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Abstract

Hybrid Electric Vehicles (HEVs) are used to overcome the short-range and long charg-

ing time problems of purely electric vehicles. HEVs have at least two power sources.

Therefore, the Energy Management (EM) strategy for dividing the driver requested

power between the available power sources plays an important role in achieving good

HEV performance.

This work, proposes a novel real-time EM strategy for HEVs which is named ECMS-

CESO. ECMS-CESO is based on the Equivalent Consumption Minimization Strategy

(ECMS) and is designed to Catch Energy Saving Opportunities (CESO) while op-

erating the vehicle. ECMS-CESO is an instantaneous optimal controller, i. e., it

does not require prediction of the future demanded power by the driver. Therefore,

ECMS-CESO is tractable for real-time operation.

Under certain conditions ECMS achieves the maximum fuel economy. The main

challenge in employing ECMS is the estimation of the optimal equivalence factor λ∗.

Unfortunately, λ∗ is drive-cycle dependent, i. e., it changes from driver to driver

and/or route to route. The lack of knowledge about λ∗ has been a motivation for

studying a new class of EM strategies known as Adaptive ECMS (A-ECMS). A-ECMS

yields a causal controller that calculates λ(t) at each moment t as an estimate of λ∗.

xxi



Existing A-ECMS algorithms estimate λ∗, by heuristic approaches. Here, instead of

direct estimation of λ∗, analytic bounds on λ∗ are determined which are independent

of the drive-cycle. Knowledge about the range of λ∗, can be used to adaptively set

λ(t) as performed by the ECMS-CESO algorithm.

ECMS-CESO also defines soft constraints on the battery state of charge (SOC) and

a penalty for exceeding the soft constraints. ECMS-CESO is allowed to exceed a

SOC soft constraint when an energy saving opportunity is available. ECMS-CESO is

efficient since there is no need for prediction and the intensive calculations for finding

the optimal control over the predicted horizon are not required. Simulation results

for 3 different HEVs are used to confirm the expected performance of ECMS-CESO.

This work also investigates the performance of the model predictive control with

respect to the predicated horizon length.

xxii



Chapter 1

Introduction

Unlike conventional vehicles, hybrid electric vehicles (HEVs) have more than one

energy source. The strategy for dividing the driver requested energy among the avail-

able energy sources significantly impacts the fuel economy of the HEV, [1] [2]. Many

energy management (EM) strategies have been suggested to improve the HEV fuel

economy. For instance, model predictive control (MPC) [2] [3][4][5] [6][7], equivalent

consumption minimization strategy (ECMS) [8] [9][10] [11] [12][13] [14] [15][16], dy-

namic programming (DP) [2][16][17], and rule-based control (RBC) [18][19][20] are

some of well studied EM strategies for HEVs.

Rule-based control strategies are more common for commercial vehicles than the other

EM strategies [19][21]. RBCs are easy to implement, fast for real-time applications,
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and reliable for safety concerns. However, finding efficient rules requires extensive

simulations and tests on the vehicle, which generally takes more development time

than optimal controllers [19] [22]. In addition, theoretically optimal controllers can

achieve better fuel economy in comparison with RBCs [2] [7] [12] [23].

Globally optimized control (GOC) yields the maximum fuel economy, or miles per

gallon (MPGmax). The GOC can be obtained using DP. The main challenge for im-

plementing GOC is acquiring advanced knowledge of the whole drive-cycle or Driver’s

Demanded Power PD(t) [24]. In addition, given PD, finding the optimal solution re-

quires intensive calculation, which is time-consuming. However, assuming the prob-

lem of computational time can be resolved by a powerful on-board computational

processor, the uncertainty on the predicted PD still affects the expected optimal fuel

economy [24].

MPC can yield a suboptimal solution close to MPGmax [7]. In addition, unlike

GOC, model predictive control is based on short term PD(t) prediction. Therefore,

the effect of prediction uncertainty on MPC is less severe in comparison with GOC

[24]. However, like GOC, MPC suffers from model uncertainty.

ECMS is based on the calculus of variations or Pontryagins Minimum Principle (PMP)

[9]. The main challenge for employing ECMS is estimating the optimal trajectory of

the battery equivalent factor λ∗ [10][12][23][25]. In fact, since PMP generally yields

a two point boundary value problem, the numerical solution requires an iterative

2



approach with full knowledge of PD(t) over the whole drive-cycle. For real-time

applications, such advance knowledge of PD(t) either is not available, or is subject

to uncertainty [24] [26]. Therefore, many approaches have been proposed to esti-

mate the optimal trajectory of the ECMS equivalent factor, λ∗, for causal systems

[10][11][12][13] [23] .

This work, determines the upper and lower bounds for λ∗, which can be employed

to estimate λ∗ in other applications such as adaptive ECMS (A-ECMS) [10][25].

Whereas, λ∗ depends on the drive-cycle, the proposed bounds for λ∗ are independent

of the drive-cycle, which is useful in estimating λ∗. For instance, this work develops

two types of A-ECMS algorithms based on λ∗ bounds: 1) a simple A-ECMS presented

in chapter 3, and 2) an advanced A-ECMS, i. e. EMCS-CESO, presented in chapters 4

and 5. The term CESO stands for Catch Energy Saving Opportunity, which is the

fundamental idea in deveoping ECMS-CESO. The performance of both introduced

A-ECMS algorithms are compared with another A-EMCS algorithm which has been

previously introduced in [12]. Simulation results show the introduced A-ECMS results

have comparable performance to global optimal, thanks to employing the bounds on

λ∗. ECMS-CESO has one main advantage over the simple A-ECMS developed in

chapter 3. In order to catch energy saving opportunities, soft constraints are defined

for the SOC and ECMS-CESO is allowed to exceed these soft constraints. However,

ECMS-CESO is penalized for exceeding the soft constraints. This technique improves

the performance of ECMS-CESO in terms of being robust for delivering driver’s

3



desired power. In addition, thanks to the soft constraints, ECMS-CESO is less likely

to be restricted by a depleted or full battery, which allows more flexibility in applying

optimal control actions. Furthermore, unlike the A-ECMS in [12], no speed prediction

is required for the ECMS-CESO, which makes it easier to implement and faster for

real-time applications.

This work, is organized as follows:

Chapter 2 presents a review of different control strategies for HEVs, including rule-

based control, ECMS, MPC, and DP. In addition, chapter 2 investigates the perfor-

mance of MPC with regard to the predicted time horizon of future driver’s desired

power. Simulation results are presented in section 2.4.

Chapter 3 introduces the lower and upper bounds on the ECMS optimal equivalence

factor λ∗ for parallel HEVs. It is shown that the bounds are independent of the drive-

cycle. The detailed derivation procedure for λ∗ bounds is presented in section 3.3.

To demonstrate an application of the λ∗ bounds, a simple and efficient real-time

EM strategy is introduced and simulated in section 3.5. The analytically determined

bounds are employed for developing ECMS-CESO in following chapters.

Chapter 4 introduces ECMS-CESO, the novel real-time EM strategy that is the main

contribution of this work. Section 4.2 presents the optimal control problem for par-

allel HEVs. Section 4.3, introduces ECMS-CESO and the equations for applying

4



ECMS-CESO to a parallel HEV are derived. In this section, it is also proved that

ECMS-CESO maintains the SOC limits in charge-sustaining mode. In addition, the

robustness of ECMS-CESO in terms of providing PD is discussed. Finally, in Sec-

tion 4.4, the simulation results are presented, comparing ECMS-CESO with RBC and

PMP, and an instantaneous A-ECMS.

The λ∗ bounds in chapter 3 and the ECMS-CESO algorithm in chapter 4 are for

parallel HEVs. Therefore, chapter 5 is dedicated to determining λ∗ bounds and

deriving ECMS-CESO algorithm for series HEVs. First, in section 5.3 the lower and

upper bounds on λ∗ are determined by an analytic procedure for series HEVs. In

section 5.4, ECMS-CESO is developed for series HEVs, and the adaptive equation

for estimating λ(t) is derived. In Section 5.5, it is shown ECMS-CESO maintains

the battery SOC between the desired limits. In section 5.6, the experimental setup

used for validating the HEV model is explained. Finally, simulation results on several

drivecycles are presented and discussed in section 5.7. Section 5.7 also presents a

comparison between the performances of ECMS-CESO and two other types of EM

strategies.
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Chapter 2

Effects of Time Horizon on Model

Predictive Control for Hybrid

Electric Vehicles

2.1 Introduction

1 The transportation section is the main source of global greenhouse gas emissions

and it is predicted that the demand for liquid fuel for transportation will grow even

faster than any other segment of the economy, [27]. Many technologies have been

1The material contained in this chapter is previously published: © 2015, IFAC. Published in
IFACPapersOnLine, vol. 48, no. 15, pp. 252−256

7



introduced to improve Fuel Economy (FE) and emissions of conventional vehicles.

Electric vehicles are an alternative to improve FE and emission. However, because

of current restrictions on battery technologies, the range of electric vehicles is short

and also their charging time is long. As a result, Hybrid Electric Vehicles (HEVs)

can be considered as a temporary solution to the problem. HEVs use both conven-

tional fuel and electricity to yield good range and good FE. Therefore, the energy

management or control strategy of HEVS plays an important role in improving the

FE and exhaust emissions. Control strategies can be categorized in different ways, for

example: rule-based controllers, Instantaneous Optimal Controllers (IOC), predictive

controllers, and a globally optimized controller, which are shown in Fig. 2.1. The

GOC requires the advance knowledge of DDP for the whole trip. In addition, GOC

has a large computational burden. For these reasons, GOC is practically impossible

to implement. But since GOC yields the maximum achievable FE, it is used for

evaluating the other methods.

8



Figure 2.1: A representation of different control strategies

2.2 A review on control strategies

2.2.1 Rule-based control

Rule-Based controllers are the most common controllers for HEVs produced by differ-

ent companies. These controllers are reliable, fast and easy to implement. However,

developing control rules takes time and needs extensive experimental data for a spe-

cific HEV. The rules may be defined explicitly, or in the Fuzzy domain [28] [29] [30],

9



[31] [32]). The main disadvantage of rule-based controllers is that they are not op-

timal and there is considerable room for improving performance using other control

strategies. To resolve this problem, some suggested extracting optimal rules from

GOC actions, [18, 29]. However, this method is drive-cycle dependent and extracting

optimal rules from the distribution of GOC control actions is challenging. In [18],

stochastic dynamic programming is used to make extracted rules independent of drive

cycle and in [33], an artificial neural network is trained and replaced with rules in

order to avoid the process of extracting explicit optimal rules.

2.2.2 Instantaneous optimal control (IOC)

IOC tries to find the best control actions at each moment by minimizing a cost func-

tion as shown in Fig. 2.1. For example, [9] introduced the Equivalent Consumption

Minimization Strategy (ECMS) with the cost function:

J(~u) = argmin
~u

{ṁfuel(~x, ~u) + λ(t)Pbat,C(~x, ~u)} (2.1)

where ṁfuel is the rate of fuel consumption (g/s), Pbat,C is the battery chemical power

(W), and λ is the penalty factor for using the battery power. ECMS states that using

battery power Pbat,C at any moment must be compensated by fuel in the future to
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charge the battery, so a punishment term for using battery power should be included

in the cost function, [9]. The cost function in Eq.2.1 is shown to optimize the energy

management in HEVs, [8].

2.2.3 Model Predictive Control (MPC)

MPC is a branch of predictive control techniques that tries to find the best control

actions by simulating (modeling) the plant on a predictive time horizon. As shown

in Fig. 2.1, at the present moment t0, MPC predicts the future reference inputs of

the system for T seconds. MPC then determines the best control actions ~u(t0) by

optimizing the cost function L(~x, ~u) over the time horizon [t0 t0 + T ] (Fig. 2.2).

Knowing the reference input of the system v(t) (the driver’s demanded velocity)

and the environmental variables ~d(t) at each moment, the DDP or PD(t) can be

determined. The controller then tries to optimally divide PD(t) among the powertrain

energy sources. So, MPC needs to predict v(t) and ~d(t) in order to have an estimation

of the future DDP. Fortunately, prediction of some of environmental variables, like

speed limits, traffic conditions, road curves and road grades, is possible by using GPS

devices and a geographic information system. Still, the main problem is predicting

the drivers’s demanded velocity v(t).

11



Figure 2.2: Units of a model predictive controller

2.3 Applied approach for analyzing MPC

2.3.1 Simulation approaches

Since the goal of this work is to evaluate the performance of MPC versus time horizon,

a perfect predication has been assumed. In this way, the inevitable errors in predi-

cation that happen in practice, will not affect the results. So, by using a backward

simulation on a flat road, the driver’s demanded power PD(t) for both city (UDDS)

and highway (HWFET) drive cycles were calculated. As a result in the simulation,

the MPC will have access to exact values of v(t) and PD(t) for any horizon length.
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2.3.2 HEV configuration and equations

A hybrid vehicle with parallel configuration and controllable transmission was chosen

for this study. This configuration yields the power split equations:

Peng(t) = PD(t)/ηt(g)− Pem(t) , PD(t) ≥ 0 (2.2a)

Fbrk(t) · v(t) = PD(t)− Pem(t)/ηt(g) , PD(t) < 0 (2.2b)

where t refers to time, PD is driver’s demanded power (DDP), Pem and Peng are

e-machine and engine power respectively, Fbrk is friction brake force, v is vehicle

velocity, g is the transmission gear number, and ηt is the combined efficiency of the

transmission and the final drive.

The constraint Eqs. 2.2a and 2.2b limit the number of variables that are used as

control inputs. Peng is determined by PD (given), Pem, and g as shown in Eq. 2.2a.

Similarity, Fbrk is determined by the demanded power, the velocity, Pem, and g as

shown in Eq. 2.2b. Since PD and v are specified by the driver (drive cycle), the set

of control inputs can be reduced to:
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~u =

u1
u2

 =

Pem
g



The battery power is:

Pbat,E = i(~u)Vbat,oc(x)− i2(~u)Rbat(x) (2.3)

where Pbat,E is the electric power provided by the battery (W), i is the battery pack

current (A), Vbat,oc and Rbat are the open circuit voltage (V) and resistance of the

battery pack respectively (Ω), ~u is the vector of control variables, and x is the battery

state of charge (SOC) defined by:

x(t) = SOC(t) =
Qbat −

∫ t
0
idt

Qbat

(2.4)

where Qbat is the battery pack initial charge (A· s), and t is the time (s). From the

above equation and Eq. 2.3, the system state equation is:

ẋ = − i

Qbat

= −
Vbat,oc(x)−

√
V 2
bat,oc(x)− 4Rbat(x)Pbat,E(~u)

2QbatR(x)
(2.5)

14



Dynamics with fast response times, compared to the overall system response time, can

typically be ignored. So, the dynamics of the engine and the e-machine can be ignored

when there is a slow changing state variable such as x = SOC [16][22][23][34][35][36].

The vehicle longitudinal dynamics equation is:

PD = (Fgravity + Frolling(v) + Fdrag(v)) v +me v̇ v

where me is the effective vehicle mass (Kg), and v is the vehicle velocity (m/s). The

above equation also represents one state variable: v. But, v is measured at each

moment via a speed sensor or is predicted via MPC, and it is a known parameter to

the controller. So, for the vehicle model at the heart of MPC, v can be seen as a

known constant parameter at each moment.

