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Preface 
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In Chapter 3 “Results and Discussions: Structural characteristics and in vitro 

biodegradation of a novel Zn-Li alloy prepared by induction melting and hot rolling”, I 

performed majority of materials preparation, all materials characterization and all writing 

under supervision of Professor Jaroslaw W. Drelich and Professor Jeremy Goldman, while 

Cameron T. McNamara, Nicholas Verhun and Jacob Braykovich contributed to the wire 

EDM cutting and hot rolling. In Chapter 4 “Results and Discussions: Zn-Li Alloy after 

Extrusion and Drawing: Structural, Mechanical Characterization, and Biodegradation in 
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extrusion; Roger Guillory and Elisha Earley contributed to the histological analysis, and 

Professor Jeremy Goldman contributed to the animal surgeries. Professors, staff, graduate 

and undergraduate students who assisted during the finishing of this dissertation are listed 

in the Acknowledgements section.  
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Abstract 

Zinc has begun to be studied as a bio-degradable material in recent years due to its excellent 

corrosion rate and optimal biocompatibility. Unfortunately, pure Zn’s intrinsic ultimate 

tensile strength (UTS; below 120 MPa) is lower than the benchmark (about 300 MPa) for 

cardiovascular stent materials, raising concerns about sufficient strength to support the 

blood vessel. Thus, modifying pure Zn to improve its mechanical properties is an important 

research topic.  

In this dissertation project, a new Zn-Li alloy has been developed to retain the outstanding 

corrosion behavior from Zn while improving the mechanical characteristics and uniform 

biodegradation once it is implanted into the artery of Sprague-Dawley rats.  

The completed work includes: 

• Manufactured Zn-Li alloy ingots and sheets via induction vacuum casting, melt 

spinning, hot rolling deformation, and wire electro discharge machining (wire EDM) 

technique; processed alloy samples using cross sectioning, mounting, etching and 

polishing technique; 

• Characterized alloy ingots, sheets and wires using hardness and tensile test, XRD, 

BEI imaging, SEM, ESEM, FTIR, ICP-OES and electrochemical test; then selected 

the optimum composition for in vitro and in vivo experiments; 

• Mimicked the degradation behavior of the Zn-Li alloy in vitro using simulated body 

fluid (SBF) and explored the relations between corrosion rate, corrosion products 

and surface morphology with changing compositions; 
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• Explanted the Zn-Li alloy wire in abdominal aorta of rat over 12 months and studied 

its degradation mechanism, rate of bioabsorption, cytotoxicity and corrosion 

product migration from histological analysis.  
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Introduction 

Bio-degradable stents are envisaged to support the arterial wall during remodeling and to 

degrade thereafter. Therefore, it may eliminate the potential chronic inflammation [1] and 

thrombosis risks [2] of permanent stents and alleviate the repeating procedures for stenting 

at the same site in the event of restenosis [3]. Over the past several years, Mg-based and 

Fe-based materials have been widely investigated for coronary stent applications with very 

limited success [4-6]. These previous reports demonstrated that neither iron nor magnesium 

is ideal as a stent material due to either incomplete degradation of iron corrosion products 

[7] or premature degradation of magnesium [8].  Consequently, new bio-degradable 

materials are needed.  

Zinc is one of the most abundant nutritionally essential elements in the human body [9]. 

Zinc has begun to be studied as a bio-degradable material in recent years [10]. It is 

metallically bio-degradable and exhibits both an excellent corrosion rate and optimal 

biocompatibility. Unfortunately, pure Zn’s intrinsic ultimate tensile strength (UTS; below 

120 MPa) is lower than the benchmark (about 300 MPa) for cardiovascular stent materials, 

raising concerns about sufficient strength to support the blood vessel. Thus, modifying pure 

Zn to improve its mechanical properties is an important research topic.  

Li is one of the few elements with significant solubility in zinc, and Zn-Li is therefore 

among a few potentially age-hardenable systems. The idea of adding lithium into zinc to 

improve the strength largely comes from the positive effects observed for magnesium 

alloys such as LAE442, which has 4 wt.% lithium, 4 wt.% aluminium and 2 wt.% rare-
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earth elements. LAE442 has been shown to be non-allergenic [11], bio-degradable, and to 

degrade at a lower rate than the pure material without the formation of radiographic gas 

[12, 13] and with a more uniform degradation behavior [13]. It is now widely considered 

as the most promising implant for orthopedic use [14]. The toxic potential of a zinc-lithium 

stent should therefore be negligible in terms of the released elements and their quantities.  

Indeed, based upon the projected rate of stent corrosion, the quantity of released elements 

will never exceed the level that can be safely assimilated by the body and its organs. With 

regard to local toxic effects, rapid transport of ions in vascular tissue [15] should prevent 

elemental enrichment, cytotoxicity, or necrosis in the implant’s vicinity. 

However, a review of the available literature suggests most of the previous studies in this 

binary Li-Zn system focused on its thermodynamic properties, preliminary charge-

discharge, polarization characteristics [16], and the reactivity of lithium-ion batteries [17]. 

Currently, no research has been conducted on Zn-Li alloys as a bio-degradable implant 

material.  

This dissertation research creatively addresses this challenge by alloying Li with Zn to 

improve its mechanical properties through manipulation of metal micro-/nano-structure. 

Chapter 1 provides an extensive review of the current status on the stenting technique and 

conventional metallic and polymeric Absorbable Metal Stent (AMS). Chapter 2 validates 

the proposed Zn-Li alloy in stent application and provides the detailed research diagram 

and hypotheses. Chapter 3 shows the structural characteristics of Zn-xLi alloy (with x=2, 

4, 6 at.%) and the in vitro biodegradation results, suggesting that addition of Li for further 

in vivo test should be less than 4 at.%. Chapter 4 lists the characteristics and preliminary 
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in vivo degradation results of Zn-Li wire obtained from implantation in rat abdominal 

arteries. Chapter 5 summarizes the results and demonstrates the promise of this Zn-Li alloy 

in bio-degradable coronary stent.   
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Chapter 1 Literature Review 

1.1 Medical Problem and Stenting Technique 

In 1977, Andreas Grüntzig performed the first balloon coronary angioplasty [18], which 

advanced the technology of coronary stents. Stenting, clinically known as percutaneous 

coronary intervention (PCI), has become a proven procedure for the treatment of arterial 

occlusions. During stenting, one or more stent is delivered and placed into a narrowed 

coronary artery by using a catheter system that is inserted into artery through a small 

incision in the arm or groin.  This approach reduces the early recoil and late vascular 

remodeling that plagued balloon angioplasty treatment alone. Permanent metallic implants 

presently consist of high-strength corrosion-resistant alloys such as stainless steel (316L) 

and cobalt-chromium L605 (CoCr).  

The drug-eluting stent (DES) approach was invented to mainly decrease the high rates of 

restenosis and repeat revascularizations [19, 20]. It pioneered a new area for stents by 

restoring blood flow via mechanical scaffolding and simultaneously releasing a 

pharmaceutical agent that alleviates the restenosis response to the foreign stent material. 

The reduction in restenosis of 60-80% across the board has driven its widespread 

acceptance [21, 22]. However, further reports precluded the practices of DES on complex 

subsets of patients and lesions, such as in tortuous vessels, small vessels, or long diffuse 

calcified lesions; major adverse cardiac events were also found more frequent in the DES 

group than in the bare-metal stent group (3.7% vs 1.0%) [23]. Moreover, concerns have 

been raised over the long-term safety of first-generation DESs, which is remarkably 
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associated with an increased rate of adverse clinical events, particularly late-stage stent 

thrombosis [24]. 

1.2 Absorbable Metal Stent (AMS)  

1.2.1 The concept of AMS 

Followed by decades of developing strategies to minimize the corrosion of metallic 

biomaterials, there is now an increasing trend to use corrodible metals in medical 

applications [25]. The AMS concept has been breaking this paradigm recently, with several 

materials emerging as potential alternatives for vascular scaffolding that circumvent the 

long term risks of permanent stents. Since the major effect of stent implantation is provided 

by its scaffolding, it is required to be retained for 6-12 months during which arterial 

remodeling and healing is completed [26]. After this period, the stent is preferred to be 

broken down and excreted by the body. In pediatric interventions, which involves arteries 

that have not completed their growth cycle, the disappearance of the stent will enable 

natural vessel growth and will avoid the need for recatheterization and serial stent balloon 

dilatation until adulthood.  In the case of a fully absorbable stent, the problems of late stent 

thrombosis and prolonged anti-platelet therapy are avoided. Thus, the development of bio-

degradable stents, which can fulfill the mission and step away, is the next logical 

progression for the industry [3-5, 27]. 

Implantation of metallic stents is always accompanied by damage to the endothelial lining 

and stretching of the vessel wall [28].  
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Fig. 1.1. The schematic diagram of degradation behavior and the change of mechanical 

integrity of AMSs during the vascular healing process. 

 

As shown in Fig. 1.1, the injured vessels exhibit a wound healing response that can be 

described in three overlapping phases: inflammation, granulation and remodeling [29]. For 

zinc, an ideal middle ground between degradation and mechanical integrity during in vivo 

implantations was observed [10].  Zinc corrosion begins at a very low degradation rate, 

which is beneficial for this application as a zinc-based stent would maintain mechanical 

integrity during arterial vessel remodeling. Thereafter, the degradation progresses while 

the mechanical integrity decreases. Stent degradation ideally occurs at a sufficient rate that 

will not cause an intolerable accumulation of degradation product around the implantation 

site. A uniform corrosion mechanism is superior to localized corrosion in that the corrosion 

begins from the surface to the bulk to maintain uniform mechanical integrity [30]. 

Localized corrosion such as pitting should be avoided since this could lead to the stent’s 

cracking or fragmenting, ultimately ending with blood vessel injuries [30].  
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To date, no ideal bio-degradable stent has been invented. Depending on the lesion to be 

treated, there is often a compromise of one or more of the above factors. For example, 

stents with low surface area may not be very radio-opaque, while lesions requiring total 

coverage may require stents having high surface area. In contrast to balloon angioplasty 

where restenosis has been shown to be due to the combination of intimal hyperplasia, 

vascular remodeling, and elastic recoil, restenosis after stenting is due solely to intimal 

hyperplasia [31, 32]. The intimal hyperplasia relates to an exaggerated wound healing 

response: smooth muscle cell migration, proliferation and extracellular matrix elaboration 

mediated by the endothelial cell injury [33]. Because clinically used stents are permanent 

implants, their presence may be a stimulus for prolonged inflammatory and foreign body 

responses, which could potentially interfere with the wound healing response [28]. In 

humans, the vessel wall healing process is usually complete between 3 to 6 months post 

stenting. However, a foreign body response has been observed as late as 320 days post 

implantation [34]. Studies aimed at improving current stent performance focused mainly 

on drug-eluting stents. 

1.2.2 The design of an ideal AMS 

Theoretically, if all aspects of stent implantation are considered, the ideal stent should have 

the following characteristics [28]: 

• Flexible - have the capacity to negotiate curved and tortuous coronary segments; 

• Radio-opaque - easily visible during angiography; 

• Low unexpanded profile - facilitates the passing and positioning of the stent in the 

artery without predication with a balloon catheter; 

• Low roughness - minimize surface area for potential thrombogenic interactions; 
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• Scaffolding effect - capacity to hold open the artery against the vessel wall's 

constrictive tendencies (minimize recoil) and hold the stent at its selected 

implantation site, for example, the tensile strength should be over 300 MPa, 

elongation to failure should be over 15-18% and elastic recoil on expansion should 

be less than 4%; 

• Show both blood and tissue compatibility; 

• Not induce an excessive inflammatory or neointimal response; 

• Intermediate corrosion rate - it should degrade with an appropriate rate so that the 

loosing of the mechanical strength from the dissolution matches the supporting 

function from tissue regeneration; and to make sure that the amount of the releasing 

elements are tolerable to the human body [25]. It is believed that at least 6 months’ 

integrity is required. Complete degradation should occur after the vessel 

remodeling process has finished.  

 

1.2.3 Conventional metallic and polymeric AMS* 

1.2.3.1 Current status  

Bio-degradable stents are envisaged to support the arterial wall during the remodeling and 

to degrade thereafter. Pure Fe was the first metal tested, although the majority of research 

was done on Mg and its alloys. Over the past decade, Mg-based and Fe-based materials 

have been well accepted and widely investigated for coronary stent applications.  

 

*The material contained in this section was previously published in Advanced Healthcare 

Materials by PK Bowen, ER Shearier, S Zhao, RJ Guillory, F Zhao, J Goldman, and J 

Drelich, and is reproduced here with permission. 
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Tremendous work has been focused on: (1) pure Mg and pure Fe and their alloying with 

essential elements (Ca, Sr, Zn, Co, C and Si) or low toxic elements (Mn, Sn and Zr), and 

the rare earth elements (Y and Gd) [35-41]; (2) novel structured bio-degradable metals 

(porous, ultrafine, nanocrystalline and glassy structures) [42-44]; (3) surface modifications 

by mechanical, chemical and electrochemical treatment [45, 46]; (4) animal testing and 

clinical trial of AE21, WE43, Mg-based AMS and pure Fe stent/wires [5, 6, 14, 47-49]. All 

those previous studies demonstrated that neither iron nor magnesium is ideal for stents. 

Iron is considered as having a relatively low in vivo degradation rate.  However, its 

ferromagnetic nature constitutes a problem as an implantable device and it has also been 

shown to produce a large volume of potentially hazardous iron oxide, which may not 

degrade easily in the human body [49].  

As for magnesium, it is less harmful but it degrades too fast (only 1-2 months) [10] and 

also its ductility is very limited. Many attempts have been conducted to improve the 

performance of Mg by alloying [64] and advanced processing techniques [63, 65]. For 

example, it was demonstrated that alloying Mg with Li can change the crystal structure 

from hexagonal to body-centered cubic (bcc), producing an increase in ductility, but in 

exchange the UTS dropped to 132 MPa [50], much too low a value for a cardiovascular 

stent. 

The first implantation of Fe stents in the descending aorta of New Zealand white rabbits 

demonstrated no significant inflammatory response, neointimal proliferation or systemic 

toxicity [51]. Subsequent implantations of Fe stents in minipigs [52] and juvenile domestic 

pigs [6] confirmed that Fe degrades without excess inflammation, local toxicity or 
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thrombosis. Additionally, the high radial strength of Fe could make its stent struts thinner, 

while a high ductility makes it easy to deliver via catheter-based systems [26].  However, 

reports on Fe stents have indicated that it cannot corrode completely during the follow up 

period [51]. In order to increase the degradation rate for Fe, tremendous work has been 

focused either on the development of alloys or modification of the microstructure by heat 

[53], mechanical [54] or solution treatment [41]. Another limitation for Fe stents comes 

from the large volume of potentially hazardous iron oxide products, which may not degrade 

easily in the human body [49]. Stainless steel 316 L (SS 316L) is included as the gold 

standard metal for clinical stent applications. Alloying with manganese (Mn) [55] or electro 

casting [56] was shown to increase the strength and degradation rate of pure Fe [55]. Fe-

Mn alloys [40, 41, 55, 57-59] exhibited similar mechanical properties to those of SS 316L. 

