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Abstract

As prevailing copper interconnect technology advances to its fundamental physical

limit, interconnect delay due to ever-increasing wire resistivity has greatly limited

the circuit miniaturization. Carbon nanotube (CNT) interconnects have emerged

as promising replacement materials for copper interconnects due to their superior

conductivity. Buffer insertion for CNT interconnects is capable of improving circuit

timing of signal nets with limited buffer deployment. However, due to the imperfec-

tion of fabricating long straight CNT, there exist significant unidimensional-spatially

correlated variations on the critical CNT geometric parameters such as the diameter

and density, which will affect the circuit performance. This dissertation develops a

novel timing driven buffer insertion technique considering unidimensional correlations

of variations of CNT. Although the fabrication variations of CNTs are not desired

for the circuit designs targeting performance optimization and reliability, these inher-

ent imperfections make them natural candidates for building highly secure physical

unclonable function (PUF), which is an advanced hardware security technology. A

novel CNT PUF design through leveraging Lorenz chaotic system is developed and

we show that it is resistant to many machine learning modeling attacks. In summary,

the studies in this dissertation demonstrate that CNT technology is highly promising

for performance and security optimizations in advanced VLSI circuit design.

xxv





Chapter 1

Introduction

The heterogeneous system architecture which leverages multicore computing

paradigm has become increasingly popular. Nevertheless, timing minimization is still

a critical design challenge. Buffer insertion for carbon nanotube (CNT) interconnects

is capable of significantly improving circuit timing of signal nets with limited buffer

deployment. A timing driven buffer insertion technique for CNT interconnects is pro-

posed, where the standard buffering algorithm has been enhanced to accommodate

some features in the CNT timing modelling.

However, due to the imperfection of fabricating long straight CNT, there exist signif-

icant variations on the critical CNT geometric parameters such as the diameter and

density, which will affect the circuit performance. On the other hand, the prevailing

1



CNT fabrication induces significant unidimensional spatial correlation. A unidimen-

sional variation aware stochastic CNT interconnects buffering algorithm is developed

to handle fabrication variations of CNTs in buffer insertion. To improve its time com-

plexity, a novel importance sampling based timing evaluation technique is proposed

considering unidimensional correlations of variations.

Although the fabrication variations of CNT are not desired for the circuits targeting

performance and reliability, these inherent imperfections make the CNT based circuits

natural candidates for building highly secure physical unclonable function (PUF).

PUF is an advanced hardware security technology. Most conventional encryption

approaches rely on the secure keys stored in flash or non-volatile memory, and they

are vulnerable to physical attacks. PUFs exploit the hardware fabrication variations

to generate the secure key, thus it is resistant to physical attacks.

CNT PUF designs have many advantages, such as low cost and significant random-

ness. However, they are still vulnerable to machine learning modeling attacks. Using

the machine learning modeling attack, it is not necessary for the attacker to access

the PUF layout and hardware. The attacker collects a large amount of challenge-

response pairs, as the training data. Machine learning modeling attack methods are

then used to predict the model of the PUF. Subsequently, the attacker can use the

model to predict the responses given on the new challenges. It is demonstrated that

machine learning modeling attacks can have high prediction rate, e.g., 99.9%. In

2



this dissertation, a novel CNT PUF design through leveraging Lorenz chaotic sys-

tem is proposed. The Lorenz chaotic system could magnify the differences among

corresponding responses of similar challenges, which makes the proposed PUF design

resistant to machine learning modeling attacks. Through the study in the disserta-

tion, we demonstrate that CNT technique is highly promising for performance and

security optimization in advanced VLSI circuit design.

1.1 Buffering CNT Interconnects for Timing Op-

timization

As one of the most effective interconnect timing optimization techniques, copper

buffer insertion is indispensable in physical design [6, 7, 8, 9, 10]. However, since cop-

per interconnect technology has its fundamental physical limit, interconnect delay due

to ever increasing wire resistivity has greatly limited the circuit miniaturization. The

electromigration induced interconnect reliability issue resulting from the inherently

low tolerable current density in copper interconnect aggravates the problem. Conse-

quently, the novel on-chip interconnect material is highly desirable as a replacement of

copper interconnect in nanoscale high-speed circuit design. As promising replacement

materials, carbon nanotubes (CNTs) alleviate the above severe timing and reliability

issues in copper interconnect due to their superior conductivity and current carrying

3



capabilities. CNTs have significantly larger carrier mean free paths and can conduct

larger currents without deterioration compared to copper interconnects [11]. As a

result, the issues such as electromigration that plaque the copper interconnects are

mitigated. In addition, CNTs have high thermal conductivity and mechanical stabil-

ity.

CNTs are miniaturized tubes consisting of rolled up sheets of carbon hexagons. There

are two main types of CNTs with structural perfection. Single-walled carbon nan-

otubes (SWCNTs) are composed of a single graphite sheet seamlessly wrapped into

a cylindrical tube while multi-walled carbon nanotubes (MWCNTs) are composed of

an array of concentrically nested CNTs. Since a single CNT has much larger resis-

tance than copper for global interconnect [2], it is desired to bundle CNTs in parallel,

resulting in bundled CNTs, for better performance. According to [2], it is difficult

to use MWCNTs for long-length ballistic transport, thus, this work will focus on the

popular bundled SWCNTs. Various research efforts have been spent in CNT fabri-

cation. Most of them explores chemical vapor deposition technologies and successful

fabrication experience on CNT includes [12, 13, 14, 15, 16, 17].

It has been shown that bundled SWCNTs can outperform copper interconnects in

signal wave transportation along a long global interconnect [2, 18, 19, 20, 21]. For

example, it is shown in [2] that the resistance of bundled SWCNTs can be achieved

50% smaller compared to that of copper at the same size of a long interconnect at
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SWCNT MWCNT Bundled SWCNTs

CNT interconnect layer

Copper interconnect layer

Figure 1.1: Copper buffering and CNT buffering.

22nm technology node. Despite this, buffer insertion is still necessary to improve

the timing of a bundled SWCNTS. Although there are works [2, 18] which consider

CNT interconnect, they always use a two pin model since their perspective is from

the device and interconnect modeling of CNTs. None of existing works consider the

deployment of such an advanced technology into the VLSI physical design. To the

best of the authors’ knowledge, this work presents the first physical design technique

considering carbon nanotube interconnects. Refer to Figure 2.1. The CNTs are

replacing copper in global interconnect. In this work, bundled SWCNTs are mainly

considered. The main contribution of this work is summarized as follows.

5



† The timing driven buffer insertion technique for bundled SWCNTs is proposed

which can handle signal net buffering in VLSI design. To the best of authors’

knowledge, this is the first buffer insertion optimization for CNT interconnects

in the literature.

† Timing driven buffering algorithm for copper interconnect has been adapted to

handle bundled SWCNTs.

† Our experiments are conducted with 500 scaled industrial nets and 10 different

types of scaled buffers and inverters at 22nm technology. With the same timing

constraint, CNT buffering can save over 50% buffer area compared to copper

buffering. In addition, it is demonstrated that CNT buffering can effectively

reduce the delay by up to 32%.

1.2 Stochastic Buffering For Bundled SWCNT In-

terconnects Considering Unidimensional Fab-

rication Variation

The heterogeneous system architecture which leverages multicore computing

paradigm has become increasingly popular and it has been successfully deployed in

many application scenarios. Nevertheless, there are still various design challenges
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which need to be tackled, and timing minimization is a critical one among them. It

is well known that interconnect delay has become the bottleneck of the circuit tim-

ing. However, existing copper based interconnects technologies are approaching their

fundamental physical limits. Thus, novel interconnect materials such as carbon nan-

otube (CNT) become highly desirable. There are two types of CNTs regarding the

electrical properties which are metallic CNTs (mCNTs) and semiconducting CNTs

(sCNTs). Bundled metallic single walled carbon nanotubes (SWCNTs) have better

electrical performance than copper in terms of e.g., superior conductivity and current

carrying capabilities. Therefore, SWCNTs are suggested to be used as long global

interconnects [2, 3, 11, 12]. However, due to the imperfectness of fabrication, the

variations in the geometric parameters of CNTs will lead to significant timing yield

reduction of the design [22].

Chemical vapor deposition (CVD) is the most popular technique for CNT fabrication

[13, 14, 15, 16, 17]. In such a technique, CNTs grow along a single direction and

their geometric parameters are controlled by the environment of the CVD system.

For example, the diameters of tubes are highly dependent on the processing environ-

ment and their orientations are controlled by the direction of gas flow. CNT density

variations are caused by non-uniform spacing between CNTs. Therefore, the number

of CNTs in the bundled SWCNT interconnects may have a large variance. There are

other variations from the imperfect fabrication process, such as the growth kinetics,
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flow patterns variations, nucleation sites variations, and adsorption and diffusion vari-

ations, which can be translated to the variations on the resistance and capacitance of

the bundled SWCNT interconnects. These variations could be partially captured by

the density and diameter variations.

When using CNTs as interconnects, the main sources of variability include the di-

ameters of CNT, the density of mCNTs in the bundle, the misalignment of CNTs

and the presence of sCNTs [22, 23, 24, 25]. In this work, to illustrate our technique

we focus on the diameter and density variations, while our approach can be easily

adapted to handle other variations. The density and diameter variations will result in

timing variations on the bundled SWCNT interconnects, impacting the timing yield

of the CNT based circuit design.

In the literature, there are some works addressing the variations to carbon nanotube

field effect transistor (CNFET) based circuit designs[26, 27]. The models for the

impact of mCNTs on the CNFET and circuit delay are provided in [28, 29] and the

impact of undeposited CNTs to the circuit delay is studied in [30, 31]. Shahi and

Zarkesh-Ha propose an analytical model to predict gate delay variation induced from

CNT density variation [32]. Zhang et al. consider spatial correlation in directional

CNT growth which helps reduce the device-level failure by 350× [33]. A timing-driven

placement method has been recently developed for CNFET circuits in [34].

Variations also manifest strongly in CNT interconnects. Refer to Figure 1.2. There
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are some works modelling the fabrication impacts. For example, Nieuwoudt and Mas-

soud model the variational impact on resistance, capacitance, inductance, and delay

of bundled SWCNT interconnects [21]. However, it does not provide any closed form

computation model for resistance and capacitance of the bundled SWCNT intercon-

nects, and thus it cannot be extended to handle spatial correlation for our purpose. In

[35], a statistical model is proposed to analyze the crosstalk noise induced by process

variations on SWCNT based on a closed-form derivation. However, it focuses on noise

analysis which cannot be adapted to modelling timing and its does not consider unidi-

mensional spatial correlation as well. In this work, we will present a new closed-form

model for the resistance and capacitance of bundled SWCNT interconnects, which is

integrated into our buffer insertion algorithm for timing evaluations.

A striking difference compared to the copper counterpart is that there exists spatial

correlation in bundled SWCNT interconnect fabrication [22, 25, 36]. Since CNTs

grow along one dimension in the fabrication, the spatial correlation in variations in

CNTs is in one dimension, in contrast to the two dimensional spatial correlation in the

copper based design. Such a property will be leveraged in developing our interconnect

optimization technique for CNT based circuits.

In the literature, there are very limited works studying the carbon nanotubes based

physical design. The first CNT buffer algorithm is developed in [3]. However, that

work does not consider the fabrication variations which could significantly impact
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Figure 1.2: Illustration of fabrication variation aware buffer insertion prob-
lem for bundled SWCNT interconnects.

the performance of circuit design. This motivates us to model the variations, esp.

the unidimensional spatial correlation of fabrication variations, on resistance and

capacitance of bundled SWCNT interconnects, and develop a new stochastic CNT

buffering algorithm based on this model. The contribution of this work is summarized

as follows.

† Fabrication variation and unidimensional spatial correlation on the resistance

and capacitance of bundled SWCNT interconnects are analyzed.

† A unidimensional variation aware importance sampling based stochastic

SWCNT interconnects buffering algorithm is proposed. A new importance

sampling based timing evaluation technique is also developed to improve the

computational efficiency of the algorithm.
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† To the best of our knowledge, this is the first work on the SWCNT interconnect

optimizations considering variations.

† The simulation results on signal nets demonstrate that the proposed unidimen-

sional variation aware importance sampling based stochastic SWCNT intercon-

nects buffering algorithm saves over 30% buffer area over copper buffering on 50

nets while satisfying timing constraints. In addition, our proposed stochastic

SWCNT interconnects buffering algorithm achieves much better performance

than the best case design and the worst case design in terms of timing and

buffer cost.

1.3 Lorenz Chaotic System Based CNT PUF

Physical unclonable function (PUF) is an emerging technology for security appli-

cations, such as true random number generation, secure key generation, low-cost

authentication, etc [37, 38]. Most conventional encryption methodologies rely on the

secure keys stored in flash or non-volatile memory, and they are vulnerable to physical

attacks. As an alternative approach, PUF exploits the hardware fabrication varia-

tions and generates unpredictable secure information in a storage-less fashion. For

example, Gassend et al. propose an arbiter PUF through leveraging the timing dif-

ference on the two identically designed paths due to fabrication variations [39]. The
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input signal of the PUF is called the challenge and the output signal is called the

response.

Given a PUF design, we can have many fabricated chips. The only differences among

each fabricated chip are from the fabrication variations, which is not predictable nor

clonable. The carbon nanotubes are promising candidates for highly secure PUF de-

sign thanks to their significant fabrication variations [23]. Chemical vapor deposition

(CVD) is the most popular method for CNT fabrication, in which the pressure and

temperature of the environment have significant effects on the fabricated features such

as diameters and densities of CNTs. When CNTs are used as FETs and interconnects

for reliable designs, the fabrication variations are not desired [21, 25, 40]. However,

these inherent imperfections make the CNT based circuits natural candidates for

building highly secure PUFs. Several carbon nanotube PUFs (CNT PUFs) are de-

signed in the previous works such as [1, 41, 42, 43], which demonstrate significant

advantages such as low cost and significant randomness. A secure empirical mode

decomposition projection based CNT PUF design is developed in [41]. The other

prominent one is discussed in [1] where self-assembled CNTs are used to design a

random bit generation approach for low-cost and hard-to-forge security applications.

In Figure 4.1, individual CNTs are placed between two layers which can be randomly

connected or disconnected [1].
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Disconnected

Connected

Figure 1.3: The illustration of 2D CNT bitarray crossbar structure
(adapted from [1]).

Although CNT PUF designs have many advantages, they are still vulnerable to ma-

chine learning modeling attacks, where the attacker does not need to access the PUF

hardware physsically. The attacker collects a large amount of challenge-response pairs

as the training data. Machine learning modeling attack methods are then used to

model the PUF. Subsequently, the attacker can use the model to predict the re-

sponses given new challenges. Deep learning (DL) and evolution strategy (ES) are

the most prominent machine learning methods used for modeling attacks [44]. It is

demonstrated in some works [45, 46, 47] that machine learning modeling attacks can

achieve high prediction rate, e.g., 99.9%.

This motivates [48, 49, 50, 51] to design PUFs resistant to modeling attacks. In [48],
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a secure physically-embedded data encryption architecture is proposed by replacing

conventional weak arbiter PUF with a specific strong PUF proposed in [49]. However,

it is not easy to build that specific strong PUF proposed in [49]. A circuit that

relies on non-linear current mirrors is designed to generate modeling resistant PUF

in [50]. The current sources are assumed to be ideal which is impractical. In [51],

the authors propose a lockdown technique in the PUF based system by adding server

authentication. It could effectively prevent the attacker to collect many challenge-

response pairs. However, the lockdown technique is of low efficiency.