Hence, the dynamics of a parallel HEV are given by equations (2.2) and (2.5). Of

course, the x and ~u variables are subjected to boundary constraints determined by

physical limits of each components in the power-train.
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2.3.3 Cost function and optimization method

At the present time t0, MPC predicts the reference signal PD(t) for the next T seconds

and then uses the following cost function for the optimization algorithm:

J(~u) =

∫ t0+T

t0

ṁfuel dt

Since, the MPC is done via a computer program, a discrete version of the above cost

function is used. Assuming the drive cycle duration is N seconds (vehicle stops after

N seconds), the discrete version of the above cost function is:

J(~u(k)) =
∑n=k+T

n=k ṁfuel(n)

0 ≤ k ≤ N − 1

where k is time, and T refers to the horizon length. In the model that is used for this

work, no restriction was applied to the MPC regarding the vehicle driveability. So,

the optimal controller that uses the above cost function will try to minimize J(~u(k))

regardless of what the driver might experience. For example, the controller might

switch the gear every 1 s and also the gear shifting might happen from gear 1 to 5

directly if it helps to minimize J(~u(k)). So, the above cost function was modified by
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adding a penalty factor for frequent gear shifting:

J(~u(k)) =
∑n=k+T

n=k (ṁfuel(n) + δ |g(n+ 1)− g(n)|)

0 ≤ k ≤ N − 1

and for n = k + T → δ = 0

(2.6)

where g is the gear number, and δ is the punishment factor for frequent gear shifting.

Also, no penalty is included for the desired final state values φ(x(N −1)). So, the net

energy consumption of the battery is not zero at the end of each simulation which

affects the final value of MPG for different simulations. Of course, it is more desirable

to have SOC(0) = SOC(N), but it is practically impossible to make that happen in

an optimal way unless the predicted horizon is very long and accurate. So instead of

MPG, the criteria MPGge is employed, [37]:

(MPGge)UDDS = 5-cycle city FE =
1

0.003259 +
1.1805

d/(Gg +Gge)
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(MPGge)HWFET = 5-cycle hwy FE =
1

0.001376 +
1.3466

d/(Gg +Gge)

where d is the total miles derived for each drive cycle, Gg is consumed gasoline (Gal),

and Gge is the gasoline equivalent of the consumed electric energy. By using MPGge

as the criteria for comparing results, SOC(0) 6= SOC(N) can be compensated.

In addition, dynamic programming is the employed optimization algorithm. This

method is computationally intensive and is not a good choice for real time applica-

tions, but, it guarantees a global optimal solution given the predicted horizon.

2.3.4 Vehicle model

A quasi-static model for the Honda Civic IMA was implemented in the Simulink

environment (Appendix A). The model incorporates the equations in the previous

section. However, for the engine and e-machine, look up tables from Honda Civic

have been used to include their efficiencies at each moment. A rule-based controller

was developed and tuned for this model in order to achieve a performance similar to

that published by the manufacturer. Some of the parameters that were tuned are:
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SOC range in the charge-sustaining mode, the minimum speed where regenerative

braking is allowed, etc. The results are presented in Table 2.1.

Table 2.1
Validation of model performance with manufacturer data

Manufacturer Achieved
Top Speed (mph) 115 105
Accel. 0-40mph 5.9s 7s
Accel. 0-60mph 11.3s 14s
Accel. 0-80mph 21s 25s
mpg (City) 44 47.7
mpg (Highway) 44 40.4
mpg (Combined) 44 44.1

Unlike rule-based controllers, optimal controllers like the instantaneous optimal con-

troller and MPC, need a model of the plant. Theses optimal controllers search for

optimal actions on the model first and apply the optimal control actions to the plant.

So, in order to replace the rule-based controller with optimal controllers, the plant

Simulink model was duplicated in the MATLAB script language to be used as the

vehicle model in the heart of the optimal controllers. In this way, any uncertainty

between the plant model and the model inside the optimal controllers, is avoided (See

Fig. 2.1).
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2.4 Simulation results

2.4.1 MPC performance versus time horizon

Figure 2.3 presents the results for the UDDS and HWFET drive cycles. The most

noticeable point in Fig. 2.3 is that for both city and highway drive cycles, FE is almost

independent of horizons longer than 60 s. Note that a horizon of 10 s on the highway

and 20 s in the city yields a performance very close to the GOC performance.

Figure 2.3: Effect of predicted horizon on fuel economy in the city (UDDS)
and Highway (HWFET) driving (The high values for mpg comes from using
the plant model as the actual plant in simulations)

In Fig. 2.3, a fluctuation can be seen in the city drivecycle for the MPC with 180 s

horizon length. This fluctuation is mainly the result of not having a constraint on

the final SOC(N − 1). Thus, the MPC with 180 s horizon has different final SOC
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than the other simulations. This different final SOC has created a fluctuation on the

MPG samples. However, since no fluctuation exists before and after this particular

sample, the main conclusion is still valid.

Figure 2.3 also shows that an IOC (equivalent to MPC with 0 prediction) performs

poorly in comparison with MPC. But in comparison with the rule-based controller

designed in section 2.3.4, instantaneous optimal controller achieves considerable im-

provement in fuel economy. Table 2.2 shows the amount of FE improvement for

different control strategies.

Table 2.2
Improvement of fuel economy (MPG) by different control strategies.

rule-based IOC GOC
City 48 → 62 → 81
Highway 40 → 47 → 62

2.5 Conclusion

While instantaneous optimal control can nearly achieve the GOC performance under

certain conditions, in general, more information is needed in order to find the optimal

trajectory of λ(t) in (2.1). On the other hand, MPC suffers from prediction errors

and long computational times. But the results show that under ideal conditions for

the simulated HEV, short time prediction is enough for MPC to perform very close

to the GOC in both city and highway driving.
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In the city, MPC needs a longer horizon in comparison with highway driving which

results from higher fluctuations in speed and environmental variables in the city. But

on highways, where speed/disturbance fluctuations are not fast, prediction of a short

horizon (10 s for the simulated HEV in this report) is particularity easy and fast,

specially when the car is in Cruise mode. Since the horizon length is short, real-time

implementation is also easier.
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Chapter 3

Estimation of the ECMS

Equivalent Factor Bounds for

Hybrid Electric Vehicles

3.1 Introduction

1 Hybrid electric vehicles (HEVs) have at least 2 energy sources. The efficient split

of the driver’s demanded power between the energy sources, is a control problem

1The material contained in this chapter is submitted to the IEEE Transactions on Control Systems
Technology: A. Rezaei, Jeffrey B. Burl, and Bin Zhou. Estimation of the ECMS Penalty Factor
Bounds for Hybrid Electric Vehicles. IEEE Transactions on Control Systems Technology, Under
Review, 2017.
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that has been studied by many research groups. There are different energy manage-

ment (EM) strategies and the most common strategies are rule-based control (RBC),

instantaneous optimal control (IOC), model predictive control (MPC), and globally

optimized control (GOC).

Rule-based control strategies are more common for commercial vehicles than the other

EM strategies [19] [21]. RBCs are easy to implement, fast for real-time applications,

and reliable for safety concerns. However, finding efficient rules requires extensive

simulations and tests on the vehicle, which generally takes more development time

than optimal controllers [19] [22]. In addition, theoretically optimal controllers can

achieve better fuel economy in comparison with RBCs [2] [7][12] [23].

Globally optimized control yields the maximum achievable fuel economy, or mile per

gallon (MPGmax). The GOC can be obtained using dynamic programming. The

main challenge for implementing GOC, is acquiring the advanced knowledge of the

whole drive-cycle or Driver’s Demanded Power PD [24]. In addition, given the full PD,

finding the optimal solution requires intensive calculation, which is time-consuming.

However, assuming the problem of computational time can be resolved by a powerful

on-board computational processor, the uncertainty on the predicted PD can still affect

the expected optimal fuel economy [24].

Model predictive control (MPC) can yield a suboptimal solution close to MPGmax

[7]. In addition, unlike GOC, model predictive control is based on short term PD
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prediction. Therefore, the effect of prediction uncertainty on MPC is less severe in

comparison with GOC [24]. However, like GOC, MPC suffers from model uncertainty.

Instantaneous optimal control is based on the calculus of variations or Pontryagin’s

Minimum Principle (PMP). A well-known IOC strategy is the Equivalent Consump-

tion Minimization Strategy (ECMS) [9]. The main challenge for employing IOC or

ECMS is estimating the optimal trajectory of the co-states used in IOC, or the bat-

tery equivalent factor in ECMS [10][12][23][25]. In fact, since PMP generally yields

a two point boundary value problem, the numerical solution requires an iterative

approach with full knowledge of PD over the whole trip. For real-time applications,

such advance knowledge of PD either is not available, or is subjected to uncertainty

[24] [26]. Therefore, many approaches have been proposed to estimate the optimal

trajectory of the ECMS equivalent factor for causal systems [10][11][12][13][23] .

This work does not seek to estimate the optimal equivalent factor λ∗ directly. Instead,

the upper and lower bounds of λ∗ are estimated, which can be employed to estimate

λ∗ in other applications such as adaptive ECMS (A-ECMS) [10][25]. Whereas, λ∗

depends to the drive-cycle, the proposed bounds for λ∗ are independent of the drive-

cycle, which is useful in estimating λ∗. For instance, a sample application of λ∗

bounds is presented by designing a new adaptive ECMS based on the proposed range

for λ∗. The simulation results comparing the proposed A-ECMS with another type

of A-ECMS from [12] , show the introduced A-ECMS has comparable performance
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thanks to employing the bounds of λ∗. Furthermore, unlike the A-ECMS in [12],

no speed prediction is required for the proposed A-ECMS, which makes it easier for

implementation and faster for real-time applications. The main reason for the good

performance of the introduced A-ECMS is applying the proposed λ∗ bounds that

offer a small range that contains λ∗, regardless of the drive-cycle. Thus, the proposed

formula for calculating λ∗ bounds for the parallel HEVs is considered as the main

contribution of this work.

This work reviews the PMP solution for a parallel HEV to derive the ECMS cost

function in section 3.2. Then in section 3.3, by assuming the vehicle is in charge-

sustaining mode, a formula is derived to calculate the bounds of the ECMS optimal

equivalent factor for using battery power. To demonstrate a sample application of λ∗

bounds, section 3.4 introduces a new real-time adaptive ECMS developed based on

λ∗ bounds for parallel HEVs. In section 3.5, simulation results for a mild and a full

parallel HEV for several drive cycles are presented. For all of simulations, λ∗ falls

within the proposed range. Section 3.5 also presents the simulation results comparing

the fuel economy of the introduced adaptive ECMS with another type of A-ECMS and

GOC. The results show whereas the introduced A-ECMS has no information about

the future, it has comparable performance with the other tested A-ECMS which has

access to the future driving conditions.
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3.2 Pontryagin’s Minimum Principle (PMP) AND

ECMS

3.2.1 Vehicle Model

The driver uses brake or acceleration pedals to adjust PD in order to achieve the

desired speed. Therefore, a hard constraint of an EM strategy is providing PD(t) at

time t:

PD(t) = Pptr(t) + Pbrk(t) (3.1)

where Pptr is the power provided by the power-train at the wheels in watts (W), and

Pbrk is the dissipated power by the conventional friction brake system (W).

Figure 3.1: Typical configuration of a parallel HEV.
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For the parallel HEV shown in Fig. 3.1, (3.1) becomes:


Brake,Coast PD ≤ 0 : Pbrk(t) = PD(t)−

Pem(t)

ηtrs(rtrs(t))

Acceleration PD > 0 : Peng(t) =
PD(t)

ηtrs(rtrs(t))
− Pem(t)

(3.2)

where Pem and Peng are the mechanical powers (W) provided by the electric machine

and engine, respectively, and ηtrs(rtrs) is the total efficiency of the transmission and

final drive when the total gear ratio is rtrs. In (3.2), PD is known. Hence, the plant

control inputs for energy management are:

u(t) = [rtrs(t) Pem(t)]T (3.3)

The chemical power out of the battery pack Pbat,C is:

Pbat,C (x(t),u(t)) = Vbat,oc(x(t)) ibat(u(t)) (3.4)

where x is the battery state of charge (SOC), Vbat,oc is the battery open circuit voltage

in volts (V), and ibat is the current of the battery pack in amperes (A). Pbat,C < 0

means the battery is being charged, and Pbat,C > 0 represents battery discharging.
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Using (3.4) and the definition of SOC, the battery state equation is:

x(t) = 1−
∫ t
0
ibat(u(τ))dτ

Qbat

⇒ ẋ(t) = −Pbat,C (x(t),u(t))

Qbat Vbat,oc(x(t))
(3.5)

where Qbat is the total battery capacity in (A·s).

The longitudinal dynamics of the vehicle is:

PD(t) = Pload (v(t)) +me v(t) v̇(t)

where v is the vehicle velocity in meter/s, me is the vehicle effective mass in Kg,

and Pload is the road load power (W) which includes gravity, rolling, and drag load

forces. The above equation, represents the vehicle speed v(t) as another state variable.

However, as long as the EM strategy maintains the hard constraint (3.1), PD is

provided and the driver’s desired speed is tracked accordingly. Hence, the EM strategy

can consider v(t) as a known quantity at each moment instead of a state variable.

To consider the transient behaviors of the other power-train components, more state

variables should be defined. However, transient behaviors can typically be ignored if

their response times are much faster than the overall system response time. Therefore,

in comparison with SOC and vehicle speed, the transient dynamics of the engine, e-

machine, etc. are ignored. These simplifications for developing the vehicle model are
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reasonable and sufficient [22][23][34][35][36].

3.2.2 Control Problem

Maximizing fuel economy or miles per gallon (MPG) is desirable because it lowers

trip cost, as well as some pollutant emissions. The control problem is summarized by

the equations:

u∗ = arg min
u

{∫ tf

0

ṁfuel(x,u)dt

}
(3.6)

ẋ(t) = −Pbat,C (x(t),u(t))

Qbat Vbat,oc(x(t))
(3.7)

PD(t) = Pptr(t) + Pbrk(t) (3.8)

x(0) = c0 , x(tf ) = c1 (3.9)
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Charge-Sustaining Mode: SOCL ≤ x(t) ≤ SOCH , t ∈ [0 tf ] (3.10)

u ∈ U (3.11)

where ṁfuel is the fuel mass flow rate (g/s) , tf is the final time at the end of the

drive-cycle, c0 and c1 are the boundary values, and U is the space of the admissible

control actions which do not violate any power/speed limit on any of the components

in the power-train.

For parallel HEVs, the hard constraint (3.8) can be represented by (3.2). ṁfuel can

be expressed as a function of control actions and the reference signal PD by using

(3.2):

ṁfuel(t) =
Peng (u(t), PD(t))

Qlhvηeng (u(t))
= ṁfuel (u(t), PD(t)) (3.12)

where Qlhv is the fuel lower heating value in J/g, and ηeng is the engine efficacy.

Therefore, the equations for the Hamiltonian and the optimal co-state are:
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H = ṁfuel(u(t), PD(t)) + p(t)ẋ (x(t),u(t)) (3.13)

ṗ∗(t) = −∂H
∂x

= −p∗(t)∂ẋ
∂x

(3.14)

In charge-sustaining mode, when (3.10) is maintained, Vcell,oc and Pbat,C in (3.7) are

almost independent of x:

ṗ∗(t) = −p∗(t)∂ẋ
∂x
≈ 0 ⇒ p∗ = constant . (3.15)

Hence, a constant value for the co-state p yields the global optimal solution, as long

as the boundary condition (3.9) and the constraint (3.10) are met, and the following

condition is maintained [17]:

H (x∗,u∗, p∗, PD(t)) ≤ H (x∗,u, p∗, PD(t)) , ∀u ∈ U

Defining λ = −p(t)/ (QbatVbat,oc(x)), the Hamiltonian (3.13) can be converted into

the ECMS cost function by using (3.5):
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H = ṁfuel (u(t), PD(t)) + λ (t, x) Pbat,C (x(t),u(t)) . (3.16)

Vbat,oc is almost constant in charge-sustaining mode, therefore from (3.15), the optimal

value of λ would also be a constant:

λ∗ = constant . (3.17)

3.3 Bounds of the Optimal ECMS Equivalent Fac-

tor

The control problem posed in the previous section is a two-point boundary value

problem that has to be solved for a nonlinear system. Numerical solution to such

problems, requires an iterative procedure to find the optimal constant value for λ∗

that doesn’t violate any of the constraints [17]. Much research has focused on find-

ing λ∗ [10][12] [23]. Instead of direct estimation of λ∗, this work proposes formulas

for calculating lower and upper bounds of λ∗ in (3.16). The proposed bounds are

independent of the drive-cycle or trip duration. The λ∗ bounds can be employed for

designing new types of adaptive ECMS [25]. A sample application of λ∗ bounds is

presented in designing a new adaptive ECMS in section 3.4.
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3.3.1 Lower Bound for Optimal ECMS Equivalent Factor

The optimal control (3.6) with the boundary condition (3.9) is equivalent to minimiz-

ing the total consumed fuel energy or total dissipated energy Eloss during the trip.

