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Abstract 
Remote Site Incubators (RSIs) were developed for the incubation of salmonid eggs 

directly at a field site to enhance success and imprinting of young.  These have been 

employed in the re-establishment of Arctic Grayling in Montana and are being laboratory 

tested for possible reintroduction of this species in the Big Manistee River, MI. Arctic 

Grayling, Rainbow and Brook Trout eggs, obtained from state hatcheries, were reared in 

a laboratory using flow through lake water to assess egg and fry survival using RSIs. 

Dead eggs and fry were removed daily and observations of developmental stages 

recorded. Rainbow Trout eggs were evaluated at high, medium, and low egg densities 

with an average percent survival at hatch of 86% and swim-up of 72%.  Brook Trout eggs 

were evaluated at medium and low densities has an average percent survival at hatch of 

74% and swim-up 42%. In Montana, RSIs achieved success with 67% survival of Arctic 

Grayling eyed eggs to swim-up, and in this study hatch and swim-up for both medium 

and high density eyed-eggs was 54% and 77% respectively. This suggests that RSIs will 

be valuable tools future reintroductions to suitable Michigan streams. 
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1. Introduction11 

With the goal of restoring natural resources of cultural and spiritual significance to the 

tribe in 2011 the Little River Band of Ottawa Indians received funding to begin feasibility 

studies for future restoration of historically native Arctic Grayling (Thymallus arcticus) 

in the Big Manistee River, Michigan.  To prepare for re-introduction of this species 

within State waters it is important to examine Arctic Grayling life history and present 

abiotic and biotic conditions (Danhoff et al. 2017).  Information on early life of Arctic 

Grayling is scarce (Kratt & Smith 1977), but studies in Montana, Canada, and Europe on 

a sister species (Thymallus thymallus), provide some information on habitat suitability 

(Northcote 1993, Lamothe & Magee 2004, Stewart et al. 2007).    

Arctic Grayling are a cold-water species known to spawn annually upon reaching sexual 

maturity, which varies by region ranging from two to six years old (Northcote 1995). 

Like other salmonid species, Arctic Grayling return to spawn in natal waterways (Tack 

1980, Hop 1985, Northcote 1995). Adults migrate to these streams and rivers just after 

spring ice out (Haugen & Vøllestad 2000) at temperatures around 4°C and spawn around 

5-9°C with maximum at 16 ºC (Northcote 1993). Depending on factors such as lake, 

year, location and elevation, the timing of spawning can start as early as late April and 

end in mid-June (Northcote 1995).   

Generally, Arctic Grayling spawn in areas of streams and rivers that are shallow (< 1 m), 

and have gravel or rocky substrates with moderate flow (< 150 cm/s) (Stewart et al. 

                                                           
1 The material contained in this chapter is in preparation for submission to a journal.  
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2007). Unlike other salmonid species, male Arctic Grayling set up spawning territories 

rather than defend access to a female (Beauchamp 1981). Females do not construct redds 

prior to egg release or cover their eggs after fertilization. However, shallow pits appear as 

the result of pre-spawning activities (Northcote 1993) and the demersal, adhesive eggs 

will move into cracks and crevices between rocks (Northcote 1995) allowing eggs to lay 

a few centimeters underneath the gravel surface. Females in Canada and Washington 

State (U.S.) produce between 1,200 – 17,000 eggs, and hatching occurs within 130-140 

degree days (~3 weeks) (Northcote 1995). Compared to eggs of other salmonid species, 

Arctic Grayling eggs are small, ranging from 2 to 3 mm in diameter prior to fertilization, 

2.7 mm on average when water hardened, and swell for 3 to 4 days to reach 3.5 to 4 mm 

in diameter (Northcote 1993). 

Arctic Grayling begin to emerge on average 3-4 days after hatch; length varies among 

systems but larvae are between 7-15 mm TL (Kratt & Smith 1977, Northcote 1995). 

