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Abstract

The production of uniformly-sized droplets has numerous applications in various fields

including the biotechnology and chemical industries. For example, in the separation

of mixtures based on their relative absorbency, an optimal arrangement of monodis-

persed droplets in columns is desired for an e↵ective separation. However, very few

numerical studies on the formation of viscoelastic droplets via cross-flow shear are

available, none of which have considered the case when the flow of the continuous

phase is Couette. In this work, a new solver capable of automatic mesh refinement

is developed for the OpenFOAM CFD toolbox to solve viscoelastic two-phase flow

problems. The finite volume method is used to discretize the governing equations

while employing the Volume of Fluid (VOF) coupled with the level set method to

accurately describe the interface. The fourth-order least squares method is applied

to the reinitialization of the level set function. Mesh refinement and coarsening pro-

cedure is based on a specified range of the volume fraction field. To validate the

numerical technique, two-dimensional numerical simulation is conducted for a drop

under static conditions, drop deformation in shear flow, the rise of a Newtonian drop

in a Giesekus liquid and formation of viscoelastic droplet in a microfluidic T-junction.

Furthermore, the e↵ect of flow type and fluid elasticity on drop size and droplet for-

mation dynamics was investigated in a viscoelastic-Newtonian system. The results

obtained show good qualitative agreement with experimental work. In both cases
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where the flow of the continuous phase is pressure-driven (P-flow) and plane Couette

(C-flow), there was a decrease in drop size as the cross-flow shear rate increased.

However, for a fixed average shear rate, the drop sizes generated in C-flow were found

to be smaller than that in P-flow. It was also found that the influence of elasticity

on drop size became accentuated as the cross-flow shear increased. An increase in

elasticity was accompanied by a decrease in drop size.
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Chapter 1

Introduction

1.1 Two-phase flows

There exists a huge number of natural and industrial operations where some form

of fluid flow with material interfaces or free surfaces is present. In many application

flows, we have short time scales and small length scales, and identifying spontaneous

fluctuations of some flow features is challenging because dynamic measurements have

to be resolved in time and space. The use of computer simulations can help alleviate

these shortcomings. Since the hydrodynamic behavior of the fluid is largely dependent

on properties that are influenced by the shape of the front, such as surface tension,

an accurate estimation of the location and curvature of the interface is invaluable.
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Current methods used to simulate flows with a material interface can be split into two

major groups: volume methods and surface methods [2, 3, 4]. In the surface methods,

marker points with specific attributes are used to explicitly track the interface or the

computational mesh is aligned with the interface and programmed to advance with

the interface. Although, with this method, the location of the interface is known

all through the simulation and does not smear as the simulation progresses, it is

very ine�cient in handling large topological and interface movements. Examples of

surface methods include front-tracking method [5] and level-set (LS) method [6, 7].

In the volume methods, an indicator function or particles that have no mass are used

to identify the fluid on both sides of the interface. The major disadvantage of this

approach is that since the precise location of the front is not determined explicitly,

special procedures are required to reconstruct the interface. Examples of volume

methods include marker and cell (MAC) method [8, 9] and volume of fluid (VOF)

method [10, 11].

Among these numerical methods, the LS and VOF methods are very common. A

level-set function  is used to characterize the interface when adopting the level-set

approach. The function  is initialized as a signed distance function away from the

interface - its zero level set represents the location of the interface and the surface

height equals the distance from (x, y) to the nearest point on the interface so that  

has a positive distance outside the interface contour and a negative distance inside

it. The transport equation for  is then solved using the velocity field of the previous
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time step to determine the next location of the interface. Typically, at later times,

the level set function fails to remain a distance function which introduces error in

further calculations and makes the conservation of mass inachievable. Thus, it needs

to be “re-shaped”. A numerical solution that has been extensively used is to solve

a re-initialziation equation. The strength of the level-set method lies in the smooth

variation of  across the interface which enables an accurate estimation of the normal

vector and curvature at the interface.

In the VOF approach, the volume fraction � for an individual fluid (say A) in any cell

that contains the interface is evolved. As a result, � can only take on the following

values: 1 - the cell contains only the fluid A; 0 - the cell contains only the other

fluid; 0 < � < 1 - the cell contains both fluids ( i.e. it contains the interface). There

exist several variations of the VOF method [10, 11, 12, 13] and in general constitute

three main procedures: (1) reconstruction of the interface (2) the VOF transport

equation is solved to determine the volume fraction field for the next time step using

the velocity distribution from the previous time-step and (3) the approximation of

the surface tension force at the interface. A principal attribute inherent in the VOF

methods is its conservation of volume throughout the simulation. However, a major

concern when applying the VOF method to surface-tension-dominated flows is the

presence of artificial currents. These spurious velocities are generated as a result of

a numerical imbalance between the pressure-gradient terms and the surface tension

force [14, 15]. To reduce these spurious currents, an extra variable such as the height
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function [16, 17] or a level-set function [6] can be utilized only for the computation

of the curvature at the interface.

Over the years, the application of computational fluid dynamics (CFD) models to

solve multiphase flow problems has grown rapidly as a result of a combination of

an ever-increasing computer e�cacy and advanced numerical methods. Most CFD-

related studies on two-phase immiscible flows have employed open source and com-

mercial CFD packages like Fluent [18], Star-CCM+ [19], CFX [20], CFD-ACE+ [21],

SU2 [22], Gerris [23] and CONVERGE [24].

The use of the open source software package, OpenFOAM [25], which is based on

the cell-centered finite volume method, is gaining popularity as an e�cient alternative

to commercial CFD packages. The wide range of pre-implemented fluid models and

utilities available, automatic portability for parallel programs, polyhedral mesh sup-

port, unlimited extensibility and availability of a large and growing user community

are only a few of the benefits derived from using OpenFOAM. Two-phase viscoelastic

fluid flow is handled in OpenFOAM using the solver, viscoelasticInterFoam, de-

veloped by Favero et al. [26]. It is a transient solver for handling two incompressible,

isothermal and immiscible fluids using the VOF approach on a static mesh. The new

solver, clsVeInterDymFoam, developed in this thesis could be seen as an extension

of the initial work by Favero et al. [26]. With the new solver, the estimation of the

surface tension force from VOF function is now improved by coupling the VOF and
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the LS method - the interface is captured using the VOF method while the inter-

face normal vector and curvature are estimated from the smooth LS function. The

new solver is also capable of adaptive re-meshing in regions of the mesh where the

VOF function falls within a specific user-defined range. The AMR implemented in

clsVeInterDymFoam has originally been developed by Baniabedalruhman [27].

1.2 Adaptive mesh refinement

In multiphase flows, the occurrence of wide variations in spatial resolution within

the numerical domain is a regular feature in many applications such as interfaces

between di↵erent phases and compressible flows with waves and shocks. In particular,

one often encounters sections with steep gradient when solving hyperbolic partial

di↵erential equations. The solution obtained is far from reality as a result of the

over-approximation of sharp gradient areas. Past attempts to resolve this problem

employed body-fitted [28, 29] and unstructured meshes [110] but its robustness was

strongly influenced by the type of problem investigated. Another approach uses a

structured mesh as the base mesh and when an area with high spatial variation is

detected, the grid cells are directed close to that neighborhood. The lapse in this

approach is that it can lead to a strong level of mesh skewness [109]. In the mesh

embedding method [28], the solution process starts on a coarse mesh and when the

gradient of the solution within a zone of cells is observed to be very steep, a local
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refinement of cells is done in that neighborhood while retaining the structure of the

original mesh.

In general, the strategies used for grid adaptation can be grouped as either h-

refinement, r-refinement, p-refinement or a hybrid of any e.g. hr- and hp- refinement.

The h-refinement procedure involves adjusting the size of the mesh at certain regions

by adding/removing points from the numerical domain and this ultimately results in

the alteration of the grid connectivity. The r-refinement, on the other hand, adjusts

the resolution of the mesh by relocating grid points towards the mesh region with a

steep gradient in the solution while retaining the original number of computational

points. The use of p-refinement is more common in finite element method. Here,

the accuracy of the solution is improved by varying the order of discretization in an

individual cell.

Based on the partitioning procedure and data structure monitoring the connectivity of

the grid, the approach through which adaptive mesh refinement (AMR) is achieved

can be grouped into four classes: patch-based, cell-based, block-based and hybrid

block-based.

The patch-based approach was initially designed by Berger and Oliger [30, 31, 32].

The method starts with a cartesian mesh that is coarse. As the simulation advances,

some clustering procedures are used to assemble cells already tagged for refinement,
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resulting in the formation of rectangular grid boundaries. In the block-based ap-

proach, a block is defined in advance. If any cell inside this block is tagged for

refinement, the whole block is refined. A benefit derived from using this approach

is that the data structure associated with each block is straightforward and the sub-

grid is well-structured. The major drawback is that meshes are often over-refined in

regions where it is not required. The integration of both concepts (i.e. patch-based

and block-based) have already been attempted [33] with the sole aim of overcoming

the imperfections in both methods.

The cell-based AMR was proposed and developed by Powell and coworkers [34, 35, 36,

37] and Berger and Levque [38]. In this approach, each cell may be refined individually

and is then stored via a tree data structure. This strategy is flexible and readily

allows for the local refinement of the mesh by keeping track of the computational cell

connectivity as new grid points are generated by the refinement process. This is the

approach used in OpenFOAM.

Applying adaptive strategies as a standard approach to solve classical dynamic prob-

lems has been in progress for a long period of time. Berger’s work [30] served as the

cornerstone for subsequent development seen in structured adaptive mesh refinement

(AMR) applications. Bank [39], and Banbuska and Rheinboldt [40] proposed, in their

papers, adaptive finite element methods to solve elliptic problems. Similar e↵orts were
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made by Sherman and Sager [41], and Davis and Flaherty [42] for parabolic equa-

tions. Several researchers [43, 44, 45] have also developed adaptive mesh procedures

to solve hyperbolic equations. We should note, however, that there are several other

implementations of AMR di↵erent from those derived from Berger’s principles. Some

examples can be found in [46, 47].

1.3 Application background

The dispersions of two or more immiscible liquids is referred to as an emulsion or

polymer blend. Some examples of emulsions include mayonnaise, vinaigrettes and

butter. Emulsions have found great uses in many industries. For example, in the

agriculture industry, emulsion technology aids dilution and provides better sprayabil-

ity of insecticides and pesticides; in the pharmaceutical industry, they are applied to

make drugs more edible and fine-tune dosage of active ingredients while in the food

industry, emulsions influence the physical appearance and mouthfeel of food products.

Major emulsification methods used to produce uniformly-sized microdroplets include

microfluidic processes, microchannel emulsification and membrane emulsification. A

very good understanding of droplet formation mechanism enables the determination

of the feasibility and boundary of the use of membrane emulsification in di↵erent

kinds of applications.
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Typical apparatus for the production of emulsions include agitators, rotor-stator sys-

tems, high-pressure valve homogenizers and ultrasound systems. These apparatus

rely on turbulence for the disintegration of large drops in a pre-emulsion. A major

drawback with this technique is that in most cases it results in droplets that are

highly polydisperse [48]. The drop size distribution has a strong influence on the

physical and chemical properties of emulsions. For example, in the food industry,

monodispersed emulsions improve the qualities of a product such as mouthfeel, phys-

ical appearance, flavor and shelf-life [49]. Also, the generation of droplets in these

devices are accompanied with energy consumption and shear stresses that are very

high. This is not only expensive but has a damaging e↵ect on food and pharma-

ceutical products [50]. Improvements on these techniques were made over the years,

some of which include membrane emulsification, microchannel emulsification and mi-

crofluidic processes. In membrane emulsification, droplets are generated either as a

result of the decomposition of a coarse emulsion after being forced through a mem-

brane channel or shearing of the pure injection source by the continuous phase. The

membrane used in membrane emulsification devices could be either fixed or dynamic,

where the rotation/ vibration of the membrane also aids in the pinch-o↵ of droplets

from the membrane surface [51, 52]. In general, microfluidic devices are categorized

as either flow focusing or microfluidic junctions. Of all microfluidic junctions, the

T-junction is easiest to construct [49, 53]. In the T-junction, the dispersed phase is

injected at normal direction into a flowing stream of the continuous phase, droplets
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then detach from the tip of the injection source as a result of several factors includ-

ing the accumulation of pressure upstream of the growing droplet and drag from the

continuous phase. Although productivity of droplets via membrane emulsification is

higher when compared to either microchannel emulsification or microfluidic processes,

they are highly polydisperse [54]. On the other hand, with microfluidic processes, the

user gains precision over the size, homogeneity and even the inner composition of the

droplets.

In a membrane emulsification apparatus, when the ratio between the pore distance

and size is small, it can result in droplet coalescence. In an attempt to resolve this

problem, Schadler and Windhab [55] devised a rotating membrane emulsification

apparatus with an adjustable distance between pores. They conducted a study to

determine the e↵ects of rotational speed and the volume ratio of the drop and matrix

phase on drop detachment characteristics. They found that the rotational speed of

the membrane has a direct relationship on the size of droplets formed and also claimed

that the width between gaps has a strong impact on the formation mechanism. Similar

results were found in other experiments [56] . The presence of surfactant in emulsions

reduces the interfacial tension between di↵erent pairs of phases which helps to lower

the emulsification pressure and promote stability of droplets. Several authors have

investigated the role of surfactants in the droplet formation process of membrane

devices [50, 57, 58, 59]. Their results showed that increasing interfacial tension results

in an increase in formation time and drop size of droplets. Van der Graaf et al. [49]
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studied droplet formation in a T-shaped model system for a cross-flow membrane

emulsification device. He observed a direct relationship between droplet size and flow

rate. It has also been shown in some studies that size of droplets decreases as the

wall shear stress is increased [58, 60].

Most experimental studies on droplet formation using elastic fluids have utilized flow

focusing devices [61, 62, 63] while only a few were performed with a T-shaped mi-

crochannel [64, 65]. Hong and Cooper-White [61] investigated the formation of car-

bopol dispersions that shear thin and possess yield stress via a flow-focusing micro

geometry. They claimed that below a critical value of the continuous phase flow rate,

Qc, there is a direct relationship between the size of droplets formed and the viscos-

ity ratio but beyond this critical value, non-Newtonian properties of the fluid begin

to surface and results in a decrease in droplet size when viscosity ratio increases.

They also argued that in the absence of satellite droplets, the shear thinning and

elastic property of the fluid results in the formation of drops with smaller sizes than

the case when elasticity is neglected. They attributed this result to the formation

time being shorter. Steinhaus et al. [63] studied the e↵ect of channel dimension and

fluid elasticity on the generation of polymeric drops within a Newtonian matrix in

a flow-focusing micro channel. Their results showed that increasing elasticity pro-

duced longer thread lengths and longer detachment times. Similar results were also

found in [61, 62]. Husny and Cooper-White [64] studied the detachment dynamics

of droplets formed in a T-junction. A Boger fluid was used as the dispersed phase
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and silicone oil for the continuous phase. It was determined that the presence of

elasticity in the drop phase precipitated elongated filaments, which also resulted in

the production of satellite droplets between drops produced at regular intervals. The

form of these filaments was shown to depend on the viscosity ratio and molecular

weight of the polymers. In addition, the characterization of secondary drops formed

was investigated in great detail and it was concluded that the monodispersity of these

satellite droplets depended predominantly on the viscosity ratio and the flow rate of

the continuous phase.

A few numerical studies have been conducted on the characterization of viscoelastic

droplet formation in a Newtonian stream. For example, viscoelastic drop formation at

an aperture [66, 67] and in a flow-focusing channel [68]. To the best of our knowledge,

no numerical study on the formation of viscoelastic droplets in a T-junction has been

considered.

1.4 Goals

The goals of this thesis are to: (1) develop an improved two-phase flow solver for

viscoelastic and Newtonian fluid systems; (2) test the improved solver on a series of

test problems; and (3) use the improved solver to study the formation and detachment

of viscoelastic drops in a T-shaped microchannel.
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1.5 Contributions of this thesis

This thesis makes several contributions to the field of Computational Viscoelastic

Fluid Dynamics. The major contributions are:

1. The two-phase incompressible flow solver for viscoelastic two-phase flows,

viscoelasticInterFoam of Favero [26] has been improved by coupling it with

level set method in OpenFOAM-2.3.x to accurately describe the interface.

2. The original adaptive mesh refinement (AMR) engine in OpenFOAM is pro-

grammed to work for only three-dimensional numerical simulations. The

code has been modified by Baniabedalruhman [27] to also work in two-

dimensional planar and axisymmetric geometries. The modifications have been

coded into binary executable library files called dynamicRefineFvMesh2D and

dynamicRefineFvMeshAxi, and can be linked dynamically at run-time in Open-

FOAM. This extra functionality has been incorporated in the newly developed

solver called clsVeInterDymFoam.

3. The new solver was then validated by applying it to the following two-

dimensional test problems:

(a) 2D drop under static conditions.

(b) Drop formation in shear flow.
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(c) Rise of a Newtonian drop in a Giesekus fluid. The computational domain

here is axisymmetric.

(d) Drop formation in a T-junction under experimental conditions considered

by Li et al. [1].

4. The modified code was further validated by comparing a two dimensional nu-

merical simulation of droplet formation in a T-junction with experiments. The

results were found to be consistent with experimental observations.

5. The e↵ect of flow type, wall shear rate, and fluid elasticity on drop size and

droplet formation dynamics was investigated in a viscoelastic-Newtonian system

via a T-shaped micro channel.

6. To the best of our knowledge, this is the first consideration of formation of drops

in a microfluidic T-channel where the flow of the continuous phase is Couette.

The codes are documented in the appendix.
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Chapter 2

Theoretical Models

2.1 Introduction

Solutions containing polymers constitute interpenetrating chain molecules that are

oriented in a random fashion. There is a correspondence between the elasticity of

a polymeric fluid and both the random molecular movement and average expansion

of polymer chains. To ensure the molecular chains are randomly oriented, Brownian

motion resists any expansion or parallel configuration of the chains. In other words, it

opposes the stretching and alignment of the chains because it acts to keep the chains

in random configurations. When a fluid is subjected to deformation, the amount of

molecular elongation seen is determined by the degree to which viscous stress is more
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than that generated from the random movement of the chains. As soon as the force is

removed, the deformation of a Newtonian fluid stops immediately but still continues

for a viscoelastic fluid. The ability of the internal structure of a viscoelastic fluid to

retain stress for a short period of time, typically referred to as the relaxation time, is

responsible for this behavior. The amount of elasticity in a polymeric fluid is assessed

from the relaxation time.

An additional method through which viscoelasticity can be gauged is via stress relax-

ation. For example, when a purely viscous liquid undergoes a step-strain shear, an

instantaneous decline to zero of the stress is observed but for a polymeric liquid, the

stress comes to rest in an exponential manner. Representing stress relaxation data in

terms of a relaxation modulus,

G(t) =
⌧ (t)

�
, (2.1)

we observe that for small strains (� < �̂), the relaxation modulus coincides.

This linear dependence of stress relaxation on strain is called linear viscoelasticity.

In general terms, a fluid which has a linear dependence between the current stress

value and its strain history is referred to as a linear viscoelastic fluid. In Figure 2.1,

Go is referred to as the plateau modulus and it is the limiting value of the relaxation

modulus for a small duration. For higher strains, however, the relaxation is now

dependent on strain (see Figure 2.1). Equation 2.1 can now be written as
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Figure 2.1: Log-log plot of shear modulus against time

G(t, �) =
⌧ (t, �)

�
(� > 1) (2.2)

and this viscoelastic behavior is termed nonlinear.

Nearly all polymeric fluids, when subjected to shear flow, show disparate steady-state

reactions and unsteady-state reactions. There exist several types of unsteady shear

flows. Some of these include shear-stress growth, shear-stress decay, shear creep, step

shear strain and small-amplitude oscillatory shear. A concrete understanding of the

range of nonlinear characteristics can be obtained by examining the unsteady state

responses from these tests. The outcome from any of the tests can only be utilized to

estimate the responses from other tests when the deformation rate is very low. On

the other hand, when the deformation rate is large (nonlinear regime), rheological

data obtained from any of these nonlinear probes are only useful to the test at hand.
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Investigating the rheology of polymeric liquids is very challenging. The dimensionless

Deborah number, De, is typically employed as an initial step to gain qualitative

information about the fluid flow and is defined by

De =
⌧

t

where ⌧ is the material’s characteristic relaxation time and t represents the charac-

teristic flow time. In general, when De < 1, the rheology is considered linear and for

De  O(1), the material is assumed liquid-like. On the other hand, when De � 1,

the material is said to possess a solid-like behavior. We remark here that the critical

De depends on the type of flow.