Therefore, (3.6) with the boundary condition (3.9) can also be represented by:

u∗ = arg min
u
{Eloss(x,u)} (3.18)

The energy conservation principle requires that:

Efuel + Ebat,C = ED + Eloss

where Efuel and Ebat,C are the total consumed chemical energies from the fuel and

battery, respectively, and ED is the total required energy for finishing the trip. In

charge-sustaining mode:

u∗ = arg min
u
{Eloss} = arg min

u
{Efuel + Ebat,C − ED}

= arg min
u

{
tf∫
0

(Pfuel + Pbat,C − PD) dt

} (3.19)
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PD is known since it is provided by the driver at each moment. Therefore:

u∗ = arg min
u

{
tf∫
0

(Pfuel + Pbat,C) dt

}

= arg min
u

{
tf∫
0

(ṁfuelQlhv + Pbat,C) dt

}

= arg min
u


tf∫
0

ṁfuel +
1

Qlhv

Pbat,C

 dt


(3.20)

Hence, in order to minimize the instantaneous consumed power, the ECMS cost

function should be:

JECMS(·) = ṁfuel +
1

Qlhv

Pbat,C . (3.21)

Comparison of (3.21) with (3.16) suggests:

λ∗ =
1

Qlhv

. (3.22)

The above derivation proves 1/Qlhv is the optimal value for the ECMS equivalent

factor λ in (3.16), if SOC never reaches its bounds in (3.10). But in general, the

calculated value for λ in (3.22) is not necessarily optimal because the state constraint
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(3.10) has been ignored in deriving (3.22). Thus, if for λ = 1/Qlhv, SOC reaches its

limits, then 1/Qlhv is no longer optimal for λ. Simulations show by setting λ = 1/Qlhv,

the battery SOC quickly reaches the lower bound SOCL. A λ value lower than 1/Qlhv

makes the battery energy even less valuable and thus, increases the battery discharge

rate in comparison with λ = 1/Qlhv. Therefore, if a drive-cycle exists such that

λ∗ < 1/Qlhv, then for λ = 1/Qlhv SOC will not reach SOCL and thus: λ∗ = 1/Qlhv

would also be optimal for that drive-cycle based on (3.22). As a result, in general

the optimal ECMS equivalent factor for using the battery chemical power in (3.16)

is equal or higher than 1/Qlhv, depending on the drive-cycle:

λ∗min =
1

Qlhv

≤ λ∗ . (3.23)

Please note that the applied procedure for deriving (3.23), is independent of the

power-train configuration, drive-cycle, or trip duration.

3.3.2 Upper Bound for Optimal ECMS Equivalent Factor

When the ECMS equivalent factor is too large, ECMS tends to charge the battery

up to SOC=SOCH and then be in fuel only mode for most of the trip. Under these

circumstances, the driver’s demanded power is provided by the engine because using
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the engine is considered more efficient. In other words, the EM strategy would force

the use of engine only mode since any positive Pbat,C (battery discharge) increases the

cost function (3.16) significantly.

In the admissible control space U in (3.11), any admissible control u can be catego-

rized as belonging to one of the following subsets:

U = {ueom} ∪ {ucm} ∪ {uhm} ∪ {ubom} ∪ {ubcm} ∪ {ustop}

where ueom, ucm, uhm, ubom, ubcm, and ustop are the actions that will bring the HEV

into one of the modes: engine only mode (eom), charging mode (cm), hybrid mode

(hm), battery only mode (bom), brake/coasting mode (bcm), and stop mode (stop),

respectively. According to (3.8), no matter what subset u belongs to, since it is

assumed to be admissible, it provides PD at the wheels. Therefore, depending on

PD(t), some of the above subsets might be empty at time t. Battery charging can

happen only if the u∗ belongs to the subsets cm (charge by engine) or bcm (charge by

regenerative braking). On the other hand, battery discharging can happen only if u∗

belongs to the subsets hm (discharge in hybrid mode) or bom (discharge in battery

only mode). As a reminder, in cm: P(bat,C) < 0, and in hm or bom: P(bat,C) > 0.

For the brake/coasting mode where PD ≤ 0, the clear optimal action is to recover
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energy as much as possible via regenerative braking. Thus, the effect of λ in (3.16)

matters when PD > 0. Let’s assume at a specific time, SOC=SOCH and the driver

demands a positive power PD via the acceleration pedal. Since PD > 0, the subsets

bcm and stop will be empty. Also, since SOC=SOCH , the subset cm will be empty.

Now, at that moment, the ECMS has to find the optimal control u∗ that minimizes

the cost function (3.16). Therefore, it is expected that:

x = SOCH

PD > 0

⇒ u∗ ∈ {ueom} ∪ {ubom} ∪ {uhm}

Now, if u∗ ∈ {ueom}, the optimal Hamiltonian in (3.16) at that moment can be

represented by (for simplicity, the time symbol t is dropped):

H (u∗eom) = ṁfuel (u
∗
eom, PD)

where u∗eom represents that among all admissible controls u ∈ U , the optimal u∗

belongs to the subset {ueom} which brings the HEV into eom. Similarly, if u∗ ∈

{ubom}:

H (u∗bom) = λPbat,C (x,u∗bom)
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and if u∗ ∈ {uhm}:

H (u∗hm) = ṁfuel (u
∗
hm, PD) + λPbat,C (x,u∗hm)

If λ is too big, then the possibility of u∗ being a member of {ueom} increases. For

example if λ becomes infinite, then based on (3.16) the ECMS never discharges the

battery. Thus when λ is too big, SOC will go up to SOCH and after that the HEV

will be in eom for any PD > 0 over the whole trip. The discussed statement in

mathematical term is presented by:

x = SOCH

λ�
1

Qlhv


∀u∈U⇒


∀PD > 0 : H (ueom) < H (u∗bom)

and

∀PD > 0 : H (ueom) < H (u∗hm)

Clearly, such a high value for λ cannot be optimal for any drive-cycle. For instance,

λ → ∞ keeps the HEV in eom for the whole trip and thus, cannot be optimal.

Therefore, there should be an upper bound for λ∗ such that when SOC=SOCH ,

other modes, like bom or hm, will also have a chance to be optimal. In other words,

the upper bound of λ∗ should be such that there exists at least a PD > 0 with

u∗ ∈ {ubom} ∪ {uhm}:
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x = SOCH

λ = λ∗max


∀u∈U⇒


∃PD > 0 : H (ueom) > H (u∗bom)

or

∃PD > 0 : H (ueom) > H (u∗hm)

(3.24)

The inequalities in (3.24), simply state the upper bound of λ∗ should allow battery

discharging (bom or hm) to be optimal. Another interpretation for (3.24) is that there

exists at least one drive-cycle where λ∗ = λmax, and beyond λmax there is no drive-

cycle with λ∗ > λmax. To calculate λmax, each of the inequalities in (3.24) yields an

upper bound for λ∗: λ∗max 1 and λ∗max 2. If one chooses λ∗max = min{λ∗max 1, λ
∗
max 2}, then

both bom and hm will have a chance to be optimal when SOC=SOCH . However, even

if only one of bom or hm are optimal, then the goal for allowing battery discharging

when SOC=SOCH , is met. Therefore, λ∗max should be the maximum of λ∗max 1 and

λ∗max 2.

The derivation of the upper bound (3.24) is performed using the control inputs given in

(3.3). But the derivation is the same for HEVs with more control actions. Therefore,

the procedure for deriving (3.24) is independent of the HEV configuration, provided

the HEV can be modeled with SOC as the only state variable. In addition, since

no limiting assumption was made on the vehicle speed in derivation of (3.24), the

determined upper bound is independent of the drive-cycle.

For a parallel HEV with the configuration in Fig. 3.1, the first inequality in (3.24)
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and the constraint (3.8) yields:

λ∗ ≤
ṁfuel (u

∗
eom, PD)

Pbat,C (x,u∗bom)
=

Peng(u
∗
eom)

Qlhvηeng(u∗eom)

Pem(u∗bom)

ηem(u∗bom)ηinv(u∗bom)ηbat(u∗bom)

⇒ λ∗max 1 =

PD/ηtrs(u
∗
eom)

Qlhvηeng(u∗eom)

PD/ηtrs(u
∗
bom)

ηem(u∗bom)ηinv(u∗bom)ηbat(u∗bom)

λ∗max 1 =
ηtrs(u

∗
bom) ηem(u∗bom) ηinv(u

∗
bom) ηbat(u

∗
bom)

ηtrs(u∗eom) Qlhv ηeng(u∗eom)

where ηtrs, ηeng, ηem, ηinv and ηbat are the efficiencies of the transmission, engine,

e-machine, inverter, and battery, respectively. The above inequality shows the upper

λ∗ bound is a function of control actions at each moment. Define L and M as the

least and the most efficient operating points of a component in the HEV power-train,

respectively. Also, assume ε is a very small positive number. In the above inequality,

the worst case is when ηeng is minimum and ηemηinvηbat is maximum. If λmax 1 is chosen

based on the worst case, then there will be only a particular value for PD(t) = C0

that bom becomes optimal. In other words, the only chance for u∗ ∈ {ubom} is only
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when the EM strategy has to choose either eom with the engine working at L, or

bom with e-machine, inverter, and battery, all working at M. Therefore, if a moment

later PD changes from C0 to C0 + ε then eom will be able to operate engine in a more

efficient point than L, which leads to u∗ ∈ {ueom}. During the trip, the possibility

of PD(t) = C0 is very low. For simulations or on the dynamometer, it is possible to

test the HEV on a drive-cycle with PD(t) = C0 for 0 ≤ t ≤ tf . However, in reality

the possibility of a constant long-term PD(t) = C0 is very rare due to numerous

statistical factors like the road grade, wind speed or direction, traffic, etc. Therefore,

λmax 1 is highly overestimated if it is chosen based on minimum ηeng. Instead, it is

more reasonable to use the average efficiency of the engine in the above inequality:

η̄eng. With the same argument, in the numerator, it is more reasonable to use the

average efficiencies η̄trs, η̄em, η̄inv and η̄bat, instead. Hence:

λ∗max 1 =
η̄emη̄invη̄bat

Qlhvη̄eng
. (3.25)

From the second inequality in (3.24) and constraint (3.8):
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λ∗ ≤
ṁfuel (u

∗
eom, PD)− ṁfuel (u

∗
hm, PD)

Pbat,C (x,u∗hm)

⇒ λ∗max 2 =

PD/η̄trs

Qlhv η̄eng
−
PD/η̄trs − Pem(u∗hm)

Qlhv η̄eng

Pem(u∗hm)

η̄emη̄invη̄bat

⇒ λ∗max 2 =
η̄emη̄invη̄bat

Qlhvη̄eng
(3.26)

Therefore, the upper bound of λ∗ for the parallel HEV in Fig. 3.1 is:

λ∗ ≤ λ∗max = max {λ∗max 1, λ
∗
max 2} =

η̄emη̄invη̄bat

Qlhvη̄eng
. (3.27)

3.3.3 summary

The bounds on the optimal equivalent factor λ∗ are:

1

Qlhv

≤ λ∗ ≤ max {λmax 1, λmax 2}
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where λmax 1 and λmax 2 can be obtained from the first and the second following in-

equalities, respectively:

x = SOCH

λ = λ∗max


∀u∈U⇒


∃PD > 0 : H (ueom) > H (u∗bom)

or

∃PD > 0 : H (ueom) > H (u∗hm)

using the average efficiencies of the components in the HEV power-train. The above

equations for calculating λ∗ bounds, were derived regardless of the HEV configuration,

drive-cycle, or trip duration.

For a parallel HEV with the configuration in Fig. 3.1, the optimal equivalent factor

λ∗ lies within the range:

1

Qlhv

≤ λ∗ ≤ 1

Qlhv

η̄emη̄invη̄bat
η̄eng

. (3.28)

The equivalent factor bounds for a series HEV are presented in the Appendix.
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3.4 A Real-Time Adaptive ECMS

This section introduces a new adaptive ECMS to demonstrate a sample application of

λ∗ bounds calculated in previous section. Although, the introduced adaptive ECMS

is new, but the main contribution of this work is the calculation of λ∗ bounds that

can be employed to design different new ECMS strategies.

As was mentioned previously, adaptive ECMS (A-ECMS) is a causal EM strategy

that tries to estimate the optimal equivalent factor λ∗ in (3.16) at each moment

during the trip. Many different A-ECMS have been suggested by different works. A-

ECMS types can be divided into two main groups: predictive A-ECMS which tries to

estimate λ∗ using a predicted drive-cycle horizon [10][11][12][13] and instantaneous A-

ECMS which estimates λ∗ based on the current driving condition with no information

about the future [14][15][25]. Considering different A-ECMSs, the suggested formula

to calculate λ(t) can be represented by [10][11][12][13][14][15]:

λ(t) = λ0 + ζ (SOCref (t)− x(t)) (3.29)

where λ0 is a constant. In predictive A-ECMS, ζ is a function (usually a PID con-

troller) defined to track a desired SOC trajectory SOCref (t). SOCref (t) is calculated
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from applying an optimization algorithm to the predicted driving horizon. In instan-

taneous A-ECMS, ζ is a linear function with a constant gain and offset.

For instance, reference [12] suggests:


λ(t) = λ(t− 1) + kP ∆x(t− 1)− kI

∫ t
t0

∆x(τ)dτ

Set λ(t0) =
η̄em

η̄eng

(3.30)

where kP and kI are the tuning parameters of the PI controller, and ∆x(t) =

SOCref (t) − x(t). The above adaptive ECMS is referred by ECMS2 in the next

section.

The suggested A-ECMS in this work is a type of instantaneous A-ECMS with λ(t)

calculated from (3.32). Equation (3.28) presents λ∗ bounds for the parallel HEV

shown in Fig. 3.1. In addition, from (3.17), λ∗ is a constant and therefore, each drive-

cycle is associated with a specific constant λ∗ that might be any value from 1/Qlhv to

η̄em η̄inv η̄bat/(Qlhv η̄eng), depending on the drive-cycle. Thus, another interpretation

for (3.28) is that there is no drive-cycle associated with a λ∗ outside of the range

(3.28). Hence, a new ECMS is designed with an adaptive equivalent factor λ(t),

where λ(t) always remains inside the range in (3.28):
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1

Qlhv

≤ λ(t) ≤
1

Qlhv

η̄emη̄invη̄bat

η̄eng
. (3.31)

to make sure for any drive-cycle, λ(t) is not far away from the actual λ∗. In addition,

to have λ(t) tracking λ∗ during the trip, one can define a linear relationship between

the λ(t) and battery SOC by matching the SOC bounds with λ∗ bounds, as shown

in Fig. 3.2:

Figure 3.2: A new ECMS with an adaptive equivalent factor λ(t) as a
linear function of SOC bounds and calculated λ∗ bounds.