The as-formed austenitic phase decreased the magnetic susceptibility which enhanced 

compatibility with the magnetic resonance imaging (MRI). From biological facts, the 

presence of Mn is more appropriate than nickel (used for the SS 316L), which is more  toxic 

and carcinogenic [60]. Electron casting and annealing at 550oC produced a fine grain 

structure with an average grain size of 4 μm, resulting in a superior ductility and ultimate 

tensile strength (UTS) [56]. 

Mg has been considered to be another attractive base-metal candidate because of its good 

biocompatibility and low thrombogenicity [38, 61-63]. Mg alloys have a large range of 

UTS and elongation, from 86 to 280 MPa and from 3% to 20%, respectively. However, 

pure Mg usually corrodes too fast in aggressive chloride environments including body fluid 

[63]. This fast degradation could not only make a Mg stent lose mechanical integrity in a 
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short time, but also overload the tissue with degradation products that may lead to 

neointimal formation [26].  

Bio-degradable polymers have been tested for cardiovascular stent applications since the 

late 1980s. Bio-degradable metals, although considered for implants much earlier (in XVII 

century for Fe [77] and at the turn of the XIX century for Mg [78]), practically attracted 

interest for cardiovascular applications at the beginning of XXI century.  Pure Fe was the 

first metal tested, although the majority of research was done on Mg and its alloys. As of 

today only Mg-based and PLLA-based stents went beyond animal testing and were tested 

clinically in humans (Tables 1.1 and 1.2).  

To date, fully bio-degradable polymeric stent technology has progressed considerably 

further relative to their more desirable metallic counterparts, [79] as summarized by data 

in Table 1.2, with several devices having already obtained market approval in Europe or in 

clinical trials. 
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Table 1.1. Examples of pre-clinical and clinical tests on bio-degradable polymers and 

metals 

Implant 
Implant Site and 

Time 
Major Test Results 

PLLA Igaki-

Tamai stent (with 

ST638 or ST494) 

[66] 

Porcine coronary 

arteries, 21d 

Neointimal formation and geometric remodeling were 

significantly less at the ST638-loaded stent site than at the 

ST494 site. 

Igaki-Tamai 

stent [67, 68] 

Human patient 

artery, 6 months to 

10 years 

No stent thrombosis and no major cardiac event occurred 

within 30 days. No major cardiac event, except for repeat 

angioplasty, developed within 6 months. Long-term (>10 years) 

clinical outcomes showed acceptable major adverse cardiac 

events and scaffold thrombosis rates without stent recoil and 

vessel remodeling. 

PLLA stent[69] 
Porcine Coronary 

Artery, 16 weeks 

Histological examination revealed no inflammation and 

minimal neointimal hyperplasia 

Copolymeric 

polylactide 

stent[70] 

Rabbit aorta, 34 

months 

No inflammatory reaction observed after 6 months and it was 

completely degraded by 24 months.  

Paclitaxel-eluting 

PDLLA[71] 

Porcine coronary 

arteries, 3 months 

The histomorphometric analysis at 3 weeks demonstrated 

inhibition of neointimal formation by 53% with the paclitaxel-

loaded PDLLA when compared to the PDLLA stent, and by 

44% when compared to metal stents. 

Pure Fe 

stent [51] 

Rabbits (descending 

aorta), 6-18 months 

No thrombogenicity, no significant neointimal proliferation and 

systemic toxicity, faster degradation at junctions of the stent 

Pure Fe stent 

[52] 

Porcine (descending 

aorta), 360 d 

Degradation product adjacent to the stent struts and within 

adventitia accompanied by macrophages; no sign of toxicity 

Pure Fe stent [6] 
Pig coronary artery, 

28d 
Fe stent is very safe 

Pure Fe wire [72] 

Rat (artery lumen or 

artery matrix), 1-9 

months 

Fe wire experienced substantial corrosion within artery matrix, 

whereas it experienced minimal biocorrosion in blood-

contacting environment 

AE21[73] (Mg 

alloy) 

Pig (coronary 

artery), 56d 

Mg alloy is satisfactory; 40% loss of perfused lumen diameter 

due to neointima formation; degradation time needs to be 

extended 

WE43 [74] (Mg 

alloy) 

Minipig (coronary 

artery), 56d 

Mg alloy stents are safe and reliable; the struts are covered by 

neointima after 6 d; higher minimal lumen diameter on week 4 

and 12 than the 316L stent group 

WE 43 [8] 

Domestic (28d) or 

minipigs Pig 

(coronary artery, 3 

months) 

Degradation after 28 d post-surgery; less neointima compare to 

316L stent; 

stenosis increased from 28 d to 3 months; decreased lumen area 

WE43 [75] 
Domestic pig 

coronary artery,28d 
Reduced endothelial proliferation, presence of gas pockets 

Mg stent [76] 

Left pulmonary 

artery of a preterm 

baby patient, 5 

months 

Complete degradation occurred during 5 months; no in-stent 

obstruction or neointimal hypertrophy was observed; the 

degradation level was tolerated and the stent secured 

reperfusion of the previously occluded left pulmonary artery. 
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Table 1.2. Bio-degradable stents developed or under development (as per Iqbal et al. [80] 

and Boland et al. [81]): a – with  obtained market approval in Europe, b – used in pre-

clinical trials, c – in clinical trials, d – discontinued 

Stent Material Coating Drug Strut 

thickness 

[m] 

Absorption 

time 

[month] 

Polymeric 
aIgaki-Tamai 

dABSORB BVS 

1.0 
aABSORB BVS 

1.1 
aABSORB GT1 

aDeSolve 
dIdeal BTI 

pcIdeal BioStent 
dREVA 

cReZolve 
cFantom 

aART 18AZ 
cFortitude 
pcXinsorb 

pcAcute BRS 

Metallic 
dAMS 1.0 

dDREAMS-1 
cDREAMS-2 

 

 

PLLA 

PLLA 

PLLA 

PLLA 

PLLA 

PLLA 

SA/AA 

PTD-PC 

PTD-PC 

PTD-PC 

PDLLA 

PLLA 

PLLA 

PLLA, 

PLDA-

ECL 

 

Mg alloy 

Mg alloy 

Mg alloy 

 

 

None 

PDLLA 

PDLLA 

None 

None 

Salicylate 

Salicylate 

None 

None 

None 

None 

None 

NA 

NA 

 

 

 

None 

None 

PLLA 

 

None 

Everolimus 

Everolimus 

Everolimus 

Myolimus 

Sirolimus 

Sirolimus 

None 

Sirolimus 

NA 

None 

None 

Sirolimus 

EPC, 

sirolimus 

 

 

None 

Paclitaxel 

Sirolimus 

 

 

170 

156 

156 

156 

150 

200 

175 

200 

200 

114-228 

170 

150-200 

160 

150 

 

 

 

165 

120 

125 

 

 

24 

18-24 

18-24 

18-24 

12-24 

6-9 

12 

24 

4-6 

24 

3-6 

3-6 

NA 

NA 

 

 

 

<4 

9 

9 

 

 

This may be due to the pre-existence of numerous well-characterized Food and Drug 

Administration (FDA) approved polymeric materials from which to manufacture a fully 

bio-degradable polymeric stent, with the most frequently used polymer being PLLA [82, 

83]. However, the recent ABSORB II trial [84]—which evaluated the performance of a 

polymeric scaffold relative to a conventional metallic drug-eluting device—found poor 

post-intervention luminal gains when polymeric devices were employed.  This was due, in 

part, to the reluctance of participating physicians to fully expand the brittle polymeric 

material [85]. Furthermore, a 10-year follow-up with patients that had received an Igaki-

Tamai PLLA coronary stent found poor tissue remodeling through histological analysis 
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[86]. The area previously occupied by PLLA appeared to be filled with proteoglycan, a 

component of extracellular matrix, but was acellular. 

Bio-degradable polymeric materials have the developmental advantage of degrading 

predominantly by a simple hydrolysis reaction, producing predictable degradation products, 

and degrading through similar mechanisms whether evaluated in vitro or in vivo [87].  In 

contrast, the development of a suitable metallic material for stenting applications, though 

promising [73], has been elusive. This may be due to the lack of suitable pre-existing 

materials, as well as the high cost and complexity of developing new materials. Metallic 

materials often corrode via complex mechanisms that produce a wide range of products, 

and the rates and products of corrosion can differ fundamentally between in vitro and in 

vivo conditions [88-91]. This has made it difficult to translate success at the bench top into 

a successful stent. Consequently, the scientific and industrial community has engaged in 

more than a decade-long focus on Mg and Fe [92] that has failed to realize the promise of 

acceptable fully bio-degradable metallic alternative to the emerging fully bio-degradable 

polymeric stents. 

1.2.3.2 Mechanical facts  

Bio-degradable stents are designed to provide mechanical support for the arterial wall 

during the remodeling period and to degrade with the progression of tissue regeneration 

[30]. Ideally, in order to achieve the appropriate scaffolding, the mechanical properties of 

the candidate materials should be close to those of 316L stainless steel, which has been 

traditionally considered the gold standard material for stent constructs [93]. The stent 
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material itself and its degradation products should also be non-toxic and compatible in the 

cardiovascular environment [26].  

The mechanical properties and degradation rates for polymers and metals tested for 

cardiovascular stent applications are compiled in Tables 1.3 and 1.4. The mechanical 

properties reported in these tables include elastic (Young’s) modulus (YM), yield strength 

(YS), ultimate tensile strength (UTS) and elongation. These mechanical properties are 

indicators of stent radial strength, acute and chronic recoil, axial and radial flexibility, 

deliverability, profile and lifetime integrity [94]. The YM provides a measure of how well 

the stent material resists deformation. Stents are typically delivered through a balloon 

catheter and then expanded upon proper positioning in the artery. The stent material needs 

to sustain deformations without cracking or fragmenting during delivery. The critical value 

for the YM of materials used for stents is not well defined but it is preferable to have a high 

value to reduce stent recoil.  

Materials with a high UTS (>300 MPa) and low YS (~200 MPa) value are preferred for 

the design of stents. A high UTS, combined with high YM, is needed to increase the stent’s 

radial strength. A low YS is desirable for ease of crimping the stent onto a balloon tipped 

catheter and then expanding the stent at low balloon pressures during deployment. A YS 

that is too high can trigger acute recoil during or after balloon deflation. Unfortunately, 

most of the materials with high UTS also have a high YS.  Many polymers do not exhibit 

a proportional limit in tension and so YS is often not reported. As shown in Tables 1.3 and 

1.4, the UTS values for metals are superior to those of polymers.  
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Table 1.3. Mechanical and degradation properties of polymers tested for cardiovascular 

stent applications [68, 95] (The values heavily depend on the molecular weight and 

should be treated as approximate values only.) 

 

Polymer 

 

Melting  

Point 

[oC] 

 

Young 

Modulus 

[GPa] 

Ultimate 

Tensile 

Strength 

[MPa] 

 

Elongation 

 

[%] 

 

Degradation 

Time 

[month] 

PLLA  170-180 2.8-4.0 50 5-10 >24 [68] 

PGA 225-230 >7.0 55 15-20 6-12 

PDLLA amorphous 1.4-2.7 - 3-10 12-16 

PCL 55-65 0.2-0.3 10 300-500 >24 

TD-PCP [96] 290-320 - 10-30 10-13 7 

 

Additionally, the YM value should be as high as possible to prevent acute recoil, and elastic 

recoil of stent on expansion should be below 4%. Poncin and Proft additionally suggest 

using the YS/YM ratio in characterizing the elastic range of materials, which provides an 

indication of the expected recoil upon deflation of the balloon [110]. This value is between 

0.16 and 0.32 for stainless steel and cobalt alloys used in manufacturing of permanent 

stents. Bio-degradable stent materials should probably have similar YS/YM values. Both 

UTS and elongation to failure influence fatigue resistance and fracture toughness of the 

stents. An elongation of 30% or higher is typically preferred in materials used for stent 

design, although the acceptable criterion often reported is >15-18%. 
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Table 1.4. Mechanical and degradation properties of Fe and Mg and their alloys tested 

for cardiovascular stent applications 

 

Material 

 

Metallurgy 

 

Grain 

size 

[μm] 

 

YM 

[GPa] 

 

YS 

[MPa] 

 

UTS 

[MPa] 

 

Elongation 

[%] 

 

DR 

[mm/year] 

Iron and Iron Alloys 

SS316L [97] annealed 12-30 193 190 490 40 - 

Armco Fe [98] annealed 40 200 150 200 40 0.20 

Fe-35Mn [55] annealed <100  230 430 30 0.44 

Fe-10Mn-1Pd 

[58] 
heat-treated - 60 

850-

950 

1450-

1550 
2-8 - 

Fe-21Mn-0.7C-

1Pd [99, 100] 
heat-treated - 50-100 

690-

1095 

1020-

1320 
24-48 0.21 

Fe [56] 

electrocasted 

annealed at 

550oC 

2-8 54 270 290 18 0.46-1.22 

Alloyed Fe with 

(Mn, Co, Al, 

W, Sn, B, C 

and S) [40] 

as rolled 
100-

400 
- 

390-

450 

520-

860 
5-10 0.09-0.19 

Nanocrystalline 

Fe [54] 

Equal 

channel 

angular 

processing 

0.08-

0.20 
- - 

250-

450 
- 0.09-0.2 

Magnesium and Magnesium Alloys 

Pure Mg [53] as cast - 41 20 86 13 407 

WE43 alloy 

[101] 
extruded T5 10 44 195 280 2 1.35 

AM60B-F [53, 

101, 102] 
die cast 25 45 - 220 6-8 8.97 

AZ91D [88, 

101] 
die cast - - 150 230 3 2.80 

AZ31 [101, 

103] 
extruded - 45 

125-

135 
235 7 1.17* 

ZW21 [26, 104, 

105] 
extruded 4 - 200 270 17 - 

WZ21 [26, 104, 

105] 
extruded 7 - 140 250 20 - 

Mg-Zn [61, 

106] 
extruded - 42 170 280 19 0.16 

Mg-Zn-Mn 

[101, 107] 
extruded - - 247 280 22 0.92* 

Mg-Ca [101, 

108, 109] 
extruded - - 136 240 11 1.71 

 *the degradation rate for AZ31 and Mg-Zn-Mn is from in vivo test, others are calculated from potentiodynamic 
polarization test.  
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The minimum lifetime before failure of permanent stents made of 316L stainless steel is 

10 years, which translates to ~400 million cycles. The same criteria do not apply to 

absorbable stents; at present, there is no standard defined for this new generation of 

cardiovascular stents. Since a bio-degradable stent needs to retain its mechanical integrity 

for 3 to 6 months, the stent material should be acceptable if it is able to sustain ~10 to 20 

million cycles before failure occurs. 

