused and moved to the certain height. 

The 3-D model is designed in OpenSCAD version2015.03-3 (OpenSCAD, 2016) and it is 

rendered and saved into stl file. After the 3-D model stl file is opened in Cura 

version15.04.6 (Ultimaker, 2016), the 3-D model is saved as gcode file. The 3-D model 

gcode file is opened by any text editor program to add the extra code in every N layers as 

shown in Figure 5.7. 

 

Figure 5.6  Slicing stl file flowchart 

 

 

Figure 5.7  Python code for pausing and moving the extruder to take the images 

 

The 3-D printing models chosen after the preparing stlimage step are sun gear (Thing-O-

Fun, 2016), prism, gear (Jetty, 2016), and t55gear (Droftarts, 2016) are available 

(Nuchitprasitchai, 2017) as shown in Figure 5.8. The printing parameters used are: layer 



 

 

109 

 

height 0.2 mm, shell thickness 1 mm, unable retraction, bottom/top thickness 1mm, fill 

density 20%, print speed 60 mm/s, printing temperature 180oC, diameter filament 1.94 - 

1.98 mm, flow filament 100%, and nozzle size 0.5 mm. The PLA filament used in this 

experiment is Hatchbox 3-D PLA with dimensional accuracy +/- 0.05 mm on 1 kg spools, 

1.75 mm diameter with pink color. 

 

Figure 5.8  Rendering of STL models for testing: a) sun gear, b) prism, c) gear, and d) 

t55gear 



 

 

110 

 

 

Figure 5.9  The error detection for double camera system flowchart 

 



 

 

111 

 

The double error detection algorithm, written in Python, will display the error percentage. 

If the error percentage is greater than 10% then the printing is failed as shown in Figure 

5.9. After the user orders printing a 3-D model through Franklin (Wijnen, et al., 2016) with 

the amount of slicing layer number (N), the background images are taken before printing 

the 3-D model. The background images are taken from six cameras saved as bgr1, bgr2, 

bgr3, bgl1, bgl2, bgl3, where the bgr represents the images taken from the right cameras, 

and bgl images are taken from the left cameras and the number 1, 2, and 3 mean the first, 

the second and the third pair of cameras. At every N layers, the printer is paused to detect 

an error. After the extruder is moved to the certain height, the object images are taken. The 

object images are taken from six cameras saved as objr1, objr2, objr3, objl1, objl2, objl3.  

The objr represents the object images taken from the right cameras, and objl are the object 

images taken from the left cameras. The number 1, 2, and 3 mean the first, the second and 

the third pair of cameras. In the removing background process, the object images need to 

be remove background, rendered black between bg and obj images for each pair of camera, 

and saved as newl.png and newr.png for each pair of camera. But there is a light reflection 

of the object in the images that may cause an error.  The new.png from the previous error 

detection will be used in the next error detection to create the new images named as 

newll.png and newrr.png. For an example, if the current layer is the same as the amount of 

slicing layer number, the images after removing background are saved into two different 

file names as newr and prevr. If they are not equal, they are saved as newrr. The prevr 

images need for the next step to improve removing background. If the current layer is 

greater than the amount of slicing layer number, the prevr image is read to combine the 

interested object area between the prevr and the newrr images into two different file names 



 

 

112 

 

as newr and prevr. After input images are ready for 3-D reconstruction in image pre-

processing step, the cameraimage is used to calculate the 3-D object points and the stlimage 

is rescaled to find the magnitude of the width. To reduce the computation time detecting 

an error, the error detection is calculated for each pair at a time started from first pair of 

images, second pair of images and third pair of images. Because the 3-D reconstruction 

calculation for each pair cost n second, so the total for three 3-D reconstruction cost O(N). 

The last step, the error detection is calculated. If there is an error, it will return the 

percentage of error and can be used as trigger to turn of the printer and alert the user. 

5.3.3 Experiments 

For this study, there are two experiments tested: image pre-processing and error detection. 

The image pre-processing step is run by two different techniques: SIFT and RANSAC to 

rescale and rectification, and with non-rescale and rectification. The error detection is 

tested by two different methods: horizontal magnitude, and horizontal and vertical 

magnitude. All cases are tested under normal printing and failure state. In the normal 

printing state means that the filament is in normal condition to complete printing the 3-D 

object. In the failure state is incomplete printing the 3-D object. The details for each 

experiment is explained later. 

5.3.3.1  Image Pre-Processing 

At every N layer that is equal to the amount of slicing layer numbers, the six object images 

are taken from three pair of cameras in different three perspectives. The background is 

removed and rendered black between bg and obj images for each camera such as (bgr1, 

objr1), (bgr2, objr2), (bgr3, objr3), (bgr4, objr4), (bgr5, objr5), and (bgr6, objr6). The new 



 

 

113 

 

images after removing background are named (newr1, prevr1), (newr2, prevr2), (newr3, 

prevr3), (newl1, prevl1), (newl2, prevl2), and (newl3, prevl3) when the current layer is the 

same as the amount of slicing layer number. If they are not equal, the images are saved as 

(newrr1, prevr1), (newrr2, prevr2), (newrr3, prevr3), (newll1, prevl1), (newll2, prevl2), 

and (newll3, prevl3). The prev images need for the next step to improve removing 

background. For an example, if the current layer is greater than the amount of slicing layer  

number, the prevr image is read to combine the interested object area between the prevr 

and the newrr images into two different file names as newr and prevr. Distortion is removed 

from all six images by intrinsic parameters from camera calibration. Next, a region of 

interest (ROI) is calculated from the image by converting the color image into a gray scale 

image, then converting it into binary image. The object area in the binary image is 

converted to be white used as the ROI, otherwise is converted to be black. After these steps, 

the images are ready for image pre-processing step tested by the SIFT and RANSAC to 

rescale and rectification, and with non- rescale and rectification. The 3-D points of the 

interested object is calculated. The algorithm for image rescaling, image rectification, and 

3-D points calculation has been described previously (Nuchitprasitchai, 2016). The error 

percentage is calculated by using horizontal magnitude method. The error detection is 

calculated for each pair of cameras once at a time. It starts from the first, the second, and 

the third pair of the images, respectively. If the error detection is greater than 10%, this can 

be used as a trigger to pause the printer and notify the user. But if the error is less than 

10%, then the next pair of the images is calculated to detect an error.  



 

 

114 

 

5.3.3.1.1 SIFT and RANSAC to Rescale and Rectification 

The interested object location between the left and the right images may have different 

scale or size, or they locate in different rows or columns in the image. To resolve this 

problem, the SIFT and the RANSAC models are applied for image rescaling and image 

rectification. The 3-D points then are calculated.  

5.3.3.1.2 With Non-Rescale and Rectification 

Due to using SIFT and RANSAC in Python has error from wrong matching points or no 

matching points, and affected the rescale and rectification process which results in high 

error values. However, the images taken by the cameras are already in very similar scale 

and rectify. The six images are used to calculate the 3-D surface points. 

5.3.3.2 Error Detection 

After the image pre-processing experiments with two different techniques, the error 

percentage of non-rescale and rectification is more accurate, therefore this method is used 

for error detection experiment by horizontal magnitude, and horizontal and vertical 

magnitude methods as explained below. First pair of the images is processed, and if the 

error is greater than 10%, it can be used as a trigger the error and report to the user; 

otherwise the next pair of the images is calculated to detect an error until the last pair of 

the images. 

5.3.3.2.1 Horizontal Magnitude 

The error detection is obtained by subtracting the magnitude of the width of interested area 

at the current printing layers between the 3-D reconstruction and stlimage model.  



 

 

115 

 

5.3.3.2.2 Horizontal and Vertical Magnitude 

The horizontal error magnitude is calculated as mentioned before. If only the width data 

available at the height of the current printing, then the vertical error magnitude is obtained 

by subtracting the magnitude of the height of interested area between the 3-D 

reconstruction and stlimage. If the width data is not available, then the percentage of error 

is 100. 

5.3.4 Validation 

The dimensions of the 3-D printed objects are measured with a digital caliper (+/-0.05mm). 

A 3-D reconstruction of the object is calculated from two images and the object size is 

calculated. Next, the size of both objects is compared to calculate size difference an error 

of the reconstruction. For validation of this approach four different test objects are printed 

including a) sun gear, b) prism, c) gear, and d) t55gear 

5.4 Results 

The experimental procedures were tested with different object geometries (sun gear, prism, 

gear, and t55gear).  In order to eliminate the background noise from the extruder, the 

images were taken after pausing printing and the extruder was moved out from six camera 

views. The example of the full sun gear model image from three different perspectives are 

shown in Figure 5.10. The results of the two experiments reported as followed. 

  



 

 

116 

 

 

Figure 5.10  The example of full model of sun gear image results from the first, the 

second and the third pair of cameras respectively: a-c) the images from the left camera, 

and d-f) the images from the right camera. 

5.4.1 Image Pre-Processing 

After order printing the 3-D model, all six background images were taken from six cameras 

in three different views. For each technique, there are tested in normal printing and failure 

state. After the extruder was paused and moved up for 100 mm at every 30 layers, the six 

object images from six cameras in three different perspectives was taken. The error 

detection processed from six object and six background images in different technique for 

image pre-processing presented as followed.  