It should be noted that there are exceptions for steady linear flows. For instance, there

have been reported cases [130, 131, 132, 133] of elastic turbulence seen in polymer

solutions subjected to a very high deformation rate at low Reynolds number (See

Figure 2.2).
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Figure 2.2: An example of elastic turbulence seen from a polymer melt
forced through a circular orifice at low Re. Reprinted from Fluid dynam-
ics: Turbulence without inertia, by Larson, R. G. [134], 2000, Nature, p.
27. Copyright 2000, with permission from Nature. See documentation in
Appendix A.

2.2 Nonlinear phenomena

There are two kinds of nonlinearities that are usually seen in applications and they

are referred to as geometric and material nonlinearities. Material nonlinearities is

used to describe nonlinear stress-strain reaction that appears based upon the intrin-

sic properties of the material. Geometric nonlinearities, on the other hand, are usually

associated with solids, are said to occur if the assumption of linear relationship be-

tween stress and strain fails to hold as a result of the strain and displacement reaching

a high value. We should note that there are some materials (e.g. rubber) where a

linear relationship holds between stress and strain for strains as high as 60% [123]. It

is also possible to observe both kinds of non-linearities for high strain.
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A clear comprehension of nonlinear processes is extremely important when it comes

to developing polymeric compounds. Polymeric fluids, in general, exhibit di↵erent

characteristics that cannot be reproduced by viscous laws. Some of these features are

discussed below:

2.2.1 Normal stress di↵erences in shear

When a transducer is used to determine the stress on a surface, what is being felt by

the device is the total stress, ⇧ = ⌧ � pI, i.e.

⇧ =

0

BBBBBB@

⌧11 � p ⌧12 ⌧13

⌧21 ⌧22 � p ⌧23

⌧31 ⌧32 ⌧33 � p

1

CCCCCCA
.

Suppose we wish to determine the stress at an arbitrary point, O, in the medium.

Then, ⇧mn represents the stress at O on anm�plane in the n�direction. For example,

⇧12 connotes the stress at O on a plane whose unit normal is î and is parallel to ĵ,

⇧23 connotes the stress at O on a plane whose unit normal is ĵ and is parallel to k̂.

Each entry in the diagonal of the total stress is a sum of the pressure and normal

extra stresses (⌧11, ⌧22, ⌧33). This makes the independent evaluation of pressure on a
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surface di�cult for an incompressible non-Newtonian fluid subjected to shear flow.

For a compressible fluid, it is not di�cult to compute singly, since the pressure can

be obtained using the ideal-gas law (p = RT/V ). The case when the incompressible

fluid is purely viscous is trivial because the normal stresses are each zero. To resolve

the complications with viscoelastic fluids, the normal-stress di↵erences are computed

as an alternative to normal stresses. Thus, when a fluid is subjected to any of the

standard flows, the normal stress is assessed by determining the First normal stress

di↵erence, N1 ⌘ ⇧11 � ⇧22 to obtain

N1 = ⌧11 � ⌧22

and the Second normal stress di↵erence, N2 ⌘ ⇧22 � ⇧33, which gives

N2 = ⌧22 � ⌧33.

For a viscoelastic fluid subjected to shear flow, these normal stress di↵erences are non-

zero. In most cases, N1 is positive and N2 is negative [113]. A very good example

that demonstrates the development of normal stresses in viscoelastic fluids is the rod-

climbing phenomena (See Fig. 2.3). A rotating rod placed in a fluid generates circular

streamlines in the flow. When the fluid is viscoelastic, the polymers generate tension
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along the streamlines as a result of its elasticity - when the polymers are close to

the rotating rod, shear causes the polymers to stretch. To retain its original form, it

exerts a force towards the rod. An aggregation of forces from all the polymers directed

close to the rod pushes the surrounding fluid up. The normal stress instigated by the

shear in the viscoelastic fluid is the reason for this behavior. When the shear rates

are small, the relationship between ⌧12 and �̇ approaches linear. Thus, (N1, N2) tend

to (N1 / �̇2, N2 / �̇2), so that the normal stress coe�cients,

 1 ⌘
⌧11 � ⌧22

�̇2
(2.3)

 2 ⌘
⌧11 � ⌧22

�̇2
(2.4)

emerge as constants.

2.2.2 Shear thinning

The decrease in viscosity of polymer solutions as shear rate is increased is referred

to as Shear thinning or pseudoplasticity. Figure 2.4 shows a typical plot of viscosity

against shear rate for a shear-thinning fluid. The viscosity is approximately constant

at low-shear rate limit, decreases as shear rate increases, and then may approach a
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Figure 2.3: The Rod-Climbing e↵ect. Reprinted from An introduction to
Rheology, by Barnes, H. A. et al. [115], 1989, Elseiver, p. 61. Copyright
1989, with permission from Elseiver. See documentation in Appendix B.

constant in the high-shear rate limit. The two plateau sections in Fig. 2.4 are often

termed the “first Newtonian region” and “second Newtonian region”. The value of

the viscosity within the first Newtonian region is called the zero-shear viscosity.

Figure 2.4: Schematic representation of a shear thinning material

Unlike the Newtonian case, the viscosity which now depends on time is determined
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by

⌘(�̇, t) =
⌧12(�̇, t)

�̇
(2.5)

2.2.3 Extension and shear thickening

It is typical for the viscosity of a polymeric fluid to decrease with increasing defor-

mation rate in shear flow. In an extensional flow, the reverse often occurs. The

extensional viscosity, ⌘e, of some materials, which is a measure of the resistance of

the material when subjected to stretching, decreases as the extension rate, ✏̇, grows

while for some, ⌘e grows as ✏̇ rises. The behavior of the former is referred to as

tension-thinning while that of the latter is described as tension-thickening. To avoid

breakage, especially during a film blowing and fiber spinning operation, it is ben-

eficial to determine beforehand if the material used exhibits tension-thickening or

tension-thinning. Tension-thinning materials typically break when the strain exceeds

a certain limit [129]. The elongational viscosity as a function of the extension rate

for a solution containing dekalin and polybutadiene [128] is shown in Fig. 2.5. As ⌘e

increases, the mixture is seen to tension-thicken and after a limit it tension-thins.

Comparing the graph of viscosity against strain rate for polymer melts and a dilute

polymer solutions provides a faster way to easily determine qualitative di↵erences

between both fluids. We show in Fig. 2.6 a representational plot of viscosity against

24



Figure 2.5: Elongation viscosity for a polymer solution containing polybu-
tadiene and dekalin. Reprinted from Correlation and molecular interpreta-
tion of data obtained in elongational flow, by Hudson, N. et al. [128], 1976,
Transactions of The Society of Rheology , p. 280. Copyright 1976, with
permission from AIP. See documentation in Appendix C.

extension rate for dilute polymer solutions and polymer melts. For the dilute solution

(a), we observe a sharp increase in ⌘e beyond a certain strain rate but (b) shows that

⌘e changes considerably as the extension rate is increased.

Although not common, there are situations where the viscosity is seen to increase

as the shear rate grows. This property is known as shear-thickening. Examples of

such materials include concentrated suspensions of titanium dioxide in a solution of

sucrose and a mixture containing ethylene, glycol, corn starch and water [126, 127].

The response of TiO2 suspensions undergoing shear is delineated in Fig. 2.7. We

observe that the suspensions shear thin when the shear rate is low but within the

high-shear rate region, a rise in the viscosity of the suspensions is noticed as the shear

rate rises (i.e. it shear-thickens). The reason for this shear-thickening in suspensions
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Figure 2.6: General behavior of viscosity against strain rate for (a) a dilute
polymer solution; (b) a polymer melt. Reprinted from An introduction to
rheology, by Barnes, H. A. et al. [115], 1989, Elseiver, p. 100. Copyright
1989, with permission from Elseiver. See documentation in Appendix D.

has been attributed to the growth in its volume as shear rises and it begins just

after the volume begins to expand [127]. Other cases of shear-thickening in solutions

containing polymers have also been reported elsewhere [125].

2.3 Constitutive models

Without doubt, viscoelasticity theory provides a clearer understanding of the stress-

strain time-dependent characteristics displayed by some fluids. Recently, most re-

search has centered on the improvement of current constitutive models so as to be

able to obtain a better approximation of the mechanical responses of a material under
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Figure 2.7: Shear viscosity data determined with a Couette rheometer.
Reprinted from Flow behavior of concentrated (dilatant) suspensions, by
Metzner, A. et al. [127], 1958, Transactions of The Society of Rheology , p.
243. Copyright 1958, with permission from AIP.

varying conditions.

In general, constitutive models are material-dependent and are devised using empir-

ical evidence. These models must also hold regardless of the coordinates of reference

being considered. In practice, they are applied with other physical laws to determine

the solution to practical problems. Constitutive laws are very often times reduced to

a basic variation and the material’s property is used as the proportionality constant

e.g Hooke’s law. To resolve the anisotropy of the material, a tensor is required in

place of the scalar variable.

Common models are discussed below.
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2.3.1 Second-order fluid

This is the most basic constitutive equation with a non-zero prediction of the first

normal stress di↵erence [122]. The stress tensor is obtained as

⌧ = 2⌘oD �  1,0

O
D + 4 2,0D ·D (2.6)

where ⌘o,  1,0 and  2,0 denote the low shear rate values of the viscosity, first and

second normal stress coe�cients respectively and D = (rv + (rv)T )/2 represents

the deformation rate tensor. The upper convected time derivative of D is defined as

O
D ⌘ @D

@t
+ v ·rD � (rv)T .D �D ·rv. (2.7)

The term,  1,0

O
D accounts for elastic e↵ect (weak). The “second” in its name is as-

sociated with the number of derivatives of the velocity field from which the tensors

can be formed from. The Newtonian model is derived on considering only first-order

derivatives terms (i.e. 2⌘oD). Coleman and Noll [124] showed in their paper that

viscoelastic fluid flows that are slow, with very little fluctuation in their physical prop-

erties, satisfy Eq. (3.12). In practice, however, the fluid velocities of many polymeric
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materials are faster than the Second-order fluid model can predict.

2.3.2 Upper-convected Maxwell model

Starting from the linear Maxwell equation,

⌧ + �
d⌧

dt
= ⌘o�̇, (2.8)

the material derivative is substituted with the upper-convected derivative of the stress

tensor to obtain

⌧ + �
O
⌧ = 2⌘pD (2.9)

Equation (2.9) is referred to as the Upper-convected maxwell (UCM) model. The

linear Maxwell model can be reproduced from the UCM model. For example, in low-

amplitude oscillatory strain, the upper convected derivative changes to the material

derivative as the nonlinear terms reduces to zero. On the other hand, for a steady

flow with a low deformation rate, the derivative term in Eq. (2.9) can be ignored

and we thus obtain the Newtonian fluid model. In steady shear flow, the solution of

the UCM model for the shear viscosity, ⌘, the first normal stress coe�cient,  1 and
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second normal stress coe�cient,  2, is obtained respectively as [104]

⌘ = ⌘o (2.10a)

 1 = 2⌘o� (2.10b)

 2 = 0 (2.10c)

where ⌘o = ⌘s + ⌘p. As shown in Eqs. (2.10), the UCM model does not predict shear

thinning nor shear second normal stress di↵erences. It predicts a constant shear first

normal stress di↵erences.

Fluids with constant viscosity that are highly elastic and highly viscous were devel-

oped initially by Boger [116]. Thus they are referred to as Boger fluids. The Boger

fluid can be produced by dissolving in a highly viscous solvent, a little quantity of

polymer e.g. aqueous solutions that contain little quantities of polyacrylamide dis-

solved in corn syrup [117]. The usefulness of Boger fluids lies in the ability to isolate

viscous flow features from elastic features in a test conducted with a viscoelastic ma-

terial. This is achieved by running the same test carried out with a Boger fluid on

a Newtonian fluid of similar viscosity. When both fluids are subjected to identical

rates of deformation, any contrast seen is due to elastic e↵ect only. This is very help-

ful, since it was previously arduous to ascertain whether a non-Newtonian feature
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observed during an experiment was either as a result of elasticity or shear-thinning.

Several constitutive models available can reproduce shear experimental data precisely

but they perform poorly in fitting extensional rheological data. The Oldroyd-B con-

stitutive model is well-suited in numerous cases and is given as

⌧ + �
O
⌧ = 2⌘o(D + �r

O
D), (2.11)

where � is the relaxation time and �r represent the retardation time. Equation (2.11)

can be derived by summing the contribution of stress from both the solvent,

⌧s = 2⌘sD (2.12)

and the polymer, ⌧p, which is given by the Maxwell model (see Eq. (2.9)). In

Eq. (2.12), ⌘s represents the viscosity of the solvent.

In steady shear flow, the exact solution for the shear viscosity, ⌘, the first normal stress

coe�cient,  1 and second normal stress coe�cient,  2, of the Oldroyd-B model is

obtained respectively as [104]

⌘ = ⌘o (2.13a)
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 1 = 2⌘o(�� �r) (2.13b)

 2 = 0 (2.13c)

where ⌘o = ⌘s + ⌘p and �r = �⌘s/(⌘s + ⌘p). The Oldroyd-B model predicts shear first

normal stress di↵erences. However, it does not predict shear thinning.

2.3.3 Maxwell-type constitutive models

The generalization of the Upper-convected Maxwell equation enables the improvement

in the accuracy of its prediction of features that are not linear with time.

There has been several propositions of nonlinear constitutive models over the years

which have similar form as the Maxwell di↵erential constitutive model. In general,

they can be written as [114]

O
⌧ +mb +

1

�
⌧ +md = 2GD (2.14)

In Eq. (2.14), mb adjusts the change in accumulation of stress with time while md

functions to alter the decline of stress with time. The UCM model is recovered from

Eq. (2.14) by setting mb = md = 0. With the parameters, mb and md, nonlinear
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e↵ects like shear thinning can be easily incorporated into Eq. (2.14).

Table 2.1 enumerates popular constitutive models that can be written in the form

of Eq. (2.14) and their uses. Each model is most satisfactory for specific kind of

problems. The parameters, a,↵, �, ⇠ in Table 2.1 are fit using data obtained from

rheological experiments. To ensure an optimal fit with experimental data, it is most

appropriate to employ a series of relaxation modes, whereby the absolute stress is

then obtained as the summation of all stresses from individual modes.

In steady shear flow, the exact solution for the shear viscosity, ⌘, and first normal

stress coe�cient,  1, of the Giesekus model is obtained, respectively, as [104]

⌘ = ⌘o

✓
�r

�
+

✓
1� �r

�

◆
(1� f)2

1 + (1� 2↵)f

◆
(2.15)

and

 1 = 2⌘o(�� �r)
f(1� ↵f)

(��̇)2↵(1� f)
, (2.16)

where

f =
1� �

1 + (1� 2↵)�
(2.17a)
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and

�2 =
(1 + 16↵(1� ↵)(��̇)2)

1
2 � 1

8↵(1� ↵)(��̇)2
(2.17b)

In Eqs. (2.15) to (2.17), �̇ denotes the shear rate and ↵ is a parameter that accounts

for the anisotropy of the drag on polymer molecules in a fluid flow.
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Table 2.1
Examples of di↵erential constitutive models and their uses.

Models mb md

Strengths/
weaknesses

White and Met-
zner [118]

a
p
2D : D 0 Not good for step

shear flow; It pro-
duces singularities
in steady elonga-
tion flows and it
predicts a zero sec-
ond normal stress
di↵erence. (N2 =
0).

Giesekus [119] 0 ↵
�G
⌧ · ⌧ Very good fits in

steady and tran-
sient shear; be-
haves poorly in ex-
tensional flows.

Larson [120] 2↵
3GD : ⌧ (⌧ +GI) 0 Matches data

fairly well for a
range of deforma-
tion. N2 = 0.

Phan Thien and
Thanner [121]

⇠(D · ⌧ + ⌧ ·D) 1
�
exp( �

G
tr ⌧ )(⌧�I) Matches satis-

factorily well for
numerous kind of
deformations; It
produces unphysi-
cal oscillations at
the beginning of
steady shear flows.
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Chapter 3

Computational Method

Computational rheology constitutes the construction and actualization of of numerical

algorithms that have the potential to reproduce qualitative and quantitive features

in an experimental study of viscoelastic fluid flows. A major di�culty faced by

computational rheologists, engineers and fluid dynamicists is the ability to generate

e�cient and accurate numerical algorithms.

There has been lots of progress concerning the construction of numerical techniques

and constitutive models that rely on microscopic and macroscopic methods. To solve

the underlying macroscopic model of a viscoelastic fluid flow, two major steps are

involved. The initial stage constitutes the discretization of the partial di↵erential

equations and second, seeking a solution to the final equation using an appropriate
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procedure. Among the several methods that can be used to achieve the first process

are the finite volume method, finite element method, finite di↵erence method and

spectral methods. It is important to note that when these techniques are employed for

a viscoelastic model, a few changes needs to be made to account for the hyperbolicity

of the fluid.

The inability to reach a converged solution beyond a certain We is a major e↵ect of

not employing suitable numerical techniques for viscoelastic models and this is not a

newly accepted fact. This behavior is typically referred to as the High Weissenberg

Number Problem (HWNP). The reason attributed to the cause of this oddity, as ex-

plained in many studies [69, 70, 71], is that during the discretization of the underlying

partial di↵erential equation, numerical errors are introduced which then causes the

conformation tensor to lose its positive-definitiveness. A first approach to solve these

problems would be to resort to refining the mesh further or employ a more accurate

technique. Unfortunately, the mesh refinement strategy just worsens the scenario as

a result of the hyperbolicity of the partial di↵erential equations [71] while a more

accurate approach prolongs when iterative convergence fails to hold.

A lot of progress has been made over the last decade towards obtaining stable and

accurate numerical solutions to viscoelastic multiphase flow problems. In most cases,

a large number of researchers have employed the standard finite di↵erence [72, 73],

finite element [74, 75] and finite volume method [76, 77, 78]. The early contributions

38



to computational viscoelastic fluid dynamics were in the mid nineteen seventies and

they used finite di↵erence methods [79]. Later on, studies using finite element method

(FEM) began to prevail. Studies carried out with FEM became widespread as a result

of its success in reproducing viscoelastic fluid flow behavior. Some examples of very

popular finite element methods include the Discontinuous Galerkin method of Fortin

and Fortin [74], the elastic-viscous-split-stress method of Rajagopalan et al. [80] and

the explicitly elliptic momentum equation method of King et al. [75]. Today, the

finite volume method (FVM) is widely used in many CFD codes and in comparison

with other numerical methods, it has been shown to display very close or even better

performance in relation to accuracy and robustness [71] and at a lesser computational

cost [81]. In this thesis, the finite volume method is used.

In general, the finite volume method can be classified based on grid arrangement as

either staggered or collocated (or cell-centered). All the dependent variables solved

for and all fluid properties are stored in the control volume center for a collocated

grid while on a staggered grid, the components of the velocity vector are typically

arranged between two adjacent pressure points as shown in Figure 3.1.

The collocated grid is simpler to use than the staggered grid but there is a high pos-

sibility of obtaining unphysical pressure fields like the checkerboard when a pressure-

velocity coupling procedure like the SIMPLE algorithm of Patankar and Spalding [82]
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Figure 3.1: (a) Staggered grid (b) Collocated grid.

is used. This oscillating pressure field problem can be resolved by applying the Rhie-

Chow interpolation [83]. Although this drawback is not seen on a staggered grid, it

is di�cult to use when non-orthogonal or unstructured meshes are employed.

The discretization of the convection term in the underlying partial di↵erential equa-

tions in both procedures requires special treatment. A detailed discussion of the

discretization procedure on a collocated grid is outlined in subsequent sections.

3.1 Governing equations

The immiscible two-phase fluid flow of a Newtonian and viscoelastic fluid is considered

in this thesis. The flow is assumed to be incompressible and isothermal.

To capture the interface between both phases, the Volume of Fluid methododolgy
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(VOF) was used. A scalar-valued function, � that can take on only values in the

range [0, 1] is used to identify the two fluids, with � 2 (0, 1) signaling a cell that

contains part of the interface while � = 0 and � = 1 connotes a control volume filled

only with the continuous and dispersed phase respectively. The evolution of the scalar

field, �, is then typically governed by

@�

@t
+r · (v�) = 0. (3.1)

To avoid numerical issues associated with the discretization of the advection term in

Eq. (3.1), the Inter-gamma compressive scheme [84] is employed. With this scheme,

the sharpness of the interface and monotonicity of the volume fraction field is main-

tained by introducing an artificial compression term into Eq. (3.1) to obtain

@�

@t
+r · (v�) +r · (�(1� �)vc) = 0 (3.2)

where vc is the di↵erence between the velocity of the dispersed phase and the con-

tinuous phase. As is evident in Eq. (3.2), the artifical term is only active within the

interface region.