Despite the increased challenges faced in their development, metallic materials hold 

several important advantages over polymeric materials.  Metallic stents are considered to 

be superior to polymeric devices in terms of mechanical performance (i.e. ultimate tensile 

strength elastic range [94]) and ease of translation to a clinical environment.  Their greater 

mechanical strength and better elastic properties are more similar to traditional metallic 

stents and permit a greater flexibility in stent designs and a wider range of expandable 

diameters during deployment. The reduced radial strength and ductility of polymeric stents 

have necessitated substantially larger struts (which have the side effect of increasing 

vascular injury and blood flow disruptions) and the introduction of a locking mechanism 

to maintain luminal cross sectional area following deployment [111].  The larger polymer 

stents require a larger catheter for delivery relative to metal stents, which may exclude 

pediatric populations [112]. The larger stent struts may also increase susceptibility to early 

and midterm thrombosis [113].  The locking mechanism further constrains stent design 

flexibility and the freedom to control the final stent diameter during deployment.  It may 

also be a concern from a device safety standpoint, as this complex feature may increase the 

risks of device failure.  Even in a successful deployment, lower material ductility may also 

affect the clinician’s willingness to expand a polymer stent sufficiently to completely 
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overcome recoil and achieve full deployment. This effect was hypothesized to have led to 

significantly lower post-procedure luminal gains with a polymeric stent relative to a 

metallic stent in the Absorb II clinical trial [114, 115]. 

As compared to polymers, Fe- and Mg-based metallic absorbable scaffolds: 

• exhibit similar radial force to stainless steel [53] and cobalt chromium stents [6];  

• display the superior profile of metallic scaffolds, which makes them more 

deliverable [116]; and  

• can bioabsorb at comparable rates with arterial remodeling and wound healing [53]. 

1.2.3.3 Biocompatibility and corrosion facts  

Mechanical strength similarity to conventional stents allows clinicians to have reasonable 

deployment expectations when using a bio-degradable metallic stent. The potentially 

beneficial bioactivity of corrosion products [117] raises the exciting prospect that 

pathogenic cell responses to stent implantation may be modulated as the stent corrodes. 

Therefore, the ability to control corrosion rates and behavior by conventional metallurgical 

and alloying approaches may allow for corrosion product-mediated reprogramming of host 

responses near the host-implant interface. As of today, only stents made of Mg alloys have 

been reported to go through clinical trials.[79] The first design of Mg-based stents from 

Biotronik (AMS-1.0), composed of about 93 wt.% of Mg and 7 wt.% of rare earth elements, 

degraded in electrolyte solutions in about 60 days [80]. Although the degradation rate was 

too high, pre-clinical studies indicated a rapid endotheliazation [118]. Clinical studies on 

63 patients confirmed the stent’s safety, with no cardiac death, myocardial infarction, or 

thrombosis, although the target lesion revascularization was ~24% and ~27% at 4 and 12 
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months, respectively [119]. Improved metallic stents from Biotronik (DREAMS-1 and 

DREAMS-2) utilize the Mg-alloy exhibiting a slower degradation rate and improved radial 

strength than what was used for AMS-1.0. DREAMS-1 additionally incorporated anti-

proliferative drugs to reduce neointimal hyperplasia and prevent restenosis. DREAMS-2 is 

an improved version of DREAMS-1 that instead of incorporateing drug into a porous 

structure of metal, is additionally covered with a drug-eluting PLLA thin coating.  

Immunosuppressive and antiproliferative drug prevents restenosis, whereas PLLA reduces 

the stent’s degradation rate at the early stage. 

Biocompatibility and corrosion facts of degradable alloys and polymers are listed in Table 

1.5. For bio-degradable metals, the released metallic ions may induce local and systemic 

toxicity to host cells.  Therefore, the overall amount of the element used to design a final 

device and the local release rate for each ion during degradation should be carefully 

examined. The degradation mode for polymers seems less harmful, but its in vivo long term 

overdose effects should not be neglected. A possible cause for concern for polymers is a 

recent report that a degraded Igaki-Tamai polymer stent was replaced with proteoglycans 

[86]. This may indicate poor extracellular matrix regeneration within the footprint of a 

PLLA stent. Poor matrix regeneration may be a consequence of the mode of polymer 

degradation vs. that of metals, which proceeds by a bulk degradation that may produce 

voids inside the material vs. surface corrosion taking place directly at the tissue-metal 

interface, which allows for an expansion of the tissue front directly into the degrading 

implant footprint.  
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Table 1.5. Key properties and aspects of potential bio-degradable metals and polymers 

for cardiovascular stent applications [120] 

 Fe-alloys Mg-alloys Polymers 

Essential trace 

element 
Yes Yes No 

Recommended 

daily intake 
6-20 mg 375-500 mg - 

Blood serum 

level 
5.0-17.6 g/l 0.73-1.06 mM - 

In vivo long 

term overdose 

effects 

Damage of lipid 

membranes, proteins and 

DNA; 

Stimulus for 

inflammations; 

Increase of free radicals. 

Excessive Mg leads to 

nausea; 

Reduction of the 

excitability of 

neuromuscular, 

smooth muscular and 

cardiac regions. 

Adverse tissue 

reactions; 

Inflammatory tissue 

reactions, necrosis 

and aneurysms. 

Effect on local 

pH during 

degradation 

Alkalescent Alkalescent Acidic 

Corrosion mode Localized corrosion 
Mostly localized and 

pitting 

Hydrolytic 

(volume) or 

enzymatic (surface) 

Expected 

gaseous 

corrosion 

products 

None Hydrogen None 

Expected solid 

corrosion 

products 

Fe(OH)2, α-FeO(OH), 

Fe3O4 

Mg(OH)2, MgO, 

MgCl2, (Ca1-

xMgx)10(PO4)6OH2 

Water soluble and 

non-soluble 

oligomers 

 

1.3 Zn-based stent: An innovative solution for bio-degradable stent 

With the purpose of searching for suitable alloying elements, Song [64] explored in vitro 

corrosion rates of several magnesium alloys in 2007, pointing out that Ca, Mn and Zn could 

be appropriate candidates. Zinc, as one of the most abundant nutritionally essential 

elements in the human body [9], began to be studied as an alloying element or bio-

degradable material. Zhang [61] studied the binary Mg-6Zn magnesium alloy which 

showed reduced corrosion rate, good biocompatibility in vivo and suitable mechanical 

properties.  In 2011, Vojtech D et al. [121] prepared binary Zn-Mg alloys containing Mg 

content up to 3 wt.%, and found that the addition of 1 wt.% Mg significantly improved the 
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mechanical properties of pure Zn from 30 MPa (UTS) to 110 MPa (UTS). They also 

indicated that pure Zn and binary Zn-Mg alloys exhibited close corrosion rates (~0.018-

0.145 mm/yr), which were significantly lower than those of Mg and AZ91HP alloys. 

Recently Bowen et al. [10] examined the in vivo corrosion behavior of pure zinc for the 

first time and concluded that unlike iron, the corrosion of pure zinc does not produce a 

potentially hazardous product. Zinc also corrodes much slower than magnesium (4-6 

months), indicating the best aspect of zinc in AMS field [10]. One major concern for a pure 

zinc stent is the low tensile strength (only 120 MPa) and zinc might not be strong enough 

to hold open human arteries. Material used for the stent needs to have the tensile 

strength >200 MPa, preferentially close to 300 MPa [122]. Improvements in mechanical 

properties of zinc can be approached through either manipulation of metal micro-/nano-

structure [123, 124] or alloying [121].  
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Chapter 2 Objectives and Hypotheses 

2.1 The proposed Zn-Li alloy in stent application 

The early use of lithium was as a hardener in aluminum-alloy bearing materials in the 1960s 

[1-3]. The aging and mechanical properties in ternary and more complex alloy systems 

were extensively studied at the beginning, due to the great desire of high-strength alloys 

for operation at room and elevated temperatures in the Soviet Union and abroad. Zakharov 

and Fridlyander showed the favorable effect of lithium on the mechanical properties of 

aluminum alloys [3, 4]. Later Drits noted that alloying of Al-Zn-Mg alloys with small 

amounts of lithium (less than 0.75%) could not only increase the strength properties but 

also reduce the softening of the alloy on aging at high temperatures and long times [5].  

The illumination of adding lithium into zinc to improve the stent largely comes from the 

positive sides of magnesium alloy LAE442 that has 4 wt.% of lithium, 4 wt.% of 

aluminium and 2 wt.% of rare-earth elements. LAE442 has been tested as non-allergic [6], 

bio-degradable, which exhibits slow and regular degradation without the formation of 

radiographic gas [7, 8], and is widely considered as the most promising bio-degradable 

implant for orthopedic use [7, 9].  

Previous reports on small additions of lithium to bio-degradable alloys include LAE 442, 

which contains 4 wt.% of lithium and demonstrated good biocompatibility when implanted 

to the New Zealand rabbit [7]. After three months, it degraded very regularly (4.7 ± 0.1 

mm2) with volume loss of ~46%. No clinical intolerances were found during the 12 month 
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implantation [7]. It can also be estimated that Li-Zn alloys could slow down the corrosion 

rate, which means the Zn-Li alloys could probably remain intact in vivo for more than 4 

months as compared to the pure zinc. 

 In terms of clinical feasibility, lithium was detected in human organs and fetal tissues 

already in the late 19th century, leading to early suggestions of possible specific functions 

in the organism [10]. Animal studies have demonstrated that Li plays a role in the 

expansion of the pluripotential stem cell pool to more mature progenitor cells and blood 

elements [10, 11]. In lithium deficient rats, behavioral abnormalities and a significant 

negative effect on litter size and litter weight at birth were observed [10]. In lithium 

deficient goats the conception rate was reduced, gravid lithium deficient goats experienced 

a higher incidence of spontaneous abortions [10]. In humans, the fact that lithium can calm 

the highs of mania and lift the lows of depression has been known for more than 60 years 

[11]. It is the only medication that reduces the risk of suicide in bipolar patients and it is 

inexpensive. However, there are the side effects such as tremors, frequent urination, thyroid 

problems, weight gain, or even kidney failure if overdosed because the toxic dose of 

lithium is only about two to three times higher than its therapeutic dose [11].  

The toxic potential of a zinc-lithium stent should be negligible. A cut, polished alloy stent 

may comprise, to a first approximation, ~50 mg of the pure metal. Assuming complete 

degradation within one year, the expected daily dose of elements are estimated here (shown 

in Table 2.1), which are far below the daily body consumption allowance [10].  
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Table 2.1. Released amount of elements from the stent should be below a daily body 

consumption allowance 

Intake Daily Allowance for 

Adult males 

*Estimated release from 

Zn-Li alloy 

Zn 10 mg [12] <140 µg 

Li 0.6 mg [10] < 1 µg 

(*The daily amount of release can be obtained by dividing the mass of Zn and Li into 365 

days.  For alloy Zn-14 at.% Li, if assuming the stent is 50 mg, then the total mass of Li is 

0.38 mg so the daily release of Li into biological system is 1 µg).  

 

2.2 Objectives 

The objectives of this Ph.D. research include (Fig.2.1):  

• to produce a new Zn-Li alloy system with superior mechanical properties and to 

understand its phase constitutions, microstructure evolutions and mechanical properties 

with changing composition; then select for the optimum compositions for in vitro and 

in vivo experiments; 

• to simulate the degradation behavior of the Zn-Li alloy in vitro and explore the relations 

between corrosion rate, corrosion products and surface morphology with changing 

compositions; 

• to show the potential of the Zn-Li alloy in stent application by investigating the 

degradation mechanism, the rate of bioabsorption, biocompatibility, cytotoxicity and 

corrosion product migration in vivo using a rat model.  
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Fig. 2.1. Research flowchart for the Zn-Li system in this proposal 

 

2.3 Hypotheses 

Hypothesis I: The increase of Li from 2% to 6 at.% would increase the mechanical 

strength of the Zn alloy while retaining suitable ductility due to the intermetallic 

precipitation hardening. 
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Fig. 2.2. Phase diagram of Zn-Li (Retrieved from the ASM Phase Diagram database) 

 

Based on the binary phase diagram (Fig.2.2) and the compositions we chose, the final 

product could be a Zn-rich solid solution and the LiZn4 intermetallic. In solid solutions, 

lithium solute atoms can either sit in substitutional or interstitial positions. The solute atoms 

cause lattice distortions that impede dislocation motion, increasing the yield stress of the 

Zn-Li alloys [13]. Increasing the concentration of the lithium atoms will increase the yield 

strength of zinc while retaining its ductility due to the intermetallic precipitation hardening 

[14]. However, there could be a limit to the amount of solute that can be added before a 

second phase is created [13]. Once above this limit concentration, adding more lithium will 

cause the formation of a second phase. The Zn-Li alloys that compose the second phase 

precipitates act as pinning points in a similar manner to solutes. If the precipitated atoms 

are small, the dislocations would cut through them. As a result, new surfaces of the particle 
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would get exposed to the matrix and the particle-matrix interfacial energy would increase; 

for larger precipitate particles with further additions, looping or bowing of the dislocations 

would occur which result in longer dislocations [15]. The interaction of precipitated 

intermetallics with the dislocations could hinder the propagation of dislocations and result 

in the increase of strength [15]. We hope to establish some relations between the volume 

fractions of the intermetallics and the mechanical strength. 

Another possible strengthening mechanism here is the texture strengthening. In that case, 

randomly oriented grains would slip on their appropriate glide systems and rotate from 

their initial conditions, and a strong preferred orientation develops so that certain slip 

planes tend to align in the direction of rolling [16]. This texture phenomenon depends 

heavily on the compositions and it happens only when 8 at.% or more lithium is added into 

the Zn system.  

The study of lattice parameters of solid solutions, evolution of microstructures, the 

volumetric fractions of intermetallics and the texture transformations at different 

compositions could help us understand the physiochemical characteristics of this alloy 

system. This could give us direction on if or how the alloying of lithium strengthens zinc, 

providing a basis for selecting the optimum alloy compositions needed for the in vitro and 

in vivo corrosion testing.  

Hypothesis II: The Zn-Li alloy will exhibit near ideal corrosion behavior like pure Zn, and 

the corrosion rate of Zn-Li alloy will increase a bit with addition of Li according to the 

relationship: 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = 𝑓(𝑖𝑐𝑜𝑟𝑟).  
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With uniform distribution of anodic/cathodic reactants, corrosion reactions would proceed 

in a uniform manner which would result in the uniform loss of dimension. As mentioned 

in Hypothesis II, micro-galvanic corrosion could be one of the leading corrosions. 

Therefore, if small and finely dispersed intermetallic phases are distributed uniformly in 

the metal matrix, micro-galvanic corrosion would happen everywhere and macroscopically 

uniform corrosion can be achieved. It should be noted that corrosion also depends on the 

biological environment. In vitro testing fluid consisting of inorganic ions contributes to the 

formation of mineral-like corrosion layers; while the in vivo environment carries organic 

components such as proteins and cells which might lead to a high nitrogen level in the 

corrosion layer [17]. 

In relation to the corrosion rate of most implant materials, electrochemical techniques are 

used in view of their sensitivity. The most common method of corrosion rate determination 

for slowly corroding materials is based on the determination of the polarization resistance 

Rp (ASTM G59).  

