
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2017 

HETEROGENEOUS MULTI-SENSOR FUSION FOR 2D AND 3D POSE HETEROGENEOUS MULTI-SENSOR FUSION FOR 2D AND 3D POSE 

ESTIMATION ESTIMATION 

Hanieh Deilamsalehy 
Michigan Technological University, hdeilams@mtu.edu 

Copyright 2017 Hanieh Deilamsalehy 

Recommended Citation Recommended Citation 
Deilamsalehy, Hanieh, "HETEROGENEOUS MULTI-SENSOR FUSION FOR 2D AND 3D POSE ESTIMATION", 
Open Access Dissertation, Michigan Technological University, 2017. 
https://digitalcommons.mtu.edu/etdr/420 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Controls and Control Theory Commons, Electrical and Electronics Commons, and the Robotics 
Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=digitalcommons.mtu.edu%2Fetdr%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.mtu.edu%2Fetdr%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.mtu.edu%2Fetdr%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.mtu.edu%2Fetdr%2F420&utm_medium=PDF&utm_campaign=PDFCoverPages


HETEROGENEOUS MULTI-SENSOR FUSION FOR 2D AND 3D POSE

ESTIMATION

By

Hanieh Deilamsalehy

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2017

© 2017 Hanieh Deilamsalehy





This dissertation has been approved in partial fulfillment of the requirements for the

Degree of DOCTOR OF PHILOSOPHY in Electrical Engineering.

Department of Electrical and Computer Engineering

Dissertation Advisor: Dr. Timothy C. Havens

Committee Member: Dr. Michael C. Roggemann

Committee Member: Dr. Zhaohui Wang

Committee Member: Dr. Thomas Oommen

Department Chair: Prof. Daniel R. Fuhrmann





Dedication

To my parents, teachers and friends. I would not be where I

am, if it was not because of all the people in my life.





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Two dimensional sensor fusion for image processing . . . . . . . . . 2

1.2 Three dimensional sensor fusion for UAV pose estimation . . . . . . 5

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Detection of Train Car Sliding Wheels and Hot Bearings Using

Wayside Thermal and Visual Cameras . . . . . . . . . . . . . . . . 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



2.2 Hypothesis and Research Methodology . . . . . . . . . . . . . . . . 13

2.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Thermal Image Segmentation (Pre-Processing) . . . . . . . . . . . . 18

2.4.1 Automatic wheel detection and segmentation . . . . . . . . . 19

2.4.2 Automatic Bearing Detection and Segmentation . . . . . . . 25

2.5 Automatic sliding wheel detection . . . . . . . . . . . . . . . . . . . 26

2.5.1 Feature extraction using Histogram of Oriented Gradients

(HOG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Classification and sliding wheel detection with Support Vector

Machine (SVM) . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Automatic Hot Bearing Detection . . . . . . . . . . . . . . . . . . . 32

2.7 Implementation and Results . . . . . . . . . . . . . . . . . . . . . . 33

2.7.1 Simulating the wheel temperature profile using Finite Element

Method (FEM) . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7.2 Training and testing the algorithm . . . . . . . . . . . . . . 35

2.8 Fusion of Visible and Thermal Imagery . . . . . . . . . . . . . . . . 38

2.8.1 Image fusion approach . . . . . . . . . . . . . . . . . . . . . 39

2.8.2 Wavelet transformation . . . . . . . . . . . . . . . . . . . . . 42

2.9 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . 47

3 Heterogeneous Multi-Sensor Fusion for Mobile Platform 3D Pose

Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Localization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Sensor units . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Methodology Overview . . . . . . . . . . . . . . . . . . . . . 64

3.3.3 Extended Kalman Filter (EKF) . . . . . . . . . . . . . . . . 66

3.3.3.1 Error estate discretization and state matrix initializa-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.3.2 Measurement model . . . . . . . . . . . . . . . . . 72

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.1 Simulated experiments . . . . . . . . . . . . . . . . . . . . . 75

3.4.2 Real World Experiments . . . . . . . . . . . . . . . . . . . . 78

3.5 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . 81

4 Fuzzy Adaptive Extended Kalman Filter for Robot 3D Pose Esti-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Robot Platform and Configuration . . . . . . . . . . . . . . . . . . 98

4.4.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.1.1 IMU . . . . . . . . . . . . . . . . . . . . . . . . . . 99

ix



4.4.1.2 Camera . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.1.3 LiDAR . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.2 Geometry definition . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.1 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . 104

4.5.2 Fuzzy System Design . . . . . . . . . . . . . . . . . . . . . . 108

4.5.2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . 108

4.5.2.2 Fuzzy Logic System (FLS) . . . . . . . . . . . . . . 111

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6.1 Simulated Experiments . . . . . . . . . . . . . . . . . . . . . 115

4.6.2 Real world experiments . . . . . . . . . . . . . . . . . . . . . 116

4.7 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . 118

5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 123

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A Letters of Permission . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

x



List of Figures

2.1 Automatic wheel and bearing defect detection block diagram . . . . 15

2.2 Examples of normal train wheel thermal images taken by wayside ther-

mal imaging system . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Examples of anomalous train wheel thermal images taken by wayside

thermal imaging system . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Ellipse geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Image segmentation of wheel and bearing regions . . . . . . . . . . 24

(a) Original thermal image . . . . . . . . . . . . . . . . . . . . . . 24

(b) Wheel outline identification . . . . . . . . . . . . . . . . . . . 24

(c) Wheel region segmentation . . . . . . . . . . . . . . . . . . . 24

(d) Bearing outline identification . . . . . . . . . . . . . . . . . . 24

(e) Extracted wheel region . . . . . . . . . . . . . . . . . . . . . . 24

(f) Extracted bearing region . . . . . . . . . . . . . . . . . . . . . 24

2.6 Histogram of Oriented Gradients (HOG) algorithm . . . . . . . . . 28

xi



2.7 Visualization of HOG feature descriptors of normal train wheels. The

top row visualizes HOG features on the wheel thermal images and the

bottom row is HOG visualizations of the same thermal images without

the wheel on the background . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Visualization of HOG feature descriptors of train wheels. The top rows

visualizes HOG features on the wheel thermal images and the bottom

row is HOG visualizations of the same thermal images without the

wheel on the background. In the bottom row, the areas inside the red

circles demonstrate the feature descriptors of the contact point of the

sliding wheels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Support Vector Machine (SVM) for linearly separable data points . 31

2.10 Bearing intensity distribution for the UPRR data set . . . . . . . . 33

2.11 Schematic diagram of the thermal FEM wheel-rail system . . . . . . 36

2.12 Simulated thermal wheel image using FEM . . . . . . . . . . . . . . 36

2.13 Examples of train wheel images taken by wayside visible spectrum

imaging system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.14 General block diagram of different fusion levels . . . . . . . . . . . . 41

2.15 Wavelet example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.16 Image fusion using different methods . . . . . . . . . . . . . . . . . 45

(a) Visual spectrum image . . . . . . . . . . . . . . . . . . . . . . 45

(b) Thermal image . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xii



(c) Fused image using Min pixel value . . . . . . . . . . . . . . . 45

(d) Fused image using Wavelet . . . . . . . . . . . . . . . . . . . . 45

2.17 Detection and segmentation of wheel and bearing from fused image 46

3.1 Different sensor fusion approaches for pose estimation. . . . . . . . 59

(a) Standard approach . . . . . . . . . . . . . . . . . . . . . . . . 59

(b) Modular approach . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 UAV principal axes and orientation geometry. Forward is indicated by

the red dot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Pinhole camera model . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Derivation of x and y coordinates from the LiDAR readings . . . . 62

3.5 UAV simulated path 1 trajectory . . . . . . . . . . . . . . . . . . . 83

(a) Simulated path 1 . . . . . . . . . . . . . . . . . . . . . . . . . 83

(b) Simulated path 1 true position . . . . . . . . . . . . . . . . . 83

(c) Simulated path 1 true orientation . . . . . . . . . . . . . . . . 83

3.6 UAV simulated path 2 trajectory . . . . . . . . . . . . . . . . . . . 84

(a) Simulated path 2 . . . . . . . . . . . . . . . . . . . . . . . . . 84

(b) Simulated path 2 true position . . . . . . . . . . . . . . . . . 84

(c) Simulated path 2 true orientation . . . . . . . . . . . . . . . . 84

3.7 Path 1 errors using only camera (red solid plots) and using camera and

LiDAR (blue dotted plots) . . . . . . . . . . . . . . . . . . . . . . . 85

(a) Position error comparison (cm) . . . . . . . . . . . . . . . . . 85

xiii



(b) Attitude error comparison (rad) . . . . . . . . . . . . . . . . . 85

3.8 Path 2 errors using only camera (red solid plots) and using camera and

LiDAR (blue dotted plots) . . . . . . . . . . . . . . . . . . . . . . . 86

(a) Position error comparison (cm) . . . . . . . . . . . . . . . . . 86

(b) Attitude error comparison (rad) . . . . . . . . . . . . . . . . . 86

3.9 Sensor platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

(a) Sensors mounted on the UAV . . . . . . . . . . . . . . . . . . 87

(b) Front view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

(c) Top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.10 Sensor platform trajectory . . . . . . . . . . . . . . . . . . . . . . . 87

(a) Sensor platform path . . . . . . . . . . . . . . . . . . . . . . . 87

(b) True position . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

(c) True orientation . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Adaptive Kalman filter for pose estimation . . . . . . . . . . . . . . 120

(a) AKF block diagram . . . . . . . . . . . . . . . . . . . . . . . 120

(b) FLS block diagram . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2 Input and output membership functions . . . . . . . . . . . . . . . 121

(a) Input 1: ∆z (m) . . . . . . . . . . . . . . . . . . . . . . . . . 121

(b) Input 2&3: ∆β/∆γ (rad) . . . . . . . . . . . . . . . . . . . . 121

(c) Input 4: DOM . . . . . . . . . . . . . . . . . . . . . . . . . . 121

(d) Output: ∆R . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xiv



4.3 Ground trajectory and state values for simulated experiment. . . . . 122

(a) UAV simulated path . . . . . . . . . . . . . . . . . . . . . . . 122

(b) True position . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

(c) True orientation . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4 Ground truth trajectory and state values for real-world experiment. 122

(a) Platform real path . . . . . . . . . . . . . . . . . . . . . . . . 122

(b) True position . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

(c) True orientation . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.1 SAGE permission letter for the material used in Chapter 2 . . . . . 141

A.2 ASME permission letter for the material used in Chapter 2 . . . . . 142

A.3 IEEE permission letter for the material used in Chapter 3 . . . . . 143

xv





List of Tables

2.1 Wheel defect results on simulated and Union Pacific data set. . . . 38

3.1 Variances of noise and bias for different sensors . . . . . . . . . . . 76

3.2 Simulated path 1 mean errors using only camera and using camera and

LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Simulated path 2 mean errors using only camera and using camera and

LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Noise variance for different sensor units . . . . . . . . . . . . . . . . 80

3.5 Motion capture room experiment mean errors using only camera and

using camera and LiDAR . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Fuzzy rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 Mean Errors of EKF and Fuzzy AKF for Simulated UAV Path. . . 116

4.3 Mean Errors of EKF and Fuzzy AKF for Real UAV Path. . . . . . 117

xvii





Preface

This dissertation contains my research performed during my Ph.D. program in Elec-

trical Engineering at Michigan Technological University. The focus of the work is

sensor fusion and its applications in the real world. In this regard, first a two dimen-

sional image based scenario from railroad industry was considered and then a more

complicated three dimensional sensor fusion algorithm was developed for Unmanned

Aerial Vehicle (UAV) applications.

Chapter 1 of this dissertation gives an introduction to sensor fusion and the prob-

lems to be solved using fusion techniques, followed by Chapter 2 which contains

my research work for the railroad industry and is published in SAGE Institution of

Mechanical Engineers, Part F: Journal of Rail and Rapid Transit as An Automatic

Method for Detecting Sliding Railway Wheels and Hot Bearings Using Thermal Im-

agery. In addition, parts of my work in this area were published and presented in

Joint Rail Conferences 2015-2017 as Automatic method for detecting and categorizing

train car wheel and bearing defects, Detection of sliding wheels and hot bearings using

wayside thermal cameras and Sensor Fusion of Wayside Visible and Thermal Im-

agery for Rail Car Wheel and Bearing Damage Detection. This work was done under

supervision of my advisor Dr. Timothy C. Havens, as well as Dr. Pasi Lautala. The

algorithm was designed and developed by myself and the wheel thermal flow model
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was simulated by Dr. Ezequiel Medici and Mr. James Davis.

Chapter 3 presents my research work for UAV pose estimation, which was previously

published in the ASME Journal of Dynamic Systems, Measurement, and Control

as Heterogeneous Multi-Sensor Fusion for Mobile Platform 3D Pose Estimation and

IEEE SENSORS as Sensor fused three-dimensional localization using IMU, camera

and LiDAR. The original idea of this work was proposed by my advisor Dr. Timothy

C. Havens and design and implementation of the algorithm was done by myself. Data

collection was done by Mr. Joshua Manela and myself.

Chapter 4 is an extension of the pose estimation method in Chapter 3. This chapter

introduces a novel method to optimize and improve the accuracy of the UAV pose es-

timation. This work is submitted to the Elsevier journal of Robotics and Autonomous

System as Fuzzy Adaptive Extended Kalman Filter for Robot 3D Pose Estimation and

currently is under review. The research topic was identified by me and as the first

author I designed and implemented the algorithm under supervision of Dr. Timothy

C. Havens.

Chapter 5 summarizes and concludes my Ph.D. program research work and proposes

potential future work in this area.
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Abstract

Sensor fusion is a process in which data from different sensors is combined to acquire

an output that cannot be obtained from individual sensors. This dissertation first

considers a 2D image level real world problem from rail industry and proposes a

novel solution using sensor fusion, then proceeds further to the more complicated 3D

problem of multi sensor fusion for UAV pose estimation.

One of the most important safety-related tasks in the rail industry is an early detection

of defective rolling stock components. Railway wheels and wheel bearings are two

components prone to damage due to their interactions with the brakes and railway

track, which makes them a high priority when rail industry investigates improvements

to current detection processes. The main contribution of this dissertation in this area

is development of a computer vision method for automatically detecting the defective

wheels that can potentially become a replacement for the current manual inspection

procedure. The algorithm fuses images taken by wayside thermal and vision cameras

and uses the outcome for the wheel defect detection. As a byproduct, the process

will also include a method for detecting hot bearings from the same images. We

evaluate our algorithm using simulated and real data images from UPRR in North

America and it will be shown in this dissertation that using sensor fusion techniques

the accuracy of the malfunction detection can be improved.

xxv



After the 2D application, the more complicated 3D application is addressed. Precise,

robust and consistent localization is an important subject in many areas of science

such as vision-based control, path planning, and SLAM. Each of different sensors

employed to estimate the pose have their strengths and weaknesses. Sensor fusion is

a known approach that combines the data measured by different sensors to achieve a

more accurate or complete pose estimation and to cope with sensor outages. In this

dissertation, a new approach to 3D pose estimation for a UAV in an unknown GPS-

denied environment is presented. The proposed algorithm fuses the data from an IMU,

a camera, and a 2D LiDAR to achieve accurate localization. Among the employed

sensors, LiDAR has not received proper attention in the past; mostly because a

2D LiDAR can only provide pose estimation in its scanning plane and thus it cannot

obtain full pose estimation in a 3D environment. A novel method is introduced in this

research that enables us to employ a 2D LiDAR to improve the full 3D pose estimation

accuracy acquired from an IMU and a camera. To the best of our knowledge 2D

LiDAR has never been employed for 3D localization without a prior map and it is

shown in this dissertation that our method can significantly improve the precision

of the localization algorithm. The proposed approach is evaluated and justified by

simulation and real world experiments.
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Chapter 1

Introduction

In today’s world, a variety of data are provided by different sources. Sensors are

widely used to collect all kinds of information from the environment. The application

of sensors varies from common home appliances utilization, cameras and cell phones to

medical, industrial and military applications. Nevertheless, in numerous applications,

the information acquired only by one single sensor is not complete, accurate or robust

enough for be relied on. Sensitive decisions might be taken based on the sensory data

and there is a significant need to introduce methods to overcome their flaws. Sensor

manufacturing technology advances every day and sensors become more and more

advanced and accurate, however, for variety of applications one single sensor is yet

not enough. Hence, a very common solution to overcome this problem and obtain

the desired result is to employ several sensors instead of one and use sensor fusion

1



techniques to generate more reliable results.