To gain from the gradient smoothness around the interface of the level set method
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while still eliminating mass conservation errors, the VOF method is coupled with the

level set method. To begin, the level set function,  , is initialized with the advected

volume fraction field:

 o = & · (2�� 1) (3.3)

where & = 0.75�x and �x is the cell size. Although the location of the interface

matches with the iso-line, � = 0.5 and  o = 0, the function,  o, is irregular i.e. it

does not satisfy (|r | = 1). Thus, it needs to be reinitialized by integrating the

equation,

 ⌧ = sign( o)(1� |r |) (3.4)

with initial state,  (x, 0) =  o(x), for only a short period of time to determine a new

 that is regular and has the same zero level set as  o [85]. To avoid abrupt changes

during integration, it is recommended to use �⌧ = 0.1�x [86].

Next, we approximate the Dirac delta function, �, which ensures the surface tension

force is only active in a controllable neighborhood of the interface (✏ = 1.5�x was

used here), as
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�( ) =

8
>>><

>>>:

0, if | | > ✏

1
2✏(1 + cos(⇡ /✏)), if | |  ✏

and finally the surface tension force is determined as

Fs = � �( )r (3.5)

where  = r · n is the mean curvature, n = r /|r | is the unit normal at the

interface and � is the interfacial tension coe�cient between both phases.

The conservation equations of the fluid system are given by the continuity equation:

r · v = 0 (3.6)

and the momentum equation:

@(⇢v)

@t
+r · (⇢vv) = �rp+r · ⌧ + ⇢g + Fs (3.7)

where ⌧ = ⌧s + ⌧p is the extra-stress tensor, ⌧s represents the solvent contribution to
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stress and satisfies the Newtonian constitutive law:

⌧s = 2⌘sD (3.8)

where ⌘s is the viscosity of the solvent, D denotes the deformation rate tensor, defined

by

D =
1

2

�
rv + (rv)T

�
(3.9)

and the polymer stress, ⌧p, is governed by any of the stress constitutive law described

in the previous chapter. For example, the Oldroyd-B constitutive equation is given

by

⌧p + �
O
⌧p = 2⌘pD (3.10)

and the Giesekus constitutive equation is given by

⌧p + �
O
⌧p + ↵

�

⌘p
(⌧p · ⌧p) = 2⌘pD (3.11)
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where � is the relaxation time, ⌘p denotes the zero-shear-rate polymeric viscosity, ↵

is a parameter that accounts for the anisotropy of the drag on polymer molecules in

fluid flow, and
O
⌧p represents the upper convected time derivative of ⌧p defined as

O
⌧p ⌘

@⌧p
@t

+ v ·r⌧p � (rv)T .⌧p � ⌧p ·rv. (3.12)

In Eqs. (3.7) to (3.12), v represents the velocity, p is the pressure, and g is the

gravitational acceleration. The physical properties of fluids used in the equations are

obtained as

⇣ = �⇣d + (1� �)⇣c, (3.13)

where ⇣d and ⇣c represents a generic property of the dispersed and continuous phase

respectively.

3.2 Finite-volume discretization

Suppose  and  are scalar and vector-valued functions defined on an arbitrary

control volume with volume, V. In the discretizations that follow, Gauss’ divergence
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theorem is used to convert the volume intervals to surface integrals, which are then

approximated using the second-order Gauss one-point (centroidal) scheme on each

face. For example,

Z

V
r · dV '

X

f

Sf · f (r · )p '
1

Vp

X

f

Sf · f

Z

V
r dV '

X

f

Sf f (r )p '
1

Vp

X

f

Sf f .

Where p denotes the centroid of the control volume, f denotes the centroid of each

cell face, Sf = n̂A is the face area vector that point outwards from the cell face, n̂

is the unit normal vector at the face pointing outwards, A is the area of the face, Vp

is the volume of the cell with centroid at p and
P

f denotes the summation over all

faces for a particular cell.

3.2.1 Momentum equation

To enhance the numerical stability of the momentum equation, the DEVSS [87] tech-

nique is applied. This involves the addition of an elliptic term to both sides of the

momentum equation - the one on the left (-r · (✏rv)) contributes to the coe�cient

matrix once the equation is discretized and the other (-r · (✏rv)) to the source term.

We obtain
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@(⇢v)

@t
+r·(⇢vv)�r·((✏+ ⌘s)rv) = �rp+rv ·r⌘s+r·⌧p+⇢g+��r �r·(✏rv)

(3.14)

where Eq. (3.8) and Eq. (3.9) have been used in Eq. (3.7) and  = r · (r /|r |).

Taking the integral over the control volume and time step, 4t, we obtain

Z

T

Z

V


@(⇢v)

@t
+r · (⇢vv)�r · ((✏+ ⌘s)rv)

�
dVdT =

Z

T

Z

V
[�rp+rv ·r⌘s +r · ⌧p + ⇢g + ��r �r · (✏rv)] dVdT (3.15)

T := [t, t+4t].

Using ✏ = ⌘p [88], the momentum equation in semi-discrete form is then given by

Z

T

"✓
@⇢v

@t

◆

p

Vp +
X

f

Fvf �
X

f

(⌘o)fSf · (rv)f

#
dT =

Z

T


(�(rp)p + (rv)p · (r⌘s)p

+⇢pg + �p�p(r )p)Vp +
X

f

Sf · (⌧p)f �
X

f

(⌘p)fSf · (rv)f

#
dT (3.16)
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where F = ⇢Sf · vf .

3.2.2 Temporal discretization

On using the Euler implicit scheme for time discretization, we obtain the following

equation for the (guessed) velocity, v̂p, at time tn+1 = tn +4t

[⇢n+1
p v̂p + (⇢v)np ]Vp +

X

f

F v̂f �
X

f

(⌘o)
n+1
f Sf · (rv̂)f

�
4t =


� (rp)p

+ (⇢pg)
n+1 + (�p�p(r )p)n+1 +rvn

p ·r(⌘s)n+1
p

�
Vp4t

+

 
X

f

Sf · (⌧p)nf �
X

f

(⌘p)
n+1
f Sf · (rv)nf

!
4t (3.17)

where ⇣n = ⇣(t) and ⇣n+1 = ⇣(t +4t). On multiplying both sides of Eqn. (3.17) by
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1/(Vp4t), we obtain

⇢n+1
p v̂p

4t
+

1

Vp

X

f

F v̂f �
1

Vp

X

f

(⌘o)
n+1
f Sf · (rv̂)f = �(rp)p

+
(⇢v)np
4t

+ (⇢pg)
n+1 + (�p�p(r )p)n+1 +rvn

p ·r(⌘s)n+1
p

| {z }
:=⌥1

+
1

Vp

0

@
X

f

Sf · (⌧p)nf �
X

f

(⌘p)
n+1
f Sf · (rv)nf

1

A

| {z }
:=⌥2

(3.18)

which is equivalent to

apv̂p =
X

N

aN v̂N +⌥� (rp)p (3.19)

where we note that the quantities estimated at the face can be written in terms of

its value in a neighborhood cell and the current cell using an appropriate scheme

and ⌥ = ⌥1 + ⌥2 involves quantities at times, tn and tn+1. Equation (3.19) is a

linear system of equations for predictor velocity at time, tn+1, and
P

N represents the

summation over neighborhood cells.

3.2.3 Pressure equation

To derive the pressure equation, Eq. (3.19) is re-written as
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apv̂p = H(vi)p � (rp)p (3.20)

where H(vi) =
P

N aN v̂N +⌥ and the index, i, indicates the current value within the

PISO [89] iteration. Therefore,

v̂p =
H(vi)p
ap

� 1

ap
(rp)p and (3.21)

v̂f =

✓
H(vi)

ap

◆

f

�
✓

1

ap

◆

f

(rp)f (3.22)

Now, the finite volume discretization of Eq. (3.6) gives the discrete continuity equa-

tion,

X

f

Sf · v̂f = 0. (3.23)

Assuming the continuity equation is satisfied by v̂p in Eq. (3.21), then using Eq. (3.22)

in Eq. (3.23), we obtain the discretized pressure equation:

X

f

✓
1

ap

◆

f

Sf · (rp)f =
X

f

Sf ·
✓
H(vi)

ap

◆

f

(3.24)
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Equation (3.22) is also used to determine the volumetric flux,

F = Sf · v̂f (3.25)

= Sf ·
"✓

H(vi)

ap

◆

f

�
✓

1

ap

◆

f

(rp)f

#
(3.26)

which is guaranteed to be conservative [90].

F = Sf ·
"✓

H(vi)

ap

◆

f

�
✓

1

ap

◆

f

(rp)f

#
(3.27)

3.2.4 Discrete form of VOF equation

Starting from Eqn. (3.2), we take the integral over the control volume and time step,

4t, to obtain

Z

T

Z

V

✓
@�

@t

◆
dVdT+

Z

T

Z

V
r · (v�) dVdT+

Z

T

Z

V
r · (�(1� �)vc) dVdT = 0 (3.28)

The semi-discrete form of the volume of fluid equation then gives
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Z

T

✓
@�

@t

◆

p

Vp dT+

Z

T

X

f

Sf · (v�)f dT+

Z

T

X

f

Sf · (�(1� �)vc)f dT = 0 (3.29)

or

Z

T

✓
@�

@t

◆

p

Vp dT+

Z

T

X

f

F�f dT+

Z

T

X

f

Fc(�(1� �))f dT = 0 (3.30)

where F = S ·vf is the face volume flux. To discretize the artificial compression term,

the maximum of the velocity magnitude within the neighborhood of the interface and

its direction is used in constructing the relative velocity at the cell face [91] and is

obtained as

Fc = (nf · Sf )min


C�

|F |
|Sf |

,max

✓
|F |
Sf

◆�
(3.31)

where

nf =
(r�)f

|(r�)f + �n|
(3.32)

where �n is the stablilization parameter [91] which accounts for the non-uniformity

of the grid. This parameter usually takes the value of 10�5. The constant C� is a

user-specified value that functions to regulate the smearing of the interface; C� = 1
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has been used in all simulations in this work. Finally, time discretization yields

Vp(�
n+1
p � �n

p ) +
X

f


(1� �)(F�f )

n+1 + �(F�f )
n

�

+
X

f


(1� �)(Fc[�(1� �)]f )

n+1 + �(Fc[�(1� �)]f )
n

�
. (3.33)

In OpenFOAM , � is set as 1 by default; � = 1 and 0 connotes the Euler implicit

and explicit scheme respectively.

3.2.5 Discrete form of re-initialization equation

The discretization of the re-initialization of the level set function in Eq. (3.4) is

achieved by applying explicit Euler in time and approximating the gradient term

using the Gauss centroidal scheme outlined earlier to obtain

 n+1
p =  n

p +4t


 o

| o|

✓
1� 1

Vp

����
X

f

Sf 
n
f

����

◆�
. (3.34)
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3.3 Adaptive local mesh refinement

The general methodology of the refinement/unrefinement process can be described as

follows:

1. An initial computational grid is set up.

2. The governing equations are solved on the base grid (original grid) See Eqs. (3.2,

3.4, 3.6, 3.7, 3.10).

3. Cells of the base grid within some user-specified range of the volume fraction �

(around the interface) are selected.

4. Selected cells are then refined locally via cell splitting.

5. Cells that have volume fraction values outside the range in (3) may be coarsened.

6. The current numerical result is now mapped to the refined mesh as an initial

guess for the next computation. Further explanation on these is given below.

3.3.1 Data structure

Modifications in 2d planar and axisymmetric geometry were done by Baniabedalruh-

man [27] and have been used in clsVeInterDymFoam.
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The mesh adaptation procedure begins with a base grid. Throughout the simulation,

nodes can be inserted or deleted from the original mesh and the refinement changes

are stored using a hierarchical quad tree data structure (see Figure 3.2). Here, each

parent cell tagged for refinement is split isotropically into four daughter cells. These

newly formed cells are then added to the quadtree at a position which is one-lower

than the parent cell in the hierarchy. All cells in the mesh have a pointer to its

parent cell (if it is a result of refinement) and pointers to its daughter cells (if it

has undergone division). The unrefinement process involves the reconstruction of the

parent cell from its daughter cells.

Figure 3.2: A two-dimensional grid and its quadtree representation.
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3.3.2 Mesh refinement and unrefinement

Given an initial base grid, the refinement process starts by selection of candidate cells

for refinement and unrefinement based on the volume fraction, �.

The change in size of two neighboring cells should be maintained as either one or two

to ensure smooth grading. For clarity, a node which is a vertex to all of its neighboring

cells is called a ‘regular node’; otherwise, it is ‘irregular’. An n-irregular mesh is a

mesh with a maximum of ‘n’ irregular nodes for all cells. Figure 3.3 shows examples

of regular and irregular meshes. The limitation highlighted above is the acceptance

of only 1-irregular meshes. In other words, each cell can have at most two neighbors

over each of its faces; otherwise the cell is subdivided as shown in Figure 3.4.

A cell tagged for division becomes a parent cell and consequently, new nodes, edges

and faces are added to its interior. The connectivity information is then updated and

the daughter cells stored for later coarsening.

Cells added during the simulation are stored in a quad tree data structure. Thus

unrefinement, merely involves the deletion of newly-added cells. This can also be

thought of, literally, as an ‘undo’ operation.

The coarsening process begins with scanning of cells that have been selected for
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unrefinement recursively in decreasing order of their refinement levels. Next, cell-

pairs that satisfy the regularity condition discussed above are formed and merged.

Figure 3.3: (a) Regular mesh (b) 1-irregular mesh (c) 2-irregular mesh

Figure 3.4: Irregular meshes (a) 2-irregular mesh (b) 2-irregular mesh
showing refinements to be made to make the original mesh 1-irregular.

57



3.3.3 Solution mapping

After appropriate changes are made to the mesh due to the refinement procedure,

the solution on the previous mesh is used as an initial guess on the refined mesh for

the next calculation iterate. This is achieved on the assumption that the variation of

the variables on each cell is linear. Thus, field values at the center of each cell of the

refined mesh are obtained by finding the closest point, B, on the previous grid (see

Figure 3.5) and applying the second-order linear approximation below:

⇣P = ⇣B + (xP � xB) · (r⇣)B (3.35)

Figure 3.5: Mapping of variables between cells of di↵erent refinement level.
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3.3.4 Treatment of fluxes

Appropriate treatment of the overlapping interface between a fine and coarse grid is

required to ensure the continuity constraint (Eqn. (3.23)) is satisfied. As a result of

the accumulation of errors during discretization, not all cells satisfy this constraint

especially coarse cells next to a coarse-fine interface. The refinements of cells locally

poses a challenge on the correct handling of the coupling coe�cients on the coarse-fine

interface. In addition to this, when the flux on the coarse grid is corrected, it could

result in a flux imbalance.

To resolve the afore-mentioned issues, the approach adopted in OpenFOAM [90] is to

solve the pressure equation on the new mesh and then recalculate the flux using the

new pressure, before resuming the computation for the current time-step on the new

mesh. Therefore, we solve

r ·
✓

1

ap
rp
◆

=
X

f

Sf ·
✓
H(v)

ap

◆

f

(3.36)

for pressure and the flux,
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F = S ·
"✓

H(v)

ap

◆

f

�
✓

1

ap

◆

f

(rp)f

#
(3.37)

is evaluated again using the interpolated values of ap and H(v) on the new mesh.

Since Eq.(3.36) was obtained from the continuity equation, the fluxes computed with

this new pressure are conservative.

3.4 Solution algorithm

The simulation begins with a base mesh and then continues from step(2). For other

time steps, the numerical algorithm begins at step(1).

1‡ The mesh is updated based on the value of the volume fraction, �, in each cell

and the flux is recalculated (see Eq. (3.37)) to ensure it is conservative.

2. Given the initial values of � and v, a new volume fraction field, �n+1, is obtained

by solving Eq. (3.33).

3‡ The level set function,  is initialized using the current volume fraction field,

�n+1 (see Eq. (3.3))

4‡  is then re-initialized by solving Eq. (3.34).

5‡ The Dirac function and curvature are now evaluated and used to estimate the
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volumetric surface tension force. (see Eq. 3.5)

6. The values of the physical properties in each cell, ⇢ and ⌘ are updated using

the new �n+1 (see Eq. (3.13)).

7. The momentum equation is solved implicitly to predict the velocity field, v̂,

using values of velocity, v, stress, ⌧ and pressure, p from the previous time step

(see Eq. (3.21)).

8. H(v) is constructed using the new velocity, v̂, and a new pressure field, p̂, is

obtained by solving Eq. (3.24).

9. The fluxes, F , and v̂ are corrected using Eqs. (3.27) and (3.21) respectively.

10. Steps(8) and (9) are repeated for a fixed number of times.

11. The newly obtained conservative fluxes are then used to solve the stress equation

to obtain the final ⌧̂ .

12. Steps(2)–(11) can be repeated as many times as desired before moving to the

next time step. In this study, the loop was iterated only once.

The steps enumerated above with the symbol (‡) are the modifications made to the

algorithmic process of the original solver, viscoelasticInterFoam.
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3.5 Solution of system of linear equations

In general, the linear system of equations obtained after discretizing the transport

equations can be written for each cell P as

aP ⇣
n+1
P +

X

N

aN⇣
n+1
N = bP .

In matrix form, we can drop the indices and summation and obtain the following

system

A⇣n+1 = b,

where ⇣n+1 and b are N-dimensional vectors and A is a sparse N ⇥ N -dimensional

matrix. The sparseness of A is due to the contributions of its o↵-diagonal non-zero

coe�cients from only adjacent cells.. The system of equations is typically not solved

with direct methods but iteratively. Iterative solvers are more e�cient because they

exploit the sparsity of A, thereby reducing memory requirements.

Throughout this work, the discrete volume fraction equation is solved using the multi-

dimensionsal limiter for explicit solution (MULES) method of OpenFOAM . Next,

the first pressure equation is solved with a geometric-algebraic multi-grid (GAMG)
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solver in conjunction with a GAMG preconditioner until either the absolute tolerance

is below 10�8 or the relative tolerance is below 0.01. The GAMG solver with GAMG

preconditioner was also used for solving the second pressure equation but an absolute

tolerance of 10�8 is used to determine convergence. The GAMG solver was used

here since it is known to be very fast in initially decreasing the residual. Lastly, the

GaussSiedel method is used to solve the discrete stress and momentum equations.

The absolute tolerance here was set to 10�6. An example of how these settings are

applied to the linear solvers in OpenFOAM is shown in Fig. 3.6.
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Figure 3.6: An example of parameter settings for linear solvers. This is an
fvSolution file of OpenFOAM (without header).
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Chapter 4

Benchmark problems

In this chapter, we investigate the robustness and accuracy of the newly developed

solver, clsVeInterDymFoam, by examining the following benchmark cases: Two di-

mensional drop under static conditions (i.e. static rod case); Drop deformation in

simple shear flow for the cases where the drop is Newtonian and the continuous phase

is viscoelastic, and vice versa and Rise of a Newtonian drop in a Giesekus fluid. The

method is further validated by comparing simulation predictions of drop formation

in a t-junction to results from experimental studies [1]. For the static rod case, the

viscoelastic fluid is modeled by the Oldroyd-B constitutive equation while the vis-

coelastic fluid used in the other cases are modeled as a Giesekus fluid.

For easy referencing, the properties of all fluids considered in this chapter is delineated
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in Table 4.1. N1, N2 and N3 represent Newtonian fluids, VE2, VE3 and VE6 signify

Oldroyd-B fluids while VE1, VE4 and VE5 represent Giesekus fluids. The symbols ⌘s

and ⌘p respectively connote the solvent and polymeric viscosity of the corresponding

viscoelastic fluid.
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4.1 2D Drop under static conditions

Brackbill’s continuum surface force (CSF) technique [1] is commonly used to model

surface tension force in multiphase flows, especially when the grid is Eulerian. This

method employs the use of delta functions to reconstruct the surface tension forces as

volume forces around the interface i.e. it is only active within the interface. A major

weakness with the CSF method is that in surface tension-driven flows, it induces

artificial velocities around the interface. This anomaly has been attributed to the

numerical imbalance between the pressure gradient and the corresponding surface

tension force [92].

There has been numerous recommendations in literature that concerns possible ways

by which these spurious currents can be minimized. Some of these include improving

the evaluation of curvature [93, 94] and enhancing the flow algorithm [95, 96].