𝑅𝑝 =
𝜕∆𝐸

𝜕𝑖
                                                                   Eq. 2.1 

𝑖𝑐𝑜𝑟𝑟 = 106×
𝐵

𝑅𝑝
                                                       Eq. 2.2 

𝐵 =
𝑏𝑎𝑏𝑐

2.303(𝑏𝑎+𝑏𝑐)
                                                        Eq. 2.3 

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = 3.27×10−3  
𝑖𝑐𝑜𝑟𝑟𝐸𝑊

𝜌
                  Eq. 2.4 

(where icorr defined as corrosion current density, mμA/cm2; ba and bc are Tafel constants 

obtained from the anodic and cathodic polarization measurement, V; EW the equivalent 

mass of corroding species, g; ρ  is the density of corroding material, g/cm3). 
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The corrosion rate of Zn-Li alloys could increase with increasing lithium content: 1) as the 

lithium is very active, so increasing addition of lithium may increase the activity of the zinc 

alloys and shift the corrosion potential to more negative values; 2) as we observed from 

XRD, more lithium would increase the amount of LiZn4 intermetallics. The intermetallic 

phases would act as a cathode and the Zn matrix act as the anode, which could generate 

micro-galvanic corrosion. The increased presence of intermetallic phases may lead to the 

formation of more galvanic cells so that the galvanic corrosion could be enhanced and more 

severe corrosion would occur; 3) however the increased incorporation of lithium into solid 

solutions or redundant lithium around solid solutions may reduce the corrosion rate-as they 

can also decrease the potential differences at the interfaces of phases and matrix. The study 

of solubility of lithium could help understand this effect.  

Hypothesis III: Zn-Li alloys will exhibit desirable biocompatibility and a benign/stable 

cellular response in vivo. 

Previous studies with Zn wires within the abdominal aorta demonstrated excellent 

biocompatibility [18].  At 2.5 months the Zn wire was completely neo-endothelialized with 

a thin layer of endothelial cells.  There was no significant inflammatory response, intimal 

hyperplasia, or localized necrosis over 6.5 months. These findings indicate that Zn may 

suppress localized cellular activity that contributes to the thickening of the neo-intimal.  

To explore the biocompatibility of alloy wires, both 4N Zn and Zn-Li alloy wire samples 

with diameter of 0.25 mm and length of 2 cm were punched into the abdominal aorta and 

then directed into the lumen for 10 mm before exteriorization. In this case, wires were 

immersed in the flowing blood to mimic the environment of a stent strut.  After 2-12 
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months, rats were euthanized and rat aortas containing the wire implants were harvested. 

The wires had not become dislocated from their implant location at the time of collection. 

To preserve the corrosion layer, explanted wires were preserved in 200 proof ethanol.  

The leftover wires with aortas were snap-frozen in liquid nitrogen and cryo-sectioned for 

histological analysis [19]. Before staining, samples were preserved in a -80 oC freezer. 

Cross sections were ethanol fixed and then stained with hematoxylin and eosin (H&E), 

mounted in Permount solution and imaged using an Olympus BX51, DP70 bright-field 

microscope.  

The neointimal tissue with smooth muscle cells and inflammatory cells were inspected 

around the implants; variations of cell densities in the artery wall, lumen interface and 

biocorrosion area were measured.  

The in vivo biocompatibility study of this system would help show the promise of Zn-Li 

alloy as a cardiovascular stent. 
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Chapter 3 Results and Discussions: Structural characteristics 

and in vitro biodegradation of a novel Zn-Li alloy prepared by 

induction melting and hot rolling* 

Abstract 

Zinc shows great promise as a bio-degradable metal, however, the low tensile strength of 

pure zinc limits its application for endovascular stent purposes. In this study, a new Zn-xLi 

alloy (with x=2, 4, 6 at.%) was prepared by induction melting in an argon atmosphere and 

processed through hot rolling. Structures of the formulated binary alloys were 

characterized by x-ray diffraction and optical microscopy. Mechanical testing showed that 

the incorporation of Li into Zn increased ultimate tensile strength from <120 MPa (pure 

Zn) to >560 MPa (x=6 at.%). In vitro corrosion behavior was evaluated by immersion tests 

in simulated body fluid. The Zn-2Li and Zn-4Li corrosion study demonstrated that 

corrosion rates and products resemble those observed for pure Zn in vivo, and in addition, 

the Zn-4Li alloy exhibits higher resistance to corrosion as compared to Zn-2Li. The 

findings herein encourage further exploration of Zn-Li systems for structural use in 

biomedical vascular support applications with the ultimate goal of simplifying stent 

procedures thereby reducing stent related complications. 

Keywords: Zn-Li; microstructure; strength; elongation; in vitro biodegradation 

 

*The material contained in this section is previously published at Metallurgical and 

Materials Transactions A by S Zhao, C T. McNamara, N Verhun, J P. Braykovich, J 

Goldman, and J Drelich, and is reproduced here with permission. 
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3.1 Introduction 

Bio-degradable stents are envisaged to support the arterial wall during remodeling after 

stent deployment and to degrade harmlessly thereafter. This new generation of 

endovascular stents may eliminate the potential for chronic inflammation [1] and 

thrombosis risks [2] of permanent stents. They could also alleviate the repetition of 

invasive procedures when stenting at the same site in the event of restenosis [3]. Over the 

past decade, polymeric and metallic materials have been widely investigated for 

endovascular stent applications with very limited success [4-7]. The previous reports 

demonstrated that neither polymers nor metallic candidates such as iron and magnesium 

are ideal for bio-degradable stenting applications due to either poor mechanical properties 

[7-10], incomplete bioabsorption of corrosion products [11], or premature degradation [12].  

Consequently, the search for new bio-degradable materials continues [7].  

Zinc is one of the most abundant nutritionally essential elements in the human body [13] 

and studies have been initiated examining zinc as a bio-degradable material in recent years 

[14]. One major concern regarding the use of a pure zinc stent is the material’s low intrinsic 

ultimate tensile strength (UTS) of about 120 MPa or less, where the cardiovascular stent 

application requires a material with UTS closer to 300 MPa [15]. Improvements in 

mechanical properties of zinc can be approached through alloying [16, 17] and 

manipulation of metal micro-/nano-structure [18, 19]. Lithium is one of the few elements 

with significant solubility in zinc, and Zn-Li is therefore among a few potentially age-

hardenable systems.  
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Fig. 3.1. Zinc-lithium phase diagram (prepared based on Ref.[20]) 

 

Hypoeutectic 2 at.% Li (0.2 wt.%), eutectic 4 at.% Li (0.4 wt.%) and hypereutectic 6 at.% 

Li (0.7 wt.%) compositions were chosen for this study based on the phase diagram 

produced by Pelton [20] (Fig.3.1). The eutectic reaction under the casting conditions used 

herein is expected to result in prolific lamellar formation during cooling, so that much of 

the available Li is consumed and the only Li available for post-solidification strengthening 

is what is left in supersaturation upon cooling below the eutectic temperature in (Zn)Li 

regions. Therefore, precipitation hardening is expected to play a major role in the 2%, a 

minor role in the 4%, and a negligible role in the 6% alloy. However, the LiZn4 formed as 

part of the lamellar structure does have an impact on yield and ultimate strength as the 

shear moduli between this and the Zn(Li) phase is different, and the strength increment is 

proportional to 1/λ1/2, where λ is the lamellar spacing, according to a Hall-Petch relation. 

This effect is expected to play a major role in the 6% alloy, a minor role in the 4%, and a 

negligible role in the 2% alloy. Strengthening from further grain size refinement is also 
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possible since the recrystallization from hot rolling may produce a finer structure than the 

as-cast material in all three alloys, although grain size is not explicitly measured here. Work 

hardening is not anticipated to play a role in these tensile or hardness tests as the alloys 

here are annealed directly following the hot-rolling process, which is intended to reduce 

stored dislocation energy while precipitating as much LiZn4 as possible. If crystalline slip 

becomes too difficult because of the aforementioned obstacles to dislocation motion during 

loading of an HCP crystal, deformation via twinning mechanisms may be activated which 

allow deformation through much larger scale atomic rearrangements. 

An endovascular metallic stent weighs approximately 50 mg [14]. If it degrades completely 

within one year, the expected daily dose of Zn and Li would be below 140 and 1 µg, 

respectively, for an alloy containing 14 at.% Li (Table 3.1). These values are roughly two 

orders of magnitude below the daily bodily consumption allowances [21, 22] and thus the 

toxic potential of a zinc-lithium stent is anticipated to be negligible in terms of the overall 

quantities of the elements released.  

Table 3.1. Estimated daily release of Zn and Li from a 50 mg stent compared to daily 

bodily consumption allowances 

Intake Daily Allowance for 

Adult males 

*Estimated release from 

Zn-Li alloy 

Zn 10 mg [22] 140 µg 

Li 0.6 mg [21] 1 µg 

(*The daily amount of release can be obtained by dividing the mass of Zn and Li assuming 

a full degradation timeframe of 365 days. For an alloy of Zn-14 at.% Li and a stent mass 

of 50 mg, the total mass of Li is 0.38 mg so the daily release of Li into biological system 

is 1 µg). 

With regard to local toxic effects, rapid transport of ions in vascular tissue [23] would 

prevent elemental enrichment and cytotoxicity in the implant’s vicinity [10]. Lithium has 
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been successfully used in bio-degradable Mg alloy LAE442 which has 4 wt.% of lithium, 

4 wt.% of aluminm, and 2 wt.% of rare-earth elements. LAE442 has been shown to be non-

allergenic [24], bio-degradable, and to degrade more slowly than pure magnesium without 

the formation of radiographically oBEIrvable gas [25, 26] and with a more uniform 

degradation behavior [26]. It has been considered as the most promising implant material 

for orthopedic use [27].  

Based on this evidence, alloying zinc with lithium is expected to produce a stent material 

with favorable biocompatibility and reasonable strength. To our knowledge, no systematic 

research has been reported on the Zn-Li alloy as a bio-degradable implant material. Most 

of the existing studies in the binary Li-Zn system focus on thermodynamic properties [20], 

the crystal structures of LiZnx compounds [28], preliminary charge-discharge 

characteristics [29], and the reactivity of lithium-ion batteries [30]. In the rechargeable Li-

ion battery area, the Li-Zn alloys have been considered as an alternative to graphite-based 

anode materials [28]. As for the five binary Li-Zn intermetallic phases, LiZn was 

considered to be crystalize in the NaTi structure type [31], and LiZn4 was proposed to have 

a Mg-type structure with a random distribution of Li and Zn [32]. Crystal structures of 

Li2Zn3 at low and high temperature modifications were determined by single-crystal X-ray 

diffraction techniques in 2012 [33]. The structures of Li2Zn5 and LiZn2 phases remain 

unexplored.   

This new series of bio-degradable Zn-Li alloys is formulated, cast, and processed through 

hot rolling in this study to simulate commercial processes such as extrusion. The alloys are 
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characterized regarding their as-processed tensile properties and degradation in simulated 

body fluid. 

3.2 Materials and methods  

3.2.1 Alloy preparation 

Pure Zn (99.99 wt.%, Alfa Aesar company, Ward Hill, MA) and pure Li foil (99.9 wt.%, 

Alfa Aesar company, Ward Hill, MA) were loaded into a graphite crucible in an inert-

atmosphere glove box to avoid atmospheric oxidation of lithium.  

 

Fig. 3.2. Fabrication of Zn-Li ingots, strips, and dogbone tensile bars; a-c. vacuum 

induction melting set-up for alloy ingots; d. uniaxial rolling process for reduce ingots 

from 1.8mm to ~300µm; e. layout of Japax wire EDM g-code for precision cutting of 

dogbone tensile bars.  

A custom vacuum induction melting setup at Michigan Tech (Fig.3.2a-c) was used to 

fabricate the Zn-Li alloys.  They were cast by induction melting with a power of ~3 kW 
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under a 0.9 atm argon atmosphere. The ultimate vacuum level was 2 ×10-4 torr. A stepper 

motor controlled by a custom LabView (National Instruments, Austin, TX) script tilt-

poured the melt into a 50 mm diameter stainless steel mold. These ingots were squared and 

sectioned to a size of 35×35×60 mm and underwent deformation processing via hot rolling 

to simulate the extrusion process used in conventional stent tube forming. Before rolling, 

alloys were placed in a box furnace at 662°F (350°C) for several minutes until reaching the 

furnace temperature. The rolling process was performed on a Fenn (Newington, CT) 2-

high mill equipped with 133 mm rolls at 42 rpm (Fig.3.2d). 

After three passes through the rolling mill, the sample thickness was recorded and the 

sample was returned to the furnace for 3 mins. The final sheet was reduced from 35 mm to 

approximately 300 μm in thickness for a total reduction of cross-sectional area of 99%. 

From these sheets, dogbone tensile bars were cut for standard tests per ASTM E8/E8M-11 

using wire electro discharge machining (wire EDM) on a PC-controlled Japax Lux-3 

(McWilliams EDM, Brighton, MI) (Fig.3.2e).  

3.2.2 Alloy characterization  

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) (PerkinElmer 

Optima 7000DV, Waltham, MA) was utilized in detecting the compositions of Zn alloy 

sheets after hot rolling. To produce a solution suitable for ICP-OES analysis, 250 mg of 

each alloy was dissolved in 40 ml of 6M HCl, which was diluted for analysis. 

Microscopy samples of both as-cast and hot-rolled material were mounted in epoxy and 

polished with 600-grit, 800-grit, and 1200-grit silicon carbide. Final polishing steps were 

performed using 6 μm, 1 μm and 0.1 μm diamond cloth and 0.05 μm alumina slurry on 
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microfiber. Microstructure of alloys were recorded using a Leica EC3 (Leica Microsystems; 

Buffalo Grove, Illinois) digital camera on an Olympus PMG-3 metallograph (Olympus, 

Shinjuku, Tokyo, Japan). 

X-ray diffraction (XRD) was performed on an XDS2000 θ/θ X-ray diffractometer (Scintag 

Inc., Cupertino, CA) with CuKα radiation (k = 1.540562 Å). The scans were performed 

continuously from 20° to 100° in 2θ at a speed of 0.6°/min with a step size of 0.02°.  

Uniaxial tensile tests were performed using an Instron 5984 electro-mechanical testing 

machine equipped with a 150 kN load cell (Instron, Norwood, MA). All tests were 

performed at an initial strain rate of 10-3 s-1. 

Vickers microhardness (HV) was measured using an M-400-G1 digital hardness tester 

(LECO, St Joseph, MI) at a load of 200g for 5 s and a minimum of 10 indentations per 

sample. 

Electrochemical measurements were made with a PARSTAT 4000, teamed with the Versa 

Studio software package (AMETEK/Princeton Applied Research, Berwin, PA). The 

PARSTAT 4000 is a potentiostat/galvanostat combined with a frequency response analyzer 

(FRA) contained in a single unit. A three-electrode set-up was employed: the working 

electrode (Zn-Li coupons, immersed area of 1 cm2) with Ag/AgCl (SSE) and graphite as 

the reference and counter electrodes, respectively. The test medium was simulated body 

fluid in a 98.6°F (37°C) incubator with 5% CO2 supply, the composition of which is 

discussed below and also given in Table 3.2. 
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Table 3.2. Ion concentrations of human blood plasma and the experimental simulated 

body fluid (SBF) 

Ion Blood plasma  Simulated Body Fluid [34] Revised 

Simulated Body 

Fluid 

Na+ 142.0  142.0  160.0 

K+ 5.0  5.0  4.0 

Mg2+ 1.5  1.5  1.0 

Ca2+ 2.5  2.5  2.5 

Cl- 103.0  148.8  142.0 

HCO3
- 27.0  4.2  26.0 

HPO4
2- 1.0  1.0  1.0 

SO4
2- 0.5  0.5  0.5 

pH 7.2-7.4 7.4 7.4 

 

3.2.3 In vitro immersion test and characterization of corrosion product 

In vitro corrosion tests were carried out in modified simulated body fluid (SBF). In contrast 

with the classic tris-buffered (trishydroxymethyl-aminomethane) SBF solution, the content 

of bicarbonate was elevated to the level found in blood plasma; conveniently, the buffering 

function of tris was accomplished by the additional bicarbonate. The adoption of this 

bicarbonate buffering system was important, as it resembles the in vivo environment of the 

acid-base homeostasis of a living host, including the human body. Ion concentrations of 

the modified SBF used here, traditional SBF [34], and human blood plasma are listed in 

Table 3.2. 