Sensor fusion is the process of combining the information obtained by different sensors

to compute an output better than what could be obtained by every single sensor. The

fusion can be done at different levels: raw data, feature level or decision level. The

choice of the method depends on the application, computational power, etc.

The complexity of the fusion algorithm depends on the dimensionality of the data. As

the dimensionality of the data increases, the level of the complexity of the algorithm

increases accordingly. The desired output can be as simple as a scalar such as a

voltage or it might be a high dimensional vector. This dissertation first focuses

on a two dimensional image fusion case, which then is followed by a complicated

challenging three dimensional scenario of UAV pose estimation. In the rest of this

chapter, the two cases are briefly introduced and then in the following chapters they

will be discussed in detail.

1.1 Two dimensional sensor fusion for image pro-

cessing

The demand for better utilization of rail network capacity is increasing every day.

Faster, more reliable and more efficient inspection of railroad rolling stock can help

2



increase both its utilization and reliability. Wheels form the contact point between

rolling stock and track and as such are critical elements in transferring tons of loads

from the train to the track. Any defect in the wheels can rapidly grow to critical size.

Especially since many defects such as flat spots worsen gradually, early detection is

the best way to prevent potentially disastrous outcomes. These all describe why the

industry desire for automatic defect detection is growing so fast.

The trend to employ wayside monitoring systems and automatic defect detection is

increasing. Inspection equipment such as WIMs (Wheel Impact Monitors), wheel

profile detectors, HBDs (Hot Box Detectors) and acoustic detection systems [7] are

installed on or next to the track and as the train passes they collect data and provide

warnings if anomalies exceeding tolerances are found. Among these inspection devices

are thermal and visible spectrum cameras. In our papers [22, 23] we introduced

methods that could automatically detect the wheel and bearing defects from the

thermal imagery. The only information existing in the thermal imagery is the pixel

temperature and, therefore, defects that have distinctive thermal patterns can be

reliably detected. Nevertheless, the lack of any structural or color data results in

poor segmentation outcome. On the other hand, visible spectrum cameras can provide

texture and structural information as well as color which can be very helpful in image

segmentation. Thus, while some types of defects are visible to inspectors in the

thermal imagery, having the visible spectrum imagery at the same time can help

make the defect defection procedure automatic by contributing to the wheel and

3



bearing detection. This is discussed later in this dissertation.

Even though vision camera images provide us with a variety of information, they

have several limitations. Unlike thermal cameras, visual spectrum cameras do not

provide any information about temperature. Also in certain conditions, such as night

time when there is poor lighting, limited visual information can be obtained. This

concludes that if there is a method to combine thermal and visual spectrum data,

more informative images will be acquired that can be used effectively for wheel and

bearing defect detection algorithms. Each of the thermal and vision cameras sensors

has its strength and weaknesses and image fusion can be beneficial to take advantage

of both cameras capabilities and compensate for their deficiencies.

In the work presented in this dissertation an important step of the wheel and bearing

defect detection method is to automatically detect and segment the wheel and bearing.

The error in this step is a big source of failure in the defect detection [22, 23]. In

this work, the goal is to implement a wheel and bearing defect detection from the

thermal imagery and improve the method’s accuracy by fusing the thermal and vision

camera images and employing the fused image as the input of the wheel and bearing

detection algorithm.

There are limited examples of fusing thermal and vision camera images in the past for

applications such as person detection [83]. However, to the best of our knowledge, this

is the first time that train wheel and bearing defects are detected by taking advantage

4



of fusion methods. We also believe that similar information fusion techniques could

be considered for other sensor-based applications in the rail industry.

In Chapter 2 we first discuss our automatic detection and segmentation method solely

based on thermal imagery. This algorithm identifies the wheel and bearing portion

of the image. Then we develop a method, using Histogram of Oriented Gradients to

extract features of these regions. These feature descriptors are later employed by a

Support Vector Machine to build a fast classifier with a good detection rate, which

can detect abnormalities in the wheel. At the end, we train the algorithm using

simulated images of sliding wheels and test it on several thermal images collected in

a revenue service by Union Pacific Railroad (UPRR) in North America. Since the

wheel and bearing segmentation is identified as a significant source of error, a sensor

fusion based algorithm is proposed and we show that the algorithm can be improved

by fusing thermal and visual imagery.

1.2 Three dimensional sensor fusion for UAV pose

estimation

Precise, robust and consistent localization of a moving platform such as a robot is

a necessary task for many applications, e.g., robot navigation control, environment

mapping, SLAM, autonomous vehicle and even medical applications such as robotic
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surgery. Pose estimation is usually done by collecting the data obtained from several

sensors such as IMU, GPS, and camera mounted on the object/platform and fusing

the acquired information. Each of these sensors has their strengths and weaknesses.

Sensor fusion is a known approach that combines the data measured by different

sensors to achieve a more accurate or complete pose estimation and to cope with

sensor outages.

In this dissertation, a 3D pose estimation algorithm is presented for a UAV in an

unknown GPS-denied environment. Assuming that the robot is moving in a three-

dimensional (3D) world, its location is fully defined by six degrees-of-freedom (6DOF):

three Euler angles and three position coordinates. Some 3D sensors, such as IMUs and

cameras, have been widely used for 3D localization. Yet, there are other sensors, like

2D LiDARs, which can give a very precise estimation in a 2D plane but they have not

been employed for 3D estimation since the sensor is unable to obtain the full 6DOF.

In Chapter 3 of this dissertation an algorithm is proposed that fuses the data from an

IMU, a camera, and a 2D LiDAR using EKF to achieve accurate localization in the

unknown environment. No prior map of the environment is provided and the moving

platform will estimate its position only by using the perception obtained from the

sensory data.

Among the employed sensors, LiDAR has not received proper attention in the past;

this is mostly because a 2D LiDAR can only provide pose estimation in its scanning
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plane and thus it cannot obtain a full pose estimation in a 3D environment. In

this work, a novel method is introduced that employs a 2D LiDAR to improve the

full 3D pose estimation accuracy acquired from an IMU and a camera, and it is

shown that this method can significantly improve the precision of the localization

algorithm. The proposed approach is evaluated and justified by simulation and real

world experiments.

Despite the 3D trajectory of the robot considered in this work, there can be a con-

siderable amount of the time in which the robot almost moves on a plane during the

time interval between the two sensor readings; e.g., a ground vehicle moving on a flat

surface or a drone flying at high altitude to collect visual data. This was the motiva-

tion for Chapter 4 of this dissertation, which proposes a novel method using a fuzzy

inference system to further improve the estimated pose obtained in Chapter 3. The

method determines the trajectory of the robot and the sensor reliability during the

time interval between two readings, and based on this information defines the weight

of the 2D LiDAR sensor in the final fused pose by adjusting Extended Kalman Filter

parameters. Simulation and real world experiments show that the pose estimation

error can be significantly decreased using this proposed method.
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Chapter 2

Detection of Train Car Sliding

Wheels and Hot Bearings Using

Wayside Thermal and Visual

Cameras

2.1 Introduction

As the demand for rail transportation capacity and speed grows, there is an increasing

trend toward higher productivity and efficiency in the rail industry. Both railroad
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track and rolling stock have rigorous inspection requirements to maintain the safety of

the network. Even then, 84% of all the rolling stock-related accidents in 23 countries

are confirmed to be caused by wheel set or bogie defects [74]. According to Liu et

al. [49], bearing failure and broken wheels are the third and fourth major cause of

freight train derailments on main tracks in North America. The authors also note

that these derailment causes are most prevalent at speeds above 40 kmh (25 mph),

exposing the rail industry to extensive damages from each occurrence.

Current inspection methods of rolling stock components include both automated and

visual systems, but the industry is increasingly moving toward automatic detector

and performance based rolling stock maintenance to improve efficiency and to reduce

costs and reliance on human interpretation. Wayside monitoring systems are most

commonly used for automated rolling stock inspection processes [61]. Inspection

equipment are installed at fixed locations in or next to the track, where the train

passes over the section. As the train rolls through the inspection station, different

inspection sensors collect the information on possible defects like hot bearings, hot

wheels, dragging equipment, and high, wide, or shifted loads. After inspecting a train,

modern wayside detectors will automatically report their findings by radio or wireless

connections [53].

Many defects such as flat spots worsen gradually. Therefore, a fast and early detection

of these defects can prevent further and more serious damage. Flat spots occur mainly
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as a result of violent braking, causing the wheel to lock up and slide on the rail while

the train is still moving, making detection process during such a braking event ideal.

There are also other less common reasons for a flat spot to occur, such as poorly

adjusted, frozen, or defective brakes and also contamination on the rail such as grease,

leaves, snow, and ice [39]. A flat spot induces great forces on both the rolling stock

and the track and can lead to fatigue damage and failure of various vehicle and track

components such as wheel sets, bearings, and rail ties [74]. In some cases, the damage

can even cause later derailment which is a serious concern for the rail industry. The

wheel-track interaction has been studied in several papers [3, 37, 43, 52] which describe

the importance of the effect of a defective wheel on the track. In addition to the safety

considerations, this flat spots cause an unpleasant noise, reducing passenger comfort

and disturbing people in adjacent properties. Thus, an online automatic wheel defect

detection system, which monitors the wheel condition and detects sliding wheels at an

early stage, can help the maintenance to be scheduled more proactively, improving

safety and reducing operational disruptions. We will discuss some of the existing

methods to detect these type of defects and then move on to our proposed method.

2.2 Hypothesis and Research Methodology

The process of the railway wheel sliding on the rail heats up the steel wheel, which

can be observed and potentially detected in thermal images. We hypothesize that
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the heat pattern generated from a sliding wheel can be automatically detected in the

thermal imagery, making it a noteworthy technology for sliding wheel detection. In

this work, we will identify the heat pattern to detect hot spots/sliding wheels and

also to detect the hot bearing, another common defect of wheel assembly. The basic

procedure for our proposed automatic wheel defect monitoring method is as follows:

1. Acquire a labeled data set with thermal images of defective and normal train

wheels.

2. Partition the available data set into a training set to train the proposed algo-

rithm, and a test set to evaluate its operation.

3. Segment the wheel part of all the images in both training and test sets.

4. Extract the wheel features of both training and test sets.

5. Train the wheel classifier using feature descriptors extracted from the training

set.

6. Evaluate resulting classifier on the test data set.

Furthermore, the procedure for automatic hot bearing detection method is as follows:

1. Segment the bearing part of the thermal images.

2. Calculate the mean intensity/temperature of the bearings.
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Figure 2.1: Automatic wheel and bearing defect detection block diagram

3. Detect hot bearings based on a temperature threshold.

The rest of this chapter is organized as follows. We first briefly review the previous

work in this field and then will go through our proposed algorithm steps in details

(Fig. 2.1). Each phase will be described in the following sections. We then complete

the chapter by demonstrating our proposed automated monitoring method on a col-

lection of simulated images and real thermal imagery taken on several trains on a

Union Pacific Railroad (UPPR)1.

2.3 Previous Work

Previous work that focuses on automatic wheel defect detection includes different

techniques, such as acoustic, optical, thermal, and laser based detection technologies

1A North American class 1 freight railroad
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[8].

One way to detect flat spots and hot bearings is using sound-based (acoustic) detec-

tion. This method is based on the fact that defective wheels and bearings produce

vibration [8, 20]. The work of Papaelias et al. [61] is an example of this method, in

which the authors implement an integration of acoustic emission and vibration anal-

ysis for on-board evaluation of bearings and wheels. The challenge with this method

is that the measured acoustic signal might contain the surrounding noise, limiting the

method accuracy or increasing implementation cost to remove the noise.

Another approach uses vision cameras that are installed as a wayside monitoring

system, but wheel failures are not always visually detectable. This makes visual

images by themselves insufficient for detecting certain wheel defects. According to

Asplund et al. [6], only half of all wheels with a force peak over 400kN are visually

seen as damaged wheels; the American Association of Railroads (AAR) recommends

that a wheel with peak impact force of 222.41-226.89kN due to a single flat, should

be replaced [74]. Visual cameras can be useful for detecting other types of defects

which are visible in the images. Li et al., employed vision cameras for automatic

wheel bearing bolt defect detection [47]. In contrast to the wheel surface which is our

study in this dissertation, bolts are visible in the vision camera image and thus the

necessary information can be acquired using the camera.

Measurement of wheel profile can also be helpful for detecting abnormalities. Wheel
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profile detectors employ digital images to determine the profile of the tread while in

service and then compare it to the standard profile [8]. Examples of a wheel profile

case study using laser scanning are presented by Asplund et al. [5, 6]. In these papers,

the authors study the Wheel Profile Monitoring System (WPMS) on a track section

in Sweden in order to detect wheel-related failures.

An alternative well studied procedure to detect a wheel flat is to measure the dynamic

force or acceleration of the track under the wheel [13]. This method is known as

Wild Impact Load Detector (WILD) and can be used as a predictive and proactive

maintenance system [58]. In a related work [74], UI Alam et al. went one step further,

studying the impact of multiple wheel flats by measuring the acceleration of the wheel

set.

One of the most common methods to detect hot bearings is employing hot box de-

tectors [8]. Hot box detectors work based on the principle that an axle bearing will

emit a large amount of heat when it is close to failing.

While there is no question that the currently available methods have been successful

in identifying sliding wheel/flat spot and bearing defects, the continuing interest by

the industry toward alternative technologies reveals that there are still opportunities

for development. For example, one of the challenges with acoustic and hot box

detectors in identifying sliding wheels is their incapability to reliably detect uneven

temperature distributions within the wheel. This has created an interest among
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industry to investigate the use of thermal cameras as an alternative solution for

detection. Hence, in this dissertation we explore how the generated heat pattern

from a sliding wheel can be automatically detected using a thermal camera. We also

demonstrate how the same camera can be used simultaneously to identify the hot

bearings. Our results show that this method has much promise for effective detection

of these type of defects.

2.4 Thermal Image Segmentation (Pre-

Processing)

A few samples of the thermal images we are working with are shown in Fig. 2.2.

Furthermore, several examples of sliding wheels are demonstrated in Fig. 2.3. Com-

paring the images of normal wheels and the defective ones show that sliding wheels

possess a distinctive heat pattern at the wheel-track contact point. In the following

sections, we will explain our proposed algorithm for detecting this heat pattern in the

damaged wheels.
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Figure 2.2: Examples of normal train wheel thermal images taken by way-
side thermal imaging system

Figure 2.3: Examples of anomalous train wheel thermal images taken by
wayside thermal imaging system

2.4.1 Automatic wheel detection and segmentation

The first step of algorithm is to segment the wheel portion of the image from the

suspension hardware in the thermal image. As one can see in Fig. 2.2 and 2.3 , in

addition to the wheel, the image may contain hardware components of the train as

well as the track, which play no role in our investigation process and might interfere

with the sliding wheel detection algorithm. As these images show, the wheel can be

partially to almost fully occluded by suspension hardware. Hence, our algorithm must
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be flexible and effective at detecting the wheel portion of the image automatically. If

the thermal image has been captured while the wheel was sliding, this signifies the hot

spot is located at the contact point of the wheel and the track and this part is always

visible in the images. It is also possible that the wheel has rotated after sliding, and

the hot spot is somewhere else along the wheel. It might even be occluded by the

suspension hardware in the thermal image. Nevertheless, as long as the hot spot is

visible in the image, it can potentially be detected. In order to locate this hot area

in the image, first we need to recognize the wheel in the thermal image.