5.4.1.1 SIFT and RANSAC to Rescale and Rectification 

A) Normal Printing State 

Figure 5.11 shows that most of the errors are greater than 10% for each geometry except 

the sun gear model at layers 60 to 240, the error is less than 10%. The printing layers at 30, 

120, and 150 layers in the prism model had zero error percentage because the SIFT and 



 

 

117 

 

RANSAC did not have enough matching points to rescale. Therefore, they could not 

calculate 3-D object points. In sun gear, gear, and t55gear graph, there were some printing 

layers that the error percentage had the huge difference because the SIFT and RANSAC 

had the wrong matching and rescaling the wrong size. The computation time (as seen in 

Figure 5.12) depends on the size and the shape of the 3-D reconstruction. Most of the 

models had the same trend of the computation time that was increasing when the printing 

layers was increasing except the prism model because it could not reconstruct 3-D model.  

The sun gear model is the largest size, so the computation time for each pair of cameras 

took longer than other models (i.e. (~170 seconds per pair). It took about 510 seconds to 

detect an error for three pair of sun gear images. 

 

Figure 5.11  Image pre-processing - SIFT and RANSAC to rescale and rectification: the 

error detection of normal printing state for a) sun gear, b) prism, c) gear, and d) t55gear. 



 

 

118 

 

 

Figure 5.12  Image pre-processing - SIFT and RANSAC to rescale and rectification: the 

computational time of normal printing state for a) sun gear, b) Prism, c) gear, and d) 

t55gear. 

 

B) Failure State 

Figure 5.13 shows that most of the errors are greater than 10% for each geometry except 

the third pair of the sun gear model after 90 layers, and the third pair of images in the gear 

model for all cases that the errors are less than 10%. The computation time (as seen in 

Figure 5.14) had the same trend as the normal printing state. 

 



 

 

119 

 

 
 

Figure 5.13  Image pre-processing - SIFT and RANSAC to rescale and rectification: the 

error detection of failure state for a) sun gear, b) Prism, c) gear, and d) t55gear. 

 

 

Figure 5.14  Image pre-processing - SIFT and RANSAC to rescale and rectification: the 

computational time of failure state for a) sun gear, b) Prism, c) gear, and d) t55gear. 

 



 

 

120 

 

5.4.1.2 Non-rescale and rectification 

A) Normal Printing State 

Figure 5.15 shows the error of all models are less than 10%. The computation time (as seen 

in Figure 5.16) depends on the size and the shape of the 3-D reconstruction. Most of the 

models had the same trend of the computation time that was increasing when the printing 

layers was increasing. The sun gear model is the largest size, so the computation time for 

each pair of camera took longer than other models, and it took around 100 seconds for each 

pair. It took about 300 seconds to detect an error for all three pair of sun gear images. On 

the other hand, the prism gear is the smallest size, so the total computation time for all three 

pair of images took only 60 seconds to calculate the errors. 

 

Figure 5.15  Image pre-processing – Non-rescale and rectification: the error detection of 

normal printing state for a) sun gear, b) Prism, c) gear, and d) t55gear. 



 

 

121 

 

 

Figure 5.16  Image pre-processing – Non-rescale and rectification: the computation time 

of normal printing state for a) sun gear, b) prism, c) gear, and d) t55gear. 

 

 

 

B) Failure State 

Figure 5.17 shows that most of errors are greater than 10% except some layers of the sun 

gear model in the third pair of the images are less than 10%. The computation time (as seen 

in Figure 5.18) trends are similar to the case A in the single camera setup. 

 



 

 

122 

 

 

Figure 5.17  Image pre-processing – Non-rescale and rectification: the error detection of 

failure state for a) sun gear, b) prism, c) gear, and d) t55gear. 

 
 

Figure 5.18  Image pre-processing – Non-rescale and rectification: the computation time 

of failure state for a) sun gear, b) prism, c) gear, and d) t55gear. 

  



 

 

123 

 

5.4.2 Error Detection 

From image pre-processing experiment shows that the non-rescale and rectification 

technique can detect an error more accurately than the SITF and RANSAC to rescale and 

rectification method. The error detection method needs to be improved here and tested with 

horizontal magnitude, and horizontal and vertical magnitude. 

5.4.2.1 Horizontal Magnitude  

This results are the same as the image pre-processing experiment for non- rescale and 

rectification technique for both normal and failure state. 

5.4.2.2 Horizontal and Vertical Magnitude 

A) Normal Printing State 

Figure 5.19 shows that all errors are less than 10% for each geometry. The computation 

time (as seen in Figure 5.20) depends on the size and the shape of the 3-D reconstruction. 

The computation time trends are similar as the horizontal magnitude method. 

  



 

 

124 

 

 
 

Figure 5.19  Error detection – Horizontal magnitude: the error detection of normal 

printing state for a) sun gear, b) Prism, c) gear, and d) t55gear. 

 
 

Figure 5.20  Error detection – Horizontal magnitude: the computation time of normal 

printing state for a) sun gear, b) Prism, c) gear, and d) t55gear. 

 

 



 

 

125 

 

B) Failure State 

All cases correctly are 100% error. The computation time as shown in Figure 5.21 depends 

on the size and the shape of the 3-D reconstruction similar as the failure state of the non-

rescale and rectification in the image pre-processing experiment in Figure 5.18. 

 
 

Figure 5.21  Error detection – Horizontal and vertical magnitude: the computation time of 

failure state for a) sun gear, b) Prism, c) gear, and d) t55gear. 

 

 

The summary of the image pre-processing experiment for SIFT and RANSAC to rescale 

and rectification, and non-rescale and rectification method for both normal printing and 

failure state are shown in Figure 5.22 to 5.25.  In the normal printing state, the non- rescale 

and rectification method is better than SIFT and RANSAC to rescale and rectification 

method for both the percentage of error and computation time. It can detect an error more 

accurate than SIFT and RANSAC to rescale and rectification method for all models as 

shown in Figure 5.22. But both methods are fail to detect the failure state as shown in 



 

 

126 

 

Figure 5.24. The computation time for both normal state and failure state of non-rescale 

and rectification method is 2X faster than SIFT and RANSAC to rescale and rectification 

method for all models as shown in Figure 5.23 and 5.25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1
2
7
 

Figure 5.22  Summary of image pre-processing: the error detection of normal printing state for a) sun gear, b) prism, c) gear, 

and d) t55gear. 



 

 

 

 

1
2
8
 

 

Figure 5.23  Summary of image pre-processing: the computation time of normal printing state for a) sun gear, b) prism, c) 

gear, and d) t55gear. 



 

 

 

 

1
2
9
 

 

Figure 5.24  Summary of image pre-processing: the error detection of failure state for a) sun gear, b) prism, c) gear, and d) 

t55gear. 



 

 

 

 

1
3
0
 

 

Figure 5.25  Summary of image pre-processing: the computation time of failure state for a) sun gear, b) prism, c) gear, and d) 

t55gear. 



 

 

131 

 

The summary of the error detection experiment for horizontal magnitude, and horizontal 

and vertical magnitude for both normal printing and failure state are shown in Figure 5.26 

to 5.29.  In normal printing state, both horizontal magnitude, and horizontal and vertical 

magnitude can detect error correctly under 10% as shown in Figure 5.26. But in the failure 

state, the horizontal and vertical magnitude can detect the failure more accurate than the 

horizontal magnitude for all models by reporting 100% error as shown in Figure 5.28. Also 

the computation time are the same in both normal printing and failure state as shown in 

Figure 5.27 and 5.29. 

 



Figure 5.26  Summary of error detection: the error detection of normal printing state for a) sun gear, b) prism, c) gear, and d) 

t55gear. 

1
3
2
 



Figure 5.27  Summary of error detection: the computation time of normal printing state for a) sun gear, b) prism, c) gear, and 

d) t55gear.

1
3
3
 



Figure 5.28  Summary of error detection: the error detection of failure state for a) sun gear, b) prism, c) gear, and d) t55gear. 

1
3
4
 



Figure 5.29  Summary of error detection: the computation time of failure state for a) sun gear, b) prism, c) gear, and d) t55gear. 

1
3
5
 



 

136 

 

5.5 Discussion 

The experimental results show that the three double camera set up in Python can be used 

to automatically detect a 3-D printer error such as clogged extruder, loss of filament, or an 

incomplete project for a wide range of 3-D object geometries. These errors can be 

significant as new user RepRap printing has been shown to have a 20% failure rate 

(Wittbrodt, et al., 2013). Previous solutions depended on proprietary software and 

expensive hardware. This work has overcome the limitations (Nuchitprasitchai, et al., 

2016; Nuchitprasitchai, et al., 2017) by reducing the computation time for multiple cameras 

and reducing the cost of software. The computation time here for the similar area size of 

ROI using Python is around 2X faster and less expensive than the code (Nuchitprasitchai, 

et al.., 2016; Nuchitprasitchai, et al., 2017) with the same algorithm run in the MATLAB 

environment which costs $2,150 (Mathworks, 2016).  This is not that expensive for 

research or highend 3-D printer applications, but represents a barrier to deployment in the 

low-cost prosumer printers used for distributed manufacturing, which generally cost in 

total $2,500 or less (the RepRap used in this study was $500 in parts).  