In this work, our objective is to design a CNT PUF which is resistant to machine

learning modeling attacks. First, one needs to know how the modeling attack methods

work. For most PUFs, similar challenges could generate similar responses [52, 53, 54].

Therefore, one possible method for preventing modeling attacks is to magnify the dif-

ferences among responses of similar challenges. Since Lorenz chaotic system yields

widely diverging outputs given similar inputs, it motivates us to develop a novel CNT

PUF design by leveraging Lorenz chaotic system. To the best of our knowledge, this is

the first such work in CNT PUF design. To demonstrate the effectiveness of our pro-

posed Lorenz chaotic system based CNT PUF, various machine learning attacks are

preformed, including Support Vector Machine (SVM), Deep Belief Networks (DBN),

Logistic Regression (LR) and Evolution Strategies (ES). The experimental results

demonstrate that the proposed Lorenz chaotic system based CNT PUF is robust to

these attacks. The main contribution of this work is summarized as follows.
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† In this work, a novel CNT PUF design is developed by leveraging Lorenz chaotic

system. Lorenz chaotic system magnifies the differences among responses of

similar challenges, which makes the proposed PUF design resistant to modeling

attacks.

† To demonstrate the security performance of the proposed PUF, various machine

learning methods are used on the proposed PUF, including SVM, DBN, LR and

ES.

† The experimental results demonstrate that the machine learning modeling at-

tack methods can achieve as high as 100% bit-wise prediction rates on the CNT

PUF without Lorenz chaotic system, while they can only obtain less than 55%

bit-wise prediction rates on the proposed Lorenz chaotic system based CNT

PUF. To the best of our knowledge, this is the first work to leverage Lorenz

chaotic system to CNT PUF.

† The significant security performance of the proposed PUF is mainly contributed

by Lorenz chaotic system. However, if one uses Lorenz chaotic system only in

the design, the parameters need to be induced by fabrication variations, which

could be complicated. Therefore, one needs to combine CNT PUF and Lorenz

chaotic system as discussed in this work.
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Chapter 2

Buffering Single-Walled Carbon

Nanotubes Bundle Interconnects

for Timing Optimization1

2.1 Introduction

As one of the most effective interconnect timing optimization techniques, copper

buffer insertion is indispensable in physical design [6, 7, 8, 9, 10]. However, since cop-

per interconnect technology has its fundamental physical limit, interconnect delay due

1The material contained in this chapter was previously published in “IEEE Computer Society An-
nual Symposium on VLSI (ISVLSI)” copyright [2015] IEEE. See Appendix C.1 for the copyright
permission from IEEE.
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to ever increasing wire resistivity has greatly limited the circuit miniaturization. The

electromigration induced interconnect reliability issue resulting from the inherently

low tolerable current density in copper interconnect aggravates the problem. Conse-

quently, the novel on-chip interconnect material is highly desirable as a replacement of

copper interconnect in nanoscale high-speed circuit design. As promising replacement

materials, carbon nanotubes (CNTs) alleviate the above severe timing and reliability

issues in copper interconnect due to their superior conductivity and current carrying

capabilities. CNTs have significantly larger carrier mean free paths and can conduct

larger currents without deterioration compared to copper interconnects [11]. As a

result, the issues such as electromigration that plaque the copper interconnects are

mitigated. In addition, CNTs have high thermal conductivity and mechanical stabil-

ity.

CNTs are miniaturized tubes consisting of rolled up sheets of carbon hexagons. There

are two main types of CNTs with structural perfection. Single-walled carbon nan-

otubes (SWCNTs) are composed of a single graphite sheet seamlessly wrapped into

a cylindrical tube while multi-walled carbon nanotubes (MWCNTs) are composed of

an array of concentrically nested CNTs. Since a single CNT has much larger resis-

tance than copper for global interconnect [2], it is desired to bundle CNTs in parallel,

resulting in bundled CNTs, for better performance. According to [2], it is difficult

to use MWCNTs for long-length ballistic transport, thus, this work will focus on the
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popular bundled SWCNTs. Various research efforts have been spent in CNT fabri-

cation. Most of them explores chemical vapor deposition technologies and successful

fabrication experience on CNT includes [12, 13, 14, 15, 16, 17].

SWCNT MWCNT Bundled SWCNTs

CNT interconnect layer

Copper interconnect layer

Figure 2.1: Copper buffering and CNT buffering.

It has been shown that bundled SWCNTs can outperform copper interconnects in

signal wave transportation along a long global interconnect [2, 18, 19, 20, 21]. For

example, it is shown in [2] that the resistance of bundled SWCNTs can be achieved

50% smaller compared to that of copper at the same size of a long interconnect at

22nm technology node. Despite this, buffer insertion is still necessary to improve

the timing of a bundled SWCNTS. Although there are works [2, 18] which consider
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CNT interconnect, they always use a two pin model since their perspective is from

the device and interconnect modeling of CNTs. None of existing works consider the

deployment of such an advanced technology into the VLSI physical design. To the

best of the authors’ knowledge, this work presents the first physical design technique

considering carbon nanotube interconnects. Refer to Figure 2.1. The CNTs are

replacing copper in global interconnect. In this work, bundled SWCNTs are mainly

considered. The main contribution of this work is summarized as follows.

† The timing driven buffer insertion technique for bundled SWCNTs is proposed

which can handle signal net buffering in VLSI design. To the best of authors’

knowledge, this is the first buffer insertion optimization for CNT interconnects

in the literature.

† Timing driven buffering algorithm for copper interconnect has been adapted to

handle bundled SWCNTs.

† Our experiments are conducted with 500 scaled industrial nets and 10 different

types of scaled buffers and inverters at 22nm technology. With the same timing

constraint, CNT buffering can save over 50% buffer area compared to copper

buffering. In addition, it is demonstrated that CNT buffering can effectively

reduce the delay by up to 32%.
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2.2 Problem Formulation

Consider a routing tree T = (V,E) where V = s0 ∪ Vs ∪ Vn, and E ∈ V × V . Let

|V | = n. Vertex s0 is the source node and also called the root of the tree. Vs is

the set of sink nodes. Each sink, denoted by s, has a sink capacitance and required

arrival time RAT (s). T is said to satisfy the timing constraint if its required arrival

time at root is no earlier than the arrival time at root. Each edge, denoted by e,

in E represents a segment of wire, which has edge resistance R(e), edge inductance

L(e) and edge capacitance C(e). Vn refers to the candidate buffer positions where

the buffers can be inserted. In practice, they are discrete locations and are specified

before buffer insertion algorithm by e.g., wire segmenting technique [55].

A buffer library B which consists of a set of different types of buffers are given to

the buffering problem. Let |B| = m. Each buffer, denoted by b, has its cost W (b),

input capacitance C(b), driving resistance R(b) and intrinsic delay t(b). Following

most existing buffering works [6, 7, 8, 9, 10], the underlying routing tree can be

assumed to be binary since trees in other topologies can be converted to a binary

one using the technique in [8]. Given a tree in carbon nanotube interconnect layer, a

buffer assignment is to determine the locations and the types of buffers which will be

inserted to the routing tree. Our buffer insertion problem is formulated as follows.
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Timing Constrained Minimum Cost Buffering for Carbon Nanotube Inter-

connects: Given a binary routing tree with n candidate buffer locations in carbon

nanotube interconnect layer, a buffer library and a set of candidate buffer positions,

to compute a buffer assignment solution such that the timing constraint is satisfied,

and the total buffer cost is minimized.

2.3 Carbon Nanotube Interconnects

To tackle the fundamental physical limits on copper interconnects, CNTs have

emerged as a promising replacements for Copper interconnects due to their better

conductivity and current carrying capabilities. Table 2.1 from [4, 5] summarizes some

major advantages of CNTs over copper interconnects. In fact, similar observations

have been made from many other works [56, 57, 58, 59, 60].

Table 2.1
Comparison between CNT and copper interconnect [4, 5].

Properties CNT Cu
Max. current density 1010A/cm2 106A/cm2

Mean free path 1000nm 40nm
Thermal conductivity 6000 W/mK 400 W/mK

CNTs are miniaturized tubes consisting of rolled up sheets of carbon hexagons. Fig-

ure 2.2 shows an equivalent circuit model for an isolated single-walled carbon nan-

otube (SWCNT), which is proposed in [2]. It has become a popular model and it will
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be explained how to compute the resistance and capacitance using this model.

2.3.1 Resistance for CNT

2.3.1.1 Resistance for An Isolated SWCNT

The resistance of an isolated SWCNT, denoted by Risolated, is divided into two parts,

the quantum resistance RQ and scattering resistance RS as shown in Figure 2.2.

Recall that the mean free path, denoted by λ, refers to the average distance between

two subsequent collisions of electrons. The mean free path of electrons for a CNT is

about 1µm as shown in Table 2.1, i.e., λ = 1µm. When l ≤ λ where l is the length

of a carbon nanotube, we have [61]

RQ =
h

4e2
= 6.45kΩ, (2.1)

where e is the electronic charge and h is Plank’s constant. Thus, if the length l of a

CNT is less than λ = 1µm, the resistance of CNT is independent of length.

For the length greater than the mean free path, the distributed scattering resistance

for an interconnect with length l is [61, 62]:
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RSl =
hl

4e2λ
. (2.2)

For simplicity, one defines RS = 0 when l ≤ λ. In practice, the total resistance of a

single CNT, denoted by Risolated, is expressed as the sum of quantum resistance and

scattering resistance as shown in the following equation [2]

Risolated = RQ +RSl. (2.3)

Comparing to copper global interconnect, a single SWCNT global interconnect has

resistance of 6.45kΩ/µm, which is too large for timing minimization. However, if a

bundled SWCNTs are used, the resistance can be significantly reduced.

2.3.1.2 Resistance for a Bundled SWCNTs

The resistance of a bundle, denoted by Rbundle, is given by the following equation [62]:

Rbundle = Risolated/Ncnt, (2.4)

where Ncnt is the number of CNTs contained in the bundle. It is clear that the
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resistance decreases with increasing Ncnt.

2.3.1.3 Contact Resistance

Due to the presence of imperfect metal and carbon nanotube contacts, contact resis-

tance needs to be considered. According to [21], some research groups have accom-

plished to fabricate the contact resistances ranging from a few hundred ohms to a

few kilohms which have similar magnitude with quantum resistance and scattering

resistance.

2.3.2 Capacitance for CNT

2.3.2.1 Capacitance for An Isolated SWCNT

The capacitance of the CNT comes from two aspects. One is the electrostatic capac-

itance denoted by CE, and the other is quantum capacitance denoted by CQ.

The quantum capacitance CQl is obtained by [63]:

CQl =
2e2

hvf
l. (2.5)
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Figure 2.2: Equivalent circuit model for bundled SWCNTs intercon-
nect (adapted from [2]).

Since an SWCNT has four conducting channels, the net quantum capacitance of an

isolated SWCNT is
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CCNT
Q l = 4CQl. (2.6)

The quantum capacitance for a bundled SWCNT can be computed as

Cbundle
Q l = NcntC

CNT
Q l. (2.7)

The electrostatic capacitance CE is calculated by treating the CNT as a thin wire,

with diameter d and the distance to the ground plane y. CEl can be calculated as

follows

CEl =
2πε

cosh−1(y/d)
l, (2.8)

where ε is the permittivity of free space. The electrostatic capacitance for a bundled

SWCNTs Cbundle
E is given by a parallel combination of all SWCNTs in the bundle.

The electrostatic capacitance can be calculated using FastCap [64].

According to [2], besides quantum capacitance and electrostatic capacitance, capac-

itance between metallic and semiconducting SWCNTs within a bundle is not im-

portant. In addition, the effect of the quantum capacitance is small, the effective

capacitance of an SWCNTs bundle is nearly equal to its electrostatic capacitance [2].

Cbundlel = Cbundle
E l. (2.9)
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2.3.3 Inductive Impact is Not Important

According to [2], the inductive impact is not important. It shows that an RC model

for interconnect delay is accurate when the following inequality does not hold.

RdrCl <
1

2
RlCl <

√
LCl, (2.10)

where Rdr is the driver impedance and R, C and L are the per unit length interconnect

resistance, capacitance and inductance. According to the simulation conducted in [2]

for different size of driver and SWCNTs, Eq. 2.10 is never satisfied. Therefore, RC

model is sufficient to handle bundled SWCNTs interconnect delay.

2.3.4 Elmore Delay Model for Bundled SWCNTs

This work uses the Elmore delay model for bundled SWCNTs proposed in [2]. Re-

fer to Figure 2.2. The schematic of the driver, load and interconnect is shown in

Figure 2.2(a). The interconnect is made of bundled SWCNTs. Elmore delay model

for bundled SWCNTs with the driver and load capacitance is shown in Figure 2.2(c)

which is derived from the distributed equivalent circuit model shown in Figure 2.2(b).

Rdr is the resistance of the driver and Cload is the load capacitance connecting to the in-

terconnect. Rc,downstream is the contact resistance between the driver and the bundled
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SWCNTs interconnect and Rc,upstream is the contact resistance between the bundled

SWCNTs interconnect and load capacitance. Rbundle
Q and Rbundle

S are the quantum and

scattering resistance of bundled SWCNTs, respectively. Cbundle
Q and Cbundle

E are the

quantum and electrostatic capacitance of bundled SWCNTs, respectively. Since the

capacitance of bundled SWCNTs is approximately equal to the quantum capacitance

of the bundled SWCNTS and quantum resistance is not important for long global

interconnect, the π model can be simplified to Figure 2.2(d).

2.4 Timing Buffering For Carbon Nanotube Inter-

connects

Our algorithm for carbon nanotube interconnect timing driven buffer insertion prob-

lem is based on the dynamic programming algorithm in [7]. In the algorithm, a 3-tuple

(Q,C,W ) is used to characterize each buffering solution. Q represents the required

arrival time for each buffering solution, C represents the downstream capacitance for

each buffering solution, and W is the cumulative buffer cost of the buffering solution.

Working under the dynamic programming framework [7], the tree is processed in a

bottom-up fashion and a set of candidate buffering solutions and the corresponding

3-tuple are propagated from sinks to driver. Precisely, a routing tree is traversed by

depth first search, and the calculation/propagation for Q,C,W begins when a sink is
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reached. The algorithm will compute Q, C and W from sinks up to driver.

Pruning is an important technique in buffer insertion technique due to its effectiveness

in reducing the number of solutions. Following [7], for any two solutions denoted by

γ1, γ2 at the same node, γ2 is said to be inferior to γ1 and is thus pruned if Q(γ1) ≥

Q(γ2), C(γ1) ≤ C(γ2) and W (γ1) ≤ W (γ2). In other word, one will compare two

solutions with the same set of processed candidate buffer locations by their required

arrival time, downstream capacitance and cumulative buffer cost.

When the solutions are propagated all the way up to the driver, one can obtain all

the non-inferior solutions. The one with smallest W satisfying timing constraint will

be returned. During the dynamic programming, there are four operations, namely,

add wire, add buffer, add driver and branch merge. They are described as follows.