λ(t) =
1

Qlhv

+

 η̄em η̄inv η̄batQlhv η̄eng
−

1

Qlhv

 SOCH − x(t)

SOCH − SOCL
(3.32)

An intuitive explanation for how λ(t) in (3.32) tracks λ∗ is as following: during the

trip, the possibility of λ(t) ≈ λ∗ is for short moments, since λ∗ is constant whereas

x(t) and λ(t) change at each moment. Thus, depending on x(t), at any moment λ(t)

is either overestimating λ∗ or underestimating λ∗. If λ(t) is overestimating λ∗, then

according to (3.16), the battery energy becomes more valuable and hence, cm or eom
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are more likely to be optimal than hm or bom. Therefore, the battery is more likely to

be charged which increases SOC. Please note that, even with an overestimated λ(t),

hm or bom might still be optimal occasionally, depending on the driver’s demanded

power PD. However, for a range of PD that might be requested by the driver in the

future, hm or bom have less chance to be optimal since λ(t) is big and battery energy

is valuable. As SOC increases, from (3.32) or Fig. 3.2, λ(t) decreases. Therefore, the

overestimated λ(t) is more likely to be driven toward λ∗ in the future. Alternatively,

if λ(t) in (3.32) is an underestimation of λ∗, then the battery energy becomes less

valuable and hm or bom are more likely to be optimal than cm or eom. Therefore,

in the future driving conditions, the battery is more likely to be discharged (SOC

decreases) than charged which increases λ(t). Therefore, the underestimated λ(t) is

more likely to be driven toward λ∗ as time passes. The main advantage of the intro-

duced A-ECMS is employing (3.28) which ensures λ(t) is always within a reasonable

distance from λ∗.

3.5 Simulation Results

Two Parallel HEVs with different degrees of hybridization were chosen for simula-

tion: a Honda Civic IMA (mild parallel HEV) and a plug-in hybrid electric Truck

being developed in the HEV Enterprise at Michigan Tech. University (full parallel

plug-in HEV). Both vehicles have the same configuration as shown in Fig. 3.1. The
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main specifications of the simulated vehicles are presented in Table 3.1. The vehicles

were simulated in the AMESim environment and the EM strategy was developed in

Simulink. Also, a simpler vehicle model was created in Simulink using SOC as the

only state variable to be implemented inside the EM strategy for the optimization

algorithm.

To validate (3.28), λ∗ values for both HEVs on different drive-cycles was calculated.

For these simulations, λ∗ is defined as λ that satisfies the boundary condition: x(0) =

x(tf ). Thus, for each drive-cycle, numerous simulations were run by testing different

λ values. The results are presented in Table 3.2. As can be seen in Table 3.2, for all

drive-cycles and for both HEVs, λ∗ lies within the proposed range in (3.28). Although,

the proposed bounds are derived analytically in section 3.3, the simulations results

also show the proposed range in (3.28) contains λ∗, regardless of the drive-cycle.

Table 3.1
Vehicle parameters used in the simulations. The initial SOC is 68.5% and

the allowed SOC range is 50% to 70%.

Main

Specifications

Honda Civic

IMA

Michigan Tech.

HEV Truck

Configuration Mild Parallel Plugin Full Parallel

Vehicle mass 1279 Kg 1588 Kg

Engine max torque 120 N.m@3500rpm 454 N.m@4000rpm

E-machine max torque 62 N.m@1500rpm 315 N.m@2200rpm

Battery energy 0.93 KW.hr 12.2 KW.hr

Battery max discharge power continues: 14KW continues: 40KW

Battery max charge power continues: 7KW continues: 13KW

range of Qlhvλ
∗ 1 to 3.38 1 to 3.74

The simulation results are presented in Table 3.3. For each vehicle, 4 different EM
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strategies are tested on several drive-cycles: RBC, the introduced adaptive ECMS in

this section (A-ECMS), the ECMS based on PMP (ECMS-PMP), and GOC based

on dynamic programming (DP). The RBC has been carefully tuned to maximize the

MPG. The ECMS-PMP has access to the full drive-cycle trajectory in advance. For

each drive-cycle, ECMS-PMP was run by sweeping different constant values of λ,

in order to find the λ∗ that yields the same final SOC as the introduced A-ECMS.

Finally, DP was run with similar final SOC.

Table 3.2
λ∗ values for 2 different HEVs on different drive-cycles with the boundary
condition: x(0) = x(tf ). The results are provided to validate (3.28), which
gives 1 ≤ Qlhvλ∗ ≤ 3.38 for the mild HEV, and 1 ≤ Qlhvλ∗ ≤ 3.74 for the

full HEV.

Qlhvλ
∗ Qlhvλ

∗

Drive-Cycle (Mild parallel HEV) (Full parallel HEV)

UDDS (D) 3.30 3.39

HWFET (H) 3.38 3.40

US06 (U) 2.73 3.16

SC03 (S) 3.38 3.30

NEDC 3.33 3.22

ECE-15 3.42 3.44

Japan-1015 3.33 3.30

H+H 3.38 3.40

D+H+D 3.30 3.39

D+H+U 2.95 3.28

U+S+H 3.38 3.40

45mph for 600s 3.38 3.73

60mph for 600s 2.39 3.25

To evaluate the performance of the introduced A-ECMS, different control strategies

were simulated for both HEVs on the standard drive-cycles. The results are presented

in Table 3.3, where ECMS1 represents the introduced A-ECMS in this work, ECMS2
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is the A-ECMS introduced in [12] , and GOC represents the global optimal control

obtained from dynamic programming.

The MPG of the simulated control strategies can be fairly compared if all of controllers

start from the same initial SOC and finish at the same final SOC. Thus, the following

procedure is followed for the simulations: 1) The introduced A-ECMS (ECMS1) is

run for each drive-cycle to find x(tf ) or the final SOC, 2) Dynamic programming is

run starting from the obtained x(tf ) in order to find the optimal trajectory of SOC

3) The optimal SOC trajectory is used as the reference SOC signal for the ECMS2

which is the A-ECMS in [12]. Since, ECMS2 tracks the optimal SOC trajectory via

the PI controller (3.30), it may yield a final SOC slightly different than the target

value. Therefore the PI controller (3.30) was tuned to have the maximum difference

of 0.1% between the obtained final SOC from ECMS2 and the target x(tf ) obtained

from ECMS1. Figure 3.3 represents the SOC trajectories of the 3 controllers in Table

3.3 for the UDDS drive-cycle.

For the full parallel HEV in Table 3.3, the infinite MPG values indicate the HEV has

been in electric only mode for the whole trip because the battery energy and power

had been enough for finishing the drive-cycle. Also, the ECMS2 performs poorly for

the routes than can be fully traveled in electric only mode. This behavior is caused

by the PI controller that tries to track the optimal SOC. When x(t) becomes less

than SOCref (t), the PI controller increases λ(t). As λ(t) increases, the cost of using
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Figure 3.3: The SOC trajectory of the Full HEV for 3 different controllers
on the NEDC drive-cycle (The speed profile is plotted with free offset/scale).

the electric energy in (3.16) increases. Therefore, the possibility of turning the engine

on becomes higher.

From Table 3.3, ECMS1 achieves a reasonably good performance in comparison with

the ECMS2 which knows the optimal SOC trajectory in advance. Please note that the

good performance of the the introduced A-ECMS has been achieved without any hori-

zon prediction thanks to employing the optimal λ∗ bounds in (3.28). Furthermore,

ECMS2 requires predicting the future driving conditions and also an optimization

algorithm to find SOCref from the predicted horizon. Therefore, in comparison with

ECMS2, the introduced A-ECMS is easier for implementation and also is computa-

tionally faster.

52



Table 3.3
Simulation results for a mild and a full parallel HEV for several

drive-cycles, comparing the achieved MPG by 3 different EM strategies.

MPG MPG

(Mild parallel HEV) (Full parallel HEV)

Drive-Cycle ECMS1 ECMS2 GOC ECMS1 ECMS2 GOC

UDDS 86 73 94 ∞ 857 ∞
HWFET 63 61 64 72 72 85

US06 42 42 43 49 48 55

SC03 91 78 93 ∞ 688 ∞
NEDC 57 57 63 113 107 135

ECE-15 170 134 312 ∞ 512 ∞
Japan-1015 78 75 87 253 243 259

3.6 Conclusion

ECMS is a fast and easy to implement EM strategy that has the ability to perform

close to the GOC. The challenge for employing ECMS is estimation of the optimal

equivalent factor for using the battery power. A formula for calculating the lower

and upper bounds of the optimal equivalent factor for a parallel HEV is derived. The

procedure for deriving the formula is independent of the drive-cycle. The simulation

results show the optimal equivalent factor is always inside or close to the edge of the

proposed range. To demonstrate an application of the derived formula, a new type

of adaptive ECMS is introduced, employing the optimal equivalent factor bounds.

Simulation results for 2 parallel HEVs are used to evaluate the performance of the in-

troduced A-ECMS. Comparing the MPG of the introduced A-ECMS with the MPG of

another A-ECMS and GOC, demonstrates promising performance for the introduced
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A-ECMS. The equivalent factor bounds, would be useful for designing new types of

A-ECMS or any approach that tries to estimate the ECMS optimal equivalent factor.
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Chapter 4

A Real-Time Optimal Energy

Management Strategy for Parallel

Hybrid Electric Vehicles

4.1 Introduction

1 Unlike conventional vehicles, hybrid electric vehicles (HEVs) have more than one en-

ergy source. Therefore, the strategy for splitting the energy request from the driver

1The material contained in this chapter is submitted to the IEEE Transactions on Control Systems
Technology: Amir Rezaei, Jeffrey Burl, and Bin Zhou. A new real-time optimal energy management
strategy for hybrid electric vehicles. IEEE Transactions on Control Systems Technology, Under
Review, 2016.
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among the available energy sources impacts the fuel economy of the HEV, signifi-

cantly [1][2]. Model predictive control (MPC)[2][3][4][5] [6][7], equivalent consumption

minimization strategy (ECMS) [8][9][10][11][12][13][14][15][16], dynamic programming

(DP) [2][16][17], and rule-based control (RBC)[18][19][20], are some of the well-studied

energy management (EM) strategies for HEVs.

Given PD (demanded power by the driver) for the entire drivecycle, DP yields the

maximum fuel economy (FE). ECMS, which is based on Pontryagin’s Minimum Prin-

ciple (PMP) [8][17], performs similar to DP if 1) the entire drive-cycle is known in

advance, 2) the battery state of charge (SOC) never exceeds its limits, as shown later.

In practice, full prior knowledge of PD is not available. Thus, DP and ECMS are not

feasible as practical EM strategies. Instead, casual EM strategies like MPC, RBC,

adaptive ECMS (A-ECMS), etc. are employed in practical applications.

ECMS, which was first introduced in [9] and [38], suggests in addition to minimizing

the fuel consumption, consuming the battery energy must also be penalized. Later,

in different works including [8], mathematical explanations for ECMS were provided

showing that ECMS is based on PMP. Unfortunately, the ECMS optimal equivalent

factor λ∗ can be determined only if PD is fully known, a priori (The symbol * denotes

optimal value) [10][11]. To overcome the challenge of estimating λ∗ for causal systems,

adaptive ECMS (A-ECMS) was introduced [8][9][10][11][12][13][14][15][16][39].

A-EMCS either estimates λ∗ using a predicted drive-cycle [10][11][12][13] or tries to
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estimate λ∗ with no information about the future [14][15]. The proposed EM strategy

in this chapter falls into the latter group.

For instance, reference [25] defines Sdis and Schg as empirical bounds of λ∗. Then the

adaptive λ(t) is calculated at the present time t by: λ(t) = z(t)Sdis + (1− z(t))Schg,

where z(t) is a probability function that depends to the drivecycle energy. According

to [25] and [16], calculation of Sdis, Schg, and z(t) requires prior knowledge of the

drivecycle. Althogh, [25] argues the performance of A-ECMS is not very sensitive to

the choice of drivecycle energy, and thus, full prior knowledge of the drivecycle is not

required.

Reference [10] adopts Sdis and Schg from [25], as bounds of λ∗. The bounds are

estimated by predicting the future PD. Then the adaptive λ(t) is calculated at the

present time t using the determined bounds and x1(t), where x1(t) is the current

feedback of SOC. Similarely, reference [40] calculates λ(t) based on Sdis, Schg, x1(t).

However, [40] determines Sdis, Schg from the average efficiencies of the powertrain

components.

Reference [11] investigates A-ECMS with three different levels of information about

the future PD. For each information level, a method is proposed for calculating λ(t).

For calculating λ(t) with no preview of PD, the suggested approach in [40] is applied.

Reference [12] proposed an artificial neural network for predicting PD in the future.
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Then, an optimization algorithm is applied on the predicted horizon of PD to find the

optimal SOC trajectory. Given the optimal SOC trajectory over the future horizon

x∗1, a PI controller is employed to track x∗1(t) by setting λ(t) based on the error signal

x∗1(t)− x1(t).

Other forms of A-ECMS are also introduced that try to estimate λ∗ with no prior

knowledge of PD. These types of A-ECMS suggest calculating λ(t) by the linear

function λ(t) = λ0 + Kp (x1(t)− SOCsp), where SOCsp is a constant set point, and

λ0 and Kp are two constants to be estimated or tuned [14] [15]. No real-time formula

for calculating the constants λ0 and Kp is suggested by [14] or [15]. Instead, they rely

on off-line simulations to estimate the constants for each drive-cycle.

The proposed EM strategy in this work is an instantaneous A-ECMS and is named

ECMS-CESO. CESO is short for catch energy saving opportunity. Similar to the

introduced A-ECMSs in [10][25][40], ECMS-CESO also uses λ∗ bounds and the cur-

rent SOC feedback to calculate λ(t) at each moment. However, unlike [10], no PD

prediction is required for determining λ∗ bounds. In addition, a theoretical back-

ground is provided for ECMS-CESO by introducing soft bounds or constraints on

SOC. SOC is allowed to exceed the soft bounds if an energy saving opportunity is

available. In order to limit excursions past the soft bounds, the ECMS-CESO penalty

factor modified when the soft bound is exceeded. Since predicting PD is eliminated,

the required hardware and sensors for predicting PD are no longer needed, which
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makes implementation of ECMS-CESO cheaper than prediction-based EM strate-

gies. In addition, implementation of ECMS-CESO in a real-time system is easier and

more tractable than prediction-based EM strategies due to eliminating the intensive

calculations for prediction and optimization on the predicted horizon of PD.

The chapter is organized as follows: Section 4.2 presents the optimal control problem

for parallel HEVs. Section 4.3, introduces ECMS-CESO and the equations for ap-

plying ECMS-CESO to a parallel HEV are derived. In this section, it is also proved

that ECMS-CESO maintains the SOC limits in charge-sustaining mode. In addition,

the robustness of ECMS-CESO in terms of providing PD is discussed. Finally, in

Section 4.4, the simulation results are presented, comparing ECMS-CESO with RBC

and PMP, and an instantaneous A-ECMS.

4.2 Problem Statement

Figure 4.1: The configuration of the power-train in a parallel HEV.

The EM strategy has to find the optimal control actions in order to minimize the
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total consumed fuel:

u∗ = arg min
u

{∫ tf

0

ṁfuel(x,u)dt

}
(4.1)

where ṁfuel is the fuel mass flow rate (g/s), tf is the final time at the end of the drive-

cycle, and u and x are the vectors of control actions and state variables, respectively.

The above optimization problem is subject to constraints on the control inputs:

u ∈ U (4.2)

where U is the set of all admissible control actions that do not violate any of the

constraints in the system (For instance the constraints on the engine speed or torque).