The double error detection works as designed. It should be noted, that a printed 3-D object 

usually has a small error when compared between the 3-D model file and the real 3-D 

printed object. The image pre-processing with horizontal magnitude error detection 

experiment shows that the algorithm with non-rescale and rectification can detect when the 

printing has failed more accurately than the one using the SIFT and RANSAC to rescale 

and rectification. But the error detection using horizontal magnitude results in sun gear 

model are not correct in some layers such as layers between 210 and 240, or between 240 



 

137 

 

and 268 in the first pair of cameras are less than 10% in failure state that should be greater 

than 10%. Therefore, the non-rescale and rectification algorithm was used in the error 

detection experiment with two different methods: horizontal magnitude, and horizontal and 

vertical magnitude. The horizontal and vertical magnitude method showed that the 3-D 

reconstruction error detection can detect 100% error when the printing has failed because 

the 3-D printed objects are smaller than the STL models because there are no data at the 

current height of the printing. The use of web cameras can be less expensive than other 

methods which are more accurate error detection of a 3-D print such as a laser scanning or 

sensor (Faes, et al., 2014), or scientific research cameras that cost about US$300 

(Nuchitprasitchai, et al., 2016; Nuchitprasitchai, et al., 2017). There are other methods to 

stop catastrophic failures. For example, there is a thrown rod alarm system for delta-style 

RepRaps, which alerts user when electrical connections are broken if any of the linking 

rods lose connection with the end effector (hot end) (Nuchitprasitchai, 2017) and Barker 

developed a similar thrown rod halt mod, which stops a print when electrical connections 

are broken if any of the linking rods are thrown (Barker, 2017). This type of warning system 

only addresses one failure mode while the work described here stops printing for any 

failure mode. Others demand user oversight as (Mahan, 2016; Gewirtz, 2016; Printer 3-D, 

2016; Carmelito, 2016; Simon, 2014; KenVersus, 2015), while the system described here 

is automatic This double cameras error detection algorithm (100% detection) can also 

detect the error better than vision-based error detection for 3-D printing processes when 

missing material flow (80% detection) (Baumann and Dieter, 2016). However, the 

algorithm here still has limitations. First, slicing the STL model into every N layers cannot 

be done for some number layers that the user may want because Slic3r reports an error for 



 

138 

 

removing a facet. For example, the t55gear model used here could not be sliced every 10 

or 20 layers, which is why here tested in every 30 layers. Second for 3-D printing models 

that create too many shadows in the model after taking the images can also not be 

monitored in this way. In the removing background process, such models lose a lot of data 

of the bottom of the object in the image caused a false error detection. Thus, the geometries 

that this process works for is limited. Finally, for users setting up the systems for 

themselves web cameras must be selected with a focal length of 10 cm or longer and must 

be supported by the open source environment.  

From the previous work (Nuchitprasitchai, 2017), the images from the single camera set 

up can be processed to detect the shape error in a low-cost 3-D printing, and the detection 

rate for both normal printing and failure state are 100% correctly. The computation time of 

the single camera set up is fast, less than 10 seconds for all three cameras. Also, this work 

represented reconstructing 3-D images of 3-D objects from 2-D images that successfully 

used to detect the size error of failure printing by six cameras. The computation time of the 

double camera set up depends on the size of the 3-D model. In this experiment, the average 

of the computation time is 45 seconds for each pair of cameras. Therefore, the single and 

double camera setup in an open source algorithm have been used together for more 

efficiency in reliable monitoring error of FFF-based 3-D printing in shape and size.   

In addition, to overcoming these limitations there are several other areas of future research. 

First, the slicing STL model process need to be investigated to eliminate the error for 

removing a facet. Second, removing the background algorithm need to be more accurate to 

remove only noise in the. Furthermore, to increase the quality of removing the background, 



 

139 

 

the new mathematical equations need to be tested for the performance of the system. Third, 

the computation time of this system would be improved if the 3-D reconstruction process 

is calculated only on the new area of the 3-D printed part. For example, the STL model is 

sliced every 30 layers. The first 3-D reconstruction is for layer 1 to 30, then the next 3-D 

reconstruction should be only for layer 31 to 60. This will reduce the area of pixels need to 

be calculated. Last, this system may be tested with other block matching algorithms to see 

if another algorithm is faster and more accurate such as correlation coefficient, normalized 

correlation coefficient, cross correlation, normalized cross correlation, squared difference, 

or normalized squared difference (Abidrahmank, 2013). Last, Franklin need to be modified 

to include this algorithm in order to alert user and pause the printing when an error occurs. 

5.6 Conclusions 

This paper described an open-source low-cost reliable real-time monitoring platform for 

FFF-based 3-D printing based on a double cameras system for three perspectives around 

360 degrees. The results showed that the algorithm using non-rescale and rectification with 

detecting an error at the current height of the printing was effective at detecting a clogged 

nozzle, loss of filament, or an incomplete project for a wide range of 3-D object geometries. 

The error calculations were determined from the data in the 3-D reconstruction points at 

the current height of the printing. The error results can be used to inform user and as the 

feedback control for the printer. The validity of this approach using experiment shows that 

the error detection system is capable of a 100 percent detection rate for failure detection. 



 

140 

 

5.7 References 

1. Abidrahmank, 2014. OpenCV2-Python-Tutorials [WWW Document]. URL 

https://github.com/abidrahmank/OpenCV2-Python-Tutorials/ (accessed 3.30.17). 

2. Anzalone, G.C., Wijnen, B., Pearce, J.M., 2015. Multi-material additive and 

subtractive prosumer digi-tal fabrication with a free and open-source convertible 

delta RepRap 3-D printer. In Rapid Proto-typing Journal. 21, 506–519. 

doi:10.1108/RPJ-09-2014-0113 

3. Anzalone, G., Wijnen, B., Pearce, J.M., 2016. Delta Build Overview:MOST - 

Appropedia: The sustain-ability wiki [WWW Document]. URL 

http://www.appropedia.org/Delta_Build_Overview:MOST (accessed 6.13.16). 

4. Atli, A.V., Urhan, O., Ertürk, S., Sönmez, M., 2006. A computer vision-based fast 

approach to drilling tool condition monitoring.In Proceedings of the Institution of 

Mechanical Engineers, Part B: Jour-nal of Engineering Manufacture. 220, 1409–

1415. doi:10.1243/0954 

5. Baden, T., Chagas, A.M., Gage, G.J., Marzullo, T.C., Prieto-Godino, L.L., Euler, 

T., 2015. Correction: open labware: 3-d printing your own lab equipment. In 

PLOS Biology. 13, e1002175. doi:10.1371/journal.pbio.1002175 

6. Barker, B., 2014. Thrown Rod Halt Mod - Appropedia: The sustainability wiki 

[WWW Document]. URL http://www.appropedia.org/Thrown_Rod_Halt_Mod 

(accessed 3.20.17). 

7. Baumann, F., Roller, D., 2016. Vision based error detection for 3D printing 

processes. In EDP Science 59 

8. Birtchnell, T., Hoyle, W., 2014. 3D printing for development in the global south: 

The 3D4D challenge. In Palgrave Macmillan. 

Doi:http://dx.doi.org/10.1057/9781137365668. 

9. Bowyer, A., 2014. 3D Printing and Humanity’s First Imperfect Replicator. 3D 

Print. In Additive Man-ufacturing. 1, 4–5. doi:10.1089/3dp.2013.0003 

10. Bradley, C., Wong, Y.S., 2001. Surface texture indicators of tool wear - a 

machine vision approach. In The international Journal of Advanced 

Manufacturing Technology. 17, 435–443. doi:10.1007/s001700170161 

11. Bradski, G., Kaehler, A., 2008. Learning OpenCV: Computer vision with the 

OpenCV library. O’Reilly Media, Inc. 

12. Campbell, I., Bourell, D., Gibson, I., 2012. Additive manufacturing: rapid 

prototyping comes of age. In Rapid Prototyping Journal. 18, 255–258. 

doi:10.1108/13552541211231563 

13. Gibson, I., Rosen, D. and Stucker, B., 2014. Additive manufacturing 

technologies: 3D printing, rapid prototyping, and direct digital manufacturing. In 

Springer. 



 

141 

 

14. Carmelito, 2016. Controlling and Monitoring your 3D printer with... | element14 | 

MusicTech [WWW Document]. URL 

https://www.element14.com/community/community/design-

challenges/musictech/blog/2016/03/16/controlling-your-3d-printer-with-

beaglebone-and-octoprint (accessed 3.18.17). 

15. Coakley, M., Hurt, D.E., 2016. 3D Printing in the Laboratory. In Journal 

Laboratory Automation. 21, 489–495. doi:10.1177/2211068216649578 

16. Concept Laser, 2016. Metal Additive Manufacturing Machines [WWW 

Document]. URL http://www.conceptlaserinc.com/ (accessed 11.10.16). 

17. Dollar Tree, Inc., 2016. Floral Supplies, Party Supplies, Cleaning Supplies 

[WWW Document]. URL https://www.dollartree.com/ (accessed 12.3.16). 

18. Droffarts, 2012. Parametric pulley - lots of tooth profiles by droftarts - 

Thingiverse [WWW Document]. URL http://www.thingiverse.com/thing:16627 

(accessed 3.12.17). 

19. Edinbarough, I., Balderas, R., Bose, S., 2005. A vision and robot based on-line 

inspection monitoring system for electronic manufacturing. In Computer in 

Industry. 56, 986–996. doi:10.1016/j.compind.2005.05.022 

20. Faes, M., Abbeloos, W., Vogeler, F., Valkenaers, H., Coppens, K., Goedemé, T., 

Ferraris, E., 2014. In Process Monitoring of Extrusion Based 3D Printing via 

Laser Scanning. 6, 363-367. doi:10.13140/2.1.5175.0081 

21. Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for 

model fitting with appli-cations to image analysis and automated cartography. In 

Communications of the ACM. 24(6), 381–395. doi:10.1145/358669.358692 

22. Fox, S., 2010. After the factory [Manufacturing renewal]. In Engineering & 

Technology, 5(8), pp.59-61. 