The rolled alloy sheets of 300 μm thickness were cut into 1×1 cm squares. Pure Zn was 

also used here as control. In vitro submersion took place in 50 ml centrifuge tubes, where 

the coupons were covered with 40 ml of SBF medium and placed in an incubator at 98.6°F 
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(37°C) and 5% CO2 atmosphere for 4, 7, and 14 days.  The ratio of solution volume to 

specimen area (V/S) was ~20 ml/cm2, which was suggested by the ASTM G31-72 to ensure 

the volume is large enough to avoid medium changes during corrosion [35]. The pH was 

measured at 7.2-7.4 throughout the experiment. 

Although ISO 10993-15:2000 recommended a V/S ratio of less than 1 ml/cm2, various V/S 

ratios ranging from 0.33 ml/cm2 [36] to 7375 ml/cm2 [37] have been chosen by researchers. 

It is difficult to specify a standard V/S for all immersion tests since the  ratio should be 

based on the implantation environment the researchers intend to mimic [38]. Therefore, 

even for the same alloy from different research groups, the in vitro corrosion results are 

not compared [38]. It is known that in vitro methods are quick and relatively inexpensive, 

but it’s also apparent that predicting in vivo behavior from in vitro testing can be misleading 

[37]. Local pH, impurities, processing, the concentration of the pitting anion [39] and 

proteins [40] can all play a role in metallic corrosion. 

Surface morphological and elemental analyses were carried out on the samples following 

in vitro corrosion using a JSM 6400 scanning electron microscope (SEM) (JEOL, Peabody, 

MA) equipped with an energy dispersive spectrometer (EDS). The accelerating voltage and 

working distance used for all samples was 20 kV and 39 mm, respectively. Fourier 

Transform Infrared Spectroscopy (FTIR) was conducted in diffuse reflectance mode with 

a Genesis II FTIR spectrophotometer (SUNY Genesso, Genesso, NY). A series of 1024 

scans was performed at 1 cm-1 resolution from 400 to 4000 cm-1. 
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3.3 Results and Discussion 

3.3.1 Elemental analysis 

Experimental compositions of the alloys are given in Table 3.3. For all three Zn-Li alloys, 

the experimental compositions from ICP-OES were slightly lower than the nominal 

compositions.  Ni and Fe were detected as trace impurities from Zn; Ni remained below 

the detection limit for the three alloys and Fe concentration was also very low.  

Table 3.3. ICP-OES compositional analysis of rolled Zn alloys 

Sample ID 
Li/at.% 

Nominal 

Li/at.% 

Experimental 
Fe/at.% Ni /at.% Zn/at.% 

Zn <0.01 <0.01 <0.01 <0.10 Bal. 

Zn-2Li 2.00 1.10 0.03 <0.10 Bal. 

Zn-4 Li 4.00 3.20 0.01 <0.10 Bal. 

Zn-6 Li 6.00 5.50 0.01 <0.10 Bal. 

 

3.3.2 XRD analysis  
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Fig. 3.3. XRD patterns of as-cast and hot rolled alloys with different compositions 

 

XRD patterns for Zn-xLi (x=2, 4, 6 at.%) before and after hot rolling are shown in Fig.3.3. 

All the investigated samples exhibit dual-phasic character with the main phase of zinc and 

minor phase of LiZn4. Patterns were collected at room temperature, and the LiZn4 phase 

present in all as-cast and as-processed material is assumed to be of the low-temperature α- 
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variety as all cooling was done slowly in air to allow the eutectoid relaxation to occur. For 

the as-cast samples, peaks corresponding to Zn are high and narrow, indicating relatively 

large grain sizes and very little lattice deformation. Peaks corresponding to the intermetallic 

phase LiZn4 in as-cast samples have the highest relative intensities in the Zn-4Li alloy with 

peaks from sets of (101), (002), and (100) planes, indicating prolific nucleation and growth 

of LiZn4 during solidification at this composition. 

After hot rolling, the rolling direction-transverse direction (RD-TD) cross sections are 

examined and the preferential orientation of LiZn4 and the Zn lattice change as observed 

by the increased intensities of the (002) and (001) peaks relative to the (101) peak for the 

same phase in both cases (Fig.3.3).  
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Fig. 3.4. Full scan range XRD patterns of hot rolled alloys with different compositions. 

LiZn4 peaks are identified. 
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Peaks corresponding to LiZn4 also increase in intensity relative to those for the Zn lattice 

with the increase of Li due to larger volume fractions of LiZn4 available in the more 

concentrated alloys (Fig.3.4). Minor peaks at 2θ=21.7o and 89.9o are observed which do 

not correspond to known reflections in the JCPDS-ICDD database. In order to determine 

if these peaks originate from the Zn+LiZn4 mixture, an estimation of the structure factor 

(F) using these two phases was carried out using Equations 1-3 with results displayed in 

Table 3.4. 

Table 3.4. Structure factors for ordered and disordered states of Zn(Li)+LiZn4 

h k l 2θ Sin/λ fLi fZn |F|2 

(disordered) 

|F|2 

(ordered) 

0 0 1 22 0.24 1.65 20.5 0 1076 

0 0 2 42 0.43 1.20 15.5 2556 615 

0 0 3 64 0.58 0.82 12.5 0 399 

0 0 4 89 0.65 0.70 11.5 1396 349 

1 0 1 43 0.44 1.15 15.0 448 571 

 1 0 0 37 0.39 1.30 15.8 166 639 

1) If disordered (i.e. solid solution):

𝐹 = 2×𝑓𝑎𝑣𝑒 [(𝑒𝑖2𝜋(
1

3
ℎ+

2

3
𝑘+

1

4
𝑙) + 𝑒𝑖2𝜋(

2

3
ℎ+

1

3
𝑘+

3

4
𝑙)] Eq. 3.1 

𝑓𝑎𝑣𝑒 =
4

5
×𝑓𝑍𝑛 +

1

5
×𝑓𝐿𝑖 Eq. 3.2 

2) If ordered (i.e. dual-phasic):
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𝐹 = 2×
1

5
𝑓𝐿𝑖𝑒

𝑖2𝜋(
1

3
ℎ+

2

3
𝑘+

1

4
𝑙)

+ 2×
4

5
𝑓𝑍𝑛𝑒

𝑖2𝜋(
2

3
ℎ+

1

3
𝑘+

3

4
𝑙)

     Eq. 3.3 

 

The theoretical values of 2θ at (00l) planes (Table 3.5) are then obtained from:  

𝑠𝑖𝑛2 𝜃 =
𝜆2

4𝑎2 (ℎ2 + 𝑘2 + 𝑙2 𝑎2

𝑐2)                                           Eq. 3.4 

where LiZn4 has the structure P63/mmc (no. 194, HCP) with a = 0.27702(8) and c = 

0.43785(9) nm

 

Table 3.5. Theoretical and experimental values of 2θ for h=k=0 and l=1, 2, 3, or 4 

 (hkl) 2 θ (Theoretical) 2 θ (Experimental) 

001 21.80 21.70 

002 41.46 41.40 

003 63.71 × 

004 89.94 89.95 

 

The matching of the theoretical 2θ values from structure factor calculations with 

experimentally observed diffraction peaks indicates that the two unidentified peaks do 

originate from the Zn+LiZn4 structure but are not tabulated in the current database. In a 

previous study on α-LiZn4 powder [30], a structural model was determined in which both 

Zn and Li were seated in the (1/3, 2/3, 1/4) 2c site with a Li/Zn ratio equal to 0.28 

(experimental value). This phase was isostructural with elemental HCP Zn, consistent with 

the findings of the current study. It is concluded that hot rolling both promotes precipitation 

of the ordered LiZn4 phase and produces texture in which the matrix and the LiZn4 phase 

both have preferred orientations with the c-axis normal to the RD-TD plane. Interestingly, 
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no occurrence of the (003) reflection was observed in Ref. [28] or the present study, though 

this is an allowable reflection based on the structure factor equations above for the dual-

phasic approximation. This could suggest a different arrangement of Zn and Li atoms in 

the LiZn4 phase, or the peak intensity could simply be below the resolution limit of the 

XRD and filtered out of the spectrum. 

3.3.3 Microstructural features 

    

Fig. 3.5. Optical micrographs of as-cast (a-c) and hot-rolled (d-f) Zn-Li alloys with Li 

content increasing from 2 to 4 to 6 at.% from left to right. The scale bar in panel a. 

applies to all 6 micrographs. 

 

Optical micrographs from RD-TD cross sections of alloy sheets before and after hot rolling 

are shown in Fig.3.5. Microstructures are consistent with Scheil/Scheil-Gulliver 

nonequilibrium solidification conditions. For Zn-2Li, small amounts of Zn+LiZn4 are 

present in the α-Zn matrix. With Zn-4Li, a mixture of lamellar Zn+LiZn4 grains and α-Zn 

grains is observed. The lamellae are observed in grains with apparently random orientation. 

For Zn-6Li, dendritic arms and trunks are observed consisting of Zn+LiZn4 which have a 

a b c 

d e f 

150 μm 
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very tight lamellar spacing with interdendritic channels of Zn(Li). The random 

arrangement of grains observed in the hypoeutectic alloy tended towards directional 

solidification with increasing Li content. The fact that pro-eutectic grains of α-Zn are 

observed for Zn-4 at.% Li in Fig.3.5 points to a slightly lower experimental composition 

than 4 at.% Li in this cross-section. This is confirmed by ICP-OES results, shown in Table 

3.3. 

After the hot rolling and annealing process, the Zn-4Li and Zn-6Li samples exhibit severe 

rolling texture and no occurrence of equiaxed grains; dendrite arms and trunks are refined 

and the grain width decreases from ~50 μm to ~10 μm. In contrast, the hypoeutectic alloy 

exhibits equiaxed grains almost exclusively. This oBEIrvation points to dynamic 

recrystallization occurring during the hot rolling process or static recrystallization 

afterwards for this alloy but not for the higher Li alloys. However, the texture that develops 

during rolling is retained: the XRD scans in Fig.3.3 show an increase in the intensity of the 

(100) peak relative to the (101) for all three alloys.  

For all alloys here, the high-temperature intermetallic phase β-LiZn4, present in both 

lamellar structures and as precipitated particles, relaxes to the room-temperature α-LiZn4 

phase at the eutectoid temperature of 65 oC [20]. Evidence of this reaction was not observed 

metallographically, and it is assumed that all β-LiZn4 converts to α-LiZn4 with ease. 
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3.3.4 Mechanical testing 
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Fig. 3.6. Ultimate tensile strength (UTS), yield strength, and elongation to failure of Zn-

2Li, Zn-4Li, and Zn-6Li with error bars representing standard deviation in measurement 

 

Yield strength, UTS, and ductility values for all tested alloys are shown in Fig.3.6. The 300 

MPa UTS and 200 MPa yield strength benchmarks for bio-degradable stent materials [14] 

are exceeded at all alloying levels. Higher contents of Li give higher tensile strengths due 

to the larger volume fractions of the LiZn4 phase. Ductility of the Zn-2Li and Zn-4Li alloys 

are favorable compared to very limited ductility of Zn-6Li in view of benchmark values of 

15-18% elongation to failure for bio-degradable stent materials [14]. While these are 

excellent properties for a stent material, further study is needed to delineate the exact 

strengthening mechanisms operating in each alloy. Based on these empirical strength and 

ductility values, alloys with lower content of Li (2 and 4 at.%, nominally) were selected 

for in vitro corrosion testing. 



77 

 

0 2 4 6

20

40

60

80

100

120

140

160

V
ic

k
e
rs

 h
a

rd
n

e
s
s
/V

H
N

Li at%

 Hot rolled RD-TD

 As-cast 

 

Fig. 3.7. Vickers microhardness of hot rolled and as-cast alloys with different 

compositions. 

 

As shown in Fig.3.7, the hardness of Zn-2Li increases from 85±6 to 98±6 after hot rolling, 

and Zn-4Li and Zn-6Li increase from 98±6 to 115±6 and 115±8 to 136±9, respectively. 

This is a 15% percent increase in hardness for Zn-2Li and 18% for Zn-6 at.%. This can 

attribute to precipitation strengthening through the formation of LiZn4, evidenced by XRD, 

and boundary strengthening by the highly refined grain structure (Fig.3.5). Zn-6 at.% has 

the finest grains (only a few microns in width) and the highest volume fraction of LiZn4; 

this combination gives the highest hardness and the strengthening effect from hot-rolling 

is more evident. An increase in dislocation density is highly probably following a 99% 

reduction in area, but much of the hardening effect is likely lost during the post-

deformation recovery anneal. Texture effects might also play a role in this system as some 

preferential orientation of LiZn4 was detected in Fig.3.3, which may lead to anisotropy in 
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mechanical properties as a consequence of the limited number of slip systems available in 

Zn. 

3.3.5 Corrosion rate in SBF 
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Fig. 3.8. Potentiodynamic curves of different alloys after immediate immersion in SBF 

medium 

 

For the investigated Zn-Li alloys and pure Zn, the approximate values of corrosion 

potential and corrosion current were determined from Tafel slopes [41]. In order to estimate 

the corrosion current values, the anodic curve was extrapolated until it intersected with the 

level of corrosion potentials as shown in Fig.3.8 and Table 3.6. A high current density 

(current on the surface) at the corresponding potential indicates a high corrosion rate of the 

alloy. Comparison between the Zn-Li alloy curves with pure Zn shows that the alloys with 
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2 and 4 at.% Li have similar curves. The corrosion rates of the various tested materials are 

estimated (Table 3.6, column 3) through Tafel extrapolation. 

Table 3.6. Corrosion potentials, corrosion current densities and corrosion rates, obtained 

from the polarization curves, for Zn, Zn-2Li, and Zn-4Li 

Sample Ecorr / V vs. SCE icorr / (μA/cm-2) Corrosion Rate /(μm/year) 

Zn -1.35 0.88 13 

Zn-2Li -1.18 3.43 50 

Zn-4Li -1.21 0.73 10 

 

The Zn-4 at.% Li alloy exhibits the lowest current density (0.73 μA/cm2) and therefore the 

highest resistance to corrosion compared to the other two samples. The corrosion resistance 

could due to the formation of a protective passive layer, typically the surface-product 

surface film (Fig.3.8). The thicker the passive layer and better attachment to the surface, 

the higher the corrosion resistance of alloy.  