2.4.1 Add Buffer

This operation is invoked when a buffer is to be inserted at a candidate buffer lo-

cation v. In any buffering solution γ, after a buffer insertion, a new solution γ′ will

be generated. The cost W (γ′) will be computed as W (γ′) = W (γ) + W (b) if the

buffer b is inserted. Refer to Figure 2.3. Recall that the buffer resistance is R(b),

buffer capacitance is C(b), and buffer intrinsic delay is t(b). To handle the contact

resistance, recall that the contact resistance for the contact linking the buffer b with
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the downstream CNT wire is Rc,downstream(b), and the contact resistance for the con-

tact linking the upstream CNT wires with the buffer b is Rc,upstream(b). The required

arrival time needs to be updated considering the buffer delay and capacitance need

to be set to the input capacitance of the buffer. Sinks can be similarly handled. We

have

:  , , ( )

,,

( )

( )

( )

( )

Figure 2.3: Circuit and parameters for add buffer.

Q(γ′) = Q(γ)−R(b) · C(γ)−Rc,downstream(b)

· C(γ)−Rc,upstream(b) · C(b)− t(b)

C(γ′) = C(b)

W (γ′) = W (γ) +W (b).

(2.11)
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2.4.2 Add Driver

This operation is to add the driver b to the candidate buffering solution. It is similar

to the add buffer operation with difference that one does not compute the delay due to

the upstream contact resistance of the driver and one does not update the cumulative

buffer cost.

Q(γ′) = Q(γ)−R(b) · C(γ)

−Rc,downstream(b) · C(γ)− t(b)

C(γ′) = C(b)

W (γ′) = W (γ).

(2.12)

Table 2.2
Different types of inverter and buffer parameters at 22nm node. (Note that

the inverters in BUF are different from those in INV)

BUF X1 BUF X2 BUF X4 BUF X8 BUF X16
Resistance (Ω) 2310.0 1201.0 618.9 315.5 159.6

Capacitance(fF ) 0.21 0.44 0.88 1.76 3.51
Intrinsic delay (ps) 2.93 2.91 2.87 2.87 2.87

Area (nm2) 15197.6 30395.2 60790.4 121580.8 243161.6
INV X1 INV X2 INV X4 INV X8 INV X16

Resistance (Ω) 1846.0 976.5 514.8 270.2 139.7
Capacitance(fF ) 0.44 0.87 1.74 3.49 6.97

Intrinsic delay (ps) 0.59 0.62 0.61 0.61 0.61
Area (nm2) 10115.6 20231.2 40462.4 80924.8 161849.6
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2.4.3 Add Wire

Since the resistance of bundled SWCNTs global interconnect is related to the length,

it can simply assumed that the distance between two consecutive buffers is larger

than 1µm. Under this assumption, the resistance of bundled SWCNTs can be simply

6.45kΩ
Ncnt

/µm. In this operation, one is to add a wire from location v to its upstream

location u for a candidate buffering solution. Recall that the capacitance for the wire

(u, v) is computed as C(u, v) = Cbundle
E · l(u, v) and the resistance for the wire (u, v)

is computed as R(u, v) = Rbundle = RSl(u, v)/Ncnt, where l(u, v) is the length of wire

(u, v). We have

Q(γu) = Q(γv)−R(u, v) · [C(u, v)

2
+ C(γv)]

C(γu) = C(γv) + C(u, v)

W (γu) = W (γv).

(2.13)

2.4.4 Branch Merge

This operation is to merge the solutions in two branches connected by a branch-

ing point. Since the solutions along each branch have been computed, one

will compute the combinations among them. Suppose that there are a solution
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(Q(γ1), C(γ1),W (γ1)) at left branch and a solution (Q(γ2), C(γ2),W (γ2)) at right

branch. After merging, we have

Q(γ) = min{Q(γ1), Q(γ2)}

C(γ) = C(γ1) + C(γ2)

W (γ) = W (γ1) +W (γ2).

(2.14)

That is, one needs to set the merged required arrival time to be smaller required

arrival time on two branches, the total downstream capacitance to be the sum on the

downstream capacitance on two branches, and the total buffer cost to be the sum of

buffer costs on two branches.

2.5 Experimental Results

2.5.1 Experimental Setup

The proposed carbon nanotube interconnect based timing driven minimum cost buffer

insertion algorithm is implemented in C language and tested on a machine with

3.40GHz Intel Pentium CPU and 3GB memory. The results of CNT buffering are

compared with copper buffering. In this work, the buffer cost is measured by buffer
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area.

Our buffer library consists of 10 buffer types including 5 buffers and 5 inverters. Due

to the lack of industrial buffer library at 22nm technology, a buffer library of 45nm

technology [65] is scaled to 22nm technology. To calculate the resistance, capacitance

and intrinsic delay of different types of buffers and inverters at 22nm node, the sim-

ulation is performed using ngspice [66]. The resistance, capacitance, intrinsic delay

and gate area are shown in Table 2.2. Linear fitting is applied to obtain resistance

and intrinsic delay. The capacitance of buffer is simulated using method in [67].

Table 2.3
Unit resistance and capacitance (for 1µm) of global interconnects with Cu

and bundled SWCNTs at 22nm node.

Properties Cu CNT
Unit resistance (Ω) 14.50 6.45

Unit capacitance (fF ) 0.16 0.16

Our experiments are performed to 500 global nets extracted from an industrial ASIC

chip in an old technology. Due to the lack of industrial nets in 22nm technology, we

scale wire lengths of these old technology nets to 22nm technology.

The parameters of copper and bundled SWCNTs are presented in Table 3.1. The

unit resistance and unit capacitance are for 1µm. The parameters of copper are

obtained from ITRS 2007 [68]. Note that the feature size predicted by ITRS 2007

is smaller than the one in the industrial 22nm technology according to [69]. We
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Table 2.4
Timing constrained minimum cost buffering results on 5 representative nets

Test cases 1 2 3 4 5

CNT w/o contact
resistance

Area (nm2) 318666.0 364162.0 222543.0 50578.0 40462.4
# Buffers 7 5 5 3 2
Delay (ps) 754 611 676 1019 722

CNT w/ contact
resistance (100Ω)

Area (nm2) 379359.0 424855.0 222543.0 80924.8 40462.4
# Buffers 7 6 5 4 2
Delay (ps) 762 599 691 927 736

Cu

Area (nm2) 955997.0 819412.0 475433.0 202312.0 91040.4
# Buffers 18 17 12 10 5
Delay (ps) 766 611 702 994 870

use the ITRS parameters since the resistance and capacitance information of the in-

dustrial 22nm technology are not available. The parameters of bundled SWCNTs

are calculated as follows. Refer to Figure 2.4. The cross section area of the global

interconnect is set to be 33 × 88nm2. For global interconnect, the resistance of a

single SWCNT is approximately 6.45kΩ/µm since the effect of quantum resistance

for global interconnect is small. The impact of different number of SWCNTs in the

bundle to the CNT resistance can be observed from Figure 2.4. If there are 1000

metallic SWCNTs in the 33× 88nm2 area, the total resistance of bundled SWCNTs

is 6.45kΩ/µm/1000 = 6.45Ω/µm. Note that the density of bundled SWCNTs is

1000/(33 · 88) = 0.34nm2 which is below the maximum density 0.66nm2 from ITRS

2011 [70]. The unit capacitances of bundled SWCNTs and copper are set to be the

same according to [2]. In this work, one considers both the ideal contact resistance

and the practical contact resistance. The ideal contact resistance means no contact

resistance. In the following discussion, without considering contact resistance is iden-

tical to ideal contact resistance. The practical contact resistance is set to 100Ω which
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is achievable according to [21].
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Figure 2.4: Resistance comparison and cross section area of Cu and bun-
dled SWCNTs global interconnect in 22nm technology.

2.5.2 Experimental Results

Table 2.5
Average result for timing constrained minimum cost buffering on 500 nets

Test cases Area (nm2) Area ratio # Buffers Delay (ps) # Solutions CPU(s)
CNT w/o contact 107816.70 0.42 3.4 1125.8 2193.2 3.79
CNT w/ contact 105494.80 0.41 3.5 1127.9 1827.9 3.15

Cu 255110.10 1.00 7.7 1248.9 2250.0 3.54
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Table 2.6
Timing minimization (without considering cost) on 5 nets

Test cases 1 2 3 4 5

CNT w/o contact
resistance

Area (nm2) 3307950.0 2867260.0 2477160.0 3039520.0 1945290.0
# Buffers 50 51 44 44 32
Delay (ps) 376 216 314 249 188

CNT w/ contact
resistance (100Ω)

Area (nm2) 1463910.0 1468890.0 1408250.0 1458970.0 1094230.0
# Buffers 36 31 31 24 18
Delay (ps) 423 263 347 302 229

Cu

Area (nm2) 2851920.0 2745490.0 2269040.0 2872350.0 2142860.0
# Buffers 65 55 56 48 36
Delay (ps) 479 317 382 363 276

Two sets of experiments are conducted which are timing constrained minimum cost

buffering and timing minimization without cost minimization, respectively.

For timing constrained minimum cost buffering, the results on five representative nets

are shown in Table 2.4 and the results on 500 nets are shown in Table 2.5. We make

the following observations.

† One can see that in order to achieve the similar delay, the CNT buffering saves

more than 50% buffer area over copper buffering. Averaging over 500 nets, CNT

buffering without considering contact resistance saves 58% buffer area and CNT

buffering with 100Ω contact resistance saves 59% buffer area. Take net 1 in

Table 2.4 for an example, CNT buffering without considering contact resistance

saves 67% buffer area and CNT buffering with 100Ω contact resistance saves

60% buffer area.

† The total number of buffers in CNT buffering is much (about 2×) smaller than

that of copper buffering thanks to the fact that wire resistivity of bundled
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SWCNTs is much lower than that of copper for global interconnect as shown in

Table 3.1.

† One can see that the contact resistance does not have significant impact on the

performance for CNT interconnect timing constrained minimum cost buffering.

† It would be interesting in investigating the delay-area tradeoff between copper

buffering and CNT buffering. For this, net 3 in Table 2.4 is chosen to run the

buffering algorithm while keeping all non-dominated solutions. One generates

delay-area tradeoff curves for copper buffering and CNT buffering, respectively.

Refer to Figure 2.5. It is clear that CNT buffering always outperforms the

copper buffering in terms of timing and buffer area.

The above results are obtained through setting certain timing constraint and compute

the minimum area solutions. One may be interested in the best achievable timing in

both of CNT buffering and copper buffering. The results of five representative nets

for buffering timing minimization without considering cost are shown in Table 2.6. It

demonstrates that CNT buffering can reduce timing by up to 32% which is obtained

from net 5. In addition, the contact resistance has some impact on the performance

of CNT buffering such as area and timing.
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Figure 2.5: Area and delay comparison between Cu and CNT.

2.6 Summary

Carbon nanotube interconnects have become a promising replacement material for

copper interconnects thanks to their superior conductivity. This work develops the

first timing driven buffer insertion technique for carbon nanotube interconnects. In

the experimental results, it demonstrates that with the same timing constraint, CNT

buffering can save over 50% buffer area compared to copper buffering. In addition,

CNT buffering can effectively reduce the delay by up to 32% without considering

cost.
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Chapter 3

Stochastic Buffering For Bundled

SWCNT Interconnects Considering

Unidimensional Fabrication

Variation1

3.1 Introduction

The heterogeneous system architecture which leverages multicore computing

paradigm has become increasingly popular and it has been successfully deployed in

1The material contained in this chapter was accepted to “IEEE Transactions on Emerging Topics
in Computing (TETC).” See Appendix C.2 for the copyright permission from IEEE.
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many application scenarios. Nevertheless, there are still various design challenges

which need to be tackled, and timing minimization is a critical one among them. It

is well known that interconnect delay has become the bottleneck of the circuit tim-

ing. However, existing copper based interconnects technologies are approaching their

fundamental physical limits. Thus, novel interconnect materials such as carbon nan-

otube (CNT) become highly desirable. There are two types of CNTs regarding the

electrical properties which are metallic CNTs (mCNTs) and semiconducting CNTs

(sCNTs). Bundled metallic single walled carbon nanotubes (SWCNTs) have better

electrical performance than copper in terms of e.g., superior conductivity and current

carrying capabilities. Therefore, SWCNTs are suggested to be used as long global

interconnects [2, 3, 11, 12]. However, due to the imperfectness of fabrication, the

variations in the geometric parameters of CNTs will lead to significant timing yield

reduction of the design [22].

Chemical vapor deposition (CVD) is the most popular technique for CNT fabrication

[13, 14, 15, 16, 17]. In such a technique, CNTs grow along a single direction and

their geometric parameters are controlled by the environment of the CVD system.

For example, the diameters of tubes are highly dependent on the processing environ-

ment and their orientations are controlled by the direction of gas flow. CNT density

variations are caused by non-uniform spacing between CNTs. Therefore, the number

of CNTs in the bundled SWCNT interconnects may have a large variance. There are

other variations from the imperfect fabrication process, such as the growth kinetics,
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flow patterns variations, nucleation sites variations, and adsorption and diffusion vari-

ations, which can be translated to the variations on the resistance and capacitance of

the bundled SWCNT interconnects. These variations could be partially captured by

the density and diameter variations.

When using CNTs as interconnects, the main sources of variability include the di-

ameters of CNT, the density of mCNTs in the bundle, the misalignment of CNTs

and the presence of sCNTs [22, 23, 24, 25]. In this work, to illustrate our technique

we focus on the diameter and density variations, while our approach can be easily

adapted to handle other variations. The density and diameter variations will result in

timing variations on the bundled SWCNT interconnects, impacting the timing yield

of the CNT based circuit design.

In the literature, there are some works addressing the variations to carbon nanotube

field effect transistor (CNFET) based circuit designs[26, 27]. The models for the

impact of mCNTs on the CNFET and circuit delay are provided in [28, 29] and the

impact of undeposited CNTs to the circuit delay is studied in [30, 31]. Shahi and

Zarkesh-Ha propose an analytical model to predict gate delay variation induced from

CNT density variation [32]. Zhang et al. consider spatial correlation in directional

CNT growth which helps reduce the device-level failure by 350× [33]. A timing-driven

placement method has been recently developed for CNFET circuits in [34].

Variations also manifest strongly in CNT interconnects. Refer to Figure 3.1. There
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are some works modelling the fabrication impacts. For example, Nieuwoudt and Mas-

soud model the variational impact on resistance, capacitance, inductance, and delay

of bundled SWCNT interconnects [21]. However, it does not provide any closed form

computation model for resistance and capacitance of the bundled SWCNT intercon-

nects, and thus it cannot be extended to handle spatial correlation for our purpose. In

[35], a statistical model is proposed to analyze the crosstalk noise induced by process

variations on SWCNT based on a closed-form derivation. However, it focuses on noise

analysis which cannot be adapted to modelling timing and its does not consider unidi-

mensional spatial correlation as well. In this work, we will present a new closed-form

model for the resistance and capacitance of bundled SWCNT interconnects, which is

integrated into our buffer insertion algorithm for timing evaluations.

A striking difference compared to the copper counterpart is that there exists spatial

correlation in bundled SWCNT interconnect fabrication [22, 25, 36]. Since CNTs

grow along one dimension in the fabrication, the spatial correlation in variations in

CNTs is in one dimension, in contrast to the two dimensional spatial correlation in the

copper based design. Such a property will be leveraged in developing our interconnect

optimization technique for CNT based circuits.