23. Gewirtz, D., 2016. Adding a Raspberry Pi case and a camera to your LulzBot 

Mini - Watch Video Online - Watch Latest Ultra HD 4K Videos Online [WWW 

Document]. URL http://www.zdnet.com/article/3d-printing-hands-on-adding-a-

case-and-a-camera-to-the-raspberry-pi-and-lulzbot-mini/ (accessed 11.30.16) 

24. Gibb, A., Abadie, S., 2014. Building open source hardware: DIY manufacturing 

for hackers and mak-ers. In Pearson Education. 

25. Gibson, I., Rosen, D., Stucker, B., 2014. Additive manufacturing technologies: 

3D printing, rapid pro-totyping, and direct digital manufacturing. In Springer-

Verlag New York, New York. 

26. Golnabi, H., Asadpour, A., 2007. Design and application of industrial machine 

vision systems. In Ro-botics and Computer-Integrated Manufacturing. 23, 630–

637. doi:10.1016/j.rcim.2007.02.005 

27. Gonzalez-Gomez, J., Valero-Gomez, A., Prieto-Moreno, A., Abderrahim, M., 

2012. A New Open Source 3D-Printable Mobile Robotic Platform for Education. 



 

142 

 

In Advances in Autonomous Mini Robots. Springer Berlin Heidelberg, Berlin, 

Heidelberg. 49–62. doi:10.1007/978-3-642-27482-4_8 

28. Hurd, S., Camp, C., White, J., 2015. Quality Assurance in Additive 

Manufacturing Through Mobile Computing. In Springer, Cham, 203–220. 

doi:10.1007/978-3-319-29003-4_12 

29. Irwin, J.L., Oppliger, D.E., Pearce, J.M., Anzalone, G., 2015. Evaluation of 

RepRap 3D Printer Work-shops in K-12 STEM. In 122nd ASEE 122nd ASEE 

Conference Proceedings, Pap. ID 12036. 

30. Jetty, 2012. Paper Crimper by jetty - Thingiverse [WWW Document]. URL 

http://www.thingiverse.com/thing:17634 (accessed 12.3.16). 

31. Ji, S., Zhang, X., Zhang, L., WAN, Y., YUAN, J., ZHANG, L., 2002. Application 

of computer vision in tool condition monitoring. In Journal-Zhejiang University 

Technology. 30, 143–148. 

32. Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., Bowyer, A., 

2011. RepRap – the rep-licating rapid prototyper. In Robotica. 29, 177–191. 

doi:10.1017/S026357471000069X 

33. Kentzer, J., Koch, B., Thiim, M., Jones, R.W. and Villumsen, E., 2011. An open 

source hardware-based mechatronics project: The replicating rapid 3-D printer. In 

4th International Conference on Mecha-tronics (ICOM). IEEE. 1–8. 

doi:10.1109/ICOM.2011.5937174 

34. KenVersus, 2015. Logitech C170 webcam mount for daVinci 3D Printer by 

KenVersus - Thingiverse [WWW Document]. URL 

http://www.thingiverse.com/thing:747105 (accessed 3.18.17). 

35. Kerr, D., Pengilley, J., Garwood, R., 2006. Assessment and visualisation of 

machine tool wear using computer vision. In International Journal Advanced 

Manufacturing Technology. 28, 781–791. doi:10.1007/s00170-004-2420-0 

36. Klancnik, S.;, Ficko, J.&, Pahole, I., 2015. Computer Vision-Based Approach to 

End Mill Tool Moni-toring. In International Journal Simulation Modeling. 14(4), 

571–583. doi:10.2507/IJSIMM14(4)1.301 

37. Kleszczynski, S., zur Jacobsmühlen, J., Sehrt, J.T., Witt, G., 2012. Error detection 

in laser beam melting systems by high resolution imaging, In Proceedings of the 

Solid Freeform Fabrication Symposium. 

38. Kleszczynski, S., zur Jacobsmühlen, J., Reinarz, B., Sehrt, J.T., Witt, G., Merhof, 

D., 2014. Improving process stability of laser beam melting systems, In 

Proceedings of the Frauenhofer Direct Digital Manufacturing Conference.  

39. Lanzetta, M., 2001. A new flexible high-resolution vision sensor for tool 

condition monitoring. In Jour-nal Materials Processing Technology. 119, 73–82. 

doi:10.1016/S0924-0136(01)00878-0 

40. Laplume, A., Anzalone, G.C., Pearce, J.M., 2016. Open-source, self-replicating 3-

D printer factory for small-business manufacturing. In International Journal 



 

143 

 

Advanced Manufacturing Technology. 85, 633–642. doi:10.1007/s00170-015-

7970-9 

41. Li, Y., Li, Y.F., Wang, Q.L., Xu, D., Tan, M., 2010. Measurement and defect 

detection of the weld bead based on online vision inspection. In IEEE 

Transactions on Instrumentation Measurement. 59, 1841–1849. 

doi:10.1109/TIM.2009.202822 

42. Lowe, D.G., 1999. Object recognition from local scale-invariant features, In 

Proceedings of the Sev-enth IEEE International Conference on Computer Vision. 

IEEE. 2, 1150–1157. doi:10.1109/ICCV.1999.790410 

43. Mahan, T., 2016. Raspberry Pi Control and Wireless Interface - Appropedia: The 

sustainability wiki [WWW Document]. URL 

http://www.appropedia.org/Raspberry_Pi_Control_and_Wireless_Interface 

(accessed 3.20.17). 

44. Make, 2017. 3D Printer Shootout News, Reviews and More | Make: DIY Projects 

and Ideas for Makers [WWW Document]. URL http://makezine.com/tag/3d-

printer-shootout/ (accessed 4.11.17). 

45. MathWorks, 2016. Pricing and Licensing - MATLAB &amp; Simulink [WWW 

Document]. URL https://www.mathworks.com/pricing-

licensing.html?intendeduse=comm (accessed 12.8.16). 

46. Microsoft, 2016. Learn to Develop with Microsoft Developer Network | MSDN 

[WWW Document]. URL https://msdn.microsoft.com/en-us/default.aspx 

(accessed 11.13.16). 

47. Nuchitprasitchai, S., Roggemann, M., Pearce, J. An Open Source Algorithm for 

Reconstruction 3-D images for Low-cost, Reliable Real-time Monitoring of FFF-

based 3-D Printing. (to be submitted). 

48. Nuchitprasitchai, S., Roggemann, M., Pearce, J. Factors Effecting Real Time 

Optical Monitoring of Fused Filament 3-D Printing. (to be published). 

49. Nuchitprasitchai, S., 2016. Rod alarm - Appropedia: The sustainability wiki 

[WWW Document]. URL http://www.appropedia.org/Rod_alarm (accessed 

3.20.17). 

50. Nuchitprasitchai, S., 2017. 3-D models [WWW Document]. URL 

https://osf.io/utp6g/ (accessed 4.5.17). 

51. O’Neill, P.F., Ben Azouz, A., Vázquez, M., Liu, J., Marczak, S., Slouka, Z., 

Chang, H.C., Diamond, D., Brabazon, D., 2014. Advances in three-dimensional 

rapid prototyping of microfluidic devices for biological applications. In 

Biomicrofluidics 8, 52112. doi:10.1063/1.4898632 

52. OpenCV, 2016. OpenCV library [WWW Document]. URL http://opencv.org/ 

(accessed 11.10.16). 

53. OpenCV, 2016. Camera Calibration and 3D Reconstruction — OpenCV 2.4.13.2 

documentation [WWW Document]. URL 



 

144 

 

http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reco

nstruction.html#stereobm (accessed 12.3.16). 

54. OpenSCAD, 2016. OpenSCAD - The Programmers Solid 3D CAD Modeller 

[WWW Document]. URL http://www.openscad.org/ (accessed 12.3.16). 

55. Pearce, J.M., Anzalone, N.C., Heldt, C.L., 2016. Open-Source Wax RepRap 3-D 

Printer for Rapid Pro-totyping Paper-Based Microfluidics. In Journal Laboratory 

Automation. 21, 510–516. doi:10.1177/2211068215624408 

56. Pearce, J.M., 2014. Open-source lab: How to build your own hardware and reduce 

research costs. In Elsevier. 

57. Pearce, J.M., 2015. Applications of open source 3-D printing on small farms. In 

Organic Farming. 1(1), 19–35. 

58. Pearce, J.M., 2012. Building Research Equipment with Free, Open-Source 

Hardware. In Science. 337 (6100), 1303-1304. 

59. Pearce, J.M., Blair, C.M., Laciak, K.J., Andrews, R., Nosrat, A., Zelenika-Zovko, 

I., 2010. 3-D printing of open source appropriate technologies for self-directed 

sustainable development. In Journal of Sustainable Development. 3(4), 17-29. 

60. Petersen, E.E., Pearce, J., 2017. Emergence of Home Manufacturing in the 

Developed World: Return on Investment for Open-Source 3-D Printers. In 

Technologies. 5, 7. Doi:10.3390/technology5010007 

61. Pfeifer, T., Wiegers, L., 2000. Reliable tool wear monitoring by optimized image 

and illumination con-trol in machine vision. In Measurement. 28, 209–218. 

doi:10.1016/S0263-2241(00)00014-2 

62. Point Grey, 2017. Point Grey Firefly MV 0.3 MP Color USB 2.0 Research 

Camera [WWW Document].  URL http://www.trossenrobotics.com/fireflyMV 

(accessed 4.8.17). 

63. Printer3D, 2017. Free IP Camera Monitoring for 3D printer with old webcam usb 

in 5min - 3D Printers English French &amp; FAQ Wanhao Duplicator D6 

Monoprice Maker Ultimate &amp; D4, D5, Duplicator 7 [WWW Document]. 

URL http://www.printer3d.one/en/forums/topic/free-ip-camera-monitoring-for-

3d-printer-with-old-webcam-usb-in-5min/ (accessed 3.18.17). 