The EM strategy must also provide the driver demanded power on the wheels PD(t)

at each moment (See Fig. 4.1):


Brake,Coast PD(t) ≤ 0 : Pbrk(t) = PD(t)−

Pem(t)

ηtrs(rtrs(t))

Acceleration PD(t) > 0 : Peng(t) =
PD(t)

ηtrs(rtrs(t))
− Pem(t)

(4.3)

where Pem and Peng are the useful mechanical powers (W) provided by the electric
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machine and engine, respectively, Pbrk is the dissipated power at the wheels by the

friction brake system (W), and ηtrs(rtrs) is the total efficiency of the transmission and

final drive when the total gear ratio is rtrs. The efficiency of the clutch and the belt

in Fig. 4.1 are assumed to be 1. Also, in (4.3) it is assumed that the EM strategy

opens the clutch when the engine is off or when PD(t) < 0.

The battery state of charge (SOC), denoted x1, is a state variable of the system with

the state equation [16][41]:

ẋ1(t) = −
Pbat,C(x1,u)

QbatVbat,oc(x1)
(4.4)

where Pbat,C is the battery chemical power (W), Vbat,oc is the battery open circuit (V),

and Qbat is the battery capacity (A·s).

Deep charge-discharge cycles can shorten the battery life. Thus, in charge-sustaining

mode, SOC is limited to a certain range to avoid deep charge-discharge cycles:

Charge-Sustaining Mode: SOCL ≤ x1(t) ≤ SOCH , t ∈ [0 tf ] (4.5)

The above range is usually defined to be the most efficient SOC range of the battery

cells. Constraints on the initial and final values of the SOC make comparison of
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different control strategies possible:

x1(0) = c0 , x1(tf ) = c1 (4.6)

where c0 and c1 are two arbitrary known constants. The above constraint forces the

strategies to consume the same amount of battery energy during the same drivecycle.

Hence, it is possible to fairly compare the FEs of multiple EM strategies.

The equation for the longitudinal dynamics of the HEV is:

PD(t) = Pload (v(t)) +me v(t) v̇(t) (4.7)

where v is the vehicle velocity in m/s, me is the vehicle effective mass in Kg, and

Pload is the road load power (W) which includes gravity, rolling, and drag load forces.

In the above equation v(t) is determined by PD. Thus, if (4.3) is maintained, PD will

be provided, which consequently satisfies (4.7). Hence, (4.7) can be ignored from the

control problem.

The battery SOC and the vehicle velocity have slower dynamics in comparison with

the fast transient behaviors of components like the engine, e-machine, transmission,

etc. Hence, the fast transient dynamics are ignored due to slow overall system re-

sponse [4][22][23][34][35][36].
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PD is a known parameter in (4.3). Hence, the independent variables in (4.3) are then

considered as the plant control inputs:

u(t) = [rtrs(t) Pem(t)]T , where: u ∈ U (4.8)

From (4.3) the engine useful power Peng is independent of the system state vector x.

Thus, for a parallel HEV:

ṁfuel = ṁfuel (u(t), PD(t)) (4.9)

To account for the state inequality constraint in (4.5), the common approach is defin-

ing a new state variable x2 [17]:

ẋ2 = (x1 − SOCL)2 S (x1 − SOCL) +

(SOCH − x1) 2 S (SOCH − x1)
(4.10)

with the boundary condition:

x2(tf ) = x2(0) = 0 (4.11)
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where S = 1 if its argument is negative; Otherwise S = 0.

PMP solves the control problem (4.1) to (4.6) by augmenting the cost function (4.1)

with the state constraints using co-state variables. Using PMP, the Hamiltonian is:

H = ṁfuel (u(t), PD(t)) + p1(t)ẋ1(t) + p2(t)ẋ2(t) (4.12)

where p1 and p2 are the co-states. Finally, a PMP solution must consider the con-

straint (4.2), by satisfying the following condition for 0 ≤ t ≤ tf :

H (x∗,u∗,p∗, PD) ≤ H (x∗,u,p∗, PD) , ∀u ∈ U (4.13)

By defining λ as:

λ =
−p1(t)

QbatVbat,oc(x1)
(4.14)

the Hamiltonian in (4.12) becomes:

H = ṁfuel (u(t), PD(t)) + λPbat,C (x1(t),u(t)) + p2 ẋ2(t) (4.15)

which is the ECMS cost function with λ as the penalty or equivalent factor for using
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the battery power. Note that by using PMP, equations (4.4), (4.6), (4.10), (4.11),

(4.12), and (4.13) represent the same control problem as (4.1) to (4.6).

4.3 Catch Energy Saving Opportunities (CESO),

The Proposed Optimal EM Strategy

Consider the situation x1(t) = SOCL at the moment t. A moment later, assuming

PD(t + dt) > 0, there is a possibility that the hybrid or battery only modes are

optimal. However, hybrid or battery only modes require battery discharging. Hence,

the optimal EM strategy has to reject those desired modes, leading to sub-optimal

FE. On the other hand, if x1(t) = SOCH and PD(t + dt) ≤ 0, the opportunity

for regenerative braking will be missed. Missing such opportunities might happen

frequently during a trip as PD(t + dt) or in general, the future trajectory of PD

is unknown, a priori. Predicting PD in MPC or some types of A-ECMS is one

solution to avoid missing energy saving opportunities. However, the predicted PD is

subject to uncertainties [24][26] which may lead to sub-optimal FE. To the authors

best knowledge, no practical real-time causal solution has been suggested to achieve

optimal FE, regardless of the drive-cycle or trip duration. Similarly, the proposed

approach in this work does not guarantee achieving optimal FE, in general. However,

ECMS-CESO is designed to catch energy saving opportunities (CESO) without the
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need for predicting PD.

In order to avoid missing such opportunities, the authors propose replacing (4.5) with:

SOCsoft
L ≤ x1(t) ≤ SOCsoft

H (4.16)

where SOCsoft
L and SOCsoft

H are new bounds of SOC. Unlike the hard bounds in

(4.5), x1 is allowed to exceed either of SOCsoft
L or SOCsoft

H by at most θmax (See

Fig. 4.2a). Exceeding these bounds will be penalized by increasing or decreasing λ(t),

as shown in Fig. 4.2b. Thus, (4.16) shall be named a soft constraint. If the EM

strategy guarantees that the soft constraints will be exceeded by at most θmax, then

the original constraint (4.5) is still satisfied, as shown in Fig. 4.2a.

Figure 4.2: (a) Replacing the SOC hard bounds in (4.5) with soft con-

straints SOCsoftL and SOCsoftH . x1 is allowed to exceed the soft bounds by
at most θmax. (b) ECMS-CESO maintains λ(t) inside the range (4.30).
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The main advantage of this technique is that the EM strategy will be able to catch

energy saving opportunities, even without knowing the future PD. Consider the

previously discussed scenario again where x1(t) = SOCsoft
L . A moment later, if

PD(t+ dt) > 0, then the hybrid or battery only modes will not be rejected since the

battery can be further discharged by exceeding SOCsoft
L .

4.3.1 Deriving the ECMS-CESO Equations

Replacing (4.5) with (4.16), requires modifying (4.10):

ẋ2 =
(
x1 − SOCsoft

L

)2
S
(
x1 − SOCsoft

L

)
+(

SOCsoft
H − x1

)
2 S
(
SOCsoft

H − x1
) (4.17)

Since ECSM-CESO is allowed to exceed the soft constraint (4.16), the boundary

condition (4.11) can be eliminated. Again, it should be emphasized that the above

modifications to the original control problem makes ECMS-CESO a sub-optimal con-

trol strategy. In other words, the optimal control problem (4.4), (4.6), (4.10), (4.11),

(4.12), and (4.13) is now reduced to the sub-optimal control problem (4.4), (4.6),

(4.12), (4.13), and (4.17). However, the original optimal control problem is not

solvable for practical applications. Thus, employing sub-optimal EM strategies is

a reasonable alternative.
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The co-state equations in (4.12) are:

ṗ∗1 = −∂H
∂x1

= −p∗1
∂ẋ1
∂x1
− p∗2

∂ẋ2
∂x1
≈ −p∗2

∂ẋ2
∂x1

(4.18)

ṗ∗2 = −∂H
∂x2

= 0 ⇒ p∗2 = constant (4.19)

ECMS-CESO is designed to maintain SOC in the range (4.5). In this range, the

profiles of Vbat,oc and Rbat are almost flat with respect to SOC variations. In other

words, for the range in (4.5), Vbat,oc, Rbat Pbat are almost independent of x1 [16][19][42].

Thus in (4.18): ∂ẋ1/∂x1 ≈ 0. Using (4.14), (4.18) becomes:

λ̇∗ ≈ p∗2
Qbat Vbat,oc

∂ẋ2
∂x1

(4.20)

From (4.17):
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∂ẋ2

∂x1
= 2

(
x1 − SOCsoft

L

)
S
(
x1 − SOCsoft

L

)
+2
(
SOCsoft

H − x1
)
S
(
SOCsoft

H − x1
)

+
(
x1 − SOCsoft

L

)2
δ
(
x1 − SOCsoft

L

)
+
(
x1 − SOCsoft

H

)2
δ
(
SOCsoft

H − x1
)

(4.21)

where δ is the impulse function. The impulse functions are multiplied by 02 and can

be omitted from (4.21). Substituting this result into (4.20) gives:

λ̇∗ =



0 , SOCsoft
L ≤ x1 ≤ SOCsoft

H

2p∗2

Qbat Vbat,oc

(
x1 − SOCsoft

L

)
, x1 < SOCsoft

L

2p∗2

Qbat Vbat,oc

(
SOCsoft

H − x1
)

, x1 > SOCsoft
H

(4.22)

Defining the variable θ as (shown in Fig. 4.2a):

θ(t) =


0 , SOCsoft

L ≤ x1(t) ≤ SOCsoft
H

SOCsoft
L − x1 , x1(t) < SOCsoft

L

x1 − SOCsoft
H , x1(t) > SOCsoft

H

(4.23)

equation (4.22) simplifies to:
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λ̇∗(t) =
− 2p∗2 θ(t)

Qbat Vbat,oc
(4.24)

θ(t) is the amount by which the lower or upper soft bounds are exceeded and always

non-negative: θ(t) ≥ 0. To solve (4.24), different cases of θ must be considered: when

SOC is inside the soft bounds, θ(t) = 0, and hence, the constant µ is defined as:

θ(t) = 0 ⇒ λ̇∗(t) = 0 ⇒ λ∗(t) = constant = µ∗ (4.25)

Assuming during the arbitrary times t1 to t2, SOC goes below SOCsoft
L (See Fig. 4.2a),

then from (4.23) and (4.24)

∫ λ∗(t)
λ∗(t1)

dλ =
−2p∗2

Qbat Vbat,oc

∫ t
t1
θ(τ) dτ

⇒ λ∗(t) = λ∗(t1) +
−2p∗2

Qbat Vbat,oc
Ψ (θ(t), t)

(4.26)

where Ψ (θ(t), t) is a time-varying drivecycle dependent function defined as:

Ψ (θ(t), t) =
∫ t
t1
θ(τ) dτ .

When t = t1: λ
∗(t1) = µ∗. Therefore, (4.26) becomes:
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x1 < SOCsoft
L ⇒ λ∗(t) = µ∗ −

2p∗2 Ψ (θ(t), t)

Qbat Vbat,oc
(4.27)

Similarly:

x1 > SOCsoft
H ⇒ λ∗(t) = µ∗ −

2p∗2 Ψ (θ(t), t)

Qbat Vbat,oc
(4.28)

In the next section, it is shown:


if x1 = SOCL ⇒ λ = η̄/Qlhv prevents discharging

if x1 = SOCH ⇒ λ = 1/Qlhv prevents charging

(4.29)

where η̄ = η̄emη̄invη̄bat/η̄eng, and Qlhv is the fuel lower heating value. η̄eng, η̄em, η̄inv

and η̄bat are the average efficiencies of the engine, e-machine, inverter, and battery,

respectively.

Thus, λ(t) must be limited to the following range:

1

Qlhv

≤ λ(t) ≤ η̄bat η̄inv η̄em
Qlhvη̄eng

=
η̄

Qlhv

(4.30)
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or the battery will be constantly charged or discharged, resulting in rapidly exceeding

the state of charge bounds.

As was discussed previously, the optimal values of µ∗ and p∗2 in (4.25), (4.27), and

(4.28) cannot be found without full prior knowledge of PD. Instead, to maintain

(4.5), µ∗ and p∗2 shall be chosen such that λ∗(t) always remains within the range

(4.30) during the trip. In the following, since the chosen values for µ∗ and p∗2 might

not be optimal, the optimal symbols of µ∗ and p∗2 and λ∗(t) are dropped.

The first cae in (4.27) leads to (4.25).

For the case x1(t) ≤ SOCsoft
L in (4.27), as shown in Fig. 4.3, it is desired to have:

µ < λ(t) ≤
η̄

Qlhv

⇒ 0 > p2 Ψ (θ(t), t) ≥
µ− η̄/Qlhv

2/(Qbat Vbat,oc)
(4.31)

Figure 4.3: ECMS-CESO sets λ(t) based on the current value of SOC.

From the inequality (4.31) the desired features of the function p2 Ψ (θ(t), t) should be:
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

limθ(t)→0 p2 Ψ (θ(t), t) = 0

p2 Ψ (θ(t), t)|θ(t)=θmax
=

µ− η̄/Qlhv

2/(Qbat Vbat,oc)

p2 Ψ (θ(t), t) should be a monotonic function of θ(t)

(4.32)

where the last feature is desired because as θ(t) increases from the lower soft con-

straint, we want the penalty or equivalent factor λ(t) be increased accordingly.

To satisfy the features in (4.32) for the case x1(t) < SOCsoft
L , the following expression

is proposed for p2. This expression also cancels the effect of Ψ (θ(t), t):

p2 =
µ− η̄/Qlhv

2/(Qbat Vbat,oc)

(θ(t)/θmax)
2

Ψ (θ(t), t)
(4.33)

Selection of a quadratic function for θ(t) in (4.33) is intuitively justified as follows:

from Fig. 4.2, the quadratic function (θ(t)/θmax)
2 is small when the SOC is close to

the soft bound SOCsoft
L . Thus, when SOC exceeds SOCsoft

L to catch an energy saving

opportunity, the penalty or equivalence factor λ(t) will be small. This behavior will

keep the interference of the penalizing procedure small. However, as the SOC gets far

from the soft bound, the quadratic function (θ(t)/θmax)
2 quickly grows and eventually

stops ECMS-CESO from a violation of more than θmax.

Similarly, for the case in (4.28), it is desired to (See Fig. 4.3):
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1

Qlhv

≤ λ(t) < µ⇒
µ− 1/Qlhv

2/(Qbat Vbat,oc)
≥ p2 Ψ (θ(t), t) > 0

(4.34)

Reasoning similar to that used for the lower soft constraint, the case x1(t) > SOCsoft
H

leads to:

p2 =
µ− 1/Qlhv

2/(Qbat Vbat,oc)

(θ(t)/θmax)
2

Ψ (θ(t), t)
(4.35)

Substituting (4.33) into (4.27), and (4.35) into (4.28) , yields the final adaptive law

of ECMS-CESO:

λ(t) =



µ , SOCsoft
L ≤ x1 ≤ SOCsoft

H

µ+

 η̄

Qlhv

− µ


 θ(t)

θmax


2

, x1 < SOCsoft
L

µ−

µ− 1

Qlhv


 θ(t)

θmax


2

, SOCsoft
H < x1

(4.36)

where θ(t) is defined in (4.23). Since, it is desired to maintain λ(t) within the range

(4.30), a reasonable estimate for µ is the mid-point of this range (See Fig. 4.3):

SOCsoft
L ≤ x1(t) ≤ SOCsoft

H : λ(t) = µ = (η̄ + 1)/(2Qlhv). For θmax value in
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(4.36), the authors propose a quarter of the range in (4.5). However, depending on

the HEV configuration, this value can be tuned for better FE based on experiments

or simulations. Regarding η̄, the initial value must be: η̄ = η̄emη̄invη̄bat/η̄eng. To

calculate η̄eng for the engine, a uniform distribution of admissible operating points

is assumed on the efficiency map. Similarly, η̄em, η̄inv, and η̄bat can be found. After

finding η̄, the authors recommend running a simulation on an aggressive drivecycle

like US06 or two successive HWFETs. If at any time SOC goes below SOCL, then η̄

must slightly be increased.