Corrosion rates were estimated in terms of penetration rate (CR) using the Faraday’s law: 

𝐶𝑅 = 𝐾1
𝑖𝑐𝑜𝑟𝑟

𝜌
𝐸𝑊          Eq. 3.5 

𝐸𝑊 =
1

∑
𝑛𝑖𝑓𝑖

𝑤𝑖

                    Eq. 3.6 

where: CR is in mm/yr, icorr in μA/cm2, K1=3.27×10-3 mm·g/μA·cm·yr, 𝜌 =density in g/cm3, 

EW is the equivalent weight of the alloy, fi =the mass fraction of the ith element in the alloy, 

wi= the atomic weight of the ith element in the alloy, and ni= the valence of the ith element 

of the alloy. 
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According to the calculation results summarized in Table 3.6, penetration rates for Zn-Li 

alloys in SBF are 50-60 μm⋅yr-1, and are comparable to Zn studied in plasma (10 μm⋅yr-1) 

[26], whole blood (50 μm⋅yr-1) [26], and in vivo (20-50 μm⋅yr-1) [10]. 

3.3.6 Morphology and EDS of corrosion products 

 

Fig. 3.9. SEM micrographs of Zn-Li surfaces after immersion in SBF. From row A to C, 

Li increases from 0 to 2 to 4 at.%; from column 1 to 2, immersion period increases from 

4 to 14 days. 
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Images of corroded surfaces are shown in Fig.3.9 for Zn, Zn-2Li and Zn-4Li after 

immersion in SBF for 4 and 14 days. At the 4 day time point, Zn and the two alloys exhibit 

morphologically different surface deposits. The initial products formed on the Zn substrate 

comprised sharp elongated crystals, and flower-like and porous aggregates (Fig.3.9-A1). 

The Zn-2Li substrate displays a finer initial crystal network and is decorated with 

agglomerated clusters on top in light contrast (Fig.3.9-B1). The Zn-4Li substrate is covered 

with sponge-like structures embedded with regular spheres and irregular aggregates 

(Fig.3.9-C1). After 14 days immersion, the three samples appear very similar with each 

substrate coated in a regular and well-defined population of spherical particles with average 

diameter of roughly 1 μm in all cases (Fig.3.9-A2, B2, C2). 
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Fig. 3.10. EDS spectra of Zn-Li alloy surface products after immersion in SBF for 14 

days 

 

To gain a first approximation of the elemental compositions of the particles formed on the 

sample surfaces during the immersion testing, EDS analysis of some of the sample surfaces 

(Fig.3.10) was performed. These scans confirmed the presence of Ca, P, and O, suggesting 

that the particles could be mainly composed of calcium phosphate, similar to what was 
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found in a previous study on Mg in vivo [42], although with a much different morphology 

here.  
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Fig. 3.11. FTIR spectra after 14 days immersion in SBF for Zn, Zn-2Li, and Zn-4Li 

 

To determine the phase composition and functional groups among the different alloys after 

immersion testing, FTIR analysis was employed. In the FTIR spectrum (Fig.3.11), the 

PO4
3- group band is observed at 570 cm-1, which is related to asymmetric deformation 

modes of ν4 group; the absorption band in the range of 1040-1090 cm-1 is characteristic of 

the asymmetrical stretching mode of ν3 group. The locations of absorption bands for PO4
3- 

group and OH- at 631 cm-1, combined with the decrease of Ca2+ in SBF medium confirmed 
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through ICP-OES testing, explicitly indicates the formation of hydrated apatite phases in 

the corroded alloys. Absorption intensity of PO4
3- group and OH- group (Fig.3.11a, b) 

increases with prolonged immersion time, which may indicate improvement of apatite 

properties making this phase more stable. Presence of CO3
2- bands in pure Zn after 14 days’ 

immersion (Fig.3.11c) is identified at 875 cm-1, corresponding to ν2 stretching mode of 

CO3
2-. This indicates the possible formation of a calcite phase after immersion, while this 

peak is missing from both Zn-Li alloys.  

3.4 Conclusions 

By using a vacuum induction melting technique, a new class of Zn-Li alloys has been cast, 

hot rolled, and analyzed for biomedical-focused application. XRD results indicate the 

formation of LiZn4 through the emergence of diffraction peaks corresponding to (001) and 

(004) for this phase when deformed by hot rolling, which increased hardness significantly 

in all cases. Mechanical testing showed that alloying Zn with Li increases the tensile 

strength to 360 MPa with a nominal addition of 2 at.% and 560 MPa with 6 at.% Li 

following hot rolling. Addition of Li above the eutectic composition caused a severe 

decrease in elongation to failure making the 6% Li alloy unsuitable for cardiovascular stent 

application. 

Our in vitro study with the newly formulated Zn-2Li and Zn-4Li alloys demonstrates that 

the corrosion rates and products in modified SBF solution closely resemble that of pure Zn 

observed in vivo, in plasma, and in whole blood from previous studies. The Zn-4Li alloy 

exhibited higher resistance to corrosion compared to Zn-2Li suggesting a positive effect of 

Li content on protective characteristics of the corrosion layer. 
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Chapter 4 Results and Discussions: Zn-Li Alloy after 

Extrusion and Drawing: Structural, Mechanical 

Characterization, and Biodegradation in Abdominal Aorta of 

Rat* 

Abstract 

Zinc shows great promise as a bio-degradable metal. The implantation of pure Zn into the 

abdominal aorta of Sprague-Dawley rats exhibited an optimal corrosion rate and 

biocompatibility for endovascular applications. However, the low tensile strength of zinc 

remains a major concern. 

A cast billet of the Zn-Li alloy was produced in a vacuum induction caster under argon 

atmosphere, followed by a wire drawing process. Two phases of the binary alloy identified 

by x-ray diffraction include the zinc phase and intermetallic LiZn4 phase. Mechanical 

testing proved that incorporating 0.1 wt.% of Li into Zn increased its ultimate tensile 

strength from 116 ± 13 MPa (pure Zn) to 274 ± 61 MPa while the ductility was held at 17 

± 7%. 

*The material contained in this section is previously published at Materials Science and

Engineering: C by S Zhao, J M. Seitz, R Eifler, H J. Maier, R J. Guillory II, E Earley, J 

Goldman, and J Drelich, and is reproduced here with permission. 
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Implantation of 10 mm Zn-Li wire segments into abdominal aorta of rats revealed an 

excellent biocompatibility of this material in the arterial environment. The biodegradation 

rate for Zn-Li was found to be about 0.008 mm/yr and 0.045 mm/yr at 2 and 12 months, 

respectively.   

 

Keywords: Zn-Li; bio-degradable; in vivo biodegradation 

 

4.1 Introduction  

Followed by decades of developing strategies to minimize the corrosion of metallic 

biomaterials, there is now an increasing trend to use absorbable metals in medical 

applications [1]. The concept of absorbable metals stents (AMS) was envisaged to treat the 

disease of artery occlusions and then disappear harmlessly when they are no longer needed 

as mechanical scaffolding. Since the major effect of stent implantation is provided by its 

scaffolding, it is required to be retained for 6-12 months during which time arterial 

remodeling and healing is completed [2]. After this period, the stent is preferred to be 

broken down and excreted by the body, leaving behind a natural functioning artery. The 

advances of AMS for vascular scaffolding may allow for circumventing the long term risks 

of permanent stents, such as chronic inflammation, late stage thrombosis (clotting) and 

stent strut disruption (fracture) [3]. In pediatric intervention, which involves arteries that 

have not completed their growth cycle, the disappearance of the stent would enable natural 

vessel growth and avoid the need for recatheterization and serial stent balloon dilatation 
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until adulthood [4]. Thus, the development of bio-degradable stents, which can fulfill the 

mission and step away, is the next logical progression for the industry [5-7]. 

Mg-based and Fe-based materials have been widely investigated as potential base materials 

in recent years due to their biocompatible elements and mechanical characteristics [2, 8-

10]. However, previous corrosion studies with bare Mg- and Fe-based metals demonstrated 

that the in vivo degradation performance cannot satisfy the requirement for the coronary 

stent yet. Tremendous work on improvement has been focused on: (1) pure Mg and pure 

Fe and their alloying with essential elements (Ca, Sr, Zn, Co, C and Si) or low contents of 

toxic elements (Mn, Sn and Zr), and the rare earth elements (Y and Gd) [11-17]; (2) novel 

structured bio-degradable metals (porous, ultrafine, nanocrystalline and glassy structures) 

[18-20]; (3) surface modifications by mechanical, chemical and electrochemical treatment 

[21, 22]. Presently, with the exception of the limus-eluting bio-degradable magnesium 

scaffold introduced in 2016 by Biotronic, these modifications have not resulted in a bio-

degradable metallic stent with clinical success. 

With the purpose of searching for suitable alloying elements, zinc as one of the most 

abundant nutritionally essential elements in the human body [23] began to be studied as an 

alloying element or bio-degradable base material [24]. In 2011, Vojtech et al. [25] prepared 

binary Zn-Mg alloys containing Mg content up to 3 wt.%, and found that the binary Zn-

Mg alloys exhibited corrosion rates (≈ 0.018 mm/yr) close to pure Zn, which were 

significantly lower than those of Mg and AZ91HP alloys. As a breakthrough, Bowen et al. 

[26, 27] examined the corrosion behavior of pure Zn for the first time and found that 1) Zn 

exhibited excellent biocompatibility after resided in the arterial lumen of  
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Sprague-Dawley rats for 6.5 months; 2) the corrosion products are not potentially 

hazardous like those of iron; 3) the corrosion rate in the first 2-3 months is very close to 

the ideal degradation rate for medical implants (0.02 mm/y) [28] and followed by an 

acceleration in 3-6 months; 4) a uniform corrosion is detected in earlier months so that the 

corrosion is more or less uniformly distributed over the entire exposed surface and the 

corrosion proceeds at approximately the same rate over the exposed metal surface [29]. All 

these corrosion characteristics of pure Zn suggest that Zn arterial corrosion behavior may 

be superior to other explored materials in the AMS field [24, 27]. The major concern for a 

pure Zn stent is that the tensile strength is relatively low (80 - 120 MPa). Stent materials 

used to prop open the lumen of arteries needs to have a tensile strength of at least 200 MPa, 

preferably close to 300 MPa [30]. Improvements in mechanical properties of Zn can be 

obtained through manipulation of its microstructure [31, 32] or alloying [25].  

Zn-Li is one of a few potentially age-hardenable systems due to the significant solubility 

of lithium in zinc [33]. The in vivo studies of LAE442 (4 wt.% of lithium) confirmed 

suitability of this implant material for orthopedic use [34]. Additionally, lithium was 

approved by the U.S. Food and Drug Administration (FDA) as a drug in the early 1970s to 

treat manic depression [35]. It has also been reported to be beneficial in treatments of brain 

injury, stroke, Alzheimer’s, Huntington’s, and Parkinson’s diseases, amyotrophic lateral 

sclerosis (ALS), spinal cord injury, and other conditions [35]. However, the drug’s 

therapeutic window is very narrow and an overdose of lithium may induce tremors, 

frequent urination, thyroid problems, weight gain, and kidney failure [36]. Clinical 

experience with lithium suggests that its effective dose range is 0.6-1.0 mM serum level 

(500-1200 mg of lithium per day) while toxic levels occur at 1.2 mM or greater [35]. The 
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U.S. Environmental Protection Agency (EPA) in 1985 recommended the daily lithium 

intake of a 70 kg adult to range from 650 to 3100 μg [37]. Our previous estimates of the 

Zn-Li system indicated that [33]: 1) the overall quantities of lithium released from a zinc-

lithium stent (with 0.7 wt.% of Li) is two orders of magnitude below the daily bodily 

consumption allowances; and 2) the incorporation of Li into Zn would increase the ultimate 

tensile strength (UTS) from < 120 MPa (pure Zn) to > 560 MPa (6 at.% Li). 

However, an excessive content of Li lowers the ductility significantly due to the larger 

volume fractions of the LiZn4 phase. To maintain applicable ductility and sufficient 

strength for the cardiovascular stent application, the addition of Li should remain below 4 

at.% (0.4 wt.%).  

Novel Zn-Li alloy wires (with 0.1 wt.% of Li) were prepared in this study. Metallurgical 

characterizations, in vivo biodegradation and in vivo biocompatibility analysis of the Zn-

Li wire were carried out. The present body of work aimed at retaining corrosion behavior 

suitable for bio-degradable stent application, yet improving the mechanical and corrosion 

uniformity characteristics. 

4.2 Materials and methods  

4.2.1 Materials  

Prior to casting, Zn shot (99.99+ wt.%, Alfa Aesar company, Ward Hill, MA), Zn foil (99.9 

wt.%, Alfa Aesar company, Ward Hill, MA) and Li foil (99.9 wt.%, Alfa Aesar company, 

Ward Hill, MA) were weighed using a laboratory balance located in an inert-atmosphere 

glove box to avoid oxidation of Li. The total Zn shot and Zn foil weighed 1.0 kg, while the 

Li foil weighed 2.2 g. The Li foil was then wrapped tightly inside the Zn foil to form a 
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charge. The combined material was then sealed inside a sequence of three plastic specimen 

bags before being removed from the glove box. The Zn-Li foil charge and the Zn shots 

were immediately loaded into a graphite crucible. A custom vacuum induction melting 

setup at Michigan Tech was used to fabricate the Zn-Li alloys.  They were cast by induction 

melting with a power of ≈ 3 kW under a 0.9 atm argon atmosphere. The temperature was 

set to be slightly above the melting point of Zn, 419.5 oC for a few minutes. The ultimate 

vacuum level was 2 ×10-4 torr. A stepper motor controlled by a custom LabView (National 

Instruments, Austin, TX) script tilt-poured the melt into a 25 mm diameter stainless steel 

mold. 4N Zn wire (99.99+ wt.%, Goodfellow Corporation, Oakdale, Pennsylvania) was 

utilized as control samples. 

4.2.2 Manufacture of Zn-Li wires 

The Zn-Li alloy was further processed following a hot extrusion process employing a 10 

MN extruder (SMS MEER GmbH). Prior to the extrusion, the Zn-Li billets possessing a 

diameter of 25 mm were heated to a temperature of 200 °C and the extruder’s recipient was 

heated to 210 °C. In order to reduce the extrusion ratio, a die with four 0.5 mm in diameter 

openings was used for extrusion. Extrusion of the billets was carried out with a ram velocity 

of 0.1 mm/s (Fmax = 4.1 MN) resulting in four Zn-Li rods, each with a diameter of 0.5 mm. 

The extrusion ratio is 625 due to the four openings in the die. Cooling of the rods was 

allowed at RT. 

Subsequent wire drawing was carried out at a temperature of 180 °C by means of a self-

constructed drawing machine at Leibniz Universität Hannover. Multiple drawing passes 

were used to reduce the wires’ diameters to 0.25 mm. The drawing dies opening diameters 
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used for the drawing sequence were: 0.477 mm, 0.435 mm, 0.362 mm, 0.330 mm, 0.274 

mm and 0.250 mm. Annealing or other heat treatment procedures were not required 

between the particular drawing passes. 

4.2.3 Material characterizations 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) (PerkinElmer 

Optima 7000DV, Waltham, MA) was utilized in detecting the compositions of Zn alloy 

wire after drawing. To produce a solution suitable for ICP-OES analysis, 80 mg of alloy 

wire was dissolved in 12 ml of 6M HCl, which was diluted for analysis. 