In this section, the performance of the new method is assessed by considering the equi-

librium rod problem. A similar example has been used by Albadawi et al. [86]. It in-

volves the investigation of the pressure jump across the interface of a two-dimensional

bubble that is initially fixed at the center of the domain neglecting gravity forces and

the velocity in the whole domain is initialized as zero. For the bubble to remain

static, an exact discrete balance between the pressure gradient and surface tension
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force is expected.

Figure 4.1: Schematic representation of static drop. D = 0.1m, d = 0.01m.

The numerical domain (as shown in Fig. 4.1) is initialized with a bubble (drop phase)

of diameter, d = 0.01m at the center and the surrounding is filled with water. The

parameter values employed for both the bubble and continuous phase were adapted

from Albadawi et al. [86]. The density of the bubble (fluid N1 in Table 4.1) and

continuous phase (fluid N2 in Table 4.1) is given respectively by ⇢d = 1kg/m3 and

⇢c =1000kg/m3; the dynamic viscosities are ⌘d = 10�5Pa·s and ⌘c = 10�3Pa·s. The

interfacial tension was taken to be � = 0.01N/m. Using the Laplace - Young law,

we can obtain the analytical jump in pressure across the interface to be equal to

4Panal = 2�/d = 2Pa.
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Table 4.2 shows a comparison among the pressure di↵erence (4Pi) obtained using

the VOF and the LS-VOF method on three meshes. 4Plsvof2 and 4Plsvof4 connote

the pressure di↵erence obtained using second order Gaussian integration and fourth

order least squares method respectively. Refined meshes are obtained from the base

mesh (mesh 1) upon refinement in both x- and y- direction by a factor of 2. The cell

size is indicated by 4x/d in the table. The relative errors incurred with each method

were determined using

Ei =

����
4P �4Panal

4Panal

����,

where i(= vof, lsvof2, lsvof4, ve) is associated with the di↵erent cases considered as

illustrated in Table 4.2. All results shown were taken at t = 3.0s when steady state

was reached. We observe that the fourth order least squares method converges to a

value closer to the exact solution that the second order Gaussian integration. The

improved accuracy in the pressure jump seen with the new method can be attributed

to refinement made in the evaluation of curvature via the level-set method using the

fourth order least square method to evaluate r . We also note in Table 4.2 that

for each case, the relative change in pressure drop between two consecutive meshes

decreases with mesh refinement.
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Figure 4.2: Computed pressure along the x-direction through the center
of the static bubble with VOF model. The horizontal dotted line signifies
the exact solution and the vertical dotted lines signify the boundary of the
bubble on the x�axis.

Figure 4.3: Computed pressure along the x-direction through the center of
the static bubble with LS-VOF model using the fourth-order least squares
method. The horizontal dotted line signifies the exact solution and the
vertical dotted lines signify the boundary of the bubble on the x�axis.
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Figure 4.4: Comparison of pressure jump on mesh 3. The horizontal dot-
ted line signifies the exact solution and the vertical dotted lines signify the
boundary of the bubble on the x�axis.

Figure 4.5: Computed pressure along the x-direction through the center
of the static bubble in an Oldroyd-B continuous phase using the LS-VOF
model using fourth-order least squares method. The horizontal dotted line
signifies the exact solution and the vertical dotted lines signify the boundary
of the bubble on the x�axis.
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Figure 4.2 shows the pressure along a horizontal line through the center of the drop

on mesh1, mesh2 and mesh3 using the VOF approach of interFoam. The dotted

horizontal line indicates the analytical value of the pressure jump, 4Panal = 2 Pa.

As the mesh is refined, the jump in pressure, 4Pvof converges to a value that is not

the exact value. This can be further verified by perusing Table 4.2. For example,

for mesh1, mesh2 and mesh3, 4Pvof is 1.779 Pa, 1.754 Pa and 1.749 Pa respectively.

Results shown in Figure 4.3 are obtained using the new solver and adopting the

fourth order least squares method for the evaluation of r . We observe a much

better result in this case, since the jump in pressure seems to converge to a closer

value to the analytical result.

A quantitative comparison of both methods on the most refined mesh is shown in

Figure 4.4. Here, we clearly see that LS-VOF outweighs the VOF method in its

prediction of the pressure jump.

We recall that the end goal was to assess the implementation of this new method

in the calculation process of multiphase viscoelastic fluid flows, which is expected

to be more e↵ective in surface tension dominated flows. The relative impact of this

newly added feature was tested by mimicking the above experiment for the case of

an Oldroyd-B continuous phase (fluid VE6 in Table 4.1). The physical properties

for the bubble remains the same while for the continuous phase we use the following

parameter values: ⌘s = 0.0009Pa·s, ⌘p = 0.0001Pa·s, ⇢c = 1000kg/m3 and � = 0.01s.
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The results obtained were close to the analytical value as indicated in Figure 4.5 and

Table 4.2.

4.2 Drop deformation in shear flow

Investigating steady-state and transient shear flow dynamics of a drop is paramount

for the development of emulsification technology. When a single drop undergoes suf-

ficiently high shear stress, it stretches for some period of time before finally breaking

up into small droplets. The sequence of events that result in the generation of daugh-

ter drops serves as an archetype that aids the fundamental understanding of the

underlying mechanism of emulsification and mixing.

The new solver clsVeInterDymFoam, using fourth order least squares method to com-

pute r , is further tested for e�ciency and accuracy on a dynamic test case - drop

deformation in shear flow. The fluid parameter values chosen for both the drop and

continuous phase are similar to the one used in the experimental work of Li et al. [97].

For the Newtonian continuous phase (fluid N3 in Table 4.1), the density is ⇢d = 984

kg/m3 and viscosity is ⌘d = 69.5 mPa·s; for the Giesekus drop phase (fluid VE1 in

Table 4.1), the density is ⇢c = 1000 kg/m3, the relaxation time, � = 0.25 s, the sol-

vent viscosity, ⌘s = 6.05 mPa· s and the polymeric viscosity, ⌘p = 6.05 mPa·s giving a

zero-shear-rate viscosity of ⌘o = 12.1mPa·s. Hence for this problem, the density ratio
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(⇢d/⇢c) is 1.016 and viscosity ratio (⌘d/⌘c) at zero-shear-rate is 0.174. The interfacial

tension between the two fluids is � = 0.102 mN/m.

4.2.1 Computational parameters

The geometry used in this study is shown in Fig. 4.6. In Fig. 4.6, H = 5mm and

W = 10mm. The initial diameter of the drop positioned midway between two parallel

plates is d = 1mm. The matrix liquid is then subjected to simple shear with intensity

depending on the velocity of the plates. For all simulations, we set the velocity at the

upper wall as u = 5mm/s, at the lower wall, we set u = �5mm/s and at the inlet and

outlet boundary, the gradient of the velocity was set to zero. Zero Neumann boundary

condition was specified for the volume fraction, ↵, pressure, p and polymeric stress,

⌧p at all boundaries.

The non-dimensional parameters considered are the Reynolds number, Re = ⇢cuH/⌘c,

capillary number, Ca = ⌘c�̇a/� and Deborah number, De = ��̇; where ⇢c and ⌘c is

the density and viscosity of the matrix phase respectively, �̇ = 2u/H is the shear

rate, u is the velocity of the moving wall (see Fig. 4.6) and a is the radius of the drop.

The continuous phase is Newtonian and the dispersed phase is the Giesekus fluid.
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Figure 4.6: Computational domain for drop deformation in shear flow.

4.2.2 Parameter study for adaptive mesh refinement

To enable the use of automatic refinement with a two-dimensional simulation case

in OpenFoam, the library dynamicRefineFvMesh2D of Baniabedalruhman [27] (see

previous chapter) is called during run-time. This is made possible by setting the key-

word, dynamicFvMesh, in the dynamicMeshDict1 to dynamicRefineFvMesh2D. Fig-

ure 4.7 shows the parameter settings used for one of the dynamic mesh cases. Line

18 specifies the library to call during run-time. The variable values to use for the

functions defined in dynamicRefineFvMesh2D are determined in line 22 - line 48. In

line 22, the number of timestep(s) after which refinement can occur is given. Line

24 specifies the field to base the refinement upon. In lines 26, 27 and 32, we assign

values to the variables lowerRefineLevel, upperRefineLevel and nBufferLayers.

1dynamicMeshDict is a dictionary file that controls deformation and morphing of the mesh during
a simulation. It is only useful on solvers that invoke mesh motion
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Any cell with values between lowerRefineLevel and upperRefineLevel is refined.

Cells that are within nBufferLayers of points marked for refinement are unrefined.

nBufferLayersR determines the number of bu↵er layers to be extended for refine-

ment [27]. The maximum refinement level which starts at 1 is given in line 34. Line

36 specifies the maximum cell limit above which the refinement process should be

terminated. Lastly, line 48 determines whether to write the level of refinement for

each cell as a field or not.

Our goal is to investigate the best parameter settings to be used with the dynam-

icMeshDict for optimal e�ciency and accuracy. To begin, a grid convergence study

is carried out on three static meshes - mesh 1, mesh 2 and mesh 3. Next, we conduct

similar simulations on several cases with dynamic mesh functionality enabled. The

dynamic mesh cases can be grouped into two - one using mesh 1 as the base mesh

(amrIJ) and the other sets used mesh 2 as the base mesh (amrIJB). I and J in amrIJ

and amrIJB denote respectively the level of mesh refinement (maxRefinement in Ta-

ble 4.3) and specific range of values of the volume fraction (refineRange in Table 4.3).

We considered the cases when I=1, 2, 3 and 4, and the following range of values for

J: 1 ⇠ [0.1, 0.9], 2 ⇠ [0.01, 0.99], 3 ⇠ [0.001, 0.999], 4 ⇠ [0.1, 1] and 5 ⇠ [0.01, 1]. A

summary of the properties of each case can be found in Table 4.3. All results were

taken at time, t = 20s when steady state was attained by all cases. We remark that

the number of cells shown in Table 4.3 is the number of cells in the computational

domain at the end of simulation.
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Figure 4.7: Summary of dynamicMeshDict (without header) parameters
for drop deformation in shear flow (amr22 case).

79



Table 4.3
Summary of mesh properties for all test cases considered for drop

deformation in shear flow. 4x̂ = 4xmin/d, where d is the diameter of the
drop. amrIJ uses mesh1 as the base mesh and amrIJB uses mesh2 as the

base mesh; CPU times shown are for a single processor.

Cases maxRefinement refineRange 4x̂ Number of cells CPUTime (s)

mesh1 - - 0.05 20000 3130.91

mesh2 - - 0.025 80000 30333.6

mesh3 - - 0.0125 320000 73045

amr11 1 0.1 – 0.9 0.025 20452 5133.7

amr12 0.01 – 0.99 20676 5821.4

amr13 0.001 – 0.999 22089 7516.6

amr14 0.1 – 1 21189 5030.2

amr15 0.01 – 1 21298 5571.4

amr21 2 0.1 – 0.9 0.0125 21560 7707.8

amr22 0.01 – 0.99 22220 8877.4

amr23 0.001 – 0.999 32790 12079.4

amr24 0.01 – 1 25827 7806.7

amr31 3 0.1 – 0.9 0.00625 24114 10334.7

amr32 0.01 – 0.99 27645 13141.5

amr33 0.001 – 0.999 81254 32103.4

amr41 4 0.1 – 0.9 0.003125 34180 22692.6

amr42 0.01 – 0.99 80717 49110.8

amr43 0.001 – 0.999 221025 119658

amr11B 1 0.1 – 0.9 0.0125 80934 29561.9

amr12B 0.01 – 0.99 81551 32672.6

amr13B 0.001 – 0.999 96456 39803.4

amr14B 0.1 – 1 84230 29658

amr15B 0.01 – 1 84579 31183.2

amr22B 2 0.01 – 0.99 0.00625 94280 40188.8
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In Table 4.3, as expected on the uniform meshes, the CPU time increased as the mesh

size increased. The same is true when adaptive meshing is used, except when the up-

perRefineLevel is 1. In other words, the CPU time increases as the number of cells at

the end of calculation increases. This, in turn, occurs when the refineRange increases.

The most likely reason for this oddity is that out of the total simulation time, more

time was spent on updating the mesh within each time step for the cases amr12,

amr22 and amr12B (see Fig. 4.8 and 4.9). For the cases with an upperRefineLevel as

1, an increase in the number of cells and CPU time is observed as the refineRange

increases. We also note that setting the upperRefineLevel as 1 forces all the cells

within the drop to be refined the maximum number of times.

Figure 4.8: Dynamic mesh showing refined cells around the interface for
drop deformation in shear flow at time, t = 20s (amr22 case).

In Fig. 4.10, the contour lines of the volume fraction field at � = 0.5 for the cases

amr31, amr32 and amr33 are compared with mesh1, mesh2 and mesh3. We observe
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Figure 4.9: Dynamic mesh showing refined cells around the interface for
drop deformation in shear flow at time, t = 20s (amr15 case).

that all dynamic mesh (amr) cases shown predicted a greater drop elongation length

with amr32 predicting the shortest length. Similar behavior was seen in amr41, amr42

and amr43. Hence, no further investigation was done for these cases.

Next, we compare the contour lines of the cases amr21,amr22 ,amr23 and amr24 with

mesh1, mesh2 and mesh3 in Fig. 4.11. Again, we observe a longer deformed steady

drop as in the amr cases with three and four levels of mesh refinement. However, the

orientation of the drops are better aligned.

The best result for the amr cases using mesh 1 as the base grid were those ran with

one level of mesh refinement (amr1*). They are faster and more accurate. As shown

in Fig. 4.12, amr12, amr13, amr14 and amr15 are mesh independent with respect to

the contour lines. In addition, the contour lines for these cases were closer to the

contours of mesh 3 than mesh 2. Considering the pressure profile along the x-axis,
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on the other hand, amr15 gave the best result relative to all amr cases with mesh 1

as the base grid. This is delineated in Fig. 4.15. We remark here that the run time

for these cases are about one-fifth that of mesh 2.

For the cases with mesh 2 as the base mesh, the contour lines for amr11B, amr12B,

amr13B and amr15B, and amr22B are compared mesh1, mesh2 and mesh3 in Fig. 4.13

and Fig. 4.14 respectively. The pressure profile along the x-axis was also compared

with mesh1, mesh2 and mesh3. We include only the best two cases in the results

shown in Fig. 4.16. We observe in Fig. 4.16 that amr15B is not mesh independent.

Although, the case amr22B agrees more with mesh 3, the run time is a lot higher -

about 3 hrs more (see Table 4.3).

We thus recommend using mesh 1 as the base mesh and setting the upperRefineLevel

to 1 because it is more e�cient in terms of speed and accuracy.
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Figure 4.10: Comparison of contour lines at ↵ = 0.5 of a steady de-
formed shape of Giesekus drop in a Newtonian fluid for mesh1, mesh2,
mesh3, amr31, amr32 and amr33. (Base mesh is mesh1, maxRefinement
= 3).

Figure 4.11: Comparison of contour lines at ↵ = 0.5 of a steady deformed
shape of Giesekus drop in a Newtonian fluid for mesh1, mesh2, mesh3,
amr21, amr22, amr23 and amr24. (Base mesh is mesh1, maxRefinement
= 2)
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Figure 4.12: Comparison of contour lines at ↵ = 0.5 of a steady deformed
shape of Giesekus drop in a Newtonian fluid for mesh1, mesh2, mesh3,
amr11, amr12, amr13, amr14 and amr15. (Base mesh is mesh1, maxRe-
finement = 1)

Figure 4.13: Comparison of contour lines at ↵ = 0.5 of a steady deformed
shape of Giesekus drop in a Newtonian fluid for mesh1, mesh2, mesh3,
amr11B, amr12B, amr13B and amr15B. (Base mesh is mesh2, maxRefine-
ment = 1)

85



Figure 4.14: Comparison of contour lines at ↵ = 0.5 of a steady deformed
shape of Giesekus drop in a Newtonian fluid for mesh1, mesh2, mesh3 and
amr22B. (Base mesh is mesh2, maxRefinement = 2)

Figure 4.15: Pressure profile along the horizontal line y = 0 at time t = 20s
for mesh1, mesh2, mesh3, amr15 and amr22.
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Figure 4.16: Pressure profile along the horizontal line y = 0 at time t = 20s
for mesh1, mesh2, mesh3, amr15B and amr22B.
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4.2.3 E↵ect of viscoelastic model on drop phase

Here, we investigate the di↵erences in the prediction of two viscoelastic models used in

characterizing the drop phase for the same Newtonian continuous phase using static

mesh 2 with no AMR. The Newtonian fluid, N3, and the viscoelastic fluids, VE1

and VE2 were selected for this study (see Table 4.1). We note that VE1 and VE2

represents a Giesekus and Oldroyd-B model respectively.

At steady state, no remarkable di↵erence was seen between the volume fraction field

for both cases (see Fig. 4.17(a)). We also compared the steady state shape of a

Giesekus drop (VE1) in a Newtonian matrix (N3) and a Newtonian drop (N3) in a

Giesekus matrix (VE2). As delineated in Fig. 4.17(b), we observe that the droplet

is more deformed when it is viscoelastic and the continuous phase is Newtonian.

To understand why this occurs, we recall that the capillary number, Ca, gives an

indication of the relative strength of the viscous stretching force to the resistive force

due to interfacial tension. Thus, the higher deformation of the viscoelastic droplet is

expected since in this case, the drop is subjected to a higher shear stress (Ca = 0.34)

in comparison to the Newtonian drop (Ca = 0.059) for the same resistive force.
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Figure 4.17: Comparison of steady deformed droplet shape (a) left:
Giesekus drop in a Newtonian matrix; right: Oldroyd-B drop in a Newtonian
matrix (b) left: Giesekus drop in a Newtonian matrix (Ca = 0.34, �̇ = 2s�1,
viscosity ratio=0.174); right: Newtonian drop in a Giesekus matrix (Ca =
0.059, �̇ = 2s�1, viscosity ratio=5.74).

Finally, a comparison of the profile of the components of polymeric stress,

⌧p,xx, ⌧p,xy, ⌧p,yy, pressure, p, and x�component of velocity, u were taken along the

horizontal line y = 0. The results are shown in Fig. 4.18. In Fig. 4.18, ls-Oldroyd-

B and ls-Giesekus represent results obtained with clsVeInterDymFoam while other

cases (Oldroyd-B and Giesekus) were obtained using viscoelasticInterFoam. We

observe that the only remarkable di↵erence is in the stress distribution. The Oldroyd-

B model predicts a larger stress value within the drop for all components. In contrast

to the Oldroyd-B fluid, the viscosity of the Giesekus fluid decreases as the shear rate

increases which results in a reduction in the magnitude of stress within the drop.
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Furthermore, the results predicted with clsVeInterDymFoam are lesser for all pro-

files. The stress field for all the four cases are shown in Fig. 4.19. Figure 4.19 (a)

and (c) were obtained using viscoelasticInterFoam while Fig. 4.19 (b) and (d)

were obtained with clsVeInterDymFoam. As shown, the Oldroyd-B drop has a higher

concentration of stress than the Giesekus drop.

4.2.4 E↵ect of elasticity on drop phase

The role elasticity of drop plays in its deformation when subjected to simple shear

flow is examined here. Three cases - N3–N3, VE2–N3, VE3–N3 were studied using

mesh 2. All cases had the same Newtonian fluid, N3, as the continuous phase. For

the cases N3–N3, VE2–N3 and VE3–N3, the drop phase is the fluid N3, VE2 and

VE3 respectively. Also for the three cases, N3–N3, VE2–N3 and VE3–N3, Ca =

0.34; De = 0, 0.5, 200 and viscosity ratio = 1, 0.174, 0.174 respectively. The material

properties of these fluids can be found in Table 4.1.

Figure 4.20 illustrates the steady deformed shapes of the drop for the three cases. It

can be seen that the drop was most deformed in the Newtonian case and had the

least amount of deformation in the case with highest elasticity. In addition, we also

observed in Fig. 4.6 that as elasticity of drop increases, drop deformation decreases

and drop alignment decreases.
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In an attempt to explain this behavior, the strain rate profile was investigated. The

distribution of the strain rate across the whole domain for all three cases is shown in

Fig. 4.21. For all cases, the strain rate is highest at the tip of the deforming droplet.

However, the N3–N3 case has the most even distribution of strain rate. Consequently,

the strain rate transmitted from the walls is evenly distributed across the drop and

this gives rise to the high drop alignment and elongation. In the VE3-N3 case on the

other hand, most of the strain rate is absorbed at the tip.
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Figure 4.18: Comparison of profiles along the x-axis: viscoelastic drop in
a Newtonian matrix.