64. Python, 2016. Welcome to Python.org [WWW Document]. URL 

https://www.python.org/ (accessed 11.10.16). 

65. Raspberry Pi, 2016. Teach, Learn, and Make with Raspberry Pi [WWW 

Document]. URL https://www.raspberrypi.org/ (accessed 12.3.16). 

66. Raymond, E., 1999. The cathedral and the bazaar. Knowledge, Technol. Policy 

12, 23–49. doi:10.1007/s12130-999-1026-0 

67. Rimock, M., 2015. An Introduction to the Intellectual Property Law Implications 

of 3D Printing. In Canadian Journal Law and Technology. 13(1). 

68. Rostock, 2016. RepRapWiki [WWW Document]. URL 

http://reprap.org/wiki/Rostock (accessed 11.5.16). 



 

145 

 

69. Schelly, C., Anzalone, G., Wijnen, B., Pearce, J.M., 2015. Open-source 3-D 

printing technologies for education: Bringing additive manufacturing to the 

classroom. In Journal of Visual Languages and Computing. 28, 226–237. 

doi:10.1016/j.jvlc.2015.01.004 

70. Sells, E., Smith, Z., Bailard, S., Bowyer, A., Olliver, V., 2010. RepRap: The 

Replicating Rapid Proto-typer: Maximizing Customizability by Breeding the 

Means of Production. In Piller FT, Tseng MM (eds) Handbook of Research in 

Mass Customization and Personalization: Strategies and concepts. In World 

Scientific. 1,568-580. 

71. Simon, J., 2017. Monitoring Your 3D Prints | 3D Universe [WWW Document]. 

URL https://3duniverse.org/2014/01/06/monitoring-your-3d-prints/ (accessed 

3.18.17). 

72. STL (file format), 2017. [WWW Document]. URL 

https://en.wikipedia.org/wiki/STL_%28file_format%29 (accessed 4.5.17). 

73. Straub, J., 2015. Initial work on the characterization of additive manufacturing 

(3D printing) using software image analysis. In Machines. 3, 55–71. 

74. Tech, R.P.G., Ferdinand, J.-P., Dopfer, M., 2016. Open Source Hardware Startups 

and Their Commu-nities. In Springer International Publishing. 129–145. 

doi:10.1007/978-3-319-31686-4_7 

75. Thing-O-Fun, 2012. Exploded Planetary Gear Set by Thing-O-Fun - Thingiverse 

[WWW Document]. URL http://www.thingiverse.com/thing:18291 (accessed 

12.3.16). 

76. Troxler, P., van Woensel, C., 2016. How Will Society Adopt 3D Printing? T.M.C. 

Asser Press. 183–212. doi:10.1007/978-94-6265-096-1_11 

77. Ultimaker, 2017. Cura 3D Printing Slicing Software [WWW Document]. URL 

https://ultimaker.com/en/products/cura-software (accessed 3.12.17). 

78. Vera, J., 2010. Promoting Tools that integrate LCA into the Product Design 

Process: a Case Study in Ontario. 

79. Volpato, N., Aguiomar Foggiatto, J., Coradini Schwarz, D., 2014. The influence 

of support base on FDM accuracy in Z. In Rapid Prototyping Journal. 20, 182–

191. doi:10.1108/RPJ-12-2012-0116 

80. Wang, W.H., Hong, G.S., Wong, Y.S., Zhu, K.P., 2007. Sensor fusion for online 

tool condition moni-toring in milling. In International Journal Production 

Research. 45, 5095–5116. doi:10.1080/00207540500536913 

81. Wijnen, B., Anzalone, G.C., Haselhuhn, A.S., Sanders, P.G., Pearce, J.M., 2016. 

Free and open-source control software for 3-D motion and processing. In Journal 

of Open Research Software, 4(1). 

82. Wittbrodt, B.T., Glover, A.G., Laureto, J., Anzalone, G.C., Oppliger, D., Irwin, 

J.L., Pearce, J.M., 2013. Life-cycle economic analysis of distributed 



 

146 

 

manufacturing with open-source 3-D printers, In Mechatronics.23(6), 713-

726.doi:10.1016/j.mechatronics.2013.06.002 

83. Wohlers, T., 2016. Wohlers Report 2016. Wohlers Associates, Inc. 

84. Wu, H., Wang, Y., Yu, Z., 2016. In situ monitoring of FDM machine condition 

via acoustic emission. In The International Journal of Advanced Manufacturing 

Technology. 84, 1483–1495. doi:10.1007/s00170-015-7809-4 

85. zur Jacobsmuhlen, J., Kleszczynski, S., Witt, G., Merhof, D., 2014. Robustness 

analysis of imaging sys-tem for inspection of laser beam melting systems, In 

Proceedings of the 2014 IEEE Emerging Technology and Factory Automation 

(ETFA). IEEE. 1–4. doi:10.1109/ETFA.2014.7005262 

  



 

147 

 

Chapter 6: Conclusions and Future Work 

6.1  Conclusions 

In this dissertation, it was shown that the triangulation-based geometric 3-D reconstruction 

algorithm is able to reliably reconstruct the 3-D objects and is able to detect errors on the 

low cost of an open source RepRap style 3-D printer. The triangulation-based geometric 3-

D reconstruction algorithm written in MATLAB was used successfully to reconstruct 3-D 

objects by using two science cameras in chapter 2. In chapter 3 the shape algorithm was 

added to be more efficient for detecting failed printing in a 3-D printer. Both the shape 

algorithm and the triangulation-based geometric 3-D reconstruction algorithm written in 

MATLAB was tested for detecting an error of failed printing on the RepRap 3-D printer 

from one perspective for both single and two cameras setup by using the science cameras. 

In chapter 4, webcams were used instead of the science cameras to reduce the cost of this 

approach. To increase the ability to detect an error around 3-D printed part, six webcams 

were used by setup each pair of cameras in three different perspectives. Python was used 

to developed these algorithms instead of MATLAB to make the algorithms are more 

available for everyone can access with no cost for the low cost of an open source RepRap 

style 3-D printer, and reducing the computation time to be more effective for 3-D printer 

that each layer takes a few second depends on the size and how complicated of the design 

to finish printing. The single camera error detection in Python is tested in normal and failure 

state.  In chapter 5, the double cameras error detection in Python is tested with two different 

techniques in image pre-processing, and with two different methods in the error detection 

algorithms.  



 

148 

 

6.2  Suggestions for Future work 

There are some works that can be done to improve the algorithms represented in this 

dissertation. Background removing is still challenging topic because the different light 

setting can severely affect the process. The improved method need to be implemented for 

a better background removal algorithm. The computation time was improved in this 

dissertation by ported the code from MATLAB to Python that is faster 3X in the single 

camera setup but in the double camera setup is faster only up to 2X.  However, the 

computation time would be improved if only the different area between the previous and 

the current printed part is calculated. There are many techniques in the block matching 

method. In this dissertation used only Sum of Absolute Differences block matching 

technique. Other techniques should be tested such as Squared difference, Normalized, 

squared difference, Cross correlation, Normalized cross correlation, Cosine coefficient, or 

Normalized cosine coefficient. The RepRap printer can print the object in height of 200 

mm. But the field of view of webcam used in this work can only cover the printed part of 

70 mm in width and 60 mm in height. The hardware need to be installed for moving the 

webcams location in height based on the height of the 3-D printed object, so that it can 

continue detect the error as the printer higher than 60 mm. Last, some STL model cause 

problem during the slicing process by using Slic3r because a facet cannot be removed.  The 

other technique should be applied to slice the STL model.  

 

 

  



 

149 

 

Appendix A: Supplementary Information for Chapter 2 

In chapter 2, we describe our approach to applying the SIFT to rescale and rectify the 

images. Figure A.1 shows the left and the right images after the background has been 

removed before rescaling the image. 

  

Figure A.1  Before rescaling the image 

After using the SIFT, the key point descriptors are calculated for each key point, and the 

distance between the closest descriptor pairs are calculated in order to find the matching 

points between the left and the right image that represent the same point of the object in 

the image. An example of one matching point between the left and the right image is shown 

in Figure A.2. 

Figure A.2  An example of one matching point between the left and the right image 



 

150 

 

The height between a pair of matching points in the left image is the difference in 𝑦-

coordinate between the two matching points in the left image. In addition, the height 

between a pair of matching points in the right image is the difference in 𝑦-coordinate 

between the two matching points in the right image.  They are shown in Figure A.3. 

 

Figure A.3  The difference between a pair of matching points 

Next, the summation of the heights in the left image (∑ 𝐻𝑙) is the summation of the 

differences between the heights of matching points from the top 10% of the best matching 

points in the left image. In addition, the summation of the heights in the right image (∑ 𝐻𝑟) 

is the summation of the differences between the heights of matching points from the top 

10% of the best matching points in the right image. They are calculated by 

∑ 𝐻𝑙 =  ∑ (𝑦𝑙𝑒𝑓𝑡,𝑖 − 𝑦𝑙𝑒𝑓𝑡,𝑖+1)𝑛
𝑖=1                                          (A-1) 

∑ 𝐻𝑟 =  ∑ (𝑛
𝑖=1 𝑦𝑟𝑖𝑔ℎ𝑡,𝑖 − 𝑦𝑟𝑖𝑔ℎ𝑡,𝑖+1)                                     (A-2) 

where ∑ 𝐻𝑙 is the summation of the heights from the top 10% of the best matching points 

in the left image, ∑ 𝐻𝑟 is the summation of the heights from the top 10% of the best 

matching points in the right image, 𝑛 is the number of the top 10% of the best matching 

  

The height in the 

right image  

 The height in 

the left image 



 

151 

 

points where 𝑖 is increased by 2 for each iteration, 𝑦𝑙𝑒𝑓𝑡 is the 𝑦-coordinate in the left image, 

and 𝑦𝑟𝑖𝑔ℎ𝑡 is the 𝑦-coordinate in the right image. 