Larval Arctic Grayling are very poor swimmers, especially at swim-up, for about two 

weeks (Kratt & Smith 1977, Deleray & Kaya 1992, Stewart et al. 2007). Due to their 

poor swimming ability, they are highly susceptible to displacement in flooding and 

drought (Armstrong 1986). Arctic Grayling fry begin eating about nine days after hatch 

and actively prey upon zooplankton, mayfly nymphs, Diptera pupae and cladocerans 

(Bishop 1967, Stewart et. al. 2007). Arctic Grayling fry will school together for about 3 

weeks after swim-up in shallow, calm water with little flow and since they are surface 

swimmers they need 90% overhead vegetation or instream boulders for protection 

(Vascotte 1970). 
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The objective of this research is to test the feasibility of using Remote Site Incubators 

(RSIs) (Figure 1) for Arctic Grayling reintroduction in Michigan. In past reintroduction 

efforts in the state, the usual method was to stock hatchery-reared fingerlings or yearlings 

directly into the river (Nufher 1992).  Recently, the use of RSIs has been shown as a 

successful alternative to establish or reestablish some salmonid species, including Arctic 

Grayling, at remote locations (Donaghy & Verspoor 2000, Kaeding & Boltz 2004, Al-

Chokhachy et al. 2009).  RSIs are self-contained incubators that permit the hatching of 

eggs and release of swim-up fry directly at a field site.  Advantages of this method 

include reducing the effects of sedimentation on eggs (Kaeding & Boltz 2004) and 

introducing eggs and fry to natural stream water chemistry and conditions facilitating 

potential imprinting on natal waters (Kirkland 2012). Higher swim-up rates have also 

been observed in RSI-reared eggs compared to those of wild-spawned eggs (Kruse 1959, 

Lund 1974, Olsson & Persson 1986, Syrjanen et al. 2008). 

The use of RSIs for incubation and swim-up was successful in the Yankee Fork River in 

the Salmon River Basin, Idaho in 1995 to produce Chinook Salmon (Oncorhynchus 

tshawytscha) using fungicide-treated eggs resulting in an average 85% survival of eyed-

eggs to hatch (Denny et al. 2012). In the state of Washington, untreated Chinook salmon 

eggs in RSI’s exhibited an average survival rate of 95% from egg to hatch (Wampler & 

Manuel 1992). This method was also used for Westslope Cutthroat Trout (Oncorhynchus 

clarki lewisi) at Libby Dam in Montana (Hoffman et al. 2002) resulting in a yearly 

average survival between 53% and 75% in 1997-2000 from egg to hatch. Investigations 

using Arctic Grayling in Upper Red Rock Lake, Montana have resulted in an average 
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44% survival from egg to hatch (Kaeding & Boltz 2004) and 90% survival in the Sun 

River, Montana (Magee et al. 2004).  

The purpose of this study was to investigate methodology of using RSIs and their 

feasibility for use under laboratory conditions mimicking native Michigan rivers. We 

tested the hypothesis that egg density does not impact survival to hatch and swim-up of 

three salmonid species used in RSIs under laboratory conditions and methodology for 

hatch and swim-up success would not be achieved for all three salmonid species. 

Research objectives were: 

1. To assess optimal egg density to use in a RSIs which produces the highest 

survival rate from egg to hatch and then swim-up for Brook Trout, Rainbow Trout 

and Arctic Grayling.  

2. To determine if RSIs could be effective and achieve comparable results to RSI 

units operated in field conditions for eggs and swim-up fry of three salmonid 

species.   