In the literature, there are very limited works studying the carbon nanotubes based

physical design. The first CNT buffer algorithm is developed in [3]. However, that

work does not consider the fabrication variations which could significantly impact

45



Bundled SWCNTs

190 /

200 /

210 /

CNT interconnect layer

Driver Buffer Buffer Sink

Figure 3.1: Illustration of fabrication variation aware buffer insertion prob-
lem for bundled SWCNT interconnects.

the performance of circuit design. This motivates us to model the variations, esp.

the unidimensional spatial correlation of fabrication variations, on resistance and

capacitance of bundled SWCNT interconnects, and develop a new stochastic CNT

buffering algorithm based on this model. The contribution of this work is summarized

as follows.

† Fabrication variation and unidimensional spatial correlation on the resistance

and capacitance of bundled SWCNT interconnects are analyzed.

† A unidimensional variation aware importance sampling based stochastic

SWCNT interconnects buffering algorithm is proposed. A new importance

sampling based timing evaluation technique is also developed to improve the

computational efficiency of the algorithm.
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† To the best of our knowledge, this is the first work on the SWCNT interconnect

optimizations considering variations.

† The experimental results on signal nets demonstrate that the proposed unidi-

mensional variation aware importance sampling based stochastic SWCNT in-

terconnects buffering algorithm saves over 30% buffer area over copper buffer-

ing on 50 nets while satisfying timing constraints. In addition, our proposed

stochastic SWCNT interconnects buffering algorithm achieves much better per-

formance than the best case design and the worst case design in terms of timing

and buffer cost.

3.2 Preliminaries

3.2.1 Overview of The Deterministic CNT Buffering Algo-

rithm

In the literature, there are several buffer insertion algorithms for copper interconnects

such as [7, 8, 9, 10]. A similar algorithm for buffering CNT interconnects is developed

in [3]. However, it is only for deterministic optimization which does not consider

the fabrication variations. In contrast, this work develops a new variation aware

buffer insertion, which actually utilizes the technique in [3] as a component. For
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completeness, some details of [3] are included as follows.

The inputs to the buffer insertion problem include a routing tree and a buffer library.

Let T = (V,E) denote the routing tree, where V = s0∪Vs∪Vc, and E ∈ V ×V , where

s0 is the driver, Vs is the set of sinks, and Vc is the set of candidate buffer locations.

Each sink s has a sink capacitance and a required arrival time. In the deterministic

buffer insertion problem, a buffered tree satisfies the timing constraint if and only if

its required arrival time at the driver is no earlier than the arrival time. Each edge e

in the tree has a resistance and a capacitance. In the buffer insertion literature, the

routing tree is typically assumed to be binary [7, 8, 9] since otherwise the tree can

be easily converted to a binary one [8]. A set of candidate buffer locations along the

routing are also given in practice (which can be computed using e.g., the technique

in [55]). A buffer library B is available to the buffer insertion problem. Each buffer

type b has a cost wbj, an input capacitance cbj and a driving resistance rbj. Given a

binary routing tree in a nanotube wire layer and a buffer library, the deterministic

buffer insertion algorithm asks to determine the locations and types of buffers to be

inserted while satisfying the timing constraint.

In the deterministic CNT buffering algorithm, a 3-tuple (Q,C,W ) characterizes a

buffering solution, where Q is the required arrival time, C is the downstream capac-

itance, and W is the cumulative buffer cost. In the algorithm, a set of candidate

buffering solutions represented by those 3-tuples are propagated from the sinks to the
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driver. The propagation process starts with a sink and it computes Q, C and W all

the way to the driver. During this process, inferior solutions are pruned for speedup.

At the driver, the solution with the minimum buffer cost satisfying timing constraint

is returned. Let γ denote a solution. For any two solutions γ1, γ2 at the same node, γ1

is inferior to γ2 if Q(γ1) ≤ Q(γ2), C(γ1) ≥ C(γ2) and W (γ1) ≥ W (γ2). The algorithm

has three operations which are add buffer, add wire and branch merge. Note that the

add driver can be easily implemented using add buffer [3].

3.2.1.1 Add Buffer

To insert a buffer at a candidate buffer location v, the buffering solution γ will be

updated to γ′. Let R(b) denote the buffer resistance, C(b) denote buffer capacitance,

and t(b) denote buffer intrinsic delay for a buffer type b. Eqn. 3.1 is used in [3] to

update a solution. Clearly, the required arrival time is updated considering the buffer

delay, the capacitance is set to the input capacitance of b, and W (γ′) is computed as

W (γ′) = W (γ) +W (b).

Q(γ′) = Q(γ)−R(b) · C(γ)− t(b)

C(γ′) = C(b)

W (γ′) = W (γ) +W (b).

(3.1)
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3.2.1.2 Add Wire

[3] treats the resistance of bundled SWCNT interconnects as a deterministic value

which is 6.45kΩ
Ncnt

/µm, where Ncnt is the number of nanotubes in the bundled SWCNT

interconnects. To add a wire from a location v to its upstream location u, the buffering

solution can be updated as in Eqn. 3.2.

Q(γu) = Q(γv)− (Rq(u, v)

+Rs(u, v)) · [C(u, v)

2
+ C(γv)]

C(γu) = C(γv) + C(u, v)

W (γu) = W (γv).

(3.2)

3.2.1.3 Branch Merge

This operation is performed when two branches are to be merged in the routing

tree. Given two solutions (Q(γ1), C(γ1),W (γ1)) and (Q(γ2), C(γ2),W (γ2)) associated

with different branches, they can be merged as in Eqn. 3.3. Clearly, the merged

required arrival time is the minimum of those on two branches, the total downstream

capacitance is the sum of those downstream capacitance on two branches, and the

total buffer cost is also the sum of buffer costs on two branches.
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Q(γ) = min{Q(γ1), Q(γ2)}

C(γ) = C(γ1) + C(γ2)

W (γ) = W (γ1) +W (γ2).

(3.3)

3.2.2 Problem Formulation

Considering the imperfectness of CNT fabrication, variations of geometric parameters

such as density and diameter impact the buffer insertion assignment. The target of

our variation aware buffer insertion is to guarantee the timing of buffered routing

trees satisfying timing constraints after fabrication with certain high probability. In

this work, 99% probability is chosen to demonstrate our technique, while others ratios

can be easily handled. The timing corresponding to the 99% probability is called 99%

timing which can be computed using simulations as follows. Given a buffered routing

tree, one generates n samples to simulate the fabrication process and the timing of

each sample is evaluated. The timings of these n samples are then sorted according

to the increasing order and the 99%n− th largest timing in this list is denoted as the

99% timing of the buffered tree. Given the unidimensional variation model described

in Section 3.3, our problem is formulated as follows.

Unidimensional Variations Aware Timing Constrained Minimum Cost

Buffering for Bundled SWCNT Interconnects: Given a binary routing tree
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with a set of candidate buffer locations in bundled SWCNT routing layers, variation

models of bundled SWCNT interconnects and a buffer library, to compute a buffer

assignment solution such that the 99% timing of the routing tree satisfies the timing

constraint and the total buffer cost is minimized.

3.3 Unidimensional Variation Model of Bundled

SWCNT Interconnects

3.3.1 Variation Model of Resistance and Capacitance of

SWCNT Interconnects

Due to the lack of precise control over CNT growing during the fabrication process,

there can be significant variations. Refer to Figure 3.2 for a deterministic bundled

SWCNT interconnects model [3]. Rdr and Cdr denote the resistance and capaci-

tance of the driver. Rc,downstream is the contact resistance between the driver and

the bundled SWCNT interconnects and Rc,upstream is the contact resistance between

the bundled SWCNT interconnects and load capacitance Cload. Rbundle
S is the scat-

tering resistance of bundled SWCNT interconnects, and Cbundle
E is the electrostatic

capacitance of bundled SWCNT interconnects. Note that this model only considers
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resistance and capacitance of bundled SWCNT interconnects since the inductance

is negligible for prevailing designs and the RC model is as accurate as RLC model

according to [2, 3, 71]. This model will be augmented to consider variations.

, ,

2 2

Figure 3.2: Simplified Equivalent π circuit model for bundled SWCNT
interconnects [3].

The resistance of bundled SWCNT interconnects consists of quantum resistance and

scattering resistance. However, the resistance for global bundled SWCNT intercon-

nects is basically equal to the scattering resistance of bundled SWCNT interconnects

[3]. The scattering resistance is a function with density of the bundled SWCNTs. To

consider the variations on resistance, motivated by [72] which uses first-order Taylor

series expansion to approximate the gate and interconnect delays, the resistance of a

wire can be expressed as follows.

Rv = Rbundle
S =

RSl

Ncnt

=
RSl

sδ

≈ Rv0 +
∂Rbundle

S

∂δ
|δ=δ0∆δ

≈ Rv0 −
RSl0
sδ2

0

∆δ

≈ Rv0 −
6.45l0
sδ2

0

∆δ,

(3.4)
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where Rbundle
S is scattering resistance of bundled SWCNT interconnects, RS is unit

scattering resistance of an isolated SWCNT, l is length of an isolated SWCNT, l0 is

nominal length of an isolated SWCNT, Ncnt is number of SWCNTs in the bundle, s

is cross section area of bundled SWCNTs, δ is density of bundled SWCNTs, and δ0

is nominal density of bundled SWCNTs.

It has been demonstrated in [22] that the density, i.e., the nanotube count, of bundled

SWCNT interconnect follows normal distribution. Since the resistance Rv is a linear

function of the density according to Eqn. 3.4, the resistance Rv also follows normal

distribution. The mean value of Rv is Rv0 , and the variance σ2
RN

is

σ2
RN

= (
6.45l0
sδ2

0

)2σ2(δ). (3.5)

The capacitance of bundled SWCNT interconnects consists of quantum capacitance

and electrostatic capacitance. According to [2], the effective capacitance of bundled

SWCNT interconnects is nearly equal to its electrostatic capacitance and the effect
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of the quantum capacitance is negligible. Therefore, the normally distributed capac-

itance of an isolated CNT interconnect is

Cv =
∑

CE =
∑ 2πε

cosh−1y/d

≈
∑

(Cv0 +
∂CE
∂d
|d=d0∆d)

≈
∑

(Cv0 ±
y

d2
0(cosh−1(y/d0))2

√
((y/d0)2 − 1)

∆d),

(3.6)

where CE is the electrostatic capacitance of an isolated SWCNT, Cv0 is the nomi-

nal capacitance of bundled SWCNT interconnects, y is distance between an isolated

SWCNT and ground, d is diameter of an isolated SWCNT, and d0 is nominal diam-

eter of an isolated SWCNT. Note that the distance y between the SWCNTs and the

ground can be treated as constant. Similar to the above analysis, since the diameter

of carbon nanotubes follows normal distribution [22], the capacitance CE also follows

normal distribution. The mean value of Cv is Cv0 , and the variance of CE is

σ2
CN

= (
y

d2
0(cosh−1(y/d0))2

√
((y/d0)2 − 1)

)2σ2(d). (3.7)
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Figure 3.3: Spatial correlation illustration of the bundled SWCNT inter-
connects.

3.3.2 Variation Model of Resistance and Capacitance of

SWCNT Interconnect Considering Unidimensional

Spatial Correlation

Since CNTs grow along one dimension, after fabrication the geometric parameters

(such as diameter d and density δ) of SWCNTs at different locations in this dimension

exhibit strong correlations. In addition, the less distance between CNTs along this

dimension, the more spatial correlations they have [22, 25, 36]. Motivated by [72]

which models the spatial correlations for copper interconnects, one can model the

unidimensional correlation on SWCNTs as follows. Refer to Figure 3.3. Along the

CNT growing dimension, the circuit layout can be partitioned into a set of grids.
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The resistance and capacitance of bundled SWCNT interconnects in a grid (i, j)

considering the spatial correlation with its neighboring grids (i − 1, j) and (i + 1, j)

can be modeled as

Rvsij = Rvs(δi−1,j , δi,j , δi+1,j)

≈ Rvsij0 +
∂Rvs
∂δi−1,j

∆δi−1,j +
∂Rvs
∂δi,j

∆δi,j +
∂Rvs
∂δi+1,j

∆δi+1,j ,

(3.8)

Cvsij = Cvs(di−1,j , di,j , di+1,j)

≈ Cvsij0 +
∂Cvs
∂di−1,j

∆di−1,j +
∂Cvs
∂di,j

∆di,j +
∂Cvs
∂di+1,j

∆di+1,j .

(3.9)

According to the derivations of resistance and capacitance of bundled SWCNT in-

terconnects, the resistance and capacitance of bundled SWCNT interconnects in grid

(i, j) considering spatial correlation can be updated as follows:

Rvsij ≈ Rvsij0 −
6.45li−1,j,0

sδ2
i−1,j,0

∆δi−1,j

− 6.45li,j,0
sδ2
i,j,0

∆δi,j −
6.45li+1,j,0

sδ2
i+1,j,0

∆δi+1,j ,

(3.10)

Cvsij ≈ Cvsij0

± y

d2
i−1,j,0(cosh−1(y/di−1,j,0))2

√
((y/di−1,j,0)2 − 1)

∆di−1,j)

± y

d2
i,j,0(cosh−1(y/di,j,0))2

√
((y/di,j,0)2 − 1)

∆di,j)

± y

d2
i+1,j,0(cosh−1(y/di+1,j,0))2

√
((y/di+1,j,0)2 − 1)

∆di+1,j)

(3.11)

The model of resistance and capacitance of bundled SWCNT interconnects has been

developed considering the unidimensional variations on densities and diameters. This

model will be used in the stochastic buffer insertion.
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3.4 Unidimensional Variation Aware Importance

Sampling Based Stochastic SWCNT Intercon-

nects Buffering Algorithm

3.4.1 Algorithmic Flow

A new stochastic buffer insertion algorithm is developed in this work to handle the

unidimensional correlation of fabrication variations on the bundled SWCNT intercon-

nects. In the proposed algorithm, given the probabilistic distributions of the resistance

and the capacitance of the bundled SWCNT interconnects, some high probability

CNT parameter ranges of resistances and capacitances can be estimated. A paramet-

ric CNT buffering will be developed considering different resistances and capacitances.

The buffering solutions will be evaluated using a novel importance sampling based

method and the 99% timing (as defined in Section 3.2.2) will be estimated. The so-

lution whose 99% timing satisfies the timing constraint and with the smallest buffer

cost will be returned as the final solution.

The algorithmic flow is shown in Figure 3.4. It consists of three parts. The first

part is to generate the high probability CNT parameter ranges of resistances and
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Figure 3.4: The algorithmic flow of the proposed unidimensional variation
aware importance sampling based stochastic SWCNT interconnects buffering
algorithm.

capacitances of bundled SWCNT interconnects. The resistances and capacitances are

modeled as in Section 3.3.2, which considers the unidimensional spatial correlation

in SWCNT fabrication variations. According to the three-sigma rule, 99.73% of the

values of variables following a normal distribution N(µ, σ2) lie within the range of

[µ−3σ, µ+3σ]. Thus, with a high probability resistances and capacitances of bundled

SWCNT interconnects in grid (i, j) are distributed in the following ranges bounded

by [Rl
ij, R

u
ij], [C l

ij, C
u
ij], respectively, where

Rl
ij = µRN − 3σRN ,

Ru
ij = µRN + 3σRN ,

(3.12)
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and

C l
ij = µCN − 3σCN ,

Cu
ij = µCN + 3σCN .