92



Figure 4.19: Polymer stress magnitude: viscoelastic drop in a Newtonian
matrix using static mesh 2 (a) Giesekus drop (viscoelasticInterFoam)
(b) Giesekus drop (clsVeInterDymFoam) (c) Oldroyd-B
(viscoelasticInterFoam) (d) Oldroyd-B (clsVeInterDymFoam).

Figure 4.20: E↵ect of elasticity for drop deformation in shear flow.
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Figure 4.21: Strain rate distribution for drop deformation in shear flow (a)
N3-N3; De = 0, Ca = 0.34 (b) VE2-N3; De = 0.5, Ca = 0.34 (c) VE3-N3;
De = 200, Ca = 0.34.
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4.3 Rising of a Newtonian drop in a liquid

To test the capability of clsVeInterDymFoam in handling an axisymmetric geometry,

the rise of a Newtonian drop in a viscoelastic matrix (Giesekus fluid) is considered.

The geometry is a cylinder of radius r = 0.04m and height H = 0.1m. The bottom

of the cylinder is a wall and the top is open. The computational domain used has the

shape of a wedge (see Figure 4.22). The density of the drop (fluid N3 in Table 4.1)

and continuous phase (fluid VE1 in Table 4.1) is 984kg/m3 and 1000kg/m3 respec-

tively while the dynamic viscosity of the drop and continuous phase is 69.5mPa·s and

12.1mPa·s; The relaxation time is � = 0.25s and the interfacial tension between both

phases is given by � =0.102mN/m. A summary of the fluid properties used is given

in Table 4.4.

Table 4.4
Fluid properties of drop and continuous phase for the rising drop case.

Property Drop phase (Newtonian) Continuous phase (Giesekus fluid)

Density (kg/m3) 984 1000

Viscosity (mPa·s.) 69.5 ⌘s = 6.05, ⌘p = 6.05

Relaxation time (s) - 0.25

Mobility factor - 0.003

A drop with radius, 1 cm, was placed initially at rest close to the bottom of the

geometry and left to rise freely as a result of buoyancy. Acceleration due to gravity

is g = �9.8m/s2 in the y�direction. At time, t = 0, the velocity, v, pressure, p, and
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stress, ⌧p field was set to zero. The volume fraction, � was initialized to 1 in the drop

and 0 outside the drop (continuous phase). A summary of the boundary conditions

prescribed for all variables are delineated in Fig. 4.22.

Figure 4.22: (a) Geometry for the rising drop case. H = 0.1m and w =
0.04m.

Table 4.5 shows the meshes and the total run time for each mesh used for convergence

study. The nomenclature is similar to that in the previous section. As expected for

the static meshes, the run time increases as the number of cells increases but a lesser
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number of cells is used on the dynamic mesh for an almost same accuracy with

the most refined mesh. A summary of the parameters employed for the AMR case is

shown in Fig. 4.23. In Fig. 4.23, dynamicRefineFvMeshAxi in line 18 is a library called

during runtime to enable AMR on an axisymmetric grid. dynamicRefineFvMeshAxi

was developed by Baniabedalruhman [27]. Selective snapshots of the volume fraction

field at level set, � = 0.5, are shown in Figure 4.24. As shown, AMR matches closely

with mesh 3 and was used for subsequent simulations.

Table 4.5
Summary of mesh information. 4x̂ = 24xmin/d, where d is the diameter

of the drop.

Meshes 4x̂ Number of cells CPUTime (s)

1 0.25 600 22.25

2 0.125 2480 69

3 0.0625 10080 332

AMR 0.0625 3626 175.14

In the rest of this section, we investigate the changes in the shear rate field around

a drop (fluid N3) rising in a viscoelastic fluid (fluid VE1) that shear-thins (Giesekus

fluid). It is very important to determine the behavior of drops in various flow condi-

tions that include a Newtonian and non-Newtonian matrix phase. This would help

elucidate necessary details for bringing well-suited process operation and model to

reality.

Figure 4.25 shows the shear rate distribution (shear rate =
p
2D : D, D = (rv +
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Figure 4.23: Summary of dynamicMeshDict parameters for rising drop
case.

(rv)T )/2) and shape of a drop (fluid N3) rising in a Newtonian (fluid N4) and

Giesekus fluid (fluid VE1). A wider region of greater local shear rate is observed

at the drop nose in the Giesekus fluid than the Newtonian. To help elucidate how

the viscosity of the Giesekus fluid is locally distributed, we consider its velocity field.

Figure 4.25 (bottom) shows the flow field around the drop after 1.2s from rest position.
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It could be seen that as the drop rises, the liquid close to its head is propelled

upward, some of which finds its way back into the wake of the bubble. This leads

to the formation of a vortex on the periphery of the drop. Although, the velocity

distribution in both cases seems almost indistinguishable, an increased vortex is seen

to appear as the influence of the shear-thinning becomes more pronounced. Due to

the increased shear-rate zone around the front line of the drop, a remarkable velocity

gradient is seen in that area. For the shear-thinning Giesekus fluid, this causes a

reduction in its viscosity in that region which consequently results in an increase in

the rising velocity of the drop.
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Figure 4.24: Rise of a Newtonian drop in a Giesekus fluid on three meshes
(a) ↵ = 0.5 contour plot (b) Contour plot on a dynamically refined mesh
(AMR).
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Figure 4.25: Top and Middle: Shear rate distribution and shape of a drop
(fluid N3) rising in a Newtonian and viscoelastic fluid; Bottom: Velocity
field at time, t = 1.2s. (a) Newtonian (fluid N4) (b) Viscoelastic matrix
phase (fluid VE1).
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4.4 Experimental validation

In this section, clsVeInterDymFoam is further validated by comparing the results of

a two-dimensional computer simulation with experiments performed by Li et al. [1] of

the formation process of a viscoelastic droplet in a three-dimensional microchannel.

For the experiment, an aqueous solution of cetyltrimethylammonium chloride (CTAC)

and Sodium salicylate (NaSal), which was used as the disperse phase, is introduced

into a flowing stream of silicone oil (continuous phase). The dispersed phase is even-

tually pinched at some point near the mouth of its entrance channel and plugs are

formed. These plugs are then transported downstream by the continuous phase.

Figure 4.26: Schematic illustration of the viscoelastic two-phase system.
H = 100µm.

The flow problem is shown schematically in Figure 4.26. The width of both inlet

channels is H = 100µm and ✓ represents the contact angle. The base mesh of this
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case has a size of 4x/H = 0.0962. Using two levels of refinement, the size of the

smallest cell i.e. around the interface is given by 4x/H = 0.02405. A summary of

the parameter settings for dynamic mesh refinement used with all cases is outlined

in Fig. 4.27. At the walls, the no-slip condition was set. A zero normal gradient was

specified at both inlets for p and ⌧p, at the walls for p and ⌧p, and at the outlet for

v, ⌧p and �. A value of zero was assumed at the outlet for p. The equilibrium contact

angle used is 180o. At both inlets, a fully developed velocity profile is prescribed so as

to conduct the numerical simulations with a channel length smaller than that used in

the experiment. The procedure for setting up a fully developed profile at both inlets

is the same, so an explanation for one of the inlet is given. We consider a channel

with the same width as any of the inlet e.g 100µm, and length that is long enough (20

channel diameters was used in the current study). A single phase calculation is then

carried out using the same parameters as the fluid entering the corresponding inlet

and solved until the velocity profile along a cross-section of channel doesn’t change

beyond the entrance region. This indicates the flow is fully-developed. The next step

is to map this fully-developed profile to the inlet as a boundary condition. To do this,

we employ the mapFields utility in the OpenFOAM library.

A summary of the parameter setting for all linear solvers used in this chapter is

shown in Fig. 4.28. The volume fraction equation (alpha.phase1) is solved using the

multi-dimensionsal limiter for explicit solution (MULES) method by default. Next,
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Figure 4.27: Summary of dynamic mesh parameters for experimental val-
idation case.

the first pressure equation is solved with a geometric-algebraic multi-grid (GAMG)

solver in conjunction with a GAMG preconditioner until either the absolute toler-

ance is below 10�8 or the relative tolerance is below 0.01. The GAMG solver with
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GAMG preconditioner was also used for solving the second pressure equation but

an absolute tolerance of 10�8 is used to determine convergence. We use the GAMG

solver here since it is known to be very fast in initially decreasing the residual. Lastly,

the GaussSiedel method is used to solve the stress and momentum equations. The

absolute tolerance here was set to 10�6.
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Figure 4.28: Summary of fvSolution settings (without header) for drop
formation case.

The density of the dispersed and continuous phase is given by ⇢d = 1000 kg/m3

and ⇢c = 980 kg/m3 respectively. An interfacial tension of � = 22.9 mN/m was used.

Important non-dimensional parameters include the Reynolds number, Re = ⇢cvcH/⌘c,
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the capillary number, Ca = ⌘cvc/� , and the Weissenberg number, Wi = ��̇. We

note here that the continuous phase corresponds to fluid N3 in Table 4.1 while the

drop phase using � = 0.034s and � = 0.152s corresponds to fluid VE4 and fluid VE5

respectively.

Table 4.6
Fluid properties of the drop and continuous phase for the drop formation

case.

Property
Continuous phase

(Newtonian)
Drop phase

(Giesekus fluid)

Density (kg/m3) 984 1000

Viscosity (mPa·s.) 69.5 ⌘s = 6.05, ⌘p = 6.05

Average velocity (mm/s) 1.197, 2.395 1.197, 2.395

Relaxation time (s) - 0.034, 0.152

Mobility factor - 0.003

The parameters, ⇢d, ⇢c, ⌘c, ⌘d,vc,vd, �,�, employed for the numerical setup were ob-

tained from the experiment and reported in [1]. A summary of the fluid parameters

used is delineated in Table 4.6. At both entrances, the same average velocity was

specified so that vc/vd = 1. The Weissenberg number, Wi = 0.41, 3.64, was obtained

using a relaxation time of 0.034s and 0.152s respectively.

A qualitative comparison is made between experiment and numerical result in

Figs. 4.29 and 4.30. On increasing the capillary number from Ca = 0.00231 in

Fig. 4.29 to Ca = 0.00461 in Fig. 4.30, the formation process changed from squeezing

to jetting. A very good agreement was observed between experiment and simulation

in this study. In particular both squeezing and jetting behavior were reproduced. The
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Figure 4.29: Droplet formation process in a T-junction. (a) Experiment:
width of both inlets is 100µm and depth is 58µm. (b) Numerical simulation.
Parameters: ⌘c = 44.1 mPa.s, ⌘d = 1.05 mPa.s, vc = vd = 1.197 mm/s;
Re = 0.00266, Ca = 0.00231, Wi = 0.41. Reprinted from “Formation of
Uniform Plugs and Monodispersed Droplets for Viscoelastic Fluid,” by Li,
Xiao-Bin, et al. [1], 2010, Earth and Space, p. 2211. Copyright 2010, with
permission from ASCE. See documentation in Appendix E

drop sizes, however, do not match exactly. This is largely due to the two-dimensional

approximation of the experiment which was conducted in a three-dimensional planar

geometry. Also, a surfactant-laden dispersed phase (CTAC/NaSal aqueous solution)

was used in the experiment whereas the numerical simulations were conducted using

CTAC/NaSal solution without a surfactant.

In flow conditions, the interfacial stresses between di↵erent fluid phases is transformed
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by surfactants and this modification is determined by how much surfactant is assimi-

lated and the dynamics of surfactant mass transfer [98]. For this reason, the formation

of droplets in a T-junction can be quickened or hindered by surfactants. To gain a

deeper understanding of the role a surfactant plays in the droplet formation process,

we consider an emerging drop from the injection channel. It grows into a bloated

shape that detaches with the aid of the rapid formation and pinching of a neck. The

speed with which the neck shrinks is highest when surfactants are not present [99].

Using a dispersed phase with surfactants results in the aggregation of surfactants in

the neck region, thereby modifying the dynamic behavior by weakening the surface

tension that is majorly responsible for the shrinkage. This ultimately decelerates the

thinning process, modifies the structure of the neck and in some cases, inhibit neck

formation [99, 100, 101].

Figure 4.30: Jetting in formation mechanism. (a) Experiment (b) Nu-
merical simulation. Parameters: ⌘c = 44.1 mPa.s, ⌘d = 5.92 mPa.s,
vc = vd = 2.395 mm/s; Re = 0.00532, Ca = 0.00461, Wi = 3.64. Reprinted
from “Formation of Uniform Plugs and Monodispersed Droplets for Vis-
coelastic Fluid,” by Li, Xiao-Bin, et al. [1], 2010, Earth and Space, p. 2211.
Copyright 2010, with permission from ASCE. See documentation in Ap-
pendix E.

109



4.4.1 E↵ect of contact angle

The hydrophobicity of microchannels has been reported to play some role on the

formation process of droplets, including their size [102]. Typical range of contact

angles commonly published for the aqueous solution is between 105o and 180o [97].

The influence of contact angle on droplet size is delineated in Fig. 4.31. As shown,

the size of droplets increases as the contact angle rises.
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4.5 Conclusions

The newly developed solver, clsVeInterDymFoam, has been validated by a series of

two-dimensional test problems: (1) drop under static conditions; (2) drop deformation

in simple shear flow for the cases where the drop is Newtonian and the continuous

phase is viscoelastic, and vice versa; (3) rise of a Newtonian drop in a Giesekus fluid;

and (4) drop formation in a T-junction under experimental conditions considered by

Li et al. [1].

The study revealed that clsVeInterDymFoam is superior to viscoelasticInterFoam

in the static drop problem analysis. The performance of the solver in simulating

axisymmetric viscoelastic problems was also evaluated by comparing the results ob-

tained on a dynamic mesh with those from uniform grid calculations for a rising

Newtonian drop in a Giesekus fluid. The AMR cases were shown to provide a sig-

nificant saving in grid size and computation time. Similar results were obtained for

the drop deformation in shear flow cases. Based on the result obtained from the

parameter study for AMR on drop deformation in shear flow, we recommend using

mesh1 as the base mesh and setting the refineRange as [0.01, 1]. In addition, our

simulations for drop deformation revealed that when a Newtonian drop is subjected

to a viscoelastic simple shear flow, the drop deformation is smaller than that for a

viscoelastic drop in a Newtonian matrix.
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Finally, good qualitative agreement was found for the drop formation in a T-junction

case between numerical results and their experimental counterpart.
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Chapter 5

Viscoelastic Droplet Formation in

a Microfluidic T-junction

Major emulsification methods used to produce uniformly-sized microdroplets include

membrane emulsification, microchannel emulsification and microfluidic processes. In

membrane emulsification, droplets are generated either as a result of the decomposi-

tion of a coarse emulsion after being forced through a membrane channel or shearing

of the pure injection source by the continuous phase. The membrane used in mem-

brane emulsification devices could be either fixed or dynamic, where the rotation/

vibration of the membrane also aids in the pinch-o↵ of droplets from the membrane

surface [51, 52]. In general, microfluidic devices are categorized as either flow focusing

or microfluidic junctions. Of all microfluidic junctions, the T-junction is easiest to

115



construct [49, 53]. Hitherto, only a few numerical studies have been conducted on

the characterization of viscoelastic droplet formation in a Newtonian stream. For

example, viscoelastic drop formation at an aperture [66, 67] and in a flow-focusing

channel [68]. To the best of our knowledge, no numerical study on the formation of

viscoelastic droplets in a T-junction has been considered. A very good understand-

ing of droplet formation mechanism enables the determination of the feasibility and

boundary of the use of membrane emulsification in di↵erent kinds of applications.

This chapter focuses on the use of two-dimensional T-shaped microchannels to study

the formation and detachment of viscoelastic drops in a Newtonian matrix. The role of

imposed flow type, channel height, wall shear rate, interfacial tension and elasticity on

formation process of viscoelastic droplets in a Newtonian fluid is critically examined.

A schematic diagram of the microchannel used in the present study is illustrated in

Fig. 5.1. The width of the continuous phase channel and the dispersed phase channel

are respectively denoted by H and D. The dispersed phase, which is characterized as

a Giesekus fluid, is injected at normal direction into a flowing stream of the continuous

phase, droplets then detach from the tip of the injection source as a result of several

factors including the accumulation of pressure upstream of the growing droplet and

drag from the continuous phase. Emulsification process with a fixed membrane is

captured in the microchannel as the case when the flow of the continuous phase is

Poiseuille (P-flow) and for a rotating membrane, the flow of the continuous phase is
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plane Couette (C- flow).

Figure 5.1: (i) Droplet formation in a membrane emulsification device
with a fixed membrane (ii) Transverse section of a device similar to rotating
membrane device (iii) Schematic representation of droplet formation in a
T-cell. H and D denotes the width of the main channel and the dispersed
phase channel respectively. Lu = 975µm, L = 200µm and Ld = 2975µm.

Two sets of numerical experiments were conducted. For the first set, H = 500µm and

D = 50µm was used while H = 100µm and D = 50µm was used for the second set

(Section 5.7). The solver, viscoelasticInterFoam of Favero [26], was employed for

the first set of experiments. Next, selected cases in the first set were run with the mod-

ified solver, clsVeInterDymFoam, to investigate any di↵erence between the predictions

of both solver. For the second group, only the solver clsVeInterDymFoam was used.

In all simulations, the continuous phase average imposed velocity vc was varied while

the dispersed phase average imposed velocity, vd remained fixed. Essential dimen-

sionless parameters used in characterizing the observed behavior of droplets formed

include the Reynolds number, Rec = ⇢cvcH/⌘c, capillary number, Cac = ⌘cvc/�,
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Deborah number, Dec = ��̇ac, Ded = ��̇ad and velocity ratio, vc/vd, where ⇢c is the

density of the continuous phase; for P-flow, vc is the same as the uniform velocity

prescribed at its inlet, for C-flow, vc = vw/2, where vw is the velocity of the upper

channel wall; ⌘c is the continuous phase viscosity; � is the interfacial tension between

both phases; �̇ac(= 3vc/H) [103] denotes the average imposed shear rate in the con-

tinuous phase channel and �̇ad(= 3vd/D) [103] is the average imposed shear rate in

the dispersed phase channel.

The interfacial tension, � = 0.0415N/m, the density of the continuous phase, ⇢c =

960 kg/m3, the continuous phase viscosity, ⌘c = 0.106Pa.s, and the density of the

dispersed phase, ⇢d = 803.87 kg/m3 were fixed for all simulations in this section. The

relaxation parameter was set to � = 5ms. A summary of these parameter values can

be found in Table 5.1. For comparison purposes, the case with these parameter values

shall be identified as the base case.

Table 5.1
Fluid properties for drop formation in a t-junction.

Property Continuous phase Dispersed phase

Density (kg/m3) 960 803.87

Viscosity (Pa·s.) 0.106 ⌘s = 0.002, ⌘p = 1.2

Relaxation time (s) - 0.005

Mobility factor - 0.05

The range of values for vc/vd, Rec, Cac, Dec, Ded and the channel wall shear rate,
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�̇w, considered in this study are given in Table 5.2. For P-flow, the wall shear rate

was computed as �̇w = 6vc/H while for C-flow, �̇w = 2vc/H.

Table 5.2
Range of parameter values for P-flow and C-flow.

Type �̇w(1/s) vc/vd Rec Cac Dec Ded

H/D = 2

P-flow
3000 –
6000

45.45 –
90.91

0.045 –
0.091

0.13 –
0.25

0 –
15

0 –
0.66

H/D = 10

P-flow
600 –
3000

45.45 –
227.27

0.23 –
1.13

0.13 –
1.33

0 –
12

0 –
0.66

C-flow
600 –
3000

136.36 –
681.81

0.68 –
3.4

0.38 –
4.0

0 –
15

0 –
0.66

At time, t = 0, the velocity, v, pressure, p, and stress, ⌧p field were set to zero. The

volume fraction, � was initialized to 0 in the continuous phase channel and 1 in the

channel of the dispersed phase.

For P-flow, v = 0 holds at all walls of the computational domain. A zero normal

gradient was specified at both inlets for p and ⌧p, at the walls for p, ⌧p, and at

the outlet for v and �. A value of zero was assumed at the outlet for the polymeric

stress, ⌧p, and pressure, p. The equilibrium contact angle used is 180o. The boundary

conditions for the C-flow case di↵ered from the P-flow case only at the upper wall

and inlet of the continuous phase channel where a non-zero fixed value was set and

zero normal gradient was specified for v respectively.
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5.1 Rheological properties of the dispersed phase

(Giesekus fluid)

In steady shear flow, the exact solution for the shear viscosity, ⌘, and first normal

stress coe�cient,  1, of the Giesekus model is obtained, respectively, as [104]

⌘ = ⌘o

✓
�2

�
+

✓
1� �2

�

◆
(1� f)2

1 + (1� 2↵)f

◆
(5.1)

and

 1 = 2⌘o(�� �2)
f(1� ↵f)

(��̇)2↵(1� f)
, (5.2)

where

⌘o = ⌘s + ⌘p, (5.3a)

�2 = �
⌘s

⌘s + ⌘p
, (5.3b)
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f =
1� �

1 + (1� 2↵)�
, (5.3c)

�2 =
(1 + 16↵(1� ↵)(��̇)2)

1
2 � 1

8↵(1� ↵)(��̇)2
, (5.3d)

In Eqs. (5.1) to (5.3),�2 represents the retardation time and �̇ denotes the shear rate.