In order to rescale the image, there are two possible calculations of the height ratio as 

shown in Equation (A-3). The first one happens when the summation of the heights in the 

left image is greater than the summation of the heights in the right image. In this way the 

height ratio is calculated by Equation (A-3)-(𝑎). Then the left image is rescaled by this 

height ratio. On the other hand, if the summation of the heights in the right image is greater 

than the summation of the heights in the left image, the height ratio is calculated by the 

second possible calculation as shown in Equation (A-3)-(𝑏). Then the right image is 

rescaled by the height ratio. 

𝐻𝑒𝑖𝑔ℎ𝑡 𝑅𝑎𝑡𝑖𝑜 = {

∑ 𝐻𝑙
∑ 𝐻𝑟

          𝑖𝑓 ∑ 𝐻𝑙 > ∑ 𝐻𝑟                          (𝑎)

∑ 𝐻𝑟
∑ 𝐻𝑙

          𝑖𝑓 ∑ 𝐻𝑟 > ∑ 𝐻𝑙                           (𝑏)

                       (A-3) 

where ∑ 𝐻𝑙 is the summation of the heights from the top 10% of the best matching points 

in the left image, and ∑ 𝐻𝑟 is the summation of the heights from the top 10% of the best 

matching points in the right image. 

Figure A.4 shows the best 10% of the matching points. The summations of the height of 

the left and the right images are 32.96 and 32.27 pixels, respectively. Since the summation 

of the height of the left image is greater than the summation of the height of the right image, 

the left image is rescaled by the height ratio with 0.98. The result is shown in Figure A.5. 



 

152 

 

 

Figure A.4 Matching points for rescale after using SIFT 

 

Figure A.5  After rescaling the image 

After the rescaling step, one of the images needs to be rectified. The difference in 𝑦-

coordinate between the left and the right images for each matching point (𝐷𝑖𝑓𝑓𝑦), as shown 

in Figure A.6, is calculated by Equation (A-4). If 𝐷𝑖𝑓𝑓𝑦 is greater or equal to zero, the left 

image is moved up by 𝐷𝑖𝑓𝑓𝑦 pixels. If not, the left image is moved down by 𝐷𝑖𝑓𝑓𝑦 pixels. 

𝐷𝑖𝑓𝑓𝑦 =  𝑦𝑙𝑒𝑓𝑡 − 𝑦𝑟𝑖𝑔ℎ𝑡                                                  (A-4) 

where 𝐷𝑖𝑓𝑓𝑦 is the difference in 𝑦-coordinate between the left and the right images, 𝑦𝑙𝑒𝑓𝑡 

is the 𝑦-coordinate in the left image, and 𝑦𝑟𝑖𝑔ℎ𝑡 is the 𝑦-coordinate in the right image. 



 

153 

 

 

Figure A.6  The difference in 𝑦-coordinates between the left and the right images 

After re-running the SIFT with the images from Figure A.5, the best 10% of the matching 

points are shown in Figure A.7. Therefore, the difference in the 𝑦-coordinates between the 

left and the right images is equal to 42 pixels. The result after rectifying the image is 

presented in Figure A.8. 

 

Figure A.7  Matching points for rectification after re-running the SIFT 

 

The difference in   

𝑦-coordinate 

between the left and 

the right images 



 

154 

 

 

Figure A.8  After rectifying the image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

155 

 

Appendix B: Supplementary Information for Chapter 4 

In chapter 4, The single camera set up experiment was tested with four different models 

for both normal and failure state. All data tables are shown in table B.1-B.8 

B.1 Normal state 

Table B.1 Single camera error detection data for sun gear: Normal state 

Current layer 
1st right 

camera 

2nd right 

camera 

3rd right 

camera 

Computation time 

(sec.) 

30 5.20 4.77 3.96 6.29 

60 5.25 4.52 3.81 6.64 

90 3.94 3.62 2.67 6.63 

120 3.89 3.11 2.56 6.66 

150 3.48 2.96 2.18 6.71 

180 3.44 2.93 2.80 6.68 

210 3.45 2.98 2.92 6.72 

240 3.05 3.01 2.81 6.75 

268 3.06 2.66 2.97 6.73 

Table B.2 Single camera error detection data for Prizm: Normal state 

Current layer 
1st right 

camera 

2nd right 

camera 

3rd right 

camera 

Computation time 

(sec.) 

30 3.78 6.67 5.80 8.04 

60 2.48 3.02 4.31 6.38 

90 1.82 2.00 2.93 7.17 

120 2.39 2.75 3.09 6.47 

150 2.23 2.44 3.03 6.57 

Table B.3 Single camera error detection data for gear: Normal state 

Current layer 
1st right 

camera 

2nd right 

camera 

3rd right 

camera 

Computation time 

(sec.) 

30 4.06 3.38 2.86 10.05 

60 2.53 4.70 2.31 6.88 

90 2.13 1.46 2.84 7.10 

120 5.25 2.12 3.76 6.70 

129 1.08 1.30 0.70 6.87 

 



 

156 

 

 

Table B.4 Single camera error detection data for t55gear: Normal state 

Current layer 
1st right 

camera 

2nd right 

camera 

3rd right 

camera 

Computation time 

(sec.) 

30 4.17 4.81 4.10 6.39 

60 2.72 4.52 4.32 6.43 

90 3.27 3.94 4.14 6.54 

120 2.36 3.18 3.63 6.48 

150 1.81 2.52 3.07 6.63 

 

B.2 Failure state 

Table B.5 Single camera error detection data for Sun gear: Failure state 

Current layer 
1st right 

camera 

2nd right 

camera 

3rd right 

camera 

Computation time 

(sec.) 

30 & 60 15.21 15.47 15.07 6.54 

60 & 90 13.84 15.95 15.36 8.26 

90 & 120 15.78 15.82 15.94 7.06 

120 & 150 15.55 15.28 16.23 8.14 

150 & 180 13.56 13.12 14.81 6.70 

180 & 210 12.81 12.77 14.25 6.79 

210 & 240 11.54 11.88 13.65 6.89 

240 & 268 10.21 10.29 12.22 7.08 

Table B.6 Single camera error detection data for Prizm: Failure state 

Current layer 
1st right 

camera 

2nd right 

camera 

3rd right 

camera 

Computation time 

(sec.) 

30 & 60 17.02 17.67 19.01 6.77 

60 & 90 12.56 11.54 12.98 6.92 

90 & 120 9.30 9.11 10.38 7.94 

120 & 150 8.62 7.63 9.06 8.08 

Table B.7 Single camera error detection data for gear: Failure state 

Current layer 
1st right 

camera 

2nd right 

camera 

3rd right 

camera 

Computation time 

(sec.) 

30 & 60 15.40 16.17 14.74 6.91 

60 & 90 11.81 14.01 12.40 6.73 

90 & 129 10.83 10.58 11.59 6.65 

 



 

157 

 

 

Table B.8 Single camera error detection data for t55gear: Failure state 

Between 

layer 

1st right 

camera 

2nd right 

camera 

3rd right 

camera 

Computation time 

(sec.) 

30 & 60 15.23 17.03 15.74 6.49 

60 & 90 17.73 19.73 19.69 6.51 

90 & 120 16.18 16.27 16.50 6.68 

120 & 150 13.43 14.28 14.62 6.63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

158 

 

Appendix C: Supplementary Information for Chapter 5 

In chapter 5, All image results for each full model display from the first, the second and 

the third pair of cameras respectively: a-c) the images from the left camera, and d-f) the 

images from the right camera as shown in Figure C.1-C.4. 

            

                      a)                                           b)                                            c)          

                

                      d)                                           e)                                            f) 

Figure C.1 Full model of sun gear image 

 

 

 

 

 

 

 

 

 

 

 



 

159 

 

     

          a)                                           b)                                            c)  

     

                      d)                                           e)                                             f) 

Figure C.2 Full model of prism image 

 

 

      

                     a)                                            b)                                            c)  

     

                      d)                                           e)                                               f) 

Figure C.3 Full model of gear image 

 



 

160 

 

          
                      a)                                           b)                                           c)  

     

                      d)                                           e)                                               f) 

Figure C.4 Full model of t55gear image 

 

The double cameras set up were tested with two different experiments: image pre-

processing and error detection. The image pre-processing was run by two different 

techniques:  SIFT and RANSAC to rescale and rectify, and no rescale and rectification. 

The error detection is tested with two different methods: horizontal magnitude, and 

horizontal and vertical magnitude. For all experiments are tested with four model under 

normal printing and failure state.  All data tables are shown in table C.1-C.30.  From the 

results showed that no rescale and rectify in the image pre-processing step with horizontal 

and vertical magnitude algorithm was success to detect the error 100%, and the 3-D 

reconstruction results for full model of different four geometries in three different 

perspectives are shown in Figure C.5-C.8. 