(3.13)

This is why the above ranges are called high probability CNT parameter ranges in

this work.

The second part is a parametric CNT buffering algorithm. Motivated by [73], a

parameter β is used to model the uncertainty of the resistance and capacitance of

the bundled SWCNT interconnects, as shown in Eqn. 3.14. If the lower bounds of

the resistance Rl
ij and capacitance C l

ij are used in the design, we call it the best case

design. If the upper bounds of the resistance Ru
ij and capacitance Cu

ij are used in the

design, we call it the worst case design. When β = 1, the resistances and capacitances

are equal to the lower bounds (i.e. Rl
ij, C

l
ij), which is the best case design. When

β = 0, the resistances and capacitances are equal to the upper bounds (i.e. Ru
ij, C

u
ij),

which is the worst case design. Different tradeoff can be obtained through varying

β between 0 and 1. In fact, our algorithm is to find the best β such that the 99%

timing of the corresponding buffer insertion solution satisfies the timing constraint

and is with minimum buffer cost. Given any β, the resistances and capacitances are

deterministic values and then we run the deterministic dynamic programming based

CNT buffering algorithm in [3] which is reviewed in Section 3.2.1 to compute the
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corresponding buffering insertion.

Rβ
ij = βRl

ij + (1− β)Ru
ij,

Cβ
ij = βC l

ij + (1− β)Cu
ij

(3.14)

Driver Sink

Sink

Driver Sink

Sink

Driver Sink

Sink

Driver Sink

Sink

Driver Sink

Sink

Driver Sink

Sink

Best case design 
w/ lower bounds of resistance 

and capacitance

Worst case design
w/ upper bounds of resistance 

and capacitance

Buffer insertion 
w/ timing constraints 100ps

Buffer insertion
w/ timing constraints 100ps

After fabrication

After fabrication

Delay = 90ps Delay = 90ps

Delay = 120ps Delay = 100ps

Delay = 110ps

Delay = 80ps

Figure 3.5: The illustrations of best case design and worst case design.

Different β leads to different buffering solutions. Take the best case design and the

worst case design as examples. Refer to Figure 3.5. In best case design, when the

resistances and capacitances are set to the lower bounds, one just needs to insert few

buffers to satisfy the timing constraints. However, such a design is too optimistic

on variational impact, and the resulting buffered tree might not satisfy the timing

constraint in many fabricated designs. In the worst case design, the resistances and

capacitances are set to the upper bounds. Such a design is too conservative which

means that there can be significant waste in buffer deployment.
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The third part is to evaluate the timing of the obtained buffering solution. To esti-

mate 99% delay (while other ratios can be easily handled) of a CNT based circuit,

time consuming simulations are needed. The standard way is to perform the Monte

Carlo simulations to evaluate the 99% delay of each buffering solution. For high accu-

racy, this typically requires a large amount (e.g., 10000 samples) of samples for each

evaluation which is computationally expensive.

3.4.2 Importance Sampling For Timing Evaluation

An importance sampling method will be developed to accelerate the standard Monte

Carlo simulation based timing evaluation. According to Section 3.3, the resistance

RN follows normal distribution NR(µRN , σ
2
RN

) and the capacitance CN follows normal

distribution NC(µCN , σ
2
CN

), with the mean values µRN = Rv0 and µCN = Cv0, and the

variances σ2
RN

and σ2
CN

computed using Eqn. 3.5 and Eqn. 3.7. According to [74], the

probability density of the normal distribution is

g(x|(µ, σ2)) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (3.15)

where µ is the mean value of the distribution and σ2 is the variance of the distribution.
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Therefore, the probability density of normal distribution of resistance is

g(RN |(µRN , σ2
RN

)) =
1

σRN
√

2π
e
−

(RN−µRN )2

2σ2
RN . (3.16)

Similarly, the probability density of normal distribution of capacitance is

g(CN |(µCN , σ2
CN

)) =
1

σCN
√

2π
e
−

(CN−µCN )2

2σ2
CN . (3.17)

Figure 3.6: The comparison between a normal distribution and a t distri-
bution.

The idea of importance sampling is to generate samples according to a new distribu-

tion instead of the original distribution such that much fewer samples are needed in

the new distribution so as to achieve the similar simulation accuracy [75]. The new
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Figure 3.7: The comparison of 99% delay obtained from the standard
Monte Carlo simulation with 10000 samples, Latin Hypercube sampling
based simulation with 500 samples, and Importance Sampling based sim-
ulation with 500 samples.

distribution is called importance distribution. According to [76], t distribution is a

good choice as the importance distribution for normal distribution. The probability

density function for t distribution is

f(x|v) =

∫∞
0
x
v+1

2
−1e−xdx

√
vπ

∫∞
0
x
v
2
−1e−xdx

(1 +
x2

v
)−

v+1
2 , (3.18)

where v is the number of degrees of freedom in t distribution. The variance of t

distribution is equal to v/(v−2). The probability density of t distribution of resistance

is

f(Rt|vRt) =

∫∞
0
R

vRt
+1

2
−1

t e−RtdRt

√
vRtπ

∫∞
0
R

vRt
2
−1

t e−RtdRt

(1 +
R2
t

vRt
)−

vRt
+1

2 , (3.19)

where vRt =
2σ2
RN

σ2
RN
−1

.
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Similarly, the probability density of t distribution of capacitance is

f(Ct|vCt) =

∫∞
0
C

vCt
+1

2
−1

t e−CtdCt
√
vCtπ

∫∞
0
C

vCt
2
−1

t e−CtdCt

(1 +
C2
t

vCt
)−

vCt
+1

2 , (3.20)

where vCt =
2σ2
CN

σ2
CN
−1

.

Note that t distribution has zero mean value. One can simply shift it to handle non-

zero mean case. For this, one first generates samples R′t, C
′
t using t distribution, and

then add Rv0, Cv0 to obtain the shifted samples Rv0 +R′t, Cv0 +C ′t, which is denoted

as Rt, Ct. Refer to Figure 3.6 for the comparison between normal distribution and

t distribution. t distribution has a heavier tail, and thus the possibility to generate

extreme cases is improved which means that the total number of samples generated

using t distribution can be significantly reduced. According to our experiences, t

distribution only needs 500 samples in simulation such that the computed 99% timing

can well approximate the value obtained from the standard Monte Carlo simulation

using 10000 samples.

Given the kth sample of wire segment w generated from t distribution, let Rw
tk

denote

the resistance and Cw
tk

denote the capacitance. The delay of the wire segment w in

the kth sample generated from t distribution is evaluated as dwtk . According to the

importance sampling, the delay of t distribution needs to be transformed to that of
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dwnk =
Rw
tk
Cw
tk

2
·

1
σRN

√
2π
e
−

(Rwtk
−Rv0)2

2σ2
RN

∫∞
0 (Rwtk

−Rv0)
vRt

+1

2 −1e
−(Rwtk

−Rv0)
dRwtk

√
vRtπ

∫∞
0 (Rwtk

−Rv0)
vRt

2 −1e
−(Rwtk

−Rv0)
dRwtk

(1 +
(Rwtk

−Rv0)2

vRt
)−

vRt
+1

2

·

1
σCN

√
2π
e
−

(Cwtk
−Cv0)2

2σ2
CN

∫∞
0 (Cwtk

−Cv0)
vCt

+1

2 −1e
−(Cwtk

−Cv0)
dCwtk

√
vCtπ

∫∞
0 (Cwtk

−Cv0)
vCt

2 −1e
−(Cwtk

−Cv0)
dCwtk

(1 +
(Cwtk

−Cv0)2

vCt
)−

vCt
+1

2

(3.22)

normal distribution denoted as dwnk , which can be computed as follows.

dwnk = dwtk ·
g(Rw

tk
) · g(Cw

tk
)

f(Rw
tk
−Rv0)f(Cw

tk
− Cv0)

, (3.21)

where g(·) is the probability density function of resistance and capacitance following

normal distribution (Eqn. 3.16 and Eqn. 3.17), f(·) is the probability density function

of resistance and capacitance following t distribution (Eqn. 3.19 and Eqn. 3.20), and

dwtk =
Rwtk

Cwtk
2

. Combining Eqn. 3.16, Eqn. 3.17, Eqn. 3.19 and Eqn. 3.20, Eqn. 3.21

can be derived to Eqn. 3.22. Using first order approximation, Eqn. 3.22 can be

simplified to Eqn. 3.23. The factor
Γ(
vRt

2
,−Rv0)Γ(

vCt
2
,−Cv0)

Γ(
vRt

+1

2
,−Rv0)Γ(

vCt
+1

2
,−Cv0)

is approximately equal

to 1 if vRt >> 1 and vCt >> 1. The delay of the circuit dnk for kth sample can

be calculated using additions and multiplications. The set of timing values Dn =

{dn1 , dn2 , ..., dnK} are then sorted and 99% timing can be identified which is returned

as the 99% delay.

Note that the Latin Hypercube (LH) sampling is also a popular method for improving
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, where Γ(a, b) =

∫ ∞
b

x
a−1

e
−x

dx

(3.23)

the standard Monte Carlo simulation in terms of the computational efficiency. LH

sampling, which is first proposed in [77], stratifies the input probability distributions.

LH sampling divides the cumulative probability curve into equal probability intervals

and takes a random value from each interval of the input distribution. However, the

99% delay are distributed along the right tails of the simulation space, which are

rare events. Using the importance distribution, the tail probability is enlarged and

less samples are needed to calculate the 99% delay. To verity the assumption, we

design a case study and compare the LH sampling method with the t distribution

based importance sampling. According to Figure 3.7, 99% delay obtained from 10000

samples from normal distribution and 500 samples from t distribution are close to

each other. The 99% delay obtained from 500 samples of Latin Hypercube simulation

is not as accurate as the importance sampling simulation. Thus, importance sampling
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is chosen to estimate the timing.

3.5 Experimental Results

3.5.1 Experimental Setup

The proposed unidimensional variation aware importance sampling based stochastic

SWCNT interconnect buffer insertion algorithm is implemented using C language and

tested on a computer with 3.40GHz Intel Pentium CPU and 3GB memory. The test

cases in [3] are scaled to 16nm technology node. In this work, the buffer area is used

to measure the buffer cost. Our experiments are performed to 50 global nets extracted

from an industrial ASIC chip in an old technology. Due to the lack of industrial nets

in 16nm technology, wirelengths are scaled. According to the ITRS [68], the unit

resistance and capacitance of CNT and copper are shown in Table 3.1. The results

of fabrication variation aware CNT buffering are compared with copper buffering.

Three sets of testcases are used in the experiments. According to [21, 23, 78], the

variations of the resistance and capacitance of bundled SWCNT interconnects are set

to be 5%, 10% and 20%, respectively. Since the impact of fabrication variations of

global copper interconnects on the timing could be negligible according to [79], in our

comparison no variations on copper interconnects are assumed.
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Table 3.1
Unit resistance and capacitance (for 1µm) of global interconnects with

copper and bundled SWCNTs at 16nm technology node.

Properties Cu CNT
Unit resistance (Ω/µm) 5.38 2.86

Unit capacitance (fF/µm) 0.16 0.16

3.5.2 Experimental Results

Table 3.2
Average results for timing constrained minimum cost buffering on 50 nets
comparing with copper buffering. No variations on copper interconnects
and 5%, 10%, 20% variations on resistances and capacitances of bundled

SWCNT interconnects are considered, respectively.

Test cases Buf Area (nm2) Buf Area Ratio 99% Delay (ps)
CNT (5%) 33800.78 0.660 908.32
CNT (10%) 32369.92 0.632 904.99
CNT (20%) 33583.79 0.656 901.35

Cu 51184.90 1 912.54

Table 3.3
Stochastic buffering results on 5 representative nets comparing with the

best case design and the worst case design with 10% variations on
resistances and capacitances of bundled SWCNT interconnects.

Test cases Net 1 Net 2 Net 3 Net 4 Net 5
The proposed Buf Area (nm2) 50578.00 1426493.20 850000.80 91040.40 40462.40

algorithm Delay (ps) 2174.82 1352.28 841.44 603.61 982.84
Best case Buf Area (nm2) 20231.20 263392.80 20231.20 20231.20 20231.20

design Delay (ps) 2743.54 1837.82 1703.79 1715.34 1518.52
Worst case Buf Area (nm2) 2599709.20 2599709.20 1032033.20 839885.20 2316520.80

design Delay (ps) 1857.37 851.64 745.89 591.98 968.82

The proposed unidimensional variation aware importance sampling based stochastic

SWCNT interconnects buffering algorithm is compared with copper buffering. The

comparison results of 50 nets are shown in Table 3.2. The variations of resistance and

capacitance of the bundled SWCNT interconnects are set to be 5%, 10% and 20%,
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Figure 3.8: Buffer area and timing comparison between the proposed de-
sign and the best case design and the worst case design.

respectively. In the experimental results, the delay of CNT based design refers to the

99% delay obtained from importance sampling based simulations, while the delay of
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Figure 3.9: Runtime comparison between the standard Monte Carlo
method and the importance sampling based method.

copper design refers to the nominal delay without considering variations since global

copper interconnect variations are not important according to [79]. Thus, our compar-

ison would be actually in favor of copper based design. Nevertheless, one can observe

that, with 5% variation, the fabrication variation aware CNT buffering reduces the

buffer area by 34.0% on average compared to the copper buffering, while the 99%

delays of their solutions are still better than the nominal delays of copper buffering

solutions. With 10% variation, the fabrication variation aware CNT buffering reduces

the buffer area by 36.8% on average, and with 20% variation, the fabrication variation

aware CNT buffering reduces the buffer area by 34.4%, respectively.

To study the impact of variations to the buffered CNT based designs, the proposed

algorithm is also compared with the best case design and the worst case design. The
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results for five representative nets are shown in Table 3.3, Figure 3.8, and Figure 3.9.

We make the following observations.

† Recall that in the best case design, the resistances and capacitances of the bun-

dled SWCNT interconnects are always set to the lower bounds. One observes

that best case design can achieve the smallest buffer areas. However, the 99%

delays do not satisfy the timing constraints, which means that many fabricated

designs cannot meet timing targets and thus these solutions are useless. Note

that sometimes buffer area of the best case design is zero, which means no

buffer is inserted. It is due to that the best case design is too optimistic on the

variational impact to interconnects.

† In the worst case design, the resistances and capacitances of the bundled

SWCNT interconnects are always set to the upper bounds. According to the

experimental results, the 99% delay can always satisfy the timing constraints.

However, the worst case design is too conservative and significant amount of

buffers are wasted.

† Comparing to the best case design and the worst case design, the 99% delays

of the proposed algorithm always satisfy the timing constraints while the buffer

area is much less than the worst case design. The buffer cost reduction is very

significant.

† To evaluate the efficiency of our technique, the comparison of runtime between
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the proposed importance sampling based technique (using 500 samples) and the

standard Monte Carlo method (using 10000 samples) is conducted. Compared

with the standard Monte Carlo method, the runtime of the proposed algorithm

is on average reduced by 84.03%.