4.3.2 Achieving Hard SOC Constraints With ECMS-CESO

This section investigates the previous claim about (4.29). When the driver is pressing

the brake pedal (braking), or no pedal (coasting), the clear optimal control is to

recover energy as much as possible via regenerative braking. Thus, the effect of EM

strategy on FE mostly matters when the driver is pressing the accelerator pedal:

PD > 0. In that case, it is expected:

PD > 0 ⇒ u∗ ∈ {ueom} ∪ {ucm} ∪ {uhm} ∪ {ubom}

where ueom, ucm, uhm, and ubom are the control actions that will bring the HEV into
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one of the modes: engine only mode (eom), charging mode (cm), hybrid mode (hm),

and battery only mode (bom), respectively.

To prove the first case in (4.29), it is enough to show that setting λ = η̄/Qlhv makes

the cost of eom less than hm or bom (battery will be discharged only in hm or bom):

λ = η̄/Qlhv ⇒ ∀u ∈ {ueom} ∪ {uhm} ∪ {ubom} :

∃u0
eom ∈ {ueom} such that: H (u0

eom) < H (u)

(4.37)

There is no need to consider cm in (4.37), as cm charges the battery. In (4.37), u0eom

is not required to be optimal. Only the existence of u0eom is enough to guarantee the

battery will not be further discharged. In (4.37), H (u0
eom) < H (u) requires:


H (u0

eom) < H (ubom) , ∀ubom ∈ {ubom}

H (u0
eom) < H (uhm) , ∀uhm ∈ {uhm}

(4.38)

Using (4.15), the above inequalities become:


ṁfuel (u

0
eom) < λPbat,C (x1,ubom)

ṁfuel (u
0
eom) < ṁfuel (uhm) + λPbat,C (x1,uhm)

(4.39)

From the constraint (4.3) for the parallel HEV in Fig. 4.1, (4.46) becomes:
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

PD/η̄trs

Qlhv η̄eng
< λ

PD/η̄trs

η̄em η̄inv η̄bat

PD/η̄trs

Qlhv η̄eng
<
PD/η̄trs − (Pem)hm

Qlhv η̄eng
+ λ

(Pem)hm

η̄em η̄inv η̄bat

(4.40)

where η̄trs is the average efficiency of the transmission. Both inequalities in (4.40)

give:

η̄em η̄inv η̄bat

Qlhv η̄eng
=

η̄

Qlhv

< λ (4.41)

which shows if λ becomes slightly higher than η̄/Qlhv then it prevents battery dis-

charge.

To prove the second case in (4.29), it is enough to show that setting λ = 1/Qlhv makes

the cost of bom less than cm:

PD > 0 and λ = 1/Qlhv ⇒ ∀u ∈ {ucm} ∪ {ubom} :

∃u0 ∈ {ubom} such that: H (u0) < H (u)

(4.42)

There is no need to consider eom or hm here, because these modes do not charge the

battery. In (4.42), Let us assume the cost of cm is less than the cost of bom:
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H (ubom) > H (ucm) (4.43)

Using (4.15) and substituting λ with 1/Qlhv, (4.43) becomes:

Pbat,C (x1,ubom)

Qlhv

> ṁfuel (ucm) +
Pbat,C (x1,ucm)

Qlhv

(4.44)

Using the constraint (4.3), the above inequality becomes:

PD/η̄trs

Qlhv η̄em η̄inv η̄bat
>

PD/η̄trs − (Pem)cm

Qlhvη̄eng

+
η̄emη̄invη̄bat

Qlhv

(Pem)cm

PD(η̄eng − η̄em η̄inv η̄bat)

η̄trs η̄em η̄inv η̄bat η̄eng
>
η̄emη̄invη̄batη̄eng − 1

η̄eng
(Pem)cm

Since the total efficiency of the electric components is expected to be higher than the

engine efficiency, then the left side of the above inequality is negative. Also, since

(Pem)cm < 0, the right side of the above inequality is positive, which is not possible.

Therefore, (4.43) is wrong and:
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λ =
1

Qlhv

⇒ H (ubom) < H (ucm) (4.45)

which proves the second part of (4.29).

4.3.3 Achieving Driver Requested Power With ECMS-CESO

ECMS-CESO might occasionally fail to provide the driver requested power PD(t):

When x1(t) = SOCL, if the driver asks for a high power, the engine might not be

powerful enough to deliver PD(t), without electrical assist. However, such situations

can happen for any control strategy. One might argue that predictive controllers

like MPC can avoid this situation, and thus, they are robust in terms of delivering

PD(t). But, note that the uncertainty of the predicted horizon cannot be eliminated

due to numerous statistical factors affecting PD(t) [24][26][43]. Therefore, predictive

controllers could also occasionally fail in delivering high PD(t).

In addition, ECMS-CESO is designed to keep the SOC around SOCsoft
L . ECMS-

CESO can exceed SOCsoft
L if there is an energy saving opportunity or if the engine

only cannot provide PD(t). On the occasions that x1(t) = SOCL and PD(t) is low, the

equivalent factor λ(t) is high enough that ECMS-CESO will tend to charge the battery

via cm. In other words, the episodes of x1(t) = SOCL are expected to be short, which
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lowers the chance of having x1(t) = SOCL and high PD(t), simultaneously.

4.4 Simulation Results

For simulations, a mild parallel HEV (Honda Civic IMA), and a full parallel HEV

(plug-in parallel HEV Truck under construction at Michigan Technological Univer-

sity) with the same configuration as in Fig. 4.1, were modeled. The main specifications

of both HEVs are presented in Table 4.1. A high fidelity model with 19 state variables

was created in AMESim as the HEV plant. Each component of the AMESim model

(engine, battery, e-machine, etc.) was initialized by the manufacturer published data

(For the HEV truck the measured data were used for the body dynamics). Due to

many state variables, the high fidelity model could not be used for the optimiza-

tion algorithm. Therefore, a low fidelity quasi-static model with 4 state variables

(SOC, engine on/off, gear number, velocity) was created in Simulink to be used as

the optimization model. Both AMESim and quasi-static models have the same con-

trol inputs: engine on/off command, engine and e-machine requested torques, clutch

and gear number commands, and friction brake command. The quasi-static model

was validated by the high fidelity model in AMESim. The uncertainty between the

optimization model and the plant model affects the results [44][45]. Therefore, to

eliminate this effect on simulation results, the validated quasi-static model was used

as the plant model as well.

80



Table 4.1
Vehicle Parameters Used in the Simulations.

Main Specifications Honda Civic IMA HEV Truck

Configuration Mild Parallel Plugin Full Parallel

Vehicle mass 1279 Kg 1588 Kg

Frontal Area 1.9 m2 3.3 m2

Engine max torque 120 N.m@3500rpm 454 N.m@4000rpm

E-machine max torque 62 N.m@1500rpm 315 N.m@2200rpm

Battery energy 0.93 KW.hr 12.2 KW.hr

Battery dis/chg power 14 KW / 7 KW 40 KW / 13 KW

For each vehicle in Table 4.1, four different EM strategies were tested: RBC, A-ECMS,

ECMS-CESO, and ECMS-PMP:

1. PMP: Is the ECMS with the cost function (4.15) based on PMP. PMP has

access to PD(t) for 0 ≤ t ≤ tf . PMP uses an iterative procedure to find λ∗

that yields a final SOC as close as possible to CESO, which satisfies (4.6). The

resulting SOC trajectory is optimal if (4.5) is not violated [8]. Otherwise, DP

is used instead of PMP.

2. CESO: is the proposed EM strategy in this work which has no access to the

future PD.

3. A-ECMS: An instantaneous A-ECMS adopted from [40]. As was mentioned

in section 4.1, a basic A-ECMS was introduced by [40]: Sdis = 1/(η̄
(d)
e η̄f ) and

Schg = η̄
(c)
e /η̄f , where η̄

(c)
e and η̄

(d)
e are the average efficiencies of the electric en-

ergy path for charge and discharge, respectively, and η̄f is the average efficiency

of the fuel energy path. Reference [40] suggested a bilinear relationship between
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λ(t) and SOC:


λ(t) = s0 +

s0 − Schg
x01 − SOCH

(x1(t)− x01) , x1(t) ≥ x01

λ(t) = s0 +
s0 − Sdis
x01 − SOCL

(x1(t)− x01) , x1(t) < x01

(4.46)

where s0 =
√
SchgSdis and x01 = (SOCL + SOCH)/2.

4. RBC: a rule-based control strategy developed and tuned in Simulink to max-

imize the achieved FE for the tested drivecycles. The following are some of

the rules: a) Stay in bom unless x1(t) < SOCL + 0.1 or e-machine only cannot

deliver PD. b) If x1(t) ≤ SOCL, force eom or cm depending on lesser fuel

consumption. c) If x1(t) ≥ SOCH , avoid cm and regenerative braking. d)

In hm, choose gear number based on the engine optimal operating line. e) If

x1(t) < SOCH − 0.05 and driver requested torque is less than engine optimal

torque, force cm and charge the battery.

The simulation results are presented in Tables 4.2 and 4.3. For all simulations:

SOCL = 0.5, SOCH = 0.7, θmax = 0.07, initial SOC=0.65. Comparing CESO with

PMP, shows that CESO performs close to PMP. Since the FE numbers are rounded,

for some of the drivecycles, CECO and PMP have the same FE. Note that CESO

performs close to PMP with no information about the future. The ∞ values in Ta-

ble 4.3 indicate the HEV has been in bom for the entire drivecycle. Unfortunately,
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since the final SOCs for RBC, A-ECMS, and CESO are different a fair comparison is

not possible.

Figure 4.4 presents the trajectories of SOC and fuel consumption on UDDS (mild

HEV) and US06 (full HEV) drivecycles. A-ECMS tends to maintain SOC around the

mid-point of SOC range, i.e. x01. From (4.46), if x1(t) < x01, A-ECMS increases λ(t),

witch increases the chance of cm. Similarly, if x1(t) > x01, λ(t) is decreased which

favors hm or bom. For CESO, SOC is mostly around SOCsoft
L = 57%. However,

SOC exceeds this bound many times due to possible energy saving opportunities or

to assist the engine in delivering PD. For US06, the SOC trajectories of RBC and

CESO are very close. However, CESO yields better FE (Table 4.3).

Figure 4.4: The SOC and fuel consumption trajectories for 4 different EM
strategies: (a) mild parallel HEV on UDDS (b) full parallel HEV on US06.
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With the same final SOC, the comparison between CESO and PMP is fair. Therefore,

separate PMP simulations were done based on the final SOCs of RBC and A-ECMS

on each drivecycle. Given the optimal FE value for each EM strategy, it is possible

to normalize the FEs and compare the normalized values, fairly. Figure 4.5 presents

the normalized FE values for both vehicles. The FE values in Tables 4.2 and 4.3 are

achieved with x1(0) = 0.65. To investigate the effect of x1(0) on results, a new set of

simulation were done with x1(0) = 0.55, as shown in Fig. 4.5.

Table 4.2
Results for a mild parallel HEV.

Miles per gallon (Final SOC %)

Drivecycle RBC A-ECMS CESO PMP

UDDS 57 (51.3) 75 (63.8) 84 (54.7) 91 (54.7)

HWFET 53 (55.4) 60 (69.6) 62 (58.8) 63 (58.8)

US06 38 (54.3) 40 (70.0) 42 (68.3) 42 (68.3)

SC03 62 (50.9) 76 (59.8) 86 (54.4) 87 (54.4)

NEDC 46 (52.9) 49 (68.2) 55 (55.9) 57 (55.9)

Table 4.3
Results for a full parallel HEV.

Miles per gallon (Final SOC %)

Drivecycle RBC A-ECMS CESO PMP

UDDS 160 (50.9) 84 (58.0) 615 (51.2) 924 (51.2)

HWFET 54 (53.5) 48 (56.6) 64 (52.0) 65 (52.0)

US06 44 (51.7) 30 (62.1) 46 (52.5) 50 (52.5)

SC03 ∞ (57.6) 301 (58.8) ∞ (57.6) ∞ (57.6)

NEDC 65 (53.8) 35 (66.1) 124 (52.6) 137 (52.6)

As can be seen in Fig. 4.5, the performance of CESO is better than both RBC and

A-ECMS on all of the drivecycles. The performance of A-ECMS is also good and

close to CESO. However, on a low power drivecycle like SC03, A-ECMS performs

poorly in comparison with CESO. For the full HEV with x1(0) = 0.65, RBC has a
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very good performance which is because the RBC was able to operate in bom for the

entire trip. Based on the results in Fig. 4.5, in average, CESO improves FE by about

7% and 20% in compression with A-ECMS and RBC, respectively.

Figure 4.5: Normalized FEs for two HEVs with different initial SOCs.

4.5 Conclusion

A new energy management strategy was introduced for HEVs that is suitable for

practical real-time applications. The introduced EM strategy is a form of adaptive

ECMS and is named ECMS-CESO. The required equations for implementing ECMS-

CESO for a parallel HEV were derived. Based on the simulations results for a mild and

a full parallel HEV, ECMS-CESO can yield FE reasonably close to the maximum FE.
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Compared to an instantaneous A-ECMS, in average, ECMS-CESO improved the fuel

economy by 7%. Unlike other causal optimal EM strategies like MPC or prediction-

based A-ECMS, ECMS-CESO does not require predicting driver demanded power.

Considering the cost of additional hardware/sensors for predicting the future power

demand, ECMS-CESO is a cheap EM strategy. Also, in comparison with MPC or

prediction based A-ECMS, the extensive calculations for prediction and optimization

over the predicted horizon are no longer needed. As a result, ECMS-CESO would be

easier to implement and faster for real-time applications.
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Chapter 5

A Real-Time Optimal Energy

Management Strategy for Series

Hybrid Electric Vehicles

5.1 Introduction

The λ∗ bounds in chapter 3 and the ECMS-CESO algorithm in chapter 4 are for

parallel HEVs. Therefore, this chapter is dedicated to determining λ∗ bounds and

deriving ECMS-CESO algorithm for series HEVs. First, in section 5.3 the lower and

upper bounds on λ∗ are determined by an analytic procedure for series HEVs. In
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section 5.4, ECMS-CESO is developed for series HEVs, and the adaptive equation

for estimating λ(t) is derived. In Section 5.5, it is shown ECMS-CESO maintains

the battery SOC between the desired limits. In section 5.6, the experimental setup

used for validating the HEV model is explained. Finally, simulation results on several

drivecycles are presented and discussed in section 5.7. Section 5.7 also presents a

comparison between the performances of ECMS-CESO and two other types of EM

strategies.