2. Methods 
Three species, Rainbow Trout (Oncorhynchus mykiss), Brook Trout (Salvelinus 

fontinalis) and Arctic Grayling (Thymallus arcticus), were used in egg survival and 

swim-up studies (Table 1 and Table 2). Experiments were conducted at MTU using two 

large Living Stream tanks (Frigid Units Inc., Toledo, Ohio). These tanks held three RSIs 

each and lake water was pumped continuously from the Portage Canal which transects 

the peninsula.  A filter system (Ocean Clear, Houston, TX, USA) was used to decrease 

sediment build up.  Each RSI was constructed using a 19l (5 gallon) bucket with a lid, 
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PVC pipe water delivery system, rock substrate (for Brook and Rainbow Trout studies)  

and an egg tray following Kaeding and Boltz, 2004 (Figure 1).  Flow was increased just 

below the point at which eggs would roll. Water percolated up through a diffuser though 

the bucket and exited through the out flow near the top, and a meshed basket was placed 

below the outlet to collect all swim-up fry.  A plastic 0.64 cm mesh tray (Industrial 

Netting, Brooklyn, PA) held gravel substrate and fertilized eggs. The gravel in the bucket 

simulated natural spawning habitat and provided habitat for fry to continue to develop 

before swim-up and moving through the “out flow” (Kaeding & Boltz 2004, Rupert & 

Ruhl 2008).    

The outlet of each Living Stream had a mesh screen nursery egg bag (volume 2500 cm3) 

to collect swim-up fry. An Onset (HOBO Pendant, Onset Computer Corporation, Bourne 

MA) temperature (°C) and light (LUX) logger was located among the gravel of one RSI 

in each Frigid tank.  Water temperature was also measured manually each day and dead 

eggs/fry removed, counted, and time to hatch, swim-up and developmental stage (eyed, 

hatch, and swim-up) were recorded. Hatch fry were not feed as they were euthanized at 

swim-up. Weekly pH and water velocity (ml/min) measurements were recorded as was 

light intensity using a PAR meter (Quentun Flux, Model MQ-200). Illumination 

mimicked the natural cycle of the time of year that each species would normally 

experience, and during monitoring activities, eggs were shielded from direct light and 

disturbance was minimized. 

Low, medium, or high density of eggs was determined by the size of the eggs and number 

of eggs received for each species of fish (Table 3). Arctic Grayling densities were based 
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on Magee et al. (2004) who used 1,400 fertilized eggs per RSI in a single layer.  Overall 

we had fewer eggs to work with so we reduced the area for each batch of eggs. Eggs in 

our study were acclimated to lake water temperatures (15 minutes) prior to placing them 

in egg trays. All living fish that swam up were collected, euthanized with MS222 

(Tricaine-S, Western Chemical, Inc., Ferndale WA.) and placed in 10% formalin, 

counted and measured to total length (TL (mm)). TL (mm) and average depth of yolk sac 

(mm) were recorded for Brook Trout and Arctic Grayling.  

2.1 Rainbow Trout  
Rainbow Trout eggs were received on 22 April 2015 (Day one), from the Little River 

Band of Ottawa Indians Natural Resources Department in two, five-gallon, uninsulated 

buckets in oxygen injected water, and transported over ice. They were treated with a 

10.0% Povidone-Iodine treatment (Ovadine, Western Chemical Inc., Ferndale WA) to 

reduce bacteria on arrival to MTU for ten minutes and handled with a brine shrimp net. 

Since we had a large number of eggs to work with a single density was used in each RSI, 

the area of each RSI screen being 707 cm2.  We estimated the number of eggs used in 

each RSI by filling a 25 ml graduated cylinder with eggs and determining the average 

number (average = 205 eggs/25 ml, SD ± 28.34). Hoping to reach a low density (n=800), 

medium (n=1200) and high (n=1600), eggs were measured into freezer bags with original 

transport water (13 ºC) and allowed to acclimate to the temperature in the RSI (5 ºC) 

before being added to the RSI (Table 4).  

2.2 Brook Trout  
For this trial, we used plastic mesh to divide the egg mesh-holding screen into three equal 

sections (236 cm2 each). On 5 November 2015 (Day one) approximately 5400 Brook 
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Trout eggs were collected from the Cherry Creek Hatchery (Marquette, MI). They were 

transported in freezer bags and stored in a cooler filled with hatchery water (8°C). Eggs 

were treated on site with iodine until eggs were water hardened to destroy Bacterial 

Kidney Disease (BKD) and cold water bacteria. On arrival to MTU, eggs were sorted into 

six RSI’s at low (n=266) or medium (n=400) density.    