3.6 Summary

In this work, the models of the resistance and capacitance of the bundled SWCNT

interconnects are analyzed considering unidimensional spatial correlation. A unidi-

mensional variation aware importance sampling based stochastic SWCNT intercon-

nects buffering algorithm is then developed. The experimental results demonstrate

that our algorithm on average saves more than 30% buffer area over copper buffering

while satisfying timing constraints. In addition, our proposed stochastic SWCNT in-

terconnects buffering algorithm achieves much better performance than the best case

design and the worst case design in terms of timing and buffer cost. To the best of our

knowledge, this is the first work on the bundled SWCNT interconnect optimizations

considering variations.
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Chapter 4

Lorenz Chaotic System Based

Carbon Nanotubes Physical

Unclonable Functions1

4.1 Introduction

Physical unclonable function (PUF) is an emerging technology for security appli-

cations, such as true random number generation, secure key generation, low-cost

authentication, etc [37, 38]. Most conventional encryption methodologies rely on the

1The material contained in this chapter is submitted to a journal publication.
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secure keys stored in flash or non-volatile memory, and they are vulnerable to physical

attacks. As an alternative approach, PUF exploits the hardware fabrication varia-

tions and generates unpredictable secure information in a storage-less fashion. For

example, Gassend et al. propose an arbiter PUF through leveraging the timing dif-

ference on the two identically designed paths due to fabrication variations [39]. The

input signal of the PUF is called the challenge and the output signal is called the

response.

Given a PUF design, we can have many fabricated chips. The only differences among

each fabricated chip are from the fabrication variations, which is not predictable nor

clonable. The carbon nanotubes are promising candidates for highly secure PUF de-

sign thanks to their significant fabrication variations [23]. Chemical vapor deposition

(CVD) is the most popular method for CNT fabrication, in which the pressure and

temperature of the environment have significant effects on the fabricated features such

as diameters and densities of CNTs. When CNTs are used as FETs and interconnects

for reliable designs, the fabrication variations are not desired [21, 25, 40]. However,

these inherent imperfections make the CNT based circuits natural candidates for

building highly secure PUFs. Several carbon nanotube PUFs (CNT PUFs) are de-

signed in the previous works such as [1, 41, 42, 43], which demonstrate significant

advantages such as low cost and significant randomness. A secure empirical mode

decomposition projection based CNT PUF design is developed in [41]. The other

prominent one is discussed in [1] where self-assembled CNTs are used to design a
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random bit generation approach for low-cost and hard-to-forge security applications.

In Figure 4.1, individual CNTs are placed between two layers which can be randomly

connected or disconnected [1].

Disconnected

Connected

Figure 4.1: The illustration of 2D CNT bitarray crossbar structure
(adapted from [1]).

Although CNT PUF designs have many advantages, they are still vulnerable to ma-

chine learning modeling attacks, where the attacker does not need to access the PUF

hardware physically. The attacker collects a large amount of challenge-response pairs

as the training data. Machine learning modeling attack methods are then used to

model the PUF. Subsequently, the attacker can use the model to predict the re-

sponses given new challenges. Deep learning (DL) and evolution strategy (ES) are

the most prominent machine learning methods used for modeling attacks [44]. It is
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demonstrated in some works [45, 46, 47] that machine learning modeling attacks can

achieve high prediction rate, e.g., 99.9%.

This motivates [48, 49, 50, 51] to design PUFs resistant to modeling attacks. In [48],

a secure physically-embedded data encryption architecture is proposed by replacing

conventional weak arbiter PUF with a specific strong PUF proposed in [49]. However,

it is not easy to build that specific strong PUF proposed in [49]. A circuit that

relies on non-linear current mirrors is designed to generate modeling resistant PUF

in [50]. The current sources are assumed to be ideal which is impractical. In [51],

the authors propose a lockdown technique in the PUF based system by adding server

authentication. It could effectively prevent the attacker to collect many challenge-

response pairs. However, the lockdown technique is of low efficiency.

In this paper, our objective is to design a CNT PUF which is resistant to machine

learning modeling attacks. First, one needs to know how the modeling attack methods

work. For most PUFs, similar challenges could generate similar responses [52, 53, 54].

Therefore, one possible method for preventing modeling attacks is to magnify the

differences among responses of similar challenges. Since Lorenz chaotic system yields

widely diverging outputs given similar inputs, it motivates us to develop a novel

CNT PUF design by leveraging Lorenz chaotic system. To the best of our knowledge,

this is the first such work in CNT PUF design. To demonstrate the effectiveness

of our proposed Lorenz chaotic system based CNT PUF, various machine learning
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attacks are preformed, including Support Vector Machine (SVM), Deep Learning

(DL), Logistic Regression (LR) and Evolution Strategies (ES). The experimental

results demonstrate that the proposed Lorenz chaotic system based CNT PUF is

robust to these attacks. The main contribution of this work is summarized as follows.

† In this paper, a novel CNT PUF design is developed by leveraging Lorenz

chaotic system. Lorenz chaotic system magnifies the differences among re-

sponses of similar challenges, which makes the proposed PUF design resistant

to modeling attacks.

† To demonstrate the security performance of the proposed PUF, various machine

learning methods are used on the proposed PUF, including SVM, DL, LR and

ES.

† The experimental results demonstrate that the machine learning modeling at-

tack methods can achieve as high as 100% bit-wise prediction rates on the CNT

PUF without Lorenz chaotic system, while they can only obtain less than 55%

bit-wise prediction rates on the proposed Lorenz chaotic system based CNT

PUF. To the best of our knowledge, this is the first work to leverage Lorenz

chaotic system to CNT PUF.

† The significant security performance of the proposed PUF is mainly contributed

by Lorenz chaotic system. However, if one uses Lorenz chaotic system only in

the design, the parameters need to be induced by fabrication variations, which
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could be complicated. Therefore, one needs to combine CNT PUF and Lorenz

chaotic system as discussed in this paper.

The rest of this paper is organized as follows. Lorenz chaotic system is overviewed

in Section 4.2. Lorenz chaotic system based CNT PUF is proposed in Section 4.3.

The machine learning modeling attack methods are discussed in Section 4.4. The

experimental results and analysis are presented in Section 4.5. A summary of this

paper is given in Section 4.6.

4.2 Preliminaries

4.2.1 Lorenz Chaotic System

Chaos theory is used to study the behavior of dynamic system that are highly sensitive

to initial conditions, which is referred as the butterfly effect. Small differences in initial

conditions yield widely diverging outcomes in a Lorenz chaotic system. Therefore,

Lorenz chaotic system has desirable features for encryption which been studied in

some previous works [80, 81]. In addition, besides the original Lorenz chaotic system,

some other chaotic systems are proposed in the literature, such as the chaotic Chen
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system [82], Rössler system [83] and three-dimensional conservative quadratic systems

[84] [85]. The chaotic Chen system is a dual of the Lorenz system. Since Lorenz

chaotic is the classic and most widely used, it is considered in this paper.

The standard Lorenz chaotic system is shown as below:

x′ = −σx+ σy

y′ = −xz + γx− y

z′ = xy − βz,

(4.1)

where x, y, and z are the input variables, σ, γ, and β are system parameters.

4.2.2 Discrete Lorenz Chaotic System

Based on the standard Lorenz chaotic system, the discrete Lorenz chaotic system can

be derived as follows [86]:
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xi+1 = σ(yi − xi) + xi

yi+1 = −xizi + γxi

zi+1 = xiyi − βzi + zi,

(4.2)

where xi, yi, and zi are the input variables, σ, γ, and β are system parameters. Given

initial inputs x0, y0, and z0, one can iterate the discrete Lorenz chaotic system n

times and generate the output values xn, yn, and zn.

Refer to Figure 4.2. There are two sets of x values and the only difference between the

two sets is the initial value of x0. One is with x0 = 1 and the other is with x = 1.0001,

and all other parameters are the same. It can be observed that the values of x over

iterations are quite different between the two sets. In other words, the output is very

sensitive to the initial inputs and other parameters. Therefore, the discrete Lorenz

chaotic system can be used to design modeling attack resistant PUFs.

Refer to Figure 4.3. Another example with binary input values is designed as follows.

The inputs of the discrete Lorenz chaotic system are a set of 16-bit strings which

are used as x0 and shown in Figure 4.3 (a), and all other values are set to certain

numbers. The discrete Lorenz chaotic system is performed for 10 iterations, the

outputs are obtained and shown in Figure 4.3 (b). Next, we flip the least significant

bit of the inputs to obtain a new set as shown in Figure 4.3 (c). For example, if

the least significant value is 1 in Figure 4.3 (a), we set it to 0 in Figure 4.3 (c).
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Figure 4.2: The value of x over iterations with two slightly different initial
inputs.

Subsequently, the outputs are generated, which are shown in Figure 4.3 (d). It is

clearly shown that the slight changes in the initial inputs could result in significant

changes in the outputs of discrete Lorenz chaotic system.
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(a) Original input set (b) Original output set

(c) Updated input set (d) Updated output set

Figure 4.3: The comparison between two sets with similar inputs (The
least significant bits of the two set of inputs are complementary).

4.3 Lorenz Chaotic System Based CNT PUF

4.3.1 CNT Crossbar Structure

An unclonable electronic random structure is designed to generate two-dimensional

(2D) random bit arrays in [1]. Single carbon nanotubes are used as switches in the 2D

structure. Refer to Figure 4.4. In [1], the authors use the inherent CNT fabrication

imperfections to construct an unclonable electronic random structure at low cost

84



Disconnected

…

…

In
p

u
t

Output

Connected by CNT

Disconnected without CNT

Connected

Figure 4.4: The schematic of 2D CNT bitarray crossbar structure (adapted
from [1]).

from carbon nanotubes. The intersections of the 2D grid are not connected in the

first stage. The single CNTs are then grown. If a single CNT connects two wires of the

intersection, it is then connected. Otherwise, the intersection is not connected. The

connected intersection represents bit 1 and the non-connected intersection represents

bit 0. Thus, a random 2D bitarray is generated.

4.3.2 The Standard CNT PUF

The fabrication process of carbon nanotubes induce large variations on various fea-

tures such as diameters, densities and alignments of carbon nanotubes [21, 25]. These
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Figure 4.5: The CNT crossbar structure based PUF.

variations will affect the electrical performances of carbon nanotube based circuits re-

sulting in large performance variations. These variations can be explored in building

highly secure PUFs. In the literature, there are works studying the variation aware

CNT based circuit designs including those focused on carbon nanotube field effect

transistor (CNFET) [28, 29, 33, 87] and those on bundled single-walled carbon nan-

otubes (SWCNT) interconnects [21, 35]. In particular, the presence of metallic CNTs

in CNFET has been explored to design a Carbon Nanotube PUF in [42] which achieves

better reliability against environmental variations.
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Figure 4.6: The proposed Lorenz chaotic system based CNT PUF.

Motivated by the 2D CNT crossbar bitarray design in [1], we design a CNT crossbar

structure based PUF by adding the digital-to-analog converters (DAC) at the input,

and current measurement module (e.g., [88]), current comparator (e.g., [89]) and

analog-to-digital converters (ADC) at the output. Refer to Figure 4.5. The input

is a set of binary values as the challenges and is converted to analog signals fed to

the CNT PUF. The current of the output analog signal is measured and convert to a

value by comparing with a user-defined value. The output is then converted to binary

values 1 or 0 as the response.

The advantage of this PUF is from the significant randomness of CNT growing. It

is extremely hard to clone the functions and it is resistant to physical attacks. For

example, the micro-probing method could easily break down the CNT PUF and the

information is destroyed. However, it still could be vulnerable to machine learning
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modeling attacks. According to the experimental results shown in Section 4.4, the

machine learning modeling attacks can achieve the prediction rate as high as 99%

to 100%. This motivates us to design a machine learning modeling attack resistant

CNT PUF which is presented in the following section.

4.3.3 Lorenz Chaotic System Based CNT PUF

The proposed Lorenz chaotic system based CNT PUF is illustrated in Figure 4.6.

Let C denote the challenge which is the input of the CNT PUF. Let R denote the

intermediate response which is the output of the CNT PUF and the input of Lorenz

chaotic system. Let R′ denote the response which is the output of Lorenz chaotic

system. There are two components in the proposed PUF. The first component is

the CNT PUF as illustrated in Section 4.3.2. The second component is the discrete

Lorenz chaotic system which post-processes the intermediate response. Since discrete

Lorenz chaotic system is very sensitive to the small differences of the input R, it

can generate diverging output R′ given similar R. Thus, the final responses of similar

challenges would not share similarity any more. Comparing to the CNT PUF only, the

proposed Lorenz chaotic system based CNT PUF decreases the correlation between

the challenges and responses of the CNT PUF, which makes it resistant to machine

learning modeling attacks.
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The parameters {σ, γ, β, y1, z1} used in discrete Lorenz chaotic system can be stored

in the circuit. However, these parameters could be vulnerable to physical attacks.

Thus, to improve the security of the proposed design, the parameters of discrete

Lorenz chaotic system are set based on the intermediate response R, which can be

not revealed by physical attacks. Refer to Eqn. 4.3. Each parameter of discrete Lorenz

chaotic system is a function of R. For example, the value of y1 can be 0.1R. After

obtaining all the parameters, the response of the whole PUF R′ can be calculated

using discrete Lorenz chaotic system.

σ = fσ(R)

γ = fγ(R)

β = fβ(R)

x1 = R

y1 = fy(R)

z1 = fz(R).

(4.3)

The illustrations of challenge and response of the CNT PUF without Lorenz chaotic

system (Figure 4.5) and the proposed Lorenz chaotic system based CNT PUF (Fig-

ure 4.6) are shown in Figure 4.7 and Figure 4.8, respectively. Figure 4.7 (a) shows a

set of 8-bit challenges and each row represents one challenge C. Figure 4.7 (b) shows

the responses of the CNT PUF and each row represents one intermediate response R.
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(a) Challenge (b) Intermediate response

(c) Response

Figure 4.7: Illustration of 8-bit challenge, intermediate response and re-
sponse of the proposed PUF.

The set of final responses R′ of the proposed CNT PUF is shown in Figure 4.7 (c).

It is observed that the proposed PUF can generate more diverse responses than the

CNT PUF. The metric of similarity is defined by the average of Hamming Distance

(HD) between each response with the other responses. Suppose that there are M

responses. The HD between one response Rm with the other responses is calculated

as follows:

HDm =
∑
h

|Rm −Rh|, (4.4)

where h = 1, 2, ...,M but h 6= m. Thus, the metric of similarity is calculated as
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Figure 4.8: Illustration of 32-bit challenge, intermediate response and re-
sponse of the proposed PUF.

follows:

Sim =
1

M

M∑
m=1

HDm, (4.5)

The similarity of responses in Figure 4.7 (b) is 2 and that of responses in Figure 4.7

(c) is 4.375. The smaller similarity means the responses are more similar to each

other. Therefore, the proposed PUF with Lorenz chaotic system can generate more

diverse responses than the CNT PUF without Lorenz chaotic system.

Another example is shown in Figure 4.8. A set of 32-bit challenges are randomly
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generated as shown in Figure 4.8 (a). The intermediate response R and final response

R′ are shown in Figure 4.8 (b) and (c), respectively. It can be observed that the

patterns of R′ seems more random than that of R, which is desirable. The metric of

randomness is defined by the average of the ratio of 0 or 1 in the response whichever is

larger. Suppose that there are M responses. The randomness is calculated as follows:

Ran =
1

M

M∑
m=1

max{pm0 , pm1 } × 100%, (4.6)

where pm0 is the ratio of 0 in response Rm and pm1 is the ratio of 1 in response Rm.