The graphs of viscosity and stress ratio ( 1�̇
⌘
) against shear rate, obtained using

Eqs. (5.1) and (5.2), are shown in Fig. 5.2 for Giesekus fluid in Table 5.1. In (i), the

e↵ect of the relaxation time on the shear-thinning property of a fluid is delineated.

As the relaxation time increases, the shear rate at which the fluid begins to shear

thin drops. As expected, when � = 0, the viscosity is independent of shear rate. The

stress ratio provides a measure of elasticity in simple shear flow. It can be seen in (ii)

that the elasticity of the fluid flow increases as the relaxation time, �, increases.

5.2 Grid Independence Study

To confirm grid independence of the results obtained in this study using

viscoelasticInterFoam, numerical simulations were performed on three di↵erent

meshes [105]. For descriptive purposes, the meshes are identified as Mesh 1, Mesh 2
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Figure 5.2: (i) Viscosity as a function of shear rate. (ii) Stress ratio as
a function of shear rate. The following parameter values have been used:
⌘s = 0.002Pa.s, ⌘p = 1.2Pa.s and ↵ = 0.05 (see Table 5.1). In (ii), the
stress ratio when � = 0 (Newtonian) is zero.

and Mesh 3 in order of fineness with Mesh 1 being the coarsest. A summary of the

characteristics of all meshes are shown in Table 5.3.
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Table 5.3
Grid properties for droplet formation in a T-junction.

Mesh 4xmin/D 4ymin/D Number of cells

1 0.091 0.058 55,577

2 0.063 0.038 124,960

3 0.042 0.026 281,160

Mesh 1 is a two dimensional mesh that comprises non-uniform hexahedral cells. The

cells around the mouth of the dispersed phase channel are more refined to accurately

predict droplet detachment. Cell sizes in this area were 4x/D = 0.091 and 4y/D =

0.058, where D is the width of the dispersed phase channel (see Fig. 5.1). On refining

Mesh 1 by a factor of 1.5 in both x- and y- directions, Mesh 2 was obtained. In

the same way, Mesh 3 was obtained from Mesh 2. The e↵ect of wall shear rate on

droplet sizes are shown in Fig. 5.3 for all three meshes. We remark here that the size

of droplet reported in Fig. 5.3 and subsequent figures in this chapter are the mean of

the size of five droplets formed in the main channel.

To give a quantitative account of the discretization error, the Normalized Percent

Error (NPE) defined as

NPE =
n

max
k=1

 
|xi

k � xref
k |

max(xref )

!
⇥ 100 (5.4)

was computed for the result obtained in P-flow and C-flow. In Eq. (5.4), n denotes

the number of wall shear rates considered for each mesh (See Fig. 5.3), i = 1, 2, 3
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Figure 5.3: Drop size as a function of wall shear rate (i) C-flow (ii) P-flow.
For C-flow, the wall shear rate was computed as �̇w = 2vc

H while for P-flow,
�̇w = 6vc

H

identifies the mesh and ref = 3 (i.e. Mesh 3 was chosen as the reference mesh).

In P-flow, the NPE for the normalized drop size with Mesh 2 was obtained as 4%

while in C-flow, it was obtained as 5% . Hence Mesh 2 was used in the remaining

simulations with viscoelasticInterFoam.
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5.3 Influence of flow type

To investigate the e↵ect of imposed channel flow type, two sets of experiments were

conducted. The first set was performed in a pressure-driven flow (P-flow) while the

second was conducted in a plane Couette flow (C-flow).

The influence of the imposed flow type on the size of droplet is depicted in Fig. 5.4.

The case when both flow types have the same velocity ratio, vc/vd = 136.4, have also

been included for comparison. As shown, the droplet size formed in C-flow is larger.

This is due to the larger �̇ac in P-flow at the same vc. Also, as expected for each

flow, the droplet size decreases as Cac increases. A similar result was reported by

Husny and Cooper-White [64] - they investigated the role of elasticity on the droplet

formation process and size of droplet formed within a T-junction geometry. This

qualitative behavior was also shown in the numerical study conducted by Feigl et.

al. [103] for a Newtonian-Newtonian fluid system.

Di↵erent behavior was observed concerning the role of the average imposed velocity

of the continuous phase, vc on droplet size. In Fig. 5.5, the leftmost point on each

curve connotes the threshold flow rate for which droplet detachment occurs and the

right end-point indicates the flow rate above which iterative convergence could not be

attained. In principle, the iterative schemes employed diverge beyond some critical
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Figure 5.4: E↵ect of flow type on droplet size. (i) P-flow (ii) C-flow.

value of the Weissenberg number which is due mainly by the hyperbolic nature of the

constitutive equations [106]. As a result, the variables solved for e.g. pressure, velocity

and stress, begin to grow exponentially in time. All droplet detachment showed a

dripping behavior i.e. drops detach directly from the mouth of the injection channel

and are transported downstream by the flow of the continuous phase. As shown

in Fig. 5.5, which is also evident in Fig. 5.4, a decrease in droplet size is seen as vc
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increases. Also noticed is that for each continuous phase flow rate, the size of droplets

generated in the C-flow is greater than that in the P-flow. This is expected since the

applied shear rates are larger in P-flow than in C-flow for a given vc. For additional

understanding of the di↵erences seen in the droplet size between the flow types, the

shear rate just above the mouth of the dispersed phase channel was monitored from

time, t = 0s to t = 1s. The average imposed velocity of the continuous phase and

dispersed phase was kept fixed at vc = 0.15m/s and vd = 0.0011m/s respectively.

As shown in Fig. 5.6, just after the initial time, the shear rate in the P-flow had risen

more than twice that in the C-flow. This behavior is seen almost throughout the

simulations. Consequently, droplets detached in P-flow are smaller at a given vc due

to the presence of higher shear stress. This is also evident by comparing the number of

detachments for both cases in Fig. 5.6 represented by open symbols - P-flow detaches

about four times as many drops as C-flow.

The relationship between the drop size and the main channel’s Reynolds number,

capillary number and wall shear rate is depicted in Fig. 5.7. For C-flow, the drop

size decreases approximately exponentially with Re, Ca and �̇w at the same rate, the

index of the power law being about �0.744. This value is close to the power law

index obtained by Feigl et al. [103] i.e. �0.8. The geometric paramters used in the

work of Feigl et al. [103] and the current work are the same, except that Feigl et

al. [103] considered a Newtonian-Newtonian fluid system. Also, it could be inferred

from Fig. 5.7(iii) that for a given wall shear rate, the drop size produced in P-flow is
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Figure 5.5: Influence of flow type on droplet sizes. Vc is the average
velocity for both flow types; The average velocity of the dispersed phase,Vd =
0.0011m/s, ⌘c = 0.106 Pa·s, ⌘d = 1.202 Pa·s and � = 0.0415N/m. On
the horizontal axis, the droplet size, d, is normalized by the width of the
dispersed phase channel, D. The error bars indicate the standard deviation
from the mean size, computed from n = 5 droplets formed in the channel.

larger than that in C-flow.

5.4 Influence of interfacial tension

Interfacial tension plays a significant role in chemical processes that involves the

mixture of two or more immiscible fluids. For example, it influences the likelihood

of phases to detach in the production of emulsions. It is also invaluable in the case

of flooding during oil production. The use of emulsifiers to reduce interfacial tension

aids in assembling of the organic phase after being inundated with water. To account

for the e↵ect of interfacial tension on droplet size and formation mechanism, di↵erent
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Figure 5.6: Evolution of shear rate at the point,(�1.84 ⇥ 10�5m, 4.75 ⇥
10�5m, 0) , just upstream the t-junction. Open symbols indicate the time
when droplet detachment occurs.

cases were set up with the parameters kept fixed as the base case while the interfacial

tension coe�cient was varied from 0.02N/m to 0.0415N/m for both P-flow and C-

flow.

The e↵ect of interfacial tension on the size of droplet is depicted in Fig. 5.8. For a

fixed average imposed velocity of the continuous phase, vc, a direct relationship is

seen between the drop size and interfacial tension. Droplet sizes smaller than the

width of the dispersed phase channel were obtained at high vc for � = 0.02N/m and
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Figure 5.7: Drop size as a function of (i) Capillary number (ii) Reynolds
number (iii) Wall shear rate. The dotted lines in each figure represent the
line of best fit for each flow. The slopes of the blue and red dotted lines in
(i), (ii) and (iii) are �0.827 and �0.744, �0.834 and �0.744, and �0.826
and �0.744 respectively.
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Figure 5.8: E↵ect of interfacial tension on drop size (i) P-flow (ii) C-
flow. The symbols (⌅, • ) and (⇤, �) connotes dripping and jetting regime
respectively.

The interfacial tension had a significant e↵ect on droplet detachment behaviour. Two

pinch-o↵ regimes were observed as the interfacial tension was varied; dripping regime,

where drops were generated at the tip of the pore channel and jetting regime, where

there is an incomplete draw back of the neck after droplet pinch o↵ from the tip
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Figure 5.9: Log-log plot of drop size against capillary number (a) P-flow
(b) C-flow.

of the filament. For the case with � = 0.0415N/m (base case), all droplets were

formed in the dripping regime. With a reduced interfacial tension i.e. � = 0.03N/m

and 0.02N/m, a transition from jetting to dripping was seen as the cross-flow shear

increased. Although not shown in Fig. 5.8, we observe that the critical average

velocity of the continuous phase, vc, at which the transition occurred is greater when
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� = 0.02N/m. The log-log plot of drop size against the capillary number for P-flow

and C-flow is compared in Fig. 5.9. We observe in Fig. 5.9 that the predictions from

C-flow appear to match a power law better than P-flow. The slopes of the lines of

best fit for P-flow and C-flow reported in (a) and (b) are �0.7455(�2 = 86.35) and

�0.6932(�2 = 60.50) respectively. Fig. 5.10 compares the snapshot of the volume

fraction field when vc = 0.07m/s for � = 0.0415N/m and � = 0.02N/m immediately

after droplet detaches from the parent source. As shown, dripping and jetting is seen

in � = 0.0415N/m and � = 0.02N/m respectively. To gain a deeper understanding

of this transition, we focus on the mechanism of drop formation in a T-junction.

Before droplets are created, the tip of the dispersed phase fluid intrudes into the main

channel, and then the tip grows under the balance of interfacial tension, shearing force

and the pressure drop between the front and rear of the emerging droplet. Reducing

the interfacial tension beyond a critical number results in the inertial force of the fluid

emerging from the injection source exceeding the interfacial tension force, leading to

a transition to jetting behavior. The jetting behavior can also be explained in general

terms by the competition of di↵erent time scales. When the pinch-o↵ time scale is

longer than the time scale to form a blob of the dispersed phase, the jetting behavior

is seen.

The impact of interfacial tension on the monodispersity of droplets formed was also

considered in this study. Fig. 5.8 shows the standard error based on the size of the first

five droplets formed in the microchannel. As discussed in the previous paragraph,
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Figure 5.10: Transition from jetting to dripping as interfacial tension in-
creases in P-flow. (i) � = 0.02N/m (ii) � = 0.0415N/m

the droplet formation mechanism changes as � is varied. When � = 0.0415N/m,

all droplets formed showed dripping behavior for the ranges of vc considered and

monodispersity was high. However, as � reduced to 0.03N/m and 0.02N/m, both

dripping and jetting behavior was seen. Although the monodispersity is high in the

dripping regime for all cases, even though small secondary drops may appear (as

shown in Fig. 5.11, � = 0.02N/m ), this worsened as � is reduced in the jetting

regime. In P-flow, the maximum coe�cient of variation, CVmax, based on 5 detached

droplets for � = 0.0415, 0.03 and 0.02N/m was 2.5%, 3.1% and 7.2% respectively while

in C-flow, CVmax for � = 0.0415, 0.03 and 0.02 N/m were obtained as 0.93%, 2.83%

and 4.67% respectively. At a fixed wall shear rate, the droplets generated in C-flow

were thus found to be more monodisperse.
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Satellite droplets are drops formed along with the primary drop as a result of the non-

linear behavior of the fluid motion near the pinch-o↵ point [107], hence also known

as secondary droplets. In many applications, the occurrence of satellite droplets is an

undesirable phenomena. With the same test cases, the formation of satellite drops was

seen at high velocity (vc = 0.25m/s) for � = 0.02N/m and 0.03N/m only in the P-flow

but not in C-flow. This corresponds to a fixed Rec = 1.13, and Cac = 1.33 and 0.71

respectively. For � = 0.02N/m, satellite droplets were formed immediately after every

primary drop generated at the T-junction. On the other hand, for � = 0.03N/m, the

first secondary droplet was formed after several primary drop had been formed and

this was at t = 0.19s. Fig. 5.11 compares the droplet generation process for three

cases with the same parameters but only di↵ering in interfacial tension. For the top,

� = 0.02N/m, the middle, � = 0.03N/m and the bottom, � = 0.0415N/m. Fig. 5.12

shows a zoomed image illustrating the mesh resolution around a newly formed satellite

drop. The number of cells in satellite drop indicated that this drop is not a numeric

artifact. The Weber number of the dispersed phase, Wed, for the cases shown in

Fig. 5.11 were O(10�6). Hence the inertia force from the dispersed phase could be

neglected. It can be inferred that reducing interfacial tension precipitates satellite

droplet formation and this occurs above a critical Cac.
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Figure 5.11: Satellite droplet formation in P-flow. Top: � = 0.02N/m,
Middle: � = 0.03N/m, Bottom: � = 0.0415N/m.

Figure 5.12: Zoomed image of satellite drop for P-flow with � = 0.02N/m.
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5.5 Influence of elasticity

In this section, the e↵ect of elasticity on droplet size, detachment and filament dy-

namics is investigated. The elasticity, which was measured via the Deborah number,

was raised by increasing the relaxation time, �, while keeping the average inlet veloc-

ity of the dispersed phase, vd, fixed. The relaxation time was varied between 0s and

0.01s for each fixed vc as in the base case.

The snapshot shown in Fig. 5.13 depicts the droplet formation process in a P-flow

for two cases with similar parameters but di↵ered only in the amount of elasticity

- a Newtonian dispersed phase (N) and a viscoelastic dispersed phase (V). As both

fluids enter the continuous phase stream, droplet pinch-o↵ is seen to occur further

downstream in (N) and thus has a longer filament. When the droplet detaches,

the front of the Newtonian fluid retracts to a position further downstream than the

viscoelastic fluid. Also seen in Fig. 5.13 is that the interface at the pinch-o↵ point

has higher curvature in (V) than (N).

At low shear rates, the viscoelastic fluid had similar behavior to the Newtonian;

increasing � appears to have no e↵ect on the drop size. On increasing vc, the e↵ect

of elasticity heightened. Fig. 5.14 is a plot of drop size as a function of relaxation

time for a case with low velocity (vc = 0.07m/s) and another with high velocity
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Figure 5.13: The e↵ect of elasticity in the droplet generation process at
a fixed dispersed phase flow rate (vd = 0.0011m/s), viscosity ratio, ⌘d/⌘c =
11.34 and vc/vd = 181.8. (i) Newtonian (Dec = 0) (ii) Viscoelastic (Dec =
12).

(vc = 0.2m/s). A slight decrease in drop size is seen for the case with high vc as

� increases. Husny and Cooper-White [64] studied the influence of elasticity on the

pinch-o↵ dynamics and size of droplet formed within a T-junction geometry, using

silicone oil as the continuous phase and both a Newtonian and Boger fluid as the

dispersed phase. They reported that the presence of elasticity had no e↵ect on the

droplet formation time and concluded that although elasticity had a strong impact

on the necking behavior of the injection source, its e↵ect on the resultant droplet size

is minimal.

Finally, we investigate the growth pattern of the filament. All calculations were taken

after the first droplet had detached from the injection source. The evolution of the
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Figure 5.14: Droplet size as a function of relaxation time (elasticity) in
P-flow. The e↵ect of elasticity becomes more pronounced as vc increases.

dispersed phase front (or filament length) for di↵erent relaxation times at a low and

high vc is delineated in Fig. 5.15. The increase in sparsity of the symbols as time

proceeds indicates the non-linearity of fluid motion close to time of breakup. The

growth rate was found to be almost the same for all cases. In particular, when vc is

low, elasticity does not appear to have any e↵ect on the growth rate of the filament.

Although, the drop formation time reduces as elasticity increases.
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Figure 5.15: E↵ect of elasticity on droplet growth dynamics. (i) vc =
0.07m/s (low shear) (ii) vc = 0.2m/s (high shear).
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5.6 Comparisons between viscoelasticInterFoam

and clsVeInterDymFoam solver

In this section, we explore the di↵erences in the prediction of drop sizes

by the old solver, viscoelasticInterFoam, and the newly developed solver,

clsVeInterDymFoam, for the P-flow case. With the new solver, the curvature is now

computed using the level-set method in addition to refining the mesh automatically

in regions where the volume fraction field, �, falls between 0.01 and 0.99. The same

fluid parameters as for the previous sections were used for continuous and dispersed

phase for all cases in this section. Details of the material properties for each phase

can be found in Table 5.1. Also, the initial and boundary conditions were no di↵erent

from the case with H = 500µm (see section 5.1). Next, clsVeInterDymFoam was

used to simulate droplet formation in a similar T-junction with the same width for

the dispersed phase inlet, D = 50µm, but a smaller channel height, H = 100µm. The

range of values for vc/vd, Rec, Cac, Dec, Ded and �̇w can be found in Table 5.2.

The current case has a base mesh with size, 4x/D = 0.08. Using two levels of

refinement, the size of the smallest cell i.e. around the interface is given by 4x/D =

0.02. A summary of the parameter settings for dynamic mesh refinement used with

all cases is outlined in Fig. 5.16. For a smooth run of this setup, a summary of
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the settings used for the linear solvers (in PISO mode) is delineated in Fig. 5.17.

A detailed explanation of what each keyword in Figs. 5.16 and 5.17 connote can be

found in the previous chapter.

Figure 5.16: Summary of dynamic mesh parameters for P-flow case.
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Figure 5.17: Summary of linear solver settings for P-flow case.
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A comparison of the influence of interfacial tension on drop size using

viscoelasticInterFoam and clsVeInterDymFoam is illustrated in Fig. 5.18. The

graph obtained using both solvers are qualitatively similar. For each velocity ratio,

the drop size increases as interfacial tension increases. For most cases, the prediction

of drop sizes by clsVeInterDymFoam is greater than that of viscoelasticInterFoam.

Figure 5.18: E↵ect of interfacial tension on drop size for P-flow:
(old)viscoelasticInterFoam and (new)clsVeInterDymFoam .

Figure 5.19 compares the drop size against wall shear rate as obtained by the old and

new solver. Each plot was created for three cases: (a) � = 0.02N/m, (b) � = 0.03N/m

and (c) � = 0.0415N/m. In all cases, the drop size predicted by both solver look

qualitatively similar. However, the drop size prediction of the new solver is slightly
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larger than that of the old solver in most cases.

The log-log plot of drop size against the capillary number for the two solvers is com-

pared in Fig. 5.20. For both solvers, the curves for � = 0.03N/m and � = 0.0415N/m

almost match. Also seen in Fig. 5.20 is that the predictions from clsVeInterDymFoam

appear to match a power law better than viscoelasticInterFoam. The slopes of

the lines of best fit for viscoelasticInterFoam and clsVeInterDymFoam reported

in (a) and (b) are �0.7455(�2 = 86.35) and �0.7373(�2 = 30.34) respectively.
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Figure 5.19: Comparison of drop size against wall shear rate using
viscoelasticInterFoam (Old) and clsVeInterDymFoam (New) solver. (a)
� = 0.02N/m (b) � = 0.03N/m (c) � = 0.0415N/m.
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Figure 5.20: Log-log plot of drop size against capillary number using (a)
viscoelasticInterFoam (Old) and (b) clsVeInterDymFoam (New) solver.
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Figures 5.21 and 5.22 are selective snapshots of the droplet formation processes when

vc/vd ⇡ 45.45 and vc/vd ⇡ 227.27 respectively. The detachment behavior seen for

all simulation cases were not all the same for both solvers. Jetting behavior for

viscoelasticInterFoam still remained jetting with clsVeInterDymFoam but drip-

ping behavior seen in viscoelasticInterFoam for large vc changed when ran with

clsVeInterDymFoam. For example, Fig. 5.23 compares the formation mechanism for

the case with velocity ratio, vc/vd = 181.82 and interfacial tension, � = 0.0415N/m.