The train wheel is originally in the shape of a circle, but because of the combined effect

of the motion of the train and the rolling shutter of the imager, there is skewness in the

shape of the wheel and the wheel appears as an ellipse in the image. To automatically

detect the elliptical portion of the image associated with the wheel, we employ the

Hough Transform (HT) [70]. The HT is a feature extraction method that is widely

used in image processing. Originally, this method was used to extract lines in an

image, but it can be extended to extract more complicated and arbitrary shapes, e.g.,

circles or ellipses. In this work, we will use the extended version of the transform to

detect the elliptical wheel in thermal imagery. The parametric equation of an ellipse

is

x2 + p1xy + p2y
2 + p3x+ p4y + p5 = 0, (2.1)

where p1, p2, p3, p4 and p5 determine the shape and the location of the ellipse. Since
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the ellipse is defined by five parameters according to (2.1), by identifying five indepen-

dent points on the ellipse, we can calculate the parameters. Following the HT method,

first five independent points in the image are selected, and the ellipse consisting of

these points is found. This process is done for all the points/pixels in the thermal

image. Then, every ellipse receives votes from all the points located on its perime-

ter. The summation of the acquired votes for each ellipse determines how strong this

ellipse is. In other words, the ellipse in the image that has the most points located

on its perimeter will be chosen. In this approach, we are actually mapping the xy

coordinates to a five dimensional space, using a five dimensional accumulator for the

HT. If we choose to do an exhaustive search, the order of complexity employing this

method will be O(n5). Therefore, finding an ellipse using the HT will be expensive

in terms of memory usage and computation time. To overcome the complexity prob-

lem, we use a Canny edge detector [14] to reduce the number of pixels investigated,

reducing the processing cost. We first apply the Canny edge detector to the wheel

thermal image to obtain a binary image consisting of only edges; then, we use the HT

to detect the train wheel in the image. To speed up the process even more, we use the

Randomized Hough Transform (RHT) [9]. In RHT, Hough Transform is applied to

a random sub-sample of all the image pixels, instead of all possible pixels. Assuming

that there are enough wheel edge pixels in the binary image, the HT still should be

able to consistently detect the wheel part.

There are several ways to mathematically define an ellipse. As mentioned before, five
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independent parameters should be determined. In this chapter, we define the ellipse

by the following parameters:

† Center of ellipse (x and y coordinates),

† Orientation of ellipse which is defined as its angle with x axis,

† Length of major axis of ellipse,

† Length of minor axis of ellipse.

We follow the method introduced by Xie et al. [77] to detect the wheel. For each pair

of image pixels (x1, y1) and (x2, y2), we assume that these points are two vertices on

the major axis of an ellipse, then we can calculate the following parameters for the

ellipse:

x0 = (xi + xj)/2, (2.2a)

y0 = (yi + yj)/2, (2.2b)

a =
√

(xi − xj)2 + (yi − yj)2/2, (2.2c)

α = atan[(yj − yi)/(xj − xi)]. (2.2d)

In the above equations, (x0, y0) is the center of the ellipse, a is half length of the

major axis, and α is the orientation. As Fig. 2.4 illustrates, the minor axis can be
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Figure 2.4: Ellipse geometry

calculated as

b =
√

(a2d2(sin(φ))2)/(a2 − d2(cos(φ))2), (2.3)

where b is half length of the minor axis, cos(φ) = (a2 + d2 − f 2)/(2ad), and d is the

distance between the point (x, y) on the ellipse and the center of ellipse. Accordingly,

if we have (x1, y1) and (x2, y2), we can calculate all the ellipse parameters except for

the minor axis. Therefore, we use the HT to vote on the half length of the minor

axis. This way, a one-dimensional accumulator is enough to detect the ellipse and we

output the parameters for the best ellipse found in the thermal image [9], i.e., the

ellipse with the maximum number of votes. This procedure of finding the elliptical

wheel and subsequent bearing detection and extraction is illustrated in Fig. 2.5.
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(a) Original thermal image (b) Wheel outline identification

(c) Wheel region segmentation (d) Bearing outline identification

(e) Extracted wheel region (f) Extracted bearing region

Figure 2.5: Image segmentation of wheel and bearing regions
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2.4.2 Automatic Bearing Detection and Segmentation

In addition to abnormal heat pattern generated by the sliding wheel, a hot bearing

may also causes elevated heat pattern in the images. To differentiate between these

two causes, it is necessary to separate the bearing portion from the overall image,

enabling the remainder of the image to be used for sliding wheel identification. Once

the bearing portion has been identified and separated, its heat pattern can also be

used at an indication of potential faulty (hot) bearing.

Similar to a wheel, because of the motion effect in the image, the bearing is also seen

as an ellipse in the image. Therefore, to find the bearing, we apply the HT to the

extracted wheel part and detect the bearing as a separate part. The procedure is

analogous to wheel detection, explained in the previous section. As a consequence

of train movement, there is a motion blur effect which can be observed primarily at

the edges. Because of this blurriness, for the purpose of wheel heat pattern analysis,

the bearing should be removed from the wheel image with a safety margin, which

is bigger than the detected bearing (see Fig. 2.5). On the other hand, for the hot

bearing detection algorithm, this safety margin is unnecessary and in fact the bearing

should not include any wheel part. Therefore, in order to detect hot bearing, we have

to segment the detected bearing without any margin.
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2.5 Automatic sliding wheel detection

2.5.1 Feature extraction using Histogram of Oriented Gra-

dients (HOG)

After wheel and bearing extraction, the corresponding segmented parts of the thermal

image are ready for further analysis. The first step after pre-processing is to extract

image features with which we can train our algorithm. Image features must be chosen

in a way that a defective wheel can be distinguished from a normal wheel. Our

image set is a collection of thermal camera imagery, which does not contain any

distinguishable texture. This means the only information can be obtained from the

images is pixels temperature. In thermal imagery, the temperature is represented as

pixel intensities. Hence, we need to identify local heat pattern of the sliding wheels,

which in our data set can be observed at the wheel-track contact point. Fig.2.3

illustrates this pattern on the sliding wheel.

We have to employ feature descriptors that can capture the hot spot pattern. In order

to do this task, we use the Histogram of Oriented Gradients (HOG) feature. HOG

is a feature descriptor which is widely used in computer vision and image processing

to detect object in imagery. HOG decomposes an image into square cells of a given
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size, then it counts occurrences of intensity gradient orientation in localized portions

of the image [68]. It has been widely accepted as one of the best features to capture

local shape information about objects in imagery.

The essential thought behind the HOG descriptors is that local pattern within an im-

age can be described by the distribution of intensity gradients or edge directions. The

implementation of these descriptors can be achieved by dividing the image into small

connected regions, called cells, and for each cell compiling a histogram of gradient

directions or edge orientations for the pixels within each cell. The HOG descriptor

operates on localized cells; therefore is has the advantage that upholds invariance to

geometric and photometric transformations, except for object orientation which is

not an issue in our work. To obtain HOG feature descriptor, there are four main

steps which should be taken:

1. Gradient computation: Calculate the gradient values.

2. Orientation binning: Create the cell histograms.

3. Descriptor blocks: Group the cells together into larger blocks.

4. Block normalization: Normalize the gradient strengths.

The implementation of HOG is illustrated in Fig. 2.6. As it can be seen in the figure,

by applying HOG to an image, we will obtain a histogram of its intensity gradient
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Figure 2.6: Histogram of Oriented Gradients (HOG) algorithm

Figure 2.7: Visualization of HOG feature descriptors of normal train
wheels. The top row visualizes HOG features on the wheel thermal im-
ages and the bottom row is HOG visualizations of the same thermal images
without the wheel on the background

orientations.

In this research work, first we segment a window in the thermal image, which includes

the wheel. Since we detected the wheel portion in the pre-processing stage, we know

all the parameters needed to locate the wheel in the image. Thus, the position of

the window can be chosen in a way that contains the wheel. The original image

size is 240 × 320 pixels and the area of interest is divided into 8 × 8 pixels regions

subsequently. Each of these pixel regions is called a cell. The smaller the cell size

is, the more details it captures. We examined different cell sizes and for the purpose

of this research work, 8 × 8 pixels is the appropriate cell size to capture the desired
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Figure 2.8: Visualization of HOG feature descriptors of train wheels. The
top rows visualizes HOG features on the wheel thermal images and the bot-
tom row is HOG visualizations of the same thermal images without the
wheel on the background. In the bottom row, the areas inside the red cir-
cles demonstrate the feature descriptors of the contact point of the sliding
wheels.

features. Next, for each cell we calculate a one-dimensional histogram of gradient

orientations over pixels in the cell. These histograms capture the local heat pattern

properties. The gradient at each pixel is discretized, and then each pixel votes for the

orientation with a weight which depends on the magnitude of its gradient. Finally,

the histogram of each cell is normalized with respect to the gradient energy in a

neighborhood around it. The HOG features for three normal and three sliding wheels

are illustrated in Fig. 2.7 and 2.8 accordingly. The features are shown on the thermal

image and without the image at the background. It can be visually seen that the

orientation pattern of HOG descriptors around the hot spot, which is shown with a

circle, is different from the same part in a normal wheel.
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2.5.2 Classification and sliding wheel detection with Support

Vector Machine (SVM)

The HOG descriptors extracted from the thermal images provide a feature set by

which we can potentially distinguish defective wheels from normal wheels. After

acquiring the feature descriptors, we train a Support Vector Machine (SVM) classifier

to detect the sliding wheel. SVM is a supervised learning method, which can find a

decision boundary between two classes based on their feature data. Assume that we

have a training set D which is defined as

D = {(xi, yi))|xi ∈ Rp, yi ∈ {−1, 1}}Ni=1, (2.4)

where yi is the label of feature vector xi (for example yi = +1 indicates a normal

wheel and yi = −1 indicates a defective wheel), p is the number of features in the

vector xi and n is the number of data points in the training set. We want to find

the optimal hyper plane which separates the data labeled as yi = +1 from the ones

labeled as yi = −1. SVM is a method by which an optimal decision function can be

learned from training data D. This is illustrated in Fig. 2.9.

In our work, the two classes are normal and sliding wheels and our data set consists of

a set of simulated thermal images and a set of real images taken by a wayside thermal
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Figure 2.9: Support Vector Machine (SVM) for linearly separable data
points

camera on the UPRR. The inputs to SVM are the HOG feature descriptors. The SVM

uses the feature descriptors in the training data to learn a detection algorithm that

can be applied to classify incoming wheels as defective or not. Depending on the wheel

damage level, different approaches should be taken after detecting a sliding wheel.

Hence, it can be helpful if the damage level is also determined. After detecting the

defective wheel, it can be further categorized into different classes, which determine

the level and severity of the damage. We call this procedure defect clustering and

it is done based on the size and number of flat spots. In our previous work [25],

we developed and introduced such algorithm that can be applied to the detected

damaged wheel images to estimate the damage level.
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2.6 Automatic Hot Bearing Detection

As mentioned before, the bearing region of the image is automatically detected by

applying the HT to the detected wheel. To calculate the bearing temperature, we do

not use any safety margin while segmenting the bearing. Instead, we use exactly the

bearing pixels (see Fig. 2.5). Next, we calculate the mean intensity of the bearing,

which has a direct relation with the bearing mean temperature. By having the mean

intensity of the bearing, its mean temperature can be easily calculated. A threshold,

based on the maximum normal bearing temperature/intensity should be set and those

bearings that have a mean temperature/intensity above this threshold are labeled as

hot bearings. The intensity distribution of the bearings of the UPRR data set and a

hypothetical threshold for hot bearing are illustrated in Fig. 2.10. As the actual tem-

peratures were not provided by the UPRR and the primary objective of the research

was on sliding wheel identification, we didn’t test the accuracy of bearing detection

procedure, but rather the intensity values of the image data set to demonstrate the

idea.
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Figure 2.10: Bearing intensity distribution for the UPRR data set

2.7 Implementation and Results

To evaluate our proposed algorithm, we applied it to a set of simulated and real

thermal images. Creation of simulated images was necessary as our defective wheel

sample data set was not large enough by itself to train the model. To simulate train

wheel thermal images we used ANSYS [25] which employs Finite Element Method

(FEM) to generate the model. Our model simulates the wheel and bearing temper-

atures and identifies the temperature gradient at the wheel-track contact point. The

simulation parameters are explained in details in the next section.
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2.7.1 Simulating the wheel temperature profile using Finite

Element Method (FEM)

Temperature distribution on the railway wheel can be obtained through Finite El-

ement Method (FEM) simulations [64]. The advantage of using a numerical model

to generate the wheel temperature profile is the possibility to test the versatility of

our proposed technique under different heat flux scenarios [54]. A two dimensional,

static, steady state FEM model of the wheel and rail was developed using ANSYS

FEM software, where a set of heat sources and sinks are set to mimic the heat fluxes

of the wheel while in motion. For instance, the convection heat transfer coefficient

around a wheel moving at 80 km/h (50 mph) is approximately h = 56W/m2k [10].

Using this heat transfer coefficient, the resulting Biot number becomes Bi = 1.14.

A Biot number larger than one, indicates that the temperature gradient inside the

wheel is larger than between the wheel and the air. This is also indicative of a very

small thermal boundary layer [10]. To mimic this condition, the wheel surface is

modeled as a constant temperature source term with no convection to the air. The

outside temperature of the wheel is then set at 300 ◦C. This temperature is based on

experimental measurements of a train wheel overheating due to the contact friction

between the rotating wheel and the rail under normal wheel-rail interaction [21]. The

34



axle bearing is also set at the same temperature. Once the wheel experiences an ab-

normal behavior, inducing the wheel sliding on the rail instead of rotating, an extra

localized heat source will appear between the wheel and the rail. This overheating

due to sliding is modeled as an area on the wheel with a higher temperature. The

temperature of the hot spot is varied from 550 to 800 ◦C in our study and its size

is between 15 to 40 pixels. Additionally, ambient air temperature is modeled as 25

◦C and the rail temperature is modeled as 80 ◦C (Fig. 2.11). The wheel and the

rail are modeled with material properties of steel. The temperature profiles obtained

from the FEM simulations are then imported into MATLAB for post-processing. The

post-processing consists of uploading the FEM simulations files and converting the

temperature profiles into an image with similar image size and properties as those

obtained from thermal camera. Furthermore, the motion blur effect is simulated us-

ing MATLAB build in Wiener filter. In order to have more realistic images, Gaussian

noise is added to the them. This noise resembles the overall noise of the thermal

camera and environment. An example of the simulated thermal camera images is

shown in Fig. 2.12.

2.7.2 Training and testing the algorithm

We applied our proposed algorithm to a set of simulated data as well as a real data set

from the UPRR. The image size for both data sets is 240×320 pixels. We divided the
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Figure 2.11: Schematic diagram of the thermal FEM wheel-rail system

Figure 2.12: Simulated thermal wheel image using FEM

available simulated images into two sets of training and test and used the real data

set for the evaluation purpose only. The training data set consists of 200 simulated

images in which 100 of the images are normal train wheels and 100 of them are
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sliding wheels. The test data sets include a set of simulated images with 50 normal

wheels and 50 defective wheels and a set of real images with 400 and 8 normal and

sliding wheels, respectively. We first train our algorithm on the training set. After

the training phase, we apply the trained algorithm to the simulated test data set to

evaluate its performance on the simulated images. Then we apply it to the test set

consisting of real camera images, in order to evaluate the accuracy of the algorithm for

real world data. Table 3.4 outlines the application results of our proposed algorithm

to each of the test data sets separately, as well as the overall performance. As the

results show, the accuracy of our proposed algorithm for the simulated data set was

100% which means our algorithm was able to detect all the sliding wheels without

any false alarms. For the real data set, the algorithm was able to detect 88% of

all the defective wheels and it identified all the normal wheels correctly. The major

algorithm failure reason was wheel segmentation inaccuracy that can be mitigated

in the future through improvements in the wheel detection process. Despite the fact

that our algorithm was trained on a simple simulated model (which was built based

on only two parameters; size and temperature of the hot spot), it still resulted in

good accuracy for the real world data.
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Table 2.1
Wheel defect results on simulated and Union Pacific data set.