2.3 Arctic Grayling  
Arctic Grayling eggs were received in two shipments of eggs from Montana. The first 

shipment was of green, day-old fertilized eggs, and the second shipment was of 5 day old 

eyed eggs, a more stable developmental period for fish eggs. On 15 May 2016 (Day one) 

2500 green Arctic Grayling eggs from the Green Hollow Grayling Brood Pond in 

Bozeman, Montana were shipped to MTU overnight. Eggs arrived in a cooler, and were 

packaged “dry”. Upon arrival to MTU Grayling eggs were put into 11 ºC water and 

sorted into six RSIs (3 per Frigid Tank) at high density (n=200) only and placed in socks 

of plastic mesh (0.24 cm) at 1/6th the area of the mesh flooring an area of 118 cm2. On 20 

May 2016 a second shipment of about 2500 “eyed” Arctic Grayling eggs arrived at MTU 

overnight. Eggs arrived in a thermal egg shipper with crushed ice and a starting 

temperature of 8 ºC.  Since we had fewer eggs to use for Arctic Grayling they were sorted 

into similar 118 cm2 area socks using high density (n=200) and medium (n=160) at water 

temperatures of 14°C.  

2.3 Data Analysis 
The percent survival to hatch and swim-up were calculated as the difference between the 

number of fertilized eggs placed into the RSI and the total counts of dead eggs and larvae 

that were subsequently removed. A linear mixed effect model was used to compare the 
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two tanks to determine if there was any difference among RSIs, flows, treatments and 

tanks (R Studio, Boston, MA). Since no difference (p value =1) was found, all replicates 

of densities for both tanks were grouped together for the Brook Trout (duration 184 days) 

and Arctic Grayling (duration 18 days) experiments for further analysis. The linear mixed 

model also compared Arctic Grayling high density eyed-eggs, medium density eyed-

eggs, and high density green eggs with an alpha of 0.05 

3. Results 
A summary of results for each species of fish used in the study shows the variation in 

incubation time (Table 5) and duration to hatch and swim-up for the three species used in 

this study (Table 6). For all tank experiments the HOBO light recorder indicated 0 LUX 

for the duration of the experiments, and flow for the RSI units averaged 45.9 cm3/sec 

(41.78- 50.0 cm3/sec). 

3.1 Rainbow Trout 
On 23 May 2015 (Day 31 of incubation), eggs began to hatch, and swim-up began 12 

days later on 4 June 2015 (Day 43). Average percent egg survival for the three RSIs in 

each tank was 84% low density, 87% medium density and 87% high density.  The 

average percent survival to swim-up was 68% low density, 70% medium density and 

78% high density (Figure 2.A and Table 5). 

3.2 Brook Trout 
The Brook Trout incubation time was the longest of any of the three species studied as 

eggs did not begin to hatch until 22 February 2016 (Day 108) and swim-up began on 18 

April 2016 (Day164). Water temperatures during this period were 4.5°C at hatch and 

5.6°C at swim-up. All six replicates from the two Frigid Tanks were grouped together for 
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analysis. Brook Trout eggs at low density showed percent survival to hatch at 67% (SD 

6.0) and at medium density was 80% (SD 6.0), we did not have a high density group for 

this species.  Survival to swim-up at low density was 45% (SD 29.0) and at medium 

density was 39% (SD 13.0) (Table 5). The average depth of the yolk sac (mm/total 

length) for each date of swim-up was calculated and compared to the average daily 

temperature and shows that as the incubation time increased size of the yolk sac 

decreased at a rate of -0.03 mm/day. As the total length of the swim-up fry increased over 

time the average depth of the yolk sac decreased as well (Figures 2.B and 3.B). 