Not only is the size of drop formed with clsVeInterDymFoam greater, the detachment

of droplets is in the transition regime for clsVeInterDymFoam while it shows dripping

with viscoelasticInterFoam. The reason for the di↵erences is not known.

Of particular interest in this study was to determine if the satellite droplet which

was obtained using viscoelasticInterFoam (see Fig. 5.11) could also be repro-

duced using clsVeInterDymFoam. As shown in Fig. 5.24, satellite droplets was

also generated in a similar case ran with clsVeInterDymFoam. We note, however,

that the satellite droplet were not formed in a regular fashion as obtained with

viscoelasticInterFoam.
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Figure 5.21: Droplet formation process in a T-junction using
clsVeInterDymFoam for vc/vd ⇡ 45.45,� = 0.02N/m. (a) t = 0.62s (b)
t = 0.76s (c) t = 0.82s. The size of the smallest cell i.e. around the interface
is given by 4x/D = 0.02.
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Figure 5.22: Droplet formation process in a T-junction using
clsVeInterDymFoam for vc/vd ⇡ 227.27, � = 0.0415N/m. (a) t = 0s (b)
t = 0.1s (c) t = 0.2 s
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Figure 5.23: Comparison of droplet formation for the case,
vc/vd ⇡ 181.82, � = 0.0415N/m (a) viscoelasticInterFoam (b)
clsVeInterDymFoam.

Figure 5.24: Formation of satellite droplet for the case, vc/vd ⇡
227.27, � = 0.02N/m using clsVeInterDymFoam.
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5.7 Influence of channel height

In this section, we study the e↵ect of reducing the channel height on drop size and

detachment behavior while keeping other parameters fixed. In addition, we also ex-

amined, with the reduced channel height, the e↵ect of elasticity on droplet formation

mechanism. All simulations were ran using clsVeInterDymFoam.

Figure 5.25 compares the graph of drop size against velocity ratio for two channel

heights, H = 500µm and 100µm. For the case when H/D = 2 (H = 100µm and D =

50µm), the left end of the curve relates to the lowest vc for which drop detachment

occurs in the main channel. In other words, jetting with no detachment was seen

at lower vc, as shown in Fig. 5.27. The right end coincides with the vc above which

iterative convergence could not be achieved (Dec = 15). Dripping behavior was seen

when the velocity ratio, vc/vd is 45.45 and 63.64 while jetting behavior was seen when

vc/vd is 81.82 and 90.91.

We observe from Fig. 5.25 and 5.28 that for a given vc, the size of droplets generated

in the main channel increases as the channel height, H, increases. The reason is

evident from Fig. 5.26 where we observe that the droplet detachment process in the

smaller channel is subjected to a higher shear rate at a given vc. Consequently, the

drops don’t have enough time to grow and they detach earlier.
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Figure 5.25: Comparison of drop sizes as a function of velocity ratio be-
tween the cases with channel height, H = 500µm and 100µm.

Figure 5.26: Comparison of drop sizes as a function of wall shear rate
between the cases with channel height, H = 500µm and 100µm.
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Figure 5.27: Parallel flow for vc/vd ⇡ 27.27,� = 0.0415N/m.

Figure 5.28: Comparison of drop size for P-flow; vc/vd ⇡ 90.91,� =
0.0415N/m. (a) H/D = 2 (b) H/D = 10.
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The influence of elasticity on drop size was also investigated. The elasticity of the

dispersed phase was raised by increasing the relaxation time, �. For the Newtonian

case, � = 0. As shown in Figs. 5.29 and 5.30, increasing the elasticity of the dispersed

phase resulted in an increase in size of droplet formed in the main channel. We also

noticed a stronger dependence of droplet size on elasticity as the average velocity of

the continuous phase, vc, is increased. A di↵erent behavior was observed for the case

when H = 500µm - a minimal reduction in drop size was seen as elasticity increased.

Figure 5.29: E↵ect of elasticity on drop size for P-flow (H = 100µm).

The droplet generation process is also di↵erent as elasticity of dispersed phase is

increased. This behavior is clearly delineated in Fig. 5.30. We compare the droplet

formation process for a Newtonian dispersed phase and a viscoelastic dispersed phase.

The droplet pinch-o↵ is seen to occur further downstream for the Newtonian case than

the viscoelastic case.
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Figure 5.30: E↵ect of elasticity on droplet formation; vc/vd = 90.91. (a)
Dispersed phase is Newtonian (Dec = 0) (b) Dispersed phase is viscoelastic
(Dec = 15).

To obtain a clearer understanding on the role elasticity plays on final drop size, we

examine the polymer tensile stress, ⌧yy, just before breakup. This is clearly depicted

in Fig. 5.31. The highest value of ⌧yy is achieved in the neck region. The major role

is to slow down the drop detachment process. This case is analogous to the visco-

elasto-capillary thinning and breakup behavior of a polymeric thread where it has

been shown that the detachment of the thread was delayed as a result of increased

tensile stress within the neck neighborhood [108]. This gives the drop extra time to

expand from taking in fluid through the neck.
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Figure 5.31: Polymeric tensile stress ⌧yy just before drop detachment (t =
0.18s).

5.8 Conclusions

In this work, the influence of imposed channel flow, channel height, interfacial tension

and elasticity on drop detachment and size was studied in a microfluidic T-junction.

The rheology of the viscoelastic fluid was modeled using the Giesekus model.

A direct relationship was found between the capillary number and drop size in both

P-flow and C-flow. In particular, for a given wall shear rate, the size of droplets gen-

erated in P-flow was found to be larger than that in C-flow. The interfacial tension

was found to have a strong e↵ect on the droplet formation mechanisms. Within the

range of parameters used in this study, both jetting and dripping was seen. Reducing

interfacial tension resulted in a decrease in drop size which is expected since reduc-

ing interfacial tension results in a higher Ca. However, when it is reduced beyond a
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critical value satellite droplets are formed at high shear rate. The existence of satel-

lite droplets results in increasing the polydispersity of droplets and in cases where

they merge with primary droplets reduce the mixing precision in applications. The

monodispersity of droplets was found to be strongly influenced by interfacial tension.

Also, its e↵ect on the two types of flows considered in this study - P-flow and C-

flow - was di↵erent. For a given constant interfacial tension, C-flow was found to

produce more uniformly-sized droplets than P-flow with coe�cients of variation less

than 4.7%. The e↵ect of elasticity was insignificant until above a critical continuous

phase flow rate where a minimal reduction in drop size was seen as elasticity increased

for H = 500µm. With a reduced channel height to H = 100µm, we observed that

increasing elasticity resulted in an increase in drop size. This e↵ect became more

pronounced as the average velocity of the continuous phase increased - for a fixed

Dec, a higher vc produces larger droplets.

All simulation cases were scheduled to end only after five or more drops had detached

from the pore channel, after which the average is taken and reported. Hence the run

time for each case was not the same. For example, the run time for the case with

vc = 0.25m/s is smaller than the run time for the case vc = 0.05m/s. This holds for

both solvers. In particular, using the solver viscoelasticInterFoam on 8 processors,

it took about 3 and a half days for the case vc = 0.25m/s and 5 days for the case vc =

0.05m/s. On the other hand, clsVeInterDymFoam on 5 processors spent about 3 days

on the case vc = 0.25m/s to complete and about 5 days on the case vc = 0.05m/s. A
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comparison of the convergence plots for pressure and stress fields between the solvers,

viscoelasticInterFoam and clsVeInterDymFoam was also made and is shown in

Appendix G. The initial residuals of viscoelasticInterFoam for the pressure and

stress fields was found to be lower than that of clsVeInterDymFoam.
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Chapter 6

Summary and Future Work

6.1 Summary

The aims of this thesis were to: (1) develop an improved two-phase flow solver for

viscoelastic-Newtonian fluid systems; (2) test the improved solver on a series of test

problems; and (3) use the improved solver to investigate the formation and detach-

ment of viscoelastic drops in a T-shaped microchannel.

This work began by presenting the conservation laws together with the stress con-

stitutive equation. A description of the finite volume discretization of these partial

di↵erential equations was outlined. For a more accurate calculation of the curvature

at the material interface, the Volume of Fluid method was coupled with the level
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set method. In addition, fourth-order least squares method was employed for the

discretization of the gradient term in the reinitialization equation of the level set

function. A description of the adaptive mesh refinement procedure was also given.

A new solver, clsVeInterDymFoam, has been developed based on the code,

viscoelasticInterFoam of Favero [26] and the 2D-planar and axisymmetric

AMR libraries of Baniabedalruhman [27]. The robustness and accuracy of

clsVeInterDymFoam was investigated using the following benchmark cases: Two di-

mensional drop under static conditions; Drop deformation in simple shear flow for

the cases where the drop is Newtonian and the continuous phase is viscoelastic, and

vice versa and Rise of a Newtonian drop in a Giesekus fluid. The method was further

validated by comparing simulation predictions of drop formation in a T-junction to

results from experimental studies. The study revealed that clsVeInterDymFoam is su-

perior to viscoelasticInterFoam in the static drop problem analysis. On enabling

the dynamic mesh functionality of clsVeInterDymFoam for the drop deformation in

shear flow and rising drop problem, a significant saving in grid size and computation

time was observed for the cases with dynamic mesh in comparison to similar test cases

ran with a static mesh. In addition, a good qualitative agreement was found for the

drop formation in a T-junction case between numerical results and their experimental

counterpart.

Finally, the formation and detachment of viscoelastic drops in a Newtonian matrix in
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a T-junction was investigated. In particular, the role of imposed flow type, channel

height, wall shear rate, interfacial tension and elasticity on formation process of vis-

coelastic droplets in a Newtonian fluid was critically examined. For both P-flow and

C-flow, an increase in the capillary number resulted in a decrease in drop size. For a

given wall shear rate, we found that the size of droplets generated in P-flow was found

to be larger than that in C-flow. The e↵ect of elasticity was insignificant until above

a critical continuous phase flow rate where a minimal reduction in drop size was seen

as elasticity increased. On reducing the channel height, an increase in elasticity was

accompanied by an increase in drop size. This e↵ect became more pronounced as

the average velocity of the continuous phase increased - for a fixed Dec, a higher vc

produces larger droplets.

6.2 Future work

For a more accurate reproduction of droplet formation process in a T-shaped mi-

crochannel, it would be useful to conduct the numerical simulations in three-

dimensions even though this would demand more CPU time.

The results obtained with clsVeInterDymFoam and viscoelasticInterDymFoam

were di↵erent: the detachment behavior and the size of droplet obtained in all

simulation cases were not all the same for both solvers e.g. jetting behavior for
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viscoelasticInterFoam still remained jetting with clsVeInterDymFoam but drip-

ping behavior seen in viscoelasticInterFoam for large vc changed when ran with

clsVeInterDymFoam. The reason for these di↵erences is not known and further re-

search is needed to investigate the rationale behind these di↵erences.
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P. H.; Boom, R. M. Colloids and Surfaces A: Physicochemical and Engineering

Aspects 2005, 266, 106–116.
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[74] Guénette, R.; Fortin, M. Journal of non-newtonian fluid mechanics 1995, 60(1),

27–52.

172



[75] King, R. C.; Apelian, M. R.; Armstrong, R. C.; Brown, R. A. Journal of Non-

Newtonian Fluid Mechanics 1988, 29, 147–216.

[76] Xue, S.-C.; Phan-Thien, N.; Tanner, R. Journal of Non-Newtonian Fluid Me-

chanics 1995, 59(2), 191–213.

[77] Phillips, T.; Williams, A. Journal of Non-Newtonian Fluid Mechanics 1999,

87(2), 215–246.

[78] Shonibare, O.; Feigl, K.; Tanner, F. ILASS Americas 27th Annual Conference

on Liquid Atomization and Spray Systems 2015.

[79] Perera, M.; Walters, K. Journal of Non-Newtonian Fluid Mechanics 1977, 2(1),

49–81.

[80] Rajagopalan, D.; Armstrong, R. C.; Brown, R. A. Journal of Non-Newtonian

Fluid Mechanics 1990, 36, 159–192.

[81] Oliveira, P.; Pinho, F. T. d.; Pinto, G. Journal of Non-Newtonian Fluid Me-

chanics 1998, 79(1), 1–43.

[82] Patankar, S. V.; Spalding, D. B. International journal of heat and mass transfer

1972, 15(10), 1787–1806.

[83] Rhie, C.; Chow, W. AIAA journal 1983, 21(11), 1525–1532.

173



[84] Jasak, H.; Weller, H. G. Interface tracking capabilities of the inter-gamma dif-

ferencing scheme Technical report, Department of Mechanical Engineering, Im-

perial College of Science, Technology and Medicine, 1995.

[85] Sussman, M.; Smereka, P.; Osher, S. Journal of Computational physics 1994,

114(1), 146–159.

[86] Albadawi, A.; Donoghue, D.; Robinson, A.; Murray, D.; Delaure, Y. Interna-

tional Journal of Multiphase Flow 2013, 53, 11–28.
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Olabanji Shonibare <oyshonib@mtu.edu>

Seeking permission to use a figure from a paper 

PERMISSIONS <permissions@asce.org> Tue, Sep 27, 2016 at 3:08 PM

To: Olabanji Shonibare <oyshonib@mtu.edu>

Dear Olabanji,

 

Permission is granted for you to reuse on figure from “Forma�on of Uniform Plugs and Monodispersed

Droplets for Viscoelas�c Fluid Flow in Microchannels” for your thesis.

 

A full credit line must be added to the material being reprinted. For reuse in non‐ASCE publica�ons, add

the words "With permission from ASCE" to your source cita�on.  For Intranet pos�ng, add the following

addi�onal no�ce: "This material may be downloaded for personal use only. Any other use requires prior

permission of the American Society of Civil Engineers.”

 

Regards,

 

Joann

 

Joann Fogleson

Manager, Product and Subscription Services

American Society of Civil Engineers

1801 Alexander Bell Drive

Reston, VA  20191

 

PERMISSIONS@asce.org

 

7032956112

 

E‐mail: jfogleson@asce.org

Internet: www.asce.org/pubs  |  www.ascelibrary.org | http://ascelibrary.org/page/rightsrequests

 

A full credit line must be added to the material being reprinted. For reuse in nonASCE publications, add the words "With permission

from ASCE" to your source citation.  For Intranet posting, add the following additional notice: "This material may be downloaded for
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personal use only. Any other use requires prior permission of the American Society of Civil Engineers.”

 

Each license is unique, covering only the terms and conditions specified in it. Even if you have obtained a license for certain ASCE

copyrighted content, you will need to obtain another license if you plan to reuse that content outside the terms of the existing license.

For example: If you already have a license to reuse a figure in a journal, you still need a new license to use the same figure in a

magazine. You need separate license for each edition.

 

Authors may post the final draft of their work on open, unrestricted Internet sites or deposit it in an institutional repository when the

draft contains a link to the bibliographic record of the published version in the ASCE Library or Civil Engineering Database. "Final

draft" means the version submitted to ASCE after peer review and prior to copyediting or other ASCE production activities; it does not

include the copyedited version, the page proof, or

a PDF of the published version.

 

For more information on how an author may reuse their own material, please view: http://ascelibrary.org/page/

informationforasceauthorsreusingyourownmaterial

 

 

 

From: Olabanji Shonibare [mailto:oyshonib@mtu.edu]  

Sent: Tuesday, September 27, 2016 12:32 PM 

To: PERMISSIONS <permissions@asce.org> 

Subject: Seeking permission to use a figure from a paper

[Quoted text hidden]

This email has been scanned for email related threats and delivered safely by Mimecast. 

For more information please visit http://www.mimecast.com
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Appendix F

Code Documentation

1. The code below was written to print the front of a filament for each time step.

Listing F.1: filament

#!/bin/bash

# prints the evolution of the filament length
# Usage: filament startTime endTime timeStep
#
#
#should be run in caseDir/surfaces

#Usage: full details
#1. edit sampleDict to print xy -plane for alpha
#2. run sample
#3. cd surfaces
#4. run the application , filament
#5. It prints result to a file called filamentR

if [ " 1" == "-h" ]; then
echo "Usage: filament startTime endTime  -

timeStep "
exit 0
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fi

rm -rf filamentR

#Algorithm

#1. accept arguments
startTime= 1
endTime= 2
step= 3

#2. determine the x points to use

#print the first field (x-cordinates) > 0, sort  -
and print only unique lines

#xPts: positive x coordinates
cd 0 #any directory is fine for base case
awk 1 >= 20e-6 {print 1}  -

alpha_constantPlane.raw | sort
-g | uniq > xPts

#assign contents of the xPts file into array , xPts
xPts=( cat "xPts" )

cd .. #go back to the surfaceDir

#iterate time directories

#no of time directories
total= (echo "(( endTime - startTime)/ step)+1" |  -

bc)

t=1
time= startTime
while [ t -le total ]
do
cd time
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##aim: get x-location of filament front

##search the alpa_constantPlane.raw file ,
#if you see a line that satisfies alpha[x] >= 0.5
# continue to the next xpoint
#else
# break and report time and the previous x in  -

the array

#array index
counter=-1

for x in " {xPts[@]}"
do
counter= (( counter +1))

search= (awk -v var= x 1==var && 4 >=0.5 {print -
"true"; exit}

alpha_constantPlane.raw)

if [[ search = "true" ]]; then
continue
else
prevCounter= ((counter -1))
echo -e " time \t {xPts[ prevCounter ]}" >> ../ -

filamentR
break
##just in case of counter problems , use this
#prevCounter= ((counter -1))
#if [ prevCounter -lt 0 ]; then
# echo -e "0.2 \t {xPts [0]}"
# exit 0
#else
# echo -e "0.2 \t {xPts[ prevCounter ]}"
# exit 0
#fi
fi

done
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cd .. #move back to surfaceDir

#increment time and remove trailing zeros
time= (echo " time step" | awk {printf "%f", 1+ -

2} | awk
sub("\\.*0+ ","") )

#update counter
t= ((t+1))
done

echo "done!"

2. Modified the stress equation by re-arranging its terms and multiplying by � to

also include the case when the relaxation time, � equals zero.

Listing F.2: Giesekus.H

class Giesekus
:
public viscoelasticLaw
{

//- Construct from components
Giesekus
(
const word& name ,
const volScalarField& alpha ,
const volVectorField& U,
const surfaceScalarField& phi ,
const dictionary& dict
);

// Member Functions
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//- Return the viscoelastic stress tensor
virtual tmp <volSymmTensorField > tau() const
{
return tau_;
}

//- Return the coupling term for the momentum  -
equation

virtual tmp <fvVectorMatrix > divTau(volScalarField& -
alpha ,

volVectorField& U) const;

//- Correct the viscoelastic stress
virtual void correct ();
};

tmp <fvVectorMatrix > Giesekus :: divTau( -
volScalarField& alpha ,

volVectorField& U) const
{

volScalarField alpha1f =
min(max(alpha , scalar (0)), scalar (1));

volScalarField etaS =
alpha1f*etaS1_ + (scalar (1) - alpha1f)*etaS2_;

volScalarField etaP =
alpha1f*etaP1_ + (scalar (1) - alpha1f)*etaP2_;

return
(
fvc::div(tau_ , "div(tau)")
+ fvm:: laplacian( etaS + etaP , U, "laplacian(etaS -

+etaP ,U)")
+ ( fvc::grad(U) & fvc::grad(etaS) )
- fvc:: laplacian(etaP , U, "laplacian(etaP ,U)")
);

}
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void Giesekus :: correct ()
{
// Velocity gradient tensor
volTensorField L = fvc::grad(U());

// Convected derivate term
volTensorField C = tau_ & L;

// Twice the rate of deformation tensor
volSymmTensorField twoD = twoSymm(L);

// Two phase transport properties treatment
volScalarField alpha1f =
min(max(alpha (), scalar (0)), scalar (1));

volScalarField lambda =
alpha1f*lambda1_ + (scalar (1) - alpha1f)*lambda2_;

volScalarField etaP =
alpha1f*etaP1_ + (scalar (1) - alpha1f)*etaP2_;

volScalarField alpha =
alpha1f*alpha1_ + (scalar (1) - alpha1f)*alpha2_;

// Stress transport equation
tmp <fvSymmTensorMatrix > tauEqn
(
/*
Multiplied through by lambda to
avoid divison by zero
*/
lambda * //OS
(
fvm::ddt(tau_)
+ fvm::div(phi(), tau_)
)
==
etaP * twoD
- fvm::Sp( scalar (1), tau_ )
+ lambda *
(
twoSymm( C )
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- (alpha / etaP) * ( tau_ & tau_)
)
);

tauEqn ().relax ();
solve(tauEqn);

}

// * * * * * * * * * * * * * * * * * * * * * * * * -
* * * * * * * * * * * * * //

} // End namespace Foam

3. Coupling level-set method with solver:

† Created a new folder for easy adaptation to the libraries of solver.