 



 

161 

 

    

a)                                                                     b) 

 

                                                                   c) 

Figure C.5 3-D reconstruction of sun gear model: a) first pair of cameras, b)second pair 

of cameras, and c) third pair of cameras 



 

162 

 

    

a)                                                                     b) 

 

                                                                   c) 

Figure C.6 3-D reconstruction of prism model: a) first pair of cameras, b)second pair of 

cameras, and c) third pair of cameras 

 



 

163 

 

 

a) 

 

b) 

 

c) 

Figure C.7 3-D reconstruction of gear model: a) first pair of cameras, b)second pair of 

cameras, and c) third pair of cameras 



 

164 

 

 

a) 

 

b) 

 

c) 

Figure C.8 3-D reconstruction of t55gear model: a) first pair of cameras, b)second pair of 

cameras, and c) third pair of cameras 

 

 

 



 

165 

 

C.1 Image Pre-Processing 

C.1.1 SIFT and RANSAC to Rescale and Rectify 

A) Normal Printing State 

Table C.1 Double camera error detection data for sun gear: Normal Printing State  

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30 32.67 50.37 28.04 47.91 116.09 49.12 

60 30.41 72.94 22.83 58.91 6.64 70.51 

90 23.16 74.17 16.59 89.41 5.03 87.39 

120 28.64 92.15 18.84 96.04 6.65 101.83 

150 29.14 102.35 18.32 116.01 3.16 112.99 

180 27.52 110.61 18.86 127.31 8.22 118.94 

210 29.05 132.08 18.32 137.29 4.64 136.54 

240 27.47 140.47 17.46 146.16 3.72 145.56 

268 25.01 152.11 15.36 164.09 50.01 149.93 

Table C.2 Double camera error detection data for prism: Normal Printing State 

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30 0 0 0 0 0 0 

60 19.31 38.23 16.79 16.79 20.53 17.26 

90 26.05 36.21 28.13 20.39 26.78 18.32 

120 0 0 0 0 0 0 

150 0 0 0 0 0 0 



 

166 

 

Table C.3 Double camera error detection data for gear: Normal Printing State 

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30 31.05 29.77 20.39 29.21 5.08 30.85 

60 30.49 45.57 23.88 45.32 7.57 48.61 

90 23.02 61.99 17.98 68.74 6.22 64.99 

120 96.32 83.36 18.37 87.16 3.59 84.54 

129 29.84 85.61 13.36 88.26 6.38 91.51 

 

Table C.4 Double camera error detection data for t55gear: Normal Printing State 

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30 56.49 33.64 20.13 34.22 41.76 36.25 

60 47.77 53.51 19.51 19.41 14.82 55.74 

90 38.42 67.81 23.36 69.63 99.98 70.93 

120 37.21 81.37 27.75 85.53 12.11 84.21 

150 32.74 95.02 34.04 98.19 8.34 97.24 

 

 

 

 

 

 

 



 

167 

 

B) Failure State 

Table C.5 Double camera error detection data for sun gear: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30&60 32.67 49.41 28.04 46.91 116.09 48.58 

60&90 238.39 74.34 218.74 59.54 176.72 71.78 

90&120 23.16 74.24 16.59 89.78 5.03 87.54 

120&150 28.64 91.93 18.84 95.46 6.65 100.03 

150&180 29.14 102.42 18.32 117.91 3.16 114.49 

180&210 27.52 111.67 18.86 127.52 8.22 118.41 

210&240 29.05 131.83 18.32 138.52 4.64 136.17 

240&268 27.47 149.02 17.46 146.92 3.72 145.63 

Table C.6 Double camera error detection data for prism: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30&60 0 0 0 0 0 0 

60&90 38.23 19.63 16.79 16.64 17.26 20.52 

90&120 36.21 25.97 20.39 27.85 18.32 26.55 

120&150 0 0 0 0 0 0 

 

 

 

 



 

168 

 

Table C.7 Double camera error detection data for gear: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30&60 31.05 30.51 20.39 29.52 24.98 31.76 

60&90 30.49 45.07 23.88 45.95 15.87 47.65 

90&129 23.02 23.02 17.98 68.06 15.91 65.41 

Table C.8 Double camera error detection data for t55gear: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30&60 72.87 33.72 32.71 34.45 56.59 35.67 

60&90 134.35 53.66 27.65 19.78 82.09 55.79 

90&120 38.42 68.05 23.36 69.52 99.98 71.97 

120&150 31.21 81.55 27.75 83.72 12.11 83.96 

 

 

 

 

 

 

 

 

 

 



 

169 

 

C.1.2 Non-Rescale and Rectification 

A) Normal Printing State 

Table C.9 Double camera error detection data for sun gear: Normal Printing State  

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30 5.36 16.58 1.29 22.51 3.49 22.26 

60 5.33 24.21 1.29 34.15 2.98 32.52 

90 3.79 30.63 0.46 44.84 2.08 41.87 

120 2.88 35.5 0.78 54.01 2.52 46.89 

150 0.21 38.8 0.05 59.97 2.52 53.54 

180 3.79 43.72 0.78 64.17 2.52 58.86 

210 3.79 48.29 0.78 72.66 1.2 64.39 

240 1.34 52.41 0.78 81.1 2.52 71.61 

268 1.97 57.73 0.87 83.59 1.2 77.29 

Table C.10 Double camera error detection data for prism: Normal Printing State 

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30 6.28 5.47 0.44 7.36 4.14 6.94 

60 8.56 7.62 1.04 10.4 4.97 9.34 

90 6.94 9.94 0.84 13.37 4.12 11.98 

120 9.26 11.93 0.41 17.55 2.94 15.05 

150 6.94 14.73 1.32 19.07 1.02 20.31 

 



 

170 

 

Table C.11 Double camera error detection data for gear: Normal Printing State 

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) 
Time 

(sec.) 

30 3.95 10.94 0.42 14.03 2.71 14.61 

60 3.81 16.78 0.26 20.48 3.02 21.04 

90 3.21 20.94 0.26 30.93 2.31 29.79 

120 3.21 27.79 0.26 41.14 2.01 37.48 

129 3.21 28.27 0.26 40.58 2.01 36.91 

 

Table C.12 Double camera error detection data for t55gear: Normal Printing State 

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30 4.48 13.04 0.51 16.45 3.59 16.41 

60 4.48 19.31 1.65 25.24 3.61 24.81 

90 8.26 23.55 0.85 31.84 5.41 30.52 

120 8.69 28.89 3.85 38.54 5.41 37.46 

150 7.83 32.98 4.18 43.19 6.32 41.08 

 

 

 

 

 

 

 



 

171 

 

B) Failure State 

Table C.13 Double camera error detection data for sun gear: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30&60 14.85 16.13 9.09 22.14 1.96 21.87 

60&90 29.87 25.39 23.28 34.86 19.16 34.35 

90&120 28.83 30.61 13.56 44.19 12.43 41.03 

120&150 18.26 34.65 7.33 53.33 10.73 46.94 

150&180 12.66 39.03 6.41 58.87 6.32 53.29 

180&210 10.98 43.69 10.05 63.21 4.89 58.68 

210&240 7.44 49.88 2.53 71.4 2.61 64.95 

240&268 4.66 52.32 1.24 79.14 0.63 71.24 

Table C.14 Double camera error detection data for prism: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30&60 30.62 5.53 30.84 7.22 27.01 6.59 

60&90 21.85 7.63 20.01 10.47 17.77 9.32 

90&120 19.81 9.61 15.72 13.42 13.45 12.15 

120&150 13.53 11.96 10.74 16.95 10.17 15.01 

 

 

 



 

172 

 

Table C.15 Double camera error detection data for gear: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30&60 27.92 10.98 28.82 15.18 24.98 14.31 

60&90 15.63 16.6 25.77 20.37 15.87 21.41 

90&129 22.92 21.26 16.96 30.47 15.91 28.56 

 

Table C.16 Double camera error detection data for t55gear: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) 
Time 

(sec.) 

30&60 52.73 13.31 57.08 16.43 51.85 16.54 

60&90 37.46 19.16 42.87 25.15 38.49 24.17 

90&120 31.7 23.5 31.29 32.33 27.96 30.86 

120&150 22.42 29.29 24.45 41.17 17.95 40.91 

 

 

 

 

 

 

 

 

 



 

173 

 

C.2 Error Detection 

C.2.1 Horizontal Magnitude 

A) Normal Printing State 

Table C.17 Double camera error detection data for sun gear: Normal Printing State  

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) 
Time 

(sec.) 

30 5.36 16.58 1.29 22.51 3.49 22.26 

60 5.33 24.21 1.29 34.15 2.98 32.52 

90 3.79 30.63 0.46 44.84 2.08 41.87 

120 2.88 35.5 0.78 54.01 2.52 46.89 

150 0.21 38.8 0.05 59.97 2.52 53.54 

180 3.79 43.72 0.78 64.17 2.52 58.86 

210 3.79 48.29 0.78 72.66 1.2 64.39 

240 1.34 52.41 0.78 81.1 2.52 71.61 

268 1.97 57.73 0.87 83.59 1.2 77.29 

Table C.18 Double camera error detection data for prism: Normal Printing State 

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30 6.28 5.47 0.44 7.36 4.14 6.94 

60 8.56 7.62 1.04 10.4 4.97 9.34 

90 6.94 9.94 0.84 13.37 4.12 11.98 

120 9.26 11.93 0.41 17.55 2.94 15.05 

150 6.94 14.73 1.32 19.07 1.02 20.31 



 

174 

 

Table C.19 Double camera error detection data for gear: Normal Printing State 

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30 3.95 10.94 0.42 14.03 2.71 14.61 

60 3.81 16.78 0.26 20.48 3.02 21.04 

90 3.21 20.94 0.26 30.93 2.31 29.79 

120 3.21 27.79 0.26 41.14 2.01 37.48 

129 3.21 28.27 0.26 40.58 2.01 36.91 

 

Table C.20 Double camera error detection data for t55gear: Normal Printing State 

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30 4.48 13.04 0.51 16.45 3.59 16.41 