3.3 Arctic Grayling 
Arctic Grayling eggs hatched over a shorter time period than was seen for the other two 

salmonid species studied.  While green eggs were placed in RSIs on 15 May, eyed-eggs 

were placed in RSIs on 20 May 2016. On 23 May 2016 (Day 9), the green eggs began to 

hatch, and swim-up began on 28 May 2016 (Day 14) just 8 and 13 days after arrival, 

respectively.  Since we had fewer eggs and they were smaller in size we placed them in 

smaller units (mesh socks) at medium and high density only.  Percent survival to hatch 

for high density green eggs was 15% (SD 11.0) while for eyed-eggs survival at medium 

density was 96% (SD 2.0), and high density 96% (SD 3.0). Survival to swim-up for the 

green eggs was poor with only 8% (SD 8.0) surviving. The eggs shipped at the eyed stage 

preformed much better with survival to swim-up being 54% (SD 23.0) at medium 

density, and survival at 77% (SD 13.0) at high density (Figure 2.C and Table 6).  

The liner mixed model indicated that a treatment effect is present (p value = 0.0000). By 

fitting linear models to the high density intercept we showed that there is a treatment 
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effect between high density eyed-eggs, medium density eyed-eggs, versus high density 

green eggs. This is supported by Student’s t-test of high density eyed-eggs versus high 

density green eggs (p value= 0.0001) and medium density eyed-eggs versus high density 

green eggs (p value= 0.0032) Figure 3.A. shows the average depth of the yolk sac (mm) 

divided by the total length of the larvae (mm) for each day of swim-up and compared to 

the average daily water temperature. The size of the yolk sac decreased as the duration of 

experiment and temperature increased. As the total length of the swim-up larvae 

increased over time the average depth of the yolk sac decreased (Figure 4). 

4. Discussion 
It was encouraging to see that when using RSIs the 65% average percent swim-up 

of Arctic Grayling fry from our study is similar to the average 67% emergence seen in 

RSI field studies from Montana (Kaeding and Boltz 2004).  Overall, emergence rates 

from RSIs in our study were greater than those seen for wild spawning Arctic Grayling of 

only 2-4% Wyoming (Kruse 1959) and 1% Montana (Lund 1974). Eyed-eggs are 

frequently used for stocking in RSIs because eggs are less susceptible to clumping and 

fungus (Hershall 1907) and they show a reduced development time (Magee et al. 2004). 

With increased survival over wild spawned eggs and facilitating potential imprinting on 

natal waters (Kirkland 2012), RSIs should be an effective technique in the establishment 

of Arctic Grayling populations in select Michigan tributaries. 

The Rainbow and Brook Trout trials allowed for experimentation using live eggs of the 

Salmonidae family to better understand how to operate the RSIs. Properly functioning 

RSIs can have hatch success rates that can exceed 95% (Kirkland 2012). For Rainbow 
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Trout, our hatch was 86% which is higher than RSIs tested in the Salmon River Basin 

that achieved 81.9% hatch (Denny et. al. 2012). In the wild, Rainbow Trout survival can 

be from 46% to 92% from egg to emergence (Dahlberg 1979). Hatch typically happens in 

an average of 42 days and swim-up happens by 56 days at temperature of 12 °C (Hinshaw 

and Thompson 2000). 

Since we circulated lake water in the study tanks, the Brook Trout eggs had a longer 

incubation time, it was encouraging to see that some Brook Trout eggs survived the cold 

temperatures experienced over winter which would not have occurred in eggs in natural 

groundwater fed stream. Low temperatures near 4 °C were recorded in late April early 

May for the water used in our RSIs. Heft (2006) described the average optimal water 

temperature of 9 ̊C for development and hatching success of Brook Trout.  Hatching 

times vary at water temperatures of 4.5 to 11.5 ºC with 4.5 ºC shown to be the minimum 

temperature to reach the eyed-egg stage. However Embody (1934) found development 

still occurring at temperatures of 1.7 ºC but with higher mortality and less robust fry. Our 

average Brook Trout hatch of 74% was higher than what was reported in the literature of 

56% hatch but our study experienced a lower fry emergence of 42% which was lower 

than the 52 % swim-up in a laboratory study by Bascinar and Okumus (2004).  An 

investigation of several studies found in the wild most hatching occurs by 73 days at 

6.2°C for Brook Trout and swim-up by 135 days (Hale and Hilden 1970).   