5.2 Problem Statement

The control problem for series HEVs is similar to the control problem discussed in

chapter 4.2 for parallel HEVs. The only difference is that (4.3) which was for parallel

HEVs, must be modified for series HEVs. The following presents the control problem

for series HEVs:

u∗ = arg min
u

{∫ tf

0

ṁfuel(x,u)dt

}
(5.1)

u ∈ U (5.2)
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PD(t) = Pptr(x,u, t) + Pbrk(x,u, t) (5.3)

ẋ1(t) =
−Pbat,C(x1,u)

QbatVbat,oc(x1)
(5.4)

Charge-Sustaining Mode: SOCL ≤ x1(t) ≤ SOCH , t ∈ [0 tf ] (5.5)

x1(0) = c0 , x1(tf ) = c1 (5.6)

where Pptr is the power provided by the powertrain at the wheels in watts (W).

Equation (5.3) is the equivalent of (4.3) for series HEVs. New state variable x2 is

defined in order to augment the cost function (5.1) with the inequality constraint

(5.5) [17]:

ẋ2 = (x1 − SOCL)2 S (x1 − SOCL) + (SOCH − x1) 2 S (SOCH − x1) (5.7)
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where S(a) = 1 if a < 0; Otherwise S(a) = 0. The boundary conditions:

x2(tf ) = x2(0) = 0 (5.8)

result in the inequality constraints (5.5) being enforced.

Augmenting (5.1) with the state equations (5.4) and (5.7), the Hamiltonian is:

H = ṁfuel (u(t)) + λPbat,C (x1(t),u(t)) + p2(t)ẋ2(t) (5.9)

where p2 is the Lagrange multiplier, λ is the ECMS equivalent factor, and λ∗ ≈

constant [16][19][41][42]. In (5.9), any bounded nonzero constant for p2 is optimal

since the optimal solution will keep ẋ2(t) = 0 for the whole drivecycle to satisfy the

constraint (5.5).

In (5.3), the power provided by the powertrain Pptr depends on the HEV configuration.

For the series HEV shown in Fig. 5.1: Pptr = PD − Pbrk. Therefore, the mechanical

power of the tractive electric machine, Pem, is:

Pem(t) =
Pptr(t)

ηntrs(rtrs(t))
=
PD(t)− Pbrk(t)
ηntrs(rtrs(t))

(5.10)
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Figure 5.1: The configuration of the powertrain in a series HEV in this
study.

where ηtrs is the total efficiency of the transmission (including the final drive) at the

gear ratio rtrs, and n is defined as:

n =


−1 ,when braking/coasting: PD(t) ≤ 0

1 ,when accelerating: PD(t) > 0

From Fig. 5.1, the electric power of the battery, Pbat,E, is (t is dropped for easier

readability):

Pbat,E =
Pem

ηnem η
n
inv1

+ Pgn =
PD − Pbrk

ηntrs(rtrs) η
n
em η

n
inv1

+ Pgn (5.11)

where ηem and ηinv1 are the efficiency of the tractive electric machine and its inverter,
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respectively, and Pgn is the electric power of the generator which is always non-

positive: Pgn ≤ 0. Thus, (5.11) is equivalent to (5.3) for the series HEV shown

in Fig. 5.1. In (5.11), Pbat,E < 0 and Pbat,E > 0 represent battery charging and

discharging, respectively.

During braking/coasting, the obvious optimal action is to keep mechanical Pbrk as

close as possible to 0 and use regenerative braking instead. Therefore, the optimal

choice for Pbrk is known for the EM strategy. As a result, the vector of control actions

in (5.11) is:

u = [rtrs Pgn]T (5.12)

The combination of the generator-engine can be optimized offline based on Pgn.

Therefore, for a known control Pgn, the optimal values of the engine torque and

speed that give the minimum ṁfuel can be determined, as stated in (5.9).
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5.3 Optimal Equivalent Factor Bounds For Series

HEVs

The value of λ∗ in (5.9) depends to the drivecycle and thus, is an unknown constant

for causal controllers. However, lower and upper bounds of λ∗ can be found that are

independent of the drivecycle [41]. Reference [41] shows that regardless of the vehicle

configuration or drivecycle, the lower bound of λ∗ in (5.9) is:

λ∗ ≥ 1

Qlhv

(5.13)

where Qlhv is the fuel lower heating value. In addition, regarding the upper bound of

λ∗, reference [41] argues: an infinite λ in (5.9) forces the ECMS to work in engine only

mode (eom) for the whole trip. Thus, λ∗ must have an upper bound λmax, such that

no drivecycle exists with λ∗ > λmax. To find λmax, let us assume a drivecycle with

λ∗ = λmax is known, where different values of PD(t) might be requested by the driver

for 0 ≤ t ≤ tf . During that drivecycle, when x1(t) = SOCH , the hybrid mode (hm)

or battery only mode (bom) must be optimal for at least one value of PD(t), otherwise

the HEV remains in eom for the rest of the drivecycle. When x1(t) = SOCH , if HEV

remains in eom, then the brake energy at the end of the drivecycle will be missed
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which is not optimal. Therefore, in mathematical terms:

x1 = SOCH

λ∗ = λmax


∀u∈U⇒


∃PD > 0 : H (ueom) > H (u∗bom)

or

∃PD > 0 : H (ueom) > H (u∗hm)

(5.14)

where ueom, ubom, and uhm are the control actions that bring the HEV into one of

the modes eom, bom, and hm, respectively. Reference [41] uses (5.14) to find λmax for

parallel HEVs. As follows, λmax is calculated for series HEVs.

Substituting (5.9) in the first inequality of (5.14) gives:

λ∗ ≤
ṁfuel (u

∗
eom, PD)

Pbat,C (x,u∗bom)
(5.15)

From Fig. 5.1, substituting (5.11) in (5.15) gives:

λ∗ ≤

Pgn(u∗eom)

Qlhvη̄engη̄bltη̄gnη̄inv2

Pbat,E(u∗bom)

η̄bat

=

Pem/ (ηnem ηninv1)

Qlhvη̄engη̄bltη̄gnη̄inv2

Pem/ (ηnem ηninv1)

η̄bat

(5.16)

where η̄eng, η̄blt, η̄gn, η̄inv2, and η̄bat are the average efficiencies of the engine, belt,
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generator, inverter #2, and battery, respectively, and ηem and ηinv1 are the efficiencies

of the tractive e-motor and inverter #1, respectively. From (5.16) the upper bound

of λ∗ becomes:

λmax =
η̄bat

Qlhvη̄engη̄bltη̄gnη̄inv2
(5.17)

Similarly, substituting (5.9) in the second inequality of (5.14) gives:

λ∗ ≤
ṁfuel (u

∗
eom, PD)− ṁfuel (u

∗
hm, PD)

Pbat,C (x, u∗hm)
(5.18)

and substituting (5.11) in (5.18) gives the same λmax as (5.17).

Therefore, for the series HEV shown in Fig. 5.1 and for any drivecycle, λ∗ is bounded

by:

1

Qlhv

≤ λ∗ ≤
η̄bat

Qlhv η̄eng η̄blt η̄gn η̄inv2
=

η̄

Qlhv

. (5.19)

where η̄ is defined as: η̄ = η̄bat/(η̄eng η̄blt η̄gn η̄inv2).
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5.4 The Proposed Energy Management Strategy,

ECMS-CESO, For Series HEVs

The propsed EM strategy, ECMS-CESO, has been previously introduced in [39] for

parallel HEVs. This work develops ECMS-CESO for series HEVs. The main idea

of ECMS-CESO is to catch energy saving opportunities (CESO) when possible. The

constraint (5.5) restricts causal controllers from energy saving when the SOC is at

a limit. For example when x1(t) = SOCH , if the driver presses the brake pedal

(PD(t + dt) ≤ 0), then the EM strategy is not allowed to catch this energy saving

opportunity via regenerative braking. The same scenario happens when x1(t) =

SOCL and PD(t+ dt) > 0 is such that hm or bom are optimal but cannot be applied

due to (5.5). Predictive controllers can avoid such situations. However, a prediction

of the driver demanded power is uncertain [24][26][43][46].

In order to catch energy saving opportunities, the authors propose defining soft SOC

bounds inside the range (5.5) where the EM strategy is allowed to exceed these soft

bounds, as presented in Fig. 5.2. ECMS-CESO replaces the hard SOC limits in (5.5)

with the newly defined soft constraints:

SOCsoft
L ≤ x1(t) ≤ SOCsoft

H , t ∈ [0 tf ] (5.20)
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Figure 5.2: ECMS-CESO defines new soft bounds for the SOC inside the
actual hard limits SOCL and SOCH . ECMS-CESO is allowed to exceed the
soft bounds by θ(t) when there is an energy saving opportunity. When the
soft bounds are exceeded, the equivalent factor is modified. If θ(t) = θmax,
the equivalent factor becomes modified enough that it prevents the ECMS-
CESO from violating (5.5).

However, unlike (5.5), ECMS-CESO allows SOC to exceed (5.20) by θ(t) if an energy

saving opportunity is available. To maintain (5.5), ECMS-CESO is punished for

exceeding (5.20). As θ(t) becomes larger, the punishment becomes higher until the

punishment becomes big enough that it prohibits θ(t) > θmax. The main advantage of

this strategy is that since (5.5) is replaced with (5.20), the EM strategy has a better

chance in catching energy saving opportunities. Another advantage of ECMS-CESO

is employing (5.19) for estimating λ∗ which is explained as follows.

Using (5.20), (5.7) becomes:

ẋ2 =
(
x1 − SOCsoft

L

)2
S
(
x1 − SOCsoft

L

)
+
(
SOCsoft

H − x1
)

2 S
(
SOCsoft

H − x1
) (5.21)
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where the boundary condition (5.8) can now be eliminated from the control problem

because ECMS-CESO is allowed to exceed (5.20). Since (5.7) is changed, the deriva-

tion of (5.9), needs to be modified accordingly. From (5.1), (5.4), and (5.21), the

Hamiltonian is [39]:

H = ṁfuel (u(t)) + λ(t)Pbat,C (x1(t),u(t)) + p2(t)ẋ2(t) (5.22)

which gives (to improve readability, the time variable t is dropped) [17]:

ṗ∗2 = −∂H
∂x2

= 0 ⇒ p∗2 = constant (5.23)

λ̇∗ =
1

QbatVbat,oc(x1)

∂H

∂x1
=
λ∗
∂Pbat,C

∂x1
+ p∗2

∂ẋ2

∂x1
QbatVbat,oc(x1)

(5.24)

The range (5.5) is chosen based on the SOC range where the battery is most efficient.

In this range, Vbat,oc and Pbat,C are almost independent of x1 [1]. Thus:

λ̇∗ ≈ p∗2
QbatVbat,oc

∂ẋ2

∂x1
(5.25)
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and from (5.21):

λ̇∗(t) ≈
− 2 p∗2 θ(t)

Qbat Vbat,oc
(5.26)

where the exceeding θ(t) is defined as:

θ(t) =



0 , SOCsoft
L ≤ x1(t) ≤ SOCsoft

H

SOCsoft
L − x1(t) , x1(t) < SOCsoft

L

x1(t)− SOCsoft
H , x1(t) > SOCsoft

H

(5.27)

For the first case in (5.27):

λ̇∗(t) = 0 ⇒ λ∗(t) = constant = µ (5.28)

where µ is a constant to be chosen later. For the second case, assuming the exceeding

x1(t) < SOCsoft
L starts at the time t1, then (5.26) gives:
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λ∗(t) = λ∗(t1)−
2p∗2

Qbat Vbat,oc
Ψ (θ(t), t) (5.29)

where Ψ (θ(t), t) is a drivecycle dependent function:

Ψ (θ(t), t) =

∫ t

t1

θ(τ) dτ (5.30)

According to (5.28), a moment before exceeding starts: λ∗(t1 − dt) = µ. Therefore,

(5.29) becomes:

x1(t) < SOCsoft
L ⇒ λ∗(t) = µ−

2p∗2 Ψ (θ(t), t)

Qbat Vbat,oc
(5.31)

Similarly, when x1(t) > SOCsoft
H :

x1(t) > SOCsoft
H ⇒ λ∗(t) = µ−

2p∗2 Ψ (θ(t), t)

Qbat Vbat,oc
(5.32)

To find a formula for calculating λ∗(t) from (5.28), (5.31), and (5.32), values of µ and

p∗2 must be found. Fortunately, the range of λ∗ is known from (5.19). Thus, µ and

p∗2 will be chosen such that λ(t) always remains inside the range in (5.19). For µ the
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author proposes the middle point of the range in (5.19):

µ =
η̄ + 1

2Qlhv

(5.33)

Also, p∗2 is chosen to ensure λ∗(t) always falls within (5.19). In other words, p∗2 will

be chosen such that:

θ(t) = θmax : x1(t) = SOCL ⇒ λ(t) = η̄/Qlhv

θ(t) = θmax : x1(t) = SOCH ⇒ λ(t) = 1/Qlhv

(5.34)

where θmax is the desired maximum distance that SOC is allowed to exceed from the

soft constraints (See Fig. 5.2). Since, such selection for p∗2 is not necessarily optimal,

ECMS-CESO becomes a sub-optimal controller and thus, the optimal symbol for p2

is dropped. Therefore, to enforce (5.34) for λ(t) in (5.31) and (5.32):

x1(t) < SOCsoft
L ⇒ p2 =

µ− η̄/Qlhv

2/(Qbat Vbat,oc)

 θ(t)

θmax


2

Ψ (θ(t), t)
(5.35)
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x1(t) > SOCsoft
H ⇒ p2 =

µ− 1/Qlhv

2/(Qbat Vbat,oc)

 θ(t)

θmax


2

Ψ (θ(t), t)
(5.36)

Finally, substituting (5.35) and (5.36) into (5.31) and (5.32), respectively, yields a

formula for calculating the adaptive λ(t) in ECMS-CESO:

λ(t) =



η̄ + 1

2Qlhv

, SOCsoft
L ≤ x1 ≤ SOCsoft

H

η̄ + 1

2Qlhv

+
η̄ − 1

2Qlhv

 θ(t)

θmax


2

, θ(t) = SOCsoft
L − x1 > 0

η̄ + 1

2Qlhv

−
η̄ − 1

2Qlhv

 θ(t)

θmax


2

, θ(t) = x1 − SOCsoft
H > 0

(5.37)

102



5.5 Achieving The Hard SOC Constraints

To ensure ECMS-CESO maintans (5.5), let us assume x1(t) = SOCL and PD(t) > 0.

It is enough to show under such situations battery discharging cannot be optimal.

Here, it is shown that if x1(t) = SOCL and PD(t) > 0, then the cost of eom is less

than the costs of hm or bom:

PD > 0 and x1(t) = SOCL ⇒

∀u ∈ {ueom} ∪ {uhm} ∪ {ubom} :

∃u0
eom ∈ {ueom} such that: H (u0

eom) < H (u)

(5.38)

In (5.38), H (u0
eom) < H (u) requires:


H (u0

eom) < H (ubom) , ∀ubom ∈ {ubom}

H (u0
eom) < H (uhm) , ∀uhm ∈ {uhm}

(5.39)

Using (5.22), the above inequalities become:


ṁfuel (u

0
eom) < λPbat,C (x1,ubom)

ṁfuel (u
0
eom) < ṁfuel (uhm) + λPbat,C (x1,uhm)

(5.40)

103



For series HEVs, substituting (5.11) into (5.40) gives:



Pem/(η̄em η̄inv1)

Qlhv η̄eng η̄blt η̄gn η̄inv2
< λ

Pem/(η̄em η̄inv1)

η̄bat

Pem

η̄em η̄inv1
Qlhvη̄bat/η̄

<

Pem

η̄em η̄inv1
− Pbat,E

Qlhvη̄bat/η̄
+ λ

Pbat,E

η̄bat

(5.41)

Both inequalities in (5.41) give:

η̄

Qlhv

< λ (5.42)

which indicates that when x1(t) = SOCL, if the A-ECMS sets λ(t) slightly higher

than the upper bound in (5.37), then the battery will not be further discharged.