The Zn-Li sections were positioned in epoxy in order to obtain both the longitudinal 

(parallel to the extrusion or rolling direction) and transverse (perpendicular to the extrusion 

or rolling direction) view of each material. Mounted wires were ground with 600-grit, 800-

grit, and 1200-grit silicon carbide. Final polishing steps were performed using 6 μm, 1 μm 

and 0.1 μm diamond cloth and 0.05 μm alumina slurry on microfiber. Microstructure of 

alloys were recorded using a Leica EC3 (Leica Microsystems; Buffalo Grove, Illinois) 

digital camera on an Olympus PMG-3 metallograph (Olympus, Shinjuku, Tokyo, Japan).  

The polished wire sections were also carbon-coated and imaged with a JSM 6400 scanning 

electron microscope (SEM) (JEOL, Peabody, MA). The accelerating voltage and working 

distance used for SEM were 15 kV and 39 mm. Elemental contrast from the alloy surface 

was assessed from the collected backscattering electrons.  

X-ray diffraction (XRD) was performed on an XDS2000 θ/θ X-ray diffractometer (Scintag 

Inc., Cupertino, CA) with CuKα radiation ( = 1.540562 Å). The scans were performed 

continuously from 35° to 45° in 2θ at a speed of 0.2°/min with a step size of 0.02°.  
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Uniaxial tensile tests were performed using a Bose ELF 3200 mechanical tester (Bose Inc., 

MN, US). Prior to the test, wires were mounted on two polycarbonate (PC) holders using 

Loctite General Purpose epoxy (Henkel Corporation; Westlake, OH). The gauge length 

was set to be 10 mm. A small load cell (max. load: 22.2 N) was used, and the relative 

displacement and the strain rate were 12mm and 0.01 mm/sec. Yield stress, tensile stress, 

elongation to failure were calculated from the stress-strain curves. Standard deviation was 

estimated from eight 4N Zn and five Zn-Li wires. The ductility in % area reduction was 

also estimated by measuring the area reduction at the fracture based on four different wires.  

Vickers microhardness (HV) was measured using an M-400-G1 digital hardness tester 

(LECO, St Joseph, MI) at a load of 200 g for 5 s and 18 indentations per sample. Standard 

deviation was estimated from eighteen different points from the longitudinal section of a 

4N Zn and a Zn-Li wire. 

Area fraction and average particle size of the intermetallic phase were determined using 

the ImageJ software. The volume fraction of precipitation phase was calculated as the sum 

of areas of all black particles divided by the total area of the image. The average area of 

precipitates was calculated as the sum of the area of precipitates divided by number of 

particles. The average particle size was calculated from this average area assuming 

spherical geometry. 

4.2.4 Arterial implantation 

The primary method of this in vivo evaluation was based on a Sprague Dawley rat (Harlan 

Labs) model [38]. All animal tests have been approved by the animal care and use 

committee (IACUC) of Michigan Technological University. 4N Zn and Zn-Li alloy wire 
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samples with diameter of 0.25 mm and length of 2 cm were punched into the abdominal 

aorta and then directed into the lumen for 10 mm before exteriorization. In this case, wires 

were immersed in the flowing blood to mimic the environment of a stent strut.  After 2-12 

months, rats were euthanized and rat aortas containing the wire implants were harvested. 

The wires had not become dislocated from their implant location at the time of collection. 

To preserve the corrosion layer, explanted wires were preserved in 200 proof ethanol.  

4.2.5 Biodegradation analysis 

Part of the corroded wires were mounted in epoxy and cut transversely to expose the cross 

section. Wire mounts were ground with 800 grit SiC, 1200 grit SiC, 6 μm diamond and 1 

μm alumina and then cut into slices with thickness of 1 mm to fit into an aluminum mount 

with carbon tape. The wire cross section was coated with thin layer of carbon before 

imaging with the scanning electron microscope. Imaging of the wires was conducted at 15 

kV accelerating voltage with a reduced working distance of 12 mm using a backscattered 

detector. Cross sectional area (CSA) analysis of the backscattered image were conducted 

using ImageJ software (Fig.4.5a) [39]. The penetration rate was determined according to 

the following equation: 

Penetration rate (μm/yr) = 
√

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐶𝑆𝐴

𝜋
−√

𝑀𝑒𝑡𝑎𝑙𝑙𝑖𝑐 𝐶𝑆𝐴

𝜋

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛  𝑇𝑖𝑚𝑒

360

                Eq. 4.1 

Elemental mappings of Ca, P, C, Cl, Zn, O from cross sections were captured to signify 

the corrosions using an environmental scanning microscope (FEI Philips XL 40). The 

accelerating voltage and working distance were 15 kV and 10 mm.  
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FT-IR was conducted in diffuse reflectance mode with a Jasco FTIR-4200 

spectrophotometer. A series of 64 scans were performed at 4 cm-1 resolutions from 800 to 

2000 cm-1. 

4.2.6 Histological evaluation 

The leftover wires with aortas were snap-frozen in liquid nitrogen and cryo-sectioned for 

histological analysis [38]. Before staining, samples were preserved in a -80 oC freezer. 

Cross sections were ethanol fixed and then stained with hematoxylin and eosin (H&E), 

mounted in Permount solution and imaged using an Olympus BX51, DP70 bright-field 

microscope.  

The neointimal tissue with smooth muscle cells and inflammatory cells were inspected 

around the implants; variations of cell densities in the artery wall, lumen interface and 

biocorrosion area were measured.  

4.2.7 Statistical analysis 

All quoted errors and error bars correspond to the sample standard error.   

4.3  Results 

4.3.1 Material characterizations  

Experimental composition of Zn-Li and purity of 4N Zn are given in Table 4.1. For this 

Zn-Li alloy, the experimental composition for Li is 0.1 wt.%.  Cu, Mg, Fe and Pb were 

detected as trace impurities from Zn; and Cd, Al and Ni remained below the detection limit.  

 



97 

 

 

Table 4.1. ICP-OES compositional analysis of Zn-Li wires (wt.%) 

Sample Li 

 

Cu  

 

Mg 

 

Fe 

 

Pb 

 

Cd 

 

Al Ni Zn 

4N Zn <0.001 <0.003 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001 Bal. 

Zn-Li 0.103 0.003 0.002 0.002 0.001 <0.001 <0.001 <0.001 Bal. 

 



Fig. 4.1. SEM secondary electron (a, c) and backscattered electron images (b, d) for the 

surfaces of as-received Zn-Li wires 

 

Surface images in Fig.4.1(a, c) exhibited severe rolling texture and precipitates. The 

darkest phase (representing the lowest atomic number) from the BEI images in Fig.4.1(b, 

d) indicate the occurrence of spherical and ribbon-like precipitates. This could be the Li-

rich phase. 

a b 

c 

100 μm 100 μm 

3

30 μm 30 μm 

c d 
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Fig. 4.2. Optical microscopy images of the Zn-Li wire (Ø = 0.25 mm) from longitudinal 

(a), transverse cross sections (b, c), backscattered electron image (d) and X-ray pattern 

for Zn-Li (e). 

Fig.4.2 illustrates the optical microstructure, back-scattering electron imaging and XRD 

result for the extruded Zn-Li wires. The longitudinal sections of the Zn-Li alloy after 

drawing attained a preferential orientation at an angle of 27° with the extrusion direction. 

As both LiZn4 and Zn possess hcp structure, so this 27° orientation may come from the 

e 
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formation of non-basal <c+a> slip system based on a junction between glissile <a> and 

sessile c dislocations from the prism plane into a pyramidal plane, which is energetically 

favorable for all hcp metals [40]. The transverse sections exhibited two main phases. The 

bright phase is the Zn rich matrix and the dark phase corresponds to Li rich precipitates, 

formed in the eutectic reaction. This is consistent with the BEI images in Fig.4.2(d). The 

darkest precipitate phase (Li-rich phase) possessed the lowest average atomic number. The 

area fraction and average particle size determined from the ImageJ software was 10±3 % 

and 3.0 ± 0.5 m, respectively. This is a slightly larger value than the phase fraction of 6 % 

calculated from the Zn-Li phase diagram at 200oC. 

The XRD result in Fig.4.2(e) indicates that the two phases from the micrographs are the 

zinc phase (43.24o and 39.02o) and the minor phase is LiZn4 (41.20o and 42.96o). For the 

intermetallic LiZn4 phase (P63/mmc (No. 194), a=2.7702(8), c=4.3785(9)) [41], the 

highest relative intensities of peaks came from the crystallographic plane sets of {002}. 

According to Pearson’s Crystal powder pattern for LiZn4 (No. 1321631), the strongest peak 

should be (101). This inconsistency could be due to the preferred orientation along (002) 

exerted from the extruding process.  

Table 4.2 summarizes the mechanical properties of Zn-Li wires compared with the 4N Zn 

wire 

Table 4.2. Mechanical properties of 4N Zn and Zn-Li wires 

Sample 
Yield strength 

(MPa) 

Tensile 

strength (MPa) 

Ductility 

%elongation 

Ductility 

%area reduction 

Hardness 

(Vickers) 

4N Zn 86 ± 14 116 ± 13 50 ± 5 97 ± 2 42 ± 3 

Zn-Li 238 ± 60 274 ± 61 17 ± 7 74 ± 5 97 ± 2 
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It should be noted that Zn-Li exhibited higher yield strength, tensile strength, hardness 

and lower ductility than 4N Zn.    

0 10 20 30 40 50 60 70

0

50

100

150

200

250

S
tr

e
s

s
/M

P
a

Strain

 Zn-Li wire

 4N Zn wire

 

 

Fig.4.3. Set-up for the tensile test (a), representative tensile stress-strain curve of 4N Zn 

and Zn-Li (b) and fracture images of Zn-Li (c,d). 

 

The representative tensile stress curve (Fig.4.3b) shows that the zinc alloy endured a 

significant plastic deformation and necking before fracture occurred. The curve indicates 

an ultimate tensile stress of 220 MPa and an elongation to failure of 24%. The average 

strength values from the five Zn-Li wires increased by over 100% relative to 4N Zn and 
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the ductility in percent of elongation was also retained at 17%, reaching the minimum 

mechanical requirement for a stent [30]. The increase in strength could be due to the large 

volume fractions of the LiZn4 phase for the alloy wires. SEM examination of the fracture 

surface (Fig. 4.3c, d) revealed a clear necking shrinkage and dimpled surface, indicating a 

moderately ductile behavior for the Zn alloy. The spherical “dimples” corresponding to 

microvoids are believed to initiate the crack formation.   

4.3.2 In vivo corrosion analysis  
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Fig. 4.4. (a) Backscattered electron images and elemental maps (EDS) of Zn-Li wire 

sections after residing in the rat arterial for 2 to 12 months; (b) FTIR spectrum of Zn-Li 

wire for 13.5-month residence. 

From the backscattered electron images (BEI), both the remaining metallic sections (shown 

as the lighter phase) and the mixture of corrosion products, the epoxy and tissue (shown as 

the darker phase) were detected. Dark areas inside the boundaries of explant cross sections 

indicated a lower atomic number corrosion product made of zinc oxide, as will be 

demonstrated later by x-ray maps. BEI images recorded after different periods of the alloy 

wire explants (Fig.4.4a) indicated the loss of the circular wire integrity after 2 months of 

in vivo degradation. It progressed further until 12 months.  

Elemental maps of the same series of cross sections revealed the presence of the following 

major elements: Zn, Ca, P, O, C and Cl (Fig.4.4a). At 2 months, a Ca and P-containing 

exterior layer was detected adjacent to the inner layer containing Zn, C and O. A variation 

in distribution of the corrosion products containing those elements is apparent from 

elemental maps in Fig.4.4a. The outermost layer consists mainly of Ca and P, and the thin 

layer adjacent to the metallic leftover is enriched with Cl, O and Zn, followed by a tiny 

(b) 
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content of C in particular regions. The distributions of Ca and P are almost identical, 

indicating the presence of a more uniform layer of CaP at 2 months. This is in a disparity 

to what was reported for the Mg wire [42], where Ca was incorporated in a more outer 

layer than P.  At 4 months, apart from the more evident loss of the metallic area, wire cross 

sections are surrounded by ceramic layer composed of Ca and P elements, which thickness 

appears to be more uniform around perimeter. The higher content of C at 4 months is 

believed to be related to the penetration of epoxy into the oxide corrosion product, and not 

result of the corrosion. This conclusion is in agreement with the contrast for the BEI image. 

As shown in Fig.4.4, the distribution of Cl is similar to Zn. The high intensity Cl spot is 

aligned with O, indicating the possible corrosion product of Zn-O-Cl. At 6.5 months, both 

the CaP layer and the Zn-O layer thickened and the C signals started to appear in some 

inner regions adjacent to O and Zn. This suggests the onset of the formation of Zn-O-C at 

6.5 months. At 9 months, the coverage and distribution of all elements of interest around 

metallic implant suggest increased amount of corrosion products, especially Zn-O-C. 

Approximately 1/5 of the inner Zn area was lost at 12 months. The corrosion layer of Zn-

O segregated in the locations where most corrosion occurred.  The layers of CaP and Zn-

O-C did not increase significantly as compared to the previous stage. The nearly identical 

distribution of the Cl and Zn elements and the overlap between O and Cl in the enlarged 

island area provide evidence for formation of Zn-O-Cl product(s) at 12 months.  

FT-TR (infrared spectroscopy) was used to substantiate the surface products present on 

explanted Zn alloy wires. In the FT-IR spectrum (Fig.4.4b), a narrow and high intensity 

PO4
3- band is observed at 1050-1180 cm-1, which is related to the asymmetric stretching of 
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the ν3 group [42,43]. The absorption band in the range of 920-1000 cm-1 is characteristic 

of the symmetrical stretching of the ν1 group [44]. The CO3
2- bands from the ν3 apatitic 

substitution were detected at 1390-1500 and 1540-1620 cm-1 [45,46]. 

Based on the signature of Zn, O, Ca, P, C from elemental map and the presence of PO4
3- 

and CO3
2- from FT-IR, it is assumed that the compact degradation product of Zn-Li 

consisted of an inner Zn-O layer, followed by Zn-Cl-O, zinc carbonate (ZnCO3) and a 

calcium phosphate (CaP) layer. Another possible corrosion product, Zn3(PO4)2·2H2O, 

which is a more thermodynamically stable mineral at physiological pH [47] were absent 

based on the lack of spatial overlapping between the elements Zn and P. This may either 

indicate that the formation of Zn3(PO4)2·2H2O in this system needs longer time or that the 

local pH had increased to above the physiological state due to the corrosion reaction: 

Zn+O2+H2O = Zn2++4OH-.  
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Fig. 4.5.(a) Typical ImageJ screenshot used for cross sectional analysis. The original local 

cross-sectional area (yellow) is approximated by an ellipse. The red area selected by 

thresholding is to represent the remaining Zn-Li alloy. (b) Penetration rates calculated from 

reduction of cross sectional areas. (c) Cross sectional area reduction of alloy wires after 

explanation.              