Data set Number

of normal

wheels in

the data set

Number of

defective

wheels in

the data set

Algorithm

precision

for normal

wheels (%)

Algorithm

precision

for defec-

tive wheels

(%)

Training set 100 100 - -
Simulated test set 50 50 100 100
Real test set 400 8 100 88
Total test set 450 58 100 98

2.8 Fusion of Visible and Thermal Imagery

Up to this point, all the information was extracted from the thermal imagery. How-

ever, every sensor has its strengths and weaknesses. There are some types of defects

that are not detectable at an early stage in the images taken by a vision camera

while these defects generate a distinctive heat pattern on the wheel or bearing that

is clearly visible in the thermal imagery. On the other hand, other damages might be

detectable from the visible spectrum image, but not necessarily have a distinguish-

able heat pattern in the thermal imagery. Since a thermal image is basically built

of solely temperature data, it excludes other critical information, such as texture or

color. This makes thermal and visible spectrum imagery complementary and suggests

that if the images are fused the result can benefit from the strengths of both sensors.

During the sliding wheel detection algorithm based on thermal imagery we noticed

that a significant source of error was the inaccurate wheel and bearing segmentation.
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Hence, if the accuracy of wheel detection can be improved, the overall design will

operate better. In this section, wavelet decomposition is employed to extract the

features of the thermal and vision imagery. Then the two images are merged based

on their decompositions and a fused image is composed. The resulting fused image

contains more information than each individual image and can be used as an input for

image-based wheel and bearing defect detection algorithms. To verify the proposed

method and to show an example of this application, it is demonstrated on a real data

set from a Union Pacific rail line to identify sliding wheels.

2.8.1 Image fusion approach

Fig. 2.13 shows samples of wheel images taken by a wayside visible spectrum camera.

It can be seen that as mentioned, visible spectrum imagery provides visual context

while the temperature information can be obtained from thermal imagery.

Figure 2.13: Examples of train wheel images taken by wayside visible
spectrum imaging system

A big challenge in the algorithm proposed earlier, is to detect and segment the wheel
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and bearing sections from the image. In this section we are trying to improve the

accuracy of the wheel and bearing extraction by fusing thermal and visual spectrum

imagery.

Image fusion can be classified to three major approaches based on the level that the

fusion takes place [83]:

1. Pixel level,

2. Feature level, and

3. Decision level.

The information is collected thorough different sensors from environment, then de-

pending on the fusion method different techniques are applied to obtain the desired

output. In the pixel level fusion, the thermal and visual images are directly combined

into one single image and then the subsequent processing techniques can be applied

to the fused image. If features of the input images are extracted first, and then are

combined into a single one, feature level fusion has been applied. In the decision level

fusion, first image features are extracted, decisions are made based on the feature

descriptions of each image and at the end the decisions are combined to a single one.

The block diagram of the three classes of image fusion is shown in Fig. 2.14 to clarify

the difference between the fusion levels.
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Figure 2.14: General block diagram of different fusion levels

Among the three approaches, pixel fusion level is probably most used in the literature

and the fusion happens at the lowest processing level. The method employed in this

dissertation is pixel level fusion in which we combine the thermal and vision camera

imagery into one image that contains more information than every single input image.

41



Different techniques can be applied to this final image to detect wheel and bearing

defects.

Some of the most common pixel level fusion methods are averaging techniques, princi-

ple component analysis (PCA) and Wavelet transform. More methods are mentioned

and compared in the paper by Aslantas et al. [4]. In this research, we will fuse train

car wheel thermal and vision imagery using a Wavelet transform and show that by

employing this method more informative images can be obtained. In addition, we

will also fuse the two images using a simple minimum pixel value in which the smaller

intensity value of the two images is chosen and show that in some applications, such

as the one in our work, even employing a simple method that does not need much

computation power can result in a fused image with noticeably more information than

a single image.

2.8.2 Wavelet transformation

According to Fourier theory, a signal (and an image which is its expansion to 2D)

can be represented as the sum of sines and cosines. As the Heisenberg uncertainty

principal expresses, time and frequency are complementary variables and the more

precisely one is determined, the less precisely the other one can be known. Fourier

transform has high frequency resolution and no time resolution. This is because the
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Fourier transform represents data as a sum of sine and cosine waves which are not

localized in time. Hence, Fourier transform is not the proper choice for the condition

where sudden changes are needed to be well localized.

Considering the type of images that are employed in this work and the defects that

should be detected, abrupt changes in contrast is a feature that we want to be able to

capture. The thermal imagery is basically only made of contrast changes and some

defects such as hot spots are detected through capturing sudden changes in contrast.

In a similar way, contrast changes in visual spectrum imagery can potentially represent

some type of image features. Thus, it is desirable to employ a method that can capture

abrupt changes in contrast in the image. This leads us to the Wavelet transform which

is similar to the Fourier transform, but it is well localized in time and frequency.

A wavelet is a wave form signal that has zero mean and exists only for a finite time

duration. There are different shapes of wavelets and one example is shown in Fig. 2.15.

A Wavelet transform has two important characteristics: scaling and shifting. Scal-

ing stretches or shrinks the signal in time. A stretched wavelet helps in capturing

the slowly varying changes in the image while a shrunken wavelet can capture the

abrupt changes. Shifting a Wavelet moves its center to the left or right so it can be

aligned with the feature that we are looking for. According to the image and specific

application, the appropriate wavelet should be chosen. More guidance about wavelet

analysis can be found in [72].
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Figure 2.15: Wavelet example

The original input images which are the images taken by visual spectrum and thermal

wayside camera are shown in Fig. 2.16(a) and 2.16(b), and the resulting output for the

two employed fusion methods of min and Wavelet are demonstrated in Fig. 2.16(c)

and 2.16(d), respectively.

The fused image shown in Fig. 2.16(c) is obtained by overlaying the two input im-

ages and choosing the minimum pixel intensity. The second fused image shown in

Fig. 2.16(d) is acquired by applying the wavelet fusion method. In this approach,

first wavelet decomposition of the two original images are obtained and then based

on these decomposition, the two images are merged [81]. In both cases it can be seen

that more details can be seen in the fused image than the original images.
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(a) Visual spectrum image (b) Thermal image

(c) Fused image using Min pixel value (d) Fused image using Wavelet

Figure 2.16: Image fusion using different methods

At this point the wheel and bearing detection and extraction procedure can be applied

to the fused image as illustrated in Fig. 2.17.

We applied the algorithm to a data set from Union Pacific (UP) railroad including

294 thermal and visual images. The data set did not contain any defective wheels,

so we evaluated the effect of image fusion on the wheel segmentation accuracy and

compared the results to the wheel segmentation of thermal imagery. The outputs

showed that the wheel segmentation was improved by over 30% using the fused images.

Considering that the wheel segmentation is the first and most challenging step of
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Figure 2.17: Detection and segmentation of wheel and bearing from fused
image

sliding wheel detection, we expect that the proposed fusion algorithm should result

in noticeable improvement in wheel and defect detection.

A similar conclusion can be made for the case of hot bearing detection. The hot

bearing detection only requires calculation of the mean temperature and comparison

with a given threshold. The bearings that exceeded the threshold are considered to

be hot. The output totally depends on the accuracy of the bearing extraction and

is not possible if the bearing section can not be detected accurately. The developed

method, improved the bearing segmentation accuracy in the given data set. It should

be noted that since bearing detection occurs following the wheel segmentation, precise

wheel extraction is important for bearing segmentation.
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2.9 Summary and Future Work

The objective of wayside detection systems for rolling stock is to identify failures

and inform the operators about the need to remove or repair the parts before they

cause more damage or an accident. To achieve this goal, fast and reliable defect

detection methods are necessary. This chapter introduced a novel automatic method

for detection of sliding wheels and hot bearings from thermal imagery. Our proposed

algorithm offers an alternative method for detecting sliding wheels and hot bearings,

one that can reliably identify uneven temperature distributions and defective bearings.

To evaluate the accuracy of our sliding wheel detection method, we applied the al-

gorithm to a set of simulated wheel images as well as real data obtained from the

UPRR. The results showed that it was able to detect 98% of the total number of

simulated and real world defective wheels in addition to identifying all the normal

wheels without any false alarm.

In addition to sliding wheel detection, it was realized that thermal imagery can be used

for hot bearing detection with little additional effort. Since the majority of our hot

bearing detection algorithm takes place in conjunction with the sliding wheel detection

procedure, the only additional effort to identify hot bearings in this approach includes

comparison of the calculated mean intensity/temperature with a set threshold.
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The objective was to find the optimum algorithm which is accurate for detecting

patterns indicative of a sliding wheel and at the same time, reasonable in terms of time

and memory needed for computational purposes. This was successfully done in the

research. Since the current project concentrated on sliding wheels, no emphasis was

placed on identifying defects outside the wheel/rail interface. However, our algorithm

can detect the flat spots at any other point of the wheel, as long as it is visible in the

thermal image. The next research step will apply the same method toward detecting

hot spots located throughout the rim and to remove the potential occlusion by the

car bogie components, two cameras will be installed in series to secure that a full

wheel rotation is visible. An important and difficult part of our algorithm is to

identify the wheel and bearing parts in the thermal imagery. Hence, a sensor fusion

method was introduced that provided accurate wheel and bearing segmentation in

wayside imagery to further improve the wheel and bearing defect detection. The

method was applied to a data set obtained on a real railroad and the result of the

wheel and segmentation on the fused images were compared with the segmentation

on the thermal imagery and it was shown that the accuracy was improved. Since the

wheel and bearing segmentation are the most challenging steps and the main source

of error in the sliding wheel and hot bearing algorithm, we expect fusing images to

help improve the precision of the defect detection algorithm.The specific sliding wheel

and hot bearing application were given as an example, but the use of the thermal

and visual spectrum image fusion method introduced in this chapter is not limited to
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these specific application.

Future process improvements for this part include additional steps of image pre-

processing with focus on noise cancellation and debluring to obtain better wheel and

bearing segmentation accuracy. In addition, fusing thermal imagery with visible-

spectrum imagery potentially can provide the ability to specify the location (car,

axle) of the defective wheel or bearing in addition to the benefit of detection. Fur-

thermore, a train wheel former history/profile can be fused with the result of the

wheel inspection algorithm for more accurate conclusions and possible wheel damage

prediction.
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Chapter 3

Heterogeneous Multi-Sensor

Fusion for Mobile Platform 3D

Pose Estimation

3.1 Introduction

Pose—position and orientation—estimation is a non-separable part of a variety of

applications from health condition monitoring [40] to robotics. Depending on the

application, the environment, the available platform and budget, etc., different sensors

with various capabilities might be chosen to collect the data. It is not always possible
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to use the most accurate or expensive sensor. Some sensors might not even be able

to operate in certain conditions. For example, GPS signal can be degraded or lost in

certain areas. These reasons altogether encourage researchers to employ methods to

fuse the information from different sensors with various characteristics to overcome

sensor deficiencies and achieve improved results. There are various algorithms to fuse

the data obtained from different sensors; an Extended Kalman filter (EKF), is among

the most common methods employed for this task.

Each of the sensors employed in this work has its strengths and weaknesses. An

inertial measurement units (IMU) is an accurate sensor; however, it is not reliable

over long time periods because it integrates the bias and its estimations drift over

the time, suffering from a cumulative error. A relatively good pose estimation can

be obtained from a 2D LiDAR. Nevertheless, since this type of LiDAR scans the

environment in a plane, it is only suitable for an environment with three degrees of

freedom (DOF), when two coordinates and an angle fully define the pose. In the 3D

world there are 6-DOF and therefore a full pose estimation can not be obtained from

a 2D LiDAR. A camera, on the other hand, can give all 6-DOF, but with a lower

accuracy especially along its focal axis. In terms of speed, an IMU is a fast sensor

with a high refresh rate, while a LiDAR and a camera are relatively slow.

In the rest of this chapter, we first review the previous work and then introduce our

proposed modular algorithm and compare its results with the state of the art.
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3.2 Previous Work

Recently, robot localization has seen great success and improvement in accuracy ac-

cording to both sensors employed and advances in algorithm development. There are

various works targeting the problem of localizing an object in a 3D environment from

different perspectives [11, 15, 16, 27, 33, 34, 55, 67]. While some methods might be

based on the information received from a single sensor, most of them employ sensor

fusion. Depending on the type of the available sensors and their characteristics, dif-

ferent approaches can be taken for the pose estimation. The previous literature in

this area can be discussed from the perspective of the environment of the work, fusion

method, and employed sensors.

From the environment of the work point of view, a significant question to be answered

is whether the vehicle is operating indoor or outdoor. This makes a noticeable differ-

ence, because unlike indoor, in outdoor environment GPS signal is available and more

often used. A common sensor fusion approach, which is widely used in the outdoor

environment, is IMU-GPS fusion. Despite the fact that IMUs are a very accurate

sensor, they cannot be trusted in the long term since they integrate bias and hence

accumulate error. GPS, on the other hand, gives an absolute measurement of the

position that is not as accurate as IMU measurements. In this area, sensor fusion

methods are either dedicated to pose estimation in GPS-available environment [11],
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or they operate based on the assumption that the GPS signal is available for the

majority of the time, and propose a method for the case that it is lost for a short

time [15]. As long as the GPS signal exists, the localization relies on the data coming

from the GPS as well as the IMU; if the GPS signal is lost, then the pose will be

obtained only from the IMU.

A magnetometer (or compass) can be employed to improve the orientation estimation.

However, magnetometers have poor accuracy during fast movement and in addition,

they cannot provide measurements for position estimation. Hence, they are often

employed along with GPS in outdoor localization allowing correction for both position

and orientation. A popular method of indoor localization is to employ IMU along with

another sensor such as a camera, as explained by Mirzaei et al. [55]. Their algorithm

uses an iterated EKF to fuse the IMU data with camera measurements of known

feature points on a target to find the transformation between the IMU and camera.

This method is also widely employed to estimate the 3D pose of a mobile vehicle

[17, 35]. Hesch et al. [33] also developed an observability analysis and consistency

improvement for this technique.

From the fusion method perspective, a large number of fusion algorithms employ

EKF. However, Unscented Kalman Filters (UKF) have been an alternative for EKF,

specifically when a first order linearization does not sufficiently describe the nonlinear

system. UKF is employed in [42] to perform a target-free calibration by estimating the
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position of a series of static landmarks in the environment. The complete state vector

includes the position of landmarks as well as the sensor-related measurements. It

should be mentioned that even though UKF is commonly known as an alternative for

EKF, it is not necessarily the preferred option. Choosing between the EKF and UKF

depends on the accuracy needed, computational overhead, and the noise level [46]. If

the sensor sampling rates are short enough (such as in our work), UKF performance

may not be superior to the EKF and for the case of limited computational power and

resources, EKF is a more appropriate choice. Often, if the the application is aiming

for real-time localization, EKF is employed. It has also been shown that noise has

a major effect on the performance of UKF, and its accuracy is significantly reduced

if SNR is low [73]. While it is true that a poor choice of the initial state of a EKF

can cause it to diverge, in a real UAV mission its initial state is usually accurately

known. Therefore, choosing EKF or UKF is an application dependent decision [30],

and for this work we will focus on the use of an EKF.

If there is no knowledge of the system model, or the system is too complicated such

that system modeling is very costly or difficult—e.g., a large network of sensors that

communicate with each other—there are fusion methods that rely on the sensors

characteristics rather than the system model itself. Fuzzy sensor fusion is an example

of this approach. For example, in [2, 31] the authors employ a multi-sensor fusion

using fuzzy techniques. Their proposed algorithms employ a weighted mean to obtain

the final estimation from different sensor readings and the aggregation weights are
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assigned based on the individual sensors’ accuracy and bandwidth. In approaches like

this, the sensors behavior must be known very well and they are usually employed

when the full system cannot be easily modeled.

In terms of the employed sensors, in addition to IMU, GPS and camera are the sensors

that are commonly used and LiDAR is also becoming more popular. A precise 3D

pose estimation usually can not be obtained from one camera, especially because it is

difficult to estimate the distance traveled along its focal axis. Therefore, stereoscopic

vision is broadly used when more than one camera is available and multiple images

can be obtained from different viewpoints. It has been shown that by using multiple

cameras, a better 3D pose estimation can be obtained. In [16], the authors suggest

a robust pose estimation method based on the data from an IMU and two cameras

embedded on an unmanned aerial vehicle (UAV). In [67], the authors employed two

stereo configurations using four cameras on a micro aerial vehicle (MAV) to imple-

ment an autonomous real-time navigation system. The hardware is configured such

that one stereo camera is facing forward for the purpose of simultaneous localization

and mapping (SLAM) and the other is facing downward for ground plane detection.