60 4.48 19.31 1.65 25.24 3.61 24.81 

90 8.26 23.55 0.85 31.84 5.41 30.52 

120 8.69 28.89 3.85 38.54 5.41 37.46 

150 7.83 32.98 4.18 43.19 6.32 41.08 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

175 

 

B) Failure State 

Table C.21 Double camera error detection data for sun gear: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30&60 14.85 16.13 9.09 22.14 1.96 21.87 

60&90 29.87 25.39 23.28 34.86 19.16 34.35 

90&120 28.83 30.61 13.56 44.19 12.43 41.03 

120&150 18.26 34.65 7.33 53.33 10.73 46.94 

150&180 12.66 39.03 6.41 58.87 6.32 53.29 

180&210 10.98 43.69 10.05 63.21 4.89 58.68 

210&240 7.44 49.88 2.53 71.4 2.61 64.95 

240&268 4.66 52.32 1.24 79.14 0.63 71.24 

Table C.22 Double camera error detection data for prism: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30&60 30.62 5.53 30.84 7.22 27.01 6.59 

60&90 21.85 7.63 20.01 10.47 17.77 9.32 

90&120 19.81 9.61 15.72 13.42 13.45 12.15 

120&150 13.53 11.96 10.74 16.95 10.17 15.01 

 

 

 

 



 

176 

 

Table C.23 Double camera error detection data for gear: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30&60 27.92 10.98 28.82 15.18 24.98 14.31 

60&90 15.63 16.6 25.77 20.37 15.87 21.41 

90&129 22.92 21.26 16.96 30.47 15.91 28.56 

 

Table C.24 Double camera error detection data for t55gear: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30&60 52.73 13.31 57.08 16.43 51.85 16.54 

60&90 37.46 19.16 42.87 25.15 38.49 24.17 

90&120 31.7 23.5 31.29 32.33 27.96 30.86 

120&150 22.42 29.29 24.45 41.17 17.95 40.91 

 

 

 

 

 

 

 

 

 

 



 

177 

 

C.2.2 Horizontal and Vertical Magnitude 

A) Normal Printing State 

Table C.25 Double camera error detection data for sun gear: Normal Printing State  

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30 5.08 15.99 1.27 22.67 3.37 21.92 

60 5.06 23.87 1.27 33.97 2.92 33.09 

90 3.79 30.54 0.46 43.64 2.08 41.08 

120 2.81 35.52 1.98 50.84 2.45 45.82 

150 1.95 39.16 0.54 57.82 2.45 53.43 

180 3.65 43.45 0.77 63.33 2.45 58.21 

210 3.65 48.42 0.77 70.59 1.91 63.76 

240 2.79 53.05 0.77 76.97 2.45 69.32 

268 4.52 58.39 2.17 82.79 3.78 75.49 

Table C.26 Double camera error detection data for prism: Normal Printing State 

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30 3.85 5.61 0.44 7.18 3.97 6.71 

60 7.88 7.71 1.02 10.34 4.47 9.46 

90 3.84 9.46 0.85 13.64 3.96 12.23 

120 7.02 11.93 0.85 17.37 2.85 15.16 

150 9.01 14.44 0.85 19.82 1.31 17.88 

 



 

178 

 

Table C.27 Double camera error detection data for gear: Normal Printing State 

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30 3.81 11.15 0.42 14.32 2.65 14.28 

60 3.67 17.39 0.26 21.43 2.93 22.42 

90 3.11 21.04 0.26 31.35 2.26 29.24 

120 3.11 27.76 0.26 40.17 2.26 37.17 

129 2.34 27.65 0.44 40.39 1.97 37.09 

 

Table C.28 Double camera error detection data for t55gear: Normal Printing State 

Current 

layer 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30 12.61 13.04 0.51 16.42 3.47 16.14 

60 19.31 19.31 1.65 25.24 3.61 4.8 

90 23.86 23.55 3.71 32.93 5.13 30.48 

120 28.92 28.89 3.71 39.47 5.13 37.28 

150 35.52 32.98 3.11 47.11 5.13 44.21 

 

 

 

 

 

 

 

 



 

179 

 

B) Failure State 

Table C.29 Double camera error detection data for sun gear: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) 
Time 

(sec.) 
Error (%) Time (sec.) 

30&60 100 12.18 100 22.17 100 21.51 

60&90 100 25.42 100 35.72 100 34.55 

90&120 100 30.94 100 44.64 100 41.45 

120&150 100 34.76 100 50.86 100 45.67 

150&180 100 39.34 100 57.54 100 54.02 

180&210 100 44.06 100 63.65 100 57.43 

210&240 100 49.05 100 70.03 100 64.14 

240&268 100 52.32 100 79.14 100 71.24 

Table C.30 Double camera error detection data for prism: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30&60 100 5.59 100 7.22 100 6.83 

60&90 100 7.61 100 10.52 100 9.45 

90&120 100 9.56 100 13.62 100 20.59 

120&150 100 12.09 100 16.85 100 14.97 

 

 

 



 

180 

 

Table C.31 Double camera error detection data for gear: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30&60 100 11.19 100 14.14 100 14.07 

60&90 100 17.27 100 21.57 100 21.16 

90&129 100 21.34 100 31.24 100 28.64 

 

Table C.32 Double camera error detection data for t55gear: Failure State 

Between 

layers 

1st pair of camera 2nd pair of camera 3rd pair of camera 

Error (%) Time (sec.) Error (%) Time (sec.) Error (%) Time (sec.) 

30&60 100 19.23 100 16.52 100 18.42 

60&90 100 19.48 100 26.12 100 24.27 

90&120 100 23.61 100 33.25 100 30.22 

120&150 100 28.87 100 39.55 100 37.04 

 


	AN ALGORITHM FOR RECONSTRUCTING THREE-DIMENSIONAL IMAGES FROM OVERLAPPING TWO-DIMENSIONAL INTENSITY MEASUREMENTS WITH RELAXED CAMERA POSITIONING REQUIREMENTS, WITH APPLICATION TO ADDITIVE MANUFACTURING
	Recommended Citation

	Dissertation Advisor: Dr. Michael C. Roggemann
	Committee Member: Dr. Timothy C. Havens
	Committee Member: Dr. Jeremy P. Bos
	Committee Member: Dr. Joshua M. Pearce
	Department Chair: Dr. Daniel R. Fuhrmann
	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgement
	Abstract

	Chapter 1: Introduction
	1.1 Motivation
	1.2 Camera Model
	1.3 Stereo Reconstruction in the Simplified Epipolar Geometry
	1.4 Scale Invariant Feature Transform (SIFT)
	1.5 RANdom SAmple Consensus (RANSAC)
	1.6 Approach
	1.7  Summary of Key Results
	1.8 Organization
	1.9 References

	Chapter 2: An Algorithm for Reconstructing Three Dimensional Images from Overlapping Two-Dimensional Intensity Measurements with Relaxed Camera Positioning Requirements
	2.1 Abstract
	2.2 Introduction
	2.3 Image Preparation and Triangulation-Based Geometric 3-D Reconstruction
	2.3.1 Image Rescaling and Rectification
	2.3.2 Sum of Absolute Difference Algorithm
	2.3.3 Depth of Triangulation

	2.4 Experimental Results
	2.5 Conclusions
	2.6 References

	Chapter 3: Factors Effecting Real Time Optical Monitoring of Fused Filament 3-D printing
	3.1 Abstract
	3.2 Introduction
	3.3 Methods
	3.3.1 Single Camera Setup
	3.3.2 Two Camera Setup
	3.3.3 Validation

	3.4 Results
	3.5 Discussion
	3.6 Conclusions
	3.7 References

	Chapter 4: An Open Source Algorithm for Reconstructing 2-D Images of 3-D Objects being Fabricated for Low-cost, Reliable Real-Time Monitoring of FFF-Based 3-D Printing
	4.1 Abstract
	4.2 Introduction
	4.3 Method
	4.4 Results
	4.4.1 The Normal State of Filament Condition
	4.4.2 The Failure State of Filament Condition

	4.5 Discussion
	4.6 Conclusions
	4.7 References

	Chapter 5: 360 Degree Real-Time Monitoring of 3-D Printing Using Computer Analysis of Two Camera Views
	5.1 Abstract
	5.2 Introduction
	5.3 Method
	5.3.1 Experimental Equipment
	5.3.2 Theory
	5.3.2.1 Calculating Webcam Pixel Size and Focal Length
	5.3.2.2 Computer Vision Error Detection

	5.3.3 Experiments
	5.3.3.1  Image Pre-Processing
	5.3.3.1.1 SIFT and RANSAC to Rescale and Rectification
	5.3.3.1.2 With Non-Rescale and Rectification

	5.3.3.2 Error Detection
	5.3.3.2.1 Horizontal Magnitude
	5.3.3.2.2 Horizontal and Vertical Magnitude


	5.3.4 Validation

	5.4 Results
	5.4.1 Image Pre-Processing
	5.4.1.1 SIFT and RANSAC to Rescale and Rectification
	5.4.1.2 Non-rescale and rectification

	5.4.2 Error Detection
	5.4.2.1 Horizontal Magnitude
	5.4.2.2 Horizontal and Vertical Magnitude


	5.5 Discussion
	5.6 Conclusions
	5.7 References

	Chapter 6: Conclusions and Future Work
	6.1  Conclusions
	6.2  Suggestions for Future work

	Appendix A: Supplementary Information for Chapter 2
	Appendix B: Supplementary Information for Chapter 4
	Appendix C: Supplementary Information for Chapter 5