† Source file modified to include the computation of surface tension force

using the level set function and also for compatibility with OF-2.3.x.

Listing F.3: UEqn.H

/*
surfaceScalarField muEff
(
"muEff",
twoPhaseProperties.muf()
+ fvc:: interpolate(rho*turbulence ->nut())
);
*/

fvVectorMatrix UEqn
(
fvm::ddt(rho , U)
+ fvm::div(rhoPhi , U)
//- fvm:: laplacian(muEff , U)
//- (fvc::grad(U) & fvc::grad(muEff))
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//- fvc::div(muEff *(fvc:: interpolate(dev(fvc -
::grad(U))) & mesh.Sf()))

- visco.divTau(alpha , U) //OS - stress  -
contribution

);

UEqn.relax ();

if (momentumPredictor)
{
solve
(
UEqn
==
fvc:: reconstruct
(
(
// fvc:: interpolate(interface.sigmaK ())*fvc -

:: snGrad(alpha1)
//OS1
sigma*fvc:: snGrad(psi)*fvc:: interpolate(C)*
fvc:: interpolate(delta)
//OS2
- ghf*fvc:: snGrad(rho)
- fvc:: snGrad(pd)
) * mesh.magSf ()
)
);
}

Listing F.4: clsVeInterDymFoam.C

//OS1
# include "mappingPsi.H"
# include "solveLSFunction.H"
# include "calcNewCurvature.H"
//OS2
/* * * * * * * * * * * * * * * * * * * * * *  -

* * * * * * * *
* * * * * * */
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Info << "\nStarting time loop\n" << endl;

while (runTime.run())
{
# include "readPISOControls.H"
# include "readTimeControls.H"
# include "CourantNo.H"
# include "setDeltaT.H"

runTime ++;

Info << "Time = " << runTime.timeName () << nl  -
<< endl;

# include "alphaEqnSubCycle.H"

//OS1
# include "mappingPsi.H"
# include "solveLSFunction.H"
# include "calcNewCurvature.H"
# include "updateFlux.H"
//OS2

# include "UEqn.H"

// --- SIMPLE loop
for (int corr =0; corr <nCorr; corr ++)
{
# include "pEqn.H"
}

// Correct stress
visco.correct ();

#include "continuityErrs.H"

p = pd + rho*gh;

if (pd.needReference ())
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{
p += dimensionedScalar
(
"p",
p.dimensions (),
pRefValue - getRefCellValue(p, pdRefCell)
);
}

strainRate =
alpha*Foam::sqrt (2.0)*mag
(
symm(fvc::grad(U))
)
+
(scalar (1) - alpha)*Foam::sqrt (2.0)*mag
(
symm(fvc::grad(U))
);

runTime.write ();

Info << "ExecutionTime = " << runTime. -
elapsedCpuTime () << " s"

<< " ClockTime = " << runTime. -
elapsedClockTime () << " s"

<< nl << endl;
}

Info << "End\n" << endl;

return (0);
}

4. AMR

† The velocity equation:

Listing F.5: UEqn.H
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fvVectorMatrix UEqn
(
fvm::ddt(rho , U)
+ fvm::div(rhoPhi , U)
//+ turbulence ->divDevRhoReff(rho , U)
//the stress contribution
- visco.divTau(alpha1 , U) //OS
==
fvOptions(rho , U)
);

UEqn.relax ();

fvOptions.constrain(UEqn);

if (pimple.momentumPredictor ())
{
solve
(
UEqn
==
fvc:: reconstruct
(
(

// mixture.surfaceTensionForce ()
fvc:: interpolate(interface.sigmaK ())*fvc:: -

snGrad(alpha1) //OS
- ghf*fvc:: snGrad(rho)
- fvc:: snGrad(p_rgh)
) * mesh.magSf ()
)
);

fvOptions.correct(U);
}

† The volume fraction equation. Replaced most of the original code in de-

fault alphaEqn.H in OF-1.6.ext with that of 2.3.x. for compatibility.
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Listing F.6: alphaEqn.H

{
word alphaScheme("div(phi ,alpha)");
word alpharScheme("div(phirb ,alpha)");

//OS1
tmp <fv::ddtScheme <scalar > > ddtAlpha
(
fv::ddtScheme <scalar >:: New
(
mesh ,
mesh.ddtScheme("ddt(alpha)")
)
);

// Set the off -centering coefficient  -
according to ddt scheme

scalar ocCoeff = 0;
if
(
isType <fv:: EulerDdtScheme <scalar > >(ddtAlpha -

())
|| isType <fv:: localEulerDdtScheme <scalar > >( -

ddtAlpha ())
)
{
ocCoeff = 0;
}
else if (isType <fv:: CrankNicolsonDdtScheme < -

scalar > >(ddtAlpha ()))
{
if (nAlphaSubCycles > 1)
{
FatalErrorIn(args.executable ())
<< "Sub -cycling is not supported "
"with the CrankNicolson ddt scheme"
<< exit(FatalError);
}

ocCoeff =
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refCast <fv:: CrankNicolsonDdtScheme <scalar > >( -
ddtAlpha ()).ocCoeff ();

}
else
{
FatalErrorIn(args.executable ())
<< "Only Euler and CrankNicolson ddt schemes  -

are supported"
<< exit(FatalError);
}

scalar cnCoeff = 1.0/(1.0 + ocCoeff);

// Standard face -flux compression coefficient
surfaceScalarField phic(interface.cAlpha ()* -

mag(phi/mesh.magSf ()));

// Add the optional isotropic compression  -
contribution

if (icAlpha > 0)
{
phic *= (1.0 - icAlpha);
phic += (interface.cAlpha ()*icAlpha)*fvc:: -

interpolate(mag(U));
}

// Do not compress interface at non -coupled  -
boundary faces

// (inlets , outlets etc.)
forAll(phic.boundaryField (), patchi)
{
fvsPatchScalarField& phicp = phic. -

boundaryField ()[patchi ];

if (! phicp.coupled ())
{
phicp == 0;
}
}

tmp <surfaceScalarField > phiCN(phi);

215



// Calculate the Crank -Nicolson off -centred  -
volumetric flux

if (ocCoeff > 0)
{
phiCN = cnCoeff*phi + (1.0 - cnCoeff)*phi. -

oldTime ();
}

if (MULESCorr)
{
fvScalarMatrix alpha1Eqn
(
#ifdef LTSSOLVE
fv:: localEulerDdtScheme <scalar >(mesh , rDeltaT -

.name()).fvmDdt(alpha1)
#else
fv:: EulerDdtScheme <scalar >(mesh).fvmDdt( -

alpha1)
#endif
+ fv:: gaussConvectionScheme <scalar >
(
mesh ,
phiCN ,
upwind <scalar >(mesh , phiCN)
).fvmDiv(phiCN , alpha1)
);

alpha1Eqn.solve ();

Info << "Phase -1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value ()
<< " Min(" << alpha1.name() << ") = " << min -

(alpha1).value ()
<< " Max(" << alpha1.name() << ") = " << max -

(alpha1).value ()
<< endl;

tmp <surfaceScalarField > tphiAlphaUD(alpha1Eqn -
.flux());

phiAlpha = tphiAlphaUD ();
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if (alphaApplyPrevCorr && tphiAlphaCorr0. -
valid ())

{
Info << "Applying the previous iteration  -

compression flux" << endl;
#ifdef LTSSOLVE
MULES :: LTScorrect(alpha1 , phiAlpha ,  -

tphiAlphaCorr0 (), 1, 0);
#else
MULES :: correct(alpha1 , phiAlpha ,  -

tphiAlphaCorr0 (), 1, 0);
#endif

phiAlpha += tphiAlphaCorr0 ();
}

// Cache the upwind -flux
tphiAlphaCorr0 = tphiAlphaUD;

alpha2 = 1.0 - alpha1;

interface.correct ();
}

for (int aCorr =0; aCorr <nAlphaCorr; aCorr ++)
{

surfaceScalarField phir(phic*interface.nHatf -
());

tmp <surfaceScalarField > tphiAlphaUn
(
fvc::flux
(
phi ,
alpha1 ,
alphaScheme
)
+ fvc::flux
(
-fvc::flux(-phir , alpha2 , alpharScheme),
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alpha1 ,
alpharScheme
)
);

if (ocCoeff > 0)
{
tphiAlphaUn =
cnCoeff*tphiAlphaUn + (1.0 - cnCoeff)* -

phiAlpha.oldTime ();
}

if (MULESCorr)
{
tmp <surfaceScalarField > tphiAlphaCorr( -

tphiAlphaUn () - phiAlpha);
volScalarField alpha10("alpha10", alpha1);

#ifdef LTSSOLVE
MULES :: LTScorrect(alpha1 , tphiAlphaUn (),  -

tphiAlphaCorr (), 1, 0);
#else
MULES :: correct(alpha1 , tphiAlphaUn (),  -

tphiAlphaCorr (), 1, 0);
#endif

if (aCorr == 0)
{
phiAlpha += tphiAlphaCorr ();
}
else
{
alpha1 = 0.5* alpha1 + 0.5* alpha10;
phiAlpha += 0.5* tphiAlphaCorr ();
}
}
else
{
phiAlpha = tphiAlphaUn;
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#ifdef LTSSOLVE
MULES :: explicitLTSSolve(alpha1 , phi , phiAlpha -

, 1, 0);
#else
MULES :: explicitSolve(alpha1 , phiCN , phiAlpha , -

1, 0);
#endif
}

alpha2 = 1.0 - alpha1;

interface.correct ();
}

if (alphaApplyPrevCorr && MULESCorr)
{
tphiAlphaCorr0 = phiAlpha - tphiAlphaCorr0;
}

if
(
word(mesh.ddtScheme("ddt(rho ,U)"))
== fv:: EulerDdtScheme <vector >:: typeName
)
{
rhoPhi = phiAlpha *(rho1 - rho2) + phiCN*rho2;
}
else
{
if (ocCoeff > 0)
{
// Computation flux of volume fraction field  -

time step
phiAlpha = (phiAlpha - (1.0 - cnCoeff)* -

phiAlpha.oldTime ())/cnCoeff;
}

//the end of the volume flux time step is  -
computed here.

rhoPhi = phiAlpha *(rho1 - rho2) + phi*rho2;
}
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Info << "Phase -1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value ()
<< " Min(" << alpha1.name() << ") = " << min -

(alpha1).value ()
<< " Max(" << alpha1.name() << ") = " << max -

(alpha1).value ()
<< endl;
}
//OS2

† Correction of the pimple corrector

Listing F.7: correctPhi.H

while (pimple.correctNonOrthogonal ())
{
fvScalarMatrix pcorrEqn
(
fvm:: laplacian(rAUf , pcorr) == fvc::div(phi)  -

divUCorr //OS1
);
//The code above was added for compatibility

pcorrEqn.setReference(pRefCell , pRefValue);
pcorrEqn.solve ();

if (pimple.finalNonOrthogonalIter ())
{
phi -= pcorrEqn.flux();
}
}

5. To account for the contact angle boundary condition, the variable below was

created for easy adaptation. This was added in 1.6-ext but wasn’t needed in

the 2.3.x version.
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Listing F.8: viscoelasticInterFoam.C

//More details about this variable can be found
//at https :// openfoamwiki.net/index.php/ -

OpenFOAM_guide
// /The_PISO_algorithm_in_OpenFOAM

//OS1
volScalarField rUA
(
IOobject
(
"(1|A(U))",
runTime.timeName (),
mesh
),
mesh ,
dimensionedScalar("rUA", dimTime , 1),
zeroGradientFvPatchScalarField :: typeName
);
//OS2
// contact angle corrected using default code for  -

easy parallelization

6. Oldroyd-B Model:

For the Oldroyb-B Model, the changes made were similar to the Giesekus Model

- the stress equation was multiplied by lambda to avoid division by zero.

Listing F.9: Oldroyd-B.C

void Oldroyd_B :: correct ()
{
// Velocity gradient tensor
volTensorField L = fvc::grad(U());

// Convected derivate term
volTensorField C = tau_ & L;

// Twice the rate of deformation tensor
volSymmTensorField twoD = twoSymm(L);
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// Two phase transport properties treatment
volScalarField alpha1f =
min(max(alpha (), scalar (0)), scalar (1));

volScalarField lambda =
alpha1f*lambda1_ + (scalar (1) - alpha1f)*lambda2_;

volScalarField etaP =
alpha1f*etaP1_ + (scalar (1) - alpha1f)*etaP2_;

// Stress transport equation
tmp <fvSymmTensorMatrix > tauEqn
(
lambda* //OS
(
fvm::ddt(tau_)
+ fvm::div(phi(),tau_)
)
==
etaP * twoD
+ lambda * twoSymm( C )
- fvm::Sp(1, tau_ )
);

tauEqn ().relax ();
solve(tauEqn);

}
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Appendix G

Some convergence plots
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Figure G.1: Initial residual of p rgh for the drop deformation in shear flow
case (mesh1) using clsVeInterDymFoam; the velocity at the upper wall is
u = 5mm/s and at the lower wall is u = �5mm/s; the continuous phase is
fluid N3 and the dispersed phase is fluid VE1.
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Figure G.2: Initial residual of ⌧xx for the drop deformation in shear flow
case (mesh1) using clsVeInterDymFoam; the velocity at the upper wall is
u = 5mm/s and at the lower wall is u = �5mm/s; the continuous phase is
fluid N3 and the dispersed phase is fluid VE1.
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Figure G.3: Initial residual of ⌧xy for the drop deformation in shear flow
case (mesh1) using clsVeInterDymFoam; the velocity at the upper wall is
u = 5mm/s and at the lower wall is u = �5mm/s; the continuous phase is
fluid N3 and the dispersed phase is fluid VE1.
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Figure G.4: Initial residual of ⌧yy for the drop deformation in shear flow
case (mesh1) using clsVeInterDymFoam; the velocity at the upper wall is
u = 5mm/s and at the lower wall is u = �5mm/s; the continuous phase is
fluid N3 and the dispersed phase is fluid VE1.
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Figure G.5: Initial residual of p rgh for the P-flow case with dynamic mesh
and H = 500µm using clsVeInterDymFoam; the average imposed velocity of
the continuous phase and dispersed phase is vc = 0.2m/s and vd = 0.0011m/s
respectively; the density of the continuous phase, ⇢c = 960kg/m3, the density
of the dispersed phase, ⇢d = 803.387kg/m3, the viscosity of the continuous
phase is ⌘c = 0.106Pa.s and the solvent and polymeric viscosity of the dis-
persed phase is ⌘s = 0.002Pa.s and ⌘p = 1.2Pa.s respectively, the relaxation
time of the dispersed phase is � = 0.005s and mobility factor of the dispersed
phase is ↵ = 0.05.
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Figure G.6: Initial residual of ⌧xx for the P-flow case with dynamic mesh
and H = 500µm using clsVeInterDymFoam; the average imposed velocity of
the continuous phase and dispersed phase is vc = 0.2m/s and vd = 0.0011m/s
respectively; the density of the continuous phase, ⇢c = 960kg/m3, the density
of the dispersed phase, ⇢d = 803.387kg/m3, the viscosity of the continuous
phase is ⌘c = 0.106Pa.s and the solvent and polymeric viscosity of the dis-
persed phase is ⌘s = 0.002Pa.s and ⌘p = 1.2Pa.s respectively, the relaxation
time of the dispersed phase is � = 0.005s and mobility factor of the dispersed
phase is ↵ = 0.05.
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Figure G.7: Initial residual of ⌧xy for the P-flow case with dynamic mesh
and H = 500µm clsVeInterDymFoam; the average imposed velocity of the
continuous phase and dispersed phase is vc = 0.2m/s and vd = 0.0011m/s re-
spectively; the density of the continuous phase, ⇢c = 960kg/m3, the density
of the dispersed phase, ⇢d = 803.387kg/m3, the viscosity of the continuous
phase is ⌘c = 0.106Pa.s and the solvent and polymeric viscosity of the dis-
persed phase is ⌘s = 0.002Pa.s and ⌘p = 1.2Pa.s respectively, the relaxation
time of the dispersed phase is � = 0.005s and mobility factor of the dispersed
phase is ↵ = 0.05.
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Figure G.8: Initial residual of ⌧yy for the P-flow case with dynamic mesh
and H = 500µm clsVeInterDymFoam; the average imposed velocity of the
continuous phase and dispersed phase is vc = 0.2m/s and vd = 0.0011m/s re-
spectively; the density of the continuous phase, ⇢c = 960kg/m3, the density
of the dispersed phase, ⇢d = 803.387kg/m3, the viscosity of the continuous
phase is ⌘c = 0.106Pa.s and the solvent and polymeric viscosity of the dis-
persed phase is ⌘s = 0.002Pa.s and ⌘p = 1.2Pa.s respectively, the relaxation
time of the dispersed phase is � = 0.005s and mobility factor of the dispersed
phase is ↵ = 0.05.

G.1 Comparison of the convergence plot between

viscoelasticInterFoam and clsVeInterDymFoam
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Figure G.9: Initial residual of p rgh for the P-flow case with H = 500µm
on (a) static mesh using viscoelasticInterFoam and (b) dynamic mesh
using clsVeInterDymFoam; the average imposed velocity of the continuous
phase and dispersed phase is vc = 0.2m/s and vd = 0.0011m/s respectively;
the density of the continuous phase, ⇢c = 960kg/m3, the density of the
dispersed phase, ⇢d = 803.387kg/m3, the viscosity of the continuous phase
is ⌘c = 0.106Pa.s and the solvent and polymeric viscosity of the dispersed
phase is ⌘s = 0.002Pa.s and ⌘p = 1.2Pa.s respectively, the relaxation time of
the dispersed phase is � = 0.005s and mobility factor of the dispersed phase
is ↵ = 0.05.
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Figure G.10: Initial residual of ⌧xy for the P-flow case with H = 500µm
on (a) static mesh using viscoelasticInterFoam and (b) dynamic mesh
using clsVeInterDymFoam; the average imposed velocity of the continuous
phase and dispersed phase is vc = 0.2m/s and vd = 0.0011m/s respectively;
the density of the continuous phase, ⇢c = 960kg/m3, the density of the
dispersed phase, ⇢d = 803.387kg/m3, the viscosity of the continuous phase
is ⌘c = 0.106Pa.s and the solvent and polymeric viscosity of the dispersed
phase is ⌘s = 0.002Pa.s and ⌘p = 1.2Pa.s respectively, the relaxation time of
the dispersed phase is � = 0.005s and mobility factor of the dispersed phase
is ↵ = 0.05.
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Figure G.11: Initial residual of ⌧xy for the P-flow case with H = 500µm
on (a) static mesh using viscoelasticInterFoam and (b) dynamic mesh
using clsVeInterDymFoam; the average imposed velocity of the continuous
phase and dispersed phase is vc = 0.2m/s and vd = 0.0011m/s respectively;
the density of the continuous phase, ⇢c = 960kg/m3, the density of the
dispersed phase, ⇢d = 803.387kg/m3, the viscosity of the continuous phase
is ⌘c = 0.106Pa.s and the solvent and polymeric viscosity of the dispersed
phase is ⌘s = 0.002Pa.s and ⌘p = 1.2Pa.s respectively, the relaxation time of
the dispersed phase is � = 0.005s and mobility factor of the dispersed phase
is ↵ = 0.05.
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Figure G.12: Initial residual of ⌧yy for the P-flow case with H = 500µm
on (a) static mesh using viscoelasticInterFoam and (b) dynamic mesh
using clsVeInterDymFoam; the average imposed velocity of the continuous
phase and dispersed phase is vc = 0.2m/s and vd = 0.0011m/s respectively;
the density of the continuous phase, ⇢c = 960kg/m3, the density of the
dispersed phase, ⇢d = 803.387kg/m3, the viscosity of the continuous phase
is ⌘c = 0.106Pa.s and the solvent and polymeric viscosity of the dispersed
phase is ⌘s = 0.002Pa.s and ⌘p = 1.2Pa.s respectively, the relaxation time of
the dispersed phase is � = 0.005s and mobility factor of the dispersed phase
is ↵ = 0.05.
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