A 3D pose estimation is obtained from each stereo configuration and then they are

fused with IMU data using an EKF to improve the results.

Unlike cameras, 2D LiDAR has not been commonly used for 3D localization purposes.

The reason is that a 2D LiDAR can not give a full pose estimation in 3D environment.
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Nevertheless, having prior knowledge of the environment in the form of environment

features or object maps make it possible to employ a 2D LiDAR in a 3D environ-

ment to improve pose estimation [34]. For example, the authors of [82] employed

an inertial navigation system (INS) aided by a 2D LiDAR to localize a vehicle in a

3D environment. In this paper the authors assumed that certain plane features of

the environment have been previously mapped and can be compared to the LiDAR

measurement and use these mapped features to localize the LiDAR measurements.

While 3D scanning LiDARs are capable of estimation of a full 3D pose, usually

they have the drawback of being too expensive and bulky. However, a precise pose

estimation often can be acquired from a 3D LiDAR with the addition of an available

high-quality 3D map. As an alternative to a 3D LiDAR, it is also possible to employ

two perpendicular 2D LiDARs, one for the vertical axis and the other to cover the

horizontal axis to estimate 3D pose [27].

3D pose estimation from the fusion of IMU and camera is a well studied and developed

area of research. LiDAR scans have been employed for 2D pose estimation. However,

to the best of our knowledge, employing a 2D LiDAR with an IMU and camera in an

unknown environment has not received suitable attention. Hence, in this chapter, we

propose a method to accomplish this goal. To fuse the IMU and camera estimations,

we adapt the method introduced by Weiss and Siegwart [76]. In contrast to many

of the previous works, which include the visual features in the fusion algorithm, the
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algorithms proposed in [76] do not fuse features and rather treats the visual framework

as a black box which is able to output an unscaled pose estimate. The advantage of

this approach is that the algorithm becomes modular and can be widely applicable

to nearly any existing single sensor solution. Also, as we show, the sensor units

can be replaced by any other sensor(s), as long as the whole unit—i.e., sensor(s)

+ processing—can output a pose estimation and its uncertainty. This makes the

algorithm suitable for our purpose as we can add in a 2D LiDAR module. Weiss et

al. [76] use the EKF as the fusion tool to combine the results of the vision module with

IMU measurements. Similarly, we add in a 2D LiDAR module. Furthermore, since

the design of our fusion algorithm is modular, it is relatively easy to add a new sensor

unit later using the extra information to (ideally) have a better pose estimation; all

that is needed is a way to produce unscaled pose estimates from the sensor. The

block diagram of our proposed approach, compared to the commonly used standard

approach, is illustrated in Fig. 3.1.

3.3 Localization Algorithm

Before continuing the discussion, the employed axes and angles have to be defined.

As illustrated in Fig. 3.2, the z axis points up, the x axis points forward, and the y

axis points to the right with respect to the UAV body. The yaw (α) angle is defined

as a rotation about the z axis, pitch (β) as a rotation about the y axis, and roll (γ)
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(a) Standard approach

(b) Modular approach

Figure 3.1: Different sensor fusion approaches for pose estimation.

is a rotation about the x axis.

The idea is to employ the pose estimation from the camera and LiDAR, whenever

they are available, to correct the IMU pose estimation. As demonstrated in Fig. 3.1,

the modular approach introduced in [76] is used and each of the LiDAR and camera

sensor units along with their localization algorithm are treated as a black box which is
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Figure 3.2: UAV principal axes and orientation geometry. Forward is
indicated by the red dot.

able to output a pose estimation. The output of the camera sensor unit is a complete

3D pose while the LiDAR unit offers a 2D pose estimation in its local plane.

3.3.1 Sensor units

Camera sensor unit: The most widely used model for the camera is the pinhole

model. This model describes the relationship between the coordinates of a 3D point

and its projection onto the image plane of the camera. The mathematical equation

of the model is [57] 
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Figure 3.3: Pinhole camera model

in which, u and v are the point of interest coordinates in the image plane, X, Y

and Z are the same point coordinates in 3D world frame and ku and kv are the scale

factors along the axes of pixel coordinates [59]. u0 and v0 are the pixel coordinates

of the principal point and f is the focal length of the camera lens. The geometry of

the pinhole camera model is illustrated in Fig. 3.3.

The camera parameters are usually obtained from the standard calibration process

using a checker board [62]. In this paper, in order to achieve the pose estimation based

on camera images, a 1-Point RANSAC algorithm for EKF Filtering is employed based

on the work done by J. Civera et al. [19].

LiDAR sensor unit:LiDAR is an optical remote-sensing technology which measures
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Figure 3.4: Derivation of x and y coordinates from the LiDAR readings

the distance and angle from the sensor to an object, using a laser beam. The distance

between the sensor and the object is calculated by measuring the time interval between

an emitted laser pulse and reception of the reflected pulse. This technology is used

to create high resolution maps for different applications. One of its applications is

Simultaneous Localization and Mapping (SLAM) in which the goal is to construct a

map of unknown environment while simultaneously keeping track of the robot pose.

A 2D LiDAR, radially scans the environment in a plane. In order to obtain the

coordinates of each scanned point, the following equations are employed

x = dcosφ, y = dsinφ. (3.2)

in which d is the distance from LiDAR to the scanned point and φ is the beam angle.

The geometry for the equations (3.2) is illustrated in Fig. 3.4. It should be noted that

x and y are the coordinates of the scanned point in the local frame of the LiDAR and
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not with respect to the global reference frame. In order to find the global coordinates,

the local coordinates have to be transformed to the global frame.

There are different common methods such as Iterative Closest point (ICP) [65] for

estimating the pose, from LiDAR scan matching. In this paper we employ Chamfer

distance in order to mach the consecutive scans and calculate the sensor pose [60].

IMU model: An IMU is an electric device that measures the velocity, orientation,

and gravitational forces using a combination of data from accelerometers, gyroscopes,

and magnetometers. In this work, only the raw data from the accelerometer and

gyroscope are employed.

The 3-axis accelerometer measures the acceleration along each of the x, y, and z axes

in the IMU local frame, and the 3-axis gyroscope measures the angular velocities

related to each axis with respect to the global frame. To model the IMU, its bias and

noise should be considered. The noise n is assumed to be a zero-mean white Gaussian

random signal and the bias b is modeled as a random process. Therefore, the true

and the measured values for angular velocities and linear accelerations can be written

as

ωt = ωm − bω − nω, at = C(qt)(am − ba − na) + g, (3.3)

where the subscripts t and m denote the true and the measured values, respectively.

g is the gravity vector, qt is the quaternion equivalent of the true attitude, and C(qt)
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is the rotation matrix relevant to qt. In equations (3.3), nω and na represent the noise

of gyro and accelerometer and bω and ba denote the relevant biases. As mentioned,

these biases are random processes; their dynamics are modeled as

ḃω = nbω , ḃa = nba . (3.4)

As a result of these biases, IMU measurements tend to drift over time. Mitigating

this drift is accomplished by fusing this information with other sensor readings such

as camera or LiDAR.

3.3.2 Methodology Overview

An EKF was chosen as the fusion method, which linearizes the state about an estimate

of the current mean and covariance and assumes additive process and measurement

noises. The general formulation of the EKF is

xk = f(xk−1, uk−1) + ωk−1, zk = h(xk) + νk, (3.5)

where subscript k denotes the time step, ω and ν are the zero-mean Gaussian process

and observation noises with with covariances Q and R. In the rest of this chapter,

we will drop the subscript k for the noise covariances since it is assumed that they

are constant. In equation (3.5), u is the input control vector.
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In real applications, the functions f and h are usually nonlinear and can not be

applied to covariances directly. This problem is solved by taking the Jacobian of

these functions. The filter consists of two major steps: predict and update that can

be summarized as following.

Predict:

x̂k|k−1 = f(x̂k−1|k−1, uk−1), State estimate

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1, Covariance estimate

Update:

ỹk = zk − h(x̂k|k−1), Measurement residual

Sk = HkPk|k−1H
T
k +Rk, Innovation

Kk = Pk|k−1H
T
k S
−1
k , Kalman gain

x̂k|k = x̂k|k−1 +Kkỹk, Update state estimate

Pk|k = (I −KkHk)Pk|k−1, Update covariance estimate

where

Fk−1 =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk−1

, Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

.
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In this work, the state of the system is a 16-length vector which is represented by

x = [p{1×3} v{1×3} q{1×4} bω{1×3} ba{1×3}]
T .

It contains the position of the IMU p, with respect to the global frame, IMU linear

velocity v, and the quaternion q that represents the rotation of the IMU from the ref-

erence frame. The two remaining parameters in the filter state express the gyroscope

and accelerometer biases, bω and ba, along each axis.

3.3.3 Extended Kalman Filter (EKF)

Three sets of equations are discussed in this work: true, nominal, and error state

equations, with the true state being a composition of the nominal and error states.

The true state is decomposed into small and large signal with the large signal being

the nominal state and the small signal representing the error state. The nominal state

does not take into account the noise terms and other model imperfections. Therefore,

it accumulates error and as time passes, it drifts from the true state. These errors are

estimated and collected in the error states to correct the nominal states. The filter

correction happens at the arrival of information from the camera and LiDAR, which

arrives at a lower frequency than the IMU.

Employing quaternions for the attitude representation has the advantage of both
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computational simplicity and also Gimbal lock prevention. The hypothesis is that at

each time step, the change in the attitude is small enough that the four quaternion

values can be estimated by three numbers, θ = [α β γ], where δq ' [1 1
2
δθ]. This

property is later used in the EKF error calculation.

Considering the state vector, the three sets of EKF equations can be introduced as

following.

The true-state equations: The differential equations which govern the state of the

system are

ṗt = vt, (3.6a)

v̇t = at, (3.6b)

q̇t =
1

2
qt ⊗ ω̄t, (3.6c)

ḃω = nbω , ḃa = nba . (3.6d)

Subscript t represents the true values and ωt and at are defined in (3.3). Operator ⊗

represents the quaternion multiplication and ω̄t = [0 ωt]. Substituting the values of
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at and ωt from (3.3) yields the kinematic system

ṗt = vt, (3.7a)

v̇t = C(qt)(am − ba − na) + g, (3.7b)

q̇t =
1

2
qt ⊗ (ω̄m − b̄ω − n̄ω), (3.7c)

ḃωt = nbω , ḃat = nba , (3.7d)

where b̄ω = [0 bω] and n̄ω = [0 nω].

The nominal-state equations: To obtain the nominal state, the expectation of

equations (3.7a)–(3.7d) are taken, leading to

ṗ = v, (3.8a)

v̇ = C(q)(am − ba) + g, (3.8b)

q̇ =
1

2
q ⊗ (ω̄m − b̄ω), (3.8c)

ḃω = 0, ḃa = 0. (3.8d)

Since all noises are zero-mean Gaussian, by taking the expectation, these terms dis-

appear.

The error-state equations: Finally the last sets of equations are the linearized
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dynamics of the error-state.

δṗ = δv, (3.9a)

δv̇ = −C(q)[am − ba]×δθ − C(q)δba − na, (3.9b)

δθ̇ = −[ωm − bω]×δθ − δbω − nω, (3.9c)

δḃω = nbω , δḃa = nba . (3.9d)

These equations are derived from equations (3.7a)–(3.7d) based on the small signal

assumption [51]. The operator [.]× is the skew symmetric matrix

[V ]× ,


0 −vz −vy

vz 0 −vx

−vy vx 0

 . (3.10)

The data obtained from the sensors is not continuous, and thus, the next step is to

discretize the equations.
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3.3.3.1 Error estate discretization and state matrix initialization

The error states are defined as the difference between the estimated states and the

measured states and are shown using the notation

x̃ = [δp δv δθ δbω δba]
T . (3.11)

In other words, x̃ = xm − x̂, where xm is the measured state vector and x̂ is the

estimated one. In the error state vector, θ is the attitude error which is defined by

the error quaternion using the small angle assumption. This handles the quaternion in

its minimal representation and allows us to represent the uncertainty of the attitude

by a 3× 3 covariance matrix.

Since the data obtained from the sensors are not continuous, the equations must be

discretized. After discretization, the linearized error state equation can be summa-

rized as

˙̃x = Fdx̃+Gdn, (3.12)

70



where n is the noise vector n = [na nω nba nbω ]T and Fd and Gd are

Fd =



−bω̂c× −I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C(q̂)bâc× 03×3 03×3 −C(q̂) 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3 03×3


, (3.13a)

Gd =



−I3×3 03×3 03×3 03×3

03×3 I3×3 03×3 03×3

03×3 03×3 −C(q̂) 03×3

03×3 03×3 03×3 I3×3

03×3 I3×3 03×3 03×3


, (3.13b)

where 03×3 indicates a matrix of zeros and I3×3 indicates the identity matrix. The

discrete time covariance matrix can be derived as

Qd =

∫
∆t

FdGcQcG
T
c F

T
d dt, (3.14)
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where Qc is the continuous time system noise covariance matrix

Qc =



σ2
na

0 0 0

0 σ2
nba

0 0

0 0 σ2
nω

0

0 0 0 σ2
nbω


. (3.15)

Therefore, at the prediction step, before any measurement from the LiDAR or camera

arrives, the following steps should be taken in order:

1. Propagate the state variables using (3.8a)–(3.8d);

2. Calculate Fd and Qd according to (3.13a) and (3.14);

3. Compute the propagated state covariance matrix as Pk+1|k = FdPk|kF
T
d +Qd.

To update the state, the measurements from sensors other than the IMU are required,

which is discussed in the following section.

3.3.3.2 Measurement model

The measurement model includes models for two sensor units: the camera and the Li-

DAR. Each sensor unit is treated as a black box that can output a complete or partial
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pose estimation and a covariance matrix that indicates the measurement uncertainty.

The camera sensor unit can estimate a complete 3D pose estimation. However, the

employed LiDAR is a 2D scanner and is only able to output an estimation in its plane.

To fuse the LiDAR measurements with other sensor measurements, a full 3D pose

estimation is required. Our proposed solution to this problem is to use the latest EKF

estimation for the three state variables that are not given by the LiDAR estimation

in order to extend the LiDAR pose estimation and create a complete state. This will

result in a zero residual and accordingly no update of the filter state vector for those

elements that the LiDAR is unable to measure.

The following equations govern the position and attitude measurements from a sensor

unit,

p̂s = p̂+ C(q̂)Psi, q̂s = qsi ⊗ q̂, (3.16)

where p̂s and q̂s are the (camera/LiDAR) sensor unit estimations of the position

and orientation and Psi and qsi define the transformation between the IMU and the

sensor unit. The residuals p̃s = ps − p̂s and q̃s = qs ⊗ q̂−1
s are obtained by calculating

the difference between the measured and estimated pose. The measurement error

is defined as z̃ =

[
p̃s q̃s

]T
, and according to the EKF formulation, we know that
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z̃ = Hx̃. The state observation matrix [76] can be computed as

H =

[
Hp Hq

]T
, (3.17a)

Hp =

[
I3×3 03×3 −C(q̂)T bpsic× 03×3 03×3

]
, (3.17b)

Hq =

[
03×3 03×3 C(qsi) 03×3 03×3

]
. (3.17c)

Next, the innovation and the Kalman gain are calculated according to

S = HPHT +R, K = PHT/S, (3.18)

and then the state correction vector is obtained and the states can be updated as

ˆ̃x = Kz̃, x̂ = x̂+ ˆ̃x. (3.19)

Last, the error state covariance is updated according to

P = (I15×15 −KH)P (I15×15 −KH)T +KRKT . (3.20)
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3.4 Experimental Results

Synthetic and real world experiments were conducted to investigate the performance

of our proposed algorithm. The goal was to demonstrate that fusing the 2D pose

estimation from the LiDAR can improve the 3D pose estimation. These random

flights were designed to evaluate the pose estimation algorithms.