The ideal randomness is 50% and the worst is 100%. The randomness of responses

in Figure 4.8 (b) is 73.23% and the randomness of responses in Figure 4.8 (c) is

56.77%. Therefore, the proposed PUF with Lorenz chaotic system can generate more

random responses than the CNT PUF without Lorenz chaotic system given random

challenges.

4.3.4 Two Possible Design Styles

One might wonder whether the two components in the proposed PUF, as shown in

Figure 4.6, can be switched. Refer to Figure 4.9. The structures of two possible

design styles are illustrated. In Design I, Lorenz chaotic system is placed before CNT

PUF as shown in Figure 4.9 (a). Let C ′ denote the challenge which is the input of
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Figure 4.9: Structures of two possible designs (Design I: Lorenz chaotic
system is placed before CNT PUF; Design II: Lorenz chaotic system is placed
after CNT PUF. For consistency, input of CNT PUF is always denoted by
C and output of CNT PUF is always denoted by R).

Lorenz chaotic system. Let C denote the intermediate challenge which is the output

of Lorenz chaotic system and the input of the CNT PUF. Let R denote the response

which is the output of the CNT PUF. In Design II, Lorenz chaotic system is placed

after CNT PUF as shown in Figure 4.9 (b). Let C denote the challenge which is the

input of the CNT PUF. Let R denote the intermediate response which is the output

of the CNT PUF and the input of Lorenz chaotic system. Let R′ denote the response

which is the output of Lorenz chaotic system. To compare them, let us analyze two

cases: (1) Lorenz chaotic system is not vulnerable to attacks and (2) Lorenz chaotic

93



system is vulnerable. The values of (C ′, R) in Design I and (C,R′) in Design II are

available to the attacker. There is an assumption that CNT PUF can be hacked if

the challenges C and responses R are known, which is demonstrated in Section 4.5.

† Let us consider the first case that Lorenz chaotic system is not vulnerable to any

attacks which means that the parameters of Lorenz chaotic system cannot be

revealed. In Design I, C cannot be calculated and CNT PUF cannot be hacked.

Thus Design I is resistant to machine learning modeling attacks. In Design II,

R cannot be calculated and CNT PUF cannot be hacked. Thus, Design II is

also resistant to machine learning modeling attacks. In this case, Design I and

Design II have same performance against modeling attack methods. However,

one could not ensure that there exist no effective attacking methods for Lorenz

chaotic system.

† Suppose that Lorenz chaotic system is vulnerable to attacks which means that

the parameters can be revealed and are available to the attacker. In Design I,

given C ′, C can be calculated using the parameters of Lorenz chaotic system.

In this scenario, C and R of CNT PUF are known to the attacker and the CNT

PUF can be modeled using machine learning methods, such as logistic regression

which achieves 100% accuracy (as demonstrated in Section 4.5). Therefore,

Design I is vulnerable to machine learning modeling attacks. In Design II,

given the response R′ and the parameters of Lorenz chaotic system, it could

94



still be extremely hard to solve Lorenz chaotic system and obtain R due to the

nature of Lorenz chaotic system. In this scenario, C is known but R is unknown,

thus CNT PUF cannot be hacked. Therefore, Design II is resistant to machine

learning modeling attacks and it is chosen in this paper.

One might also consider that whether one can only use Lorenz chaotic system itself

in the design without CNT PUF. In this case, the parameters of Lorenz chaotic

system need to be induced from fabrication variations, which could be complicated.

Therefore, one needs to combine CNT PUF followed by Lorenz chaotic system as

discussed before.

4.3.5 Hierarchical CNT PUF

In some security design applications, large number of bits are needed, such as 256-

bit and 512-bit. Therefore, a hierarchical idea is explored and the 64-bit PUF is

illustrated in Figure 4.10 by cascading two 32-bit PUFs. First the 64-bit challenge

is divided to two 32-bit challenges which are the inputs of two 32-bit Lorenz chaotic

system CNT PUFs. The responses of the two 32-bit PUFs are then combined to

generate the final 64-bit response. Similarly, 128-bit PUF can be generated by two 64-

bit PUFs. Using the hierarchical structure, PUFs with large number of bits becomes

possible.
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Figure 4.10: The hierarchical structure Lorenz chaotic system based CNT
PUF.

4.4 Machine Learning Modeling Attack Methods

To demonstrate the security performance of the proposed CNT PUF against machine

learning modeling attacks, various methods are preformed to the proposed Lorenz

chaotic system based CNT PUF and the CNT PUF without Lorenz chaotic system.

In the following, the two PUFs are denoted by the CNT PUF w/ Lorenz and the

CNT PUF w/o Lorenz. The training data are M challenge-response pairs for both
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designs. Machine learning modeling methods are performed to estimate the models of

the CNT PUF w/o Lorenz and the CNT PUF w/ Lorenz. Subsequently, the models

will be used to predict the responses given the new challenges in the test data. In

this paper, SVM, LR, DL and ES machine learning methods are used to evaluate the

two PUF designs. These machine learning methods are widely used to attack PUFs

in the literature [46, 90, 91, 92].

The security performance of the PUF design is measured by the bit-wise prediction

rate of the response. For example, there are 1,000 challenge-response pairs in the test

data, and the length of the response is 32 bits. Thus, the total bits of the responses is

1, 000× 32 = 32, 000. Suppose that 30,000 bits are estimated correctly, then the bit-

wise prediction rate is calculated by 30,000
32,000

= 93.75%. Four machine learning methods

are considered in this paper.

4.4.1 Support Vector Machine

Support Vector Machine (SVM) has been widely used to attack PUFs. In [90], SVM

is used to model an arbiter PUF, and the results show that SVM reaches over 90%

prediction rate using 20,000 challenge-response pairs. In this paper, SVM is used to

evaluate the security performance of the CNT PUF w/o Lorenz and the CNT PUF w/

Lorenz. Denote the challenge-response pairs by {(C1, R1), (C2, R2), ..., (CM , RM))} in
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the training data and let m denote the index of the challenge-response pairs. Each

challenge is denoted by Cm = {Cm
1 , C

m
2 , ...C

m
n , ..., C

m
N } and each response is denoted

by Rm = {Rm
1 , R

m
2 , ...R

m
n , ..., R

m
N}, where n is the index of the bit in the challenge and

response, and N is the total number of bits. For example C1
2 is the second bit in the

first challenge C1.

hyperplane

Minimize  +

s.t. × , , … , , … , + 1 , 
0,  = 1,2, … ,

: decision hyperplane normal vector

: Challenge bit 

N: total number of challenge-response pairs

Margin =

1 0 1

0 0 1

… … … …

0 1 0

… … … …

1 1 1

1 1 0

0 1 0

= 1,2, … ,

Figure 4.11: The SVM model between one response bit Rn and all chal-
lenge bits.

Refer to Figure 4.11. An SVM model is estimated for each response bit Rn consid-

ering all challenge bits {C1, C2, ..., Cn, ..., CN}. The response bits can be classified to

two classes, where Rn = 0 and Rn = 1. Each challenge {C1, C2, ..., Cn, ..., CN} and

can be mapped to a high-dimensional feature space. SVM method finds a separat-

ing hyperplane that maximizes gap between the classes. The SVM model solves a

quadratic programming problem as follows [44]:
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minimize
1

2
ωTω + s

N∑
n=1

εn

subject to Rn(ω × ϕ(Cn) + b) ≥ 1− εn,

εn ≥ 0,

n = 1, 2, ..., N,

(4.7)

where ω is a normal vector of the hyperplane, b is a bias, ϕ(Cn) is the non-linear

mapping function, εn is the error in the misclassification and s is a regularization

constant. This is a convex quadratic programming optimization problem. The com-

puted SVM model is applied to the testing data and the predicted responses can be

estimated. Subsequently, the bit-wise prediction rate can be calculated comparing

the predicted responses with the true responses.

4.4.2 Logistic Regression

Logistic Regression (LR) is a most widely used machine learning modeling attack

method for PUFs. In [46], LR is used to attack an arbiter PUF and an XOR arbiter

PUF where the results show that LR can reach as high as 99% prediction rate for

64-bit PUFs using around 10,000 challenge-response pairs. Refer to Figure 4.12. A

logistic regression model is computed between one response bit Rn and all challenge

bits {C1, C2, ...Cn, ..., CN}. The logistic function is as follows [44]:
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Figure 4.12: The logistic regression model between one response bit Rn
and all challenge bits.

RLR(n) =
1

1 + e−(βn0 +βn1 ·C1+βn2 ·C2+···+βnN ·CN )
, (4.8)

where βn0 , β
n
1 , ..., β

n
N are the parameters of the LR model for Rn. The computed LR

models RLR(n) where n = 1, 2, ..., N are then applied to the challenges in the test

data and the estimated responses can be obtained. If RLR(n) >= 0.5, the predicted

response bit is set to 1 and 0 otherwise. Comparing the predicted responses with the

true responses, the bit-wise prediction rate can be calculated.

4.4.3 Deep Learning

Deep Learning (DL) is a popular machine learning method and deep belief networks

(DBN) is one of popular DL methods. DBN has an input layer, multiple hidden layers

and an output layer, which consist of artificial neurons imitating biological neurons.
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In [91], DL is used to attack an arbiter PUF, where the results show that DL reaches

prediction rate of 58% for 50,000 challenge-response pairs. In this paper, DBN is used

to model the PUFs where DBN is composed of multiple layers of restricted Boltzmann

machines (RBM).

4.4.3.1 Restricted Boltzmann Machines

…

……

…

,

( )

( )

Figure 4.13: The illustration of an RBM with hidden units and visible
units.

A restricted Boltzmann machines (RBM) is a generative model including hidden units
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and visible units. Refer to Figure 4.13. The energy function of the state {v, h} is [93]

E(v, h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i

∑
j

viwi,jhj, (4.9)

where ai is bias for vi, bj is bias for hj, wi,j is weight on the edge linking between vi

and hj. The joint probability distribution is defined as

P (v, h) =
e−E(v,h)∑

v

∑
h e
−E(v,h)

. (4.10)

The probability of hidden unit hj setting to 1 is

P (hj = 1|v) =
1

1 + e−(
∑
i wi,jvi+bj)

. (4.11)

The probability of visible unit vi setting to 1 is

P (vi = 1|h) =
1

1 + e−(
∑
j wi,jhj+ai)

. (4.12)

Given training data, the RBM model parameters {a, b,w} can be estimated using a

fast algorithm contrastive divergence proposed in [94].
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Figure 4.14: The illustration of a DBN model.

4.4.3.2 Deep Belief Networks

A deep belief network (DBN) is a probabilistic generative model with many hidden

layers, where each hidden layer corresponds to an RBM [95]. Refer to Figure 4.14.

There are l hidden layers in the DBN model. The joint probability distribution over
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visible units and hidden units is

P (v, h1, ..., hl) = P (v|h1)P (h1|h2) . . . P (hl−1|hl). (4.13)

The dependency between two adjacent hidden layers is computed as below:

P (hl−1
j = 1|hl) =

1

1 + e−(
∑
i w

l
i,jh

l
i+b

l
j)
, (4.14)

where bl is bias vector and wl is weight matrix. A heuristic learning algorithm given

in [95] is used to train the DBN sequentially through computing RBM in a layer-by-

layer fashion.
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Figure 4.15: The DBN model between all response bits and all challenge
bits.

Refer to Figure 4.15. In our case, the challenge {C1, C2, ..., CN} can be used as the

set of visible units in the first RBM layer, and the values of output layer units are
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set to be the response {R1, R2, ..., RN}. The computed DBN model is then applied

to the testing data to estimate responses. Subsequently, the bit-wise prediction rate

can be obtained comparing the estimated responses with the true responses.

For each sample , randomly pick 

three other samples { , , }

Replace sample 

with for next 

generation

Input: the parameters of LR results

Generate samples within lower 

and upper bounds of LR parameters

If < ?

Keep sample for 

next generation

Yes

No
Converged?

Yes

Output: the solution with 

the best prediction rate

Generate a random number 

Prediction rate of 

is better than ?

= + × ( ) =

No

Yes No

Figure 4.16: The Logistic Regression integrated Evolution Strategies
method.

4.4.4 Evolution Strategy

In [92], the authors propose an evolution strategy (ES) based machine learning

method to attack arbiter PUFs. In this paper, the ES method is developed through

exploring LR results. A PUF model instance can be represented using LR parame-

ters in Eqn. 4.8. The main idea of the ES machine learning method is to generate
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Figure 4.17: The bit-wise prediction rate over 1000 iterations of ES
method.

random PUF instances and pick the ones which best model the real PUF. In other

words, the PUF instances which provide highest prediction rates are survived and

kept as ancestors for the next generation. In the next generation, descendants of

PUF instances are generated using that of the ancestors together with some random

mutations. The descendants of PUF instances which provide highest prediction rates

are survived and kept as ancestors for the next generation. This process is repeatedly

performed until convergence.

In this paper, a popular ES method, differential evolution is used to evaluate the
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security performance of the proposed CNT PUF. The algorithmic flow is shown in

Figure 4.16. The inputs are the parameters of the LR model {β0, β1, ..., βN}. First,

a set of samples are generated within the given lower and upper bound of the LR

parameters, where a sample is defined as a candidate of parameters {β0, β1, ..., βN}.

The lower bound and upper bound are as follows:

βl = {β0 − α0|β0|, β1 − α1|β1|, ..., βN − αN |βN |},

βu = {β0 + α0|β0|, β1 + α1|β1|, ..., βN + αN |βN |}
(4.15)

For example, if β0 = 10 and α0 = 0.2, the range of β0 is [8, 12].

Let K denote the number of samples and k denote the index of a sample. The sample

update policy works as follows. A control parameter ρ is used to control whether the

sample pk is updated. A random number is first generated. If it is smaller than ρ,

the new sample qk is calculated as follows:

qk = a+ θ × (b− c), (4.16)

where θ is a user defined differential weight and a, b, c are three other distinct samples.

Using the new sample qk, the prediction rate can be calculated. If the prediction rate

using qk is better than pk, pk will then be replaced by qk in the next generation.

Otherwise, pk will be kept in the next generation. If the random generated number is

larger than ρ, the sample pk will be kept in the next generation. The above procedure
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is repeated until convergence.