Arctic Grayling eggs are much smaller in size than Rainbow Trout and Brook Trout with 

smaller yolks. As a result, they have a much shorter time to hatch and swim-up. In our 

study, we observed Rainbow Trout and Brook Trout larvae remained among the substrate 
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or just above until swim-up. This was also observed by Hale and Hilden (1970) for Brook 

Trout, yet was not true for Arctic Grayling who were observed to swim higher in the RSI 

towards the surface soon after hatch. This is due to Arctic Grayling swimming up in a 

few days after hatching where Rainbow Trout and Brook Trout stay among the substrate 

for longer durations after hatching. Arctic Grayling are also visual predators and feed 

shortly after hatch (Bishop 1967). 

 Arctic Grayling larvae are smaller (10 to 15 mm TL) compared to the Brook Trout (10 to 

25 mm TL) or Rainbow Trout (20 to 28 mm TL).  Kaya (1991) noted that swim-up Arctic 

Grayling were 9-11 mm TL and Walting and Brown (1955) saw larvae 7.4 – 11.3 mm TL 

which is similar to those seen in our experiment. Arctic Grayling are also weaker 

swimmers than other young trout (Kaya 1991) and would need to be protected from 

flooding and droughts.  

 Overall Arctic Grayling require overhead or over hanging vegetation and instream rocks 

for cover and they are inadequate swimmers. Due to these specific needs picking habitat 

to place eggs is very important. RSI’s would allow managers to place eggs in optimal 

habitat to increase survival post swim-up. 

5. Conclusion 
 New efforts at restoration of the Arctic Grayling in Michigan would have a positive 

impact on the biodiversity of the fisheries in the State as well as restoring cultural 

heritage for the Native American Tribes.  As shown in the past with the restoration of the 

Lake Sturgeon, indigenous paradigms are important in management of native species and 
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using unified restoration approaches can enhance ecological and societal values (Holtgren 

2016). 

This study revealed that the variance around egg density should be studied farther along 

with using this methodology in river systems slated for re-introduction efforts. 

Investigating the importance of fluctuating water temperatures on survival to hatch and 

swim-up in Arctic Grayling will also help determine best methods of using RSIs. The 

biggest challenge in our study was tracking numbers of eggs that hatched (and fry that 

swam-up) vs those that died.  Dead eggs and small fry quickly decomposed in sediment 

on the RSI bottom which was unavailable for inspection without dismantling the entire 

unit.  However our laboratory study showed that the RSI methodology could be 

successful in the reintroduction of Arctic Grayling and had survival to swim-up at equal 

or greater numbers than current studies in Montana streams.  The State of Michigan 

working with Tribal partners and others are considering re-introduction attempts in the 

near future. We have learned from this study and those conducted in Montana that using 

RSIs is critical to success by allowing placement in remote stream sites for best success.   
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 Figure 2. Graphs A, B, and C show the Rainbow Trout, Brook Trout and Arctic Grayling 
eggs estimated percent survival to hatch and survival to swim-up, 2015-2016. 
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Figure 3. Graph A and B display the ratio of depth of the yolk sac to total length 
of the larvae by date of hatch or swim-up and average daily water temperature. 
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Figure 4.  Average depth of the yolk sac compared to the total length of the larval 
Arctic Grayling.  
 

 

Figure 5. Average water temperatures in Montana RSI field studies during 
Grayling hatch compared to those in MTU RSI lab compared to the Slagle Creek, 
Big Manistee River tributary, spring water temperatures expected. 
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