3.4.1 Simulated experiments

Using the mathematical model in 3.3 random UAV flight paths were generated in

MATLAB. These trajectories are shown in Fig. 3.5 and 3.6 as well as the true position

and orientation of the UAV for each simulated path.

The three sensors (IMU, camera and LiDAR) form a rigid body; therefore, the trans-

formation between them is constant. The variance values of simulated noise and bias

of the sensors are listed in Table 3.1 and it can be seen that the LiDAR unit esti-

mations are more accurate than the cameras, which matches the expected real-world

sensors. The LiDAR setup is assumed to be horizontal. This means when the UAV

body frame and the reference frame axis are aligned (e.g, at the beginning of the

experiment) the LiDAR is able to measure the position in the xy plane. Therefore,
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Table 3.1
Variances of noise and bias for different sensors

Sensor Gyro. Acc. LiDAR Camera
Bias 0.001 0.01 - -

Noise 0.01 0.1
Position 0.03
Attitude 0.003

Position 0.05
Attitude 0.005

no estimation in the vertical z direction can be obtained from the LiDAR. Likewise,

it is able to measure the yaw angle, but not the pitch and roll.

The pose is continuously predicted according to equations (3.8a)-(3.8d) at the fre-

quency of the IMU. The update stage however occurs at a lower frequency, i.e., when

a measurement is obtained from the LiDAR or camera. After obtaining the LiDAR/-

camera unit measurements, they are used in the EKF to correct the pose estimation

from the IMU. To evaluate our proposed algorithm, the results for two different sce-

narios are compared. The first scenario is the 3D pose estimation from the fusion of

IMU and camera using EKF that is commonly performed in previous works. In the

second scenario, which is the method proposed in this dissertation, a 2D LiDAR is

also included. Hence, the update happens any time a measurement from the LiDAR

or camera arrives. For the evaluation purpose, the mean errors of each of the estima-

tors are calculated. The estimation errors for x, y and z and also yaw (α), pitch (β)

and roll (γ) angles are compared for the simulated paths. The error plots are shown

in Figs. 3.7 and 3.8 for two paths, accordingly.

As it is evident from the error plots, especially in the position error, the mean error of
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the estimator that only uses the camera unit tends to grow until a new measurement

from the camera arrives. This divergence (drift) is because the IMU integrates bias

and, if its estimation is not corrected using another sensor, it will deviate from the

true value and hence the error grows. As soon as the measurement from the camera or

LiDAR arrives, the EKF updates the predicted state and the error drops. The faster

the camera/LiDAR unit measurements arrive, the more often the state gets updated

resulting in error reduction. The camera unit is slower than the LiDAR sensor unit

and therefore it updates the filter at a lower rate compared to the LiDAR. This is the

first reason that employing the LiDAR unit (which has a higher measurement rate)

will help to improve the pose estimation. Moreover, the frequency of the LiDAR is

different than the camera, hence it updates the filter at different time stamps than

the camera. Thus, even if the LiDAR was not faster than the camera, employing it,

would increase the overall update rate of the filter. Finally, the LiDAR produces very

accurate pose estimation compared to the camera and the more accurate the pose

estimation from a sensor is, the more improvement can be obtained. The mean error

results for the two simulated paths are summarized in Tables 3.2 and 3.3. It can be

concluded from the observed error values that fusing the LiDAR with other sensors

can considerably improve the accuracy of pose estimation.

77



Table 3.2
Simulated path 1 mean errors using only camera and using camera and

LiDAR

Pose
Errors
IMU & camera IMU, camera & LiDAR

Position
X (cm) 0.152992 0.058311
Y (cm) 0.275828 0.048763
Z (cm) 0.184305 0.029428

Orientation
α (rad)α (rad)α (rad) 0.002749 0.001568
β (rad)β (rad)β (rad) 0.001920 0.001170
γ (rad)γ (rad)γ (rad) 0.003179 0.001321

Table 3.3
Simulated path 2 mean errors using only camera and using camera and

LiDAR

Pose
Errors
IMU & camera IMU, camera & LiDAR

Position
X (cm) 0.210673 0.069537
Y (cm) 0.232446 0.041411
Z (cm) 0.176245 0.060828

Orientation
α (rad)α (rad)α (rad) 0.003696 0.001837
β (rad)β (rad)β (rad) 0.003881 0.002547
γ (rad)γ (rad)γ (rad) 0.002729 0.002069

3.4.2 Real World Experiments

An experiment was conducted in a motion capture room which is equipped with 12

Vicon cameras that collectively track the trajectory of the sensor platform. This

system can provide position measurements accurate to the order of a few millimeters

and the orientation accurate to the order of a degree. The pose obtained from the

motion capture system was used as ground truth data. The employed sensor platform

includes an IMU, a camera, and a LiDAR that was mounted on a hexacopter, as shown
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in Fig. 3.9. The sensors form a rigid body and are fixed in their position; hence, once

the transformation between them is found at the beginning of the experiment, it can

be used for all future calculations and there is no need to include the calibration

parameters in the filter state. The hexacopter was too large for flying in the motion

capture room; therefore, to use the Vicon camera system for obtaining ground truth,

we had to dismount the platform and proceed without using the UAV. In this case,

the platform was carried by a person to simulate UAV flight and the sensory data

was logged to a file to be processed after the collection.

The IMU used in the experiment was a VectorNav VN-200s which has a 3-axis ac-

celerometer and a 3-axis gyroscope and works at the frequency of 100 Hz. The

employed camera was a Point Grey Blackfly BFLY-PGE-13E4C-CS, which is a single

lens digital CCD. It was calibrated using the standard checkerboard pattern before

the experiment and the whole camera module is able to output 2 frames/sec. For

the LiDAR sensor unit, a Hokuyo UTM-30LX-EW was chosen. This LiDAR is a 2D

scanner with frequency of 40 Hz. It has a measurement range of 30 meters, a field

of view of 270◦, and an angular resolution of 0.25◦. Measurements from all the three

sensors (IMU, camera and LiDAR) were time synchronized. The output frequency of

the Vicon motion capture system is 100 Hz, which is the same as the IMU. Hence,

in order to match and compare the ground truth data with the estimated values, we

time-synchronized the data by correlating the yaw angle measurements. The noise

variance values for the sensor units are listed in Table 3.4.
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Table 3.4
Noise variance for different sensor units

Sensor Gyro. Acc. LiDAR Camera

Noise 0.01 0.1
Position 0.07
Attitude 0.06

Position 0.2
Attitude 0.1

Table 3.5
Motion capture room experiment mean errors using only camera and using

camera and LiDAR

Pose
Errors
IMU & camera IMU, camera & LiDAR

Position
X (cm) 0.106457 0.020331
Y (cm) 0.12587 0.018429
Z (cm) 0.228594 0.061857

Orientation
α (rad)α (rad)α (rad) 0.003458 0.001222
β (rad)β (rad)β (rad) 0.006589 0.005713
γ (rad)γ (rad)γ (rad) 0.008344 0.007905

The true trajectory of the mobile platform obtained from the Vicon camera system in

the motion capture room is shown in Fig. 3.10, as well as the true position and orien-

tation. To evaluate the results, the same procedure as the simulation was employed.

Two scenarios were considered. In the first scenario only the camera was used to

correct the IMU estimation, and in the second scenario both the LiDAR and camera

were employed. As in the simulated experiment, the mean errors for both cases were

calculated and compared to evaluate the proposed algorithm. The obtained error

results of the EKF using only the camera and the EKF employing both the camera

and LiDAR are summarized in Table 3.5. It can be concluded that using the LiDAR

has noticeably decreased the error and hence improved the localization accuracy.
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3.5 Summary and Future Work

In this chapter, a novel method for full pose estimation of a mobile platform in

an unknown GPS-denied environment using a sensor-fused IMU/camera/LiDAR was

presented, employing no prior knowledge of the environment map. A 2D LiDAR was

used along with an IMU and a camera to estimate the pose of a UAV platform.

The camera and LiDAR modules were treated as black boxes that can be replaced

with any other sensor module as long as the sensor module can estimate the pose

with a known certainty. Therefore, the proposed algorithm is not limited to any

specific type of sensors. Furthermore, this modular approach has the advantage that

gives a general solution to the sensor fusion problem and hence, our method can be

used with any existing pose estimation algorithm including ready-to-use solutions for

the camera and LiDAR. Using simulation and real word experiments, the proposed

method was compared against the state of the art for indoor localization that uses a

camera to correct the IMU estimations and it was demonstrated that taking advantage

of the introduced approach and including the 2D LiDAR, considerably improves the

localization accuracy. This improvement was demonstrated both in simulation, where

the trajectory was generated randomly and thus there were sudden changes in the

UAV motion, and also in a real world experiment, with a more realistic UAV flight

path. It should be mentioned that, in general, a path with less sudden orientation
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change will result in better pose estimation. This is because the chosen fusion tool

was EKF, which linearizes the state between the two sensor readings, and the closer

the path is to linear in the update interval, the smaller the linearization error will be;

therefore, the obtained results will be more accurate.

From the simulation and experiment it can be concluded that, depending on the plat-

form angles, fusing the LiDAR estimation can have more effect on some dimensions

than the others. This is because the LiDAR only can estimate 3-DOF, which means

it can improve the estimated pose more along the axes that are better aligned with

its body frame than the those that are not. In our experiment, the LiDAR signifi-

cantly improved the position estimates and the yaw because it was mostly kept in a

horizontal plane for the real-world experiment (as it would be on a UAV). Generally,

by including the LiDAR, the overall pose estimation will always be improved.

The covariance matrices R and Q are assumed to be constant in this work. In future,

the estimation can be improved by dynamically updating these matrices during the

estimation process. One idea is to use a fuzzy inference system, to continuously

update these matrices as the measurements from sensors arrive which is the future

work for our research.
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(a) Simulated path 1

(b) Simulated path 1 true position

(c) Simulated path 1 true orientation

Figure 3.5: UAV simulated path 1 trajectory

83



(a) Simulated path 2

(b) Simulated path 2 true position

(c) Simulated path 2 true orientation

Figure 3.6: UAV simulated path 2 trajectory
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(a) Position error comparison (cm)

(b) Attitude error comparison (rad)

Figure 3.7: Path 1 errors using only camera (red solid plots) and using
camera and LiDAR (blue dotted plots)
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(a) Position error comparison (cm)

(b) Attitude error comparison (rad)

Figure 3.8: Path 2 errors using only camera (red solid plots) and using
camera and LiDAR (blue dotted plots)
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(a) Sensors mounted on the
UAV

(b) Front view (c) Top view

Figure 3.9: Sensor platform

(a) Sensor platform path (b) True position (c) True orientation

Figure 3.10: Sensor platform trajectory
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Chapter 4

Fuzzy Adaptive Extended Kalman

Filter for Robot 3D Pose

Estimation

4.1 Introduction

Obtaining an accurate pose (position and orientation) of a mobile object is usually

done by fusing the information acquired from several mounted sensors. Each of the

sensors have different characteristics that make them suitable for particular applica-

tions and situations. Some sensors are noisy and inaccurate but able to work in a
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variety of conditions, whereas others are more accurate but are constrained in their

operating conditions. In addition to that, depending on the limitations that every

specific application dictate, such as the environment of the work, size and weight of

the sensor, etc., and also the available budget, it is not always possible to employ

the best and most accurate sensor existing in the market. Thus, many application

employ multiple sensors to obtain the best pose estimation by combining the informa-

tion acquired from different sensor readings. This is called sensor fusion. It combines

the strengths of multiple sensors to correct the deficiencies of single sensors [63].

Various approaches from simple averaging to more complicated algorithms such as

Extended Kalman Filters (EKF) have been proposed to implement a reliable sensor

fusion platform.

The focus of this dissertation is to obtain the pose of a robot equipped with an inertial

measurement unit (IMU), a vision camera, and a LiDAR. IMUs are very accurate over

short distances (times). However, their measurements contain bias which is integrated

over time and thus causes the pose estimated from a single IMU to quickly diverge

from the true value. Therefore, it is usually fused with another sensor to overcome

this issue. The most commonly employed sensosr with IMU are GPS for outdoor and

optical camera for indoor localization. In some applications there is also a LiDAR

employed for mapping purposes, but not necessarily for localization.

Since this dissertation focuses on indoor localization, i.e., a GPS-denied environment,
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the advantage of GPS in absolute localization is not given. However, due to features

of indoor environments, an accurate pose estimation can be obtained from a 2D

LiDAR (at least in the 2D plane). However, there are 6 degrees of freedom (6DOF)

in a 3D environment and since the 2D LiDAR estimation only gives 3DOF, in most

3D applications, LiDAR is not used for pose estimation and its utilization remains

limited to mapping. In our previous work [26], we proposed a method and verified

that a 2D LiDAR indeed can be used to improve the overall 3D pose estimation of a

UAV platform. However, the movement of the UAV had to be smooth and any quick

movement that causes its trajectory to diverge considerably from being on a plane

in the time interval between two consecutive LiDAR readings could result in large

estimation error. In this chapter, we propose a method to detect the divergence of

the trajectory using a Fuzzy Inference System (FIS) and implement a sensor fusion

method, which leads to more accurate results compared to our previous work and

reduces the restrictions on the robot movement. Essentially, we introduce a method

that adjusts EKF parameters according to the reliability of the estimation obtained

from the sensor readings.

The rest of this chapter is organized as follows. Section 4.2 is dedicated to a literature

review followed by the problem statement in Sec. 4.3. Then the employed sensors and

configuration setup is explained in Sec. 4.4. In the next section, the main algorithm is

explained in details and the experimental results are summarized in Sec. 4.6, followed

by a conclusion and proposed future work.
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4.2 Previous Work

Sensor fusion was first proposed in the 1970s and was initially employed in military

applications [69]. Since then, different techniques such as the central limit theorem

(CLT), Bayesian networks, and Extended Kalman Filters (EKF) have been proposed

to perform fusion. Fuzzy set theory, introduced by Lotfi Zadeh in 1965 [80], provided

researchers with a powerful tool for a variety of applications such as multi-source

information fusion in general [79], and more specifically sensor fusion.

Recently, employing fuzzy techniques for sensor fusion has become more popular.

These methods can be seen from two major perspectives: (i) as the main method

that can independently fuse the data from different sensors based on the their char-

acteristics, or (ii) as a tool to be employed with another techniques, such as EKF, for

their improvement and optimization.

Employing fuzzy techniques as an independent fusion method has been less common

than using it associated with other algorithms, especially EKF. However, in scenarios

where there is no knowledge of the mathematical system model or where the system

is very complicated, such that it is hard or expensive to find a good model, fuzzy ap-

proaches can be extremely useful. Commonly used techniques in this area are various

weighted averaging methods [12]. Akhoundi et al. introduced a fuzzy multi-sensor
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data fusion method focusing on sensor characteristics [2], which is a good example

of this approach. In the paper, the authors design a rule-based fuzzy system based

on sensors’ accuracy and frequency response to fuse the data acquired from various

sensors with different bandwidth and accuracy properties. A similar approach was

taken before this paper by Goebel et al. [31], but they did not clarify the sensor char-

acteristics or the fuzzy rules that they employed. The methods that employ fuzzy

logic as an independent fusion tool are not limited to fusion based on the sensors

characteristics. Some other proposed algorithms are developed only based on the

sensor measurements, without having any knowledge of their specifications. For ex-

ample, fuzzy clustering was employed in [28] for sensor fusion as well as sensor fault

detection. The authors suggested to use fuzzy cluster centers for signal separation

followed by center-of-gravity defuzzification for sensor fusion. As a criterion for fault

detection, they employed the residual between the fused signal and each sensor mea-

surement. They ran a simulation to evaluate the proposed algorithm; however, there

is no numerical comparison with any other method to verify by how much the preci-

sion was improved. A similar approach was taken by Blank et al. [12] to implement

a soft voter, which was based on the original work in [36]. In this paper, the authors

developed their algorithm based on the distance (dissimilarity) between each pair of

sensor readings, where the sensor that does not agree with the others is more likely

to be faulty and receives a lower score/weight and hence less impact on the overall

output.
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In a different approach, fuzzy logic is employed in concert with another fusion method

to improve the functionality. A popular technique is the combination of fuzzy meth-

ods with Kalman filtering. The focus of this dissertation is also to optimize the well

known EKF, which is derived from the original Kalman Filter (KF) proposed in 1960

[41]. The EKF is one of the most popular methods in the sensor fusion area [69] and

has been employed by many researchers to fuse sensors such as GPS, IMU, cameras,

etc., for both indoor and also outdoor localization [11, 15, 16, 27, 33, 35, 55, 67]. Even

though the EKF allows for superior performance, its performance and optimality de-

pends on availability of the system model and a priori knowledge of the process and

observation/measurement noises, and in most applications their consistency. How-

ever, in many cases (such as dynamic sensor networks) the details of the system model

are not available or are too complex or expensive to obtain [12]. Unfortunately, if the

prior knowledge of the systems model statistics is imprecise or are dynamic during

operation, there will be a significant degradation in the filter performance and the

output can significantly diverge from the true value. Therefore, researchers have been

proposing solutions to improve the EKF results during non-ideal conditions. Hence,

the question is: is it possible to use the powerful EKF in a scenario where one or

both of the sensor covariance matrices are dynamic? Fortunately, introducing fuzzy

set theory provided scientists with an incredible tool to perform on-line modification

of the covariance matrices.