Refer to Figure 4.17. ES method is performed for 1,000 iterations. The bit-wise

prediction rate of ES method increases from 51.69% to 52.95%, where 51.69% is the

prediction rate of LR method. It can be observed that the bit-wise prediction rate

is non-decreasing over iterations. The reason is that in each generation, the better

samples (at least the same samples) will be propagated to the next generation.
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Figure 4.18: The bit-wise prediction rates of each bit on the CNT PUF
w/o Lorenz.
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Figure 4.19: The bit-wise prediction rates of each bit on the CNT PUF
w/ Lorenz.
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4.5 Experimental Results

4.5.1 Experimental Setup

The Lorenz chaotic system based CNT PUF (CNT PUF w/ Lorenz) and the CNT

PUF only (CNT PUF w/o Lorenz) are simulated on a computer with 3.40GHz In-

tel Pentium CPU and 3GB memory. Two sets of experiments are designed. One

is with 32-bit challenges and responses and the other is with 64-bit challenges and

responses. Similar to existing works of machine learning modeling attacks on PUF

[46], the number of training challenge-response pairs is set to 50,000. The number

of testing challenge-response pairs is also set to 50,000. Support Vector Machine

(SVM), Deep Belief Network (DBN), Logistic Regression (LR) and Evolution Strate-

gies (ES) machine learning methods are implemented using R language and tested

on a computer with 3.40GHz Intel Pentium CPU and 3GB memory. The R program

packages used for SVM and DBN can be downloaded from [96, 97]. According to our

observations, the maximum number of iterations in ES methods is empirically set to

be 1000, which is enough for convergence. In addition, cross validation is considered

in the implementations.
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Table 4.1
Bit-wise prediction rates of Support Vector Machine (SVM), Deep Belief
Network (DBN), Logistic Regression (LR) and Evolution Strategies (ES)
for CNT PUF w/o Lorenz chaotic system and the CNT PUF w/ Lorenz
chaotic system using 50,000 32-bit and 64-bit challenge-response pairs

training data.

32-bit 64-bit
CNT PUF CNT PUF CNT PUF CNT PUF
w/o Lorenz w/ Lorenz w/o Lorenz w/ Lorenz

SVM 92.59% 52.55% 92.15% 53.11%
DBN 97.80% 51.66% 95.00% 52.97%
LR 100.00% 52.68% 100.00% 53.45%
ES 100.00% 53.65% 100.00% 54.46%

Table 4.2
Runtime of SVM, DBN, LR and ES for 64-bit CNT PUF w/o Lorenz
chaotic system and CNT PUF w/ Lorenz chaotic system using 50,000

challenge-response pairs training data.

CNT PUF w/o Lorenz CNT PUF w/ Lorenz
Prediction rate Runtime (s) Prediction rate Runtime (s)

SVM 92.15% 7813.98 53.11% 6889.22
DBN 95.00% 45.98 52.97% 41.21
LR 100.00% 1289.36 53.45% 249.15
ES 100.00% 1289.36 54.46% 21135.12

4.5.2 Experimental Results

In this paper, two criteria are used to evaluate the security performance of the PUF

designs. One is the bit-wise prediction rate, which represents the accuracy rate in term

of bits. For example, there are 1,000 challenge-response pairs in the test data, and the

length of the response is 32 bits. The total bits to predict is 1, 000×32 = 32, 000 bits.
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Table 4.3
String-wise prediction rates of SVM, DBN, LR and ES for CNT PUF w/o
Lorenz chaotic system and the CNT PUF w/ Lorenz chaotic system using

50,000 challenge-response pairs training data.

#allowed 32-bit 64-bit
error CNT PUF CNT PUF CNT PUF CNT PUF
bit w/o Lorenz w/ Lorenz w/o Lorenz w/ Lorenz

SVM 0bit 18.49% 0.01% 4.10% 0.00%
1bit 42.74% 0.05% 13.66% 0.00%

DBN 0bit 52.35% 0.00% 8.98% 0.01%
1bit 83.35% 0.00% 27.90% 0.04%

LR 0bit 100.00% 0.00% 100.00% 0.05%
1bit 100.00% 0.00% 100.00% 0.10%

ES 0bit 100.00% 0.00% 100.00% 0.00%
1bit 100.00% 0.00% 100.00% 0.02%

Suppose that there are 30,000 bits are predicted correctly, the bit-wise prediction rate

is calculated by 30,000
32,000

= 93.75%. The other criteria is the string-wise prediction rate,

which represents the accuracy rate in term of strings. For example, there are 1,000

challenge-response pairs in the test data, and there are 900 responses are predicted

correctly. The string-wise prediction rate is 900
1,000

= 90%. The number of allowed

error bit is also considered. It represents the maximum number of allowed incorrect

bits in the response. For example, the response is 32 bits and the number of allowed

error bits is 2. It means that if the predicted response contains less than or equal to

2 incorrectly estimated bits, it is still treated as correct prediction. Clearly, 0 allowed

error bit means the standard string-wise prediction rate.

The bit-wise prediction rates of two PUFs designs over 32 bits of the four popular

machine learning modeling methods are shown in Table 4.1. The bit-wise prediction
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rates of each bit for the PUF w/o Lorenz and the PUF w/ Lorenz are shown in

Figure 4.18 and Figure 4.19. The string-wise prediction rates of two PUFs designs

over 32 bits of the four popular machine learning modeling methods are shown in

Table 4.3. We make the following observations.

† Refer to Table 4.1. For 32-bit CNT PUF w/o Lorenz, all four methods obtain

high bit-wise prediction rates. In particular, LR and ES achieve 100.00% bit-

wise prediction rates. Therefore, the CNT PUF w/o Lorenz is vulnerable to

machine learning modeling attacks.

† Refer to Table 4.3. The string-wise prediction rate of SVM is the lowest, and

that of LR and ES are 100.00%, which is the highest. DBN achieves higher

string-wise prediction rates than SVM but lower than that of LR and ES. There-

fore, LR and ES have the best performance for attacking 32-bit CNT PUF w/o

Lorenz. Again, the CNT PUF w/o Lorenz is vulnerable to machine learning

modeling attacks.

† Refer to Table 4.1. For 32-bit CNT PUF w/ Lorenz, all four methods obtain

very low bit-wise prediction rates, around 50%. Since in theory, the random

guess method could obtain 50% bit-wise prediction rates. Therefore, the CNT

PUF w/ Lorenz is resistant to machine learning modeling attacks.

† Refer to Table 4.3. The string-wise prediction rates of all four methods are

nearly zero. Again, the CNT PUF w/ Lorenz is resistant to machine learning
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modeling attacks.

† Refer to Figure 4.18, the four methods obtain high bit-wise prediction rates for

each bit in the 32-bit CNT PUF w/o Lorenz. Refer to Figure 4.19, the four

methods obtain low bit-wise prediction rates for each bit in the 32-bit CNT

PUF w/ Lorenz.

† The above conclusions are reasonable under our models and our parameters. It

does not extend to other PUFs and there might be other better machine learning

methods and other better parameters which could obtain better performance.

The bit-wise prediction rates of two PUFs designs over 64 bits of the four popular

machine learning modeling methods are shown in Table 4.1 and the runtime infor-

mation in shown in Table 4.2. The string-wise prediction rates of two PUFs designs

over 64 bits of the four popular machine learning modeling methods are shown in

Table 4.3. We make the following observations.

† Refer to Table 4.1. For 64-bit CNT PUF w/o Lorenz, all four methods obtain

high bit-wise prediction rates. In particularly, LR and ES achieve 100% bit-wise

prediction rates. Therefore, the CNT PUF w/o Lorenz is vulnerable to machine

learning modeling attacks.

† Refer to Table 4.3. The string-wise prediction rates of SVM and DBN are very

low, and that of LR and ES are 100%, which is the highest. Therefore, LR
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and ES have the best performance for attacking 64-bit CNT PUF w/o Lorenz.

Again, the CNT PUF w/o Lorenz is vulnerable to machine learning modeling

attacks.

† Refer to Table 4.1 and Table 4.3. For 64-bit CNT PUF w/ Lorenz, all four

methods obtain very low bit-wise prediction rates, around 70%. The string-

wise prediction rates of all four methods are also very low. Therefore, the CNT

PUF w/ Lorenz is resistant to machine learning modeling attacks.

† Refer to Table 4.2. DBN is the most efficient and the reason is that there is

only one DBN model is used to estimate the PUF. All other methods use 64

models to estimate the PUF, therefore they are less efficient than DBN.

† Smaller prediction rates mean that it is harder to predict the correct response.

For example, the bit-wise prediction rate is 95.00% under DBN model for CNT

PUF w/o Lorenz. It means that 64× 95.00% = 60.8 ≈ 60 bits can be predicted

correctly. Then the attacker needs to guess the other 4 bits, where there exist

24 = 16 possibilities. Consider another example the bit-wise prediction rate

is 52.97% under DBN model for CNT PUF w/ Lorenz. It means that 64 ×

52.97% = 33.9 ≈ 33 bits can be predicted correctly. Then the attacker needs to

guess the other 31 bits, where there exist 231 = 2, 147, 483, 648 possibilities.

Two testcases are designed to study the performance of DBN. Refer to Figure 4.20

(a). There are two hidden layers and the number of nodes within each layer ranges
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from 10 to 100. It can be observed that, within certain number of nodes, the bit-

wise prediction rate is increasing with more nodes in each layer. However, the bit-

wise prediction rates cannot increase after some certain number of nodes. Refer to

Figure 4.20 (b). There are 10 nodes in each hidden layer and the number of hidden

layers ranges from 1 to 10. It can be observed that, more hidden layers do not provide

higher prediction rates.

We also study the security of Lorenz chaotic system. 50,000 training data are gener-

ated for 32-bit PUF and 64-bit PUF, including challenge C, intermediate response R

and response R′ (Figure 4.6). LR is performed to model the CNT PUF only (C,R),

Lorenz chaotic system only (R,R′), and Lorenz chaotic system based CNT PUF with

(C,R′), where (C,R) are the input and output of CNT PUF, (R,R′) are the input

and output of Lorenz chaotic system, and (C,R′) are the input and output of the

proposed Lorenz chaotic system based CNT PUF. The prediction rates are shown in

Table 4.4. The bit-wise prediction rate for CNT PUF only is 100%, which means that

CNT PUF is vulnerable to machine learning modeling attacks. The bit-wise predic-

tion rates for Lorenz chaotic system only and Lorenz chaotic system based CNT PUF

are both very low ranging from 50% to 70%. Therefore, the high security perfor-

mance of the proposed Lorenz chaotic system based CNT PUF is mainly contributed

by Lorenz chaotic system.
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Table 4.4
Bit-wise prediction rates of LR for the proposed PUF considering challenge
C, intermediate response R and response R′ using 50,000 32-bit and 64-bit

challenge-response pairs training data.

32-bit 64-bit
(C,R) (R,R′) (C,R′) (C,R) (R,R′) (C,R′)

CNT PUF Lorenz CNT PUF CNT PUF Lorenz CNT PUF
only only + Lorenz only only + Lorenz

100.00% 53.96% 52.68% 100.00% 54.58% 53.45%

4.6 Summary

PUFs exploit the hardware fabrication variations to generate secure keys on the fly.

Carbon nanotube based circuits are natural candidates for building highly secure

PUFs due to significant fabrication variations. However, existing PUFs are reported

to be vulnerable to machine learning modeling attacks. In this paper, Lorenz chaotic

system is leveraged to CNT PUF through magnifying the differences among responses

of similar challenges. It is demonstrated that the proposed Lorenz chaotic system

based CNT PUF is resistant to machine learning modeling attacks, including SVM,

DBN, LR and ES. The experimental results demonstrate that the machine learning

modeling attack methods can achieve as high as 100% bit-wise prediction rates of

the CNT PUF without Lorenz chaotic system, while can only obtain less than 55%

bit-wise prediction rates of the proposed Lorenz chaotic system based CNT PUF.

Therefore, our proposed PUF is resistant to machine learning modeling attacks.
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Chapter 5

Conclusion

Carbon nanotube interconnects have become a promising replacement material for

copper interconnects thanks to their superior conductivity. A timing driven buffer

insertion technique is proposed for carbon nanotube interconnects. In the experimen-

tal results, it demonstrates that with the same timing constraint, CNT buffering can

save over 50% buffer area compared to copper buffering. In addition, CNT buffering

can effectively reduce the delay by up to 32% without considering cost. However, due

to the imperfection of fabricating long straight carbon nanotubes (CNT), there exist

significant variations on the critical CNT geometric parameters such as the diameter

and density, which will affect the circuit performance. On the other hand, the pre-

vailing CNT fabrication uses Chemical Vapor Deposition, where the unidimensional

spatial correlation manifests strongly. A unidimensional variation aware importance
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sampling based stochastic CNT interconnects buffering algorithm is then developed.

The simulation results demonstrate that the proposed algorithm on average saves

more than 30% buffer area over copper buffering while satisfying timing constraints.

In addition, our proposed stochastic Experimental interconnects buffering algorithm

achieves much better performance than the best case design and the worst case design

in terms of timing and buffer cost.

Although the fabrication variations of carbon nanotubes are not desired for the circuit

designs targeting performance optimization and reliability, these inherent imperfec-

tions make the CNT based circuits natural candidates for building highly secure

physical unclonable function (PUF). A novel CNT PUF design through leveraging

Lorenz chaotic system is proposed, which is resistant to machine learning modeling

attacks. Support Vector Machine (SVM), Deep Learning (DL), Logistic Regression

(LR) and Evolution Strategies (ES) machine learning modeling attack methods are

used to evaluate the security performance of the proposed Lorenz chaotic system in-

tegrated CNT PUF. The experimental results demonstrate that the machine learning

modeling attack methods can achieve as high as 100% bit-wise prediction rates on the

CNT PUF without Lorenz chaotic system, while only obtain less than 55% bit-wise

prediction rates on the proposed Lorenz chaotic system based CNT PUF, respectively.
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Appendix A

List of Notations

The notations are listed as follows.

d-diameter of an SWCNT

d0-nominal diameter of an isolated SWCNT

di,j-diameter of an SWCNT in grid (i, j) l-length of an isolated SWCNT

l0-nominal length of an isolated SWCNT

s-cross section area of bundled SWCNTs

δ-density of bundled SWCNTs

δ0-nominal density of bundled SWCNTs

δi,j-density of bundled SWCNTs in grid (i, j)

Ncnt-number of SWCNTs in the bundle

y-distance between an isolated SWCNT and ground
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ε-permittivity

Rv-resistance of bundled SWCNT interconnects

Rv0-nominal resistance of bundled SWCNT interconnects

Rvsij -resistance of bundled SWCNT interconnects in grid (i, j)

RS-unit scattering resistance of an isolated SWCNT

Rbundle
S -scattering resistance of bundled SWCNTs

Cv-capacitance of bundled SWCNT interconnects

Cv0-nominal capacitance of bundled SWCNT interconnects

Cvsij -capacitance of bundled SWCNT interconnects in grid (i, j)

CE-electrostatic capacitance of an isolated SWCNT

β-parameter to model the uncertainty of the resistance and capacitance

Rβ
ij-resistance of bundled SWCNT interconnects in grid (i, j) for a given β

Cβ
ij-capacitance of bundled SWCNT interconnects in grid (i, j) for a given β

Rl
ij-lower bound of resistance of SWCNT interconnects in grid (i, j)

Ru
ij-upper bound of resistance of SWCNT interconnects in grid (i, j)

C l
ij-lower bound of capacitance of SWCNT interconnects in grid (i, j)

Cu
ij-upper bound of capacitance of SWCNT interconnects in grid (i, j)

µRN -mean value of normal distribution of resistance

σ2
RN

-variance of normal distribution of resistance

µCN -mean value of normal distribution of capacitance

σ2
CN

-variance of normal distribution of capacitance
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vRt-number of degrees of freedom of t distribution of resistance

vCt-number of degrees of freedom of t distribution of capacitance

dwnk-delay of wire segment w of kth sample under normal distribution

dwtk-delay of wire segment w of kth sample under t distribution
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