 

Cross-sectional analysis showed an incremental increase of the degradation rate for Zn-Li 

alloy during the implantation from 2 to 12 months. A moderate low degradation rate of 

0.08 to 0.016 mm/yr was observed at 2 to 4 months. The earlier degradation for the alloy 

wire was a little slower than that of 4N Zn and the benchmark for the ideal degradation 

(0.02 mm/y) of medical implants [28]. However, the degradation of Zn-Li alloy accelerated 

to 0.019 mm/yr at 9 months and 0.046 mm/yr at 12 months, which is twice as high as that 

100 µm 

(b) 

(a) 

(c) 
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of the 4N Zn sample (Fig.4.5b). This acceleration in later stage is preferred since the stent 

would dissolve quickly in the body after the supporting function has ceased. Fig.4.5c 

demonstrates the percent of cross sectional area reduction for 4N Zn and the Zn-Li alloy 

over implantation time. The dashed line corresponds to the targeted cross area reduction of 

20 μm/yr reported earlier [28].  The corroded area for Zn-Li was a little less than for 4N 

Zn before 9 months and increased thereafter, which is consistent with the penetration rate 

results shown in Fig.4.5b. Both 4N Zn and Zn-Li followed almost the same trend with the 

targeted value and retained about 70% of the original area after 12 months in vivo. The 

identical loss of area for 4N Zn and Zn-Li over 12 months indicates the very similar average 

corrosion rate for the two materials. Surprisingly, the Zn-Li curve displayed a near-liner 

relationship (R2 = 0.99) between the percent of area reduction and time, and the slope of 

the curve (k = 2.63) was much closer to the target value (k = 2.67). This suggests a near 

ideal uniform gradual acceleration of biodegradation for this alloy.  
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4.3.3 In vivo biocompatibility analysis  

 

Fig. 4.6. Arterial explants stained with H&E at 11 months. Low magnification images show 

two subsequent areas selected for high magnification. “L” is the luminal opening of the 

artery. Scale bars are 500 µm and 100 µm for 100x and 600x, respectively. 
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Fig.4.6 also shows two areas of interest at higher magnification for the 11 month luminal 

explants. Panels C and D demonstrate regions of chronic inflammation within the red circle 

that correspond to the green asterisks on panels A and B.  

 In panel E, the blue asterisk identifies a media layer largely devoid of smooth muscle cells, 

while panel F identifies a neo-intima largely populated with cells. These areas 

corresponded to the red asterisks on panels A and B. It should be noted that the media layer 

for the Zn-Li specimen appears largely deteriorated closer to the implant.  Wide open 

arterial lumens and low neointimal growth around the implant is evident from the images 

and indicates excellent biocompatibility for Zn-Li, although inflammation and neointima 

thickness appear to be slightly higher for Zn-Li relative to 4N Zn. 

4.4 Discussion  

4.4.1 The role of Li in the corrosion rate of Zn 

It is known that alloying a second element into a metallic structure may not only change 

the mechanical properties but also modify the corrosion behavior. In the Zn-Li alloys, 

based on the optical micrographs and XRD results, it is assumed that element Li existed 

partly in solid solution but also precipitated in the form of LiZn4 as part of a eutectic 

structure.  
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Fig. 4.7. Illustration of the galvanic effect between the Zn matrix and secondary phase in 

physiological environment. 

 

As shown schematically in Fig.4.7, there are two sources of galvanic corrosion in this 

system: one is between the Zn-matrix and LiZn4 and the other is between the eutectic-Zn 

and LiZn4. Due to the potential difference of the two, the precipitated secondary phase 

LiZn4, which is nobler than Zn, can accelerate the corrosion of the matrix due to micro-

galvanic corrosion. However, the comparison of the penetration rates in Fig.4.5(b) showed 

that the Zn-Li alloy corrodes slower than 4N Zn in the early stage. This can be explained 

as follows: the area fraction of the LiZn4 phases as determined using the ImageJ software 

is up to 10 ± 3%. During the corrosion processes these large amounts of precipitates could 

act as an anodic barrier and an enrichment of the corrosion product (which consists of inner 

Zn-O layer, Zn-Cl-O, ZnCO3 and CaP layer) to inhibit the overall corrosion rate of the 

alloy. Therefore, the formation of the LiZn4 phase in this alloy contributes to a slower 

corrosion of the Zn-Li alloy. The decrease of the susceptibility to atmospheric corrosion 

resulting from alloying with Li was also detected in Mg-12 at.% Li [48]. Moreover, the 
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molar ratio of LiZn4 to the adjacent eutectic-Zn for Zn-Li was 40% (calculated from the 

Zn-Li phase diagram) and this may also influence the galvanic cells. Apart from the high 

volume fraction effect, the aggregates of the corrosion layers from the uncorroded 

intermetallic LiZn4 phase, together with other corrosion coatings consisting of zinc oxide, 

perchlorate, carbonate and calcium phosphate layers also retarded the corrosions. However, 

this decrease of the susceptibility to atmospheric corrosion from large volume fractions of 

LiZn4 can be undermined with the progression of corrosion, as evidenced by the drastic 

increase of the corrosion rate for the alloy wire after 9 months. This can be due to the 

dissolution of the passive film and the incorporation of dissolved oxygen, ions or other 

proteins and cells. In this way, the structure of the passive film will loosen and the previous 

initiated pits may spread, which promotes a rapid attack of the bulk metal [49].   

4.4.2 Corrosion mechanism 

The production of the corrosion products in this system were estimated based on the 

Pourbaix diagram of Zn-Li-H2O at 37oC (calculated using FactSage 7.0 software).  
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Fig. 4.8. Zn-Li-H2O and Zn-Li-H2O-X Pourbaix diagrams for physiological 

concentrations of X = {C, Cl, P } at 37 °C. Physiological pH of 7.4 is shown by the 

dotted lines and physiological potential for tissue fluid is marked by the circles. 

 

All of the thermodynamic equilibrium equations of Zn and Li with the physiological ions 

present in H2O are shown in Fig.4.8. Zn-Li-H2O and Zn-Li-X-H2O diagrams are shown for 

X = {C, P, Cl} and [Zn2+, Li+]={10-6}. To mimic the in vivo corrosion environment, 

concentrations for Cl-, HPO4
2- and HCO3

-(CO2(aq)) in this diagram were set to be identical 

to the values in human blood plasma (0.1 mol/L for Cl-, 0.001 mol/L for HPO4
2-, and 0.027 

mol/L for CO2(aq)) [50]. In the Zn-Li-H2O system, at low potentials of E < -1.4 V, both 

Zn and Li are in the immunity region and thus stable in their metallic form. As Li possesses 

higher activity than Zn, with potential increases, Li would be oxidized first. If surface 

potential E is over -0.8 V, and at pH < 8.3, both Zn and Li would go into solution. The 

Pourbaix diagram also shows that both the Zn2+ and Li+ are stable at low pH; the oxide, 

ZnO, at intermediate pH; and the ZnO and LiOH at very high pH.  
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The Pourbaix diagram is assumed to represent the thermodynamic equilibrium conditions. 

On a contrary, in a real corrosion situation, the local pH values in the cathodic and anodic 

areas are always higher and smaller, respectively, than at equilibrium.  Therefore, the red 

circles marked on the Pourbaix diagrams in Fig.4.8 which stand for physiological 

conditions with tissue fluid (pH ≈ 7.4 and E ≈ 0.78 V) [51]. At pH ≈ 7.4, the Zn-Li-C-H2O 

system reaches the equilibrium with ZnCO3 and ZnO as the corrosion product. In the 

diagram of Zn-Li-P-H2O, it is believed that Zn3P2 only exists if the potential is in the range 

of -0.7 V < E < -0.6V. At physiological potential, Zn3P2 dissolves and ZnO becomes the 

only solid product. No Zn3(PO4)2·2H2O was detected under all conditions. From the 

elemental mapping in Fig.4.4a, there was still a signal for a Zn-Cl-O mineral. However, in 

the Zn-Li-Cl-H2O system, no solid Zn-Cl-O products were suggested around the potential 

of the tissue fluid. It is possible that the as-formed chloride product was not stable at pH = 

7.4. Zn5(OH)8Cl2·H2O, which can be formed due to the reaction of ZnCl2 with ZnO only 

exists at a pH of 6.9. Furthermore, after implantation, apart from the contact with Cl-, 

HCO3
-, HPO4

2-, the Zn-Li alloy implants were also exposed to an environment rich in blood, 

protein, cations (Na+, K+, Ca2+, Mg2+, etc.), organic substances of low-molecular-weight 

species, polymeric components of high molecular-weight, as well as dissolved oxygen [52]. 

This physiological environment makes the corrosive medium extremely complex, which 

can alter the properties of corrosion products and corrosion rates [51].  

Based on the Pourbaix diagram, the following degradation sequence of the Zn-Li alloy in 

a physiological environment is assumed: when Zn-Li is exposed to the aqueous solutions, 

it shows some hydrogen gas evolution (Eq. 2), which is balanced by dissolution of Zn (Eq. 

3). As dissolution progresses, the pH increases with the formation of OH- from the cathodic 
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reaction, which promotes the production of ZnO according to the Pourbaix diagram. Along 

with the deposition of a passive ZnO layer (Eq. 4), the existence of HCO3
- (Eq. 5), Cl-(Eq. 

6) and HPO4
2- (biomineralization from the introduction of calcium) in the body fluid also 

favors thermodynamically the formation of new phases. The passive film would thus be 

reconstructed into layers of zinc oxide, zinc chloride hydroxide, zinc carbonate and calcium 

phosphate layer, as illustrated in schematic phase map in Fig. 4.9.  

2H2O + 2e-  = H2 + 2OH- (cathodic reaction)                                                    Eq. 4.2 

Zn(s) = Zn2+(aq) + 2e- (anodic reaction)                                                           Eq. 4.3 

Zn2+ + 2OH- = Zn(OH)2 = ZnO + H2O (product formation)                             Eq. 4.4 

     H2O + CO2 = H2CO3 = HCO3
- + H+ 

Zn2+ + 2HCO3
- = ZnCO3 + H2 (product formation)Equation                            Eq.4.5 

Zn2+ + 2Cl- + 4ZnO + 5H2O = Zn5(OH)8Cl2·H2O (product formation)            Eq. 4.6 

 

Fig. 4.9. Schematic phase map for 9-month residence. 
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Based on histological observations, inflammation for the Li bearing metal consistently 

appeared to be higher than for the 4N Zn wire.  This increased inflammation did not 

detrimentally affect the ability of the artery to propagate blood flow.  The greater 

inflammatory response exhibited by Zn-Li over the 12 month evaluation period can be 

explained by the increased variety of chemical species displayed to immune cells during 

the course of the corrosion process, such as the LiZn4 intermetallic. 

4.5 Conclusions 

A new Zn-Li alloy has been cast, extruded and analyzed for biomedical-focused 

applications. XRD results indicated the formation of LiZn4 through the emergence of 

diffraction peaks corresponding to (002) and (101) for this phase. Mechanical testing 

showed that alloying of Zn with 0.1 wt.% of Li increased the tensile strength from 116 ± 

13 MPa (pure Zn) to 274 ± 61 MPa while the ductility was still being held at 17 ± 7%.  

The elemental mapping and FT-IR analysis jointly confirmed that the corrosion products 

are calcium phosphate, zinc oxide, zinc chloride hydroxide and zinc carbonate. The 

quantitative corrosion analysis showed a moderate low degradation rate of 0.019 mm/yr at 

6.5 months that increased to 0.046 mm/yr at 12 months. This later stage acceleration is 

beneficial in that the stent would dissolve quickly in the body after the scaffolding function 

ceased around 6 months. The corroded volume for Zn-Li was only slightly smaller than 

that of 4N Zn at 6 months but both of them retained about 70% of their original dimensions 

after 12 months in vivo. The nearly identical oxidation progression for 4N Zn and Zn-Li 

indicates a very similar corrosion rate for the two materials. Moreover, the cross sectional 

area reduction curve for Zn-Li displayed a near-liner relationship between the percent of 
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area reduction and time. This suggests a near ideal uniform gradual acceleration of 

biodegradation for this alloy. Biocompatibility results for the Zn-Li alloy at 11 months in 

vivo indicated a moderate inflammation with a non-obstructive neointima.  

All the preliminary results obtained from implantation in rat abdominal arteries 

demonstrated that this new Zn-Li alloy is another promising bio-degradable coronary stent 

material based on its improved mechanical properties and the outstanding corrosion 

behavior as compared to pure Zn.  
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Chapter 5 Summary  

In this dissertation, a new class of Zn-xLi alloys (with x=2, 4, 6 at.%) was prepared by 

induction melting in an argon atmosphere and processed through hot rolling for 

biomedical-focused applications. XRD results indicate the formation of LiZn4 through the 

emergence of diffraction peaks corresponding to (001) and (004) for this phase when 

deformed by hot rolling, which increased hardness significantly in all cases. Mechanical 

testing showed that alloying Zn with Li increases the tensile strength to 360 MPa with a 

nominal addition of 2 at.% and 560 MPa with 6 at.% Li following hot rolling. Addition of 

Li above the eutectic composition caused a severe decrease in elongation to failure making 

the 6% Li alloy unsuitable for cardiovascular stent application. 

In vitro corrosion behavior was evaluated by immersion tests in simulated body fluid. The 

in vitro study with the newly formulated Zn-2Li and Zn-4Li alloys also demonstrates that 

the corrosion rates and products in modified SBF solution closely resemble that of pure Zn 

observed in vivo, in plasma, and in whole blood from previous studies. The Zn-4Li alloy 

exhibited higher resistance to corrosion compared to Zn-2Li suggesting a positive effect of 

Li content on protective characteristics of the corrosion layer. The findings herein 

encourage further exploration of Zn-Li systems for structural use in biomedical vascular 

support applications with the ultimate goal of simplifying stent procedures thereby 

reducing stent related complications. 

For the in vivo corrosion studies, a new Zn-Li alloy wire has been cast, extruded and 

analyzed for biomedical-focused applications. XRD results indicated the formation of 
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LiZn4 through the emergence of diffraction peaks corresponding to (002) and (101) for this 

phase. Mechanical testing showed that alloying of Zn with 0.1 wt.% of Li increased the 

tensile strength from 116 ± 13 MPa (pure Zn) to 274 ± 61 MPa while the ductility was still 

being held at 17 ± 7%.  

The elemental mapping and FT-IR analysis jointly confirmed that the corrosion products 

are calcium phosphate, zinc oxide, zinc chloride hydroxide and zinc carbonate. The 

quantitative corrosion analysis showed a moderate low degradation rate of 0.019 mm/yr at 

6.5 months that increased to 0.046 mm/yr at 12 months. This later stage acceleration is 

beneficial in that the stent would dissolve quickly in the body after the scaffolding function 

ceased around 6 months. The corroded volume for Zn-Li was only slightly smaller than 

that of 4N Zn at 6 months but both of them retained about 70% of their original dimensions 

after 12 months in vivo. The nearly identical oxidation progression for 4N Zn and Zn-Li 

indicates a very similar corrosion rate for the two materials. Moreover, the cross sectional 

area reduction curve for Zn-Li displayed a near-liner relationship between the percent of 

area reduction and time. This suggests a near ideal uniform gradual acceleration of 

biodegradation for this alloy. Biocompatibility results for the Zn-Li alloy at 11 months in 

vivo indicated a moderate inflammation with a non-obstructive neointima.  

All the preliminary results obtained from implantation in rat abdominal arteries 

demonstrated that this new Zn-Li alloy is another promising bio-degradable coronary stent 

material based on its improved mechanical properties and the outstanding corrosion 

behavior as compared to pure Zn.  
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