An interesting approach for modifying the EKF can be found in [1], where authors
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aimed to introduce a fuzzy-based method for GPS-IMU fusion that estimates the gy-

roscope and accelerometer biases of the Kalman filter error states when the GPS signal

is not available. One of the most popular techniques that employ fuzzy techniques

in an EKF is covariance matching [32, 78]. In this method, the theoretical and ac-

tual measurement covariances are compared and a variable called degree of mismatch

(DoM) is defined that indicates the difference between the two. If this difference is

small, it means the current observation covariance is precise and does not need a large

modification, but as DoM grows, the covariance has to be modified. Therefore, the

DoM is used as the input to a fuzzy system whose output is the needed covariance

adjustment. The comparison process is continually performed and dynamically up-

dates the covariance. In [29, 50], the authors employed the same method but they

went one step further and developed a sensor fault diagnostic and recovery algorithm

based on the ratio of the actual and theoretical values of the measurement covariance.

Ideally, these two covariances are equal, and the sensor fault diagnostic and recovery

algorithm checks this property and attempts to compensate when equal covariance

is not the case. Even though fuzzy techniques in this application have been mostly

employed for sensor fusion, their application in the sensor related area is not limited

to just fusion. Some researchers have employed fuzzy systems at different levels for

noise reduction and smoothing [44, 45]. The work of Kyriakoulis et al. [45] is a good

example of this type of application where the authors employed a three level fuzzy

system to create a hierarchical pose estimation algorithm using an IMU and a visual
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camera. The first level is dedicated to the IMU noise reduction, the second level fuses

the data from the first level and the data obtained from the camera, and the third

level smooths the output of the prior level using the previous system state.

Using the DoM as the input to a fuzzifier has become a popular approach that can be

used as a sensor measurement quality identifier. Nevertheless, it is not the only sensor

quality identifier that can be used. Depending on the application, other quantities

may be used to as input to the fuzzifier. As an example, Subramanian et al. [71] used

a fuzzy logic enhanced Kalman filter to combine the information from IMU, optical

camera, LiDAR, and a speed sensor to guide a vehicle in citrus groves. In their specific

application, and based on the system physical characteristics and limitations, they

can define if the output of each sensor is reasonable with respect to the distance of

the sensor from a detected object, and then decide how reliable is every sensor. Then,

using the sensor reliability, the fuzzy system decides on the weight of each sensor in

the final fused output. This work is perhaps the most state-of-the-art in relation to

our proposed method; however, it is only appropriate for 2D navigation in a ground

vehicle.

In this chapter, a fuzzy modified EKF method is proposed to estimate the 3D pose

of a mobile robot, i.e., a UAV. The proposed fuzzy system uses DOM and other

application specific quality values to quantify the reliability of the sensors, which

are then combined for optimal localization accuracy. Next, the problem that we are
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trying to solve is explained in more detail.

4.3 Problem Statement

The problem that we are proposing a solution for in this chapter is obtaining an

estimation of the 3D pose of a robot which is equipped with three sensors: IMU, vision

camera, and 2D LiDAR. As mentioned in Sec. 4.2, there are already different solutions

for the 3D pose estimation problem using 3D sensors. Nevertheless, employing a 2D

sensor for 3D pose estimation without any prior knowledge of the environment is a

new approach. There might be different reasons for using a 2D sensor instead of

a 3D sensor. Typically, 2D sensors have lower cost and weigh less as compared to

similar 3D models. Furthermore, there are situations in which an existing 2D sensor

is already being used for a different purpose, such as when a 2D LiDAR is employed

for mapping or for autonomous vehicles. In such cases, the sensor can be used to

improve the 3D pose estimation at no additional cost.

In Chapter 3 [26], we proposed a solution to the aforementioned problem. However,

our previous technique requires the movement of the robot to be smooth and free

of quick motions so that it can be assumed that the robot almost moves on a plane

during the interval between two LiDAR readings. In this chapter, we try to overcome
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this limitation by proposing a fuzzy method for sensor fusion and introducing a gen-

eral solution to the problem of 3D pose estimation improvement using a 2D sensor.

In addition, the algorithm in the previous chapter was EKF based, which requires

having a priori knowledge of the measurement covariance matrix and its consistency

over time. The objective of this chapter is to dynamically update the measurement

covariance matrix using a fuzzy inference system and achieve an optimized sensor

fusion method that can work in a variety of different situations.

4.4 Robot Platform and Configuration

4.4.1 Sensors

Three sensors with different characteristics were used in this work: (i) an Inertial

Measurement Unit (IMU), (ii) a vision camera, and (iii) a 2D Light Detection And

Ranging (LiDAR) sensor. Pose estimation (whether 6DOF or 3DOF) can be obtained

from each sensor separately. A sensor along with its pose estimation algorithm is

called a sensor unit/module and is treated as a black box. In this dissertation, the

raw measurement data from the IMU is used, but for the camera and LiDAR the

output of the respective sensor module is a pose estimation. We now discuss these

sensors and modules in more detail.
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4.4.1.1 IMU

An IMU is a device that measures the velocity, orientation, and gravitational forces

using a combination of data from accelerometers, gyroscopes, and magnetometers. In

this work, only the raw data from the accelerometer and gyroscope are employed; it is

assumed that magnetometer data is unavailable or unreliable, which is often the case

in GPS-denied environements. The 3-axis accelerometer measures the acceleration

along each of the x, y, and z axes in the IMU body frame, and the 3-axis gyroscope

measures the angular velocities of each axis, respectively.

The IMU output rate is high compared to the other sensors in this dissertation; it

has a larger update frequency and therefore it is faster. It is an accurate sensor for

short periods of time but its output is subjected to bias which accumulates over time

and causes quick divergence from the correct trajectory—this is often called drift.

Mitigating this drift is accomplished by fusing this information with other sensor

readings such as GPS, camera, or LiDAR. The model for the IMU is

ωt = ωm − bω − nω, at = C(qt)(am − ba − na) + g, (4.1)

where ω and a are angular velocity and linear acceleration, respectively, and the

subscripts t andm denote the true and the measured values, respectively. The variable

g is the gravity vector, qt is the quaternion equivalent of the true attitude, and C(qt)
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is the rotation matrix for qt. In (4.1), nω and na represent the noise of the gyro

and accelerometer, respectively, and bω and ba denote the relevant biases, which are

random processes. More details about this IMU model can be found in [26].

4.4.1.2 Camera

For the purpose of this work, a vision camera projects a 3D point in the space onto

the image plane of the camera. The most widely used model for reconstructing 3D

points from their projected camera image is the pinhole model [22].

Compared to an IMU, a camera’s output frequency is lower as it is a slow sensor. A

complete 3D pose can be estimated using camera images; however, the estimated pose

is not very accurate. It is especially difficult to estimate the distance traveled along

the camera focal axis for short trajectories. This is the motivation that encouraged

us to employ LiDAR—which is a highly accurate range sensor—whenever possible to

improve the pose estimated by camera.

4.4.1.3 LiDAR

LiDAR measures range to nearby objects by the time interval between an emitted

laser pulse and reception of the reflected pulse from an object. The measured distance
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and the beam angle can be used together to calculate the coordinates of the object

in the LiDAR local frame. Using a LiDAR, one can create high resolution maps and

by comparing these maps from scan-to-scan, one can estimate changes in pose [22].

LiDARs are available in 2D and 3D models. A 2D LiDAR, which is the subject of

the interest in this dissertation, radially scans the environment in a plane. Thus, 2D

LiDAR essentially measures a slice of the 3D world. Because of this, three out of the

six parameters that are necessary to fully localize an object in 3D world cannot be

obtained by a 2D LiDAR.

The operation of a 3D LiDAR is similar to that of a 2D LiDAR except that instead

of one measurement plane, it has two perpendicular rotational motors allowing mea-

surement in multiple planes simultaneously. As a result, a complete 3D pose can

be estimated from its data, albeit at a high computational cost. Compared to 2D

LiDARs, 3D LiDARs are bulky, heavy, and expensive; these properties inhibit their

application for payload-limited platforms or for applications with limited budgets.

For example, small UAVs are typically limited to very small payloads, which make

most 3D LiDARs inappropriate.1

Therefore, it can be concluded that each type of sensor has strengthes and weaknesses

1As technology advances and UAV payload increases and LiDARs get smaller, the limitation will be
alleviated, but there will always be a platform that is too small for conventional 3D LiDARs.
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and, thus, sensor fusion can be beneficial to take advantage of all the sensors’ capa-

bilities and compensate for their deficiencies to obtain more reliable, complete, and

robust pose estimation.

4.4.2 Geometry definition

Before we introduce the sensor fusion algorithm, we define the geometry of the pose

estimation problem. The sensors and the platform (UAV) form a rigid body which

means the transformation between them remains constant and needs to be acquired

only once. Hence, without loss of generalization, we assume that the sensors are

co-located.

A 3D pose is fully defined by three translation coordinates: x, y and z; and three

rotation angles: yaw (α), pitch (β) and roll (γ). The z axis points up, the x axis

points forward, and the y axis points to the right with respect to the robot’s frame.

The yaw angle is defined as a rotation about the z axis, pitch as a rotation about the

y axis, and roll is a rotation about the x axis.

In order to examine the robot trajectory and decide if its movement can be considered

to be planar in the time interval between the two consecutive LiDAR readings, three
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variables are defined as follows,

∆z = |zi − zi−1|, (4.2a)

∆β = |βi − βi−1|, (4.2b)

∆γ = |γi − γi−1|, (4.2c)

where subscript i denotes the current time-stamp of the LiDAR measurement and

i − 1 is the previous time-stamp of LiDAR measurement. It should be noted that

the changes in z, β, and γ are considered with respect to the LiDAR local frame. If

the UAV moves on a plane, its pose can be fully defined by x and y coordinates and

yaw angle (α); z, pitch (β), and roll (γ) will not change. Hence, if any of the z, β,

or γ changes significantly in the time between the two readings, it means that the

trajectory is not on a plane and the pose estimation from LiDAR has considerable

error or is not valid. This will be discussed more in detail next.

4.5 Methodology

The proposed method for the sensor fusion problem described in Sec. 4.3 is an adap-

tive Kalman filter (AKF) which uses a FIS to modify the standard EKF (shown in

Fig. 4.1). The EKF continuously runs at the update frequency of the IMU until a

LiDAR or camera reading is obtained, then the FIS evaluates the reliability of the
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LiDAR data and determine its contribution to the final estimation.

We now explain the proposed method in detail. First, the EKF, which is the founda-

tion of our algorithm, is discussed and then the fuzzy system that modifies the EKF

is introduced.

4.5.1 Extended Kalman Filter

The Kalman filter—and its variations, such as the EKF—is one of the most popular

methods for sensor fusion. However, in practical applications, assumptions are fre-

quently made that can result in filter instability or limit the application of the filter.

EKFs have been widely-used for sensor fusion and pose estimation. The EKF is the

non-linear version of the Kalman filter that linearizes the state about the estimation

of the current mean and covariance based on the assumption that the process is fed

by sensors with Gaussian noise. In order to use an EKF, the system first has to be

mathematically modeled which can be summarized as

xk = f(xk−1,uk−1) + ωk−1, zk = h(xk) + νk, (4.3)

where subscript k denotes the time step and ω and ν are the zero-mean Gaussian

process and observation/measurement noises with covariances Q and R, accordingly.

The variable xk is the state at step k, u is the input control vector, and zk is the
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expected sensor measurement at time k. The function f is the model used to predict

the state from the previous estimation and similarly h is computes the expected

measurement from the predicted state. However, f and h cannot be applied to the

covariance directly. Instead, a matrix of partial derivatives (the Jacobian) is computed

at each time step which linearizes the prediction around the current estimate.

The EKF consists of two main steps, predict (time update) and update (correct/mea-

surement update), that can be summarized as follows:

Predict:

x̂k|k−1 = f(x̂k−1|k−1,uk−1), State estimate (4.4)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1, Covariance estimate (4.5)

Update:

ỹk = zk − h(x̂k|k−1), Measurement residual (4.6)

Sk = HkPk|k−1H
T
k +Rk, Innovation (4.7)

Kk = Pk|k−1H
T
k S
−1
k , Kalman gain (4.8)

x̂k|k = x̂k|k−1 +Kkỹk, Update state estimate (4.9)

Pk|k = (I −KkHk)Pk|k−1, Update covariance estimate (4.10)
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where

Fk−1 =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk−1

, Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

.

In this work, the state of the system is a 16-length vector which is represented by

x = [p{1×3} v{1×3} q{1×4} bω{1×3} ba{1×3}]
T .

It contains the position of the IMU p with respect to the global frame, IMU linear

velocity v, and the quaternion q, which represents the rotation of the IMU from

the reference frame. The two remaining parameters in the filter state express the

gyroscope and accelerometer biases, bω and ba, along each axis. The details about

the EKF equations and the state estimation can be found in Chapter 3 [26]. The

state is predicted based on the IMU readings is updated at each the camera or LiDAR

measurement. It should be noted that since the IMU has a higher frequency than

the camera and LiDAR, the state vector will be updated every few (IMU) time steps

rather than every single time step.

The observation noise covariance R indicates the accuracy of the measurement and

in many applications is assumed to be constant. Although this assumption might be

a valid approximation in some situations, it is not a good assumption in the case of

using a 2D LiDAR for a 3D localization algorithm. As long as the robot is moving

approximately on a plane, the pose calculated from LiDAR readings is very accurate;

however, as the trajectory deviates from being on a plane, the LiDAR estimations
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become more erroneous. Therefore, in order to employ the LiDAR in the fusion

algorithm, we should know how close the trajectory of the robot is to being on a

plane. Luckily, fuzzy set theory gives us a very powerful tool to perform on-line

modification of the observation covariance matrix, resulting in an adaptive Kalman

filter (AKF) for the stated problem. Hence, the proposed method employs fuzzy logic

to update R based on the robot trajectory and covariance matching at each LiDAR

measurement.

The model for the robot movement can be described by the following equations:

ṗ = v, (4.11a)

v̇ = a, (4.11b)

q̇ =
1

2
q⊗ ω̄, (4.11c)

ḃω = nbω , ḃa = nba . (4.11d)

where ω and a are respectively the angular velocity and linear acceleration measured

by the IMU and, by definition, ω̄ = [0 ω]. bω and ba denote the gyroscope and

accelerometer biases, which are random processes, and their dynamics are modeled

by nbω and nba . Enthusiastic readers can find more detailed explanation and derivation

in [26].

The IMU and camera are fused using a standard EKF approach according to Eqs. (4.4)
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to (4.10), which is fully explained in our previous work [26]. However, in order to

include LiDAR in the EKF algorithm, a fuzzy system is proposed to determine its

reliability and adjust its contribution accordingly.