In (5.41) the average effciencies are used. However, the change in the efficiency of

a component might be high from one operating point to another. Thus, one might

argue (5.42) is not an accurate threshold for preventing x1(t) < SOCL. From (5.37),

ECMS-CESO continues to increase λ(t) if x1(t) < SOCL. Therefore, the violation

from the lower bound, if it happens, will be limited. However, in order to enforce (5.5),

the authors propose using (5.42) to tune η̄ for ECMS-CESO. Based on the definition,
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the initial η̄ value can be acquired from: η̄ = η̄bat/(η̄eng η̄blt η̄gn η̄inv2). Then, ECMS-

CESO should be tested on several different drivecycles. If x1(t) < SOCL is observed,

then η̄ should be increased.

Regarding the SOC upper limit, when x1(t) = SOCH and PD(t) > 0, ECMS-CESO

must avoid charging mode (cm). It is enough to show under such conditions, bom

has less cost than cm:

PD > 0 and x1(t) = SOCH and λ = 1/Qlhv

⇒ H (ubom) < H (ucm)

(5.43)

Assuming the above statement is wrong and H (ubom) > H (ucm). Then, using (5.22):

λPbat,C (x1,ubom) > ṁfuel (ucm) + λPbat,C (x1,ucm) (5.44)

For series HEVs, substituting (5.11) into (5.44) gives:

λ

Pem

η̄em η̄inv1
η̄bat

>

Pem

η̄em η̄inv1
− Pbat,E

Qlhvη̄bat/η̄
+ λPbat,E η̄bat (5.45)

Simplifying the above inequality by setting λ = 1/Qlhv, gives:
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(1− η̄)
Pem

η̄em η̄inv1
> (η̄2bat − η̄)Pbat,E (5.46)

In cm: Pbat,E < 0. Also, PD(t) > 0 requires Pem > 0. In addition: η̄ > 1. Thus, the

right side of the above inequality is positive and the left side is negative, which is not

possible. Therefore, the statement (5.43) must be correct.

5.6 Experimental Setup

This section introduces the experimental setup that is designed and built at Michigan

Technological University. More details on the experimental setup design can be found

in [47]. The setup is comprised of a 2.0-liter spark ignition (SI) engine and a 100-kW

electric powertrain, which are connected to a 465 hp double-ended AC dynamometer.

Figure 5.3 shows the developed experimental setup.

Figure 5.3: Developed hybrid electric powertrain experimental setup con-
nected to a double-ended 465 hp AC dynamometer at Michigan TEchnolog-
ical University.
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The SI engine setup includes a GM 2.0-liter Ecotec Gasoline Direct Injection Tur-

bocharged SI engine. Table 5.1 lists the engine specifications. Engine control units

included dSPACE® MicroAutoBox (MABx) DS1511 and RapidPro units. Models for

control of cam phasers, fuel pump, injectors, spark plugs, supercharger, throttle body,

and EGR valve were developed in Simulink®. These models were compiled into a

single engine control program, and related parameters were monitored and controlled

in real-time using the dSPACE ControlDesk®.

Table 5.1
Parameters of the SI engine in this study

Parameters Value/Description

Engine Model GM Ecotec LHU
Bore x Stroke 86 x 86 mm
Number of Cylinders 4
Displacement Volume 2.0 L
Compression Ratio 9.2:1
Connecting Rod Length 145.5 mm
Max Power 270 hp @6000 rpm
Fuel Injection System Gasoline Direct Injection
Valve System DOHC 4 Valves

Using the data acquired from dSPACE®, LabVIEW® and ACAP®, the combustion

and performance parameters were calculated using an in-house Matlab® code. The

brake specific fuel consumption (BSFC) maps were generated and the load limits

for each of the combustion modes were determined. The test setup runs with a

100 kW synchronous induction Remy motor, which is controlled by RMS PM100DX

inverter. Using the experimental data collected from the experimental setup, the e-

motor efficiency map is calculated by measuring the e-motor input and output powers.

Two LG Chem batteries are used to supply the electric energy for the electric motor
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(see Table 5.2). The mechanical drivetrain, including the e-motor mount, coupling,

and shafts, is designed and manufactured at Michigan Technological University. The

high voltage battery during the operation is connected to the e-motor through a

designed pre-charge circuit. The MABx is used as a supervisory controller to monitor

sub-level controllers (i.e., battery, e-motor, etc.). The MABx communicates control

commands on the CAN bus to the sub-level controllers. The LG Chem battery

temperature is controlled through a fan and all the cooling systems are controlled

by the supervisory controller. A fault-action module was developed in Matlab® to

manage the setup during faults and extreme conditions.

Table 5.2
Battery specifications.

Parameters Values
Energy Capacity (kWh) 5
Maximum Voltage (V) 410
Nominal Voltage (V) 360
Minimum Voltage (V) 260
SOC Operating Range (%) 30-70
Battery Pack Mass (kg) 90

5.7 Simulation Results

A quasi-static model for the series HEV shown in Fig. 5.1 was created in Simulink®.

Each component of the model is individually validated by measured data from the ex-

perimental setup discussed in the previous section. The specifications of the simulated
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vehicle is presented in Table 5.3

Table 5.3
Vehicle specifications.

Parameters Values

Vehicle Curb Mass 1588 (Kg)
Frontal Area 3.3 (m2)
Engine Motor Coupling Gear Ratio 1.5 (-)
Transmission Ratios [1.34 0.63] (-)
Differential Ratio 3.73 (-)
Wheel Radius 0.36 (m)
Drag Coefficient 0.364 (-)
Rolling Resistance Coefficient 0.015 (-)

ECMS-CESO is a type of A-ECMS, and hence, its performance is compared with

dynamic programming (DP) and a predictive A-ECMS based in [12].In this predictive

A-ECMS, first, a prediction of future driver’s demanded power is made by an artificial

neural network. Then, the optimal trajectory of the battery state of charge (SOC)

on the predicted future horizon is calculated. Finally, a PI controller is implemented

in predictive A-ECMS which calculates λ(t) from the difference between the optimal

SOC and the actual SOC, as follows:

λ(t) =
η̄em

η̄eng
+Kp(x

∗
1(t)− x1(t)) +Ki

∫ t

0

(x∗1(t)− x1(t)) dt (5.47)

where x∗1 and x1 are the optimal and actual SOC, respectively, Kp and Ki are the coef-

ficients of the PI controller, and η̄em and η̄eng are the average efficiencies of the electric

motor and the engine, respectively. DP yields the globally optimal performance. For
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implementing the predictive A-ECMS, instead of using the specified prediction al-

gorithm, the exact information about the future driving conditions are provided to

the controller. Since the prediction uncertainty is eliminated, the performance of the

simulated A-ECMS should be better than the proposed A-ECMS in [12]. For each

drivecycle, the optimal SOC trajectory is obtained from DP and is used by the PI

controller of A-ECMS as in (5.47).

Table 5.4 represents the simulation results for standard drivecycles. With respect to

DP, the results show the performance of ECMS-CESO is batter than A-ECMS. Also,

for the UDDS drivecycle ECMS-CESO achieves better FE in comparison with the

A-ECMS in [12]. For the HWFET and NEDC drivecycles, A-ECMS yields slightly

higher FE than ECMS-CESO (MPG values are rounded). However, A-ECMS has also

consumed more electric energy than ECMS-CESO on HWFET and NEDC (lower final

SOC). Whereas, DP and A-ECMS have the benefit of knowing the entire drivecycle

in advance, ECMS-CESO achieves a comparable performance with instantaneous

optimization. As was menationed, thanks to having perfect knowledge about the

enitre drivecycle, the performance of the simlutaed A-ECMS is equal or better than

the propsed A-ECMS in [12]. Thus, with no prediction, ECMS-CESO has archived

comparable performance with respect to predictive A-ECMS.

Figures 5.4 shows the trajectories of SOC, fuel consumption rate, and λ on the UDDS

drivecycle. As can be seen, the A-ECMS in [12] closely tracks the reference optimal
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Table 5.4
Fuel economy (MPG) and final SOC x1(tf ) results for different control

strategies. All simulations start at x1(0) = 60%. The SOC range in (5.5) is
from 40% to 70%. For ECMS-CESO: θmax = 6%, and 1 ≤ Qlhvλ∗ ≤ 4.78.
For all of simulations, the average and variance of speed tracking error are

in orders of 0.005 (m/s) and 0.001, respectively

.

MPG (Final SOC %)
Drivecycle ECMS-CESO A-ECMS DP

UDDS 72 (43.7) 69 (43.3) 75 (43.7)
HWFET 39 (45.2) 39 (44.4) 41 (45.2)
US06 26 (44.8) 25 (44.6) 27 (44.8)
NEDC 43 (42.9) 43 (40.8) 49 (42.9)

Figure 5.4: Trajectories of SOC and fuel consumption rate for the UDDS
drivecycle

SOC trajectory obtained from DP. The PI controller in A-ECMS calculates λ(t) from

the difference between the optimal SOC and actual SOC. Thus, when the actual SOC

becomes less than optimal SOC, A-ECMS increases λ(t) to add more value to the

battery power. According to (5.9), increasing λ(t) raises the chance of consuming

more fuel by the EM strategy. For instance, in Fig. 5.4, A-ECMS turns the engine on

at times 570 and 780 s in response to the actual SOC being smaller than the optimal

SOC. Thus, the achieved FE from A-ECMS becomes less than DP, and as can be

seen in Table 5.4, becomes less than ECMS-CESO as well.

111



The effect of the soft constraints on the SOC trajectory of ECMS-CESO can be

observed in Fig. 5.4. For this simulation: SOCL = 40%, SOCH = 70%, and θmax =

6%. Therefore, ECMS-CESO tries to maintain the SOC in the range 46 ≤ x1(t) ≤ 64,

unless an energy saving opportunity is available or the engine alone cannot provide the

driver requested power PD(t). Under such conditions, ECMS-CESO exceeds either

the soft constraint SOCsoft
L = 46%, or SOCsoft

H = 64%. The SOC of ECMS-CESO

never reaches SOCL = 40% which can be justified by the adaptive behavior of ECMS-

CESO. According to (5.37), when x1(t) = SOCL, ECMS-CECO sets λ(t) = η̄/Qlhv

which is the upper bound of λ∗ in (5.19). As a reminder, no driving condition exists

with λ∗ > η̄/Qlhv, which makes η̄/Qlhv the highest optimal penalty value in (5.9).

Thus, ECMS-CESO uses this high penalty at x1(t) = SOCL only after a highly

valuable energy saving opportunity has occurred. For the UDDS drivecycle in Fig. 5.4,

such a valuable opportunity does not occur. Also, in Fig. 5.4 at the times 350, 500,

840, and 1050 s, ECMS-CESO exceeds SOCsoft
L = 46% to catch available energy

saving opportunities. But, since the penalty factor λ(t) rises for exceeding SOCsoft
L ,

ECMS-CESO turns the engine on and increases the SOC shortly after exceeding

SOCsoft
L .

This desired behavior improves the robustness of ECMS-CESO in terms of providing

the driver requested power. In addition, since the chance of x1(t) = SOCL is low,

ECMS-CESO is less likely to be limited by a depleted battery. This behavior is

achieved by defining the soft constraints for ECMS-CESO and employing the bounds
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on λ∗ (5.19).

5.8 Conclusion

A new energy management strategy, previously introduced for parallel HEVs, was

developed for a series HEV. Two characteristics distinguish ECMS-CESO from other

types of A-ECMSs: 1) ECMS-CESO uses knowledge about the range of λ∗ to set

an adaptive λ(t), 2) soft constraints on SOC are defined and exceeding these soft

constraints is penalized. Here, the bounds on λ∗ were determined for a series HEV.

The λ∗ bounds are drivecycle independent and thus, are used by ECMS-CESO to

set an adaptive λ(t). ECMS-CESO was designed to ensure the adaptive λ(t) always

remains inside the determined λ∗ range. In addition, the SOC soft constraints allow

ECMS-CESO to catch energy saving opportunities when available. In other words,

ECMS-CESO was designed to maintain SOC between the soft bounds. However, when

an energy saving opportunity is available, or when the engine only cannot deliver the

demanded power, ECMS-CESO is allowed to exceed the SOC soft constraints. It was

shown that even when exceeding the soft constraints, SOC still remains between the

hard limits. Using experimental data, a model for a series HEV was developed to

evaluate ECMS-CESO performance by comparing it with dynamic programming and

a predictive-based A-ECMS. Results show that the performance of ECMS-CESO is

equal or better than those obtained with the prediction-based A-ECMS. Note that

113



the performance of ECMS-CESO was achieved without any knowledge about future

driving conditions. Therefore, the implementation of ECMS-CESO is cheap and easy,

which makes it a tractable, real-time energy management strategy for HEVs.
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Appendix A

Vehicle Modeling And Simulation

A high fidelity model in AMESim with 19 state variables was developed (Fig. A.1 and

A.2). The energy management (EM) strategies were created in Simulink (Fig. A.3).

AMESim Co-simulation ability was used to run and control the AMESim model from

Simulink.

In the AMESim model, there is a clutch located on the shaft of the e-motor. This

clutch is just added in order to convert the parallel HEV model into a conventional

vehicle model. For simulations, this clutch is always engaged.

As shown in Fig. A.4, an optimal EM strategy requires a model of the plant for the

optimization algorithm. In addition, another model is required to simulate the actual

HEV.
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Figure A.1: High fidelity parallel HEV model in AMESim (19 state vari-
ables).

The AMESim model with 19 state variables is an acceptable model that considers

many dynamics of the plant. However, because of too many state variables, this

model cannot be directly used for the optimization algorithm inside the optimal EM

strategy. Therefore, a quasi-static low fidelity model of the HEV was created in
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Figure A.2: High fidelity series HEV model in AMESim (22 state vari-
ables).

Simulink as shown in Fig. A.5:

Both AMESim and quasi-static models have similar control inputs: engine on/off com-

mand, engine and e-motor requested torques, clutch and gear number commands, and

friction brake command. However, the quasi-static model has only 4 state variables:

battery SOC, vehicle velocity, engine on/off, gear number.

To validate the quasi-static model, the following steps were performed:

† All components (engine, battery, transmission, etc. ) in both AMESim and

quasi-static models were initialized by the manufacturer published data.

† A rule-based controller (RBC) was designed and tuned in Simulink as shown in

Fig. A.3 to run the AMESim model (Co-simulation).
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Figure A.3: Co-simulation between Simulink and AMESim: The energy
management strategies are developed in Simulink.

† The trajectory of control commands in the above simulation, were saved.

† The saved trajectory of the control commands were applied to the quasi-static

model (open loop control).

The following figure represents the results (note that both models are triggered with

identical controls):

As can be seen in Fig. A.6, the quasi-static model (4 state variables) closely follows

the behavior of the high fidelity model with 19 state variables. Although, the tracking

is not perfect, but it is close enough to be used as a reliable model for simulations.

As shown in Fig.3, the uncertainty between the model and the plant can affect the
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Figure A.4: Simulation requires two model of the HEV: the model inside
the EM strategy for the optimization algorithm, and the actual HEV model
which simulates the real plant.

Figure A.5: The quasi static model (the right top block) created in
Simulink and was validated with AMESim model.

simulation results. It was desired to only evaluate the performance of ECMS-CESO

in comparison with other control strategies without any interference from uncertainty

effects. Thus, the quasi-static model was used as the HEV plant as well.

Figure A.5 shows the main model that is used for the simulations in this work.
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Figure A.6: AMESim model vs. quasi-static model on HWFET drivecycle
for the parallel HEV. Both models are triggered with identical control ac-
tions. The dark blue lines are AMESim, and the red lines are created by the
quasi-static model. The light blue line in the top window is the reference
velocity.
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