4.5.2 Fuzzy System Design

In this section, the variables needed for the design of fuzzy system are first defined

and then the fuzzy system is introduced.

4.5.2.1 Prerequisites

The purpose of the proposed fuzzy logic system (FLS) is to estimate LiDAR relia-

bility and to supervise its contribution to the final output dynamically. This task is

performed through modification of diagonal elements of the measurement covariance

matrix R upon a LiDAR measurement. The adjustment is based on two criteria: (i)

evaluation of the trajectory of the robot between two LiDAR readings to evaluate if

its movement has been planar, and (ii) the difference between the actual and theo-

retical measurement covariances as an indication of measurement reliability, which is

calculated through application of a covariance matching technique. Based on these as-

sessments, a decision is made on how to adjust the value of R. As it can be concluded

from equation. (4.7), increasing R will cause an increase in the innovation Sk, which
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consequently leads to decreasing the Kalman gain Kk, according to Eq. (4.8); there-

fore the LiDAR has a smaller contribution to the final pose estimate. Consequently,

as the measurements from the LiDAR become more unreliable, the covariance R will

be increased and, hence, the final output relies less on the LiDAR readings.

A variable ∆R is defined to modify the observation noise covariance according to

Ri = Ri−1 + ∆R, (4.12)

where i indicates the time step. The fuzzy system computes the variable ∆R.

In order to evaluate whether the trajectory of the robot is planar, three variables, ∆z,

∆β and ∆γ (see Sec. 4.4.2), were introduced that accordingly indicate the change in

z direction, and pitch and roll angles between two consecutive LiDAR readings. The

idea is that if these values are smalle, the closer the path is to being on a plane and

ultimately if all the three values are zero, it means that the robot’s motion is planar

between the two LiDAR readings. Large values of these variables indicate non-planar

robot motion.

To implement the covariance matching technique, the actual covariance has to be

calculated [56]. If Innk represents the innovation—the difference between the mea-

surement and the estimated value) at time stamp k—the actual covariance is defined

109



as

CInnk
=

1

M

k∑
j=j0

InnkInn
T
k , (4.13)

where M is the size of the averaging window and j0 is the first sample inside the

estimation window. The window size M is usually chosen empirically; in this work

M = 10. The theoretical value of the measurement covariance Sk is calculated from

Eq. (4.7) and the difference between these values gives the degree of mismatch (DoM),

DoMk = Sk − CInnk
. (4.14)

The logic behind this method is that if the DoM is almost zero, this shows that both

covariances are about the same and R should remain nearly unchanged. On the other

hand, if the DoM is positive, it indicates that the actual covariance value is smaller

than its theoretical value and R should be decreased. Finally if the DoM is negative,

it means that the actual covariance is larger than the theoretical value and R has to

be increased. Therefore, the fuzzy system should follow these rules:

1. IF DOM ' 0, THEN ∆R ' 0;

2. IF DOM > 0, THEN ∆R < 0;

3. IF DOM < 0, THEN ∆R > 0.

We now discuss the FLS in detail.
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4.5.2.2 Fuzzy Logic System (FLS)

An FLS can be defined as a nonlinear method of mapping input data to an output.

Implementing a standard FLS consists of three main steps:

1. Fuzzification: conversion of crisp input values (information sources) into fuzzy

sets using fuzzy linguistic variables;

2. Inference: derivation of fuzzy output by execution of a set of rules; and lastly,

3. Defuzzification: mapping the resulting fuzzy output to a final crisp output.

In this work, the FLS inputs are ∆z, ∆α, and ∆β, as introduced in Eq. (4.2), and

DoM , which is calculated based on (4.14). The crisp output is the variable ∆R which

is used to adjust R according to Eq. (4.12). The block diagram of the FLS is shown

in Fig. 4.1(b).

The membership functions (MFs) are all triangular and map the non-fuzzy inputs to

fuzzy linguistic terms and similarly for the output. There are a total of four inputs

and one output. The MFs assign a degree of membership to the universe of discourse

as demonstrated in Fig. 4.2.

After fuzzification, the Mamdani fuzzy inference system (FIS) employs a rule base

to control the output variable. The rules are simple IF-THENs that are constructed
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by all possible combinations of ∆z, ∆β, ∆γ, and DOM . To generate the rules, the

deviation of the trajectory from being planar is investigated and, furthermore, the

quality of the LiDAR sensor estimation is evaluated based on the value of DOM . For

example, one of the rules can be stated as

IF (∆z = 0) AND (∆β = 0) AND (∆γ = 0)

AND (DOM < 0), THEN ∆R = 0.

Note that to combine the individual rules, the fuzzy set operations AND and OR are

used to generate the rule base. The t-norm and t-conorm we use for these operations

are min and max, respectively. After evaluating the result of each rule, these results

should be combined to generate the outcome of the FIS. The employed aggregation

method is max which is widely used in FISs. The complete fuzzy rules, which can be

obtained from all possible combinations of the inputs, are listed in Table 4.1.

The result of the inference system is a fuzzy value. To produce a crisp final output

(∆R), the output of the FIS has to be defuzzified. The deffuzification is performed

based on the output MF shown in Fig. 4.2(d) and employs the centroid method,

U =

∫ max

min
uµ(u)du∫ max

min
µ(u)du

, (4.15)

where U is the final output, u is the output variable, and µ is the output MF.
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Table 4.1
Fuzzy rules

Input Output
∆z∆z∆z ∆β∆β∆β ∆γ∆γ∆γ DOMDOMDOM ∆R∆R∆R

zero

zero

zero
zero zero
positive small negative
negative small positive

small
zero small positive
positive zero
negative large positive

large large positive

small
zero

zero small positive
positive zero
negative large positive

small large positive
large large positive

large large positive

small

zero
zero

zero small positive
positive zero
negative large positive

small large positive
large large positive

small
zero large positive
small large positive
large large positive

large large positive
large large positive

In summary, the fuzzy systems is designed such that the further the deviation of

the trajectory between two consecutive LiDAR readings is from being planar, the

larger ∆R will be and, as a result, the value of R will be increased, leading to less

contribution of the LiDAR for the pose estimation.
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4.6 Experimental Results

Synthetic and real world experiments were conducted to evaluate the performance of

the proposed adaptive Kalman filter algorithm. The goal was to demonstrate that

employing a dynamic fuzzy tuning can improve the 3D pose estimation obtained from

the fusion of 3D and 2D sensors as compared to the scenario where a standard EKF

is employed.

The three sensors—IMU, camera and LiDAR—are mounted on the robot and, hence,

form a rigid body. This means they are at a fixed position and orientation with respect

to each other and the transformation between them is constant and predetermined

(either by manual measurement or through a calibration process) only once prior to

the experiment. Furthermore, the LiDAR setup on the platform is horizontal; in

another words, when the platform is not rotated with respect to the reference frame,

the LiDAR scans the environment in the xy plane. In this situation, the z coordinate

and β and γ angles are the missing degrees of freedom from the LiDAR field-of-view.
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4.6.1 Simulated Experiments

Random realistic UAV flight paths were generated in MATLAB. These paths were

developed such that the trajectory is a combination of staying more or less on a plane

for some times and divergence from being on a plane at others. The trajectory is

shown in Fig. 4.3, as well as the true position and orientation of the UAV for the

simulated path.

In Chapter 3 of this dissertation [26], we demonstrated that fusing a 2D LiDAR

for planar trajectories improves pose estimation. In this chapter, two sensor fusion

methods have been applied to the simulated pose data: the proposed AKF and a

standard EKF. The accuracy of the proposed fuzzy AKF was compared against the

EKF and the estimation errors for x, y and z and also the yaw (α), pitch (β) and

roll (γ) angles were evaluated; they are reported in Table 4.2. The results show that

the fuzzy AKF considerably reduces the mean error in the position and orientation

estimates.
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Table 4.2
Mean Errors of EKF and Fuzzy AKF for Simulated UAV Path.

Pose
Errors
EKF AKF

Position
X (m) 0.0450 0.0026
Y (m) 0.0186 0.0024
Z (m) 0.0095 0.0025

Orientation
α (rad)α (rad)α (rad) 0.0029 0.0018
β (rad)β (rad)β (rad) 0.0014 0.0003
γ (rad)γ (rad)γ (rad) 0.0016 0.0005

4.6.2 Real world experiments

An experiment was conducted using a sensor platform including IMU, camera, and

LiDAR to evaluate the proposed algorithm with real world data. The sensor plat-

form developed can be mounted on any ground vehicle or UAV, or can be even used

separately if desired.

The IMU used was a VectorNav VN-200s, which has an update frequency of 100 Hz.

The camera was a Point Grey Blackfly BFLY-PGE-13E4C-CS, which is a single lens

digital CCD. It was calibrated using the standard computer vision methods before

the experiment and the whole camera module was able to output 2 frames/sec. For

the LiDAR sensor unit, a Hokuyo UTM-30LX-EW was chosen. This LiDAR is a 2D

scanner with frequency of 40 Hz. This LiDAR has a measurement range of 30 meters,

a field of view of 270◦, and an angular resolution of 0.25◦. Measurements from all

three sensors were time synchronized.
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Table 4.3
Mean Errors of EKF and Fuzzy AKF for Real UAV Path.

Pose
Errors
EKF AKF

Position
X (m) 0.0537 0.0024
Y (m) 0.0353 0.0014
Z (m) 0.0850 0.0025

Orientation
α (rad)α (rad)α (rad) 0.0290 0.0030
β (rad)β (rad)β (rad) 0.0040 0.0007
γ (rad)γ (rad)γ (rad) 0.0160 0.0030

The experiment was run in a motion capture room equipped with 12 Vicon cameras,

which collectively track the trajectory. The pose obtained from the motion capture

system was used as ground truth data. The hexacopter was too large for flying in

the motion capture room; therefore, we had to dismount the platform and proceed

without using the UAV, simulating UAV movement by carrying the sensor pod by

hand.

The true trajectory, as measured by the Vicon system, is shown in Fig. 4.4, as well as

the true position and orientation. To evaluate the results, a similar procedure to the

simulated experiment was used. The mean error results of the two algorithms, fuzzy

AKF and standard EKF, are summarized in Table 4.3. From these results, it can

easily be concluded that the fuzzy AKF noticeably improved the pose estimation.
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4.7 Summary and Future Work

3D pose estimation using a combination of multimodal sensors is a topic that has

been investigated for several years now. However, in past work either 3D sensors

were used or, if 2D sensors were used, there was an assumption on prior knowledge

of the environment. In this chapter we proposed a method that uses a 2D sensor

(LiDAR) along with other 3D sensors (IMU and vision camera) to improve accuracy

of 3D pose estimation in an unknown, GPS-denied environment. It was shown that

2D sensors can be used for 3D pose estimation improvement as long as there is a way

to monitor the quality of their estimated pose. Since the quality of estimation of a 2D

sensor can degrade by changes in the trajectory or by quick movements, the algorithm

needs to be able to detect this degradation and then reduce the contribution of the

inaccurate sensor measurements in the final fused output. The proposed method

to accomplish the task was a fuzzy logic system to supervise the sensor estimation

quality. A fuzzy adaptive Kalman filter (AKF) was introduced which is a modified

version of the EKF. The fuzzy AKF employs fuzzy logic to detect the reliability of the

2D LiDAR sensor module, based on the robot movement and covariance matching

technique, and then to adjust the contribution of the LiDAR to the final estimated

pose.

A set of simulated and real world data were used to evaluate the proposed algorithm.
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The fuzzy AKF performance was compared to the standard EKF algorithm, which

is widely employed for sensor fusion and pose estimation, and it was shown that the

fuzzy AKF accomplishes considerably better pose estimation accuracy.

In this work, only the measurement noise covariance R was adjusted and the process

noise covariance Q was assumed to be constant. In reality, this covariance is not

constant in most applications. Therefore, in the future, a similar approach could be

considered to to adjust the noise covariance Q.
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Figure 4.3: Ground trajectory and state values for simulated experiment.
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Figure 4.4: Ground truth trajectory and state values for real-world exper-
iment.
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Chapter 5

Conclusions and Future Work

Sensors are widely used in all the areas of science and technology. In numerous

situation and applications, one single sensor can not provide the desired output in

terms of completion, precision, robustness or other criteria. This has encouraged

researchers to combine the data from different sensory sources to obtain better results.

Hence, sensor fusion has become the primary solution to overcome sensors deficiencies.

This dissertation provided novel solutions to two applications of the sensor fusion:

an image level 2 dimensional sensor fusion for train car wheel and bearing defect

detection and a three dimensional application for UAV pose estimation. The fusion

techniques introduced in the first application can also potentially be employed in the

UAV pose estimation by adding an extra sensor to the platform.
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Chapter 2 of this dissertation was dedicated to the development of an algorithm for

train car wheel and bearing defect detection. In the rail industry, two major compo-

nents of rolling stock that are always of great interest when it comes to maintenance

and safety related issues are car wheels and bearings. The contribution of this disser-

tation was proposing and implementing an automatic method to detect sliding wheel,

a serious train car wheel defect, by fusing thermal and vision wayside cameras. This

type of defect is not detectable at an early stage in the images taken by a vision

camera, however these defects generate a distinctive heat pattern on the wheel or

bearing that is clearly visible in the thermal imagery. On the other hand, thermal

imagery does not contain any texture or color information which makes it difficult

to detect and extract the parts of interest in the image. Therefore, the wheel and

bearing segmentation from the thermal imagery is erroneous while this task can be

done with a much better accuracy employing vision cameras. This makes thermal

and visible spectrum imagery complementary. In this dissertation, wavelet decompo-

sition was employed to extract the features of the thermal and vision imagery. Then

the two images were merged based on their decomposition and a fused image was

composed. The resulting fused image contains more information than each individ-

ual image and can be used as an input for image-based wheel and bearing defect

detection algorithms. To verify the proposed method and to show an example of this

application, it was demonstrated on a real data set from a Union Pacific rail line to

identify sliding wheels. Currently in the railroad industry the inspection is mostly
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done manually. Using the proposed method in this dissertation, the defect can be

detected automatically at an early stage to prevent any further hazard.

Then we moved to a more complicated scenario which was estimating the pose of

a moving platform such as a UAV in a 3D environment which is of significant im-

portance in many areas of robotics research and in a very similar way in industries

such as car industry. In order to perform this task, multi-sensor fusion has been used

to improve the accuracy of the estimation and to compensate for individual sensor

deficiencies. Unlike the previous works in this area that use sensors with the ability

of 3D localization to estimate the full pose of a UAV, in this work we employed the

data from a 2D light detection and ranging (LiDAR) sensor, which can only estimate

the pose in a 2D plane. To the best of our knowledge 2D LiDARs have not been

used for 3D pose estimation in an unknown environment. We fused the estimation

obtained from the LiDAR with the data from visible spectrum camera and inertial

sensors showing that, despite the incomplete estimation from the 2D LiDAR, the

overall estimated 3D pose can be improved. This work can be used for SLAM and

as the UAV moves, it can create the 3D map of environment and acquire perception

of the surrounding environment. By studying the trajectory of the robot, we noticed

that there are time intervals that the robots movement between the two LiDAR read-

ings can be assumed planar. Hence, we proceeded one step further and implemented

a fuzzy inference system that estimates if the UAV is almost moving on a plane or

its path involves quick roll, pitch and height changes which will result in diverging
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from the planar motion. Based on this idea, we adjusted sensors weights in the fusion

algorithm and showed that using the introduced adaptive fuzzy sensor fusion, we were

able to reduce the pose estimation error and obtain better accuracy.

In this dissertation the focus was on localization. Having a good pose estimation

algorithm will help creating better and more accurate 3D map of the world. Therefore,

as future research, this work can be extended to SLAM. In addition, we introduced a

method for thermal and visibly spectrum fusion which in a similar way can be used

for the UAV application. Visual spectrum cameras do not work very well at poor

lighting conditions, at night or in some weathers such as dusty or foggy conditions.

Adding a thermal or night vision camera in future can increase the capability of pose

estimation in different conditions and the algorithm proposed for thermal and visual

spectrum imagery can be used to create more informative images. As a result the

pose estimation method potentially will become more robust and reliable.
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